2017年辽宁省鞍山市台安县九年级上学期数学期中试卷与解析

合集下载

【精品】2018年辽宁省鞍山市台安县九年级上学期期中数学试卷带解析答案

【精品】2018年辽宁省鞍山市台安县九年级上学期期中数学试卷带解析答案

2017-2018学年辽宁省鞍山市台安县九年级(上)期中数学试卷一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)直角坐标系内,点P(4,﹣2)关于原点的对称点Q的坐标为()A.(4,﹣2)B.(4,2) C.(﹣4,2)D.(﹣4,﹣2)2.(3分)方程x2﹣2x=0的根是()A.x 1=x2=0 B.x1=x2=2 C.x1=0,x2=2 D.x1=0,x2=﹣23.(3分)以2和﹣3为根的方程是()A.x2﹣6x+8=0 B.x2+2x﹣3=0 C.x2﹣x﹣6=0 D.x2+x﹣6=04.(3分)如图,AB是⊙O的直径,M,N是⊙O上的两点,且AN=3,∠M=120°,则⊙O的半径为()A.3 B.5 C.3 D.65.(3分)如图,E、F分别是正方形ABCD的边AB、BC上的点,且BE=CF,连接CE、DF,将△DCF绕着正方形的中心O按顺时针方向旋转到△CBE的位置,则旋转角为()A.30°B.45°C.60°D.90°6.(3分)在二次函数y=x2﹣2x﹣3中,当0≤x≤3时,y的最大值和最小值分别是()A.0,﹣4 B.0,﹣3 C.﹣3,﹣4 D.0,07.(3分)已知二次函数y=x2﹣3x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程x2﹣3x+m=0的两实数根是()A.x1=1,x2=﹣1 B.x1=1,x2=2 C.x1=1,x2=0 D.x1=1,x2=38.(3分)如图,二次函数y=ax2+bx+c(a>0)图象的顶点为D,其图象与x轴的交点A、B的横坐标分别为﹣1和3,则下列结论正确的是()A.2a﹣b=0B.a+b+c>0C.3a﹣c=0D.当a=时,△ABD是等腰直角三角形二、填空题(本大题共8小题,每小题3分,共24分)9.(3分)在线段、等边三角形、平行四边形和圆中,不是中心对称图形的为.10.(3分)已知x1=3是关于x的一元二次方程x2﹣4x+c=0的一个根,则方程的另一个根x2是.11.(3分)将含有30°角的直角三角板OAB如图放置在平面直角坐标系中,OB 在x轴上,若OA=2,将三角板绕原点O顺时针旋转75°,则点A的对应点A′的坐标为.12.(3分)一个QQ群里有若干个好友,每个好友都分别给群里其它好友发送一条消息,这样共有870条消息,则这个QQ群里有个好友.13.(3分)如图,点E是△ABC的内心,AE的延长线和△ABC的外接圆相交于点D,连接BD、BE、CE,若∠CBD=32°,则∠BEC的度数为.14.(3分)如图,⊙O的半径OD⊥弦AB于点C,连接AO并延长交⊙O于点P,连接PC.若AB=8,OC=3,则PC=.15.(3分)已知二次函数y=﹣x2+ax﹣a+1的图象顶点在x轴上,则a=.16.(3分)如图,把抛物线y=x2平移得到抛物线m,抛物线m经过点A(﹣6,0)和原点O(0,0),它的顶点为P,它的对称轴与抛物线y=x2交于点Q,则图中阴影部分的面积为.三、解答题(本大题共2小题,共16分)17.(8分)关于x的一元二次方程x2+2x+k+1=0的实数解是x1和x2.(1)求k的取值范围;(2)如果x1+x2﹣x1x2<﹣1且k为整数,求k的值.18.(8分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A (﹣3,5),B(﹣2,1),C(﹣1,3).(1)画出△ABC和△A1B1C1关于原点O对称,画出△A1B1C1,并写出△A1B1C1的各顶点的坐标;(2)将△ABC绕着点O按顺时针方向旋转90°得到的△A2B2C2,画出△A2B2C2,并写出△A2B2C2的各顶点的坐标.四、解答题(每小题10分,共20分)19.(10分)已知二次函数y=﹣x2﹣x+.(1)用配方法把这个二次函数的解析式化为y=a(x+m)2+k的形式;(2)写出这个二次函数图象的开口方向、顶点坐标和对称轴;(3)将二次函数y=﹣x2的图象如何平移能得到二次函数y=﹣x2﹣x+的图象,请写出平移方法.20.(10分)如图,在Rt△ABC中,∠ACB=90°,点D,E分别在AB,AC上,CE=BC,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CF,连接EF.(1)补充完成图形;(2)若EF∥CD,求证:∠BDC=90°.五、解答题(每小题10分,共20分)21.(10分)如图,四边形ABCD内接于⊙O,F是上一点,且=,连接CF 并延长交AD的延长线于点E,连接AC,若∠ABC=105°,∠BAC=25°,求∠E的度22.(10分)如图,直角△ABC内接于⊙O,点D是直角△ABC斜边AB上的一点,过点D作AB的垂线交AC于E,过点C作∠ECP=∠AED,CP交DE的延长线于点P,连结PO交⊙O于点F.(1)求证:PC是⊙O的切线;(2)若PC=3,PF=1,求AB的长.六、解答题(每小题10分,共20分)23.(10分)红旗连锁超市花2000购进一批糖果,按80%的利润定价无人购买,决定降价出售,但仍无人购买.结果又一次降价后才售完,但仍盈利45.8%,两次降价的百分率相同,问每次降价的百分率是多少?24.(10分)某商家经销一种绿茶,用于装修门面已投资3000元,已知绿茶每千克成本50元,在第一个月的试销时间内发现,销量w(kg)随销售单价x(元/kg)的变化而变化,具体变化规律如下表所示设该绿茶的月销售利润为y(元)(销售利润=单价×销售量﹣成本﹣投资).(1)请根据上表,写出w与x之间的函数关系式(不必写出自变量x的取值范(2)求y与x之间的函数关系式(不必写出自变量x的取值范围).并求出x为何值时,y的值最大?(3)若在第一个月里,按使y获得最大值的销售单价进行销售后,在第二个月里受物价部门干预,销售单价不得高于90元,要想在全部收回投资的基础上使第二个月的利润达到1700元,那么第二个月里应该确定销售单价为多少元?七、解答题(12分)25.(12分)在△ABC中,AB=6,AC=BC=5,将△ABC绕点A按顺时针方向旋转,得到△ADE,旋转角为α(0°<α<180°),点B的对应点为点D,点C的对应点为点E,连接BD,BE.(1)如图,当α=60°时,延长BE交AD于点F.①求证:△ABD是等边三角形;②求证:BF⊥AD,AF=DF;③请直接写出BE的长;(2)在旋转过程中,过点D作DG垂直于直线AB,垂足为点G,连接CE,当∠DAG=∠ACB,且线段DG与线段AE无公共点时,请直接写出BE+CE的值.温馨提示:考生可以根据题意,在备用图中补充图形,以便作答.26.(14分)如图,对称轴为直线x=2的抛物线y=ax2+bx+c(a≠0)与x轴相交于B,C两点,其中B点坐标为(1,0),与y轴交于点A,A点坐标为(0,3)(1)求此抛物线的解析式.(2)求点B到直线AC的距离.(3)在此抛物线的对称轴上,是否存在点P使得以点P,A,B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,请说明理由.2017-2018学年辽宁省鞍山市台安县九年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)直角坐标系内,点P(4,﹣2)关于原点的对称点Q的坐标为()A.(4,﹣2)B.(4,2) C.(﹣4,2)D.(﹣4,﹣2)【解答】解:点P(4,﹣2)关于原点的对称点Q的坐标为(﹣4,2),故选:C.2.(3分)方程x2﹣2x=0的根是()A.x1=x2=0 B.x1=x2=2 C.x1=0,x2=2 D.x1=0,x2=﹣2【解答】解:x2﹣2x=0x(x﹣2)=0,解得:x1=0,x2=2.故选:C.3.(3分)以2和﹣3为根的方程是()A.x2﹣6x+8=0 B.x2+2x﹣3=0 C.x2﹣x﹣6=0 D.x2+x﹣6=0【解答】解:可设方程为x2+bx+c=0,∵方程的两根分别为2和﹣3,∴﹣b=2+(﹣3)=﹣1,c=2×(﹣3)=﹣6,∴b=1,c=﹣6,∴方程为x2+x﹣6=0,故选:D.4.(3分)如图,AB是⊙O的直径,M,N是⊙O上的两点,且AN=3,∠M=120°,则⊙O的半径为()A.3 B.5 C.3 D.6【解答】解:连接BN,如图,∵∠M+∠A=180°,∴∠A=180°﹣120°=60°,∵AB为直径,∴∠ANB=90°,∴∠ABN=30°,∴AB=2AN=6,∴⊙O的半径为3.故选:A.5.(3分)如图,E、F分别是正方形ABCD的边AB、BC上的点,且BE=CF,连接CE、DF,将△DCF绕着正方形的中心O按顺时针方向旋转到△CBE的位置,则旋转角为()A.30°B.45°C.60°D.90°【解答】解:∵正方形ABCD,O为正方形的中心,∴OD=OC,OD⊥OC,∴∠DOC=90°,由题意得到D对应点为C,连接OC,OD,∠DOC即为旋转角,则将△DCF绕着正方形的中心O按顺时针方向旋转到△CBE的位置,旋转角为90°,故选:D.6.(3分)在二次函数y=x2﹣2x﹣3中,当0≤x≤3时,y的最大值和最小值分别是()A.0,﹣4 B.0,﹣3 C.﹣3,﹣4 D.0,0【解答】解:抛物线的对称轴是x=1,则当x=1时,y=1﹣2﹣3=﹣4,是最小值;当x=3时,y=9﹣6﹣3=0是最大值.故选:A.7.(3分)已知二次函数y=x2﹣3x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程x2﹣3x+m=0的两实数根是()A.x1=1,x2=﹣1 B.x1=1,x2=2 C.x1=1,x2=0 D.x1=1,x2=3【解答】解:∵二次函数的解析式是y=x2﹣3x+m(m为常数),∴该抛物线的对称轴是:x=.又∵二次函数y=x2﹣3x+m(m为常数)的图象与x轴的一个交点为(1,0),∴根据抛物线的对称性质知,该抛物线与x轴的另一个交点的坐标是(2,0),∴关于x的一元二次方程x2﹣3x+m=0的两实数根分别是:x1=1,x2=2.故选:B.8.(3分)如图,二次函数y=ax2+bx+c(a>0)图象的顶点为D,其图象与x轴的交点A、B的横坐标分别为﹣1和3,则下列结论正确的是()A.2a﹣b=0B.a+b+c>0C.3a﹣c=0D.当a=时,△ABD是等腰直角三角形【解答】解:∵抛物线与x轴的交点A、B的横坐标分别为﹣1,3,∴抛物线的对称轴为直线x=1,则﹣=1,∴2a+b=0,∴选项A错误;∴当自变量取1时,对应的函数图象在x轴下方,∴x=1时,y<0,则a+b+c<0,∴选项B错误;∵a>0,c<0,∴3a>0,﹣c>0.∴3a﹣c>0,∴选项C错误;当a=,则b=﹣1,c=﹣,对称轴x=1与x轴的交点为E,如图,∴抛物线的解析式为y=x2﹣x﹣,把x=1代入得y=﹣1﹣=﹣2,∴D点坐标为(1,﹣2),∴AE=2,BE=2,DE=2,∴△ADE和△BDE都为等腰直角三角形,∴△ADB为等腰直角三角形,∴选项D正确.故选:D.二、填空题(本大题共8小题,每小题3分,共24分)9.(3分)在线段、等边三角形、平行四边形和圆中,不是中心对称图形的为等边三角形.【解答】解:在线段、等边三角形、平行四边形和圆中,不是中心对称图形的为:等边三角形.故答案为:等边三角形.10.(3分)已知x1=3是关于x的一元二次方程x2﹣4x+c=0的一个根,则方程的另一个根x2是1.【解答】解:设方程的另一个根是x2,则:3+x2=4,解得x=1,故另一个根是1.故答案为1.11.(3分)将含有30°角的直角三角板OAB如图放置在平面直角坐标系中,OB 在x轴上,若OA=2,将三角板绕原点O顺时针旋转75°,则点A的对应点A′的坐标为(,﹣).【解答】解:∵三角板绕原点O顺时针旋转75°,∴旋转后OA与y轴夹角为45°,∵OA=2,∴OA′=2,∴点A′的横坐标为2×=,纵坐标为﹣2×=﹣,所以,点A′的坐标为(,﹣).故答案为:(,﹣).12.(3分)一个QQ群里有若干个好友,每个好友都分别给群里其它好友发送一条消息,这样共有870条消息,则这个QQ群里有30个好友.【解答】解:设有x个好友,依题意,x(x﹣1)=870,整理,得x2﹣x﹣870=0,(x﹣30)(x+29)=0解得:x1=30,x2=﹣29(舍去)答:QQ群里共有30个好友.13.(3分)如图,点E是△ABC的内心,AE的延长线和△ABC的外接圆相交于点D,连接BD、BE、CE,若∠CBD=32°,则∠BEC的度数为122°.【解答】解:在⊙O中,∵∠CBD=32°,∵∠CAD=32°,∵点E是△ABC的内心,∴∠BAC=64°,∴∠EBC+∠ECB=(180°﹣64°)÷2=58°,∴∠BEC=180°﹣58°=122°.故答案为:122°.14.(3分)如图,⊙O的半径OD⊥弦AB于点C,连接AO并延长交⊙O于点P,连接PC.若AB=8,OC=3,则PC=2.【解答】解:连结BP,如图,∵OD⊥AB,∴AC=BC=AB=×8=4,∵OA=OP,∴PB=2OC=2×3=6,∵AP为直径,∴∠ABP=90°,在Rt△BCP中,PC===2.故答案为:2.15.(3分)已知二次函数y=﹣x2+ax﹣a+1的图象顶点在x轴上,则a=2.【解答】解:根据题意,得=0,将a=﹣1,b=a,c=﹣a+1代入,得=0,所以解得:a=2.故答案为:2.16.(3分)如图,把抛物线y=x2平移得到抛物线m,抛物线m经过点A(﹣6,0)和原点O(0,0),它的顶点为P,它的对称轴与抛物线y=x2交于点Q,则图中阴影部分的面积为.【解答】解:过点P作PM⊥y轴于点M,∵抛物线平移后经过原点O和点A(﹣6,0),∴平移后的抛物线对称轴为x=﹣3,得出二次函数解析式为:y=(x+3)2+h,将(﹣6,0)代入得出:0=(﹣6+3)2+h,解得:h=﹣,∴点P的坐标是(﹣3,﹣),根据抛物线的对称性可知,阴影部分的面积等于矩形NPMO的面积,∴S=|﹣3|×|﹣|=.故答案为:.三、解答题(本大题共2小题,共16分)17.(8分)关于x的一元二次方程x2+2x+k+1=0的实数解是x1和x2.(1)求k的取值范围;(2)如果x1+x2﹣x1x2<﹣1且k为整数,求k的值.【解答】解:(1)∵方程有实数根,∴△=22﹣4(k+1)≥0,解得k≤0.故K的取值范围是k≤0.(2)根据一元二次方程根与系数的关系,得x1+x2=﹣2,x1x2=k+1,x1+x2﹣x1x2=﹣2﹣(k+1).由已知,得﹣2﹣(k+1)<﹣1,解得k>﹣2.又由(1)k≤0,∴﹣2<k≤0.∵k为整数,∴k的值为﹣1或0.18.(8分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A (﹣3,5),B(﹣2,1),C(﹣1,3).(1)画出△ABC和△A1B1C1关于原点O对称,画出△A1B1C1,并写出△A1B1C1的各顶点的坐标;(2)将△ABC绕着点O按顺时针方向旋转90°得到的△A2B2C2,画出△A2B2C2,并写出△A2B2C2的各顶点的坐标.【解答】解:(1)如图,△A1B1C1为所作;点A1、B1、C1的坐标分别为(3,﹣5)、(2,﹣1)、(1,﹣3);(2)△A2B2C2为所作;点A2、B2、C2的坐标分别为(5,3)、(1,2)、(3,1).四、解答题(每小题10分,共20分)19.(10分)已知二次函数y=﹣x2﹣x+.(1)用配方法把这个二次函数的解析式化为y=a(x+m)2+k的形式;(2)写出这个二次函数图象的开口方向、顶点坐标和对称轴;(3)将二次函数y=﹣x2的图象如何平移能得到二次函数y=﹣x2﹣x+的图象,请写出平移方法.【解答】解:(1)y=﹣x2﹣x+=﹣(x+1)2+4,即y=﹣(x+1)2+4;(2)因为a=﹣,所以该抛物线的开口方向向下,由y=﹣(x+1)2+4知,抛物线的顶点坐标是(﹣1,4),对称轴直线为c=﹣1;(3)将y=﹣x2的图象向左平移1个单位长度,再向上平移4个单位长度即可.20.(10分)如图,在Rt△ABC中,∠ACB=90°,点D,E分别在AB,AC上,CE=BC,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CF,连接EF.(1)补充完成图形;(2)若EF∥CD,求证:∠BDC=90°.【解答】解:(1)补全图形,如图所示;(2)由旋转的性质得:∠DCF=90°,∴∠DCE+∠ECF=90°,∵∠ACB=90°,∴∠DCE+∠BCD=90°,∴∠ECF=∠BCD,∵EF∥DC,∴∠EFC+∠DCF=180°,∴∠EFC=90°,在△BDC和△EFC中,,∴△BDC≌△EFC(SAS),∴∠BDC=∠EFC=90°.五、解答题(每小题10分,共20分)21.(10分)如图,四边形ABCD内接于⊙O,F是上一点,且=,连接CF 并延长交AD的延长线于点E,连接AC,若∠ABC=105°,∠BAC=25°,求∠E的度数.【解答】解:∵四边形ABCD内接于⊙O,∠ABC=105°,∴∠ADC=180°﹣∠ABC=180°﹣105°=75°.∵=,∠BAC=25°,∴∠DCE=∠BAC=25°,∴∠E=∠ADC﹣∠DCE=75°﹣25°=50°.22.(10分)如图,直角△ABC内接于⊙O,点D是直角△ABC斜边AB上的一点,过点D作AB的垂线交AC于E,过点C作∠ECP=∠AED,CP交DE的延长线于点P,连结PO交⊙O于点F.(1)求证:PC是⊙O的切线;(2)若PC=3,PF=1,求AB的长.【解答】解:(1)如图,连接OC,∵PD⊥AB,∴∠ADE=90°,∵∠ECP=∠AED,又∵∠EAD=∠ACO,∴∠PCO=∠ECP+∠ACO=∠AED+∠EAD=90°,∴PC⊥OC,∴PC是⊙O切线.(2)解法一:延长PO交圆于G点,∵PF×PG=PC2,PC=3,PF=1,∴PG=9,∴FG=9﹣1=8,∴AB=FG=8.解法二:设⊙O的半径为x,则OC=x,OP=1+x∵PC=3,且OC⊥PC∴32+x2=(1+x)2解得x=4∴AB=2x=8六、解答题(每小题10分,共20分)23.(10分)红旗连锁超市花2000购进一批糖果,按80%的利润定价无人购买,决定降价出售,但仍无人购买.结果又一次降价后才售完,但仍盈利45.8%,两次降价的百分率相同,问每次降价的百分率是多少? 【解答】解:设平均每次降价的百分率为x ,依题意得:2000×(1+80%)(1﹣x )2=2000×(1+45.8%), 解得x=0.1=10%,或x=1.9(舍去). 答:每次降价的百分率是10%.24.(10分)某商家经销一种绿茶,用于装修门面已投资3000元,已知绿茶每千克成本50元,在第一个月的试销时间内发现,销量w (kg )随销售单价x (元/kg )的变化而变化,具体变化规律如下表所示设该绿茶的月销售利润为y (元)(销售利润=单价×销售量﹣成本﹣投资). (1)请根据上表,写出w 与x 之间的函数关系式(不必写出自变量x 的取值范围);(2)求y 与x 之间的函数关系式(不必写出自变量x 的取值范围).并求出x 为何值时,y 的值最大?(3)若在第一个月里,按使y 获得最大值的销售单价进行销售后,在第二个月里受物价部门干预,销售单价不得高于90元,要想在全部收回投资的基础上使第二个月的利润达到1700元,那么第二个月里应该确定销售单价为多少元? 【解答】解:(1)设w=kx +b ,将(70,100),(75,90)代入上式得:,解得:,则w=﹣2x+240;(2)y=(x﹣50)•w=(x﹣50)•(﹣2x+240)=﹣2x2+340x﹣12000,因此y与x的关系式为:y=﹣2x2+340x﹣12000,=﹣2(x﹣85)2+2450,故当x=85时,y的值最大为2450.(3)故第1个月还有3000﹣2450=550元的投资成本没有收回,则要想在全部收回投资的基础上使第二个月的利润达到1700元,即y=2250才可以,可得方程﹣2(x﹣85)2+2450=2250,解这个方程,得x1=75,x2=95;根据题意,x2=95不合题意应舍去.答:当销售单价为每千克75元时,可获得销售利润2250元,即在全部收回投资的基础上使第二个月的利润达到1700元.七、解答题(12分)25.(12分)在△ABC中,AB=6,AC=BC=5,将△ABC绕点A按顺时针方向旋转,得到△ADE,旋转角为α(0°<α<180°),点B的对应点为点D,点C的对应点为点E,连接BD,BE.(1)如图,当α=60°时,延长BE交AD于点F.①求证:△ABD是等边三角形;②求证:BF⊥AD,AF=DF;③请直接写出BE的长;(2)在旋转过程中,过点D作DG垂直于直线AB,垂足为点G,连接CE,当∠DAG=∠ACB,且线段DG与线段AE无公共点时,请直接写出BE+CE的值.温馨提示:考生可以根据题意,在备用图中补充图形,以便作答.【解答】解:(1)①∵△ABC绕点A顺时针方向旋转60°得到△ADE,∴AB=AD,∠BAD=60°,∴△ABD是等边三角形;②由①得△ABD是等边三角形,∴AB=BD,∵△ABC绕点A顺时针方向旋转60°得到△ADE,∴AC=AE,BC=DE,又∵AC=BC,∴EA=ED,∴点B、E在AD的中垂线上,∴BE是AD的中垂线,∵点F在BE的延长线上,∴BF⊥AD,AF=DF;③由②知BF⊥AD,AF=DF,∴AF=DF=3,∵AE=AC=5,∴EF=4,∵在等边三角形ABD中,BF=AB•sin∠BAF=6×=3,∴BE=BF﹣EF=3﹣4;(2)如图所示,∵∠DAG=∠ACB,∠DAE=∠BAC,∴∠ACB+∠BAC+∠ABC=∠DAG+∠DAE+∠ABC=180°,又∵∠DAG+∠DAE+∠BAE=180°,∴∠BAE=∠ABC,∵AC=BC=AE,∴∠BAC=∠ABC,∴∠BAE=∠BAC,∴AB⊥CE,且CH=HE=CE,∵AC=BC,∴AH=BH=AB=3,则CE=2CH=8,BE=5,∴BE+CE=13.26.(14分)如图,对称轴为直线x=2的抛物线y=ax2+bx+c(a≠0)与x轴相交于B,C两点,其中B点坐标为(1,0),与y轴交于点A,A点坐标为(0,3)(1)求此抛物线的解析式.(2)求点B到直线AC的距离.(3)在此抛物线的对称轴上,是否存在点P使得以点P,A,B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,请说明理由.【解答】解:(1)由题意知,B,C关于对称轴x=2对称,B(1,0),所以C(3,0),设抛物线解析式为y=a(x﹣1)(x﹣3),将A(0,3)代入得:3a=3,解得:a=1,∴抛物线解析式为y=(x﹣1)(x﹣3)=x2﹣4x+3;(2)如图1所示,过B点作BD⊥AC交AC于D点在Rt△AOC中,AC===3,=BC•AD=AC•BD,∴S△BCA=×2×3,=AC•BD,∴点B到直线AC的距离为;(3)存在,抛物线的对称轴是直线x=2,P点在直线x=2上,设P的坐标(2,y)∴AP2=22+(y﹣3)2=4+y2﹣6y+9=y2﹣6y+13,BP2=(2﹣1)2+(y﹣0)2=1+y2,AB2=12+32+1+9=10,∵△PBA是等腰三角形,分三种情况讨论:①如图2所示,当AP=AB时,则AP2=AB2,即y2﹣6y+13=10,解得:y=3±,∴P的坐标为(2,3+)或(2,3﹣);②如图3,当AP=BP时,则AP2=BP2,即y2﹣6y+13=1+y2解得:y=2,∴P的坐标为(2,2)③如图4,当AB=BP时,则AB2=BP2,即10=1+y2解得:y=±3,∴P的坐标为(2,3)或(2,﹣3),当P的坐标为(2,﹣3)时,A,B,P在同一直线上,不符合题意,舍去.∴综上所述,符合题意的点P有4个:P1(2,3+),P2(2,3﹣),P3(2,2),P4(2,3)赠送:初中数学几何模型举例【模型四】几何最值模型:图形特征:BAPl运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为EM FB2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。

鞍山市九年级上学期期中数学试卷

鞍山市九年级上学期期中数学试卷

鞍山市九年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、填空题 (共16题;共28分)1. (2分)已知α,β是关于x的一元二次方程x2+(2m+3)x+m2=0的两个不相等的实数根,且满足,则m的值是A . 3或﹣1B . 3C . 1D . ﹣3或12. (2分)有五张卡片(形状、大小、质地都相同),上面分别画有下列图形:①线段;②正三角形;③平行四边形;④等腰梯形;⑤圆。

将卡片背面朝上洗匀,从中抽取一张,正面图形一定满足既是轴对称图形,又是中心对称图形的概率是()A .B .C .D .3. (2分) (2020九上·新乡期末) 若反比例函数的图象分布在二、四象限,则关于x的方程的根的情况是()A . 有两个不相等的实数根B . 有两个相等的实数根C . 没有实数根D . 只有一个实数根4. (2分)如图,将边长为1cm的等边三角形ABC沿直线l向右翻动(不滑动),点B从开始到结束,所经过路径的长度为A .B .C .D . 3cm5. (2分) (2015八下·洞头期中) 某校去年投资2万元购买实验器材,预期明年的投资额为8万元.若该校这两年购买实验器材的投资的年平均增长率为x,则下面所列方程正确的是()A . 2(1+2x)=8B . 2(1+x)2=8C . 8(1﹣2x)=2D . 8(1﹣x)2=26. (2分)已知二次函数y=ax2+bx+c的图象如图所示,则下列结论:①a、b同号;②二次函数有最小值;③4a+b=0;④当y=﹣2时,x的值只能取0,其中正确的个数是()A . 1个B . 2个C . 3个D . 4个7. (2分) (2017八下·常熟期中) 如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接AA′,若∠B=65°,则∠1的度数是()A . 45°B . 25°C . 20°D . 15°8. (2分)将△ABC绕点B按逆时针方向旋转90°后得到△A'BC',若BC=2,则CC'的长为().A .B .C . 2D . 39. (2分) (2016九上·呼和浩特期中) 已知抛物线y=﹣x2+2x+3的顶点为P,与x轴的两个交点为A,B,那么△ABP的面积等于()A . 16B . 8C . 6D . 410. (2分) (2017九下·梁子湖期中) 如图,抛物线y=ax2+bx+c(a≠0)与y轴的正半轴相交,顶点在第四象限,对称轴为x=1,下列结论:①b<0;②a+b<0;③ <﹣2;④an2+bn=a(2﹣n)2+b(2﹣n)(n为任意实数),其中正确的结论个数是()A . 1B . 2C . 3D . 411. (1分) (2017九上·罗湖期末) 若关于x的一元二次方程(m﹣1)x2+5x+m2﹣3m+2=0的一个根是0,则m的值是________.12. (1分)若一元二次方程ax2﹣bx﹣2015=0有一根为x=﹣1,则a+b= ________.13. (3分)已知方程ax2+bx+cy=0(a,b,c是常数),请你通过变形把它写成你所熟悉的一个函数表达式的形式,则函数表达式为________ ,成立的条件是________ ,是________ 函数.14. (1分)(2016·丹阳模拟) 形状与抛物线y=2x2﹣3x+1的图象形状相同,但开口方向不同,顶点坐标是(0,﹣5)的抛物线的关系式为________.15. (1分)(2011·宜宾) 如图,在△ABC.中,AB=BC,将△ABC绕点B顺时针旋转α度,得到△A1BC1 ,A1B交AC于点E,A1C1分别交AC、BC于点D、F,下列结论:①∠CDF=α,②A1E=CF,③DF=FC,④A1F=CE.其中正确的是________(写出正确结论的序号).16. (1分)如图,抛物线y=ax2+bx+c的对称轴是,小亮通过观察得出了下面四条信息:①c<0,②abc<0,③a-b+c>0,④2a-3b=0。

辽宁省鞍山市九年级上学期数学期中考试试卷

辽宁省鞍山市九年级上学期数学期中考试试卷

辽宁省鞍山市九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共15题;共30分)1. (2分)一元二次方程4x2-45=31x的二次项系数、一次项系数、常数项分别为()A . 4、-45、31B . 4、31、-45C . 4、-31、-45D . 4、-45、-312. (2分) (2015九上·新泰竞赛) 若关于x 的一元二次方程有解,那么m 的取值范围是().A .B .C . 且D . 且3. (2分)(2019·锡山模拟) 方程的解为A .B .C . ,D . ,4. (2分)(2017·乐清模拟) 下列图形既是轴对称图形,又是中心对称图形的是()A . 等边三角形B . 平行四边形C . 梯形D . 矩形5. (2分)若关于x的一元二次方程kx2﹣4x+3=0有实数根,则k的非负整数值是()A . 1B . 0,1C . 1,2D . 1,2,36. (2分)(2019·容县模拟) 将化成的形式,则的值是()A . -5B . -8C . -11D . 57. (2分)抛物线y=2x2+1的对称轴是()A . 直线x=B . 直线x=﹣C . y轴D . x轴8. (2分)某果园2012年水果产量为100吨,2014年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为()A . 144(1﹣x)2=100B . 100(1﹣x)2=144C . 144(1+x)2=100D . 100(1+x)2=1449. (2分) (2019九上·龙湖期末) 在平面直角坐标系中,点P(-3,4)关于原点对称的点的坐标是()A . (3,4)B . (3,-4)C . (4,-3)D . (-3,4)10. (2分)如图,在矩形ABCD中,已知AB=4,BC=3,矩形在直线l上绕其右下角的顶点B向右旋转90°至图①位置,再绕右下角的顶点继续向右旋转90°至图②位置,…,以此类推,这样连续旋转2015次后,顶点A在整个旋转过程中所经过的路程之和是()A . 2015πB . 3019.5πC . 3018πD . 3024π11. (2分) (2018九上·如皋期中) 已知,二次函数y=x2﹣2x+a(a是实数),当自变量任取x1 , x2时,分别与之对应的函数值yl , y2满足y1>y2 ,则x1 , x2应满足的关系式是()A . xl﹣1<x2﹣1B . x1﹣1>x2﹣1C . |x1﹣l|<|x2﹣1|D . |x1﹣1|>|x2﹣1|12. (2分)将抛物线y=-x2向左平移2个单位后,得到的抛物线的解析式是()A .B .C .D .13. (2分) (2017九上·鞍山期末) 已知二次函数的与的部分对应值如下表:…-1013……-3131…则下列判断中正确的是()A . 拋物线开口向上B . 拋物线与轴交于负半轴C . 当时,D . 方程的正根在3与4之间14. (2分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=1,则下列四个结论错误的是()A . c>0B . 2a+b=0C . b2-4ac>0D . a-b+c>015. (2分)若关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=2,x2=﹣4,则m+n的值是()A . -10B . 10C . -6D . -1二、解答题 (共9题;共85分)16. (10分) (2018九上·泰州月考) 解方程:(1)(2)(3)(4).17. (5分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(-3,5),B(-2,1),C(-1,3)①若△ABC经过平移后得到△A1B1C1,已知点C1的坐标为(4,0),写出顶点A1,B1的坐标②若△ABC和△A2B2C2关于原点O成中心对称,写出△A2B2C2的各顶点的坐标;③将△ABC绕着点O按顺时针方向旋转90°得到△A3B3C3,写出△A3B3C3的各顶点的坐标.18. (10分) (2019九上·渠县月考) 关于x的方程(k-1)x2+2kx+2=0.(1)求证:无论k为何值,方程总有实根;(2)设x1,x2是方程(k-1)x2+2kx+2=0的两个根,记S= + + + ,S值能为2吗?若能,求出此时k的值;若不能,请说明理由.19. (5分)(2020·乌鲁木齐模拟) 将一块面积为的矩形菜地的长减少,它就变成了正方形,求原菜地的长.20. (5分) (2020·武汉模拟) 如图,A、B是⊙O上的两点,∠AOB=120°,C是弧AB的中点,CE⊥OA交⊙O 于点E,连接AE.求证:AE=AO.21. (10分) (2016九上·余杭期中) 一座桥如图,桥下水面宽度AB是20米,高CD是4米.要使高为3米的船通过,则其宽度须不超过多少米.(1)如图1,若把桥看做是抛物线的一部分,建立如图坐标系.①求抛物线的解析式;②要使高为3米的船通过,则其宽度须不超过多少米?(2)如图2,若把桥看做是圆的一部分.①求圆的半径;②要使高为3米的船通过,则其宽度须不超过多少米?22. (15分) (2017八上·南海期末) 在准备“综合与实践”活动课时,小明关注了佛山移动公司手机资费两种套餐:A套餐:月租0元,市话通话费每分钟0.49元;B套餐:月租费48元,免费市话通话时间48分钟,超出部分每分钟0.25元.设A套餐每月市话话费为y 1(元),B套餐每月市话话费为y2(元),月市话通话时间为x分钟.(x>48)(1)分别写出y1、y2与x的函数关系式.(2)月市话通话时间为多长时,两种套餐收费一样?(3)小明爸爸每月市话通话时间为200分钟,请说明选择哪种套餐更合算?23. (10分)大学毕业生小李选择自主创业,在家乡承包果树若干亩,今年投资13800元,收获水果总产量为18000千克.此水果在果园直接销售每千克售b元,在市场上每千克售a元(b<a).将水果拉到市场出售平均每天出售1000千克,需2人帮忙,每人每天付工资100元,运费及其他各项税费平均每天200元.(1)分别用含a,b的代数式表示两种方式出售水果的总收入;(2)若a=4.5元,b=4元,且两种出售水果方式都在相同的时间内售完全部水果,请你通过计算说明选择哪种出售方式较好;(3)小李今年采用了(2)中较好的出售方式出售,并打算努力学习技术,加强果园管理,力争明年纯收入达到72000元,那么纯收入的增长率将是多少(纯收入=总收入-总支出)?24. (15分) (2019九上·朝阳期末) 在平面直角坐标系中,抛物线y=ax2﹣2ax﹣1交y轴于点C .(1)点C的坐标为________.(2)当点P(3,5)在二次函数y=ax2﹣2ax﹣1的图象上时,求a的值.(3)当a=1时,抛物线交x轴于A、B两点(点A在点B的左侧).点Q是抛物线上一点,且横坐标为m,当S△ABC=S△ABQ,求m的值.(4)点M、N的坐标分别为(,2)、(,2),连结MN.直接写出线段MN与二次函数y=ax2﹣2ax﹣1的图象只有1个交点时a的取值范围.参考答案一、单选题 (共15题;共30分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15、答案:略二、解答题 (共9题;共85分)16-1、16-2、16-3、16-4、17-1、18、答案:略19-1、20-1、21-1、21-2、22-1、22-2、22-3、23-1、23-2、23-3、24-1、24-2、24-3、24-4、。

人教版九年级上册数学期中试卷解析版

人教版九年级上册数学期中试卷解析版

人教版九年级数学考试题测试题人教版初中数学2017-2018学年辽宁省鞍山市台安县九年级(上)期中数学试卷一、选择题(共8小题,每小题3分,满分24分)1.一元二次方程x(x﹣1)=0的根为()A.x1=0,x2=﹣1 B.x1=0,x2=1 C.x1=1,x2=2 D.x1=﹣1,x2=22.一元二次方程(1﹣k)x2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k>2 B.k<2 C.k<2且k≠1 D.k>2且k≠13.如图,⊙O的直径CD垂直弦AB于点E,且CE=2,DE=8,则AB的长为()A.2 B.4 C.6 D.84.如图,AB是⊙O的直径,若∠BAC=35°,则∠ADC=()A.35°B.55°C.70°D.110°5.点A(2,y1),B(3,y2)是二次函数y=x2﹣2x+1的图象上两点,则y1与y2大大小关系为()A.y1>y2B.y1=y2C.y1<y2D.无法判断6.如图,在△ABC中,∠CAB=70°.在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′=()A.30°B.35°C.40°D.50°7.如图,二次函数y=ax2+bx+c的图象开口向上,对称轴为直线x=1,图象经过(3,0),下列结论中,正确的一项是()A.abc<0 B.2a+b<0 C.a﹣b+c<0 D.4ac﹣b2<08.如图,将n个边长都为2的正方形按如图所示摆放,点A1,A2,…A n分别是正方形的中心,则这n个正方形重叠部分的面积之和是()A.n B.n﹣1 C.()n﹣1D.n二、填空题(共8小题,每小题3分,满分24分)9.已知关于x的方程x2+mx﹣6=0的一个根为2,则这个方程的另一个根是.10.已知关于x的方程x2+bx+a=0有一个根是﹣a(a≠0),则a﹣b的值为.11.如图,△DEF是由△ABC绕某点旋转得到的,则这点的坐标是.12.已知点A(2a+2,﹣3)与点B(0,3b+6)关于坐标原点对称,则a+b的值是.13.如图,已知圆周角∠ACB的度数为100°,则圆周角∠D的度数等于.14.如图,AB是⊙O的直径,点C在⊙O上,∠AOC=40°,D是BC弧的中点,则∠ACD=.15.已知点(﹣3,2),(﹣1,2)在二次函数y=﹣x2﹣4x﹣1的图象上,则此二次函数图象的顶点坐标为.16.已知二次函数y=x2﹣3x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程x2﹣3x+m=0的两实数根是.三、解答题(共10小题,满分102分)17.用配方法解方程:2x2﹣4x+1=0.18.已知x1、x2是方程x2﹣2(k+1)x+k2+2=0的另个实数根,且(x1+1)(x2+1)=8.求k的值.19.如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,4),请解答下列各问题:(1)画出△ABC关于x轴对称的△A1B1C1,并写出A1的坐标;(2)画出△A1B1C1绕原点O旋转180°后得到的△A2B2C2,并写出点A2的坐标;(3)画出的△A1B1C1和△A2B2C2有什么样的位置关系?20.如图,点P是等边三角形ABC内一点,且PA=3,PB=4,PC=5,若将△APB绕着点B逆时针旋转后得到△CQB.(1)求点P与点Q之间的距离.(2)求∠APB的度数.21.如图所示,已知AB为⊙O的直径,CD是弦,且AB⊥CD于点E.连接AC、OC、BC.(1)求证:∠ACO=∠BCD;(2)若EB=8cm,CD=24cm,求⊙O的直径.22.如图,平行四边形ABCD中,AB=4,点D的坐标是(0,8),以点C为顶点的抛物线y=ax2+bx+c 经过x轴上的点A,B.(1)求点A,B,C的坐标;(2)若抛物线向上平移后恰好经过点D,求平移后抛物线的解析式.23.某超市去年12月份的销售额为100万元,今年2月份的销售额比今年1月份的销售额多24万元,若去年12月份到今年2月份每个月销售额增长的百分数相同.求:(1)这个相同的百分数;(2)2月份的销售额.24.某公司销售一种进价为每个20元的计算器,其销售量y(万个)与销售价格x(元)的变化如表:价格x/元…30 40 50 60 …销售量y/万个… 5 4 3 2 …同时,销售过程中的其他开支(不含进价)总计40万元.(1)观察并分析表中的x与y之间对应关系,用所学过的一次函数或二次函数的有关知识写出y(万个)与x(元)的函数表达式.(2)求出该公司销售这种计算器的净得利润z(万元)与销售价格x(元)的函数表达式,并说明销售价格定为多少元时,净利润最大?最大值是多少?25.已知正方形ABCD和正方形AEFG有公共顶点A,将正方形AEFG绕点A旋转.(1)发现:当E点旋转到DA的延长线上时(如图1),△ABE与△ADG的面积关系是:.(2)引申:当正方形AEFG旋转任意一个角度时(如图2),△ABE与△ADG的面积关系是:.并证明你的结论.(3)运用:已知△ABC,AB=5cm,BC=3cm,分别以AB、BC、CA为边向外作正方形(如图3),则图中阴影部分的面积和的最大值是cm2.26.如图,抛物线y=﹣x2+bx+c经过点A,B,C,已知点A(﹣1,0),点C(0,3).(1)求抛物线的表达式;(2)P为线段BC上一点,过点P作y轴的平行线,交抛物线于点D,当△BDC的面积最大时,求点P的坐标;(3)设E是抛物线上的一点,在x轴上是否存在点F,使得A,C,E,F为顶点的四边形是平行四边形?若存在,求点E,F的坐标;若不存在,请说明理由.2017-2018学年辽宁省鞍山市台安县九年级(上)期中数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.一元二次方程x(x﹣1)=0的根为()A.x1=0,x2=﹣1 B.x1=0,x2=1 C.x1=1,x2=2 D.x1=﹣1,x2=2【考点】解一元二次方程-因式分解法.【分析】根据两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【解答】解:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=0,x2=1.故选B.【点评】此题考查了解一元二次方程﹣因式分解法,利用此方法解方程时,首先将方程右边化为0,左边化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.2.一元二次方程(1﹣k)x2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k>2 B.k<2 C.k<2且k≠1 D.k>2且k≠1【考点】根的判别式;一元二次方程的定义.【分析】根据一元二次方程的根的判别式,以及二次项系数不等于0,建立关于k的不等式组,求出k的取值范围.【解答】解:∵a=1﹣k,b=﹣2,c=﹣1,方程有两个不相等的实数根.∴△=b2﹣4ac=4+4(1﹣k)=8﹣4k>0∴k<2又∵一元二次方程的二次项系数不为0,即k≠1.∴k<2且k≠1.故选C.【点评】总结:1、一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.2、一元二次方程的二次项系数不为0.3.如图,⊙O的直径CD垂直弦AB于点E,且CE=2,DE=8,则AB的长为()A.2 B.4 C.6 D.8【考点】垂径定理;勾股定理.【专题】计算题.【分析】根据CE=2,DE=8,得出半径为5,在直角三角形OBE中,由勾股定理得BE,根据垂径定理得出AB的长.【解答】解:∵CE=2,DE=8,∴OB=5,∴OE=3,∵AB⊥CD,∴在△OBE中,得BE=4,∴AB=2BE=8.故选:D.【点评】本题考查了勾股定理以及垂径定理,是基础知识要熟练掌握.4.如图,AB是⊙O的直径,若∠BAC=35°,则∠ADC=()A.35°B.55°C.70°D.110°【考点】圆周角定理.【分析】先根据圆周角定理求出∠ACB=90°,再由三角形内角和定理得出∠ABC的度数,根据圆周角定理即可得出结论.【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,∵∠BAC=35°,∴∠ABC=180°﹣90°﹣35°=55°,∴∠ADC=∠ABC=55°.故选B.【点评】本题考查的是圆周角定理,在解答此类问题时往往用到三角形的内角和是180°这一隐含条件.5.点A(2,y1),B(3,y2)是二次函数y=x2﹣2x+1的图象上两点,则y1与y2大大小关系为()A.y1>y2B.y1=y2C.y1<y2D.无法判断【考点】二次函数图象上点的坐标特征.【分析】本题需先根据已知条件求出二次函数的图象的对称轴,再根据点A、B的横坐标的大小即可判断出y1与y2的大小关系.【解答】解:∵二次函数y=x2﹣2x+1的图象的对称轴是x=1,在对称轴的右面y随x的增大而增大,∵点A(2,y1)、B(3,y2)是二次函数y=x2﹣2x+1的图象上两点,2<3,∴y1<y2.故选C.【点评】本题主要考查了二次函数图象上点的坐标特征,在解题时要能灵活应用二次函数的图象和性质以及点的坐标特征是本题的关键6.如图,在△ABC中,∠CAB=70°.在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′=()A.30°B.35°C.40°D.50°【考点】旋转的性质.【分析】旋转中心为点A,B与B′,C与C′分别是对应点,根据旋转的性质可知,旋转角∠BAB′=∠CAC′,AC=AC′,再利用平行线的性质得∠C′CA=∠CAB,把问题转化到等腰△ACC′中,根据内角和定理求∠CAC′.【解答】解:∵CC′∥AB,∠CAB=70°,∴∠C′CA=∠CAB=70°,又∵C、C′为对应点,点A为旋转中心,∴AC=AC′,即△ACC′为等腰三角形,∴∠BAB′=∠CAC′=180°﹣2∠C′CA=40°.故选:C.【点评】本题考查了旋转的基本性质,对应点到旋转中心的距离相等,对应点与旋转中心的连线的夹角为旋转角.同时考查了平行线的性质.7.如图,二次函数y=ax2+bx+c的图象开口向上,对称轴为直线x=1,图象经过(3,0),下列结论中,正确的一项是()A.abc<0 B.2a+b<0 C.a﹣b+c<0 D.4ac﹣b2<0【考点】二次函数图象与系数的关系.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:A、根据图示知,抛物线开口方向向上,则a>0.抛物线的对称轴x=﹣=1>0,则b<0.抛物线与y轴交与负半轴,则c<0,所以abc>0.故A选项错误;B、∵x=﹣=1,∴b=﹣2a,∴2a+b=0.故B选项错误;C、∵对称轴为直线x=1,图象经过(3,0),∴该抛物线与x轴的另一交点的坐标是(﹣1,0),∴当x=﹣1时,y=0,即a﹣b+c=0.故C选项错误;D、根据图示知,该抛物线与x轴有两个不同的交点,则△=b2﹣4ac>0,则4ac﹣b2<0.故D选项正确;故选D.【点评】本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.8.如图,将n个边长都为2的正方形按如图所示摆放,点A1,A2,…A n分别是正方形的中心,则这n个正方形重叠部分的面积之和是()A.n B.n﹣1 C.()n﹣1D.n【考点】正方形的性质;全等三角形的判定与性质.【专题】规律型.【分析】根据题意可得,阴影部分的面积是正方形的面积的,已知两个正方形可得到一个阴影部分,则n个这样的正方形重叠部分即为(n﹣1)个阴影部分的和.【解答】解:由题意可得一个阴影部分面积等于正方形面积的,即是×4=1,5个这样的正方形重叠部分(阴影部分)的面积和为:1×4,n个这样的正方形重叠部分(阴影部分)的面积和为:1×(n﹣1)=n﹣1.故选:B.【点评】此题考查了正方形的性质,解决本题的关键是得到n个这样的正方形重叠部分(阴影部分)的面积和的计算方法,难点是求得一个阴影部分的面积.二、填空题(共8小题,每小题3分,满分24分)9.已知关于x的方程x2+mx﹣6=0的一个根为2,则这个方程的另一个根是﹣3.【考点】根与系数的关系.【专题】计算题.【分析】设方程的另一根为a,由一个根为2,利用根与系数的关系求出两根之积,列出关于a的方程,求出方程的解得到a的值,即为方程的另一根.【解答】解:∵方程x2+mx﹣6=0的一个根为2,设另一个为a,∴2a=﹣6,解得:a=﹣3,则方程的另一根是﹣3.故答案为:﹣3【点评】此题考查了一元二次方程根与系数的关系,一元二次方程ax2+bx+c=0(a≠0),当b2﹣4ac≥0时方程有解,此时设方程的解为x1,x2,则有x1+x2=﹣,x1x2=.10.已知关于x的方程x2+bx+a=0有一个根是﹣a(a≠0),则a﹣b的值为﹣1.【考点】一元二次方程的解.【专题】计算题.【分析】把x=﹣a代入方程得到一个二元二次方程,方程的两边都除以a,即可得出答案.【解答】解:把x=﹣a代入方程得:(﹣a)2﹣ab+a=0,a2﹣ab+a=0,∵a≠0,∴两边都除以a得:a﹣b+1=0,即a﹣b=﹣1,故答案为:﹣1.【点评】本题考查了解一元二次方程的解的应用,解此题的关键是理解一元二次方程的解的定义,题型较好,难度适中.11.如图,△DEF是由△ABC绕某点旋转得到的,则这点的坐标是(0,1).【考点】坐标与图形变化-旋转.【专题】压轴题.【分析】根据旋转的性质,对应点到旋转中心的距离相等,可知,只要连接两组对应点,作出对应点所连线段的两条垂直平分线,其交点即为旋转中心.【解答】解:如图,连接AD、BE,作线段AD、BE的垂直平分线,两线的交点即为旋转中心O′.其坐标是(0,1).故答案为(0,1).【点评】本题考查旋转变换作图,在找旋转中心时,要抓住“动”与“不动”,关键是对旋转性质的把握.12.已知点A(2a+2,﹣3)与点B(0,3b+6)关于坐标原点对称,则a+b的值是﹣2.【考点】关于原点对称的点的坐标.【分析】根据两个点关于原点对称时,它们的坐标符号相反可得2a+2=0,3b+6=3,解出a、b的值,然后可得a+b的结果.【解答】解:由题意得:2a+2=0,3b+6=3,解得:a=﹣1.b=﹣1,a+b=﹣2,故答案为:﹣2.【点评】此题主要考查了关于原点对称的点的坐标特点,关键是掌握点的坐标的变化规律.13.如图,已知圆周角∠ACB的度数为100°,则圆周角∠D的度数等于80°.【考点】圆内接四边形的性质.【分析】根据圆内接四边形的性质进行解答即可.【解答】解:∵四边形ABCD内接⊙O,∴∠D+∠BCA=180°,∴∠D=180°﹣∠ACB=180°﹣100°=80°.故答案为:80°.【点评】本题考查的是圆内接四边形的性质,即圆内接四边形的对角互补,属于基础题,直接利用定理即可求解.14.如图,AB是⊙O的直径,点C在⊙O上,∠AOC=40°,D是BC弧的中点,则∠ACD=125°.【考点】圆心角、弧、弦的关系.【专题】计算题.【分析】连接OD,由∠AOC=40°,可得出∠BOC,再由D是BC弧的中点,可得出∠COD,从而得出∠ACD即可.【解答】解:连接OD,∵AB是⊙O的直径,∠AOC=40°,∴∠BOC=140°,∠ACO=70°,∵D是BC弧的中点,∴∠COD=70°,∴∠OCD=55°,∴∠ACD=∠ACO+∠OCD=70°+55°=125°,故答案为125°.【点评】本题考查了圆心角、弧、弦的关系,在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.15.已知点(﹣3,2),(﹣1,2)在二次函数y=﹣x2﹣4x﹣1的图象上,则此二次函数图象的顶点坐标为(﹣2,3).【考点】二次函数的性质.【分析】根据二次函数的顶点坐标公式,可得答案.【解答】解:y=﹣x2﹣4x﹣1的顶点横坐标为﹣=﹣=﹣2,纵坐标为==3,y=﹣x2﹣4x﹣1的顶点坐标为(﹣2,3)故答案为:(﹣2,3).【点评】本题考查了二次函数的性质,利用了二次函数的顶点坐标公式:y=ax2+bx+c的顶点横坐标为﹣,纵坐标为.16.已知二次函数y=x2﹣3x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程x2﹣3x+m=0的两实数根是x1=1,x2=2.【考点】抛物线与x轴的交点.【分析】关于x的一元二次方程x2﹣3x+m=0的两实数根就是二次函数y=x2﹣3x+m(m为常数)的图象与x轴的两个交点的横坐标.【解答】解:∵二次函数的解析式是y=x2﹣3x+m(m为常数),∴该抛物线的对称轴是:x=.又∵二次函数y=x2﹣3x+m(m为常数)的图象与x轴的一个交点为(1,0),∴根据抛物线的对称性质知,该抛物线与x轴的另一个交点的坐标是(2,0),∴关于x的一元二次方程x2﹣3x+m=0的两实数根分别是:x1=1,x2=2.故答案是:x1=1,x2=2.【点评】本题考查了抛物线与x轴的交点.解答该题时,也可以利用代入法求得m的值,然后来求关于x的一元二次方程x2﹣3x+m=0的两实数根.三、解答题(共10小题,满分102分)17.用配方法解方程:2x2﹣4x+1=0.【考点】解一元二次方程-配方法.【专题】配方法.【分析】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确使用,把左边配成完全平方式,右边化为常数.【解答】解:原方程化为配方得即开方得∴,.【点评】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.18.已知x1、x2是方程x2﹣2(k+1)x+k2+2=0的另个实数根,且(x1+1)(x2+1)=8.求k的值.【考点】根与系数的关系;根的判别式.【分析】根据根与系数的关系可得出x1+x2和x1x2的值,再把(x1+1)(x2+1)=8整理,代入数据进行计算即可.【解答】解:∵x1、x2是方程x2﹣2(k+1)x+k2+2=0的另个实数根,∴x1+x2=2(k+1),x1x2=k2+2,∵(x1+1)(x2+1)=8,∴x1x2+(x1+x2,)+1=8,∴2(k+1)+k2+2+1=8,解得k1=﹣3,k2=1,当k=﹣3时,得方程x2+4x+11=0,△=42﹣4×11<0,舍去;当k=1时,得方程x2﹣4x+3=0,△=(﹣4)2﹣4×3>0,∴k的值为1.【点评】本题考查了根与系数的关系,以及根的判别式,掌握根与系数的关系是解题的关键.19.如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,4),请解答下列各问题:(1)画出△ABC关于x轴对称的△A1B1C1,并写出A1的坐标;(2)画出△A1B1C1绕原点O旋转180°后得到的△A2B2C2,并写出点A2的坐标;(3)画出的△A1B1C1和△A2B2C2有什么样的位置关系?【考点】作图-旋转变换;作图-轴对称变换.【专题】作图题.【分析】(1)根据关于x轴对称的点的坐标特征分别写出点A、B、C关于x轴的对称点A1、B1、C1的坐标,然后描点即可;(2)然后网格特点和旋转的性质画出点A1、B1、C1的对称点A2、B2、C2,则△A2B2C2为所作;(3)根据中心对称的定义进行判断.【解答】解:(1)如图,△A1B1C1为所作,点A1的坐标的坐标为(2,﹣4);(2)如图,△A2B2C2为所作,点A2的坐标为(﹣2,4);(3)△A1B1C1和△A2B2C2关于原点中心对称.【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了轴对称变换.20.如图,点P是等边三角形ABC内一点,且PA=3,PB=4,PC=5,若将△APB绕着点B逆时针旋转后得到△CQB.(1)求点P与点Q之间的距离.(2)求∠APB的度数.【考点】旋转的性质;等边三角形的判定与性质;勾股定理的逆定理.【分析】(1)由已知△PAC绕点A逆时针旋转后,得到△QAB,可得△PAC≌△P′AB,PA=QA,旋转角∠QAP=∠BAC=60°,所以△APQ为等边三角形,即可求得PQ;(2)由△APQ为等边三角形,得∠APQ=60°,在△PQB中,已知三边,用勾股定理逆定理证出直角三角形,得出∠QPB=90°,可求∠APB的度数.【解答】解:(1)连接PQ,由题意可知BQ=PC=10,AQ=AP,∠PAC=∠QAB,而∠PAC+∠BAP=60°,所以∠PAQ=60度.故△APQ为等边三角形,所以PQ=AP=AQ=4;(2)因为PA=3,PB=4,PC=5,利用勾股定理的逆定理可知:PQ2+BP2=BQ2,所以△BPQ为直角三角形,且∠BPQ=90°可求∠APB=90°+60°=150°.【点评】本题考查旋转的性质.旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:①定点﹣旋转中心;②旋转方向;③旋转角度.21.如图所示,已知AB为⊙O的直径,CD是弦,且AB⊥CD于点E.连接AC、OC、BC.(1)求证:∠ACO=∠BCD;(2)若EB=8cm,CD=24cm,求⊙O的直径.【考点】垂径定理;勾股定理;圆周角定理.【专题】几何综合题.【分析】(1)根据垂径定理和圆的性质,同弧的圆周角相等,又因为△AOC是等腰三角形,即可求证.(2)根据勾股定理,求出各边之间的关系,即可确定半径.【解答】(1)证明:连接OC,∵AB为⊙O的直径,∴∠ACB=90°,∠BCD与∠ACE互余;又∠ACE与∠CAE互余∴∠BCD=∠BAC.(3分)∵OA=OC,∴∠OAC=∠OCA.∴∠ACO=∠BCD.(5分)(2)解:设⊙O的半径为Rcm,则OE=OB﹣EB=(R﹣8)cm,CE=CD=×24=12cm,(6分)在Rt△CEO中,由勾股定理可得OC2=OE2+CE2,即R2=(R﹣8)2+122(8分)解得R=13,∴2R=2×13=26cm.答:⊙O的直径为26cm.(10分)【点评】本题考查垂弦定理、圆心角、圆周角的应用能力.22.如图,平行四边形ABCD中,AB=4,点D的坐标是(0,8),以点C为顶点的抛物线y=ax2+bx+c 经过x轴上的点A,B.(1)求点A,B,C的坐标;(2)若抛物线向上平移后恰好经过点D,求平移后抛物线的解析式.【考点】二次函数综合题.【专题】代数综合题;压轴题.【分析】(1)在平行四边形ABCD中,根据平行四边形的性质,CD∥AB且CD=AB=4,且C的纵坐标与D相同,运用平行四边形的性质,结合图形得出;(2)先根据题(1)求出抛物线的解析式,再在次抛物线基础上平移,即抛物线的对称轴不变.根据抛物线的性质特点,可设平移后抛物线的解析式为y=﹣2(x﹣4)2+8+k,平移后抛物线经过D点,将D(0,8)代入解析式,求出即可.【解答】解:(1)在平行四边形ABCD中,CD∥AB且CD=AB=4,点D的坐标是(0,8),∴点C的坐标为(4,8)(1分)设抛物线的对称轴与x轴相交于点H,则AH=BH=2,(2分)∴点A,B的坐标为A(2,0),B(6,0),C(4,8).(2)由抛物线y=ax2+bx+c的顶点为C(4,8),可设抛物线的解析式为y=a(x﹣4)2+8,(5分)把A(2,0)代入上式,解得a=﹣2.(6分)设平移后抛物线的解析式为y=﹣2(x﹣4)2+8+k,把(0,8)代入上式得k=32,(7分)∴平移后抛物线的解析式为y=﹣2(x﹣4)2+40,(8分)即y=﹣2x2+16x+8.【点评】考查二次函数顶点,对称轴的性质,以及抛物线上下平移时的特征.23.某超市去年12月份的销售额为100万元,今年2月份的销售额比今年1月份的销售额多24万元,若去年12月份到今年2月份每个月销售额增长的百分数相同.求:(1)这个相同的百分数;(2)2月份的销售额.【考点】一元二次方程的应用.【专题】增长率问题;销售问题.【分析】(1)题中有一个等量关系:12月份的销售额×(1+每个月销售额的增长率)2=1月份的销售额+24,根据等量关系列方程,求出解.(2)把所求结果代入(1)中方程的任何一边,可以求出答案.【解答】解:设每个月销售额的增长率为x,由题意得:(1)100(x+1)2=100(x+1)+24,解得:x1=﹣1.2(不合题意舍去),x2=0.2=20%.故所求百分数为20%.(2)2月份的销售额:100×1.22=144万元.【点评】题目根据二月份的销售额不变列方程,找等量关系是解应用题的关键.24.某公司销售一种进价为每个20元的计算器,其销售量y(万个)与销售价格x(元)的变化如表:价格x/元…30 40 50 60 …销售量y/万个… 5 4 3 2 …同时,销售过程中的其他开支(不含进价)总计40万元.(1)观察并分析表中的x与y之间对应关系,用所学过的一次函数或二次函数的有关知识写出y(万个)与x(元)的函数表达式.(2)求出该公司销售这种计算器的净得利润z(万元)与销售价格x(元)的函数表达式,并说明销售价格定为多少元时,净利润最大?最大值是多少?【考点】二次函数的应用.【分析】(1)根据数据得出y与x是一次函数关系,进而利用待定系数法求一次函数解析式;(2)根据z=(x﹣20)y﹣40得出z与x的函数关系式,求出即可.【解答】解:(1)根据表格中数据可得出:y与x是一次函数关系,设解析式为:y=ax+b,则,解得:,故函数解析式为:y=﹣x+8;(2)根据题意得出:z=(x﹣20)y﹣40=(x﹣20)(﹣x+8)﹣40=﹣x2+10x﹣200,=﹣(x2﹣100x)﹣200=﹣[(x﹣50)2﹣2500]﹣200=﹣(x﹣50)2+50,故销售价格定为50元/个时净得利润最大,最大值是50万元.【点评】此题主要考查了二次函数的应用以及待定系数法求一次函数解析式、二次函数最值问题等知识,根据已知得出y与x的函数关系是解题关键.25.已知正方形ABCD和正方形AEFG有公共顶点A,将正方形AEFG绕点A旋转.(1)发现:当E点旋转到DA的延长线上时(如图1),△ABE与△ADG的面积关系是:相等.(2)引申:当正方形AEFG旋转任意一个角度时(如图2),△ABE与△ADG的面积关系是:相等.并证明你的结论.(3)运用:已知△ABC,AB=5cm,BC=3cm,分别以AB、BC、CA为边向外作正方形(如图3),则图中阴影部分的面积和的最大值是22.5cm2.【考点】旋转的性质;全等三角形的判定与性质;正方形的性质.【专题】综合题.【分析】(1)由于当E点旋转到DA的延长线上时,根据图形和三角形的面积公式容易得到△ABE 与△ADG的面积关系;(2)相等.如图延长BA到点P,过点E作EP⊥BP于点P;延长AD到点Q,过点G作GQ⊥AQ 于点Q,由此得到∠P=∠Q=90°,而四边形AGFE,ABCD均为正方形,根据正方形的性质可以得到AE=AG,AB=AD,∠1+∠2=90°,∠3+∠2=90°,这样得到∠1=∠3,然后就可以证明△APE≌△AQG,接着得到EP=GQ,然后利用三角形的面积公式即可证明题目的问题;(3)根据(2)的几个可以得到三个阴影部分的面积都和三角形ABC的面积相等,而AB=5cm,BC=3cm,若图中阴影部分的面积和的最大值,则三角形ABC的面积最大,则其是直角三角形即可求解.【解答】解:(1)相等;(2)相等,证明:如图,延长BA到点P,过点E作EP⊥BP于点P;延长AD到点Q,过点G作GQ⊥AQ于点Q.∴∠P=∠Q=90°∵四边形AGFE,ABCD均为正方形∴AE=AG,AB=AD,∠1+∠2=90°,∠3+∠2=90°∴∠1=∠3∴△APE≌△AQG(AAS)∴EP=GQ又∵S△ABE=AB•EPS△AGD=AD•GQ∴S△ABE=S△AGD(7分)(3)根据(2)得图中阴影部分的面积和是△ABC的面积三倍,若图中阴影部分的面积和的最大值,则三角形ABC的面积最大,∴△ABC是直角三角形,∠B是直角,∴S阴影部分面积和=3S△ABC=3×3×5÷2=22.5cm2,故答案为:相等;相等;22.5.【点评】此题分别考查了旋转的性质、正方形的性质及全等三角形的判定与性质,有一定的综合性,要求学生熟练掌握相关的基础知识才能很好解决问题.26.如图,抛物线y=﹣x2+bx+c经过点A,B,C,已知点A(﹣1,0),点C(0,3).(1)求抛物线的表达式;(2)P为线段BC上一点,过点P作y轴的平行线,交抛物线于点D,当△BDC的面积最大时,求点P的坐标;(3)设E是抛物线上的一点,在x轴上是否存在点F,使得A,C,E,F为顶点的四边形是平行四边形?若存在,求点E,F的坐标;若不存在,请说明理由.【考点】二次函数综合题.【专题】代数几何综合题;探究型.【分析】(1)根据抛物线y=﹣x2+bx+c经过点A,B,C,已知点A(﹣1,0),点C(0,3),可以求得抛物线的表达式;(2)根据函数的解析式可以求得点B的坐标,从而可以求得直线BC的解析式,设出点P、D的坐标从而可以表示出△BDC的面积,从而可以得到点P的坐标;(3)根据题意可知AC可能为平行四边形的边,也可能为对角线,从而可以分为两种情况,从而可以分别求得点E、F的坐标.【解答】解:(1)∵点A(﹣1,0),点C(0,3)在抛物线y=﹣x2+bx+c上,∴解得b=2,c=3.即抛物线的表达式是y=﹣x2+2x+3;(2)令﹣x2+2x+3=0,解得x1=﹣1,x2=3,∵点A(﹣1,0),∴点B的坐标为(3,0).设过点B、C的直线的解析式为:y=kx+b,解得k=﹣1,b=3.∴过点B、C的直线的解析式为:y=﹣x+3.设点P的坐标为(a,﹣a+3),则点D的坐标为(a,﹣a2+2a+3),∴PD=(﹣a2+2a+3)﹣(﹣a+3)=﹣a2+3a.∴S△BDC=S△PDC+S△PDB===.∴当a=时,△BDC的面积最大,∴点P 的坐标为().(3)存在.当AC 是平行四边形的边时,则点E 的纵坐标为3或﹣3, ∵E 是抛物线上的一点,∴将y=3代入y=﹣x 2+2x+3,得x 1=0(舍去),x 2=2; 将y=﹣3代入y=﹣x 2+2x+3,得.∴.则点. 当AC 为平行四边形的对角线时,则点E 的纵坐标为3, ∵E 是抛物线上的一点,∴将y=3代入y=﹣x 2+2x+3,得x 1=0(舍去),x 2=2; 即点E 4(2,3). 则F 4(﹣3,0). 由上可得,点E 的坐标为:,E 4(2,3),与之对应的点F 的坐标是:,F 4(﹣3,0).【点评】本题考查二次函数综合题,解题的关键是根据题意找出其中的相关联的量,利用分类讨论的数学思想解答各个问题.初三第一学期期末学业水平调研数 学本试卷共8页,共三道大题,28道小题,满分100分。

鞍山市九年级上学期数学期中试卷

鞍山市九年级上学期数学期中试卷

鞍山市九年级上学期数学期中试卷姓名:________ 班级:________ 成绩:________一、选择题 (共16题;共46分)1. (3分)关于x的一元二次方程(a﹣1)x2+x+|a|﹣1=0的一个根为0,则实数a的值为()A . 1B . -1C . 0D . ﹣1或12. (3分)已知一个正棱柱的俯视图和左视图如图所示,则其主视图为()A .B .C .D .3. (2分)(2019·黑龙江模拟) 如图,l1∥l2∥l3 , AC、DF交于点O,则下列比例中成立的是()A .B .C .D .4. (3分)若一元二次方程x2+x﹣1=0的较大根是m,则()A . m>2B . m<﹣1C . 1<m<2D . 0<m<15. (3分)(2020·宁波模拟) 如图1所示,用形状相同、大小不等的三块直角三角形木板,恰好能拼成如图2所示的矩形ABCD,若AE=2, CE=4BE,那么这个矩形的面积是()A . 4B . 8C . 2D . 46. (3分) (2016九上·黔西南期中) 贞丰县享有“中国花椒之乡”的赞誉,其中以北盘江镇顶坛花椒的品质最为出名.据统计,2014年贞丰北盘江镇花椒总产量约为4000吨,经种植技术和管理水玉提高后,2016年的总产量增长到6000吨,设平均每年的年平均增长率均为x,则下列方程正确的是()A . 6000(1+x)2=4000B . 4000(1+x)2=6000C . 4000(1﹣x)2=6000D . 6000(1﹣x)2=40007. (3分)如图,菱形OABC的顶点C的坐标为(3,4),顶点A在x轴的正半轴上.反比例函数(x>0)的图象经过顶点B,则k的值为()A . 12B . 20C . 24D . 328. (3分)如图,矩形ABCD沿着AE折叠,使D点落在BC边上的F点处,如果∠BAF=60°,则∠DAE等于()A . 30°B . 15°C . 45°D . 60°9. (3分)反比例函数y=(x>0)的图象如图所示,随着x值的增大,y值().A . 减小B . 增大C . 不变D . 先减小后不变10. (3分)(2020·天津) 若点都在反比例函数的图象上,则的大小关系是()A .B .C .D .11. (3分) (2019八下·遂宁期中) 若函数y=则当函值y=8时,自变量x的值是()A . ±B . 4C . 或4D . 4或-12. (3分)(2019·十堰) 如图,平面直角坐标系中,,反比例函数的图象分别与线段交于点,连接 .若点关于的对称点恰好在上,则()A .B .C .D .13. (3分)已知m是方程x2﹣3x﹣2=0的根,则代数式1+6m﹣2m2的值为________.14. (3分) (2013·泰州) 如图,平面直角坐标系xOy中,点A、B的坐标分别为(3,0)、(2,﹣3),△AB′O′是△ABO关于点A的位似图形,且O′的坐标为(﹣1,0),则点B′的坐标为________15. (2分) (2019七上·梅县期中) 某企业去年产值x万元,今年比去年增产10%,今年产值是________万元.16. (3分)(2019·抚顺模拟) 如图所示,n+1个边长为1的等边三角形,其中点A,C1 , C2 , C3 ,…∁n 在同一条直线上,若记△B1C1D1的面积为S1 ,△B2C2D2的面积为S2 ,△B3C3D3的面积为S3 ,…,△Bn∁nDn 的面积为Sn ,则Sn=________.二、解答题 (共7题;共52分)17. (8分) (2017九上·老河口期中) 解方程:(3x-2)2=4(3+x)2 .18. (6分)按要求解下列方程.(1)(x﹣3)2=16(2) x2﹣4x=5(配方法)(3) x2﹣4x﹣5=0(公式法)(4) x2﹣5x=0(因式分解法)19. (6分)(2018·重庆) 如图,在平行四边形中,点是对角线的中点,点是上一点,且,连接并延长交于点,过点作的垂线,垂足为,交于点 .(1)若,,求的面积;(2)若,求证: .20. (6分) (2019九上·香坊月考) 某工厂现有80台机器,每台机器平均每天生产384件产品.现准备增加一批同类机器以提高生产总量.在试生产中发现,由于其他生产条件没有改变,因此,每增加一台机器,每台机器平均每天将减少生产4件产品.(1)如果增加x台机器,每天的生产总量为y件,请写出y与x之间的函数关系式;(2)增加多少台机器,可以使每天的生产总量最大?最大生产总量是多少.21. (8分) (2017八下·曲阜期末) 某物流公司引进A、B两种机器人用来搬运某种货物,这两种机器人充满电后可以连续搬运5小时,A种与某日0时开始搬运,过了1小时,B种机器人也开始搬运,如图,线段OG表示A种机器人的搬运量yA(千克)与时间x(时)的函数图象,线段EF表示B种机器人的搬运量yB(千克)与时间x (时)的函数图象.根据图象提供的信息,解答下列问题:(1)求yB关于x的函数解析式;(2)如果A、B两种机器人连续搬运5个小时,那么B种机器人多搬运了多少千克?22. (8.0分)(2017·岳阳) 问题背景:已知∠EDF的顶点D在△ABC的边AB所在直线上(不与A,B重合),DE交AC所在直线于点M,DF交BC所在直线于点N,记△ADM的面积为S1 ,△BND的面积为S2 .(1)初步尝试:如图①,当△ABC是等边三角形,AB=6,∠EDF=∠A,且DE∥BC,AD=2时,则S1•S2=________;(2)类比探究:在(1)的条件下,先将点D沿AB平移,使AD=4,再将∠EDF绕点D旋转至如图②所示位置,求S1•S2的值;(3)延伸拓展:当△ABC是等腰三角形时,设∠B=∠A=∠EDF=α.(Ⅰ)如图③,当点D在线段AB上运动时,设AD=a,BD=b,求S1•S2的表达式(结果用a,b和α的三角函数表示).(Ⅱ)如图④,当点D在BA的延长线上运动时,设AD=a,BD=b,直接写出S1•S2的表达式,不必写出解答过程.23. (10.0分) (2019八下·吴兴期末) 如图1,在△OAB中,∠OAB=90°,∠AOB=30°,OB=8,以OB为边,在△OAB外作等边△OBC,D是OB的中点,连接AD并延长交OC于E。

初三数学期中考试试卷上册附答案2017

初三数学期中考试试卷上册附答案2017

初三数学期中考试试卷上册附答案2017期中对我们来说是一次考验,又是一次检验,考验学习态度是否端正,检验前半学期学到的成果。

以下是店铺为大家搜索整理的初三数学试卷上册附答案2017,希望能给大家带来帮助!更多精彩内容请及时关注我们应届毕业生!一、选择题(本大题共15个小题,每小题3分,共45分)1.一元二次方程x2-3x+2=0的两根为x1,x2,则x1+x2的值是( )A.2B.-2C.3D.-32.一元二次方程x2-4x+5=0的根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根3.如果2是方程x2-3x+c=0的一个根,那么c的值是( )A.4B.-4C.2D.-24.下列说法中正确的个数是( )①不可能事件发生的概率为0;②一个对象在试验中出现的次数越多,频率就越大;③在相同条件下,只要试验的次数足够多,频率就可以作为概率的估计值;④收集数据过程中的“记录结果”这一步,就是记录每个对象出现的频率.A.1B.2C.3D.45.三角形两边的长是3和4,第三边的长是方程x2-12x+35=0的根,则该三角形的周长为( )A.14B.12C.12或14D.以上都不对6.下列命题正确的是( )A.对角线互相垂直的四边形是菱形B.一组对边相等,另一组对边平行的四边形是平行四边形C.对角线相等的四边形是矩形D.对角线互相垂直平分且相等的四边形是正方形7.某校准备修建一个面积为180平方米的矩形活动场地,它的长比宽多11米,设场地的宽为x米,则可列方程为( )A.x(x-11)=180B.2x+2(x-11)=180C.x(x+11)=180D.2x+2(x+11)=1808.一个袋子中装有3个红球和2个黄球,这些球的形状、大小、质地完全相同,在看不到球的条件下,随机从袋子里同时摸出2个球,其中2个球的颜色相同的概率是( )A.34B.15C.25D.359.关于x的一元二次方程(m-2)x2+2x+1=0有实数根,则m的取值范围是( )A.m≤3B.m<3C.m<3且m≠2D.m≤3且m≠210.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC.若AC=4,则四边形CODE的周长是( )A.4B.6C.8D.1011.暑假快到了,父母打算带兄妹俩去某个景点旅游一次,长长见识,可哥哥坚持去黄山,妹妹坚持去泰山,争执不下,父母为了公平起见,决定设计一款游戏,若哥哥赢了就去黄山,妹妹赢了就去泰山.下列游戏中,不能选用的是( )A.掷一枚硬币,正面向上哥哥赢,反面向上妹妹赢B.同时掷两枚硬币,两枚都正面向上,哥哥赢,一正一反向上妹妹赢C.掷一枚骰子,向上的一面是奇数则哥哥赢,反之妹妹赢D.在不透明的袋子中装有两黑两红四个球,除颜色外,其余均相同,随机摸出一个是黑球则哥哥赢,是红球则妹赢12.将进货单价为40元的商品按50元出售时,售出500个,经市场调查发现:该商品每涨价1元,其销量减少10个,为了赚8 000元,则售价应定为( )A.60元B.80元C.60元或80元D.70元13.如图,正△AEF的边长与菱形ABCD的边长相等,点E、F分别在BC、CD上,则∠B的度数是( )A.70°B.75°C.80°D.95°14.小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中选两个作为补充条件,使平行四边形ABCD为正方形(如图),现有下列四种选法,你认为其中错误的是( )A.①②B.②③C.①③D.②④15.如图,E,F,G,H分别是BD,BC,AC,AD的中点,且AB=CD,下列结论:①EG⊥FH;②四边形EFGH是矩形;③HF平分∠EHG;④EG=12(BC-AD);⑤四边形EFGH是菱形,其中正确的个数是( )A.1个B.2个C.3个D.4个二、填空题(本大题共5小题,每小题5分,共25分)16.一元二次方程x2+x=0的解是________________.17.如图,在矩形ABCD中,对角线AC、BD相交于点O,若∠AOB=60°,AC=10,则AB=________.18.若x1、x2是方程2x2-3x-4=0的两个根,则x1x2+x1+x2的值为________.19.某班要从甲、乙、丙、丁四位班干部(两男两女)中任意两位参加学校组织的志愿者服务活动,则恰好选中一男一女的概率是________.20.如图,正方形ABCD的边长为4,∠DAC的平分线交DC于点E,若点P,Q分别是AD和AE上的动点,则DQ+PQ的最小值是________.三、解答题(本大题共7个小题,各题分值见题号后,共80分)21.(8分)用适当的方法解方程:(1)x2-4x+3=0; (2)(x-2)(3x-5)=1.22.(8分)如图,在矩形ABCD中,点O在边AB上,∠AOC=∠BOD,求证:AO=OB.23.(10分)某公司今年销售一种产品,1月份获得利润20万元,由于产品畅销,利润逐月增加,3月份的利润比2月份的利润增加4.8万元,假设该产品利润每月的增长率相同,求这个增长率.24.(12分)商店只有雪碧、可乐、果汁、奶汁四种饮料,每种饮料数量充足,某同学去该店购买饮料,每种饮料被选中的可能性相同.(1)若他去买一瓶饮料,则他买到奶汁的概率为________;(2)若他两次去买饮料,每次买一瓶,且两次所买饮料品种不同,请用树状图法或列表法求出他恰好买到雪碧和奶汁的概率.25.(12分)如图,在正方形ABCD中,点M是对角线BD上的一点,过点M作ME∥CD交BC于点E,作MF∥BC交CD于点F.求证:AM=EF.26.(14分)某批发商以每件50元的价格购进800件T恤,第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出10件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余的T恤一次性清仓销售,清仓时单价为40元,设第二个月单价降低x元.(1)填表(不需化简):时间第一个月第二个月清仓时单价(元) 80 40销售量(件) 200(2)如果批发商希望通过销售这批T恤获利9 000元,那么第二个月的单价应是多少元?27.(16分)已知: ABCD的两边AB,AD的长是关于x的方程x2-mx+m2-14=0的两个实数根.(1)当m为何值时,四边形ABCD是菱形?求出这时菱形的边长;(2)若AB的长为2,那么 ABCD的周长是多少?参考答案1.C2.D3.C4.C5.B6.D7.C8.C9.D 10.C 11.B12.C 13.C 14.B 15.C 16.x1=0,x2=-1 17.5 18.-12 19.2320.2221.(1)x1=1,x2=3.(2)x1=11+136,x2=11-136.22.证明:∵四边形ABCD为矩形,∴∠A=∠B=90°,AD=BC.∵∠AOC=∠BOD,∴∠AOC-∠DOC=∠BOD-∠DOC,即∠AOD=∠BOC.∴△AOD≌△BOC(AAS).∴AO=OB.23.设这个增长率为x.依题意得20(1+x)2-20(1+x)=4.8.解得x1=0.2,x2=-1.2(不合题意,舍去).0.2=20%.答:这个增长率是20%.24.(1)14(2)画树状图:由树状图可知,所有等可能的结果共有12种,满足条件的结果有2种,所以他恰好买到雪碧和奶汁的概率为212=16. 25.证明:连接MC.∵在正方形ABCD中,AD=CD,∠ADM=∠CDM,又∵DM=DM,∴△ADM≌△CDM.∴AM=CM.∵ME∥CD,MF∥BC,∴四边形CEMF是平行四边形.又∵∠ECF=90°,∴ CEMF是矩形.∴EF=MC。

2017年辽宁省鞍山市中考数学试卷(含答案解析版)

2017年辽宁省鞍山市中考数学试卷(含答案解析版)

2017年辽宁省鞍山市中考数学试卷一、选择题(共8小题,每小题3分,共24分)1.(3分)(2017•鞍山)下列各数中,比﹣3小的数是( )A .﹣2B .0C .1D .﹣42.(3分)(2017•鞍山)如图所示几何体的左视图是( )A .B .C .D .3.(3分)(2017•鞍山)函数y=√x +2中自变量x 的取值范围是( )A .x ≥﹣2B .x >﹣2C .x ≤﹣2D .x <﹣24.(3分)(2017•鞍山)一组数据2,4,3,x ,4的平均数是3,则x 的值为( )A .1B .2C .3D .45.(3分)(2017•鞍山)在平面直角坐标系中,点P (m +1,2﹣m )在第二象限,则m 的取值范围为( )A .m <﹣1B .m <2C .m >2D .﹣1<m <26.(3分)(2017•鞍山)某班有若干个活动小组,其中书法小组人数的3倍比绘画小组的人数多15人,绘画小组人数的2倍比书法小组的人数多5人,问:书法小组和绘画小组各有多少人?若设书法小组有x 人,绘画小组有y 人,那么可列方程组为( )A .{y −3x =15x −2y =5B .{y −3x =152y −x =5C .{3x −y =15x −2y =5D .{3x −y =152y −x =57.(3分)(2017•鞍山)分式方程5x−2=1−x 2−x﹣2的解为( ) A .x=2 B .x=﹣2 C .x=1 D .无解8.(3分)(2017•鞍山)如图,在矩形ABCD 中,点E 是AD 边的中点,BE ⊥AC ,垂足为点F ,连接DF ,分析下列四个结论:①△AEF ∽△CAB ;②DF=DC ;③S △DCF =4S△DEF ;④tan ∠CAD=√22.其中正确结论的个数是( )A .4B .3C .2D .1二、填空题(共8小题,每小题3分,共24分)9.(3分)(2017•鞍山)长城的总长大约为6700000m,将数6700000用科学记数法表示为.10.(3分)(2017•鞍山)分解因式2x2y﹣8y的结果是.11.(3分)(2017•鞍山)有5张大小、背面都相同的卡片,正面上的数字分别为1,﹣√2,0,π,﹣3,若将这5张卡片背面朝上洗匀后,从中任意抽取1张,那么这张卡片正面上的数字为无理数的概率是.12.(3分)(2017•鞍山)如图,在□ABCD中,分别以点A和点C为圆心,大于1 2 AC的长为半径作弧,两弧相交于M,N两点,作直线MN,分别交AD,BC于点E,F,连接AF,∠B=50°,∠DAC=30°,则∠BAF等于.13.(3分)(2017•鞍山)若一个圆锥的底面圆半径为1cm,其侧面展开图的圆心角为120°,则圆锥的母线长为cm.14.(3分)(2017•鞍山)如图,在△ABC中,∠ACB=90°,AC=4,BC=3,将△ABC 绕点A顺时针旋转得到△ADE(其中点B恰好落在AC延长线上点D处,点C落在点E处),连接BD,则四边形AEDB的面积为.15.(3分)(2017•鞍山)如图,在平面直角坐标系中,正方形ABOC和正方形DOFE的顶点B,F在x轴上,顶点C,D在y轴上,且S△ADF=4,反比例函数y=kx (x>0)的图象经过点E,则k=.16.(3分)(2017•鞍山)如图,在△ABC中,AB=AC=6,∠A=2∠BDC,BD交AC 边于点E,且AE=4,则BE•DE=.三、解答题(共2小题,每小题8分,共16分)17.(8分)(2017•鞍山)先化简,再求值:(1﹣1x+2)÷x2+2x+12x+4,其中x=√2﹣1.18.(8分)(2017•鞍山)如图,四边形ABCD为平行四边形,∠BAD和∠BCD的平分线AE,CF分别交DC,BA的延长线于点E,F,交边BC,AD于点H,G.(1)求证:四边形AECF是平行四边形.(2)若AB=5,BC=8,求AF+AG的值.四、解答题(共2小题,每小题10分,共20分)19.(10分)(2017•鞍山)某校要了解学生每天的课外阅读时间情况,随机调查了部分学生,对学生每天的课外阅读时间x(单位:min)进行分组整理,并绘制了如图所示的不完整的统计图表,根据图中提供的信息,解答下列问题:(1)本次调查共抽取名学生.(2)统计表中a=,b=.(3)将频数分布直方图补充完整.(4)若全校共有1200名学生,请估计阅读时间不少于45min的有多少人.课外阅读时间x/min频数/人频率0≤x<1560.115≤x<30120.230≤x<45a0.2545≤x<6018b60≤x<7590.1520.(10分)(2017•鞍山)为增强学生环保意识,某中学举办了环保知识竞赛,某班共有5名学生(3名男生,2名女生)获奖.(1)老师若从获奖的5名学生中选取一名作为班级的“环保小卫士”,则恰好是男生的概率为.(2)老师若从获奖的5名学生中任选两名作为班级的“环保小卫士”,请用画树状图法或列表法,求出恰好是一名男生、一名女生的概率.五、解答题(共2小题,每小题10分,共20分)21.(10分)(2017•鞍山)如图,建筑物C在观测点A的北偏东65°方向上,从观测点A出发向南偏东40°方向走了130m到达观测点B,此时测得建筑物C在观测点B的北偏东20°方向上,求观测点B与建筑物C之间的距离.(结果精确到0.1m.参考数据:√3≈1.73)22.(10分)(2017•鞍山)如图,△ACE,△ACD均为直角三角形,∠ACE=90°,∠ADC=90°,AE与CD相交于点P,以CD为直径的⊙O恰好经过点E,并与AC,AE分别交于点B和点F.(1)求证:∠ADF=∠EAC.(2)若PC=23PA,PF=1,求AF的长.六、解答题(共2小题,每小题10分,共20分)23.(10分)(2017•鞍山)某网络经销商销售一款夏季时装,进价每件60元,售价每件130元,每天销售30件,每销售一件需缴纳网络平台管理费4元.未来30天,这款时装将开展“每天降价1元”的促销活动,即从第一天起每天的单价均比前一天降1元,通过市场调查发现,该时装单价每降1元,每天销售量增加5件,设第x天(1≤x≤30且x为整数)的销量为y件.(1)直接写出y与x的函数关系式;(2)在这30天内,哪一天的利润是6300元?(3)设第x天的利润为W元,试求出W与x之间的函数关系式,并求出哪一天的利润最大,最大利润是多少.24.(10分)(2017•鞍山)如图,一次函数y=34x+6的图象交x轴于点A、交y轴于点B,∠ABO的平分线交x轴于点C,过点C作直线CD⊥AB,垂足为点D,交y轴于点E.(1)求直线CE的解析式;(2)在线段AB上有一动点P(不与点A,B重合),过点P分别作PM⊥x轴,PN⊥y轴,垂足为点M、N,是否存在点P,使线段MN的长最小?若存在,请直接写出点P的坐标;若不存在,请说明理由.七、解答题(本大题共1小题,共12分)25.(12分)(2017•鞍山)如图,∠MBN=90°,点C是∠MBN平分线上的一点,过点C分别作AC⊥BC,CE⊥BN,垂足分别为点C,E,AC=4√2,点P为线段BE 上的一点(点P不与点B、E重合),连接CP,以CP为直角边,点P为直角顶点,作等腰直角三角形CPD,点D落在BC左侧.(1)求证:CPCD=CECB;(2)连接BD,请你判断AC与BD的位置关系,并说明理由;(3)设PE=x,△PBD的面积为S,求S与x之间的函数关系式.八、解答题(本大题共1小题,共14分)26.(14分)(2017•鞍山)如图,抛物线y=﹣12x2+32x+2与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.(1)试探究△ABC的外接圆的圆心位置,求出圆心坐标;(2)点P是抛物线上一点(不与点A重合),且S△PBC =S△ABC,求∠APB的度数;(3)在(2)的条件下,点E是x轴上方抛物线上一点,点F是抛物线对称轴上一点,是否存在这样的点E和点F,使得以点B、P、E、F为顶点的四边形是平行四边形?若存在,请直接写出点F的坐标;若不存在,请说明理由.2017年辽宁省鞍山市中考数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,共24分)1.(3分)(2017•鞍山)下列各数中,比﹣3小的数是()A.﹣2 B.0 C.1 D.﹣4【考点】18:有理数大小比较.【分析】根据0大于负数,负数比较大小绝对值大的反而小,即可解答.【解答】解:∵﹣4<﹣3<﹣2<0,∴比﹣3小的数是﹣4,故选:D.【点评】本题考查了有理数的大小比较,解决本题的关键是熟记0大于负数,负数比较大小绝对值大的反而小.2.(3分)(2017•鞍山)如图所示几何体的左视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】从左面观察结合体,能够看到的线用实线,看不到的线用虚线.【解答】解:图中几何体的左视图如图所示:故选:C.【点评】本题主要考查的是几何体的三视图,熟练掌握三视图的画法是解题的关键.3.(3分)(2017•鞍山)函数y=√x+2中自变量x的取值范围是()A.x≥﹣2 B.x>﹣2 C.x≤﹣2 D.x<﹣2【考点】E4:函数自变量的取值范围.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由x+2≥0可得x≥﹣2,故选:A.【点评】本题主要考查函数自变量的取值范围,掌握二次根式的被开方数是非负数是解题的关键.4.(3分)(2017•鞍山)一组数据2,4,3,x ,4的平均数是3,则x 的值为( )A .1B .2C .3D .4【考点】W1:算术平均数.【分析】根据平均数的定义列出方程,解方程可得答案.【解答】解:根据题意,得:2+4+3+x+45=3, 解得:x=2,故选:B【点评】本题主要考查算术平均数,解题的关键是熟练掌握算术平均数的定义.5.(3分)(2017•鞍山)在平面直角坐标系中,点P (m +1,2﹣m )在第二象限,则m 的取值范围为( )A .m <﹣1B .m <2C .m >2D .﹣1<m <2【考点】CB :解一元一次不等式组;D1:点的坐标.【分析】根据第二象限内点的横坐标为负、纵坐标为正得出关于m 的不等式组,解之可得.【解答】解:根据题意,得:{m +1<02−m >0, 解得m <﹣1,故选:A .【点评】本题主要考查解一元一次不等式组的能力,解题的关键是根据点的坐标特点列出关于m 的不等式组.6.(3分)(2017•鞍山)某班有若干个活动小组,其中书法小组人数的3倍比绘画小组的人数多15人,绘画小组人数的2倍比书法小组的人数多5人,问:书法小组和绘画小组各有多少人?若设书法小组有x 人,绘画小组有y 人,那么可列方程组为( )A .{y −3x =15x −2y =5B .{y −3x =152y −x =5C .{3x −y =15x −2y =5D .{3x −y =152y −x =5【考点】99:由实际问题抽象出二元一次方程组.【分析】根据题意可得等量关系:书法小组人数×3﹣绘画小组的人数=15;绘画小组人数×2﹣书法小组的人数=5,根据等量关系列出方程组即可.【解答】解:若设书法小组有x 人,绘画小组有y 人,由题意得:{3x −y =152y −x =5, 故选:D .【点评】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.7.(3分)(2017•鞍山)分式方程5x−2=1−x 2−x﹣2的解为( )A .x=2B .x=﹣2C .x=1D .无解【考点】B3:解分式方程.【分析】本题需先根据解分式方程的步骤,先乘以最简公分母,再去掉分母,即可求出x 的值,再进行检验即可求出答案.【解答】解:两边同时乘以(x ﹣2)得:5=(x ﹣1)﹣2(x ﹣2),解得:x=﹣2,检验:当x=﹣2时,x ﹣2≠0,∴x=﹣2是原方程的根.故选B .【点评】本题主要考查了解分式方程,在解题时要注意把分式方程转化为整式方程进行解答是本题的关键.8.(3分)(2017•鞍山)如图,在矩形ABCD 中,点E 是AD 边的中点,BE ⊥AC ,垂足为点F ,连接DF ,分析下列四个结论:①△AEF ∽△CAB ;②DF=DC ;③S △DCF =4S△DEF ;④tan ∠CAD=√22.其中正确结论的个数是( )A .4B .3C .2D .1【考点】S9:相似三角形的判定与性质;LB :矩形的性质;T7:解直角三角形.【分析】①正确.只要证明∠EAC=∠ACB ,∠ABC=∠AFE=90°即可;②根据已知条件得到四边形BMDE 是平行四边形,求得BM=DE=12BC ,根据线段垂直平分线的性质得到DM 垂直平分CF ,于是得到结论,③根据三角形的面积公式即可得到结论;④设AE=a ,AB=b ,则AD=2a ,根据相似三角形的性质即可得到结论.【解答】解:如图,过D 作DM ∥BE 交AC 于N ,∵四边形ABCD 是矩形,∴AD ∥BC ,∠ABC=90°,AD=BC ,S △DCF =4S △DEF∵BE ⊥AC 于点F ,∴∠EAC=∠ACB ,∠ABC=∠AFE=90°,∴△AEF ∽△CAB ,故①正确;②∵DE ∥BM ,BE ∥DM ,∴四边形BMDE 是平行四边形,∴BM=DE=12BC , ∴BM=CM ,∴CN=NF ,∵BE ⊥AC 于点F ,DM ∥BE ,∴DN ⊥CF ,∴DM垂直平分CF,∴DF=DC,故②正确;③∵点E是AD边的中点,∴S△DEF =12S△ADF,∵△AEF∽△CBA,∴AF:CF=AE:BC=1 2,∴S△CDF =2S△ADF=4S△DEF,故③正确;④设AE=a,AB=b,则AD=2a,由△BAE∽△ADC,有ba=2ab,即b=√2a,∴tan∠CAD=CDAD =b2a=√22.故④正确;故选A.【点评】本题主要考查了相似三角形的判定和性质,矩形的性质,图形面积的计算以及解直角三角形的综合应用,正确的作出辅助线构造平行四边形是解题的关键.解题时注意:相似三角形的对应边成比例.二、填空题(共8小题,每小题3分,共24分)9.(3分)(2017•鞍山)长城的总长大约为6700000m,将数6700000用科学记数法表示为 6.7×106.【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:6 700 000=6.7×106,故答案为:6.7×106.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.(3分)(2017•鞍山)分解因式2x2y﹣8y的结果是2y(x+2)(x﹣2).【考点】55:提公因式法与公式法的综合运用.【专题】11 :计算题;44 :因式分解.【分析】原式提取公因式,再利用平方差公式分解即可.【解答】解:原式=2y(x+2)(x﹣2).故答案为:2y(x+2)(x﹣2)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.11.(3分)(2017•鞍山)有5张大小、背面都相同的卡片,正面上的数字分别为1,﹣√2,0,π,﹣3,若将这5张卡片背面朝上洗匀后,从中任意抽取1张,那么这张卡片正面上的数字为无理数的概率是 25. 【考点】X4:概率公式;26:无理数.【分析】根据所有等可能的结果数有5种,其中任取一张,这张卡片上的数字为无理数的结果有2种,根据概率公式即可得出答案.【解答】解:∵在1,﹣√2,0,π,﹣3中,无理数有﹣√2,π,共2个,∴这张卡片正面上的数字为无理数的概率是25; 故答案为:25. 【点评】此题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n.12.(3分)(2017•鞍山)如图,在□ABCD 中,分别以点A 和点C 为圆心,大于12AC 的长为半径作弧,两弧相交于M ,N 两点,作直线MN ,分别交AD ,BC 于点E ,F ,连接AF ,∠B=50°,∠DAC=30°,则∠BAF 等于 70° .【考点】N2:作图—基本作图;KG :线段垂直平分线的性质.【分析】根据∠BAF=∠BAD ﹣∠CAD ﹣∠CAF ,想办法求出∠BAD 、∠CAD 、∠CAF 即可.【解答】解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠BAD=180°﹣∠B=130°,∠ACF=∠CAD=30°,由作图痕迹可知EF 是AC 的垂直平分线,∴AF=CF ,∴∠CAF=∠ACF=30°,∴∠BAF=∠BAD ﹣∠CAD ﹣∠CAF=70°.故答案为70°.【点评】本题考查基本作图、线段的垂直平分线等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.13.(3分)(2017•鞍山)若一个圆锥的底面圆半径为1cm,其侧面展开图的圆心角为120°,则圆锥的母线长为3cm.【考点】MP:圆锥的计算.【分析】利用圆锥的底面周长等于圆锥的侧面展开图的弧长即可求解.【解答】解:设母线长为l,则120⋅π⋅l180=2π×1解得:l=3.故答案为:3.【点评】考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.14.(3分)(2017•鞍山)如图,在△ABC中,∠ACB=90°,AC=4,BC=3,将△ABC 绕点A顺时针旋转得到△ADE(其中点B恰好落在AC延长线上点D处,点C落在点E处),连接BD,则四边形AEDB的面积为272.【考点】R2:旋转的性质.【分析】通过勾股定理计算出AB长度,利用旋转性质求出各对应线段长度,利用面积公式解答即可.【解答】解:∵在△ABC中,∠C=90°,AC=4,BC=3,∴AB=5,∵将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D 处,∴AD=AB=5,∴CD=AD﹣AC=1,∴四边形AEDB 的面积为2×12×4×3+12×1×3=272,故答案为:272. 【点评】题目考查勾股定理和旋转的基本性质,解决此类问题的关键是掌握旋转的基本性质,特别是线段之间的关系.题目整体较为简单,适合随堂训练.15.(3分)(2017•鞍山)如图,在平面直角坐标系中,正方形ABOC 和正方形DOFE 的顶点B ,F 在x 轴上,顶点C ,D 在y 轴上,且S △ADF =4,反比例函数y=k x(x >0)的图象经过点E ,则k= 8 .【考点】G5:反比例函数系数k 的几何意义.【分析】设正方形ABOC 和正方形DOFE 的边长分别是m 、n ,则AB=OB=m ,DE=EF=OF=n ,BF=OB +OF=m +n ,然后根据S △ADF =S 梯形ABOD +S △DOF ﹣S △ABF =4,得到关于n 的方程,解方程求得n 的值,最后根据系数k 的几何意义求得即可.【解答】解:设正方形ABOC 和正方形DOFE 的边长分别是m 、n ,则AB=OB=m ,DE=EF=OF=n ,∴BF=OB +OF=m +n ,∴S △ADF =S 梯形ABOD +S △DOF ﹣S △ABF =12m (m +n )+12n 2﹣12m (m +n )=4, ∴n 2=8,∵点E (n .n )在反比例函数y=k x(x >0)的图象上, ∴k=n 2=8,故答案为8.【点评】本题考查了反比例函数系数k 的几何意义,三角形的面积,根据面积得出方程是解题的关键.16.(3分)(2017•鞍山)如图,在△ABC 中,AB=AC=6,∠A=2∠BDC ,BD 交AC 边于点E ,且AE=4,则BE•DE= 20 .【考点】S9:相似三角形的判定与性质;KH :等腰三角形的性质.【专题】17 :推理填空题.【分析】根据题意可以证明△FEB ∽△DEC ,然后根据相似三角形对应边的比相等,即可求得BE•DE 的值,本题得以解决.【解答】解:延长CA 到F ,使得AF=AB ,连接BF ,则∠F=∠ABF=12∠BAC , ∵∠BAC=2∠BDC ,∴∠F=∠BDC ,∵∠FEB=∠DEC ,∴△FEB ∽△DEC ,∴BE CE =FE DE, ∵AE=4,AB=AC=6,∴EF=10,CE=2,∴BE 2=10DE, ∴BE•DE=20,故答案为:20.【点评】本题考查相似三角形的判定与性质、等腰三角形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.三、解答题(共2小题,每小题8分,共16分)17.(8分)(2017•鞍山)先化简,再求值:(1﹣1x+2)÷x 2+2x+12x+4,其中x=√2﹣1.【考点】6D:分式的化简求值.【分析】根据分式的减法和除法可以化简题目中的式子,再将x的值代入即可解答本题.【解答】解:(1﹣1x+2)÷x2+2x+12x+4=x+2−1x+2⋅2(x+2)(x+1)2=2(x+1) (x+1)2=2x+1,当x=√2﹣1时,原式=√2−1+1=√2.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.18.(8分)(2017•鞍山)如图,四边形ABCD为平行四边形,∠BAD和∠BCD的平分线AE,CF分别交DC,BA的延长线于点E,F,交边BC,AD于点H,G.(1)求证:四边形AECF是平行四边形.(2)若AB=5,BC=8,求AF+AG的值.【考点】L7:平行四边形的判定与性质.【分析】(1)由平行四边形的性质,结合角平分线的定义可证得AE∥CF,结合AF∥CE,可证得结论;(2)由条件可证得△DCG∽△AFG,利用相似三角形的性质可求得DG与AG的关系,结合条件可求得AG的长,从而可求得答案.【解答】(1)证明:∵四边形ABCD为平行四边形,∴AD∥BC,∠BAD=∠BCD,∵AE、CF分别平分∠BAD和∠BCD,∴∠BCG=∠CGD=∠HAD,∴AE∥CF,∵AF∥CE,∴四边形AECF是平行四边形;(2)解:由(1)可知∠BCF=∠DCF=∠F,∴BF=BC=AD=8,∵AB=CD=5,∴AF=BF ﹣AB=3,∵BF ∥DE ,∴∠DCG=∠F ,∠D=∠FAG ,∴△DCG ∽△AFG ,∴DG AG =CD FA =53, ∴DG=53AG , ∴AD=AG +DG=83AG=8, ∴AG=3,∴AF +AG=3+3=6.【点评】本题主要考查平行四边形的性质和判定,掌握平行四边形的对边平行且相等是解题的关键,注意相似三角形的应用.四、解答题(共2小题,每小题10分,共20分)19.(10分)(2017•鞍山)某校要了解学生每天的课外阅读时间情况,随机调查了部分学生,对学生每天的课外阅读时间x (单位:min )进行分组整理,并绘制了如图所示的不完整的统计图表,根据图中提供的信息,解答下列问题:(1)本次调查共抽取 60 名学生.(2)统计表中a= 15 ,b= 0.3 .(3)将频数分布直方图补充完整.(4)若全校共有1200名学生,请估计阅读时间不少于45min 的有多少人. 课外阅读时间x/min频数/人频率0≤x <156 0.115≤x12 0.2<3 03 0≤x <4 5a0.254 5≤x <6 018b6 0≤x <7 590.15【考点】V8:频数(率)分布直方图;V5:用样本估计总体;V7:频数(率)分布表.【分析】(1)根据0≤x<15min阶段的频数和频率求出总数即可;(2)根据题意列出算式a=60×0.25,b=18÷60,求出即可;(3)根据频数是15画出即可;(4)根据题意列出算式,再求出即可.【解答】解:(1)6÷0.1=60,即本次调查共抽取60名学生,故答案为:60;(2)a=60×0.25=15,b=18÷60=0.3,故答案为:15,0.3;(3)如图所示:;(4)1200×18+960=540, 答:若全校共有1200名学生,请估计阅读时间不少于45min 的有540人.【点评】本题考查了频数分布直方图,用样本估计总体,频数分布表等知识点,能根据题意和图形列出算式是解此题的关键.20.(10分)(2017•鞍山)为增强学生环保意识,某中学举办了环保知识竞赛,某班共有5名学生(3名男生,2名女生)获奖.(1)老师若从获奖的5名学生中选取一名作为班级的“环保小卫士”,则恰好是男生的概率为 35. (2)老师若从获奖的5名学生中任选两名作为班级的“环保小卫士”,请用画树状图法或列表法,求出恰好是一名男生、一名女生的概率.【考点】X6:列表法与树状图法;X4:概率公式.【分析】(1)根据概率公式用男生人数除以总人数即可得;(2)先画树状图展示所有20种等可能的结果数,再找出选出1名男生和1名女生的结果数,然后根据概率公式求解.【解答】解:(1)所有等可能结果共有5种,其中男生有3种,∴恰好是男生的概率为35, 故答案为:35;(2)画树状图为:共有20种等可能的结果数,其中选出1名男生和1名女生的结果数为12种,所以恰好选出1名男生和1名女生的概率=1220=35. 【点评】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,求出概率.也考查了统计图.五、解答题(共2小题,每小题10分,共20分)21.(10分)(2017•鞍山)如图,建筑物C在观测点A的北偏东65°方向上,从观测点A出发向南偏东40°方向走了130m到达观测点B,此时测得建筑物C在观测点B的北偏东20°方向上,求观测点B与建筑物C之间的距离.(结果精确到0.1m.参考数据:√3≈1.73)【考点】TB:解直角三角形的应用﹣方向角问题.【分析】过A作AD⊥BC于D.解Rt△ADB,求出DB=12AB=65m,AD=√3BD=65√3m.再解Rt△ADC,得出CD=AD=65√3m,根据BC=BD+CD即可求解.【解答】解:如图,过A作AD⊥BC于D.根据题意,得∠ABC=40°+20°=60°,AB=130m.在Rt△ADB中,∵∠DAB=30°,∴DB=12AB=12×130=65m,AD=√3BD=65√3m.∵∠BAC=180°﹣65°﹣40°=75°,∴∠C=180°﹣∠ABC﹣∠BAC=180°﹣60°﹣75°=45°.在Rt△ADC中,∵tanC=ADCD=1,∴CD=AD=65√3m,∴BC=BD+CD=65+65√3≈177.5m.故观测点B与建筑物C之间的距离约为177.5m.【点评】此题考查了解直角三角形的应用﹣方向角问题,解一般三角形的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.22.(10分)(2017•鞍山)如图,△ACE,△ACD均为直角三角形,∠ACE=90°,∠ADC=90°,AE与CD相交于点P,以CD为直径的⊙O恰好经过点E,并与AC,AE分别交于点B和点F.(1)求证:∠ADF=∠EAC.(2)若PC=23PA,PF=1,求AF的长.【考点】S9:相似三角形的判定与性质;M5:圆周角定理.【专题】55C :与圆有关的计算.【分析】(1)根据圆周角定理,等角的余角相等可以证明结论成立;(2)根据(1)中的结论和三角形相似的知识可以求得AF 的长.【解答】(1)证明:∵∠ADC=90°,∠ACE=90°,∴∠ADF +∠FDC=90°,∠EAC +∠CEF=90°,∵∠FDC=∠CEF ,∴∠ADF=∠EAC ;(2)连接FC ,∵CD 是圆O 的直径,∴∠DFC=90°,∴∠FDC +∠FCD=90°,∵∠ADF +∠FDC=90°,∠ADF=∠EAC ,∴∠FCD=∠EAC ,即∠FCP=CAP ,∵∠FPC=∠CPA ,∴△FPC ∽△CPA ,∴PF PC =PC PA, ∵PC=23PA ,PF=1, ∴123PA =23PA PA , 解得,PA=94, ∴AF=PA ﹣PF=94−1=54, 即AF=54.【点评】本题考查相似三角形的判定与性质、圆周角定理,解答本题的关键是明确题意,利用数形结合的思想解答.六、解答题(共2小题,每小题10分,共20分)23.(10分)(2017•鞍山)某网络经销商销售一款夏季时装,进价每件60元,售价每件130元,每天销售30件,每销售一件需缴纳网络平台管理费4元.未来30天,这款时装将开展“每天降价1元”的促销活动,即从第一天起每天的单价均比前一天降1元,通过市场调查发现,该时装单价每降1元,每天销售量增加5件,设第x天(1≤x≤30且x为整数)的销量为y件.(1)直接写出y与x的函数关系式;(2)在这30天内,哪一天的利润是6300元?(3)设第x天的利润为W元,试求出W与x之间的函数关系式,并求出哪一天的利润最大,最大利润是多少.【考点】HE:二次函数的应用;AD:一元二次方程的应用.【分析】(1)根据销量=原价的销量+增加的销量即可得到y与x的函数关系式;(2)表示出网络经销商所获得的利润=6300,解方程即可求出x的值;(3)根据每天售出的件数×每件盈利=利润即可得到的W与x之间的函数关系式,由函数的性质即可求出其最大利润以及其哪一天所获得的.【解答】解:(1)由题意可知y=5x+30;(2)根据题意可得(130﹣x﹣60﹣4)(5x+30)=6300,即x2﹣60x+864=0,解得:x=24或36(舍)∴在这30天内,第24天的利润是6300元.(3)根据题意可得:w=(130﹣x﹣60﹣4)(5x+30),=﹣5x2+300x+1980,=﹣5(x﹣30)2+6480,∵a=﹣5<0,∴函数有最大值,∴当x=30时,w有最大值为6480元,∴第30天的利润最大,最大利润是6480元.【点评】此题主要考查了一元二次方程的实际应用和二次函数实际中的应用,此题找到关键描述语,找到等量关系准确的列出方程或函数关系式是解决问题的关键.最后要注意判断所求的解是否符合题意,舍去不合题意的解.24.(10分)(2017•鞍山)如图,一次函数y=34x+6的图象交x轴于点A、交y轴于点B,∠ABO的平分线交x轴于点C,过点C作直线CD⊥AB,垂足为点D,交y轴于点E.(1)求直线CE的解析式;(2)在线段AB上有一动点P(不与点A,B重合),过点P分别作PM⊥x轴,PN⊥y轴,垂足为点M、N,是否存在点P,使线段MN的长最小?若存在,请直接写出点P的坐标;若不存在,请说明理由.【考点】FI :一次函数综合题.【分析】(1)先求出AB=10,进而判断出Rt △BCD ≌Rt △BCO ,和△ACD ∽△ABO ,确定出点C (﹣3,0),再判断出△EBD ≌△ABO ,求出OE=BE ﹣OB=4,即可得出点E 坐标,最后用待定系数法即可;(2)设P (﹣m ,﹣34m +6),∴PN=m ,PM=﹣34m +6,根据勾股定理得,MN 2=2516(m ﹣7225)2+57625,即可得出点P 横坐标,即可得出结论. 【解答】解:(1)根据题意得点B 的横坐标为0,点A 的纵坐标为0,∴B (0,6),A (﹣8,0),∴OA=8,OB=6,∴AB=√OA 2+OB 2=10,∵CB 平分∠ABO ,CD ⊥AB ,CO ⊥BO ,∴CD=CO ,∵BC=BC ,∴Rt △BCD ≌Rt △BCO ,∴BD=BO=6,∴AD=AB ﹣BD=4,∵∠ADC=∠AOB=90°,∠CAD=∠BAO ,∴△ACD ∽△ABO ,∴AD AO =AC AB, ∴48=AC 10, ∴AC=5,∴OC=OA ﹣AC=3,∴C (﹣3,0),∵∠EDB=∠AOB=90°,BD=BO ,∠EBD=∠ABO ,∴△EBD ≌△ABO ,∴BE=AB=10,∴OE=BE ﹣OB=4,∴E (0,﹣4),设直线CE 的解析式为y=kx ﹣4,∴﹣3k ﹣4=0,∴k=﹣43, ∴直线CE 的解析式为y=﹣43x ﹣4,(2)解:存在,(﹣7225,9625), 如图, ∵点P 在直线y=34x +6上, ∴设P (﹣m ,﹣34m +6),∴PN=m ,PM=﹣34m +6, 根据勾股定理得,MN 2=PN 2+PM 2=m 2+(﹣34m +6)2=2516(m ﹣7225)2+57625, ∴当m=7225时,MN 2有最小值,则MN 有最小值, 当m=7225时,y=﹣34x +6=﹣34×7225+6=9625, ∴P (﹣7225,9625).【点评】此题是一次函数综合题,主要考查了待定系数法,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,解(1)的关键是求出点C 的坐标,解(2)的关键是得出MN 2的函数关系式,是一道中等难度的中考常考题.七、解答题(本大题共1小题,共12分)25.(12分)(2017•鞍山)如图,∠MBN=90°,点C 是∠MBN 平分线上的一点,过点C 分别作AC ⊥BC ,CE ⊥BN ,垂足分别为点C ,E ,AC=4√2,点P 为线段BE 上的一点(点P 不与点B 、E 重合),连接CP ,以CP 为直角边,点P 为直角顶点,作等腰直角三角形CPD ,点D 落在BC 左侧.(1)求证:CP CD =CE CB; (2)连接BD ,请你判断AC 与BD 的位置关系,并说明理由;(3)设PE=x ,△PBD 的面积为S ,求S 与x 之间的函数关系式.【考点】SO :相似形综合题.【分析】(1)由△CPD ∽△CEB 证得结论;(2)AC ∥BD .欲推知AC ∥BD ,只需推知∠ACB +∠DBC=180°;(3)如图所示,过点P 作PF ⊥BD .交DB 的延长线于点F .通过解直角三角形、(2)中相似三角形的对应边成比例和三角形的面积公式写出函数关系式即可.【解答】(1)证明:∵∠MBN=90°,点C 是∠MBN 平分线上的一点,∴∠CBE=45°,又CE ⊥BN ,∴∠BCE=45°,∴BE=CE ,∴△BCE 是等腰直角三角形.又∵△CPD 是等腰直角三角形,∴△CPD ∽△CEB ,∴CP CE =CD CB, ∴CP CD =CE CB;(2)解:AC ∥BD ,理由如下:∵∠PCE +∠BCP=∠DCB +∠BCP=45°,∴∠PEC=∠DCB .由(1)知,CP CD =CE CB, ∴△EPC ∽△BDC ,∴∠PEC=∠DBC .∵AC ⊥BC ,∴∠ACB=90°,∴∠ACB +∠DBC=180°,∴AC ∥BD ;(3)解:如图所示,过点P 作PF ⊥BD .交DB 的延长线于点F .∵AC=4√2,△ABC 与△BEC 都是等腰直角三角形,∴BC=4√2,BE=CE=4.由(2)知,△EPC ∽△BDC ,∴PE DB =CE CB .即x DB =4√2, ∴DB=√2x .∵∠PBF=∠CBF ﹣∠CBP=90°﹣45°=45°,即BP=BE ﹣PE=4﹣x ,。

九年级上学期期中数学试题(含答案)

九年级上学期期中数学试题(含答案)

九年级数学期中试卷本试卷分试题和答题卡两部分,所有答案一律写在答题卡上.考试时间为120分钟.试卷满分130分. 注意事项:1.答卷前,考生务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写在答题卡的相应位置上,并认真核对条形码上的姓名、准考证号是否与本人的相符合.2.答选择题必须用2B 铅笔将答题卡上对应题目中的选项标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔作答,写在答题卡上各题目指定区域内相应的位置,在其他位置答题一律无效.3.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.4.卷中除要求近似计算的结果取近似值外,其他均应给出精确结果.一、选择题:(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的序号填写在题答题卡的相应的括号内.) 1.下列关于x 的方程中,一定是一元二次方程的是( ▲ )A .x -1=0B .x 3+x =3C .x 2+3x -5=0D .ax 2+bx +c =02.关于x 的方程x 2+x -k =0有两个不相等的实数根,则k 的取值范围为( ▲ )新-课 -标-第- 一-网A .k >-14B .k ≥-14C .k <-14D .k >-14且k ≠03.45°的正弦值为( ▲ )A .1B .12C .22D .324.已知△ABC ∽△DEF ,∠A =∠D ,AB =2cm ,AC =4cm ,DE =3cm ,且DE <DF , 则DF 的长为( ▲ )A .1cmB .1.5cmC .6cmD .6cm 或1.5cm5.在平面直角坐标系中,点A (6,3),以原点O 为位似中心,在第一象限内把线段OA 缩小为原来的13得到线段OC ,则点C 的坐标为( ▲ )A .(2,1)B .(2,0)C .(3,3)D .(3,1)6.已知⊙A 半径为5,圆心A 的坐标为(1,0),点P 的坐标为(-2,4),则点P 与⊙A 的位置关系是( ▲ )A .点P 在⊙A 上B .点P 在⊙A 内C .点P 在⊙A 外D .不能确定7.如图,在□ABCD 中,AC 与BD 相交于点O ,E 为OD 的中点,连接AE 并延长交DC 于点F ,则DF :FC =( ▲ )A .1︰3B .1︰4C .2︰3D .1︰28.如图,在直角梯形ABCD 中,AD ∥BC ,∠ABC =90°,AB =12,AD =4,BC =9,点P 是AB 上一动点,若△P AD 与△PBC 相似,则满足条件的点P 的个数有( ▲ )A . 1个B .2个C .3个D .4个 9.已知线段AB ,点P 是它的黄金分割点,AP >BP ,设以AP 为边的等边三角形的面积 为S 1,以PB 、AB 为直角边的直角三角形的面积为S 2,则S 1与S 2的关系是 ( ▲ )A .S 1>S 2B .S 1<S 2C .S 1=S 2D .S 1≥S 210.如图,△ABC 是等腰直角三角形,∠ACB =90°,点E 、F 分别是边BC 、 AC 的中点,P是AB 上一点,以PF 为一直角边作等腰直角△PFQ ,且∠FPQ =90°,若AB =10,PB =1,则QE 的值为( ▲ ) A . 3 B .3 2 C .4 D .4 2二、填空题(本大题共8小题,每小题2分,共计16分.请把答案直接填写在答题卡相应位置上.)11.已知x :y =2:3,则(x +y ):y = ▲ .12.在相同时刻的物高与影长成比例,如果高为1.5m 的测杆的影长为2.5m ,那么影长为30m 的旗杆的高是 ▲ m .13.某电动自行车厂三月份的产量为1 000辆,由于市场需求量不断增大,五月份的产量提高到1 210辆,则该厂四、五月份的月平均增长率为 ▲ .14.在△ABC 中,∠A 、∠B 为锐角,且||tan A -1+(12-cos B )2=0,则∠C = ▲ °.15.如图,在□ABCD 中,E 在AB 上,CE 、BD 交于F ,若AE :BE =4:3,且BF =2,则DF = ▲ .AD F CBOE(第7题)A CP FEQ(第10题)ACD(第8题)A BCDE F(第15题)16.如图,在△ABC 中,AB =BC ,AC =8,点F 是△ABC 的重心(即点F 是△ABC 的两条中线AD 、BE 的交点),BF =6,则DF = ▲ .17.关于x 的一元二次方程mx 2+nx =0的一根为x =3,则关于x 的方程m (x +2)2+nx +2n =0的根为 ▲ .18.如图,△ABC 是一张等腰直角三角形纸板,∠C =90°,AC =BC =2,在这张纸板中剪出一个尽可能大的正方形称为第1次剪取,记所得正方形面积为S 1(如图1);在余下的Rt △ADE 和Rt △BDF 中,分别剪取一个尽可能大的正方形,得到两个相同的正方形,称为第2次剪取,并记这两个正方形面积和为S 2(如图2);继续操作下去…;第2017次剪取后,余下的所有小三角形的面积之和是 ▲ .三、解答题(本大题共10小题,共84分. 解答需写出必要的文字说明或演算步骤.) 19.计算或解方程:(每小题4分,共16分) (1)计算:(12)-2-4sin60°-tan45°;(2)3x 2-2x -1=0;(3)x 2+3x +1=0(配方法); (4)(x +1)2-6(x +1)+5=0.20.(本题满分6分)如图,在平面直角坐标系中,A (0,4)、B (4,4)、C (6,2). (1)在图中画出经过A 、B 、C 三点的圆弧所在圆的圆心M 的位置; (2)点M 的坐标为 ▲ ;(3)判断点D (5,-2)与⊙M 的位置关系.OABCxy (图2) ACB DE ACDE FACDE F(图1)(第18题)AB D CEF (第16题)……21.(本题满分6分)如图,在四边形ABCD 中,AC 平分∠DAB ,∠ADC =∠ACB =90°,E 为AB 中点.(1)求证:AC 2=AB •AD ;(2)若AD =4,AB =6,求ACAF 的值.22.(本题满分6分)已知关于x 的方程x 2+(m -3)x -m (2m -3)=0. (1)证明:无论m 为何值方程都有两个实数根.(2)是否存在正数m ,使方程的两个实数根的平方和等于26?若存在,求出满足条件的正数m 的值;若不存在,请说明理由.23.(本题满分6分)某市的特色农产品在国际市场上颇具竞争力,其中属于菌类的一种猴头菇远销国外.上市时,有一外商按市场价格10元/千克收购了2 000千克猴头菇存入冷库中,据预测,猴头菇的市场价格每天每千克上涨0.5元,但冷库存放这批猴头菇时每天需要支出各种费用合计220元,而且这种猴头菇在冷库中最多能保存130天,同时,平均每天有6千克的猴头菇损坏不能出售.)(1)若外商要将这批猴头菇存放x 天后一次性出售,则x 天后这批猴头菇的销售单价为 ▲ 元,销售量是 ▲ 千克(用含x 的代数式表示); (2)如果这位外商想获得利润24 000元,需将这批猴头菇存放多少天后出售?ADCEF(第21题)24.(本题满分8分)如图1为放置在水平桌面上的台灯的平面示意图,灯臂AO 长为50cm ,与水平桌面所形成的夹角∠OAM 为75°.由光源O 射出的边缘光线OC ,OB 与水平桌面所形成的夹角∠OCA ,∠OBA 分别为90°和30°.(不考虑其他因素,结果精确到0.1cm .参考数据:sin75°≈0.97,cos75°≈0.26,3≈1.73)(1)求该台灯照亮水平桌面的宽度BC .(2)人在此台灯下看书,将其侧面抽象成如图2所示的几何图形,若书与水平桌面的夹角∠EFC 为60°,书的长度EF 为24cm ,点P 为眼睛所在位置,当点P 在EF 的垂直平分线上,且到EF 距离约为34cm (人的正确看书姿势是眼睛离书距离约1尺≈34cm )时,称点P 为“最佳视点”.试问:最佳视点P 在不在灯光照射范围内?并说明理由.25.(本题满分9分)如图,以点P (-1,0)为圆心的圆,交x 轴于B 、C 两点(B 在C 的左侧),交y 轴于A 、D 两点(A 在D 的下方),AD =23,将△ABC 绕点P 旋转180°,得到△MCB .(1)求B 、C 两点的坐标;(2)请在图中画出线段MB 、MC ,并判断四边形ACMB 的形状(不必证明),求出点M 的坐标;(3)动直线l 从与BM 重合的位置开始绕点B 顺时针旋转,到与BC 重合时停止,设直线l 与CM 交点为E ,点Q 为BE 的中点,过点E 作EG ⊥BC 于点G ,连接MQ 、QG .请问在旋转过程中,∠MQG 的大小是否变化?若不变,求出∠MQG 的度数;若变化,请说明理由.OCE D PAC O P BDxy26.(本题满分8分)如图,已知AB是⊙O的弦,OB=2,∠B=30°,C是弦AB上任意一点(不与点A、B重合),连接CO并延长CO交⊙O于点D,连接AD.(1)AB=▲;(2)当∠D=20°时,求∠BOD的度数.(3)若△ACD与△BCO相似,求AC的长.(第26题)27.(本题满分9分)定义:已知x为实数,[x]表示不超过x的最大整数.例如:[3.14]=3,[1]=1,[-1.2]=-2.请你在学习和理解上述定义的基础上,解决下列问题:设函数y=x-[x].(1)当x=2.15时,求y=x-[x]的值.(2)当0<x<2时,求函数y=x-[x]的表达式,并画出对应的函数图像.(3)当-2<x<2时,在平面直角坐标系中,以O为圆心,r为半径作圆,且r≤2,该圆与函数y=x-[x]恰有一个公共点,请直接写出r的取值范围.(第27题)28.(本题满分10分)如图1,在Rt △ABC 中,∠C =90°,AC =6,BC =8,点P 从点A 开始沿边AC 向点C 以每秒1个单位长度的速度运动,点Q 从点C 开始沿边CB 向点B 以每秒2个单位长度的速度运动,过点P 作PD ∥BC ,交AB 于点D ,连接PQ .已知点P 、Q 分别从点A 、C 同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t 秒(t ≥0).(1)用含t 的代数式表示:QB = ▲ ,PD = ▲ ;(2)是否存在t 的值,使四边形PDBQ 为菱形?若存在,求出t 的值;若不存在,说明理由.并探究如何改变匀速运动的点Q 的速度,使四边形PDBQ 在某一时刻为菱形,求出此时点Q 的速度.(3)如图2,在整个P 、Q 运动的过程中,点M 为线段PQ 的中点,求出点M 经过的路径长.ABC PDQ(图1)MA BCPQ(图2)九年级数学期中试卷参考答案与评分标准2017.11一.选择题(本大题共有10小题,每题3分,共30分)⒈C ⒉A ⒊C ⒋C ⒌A ⒍A ⒎D 8.B 9.B 10.D 二、填空题(本大题共8小题,每小题2分,共计16分)11、5:3 12、18 13、10%14、75°15、16、2.517、1或-2 18、1/22016三、解答题(10小题,共84分)19.(每小题4分)(1)1—2 (2)x 1=1,x 2=-31(3)x 1=25,x 2=25(4)x 1=0,x 2=420.(本题6分) 解:(1)略 ……2分(2)M 的坐标:(2,0);……3分(3)∵,……4分∴……5分∴点D 在⊙M 内……6分21. 解:(1)∵AC 平分∠DAB ,∴∠DAC =∠BAC 又∵∠ADC =∠ACB =90°∴△ADC ∽△ACB …………………………………………(1分) ∴AC AD = A B AC∴AC 2=AB •AD ………………………………………(2分)(2)∵∠ACB =90°,E 为AB 中点.∴CE =21AB =AE =3∴∠EAC =∠ECA ………………………………………(3分) 又∵AC 平分∠DAB , ∴∠DAC =∠EAC∴∠DAC =∠ECA ………………………………………(4分) ∴AD ∥EC∴△ADF ∽△ECF ………………………………………(5分) ∴FC AF =EC AD =34 ∴ AF AC =47. ………………………………………(6分)22.(1)(2分)(2)(6分,不排除扣2分)23.(1)10+0.5x,(1分) 2000―6x;(1分)(2)由题意得:(10+0.5x)(2000―6x)―10×2000―220x=24000.(2分)解得x1=40,x2=200(不合题意,舍去)(1分)答:存放40天后出售。

辽宁省鞍山市九年级上学期期中数学试题

辽宁省鞍山市九年级上学期期中数学试题

辽宁省鞍山市九年级上学期期中数学试题姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)下列方程中是关于x的一元二次方程的是()A .B .C .D .2. (2分)小明练习射击,共射击60次,其中有38次击中靶子,由此可估计,小明射击一次击中靶子的概率是().A . 38%B . 60%C . 约63%D . 无法确定3. (2分)把mn=pq写成比例式,写错的是()A . =B . =C . =D . =4. (2分)(2018·上海) 已知平行四边形ABCD,下列条件中,不能判定这个平行四边形为矩形的是()A . ∠A=∠BB . ∠A=∠CC . AC=BDD . AB⊥BC5. (2分)若关于x的方程x2+x﹣a+ =0有两个不相等的实数根,则实数a的取值范围是()A . a≥2B . a≤2C . a>2D . a<26. (2分) (2015八下·津南期中) 以下条件不能判别四边形ABCD是矩形的是()A . AB=CD,AD=BC,∠A=90°B . OA=OB=OC=ODC . AB=CD,AB∥CD,AC=BDD . AB=CD,AB∥CD,OA=OC,OB=OD7. (2分) (2019九上·莲池期中) 如果两个相似多边形的面积比是4:9,那么它们的周长比是()A . 4:9B . 2:3C .D . 16:818. (2分)如图,四边形ABCD中,∠BAD=∠ACB=90°,AB=AD,AC=4BC,设CD的长为x,四边形ABCD 的面积为y,则y与x之间的函数关系式是()A .B .C .D .9. (2分)(2017·梁子湖模拟) 如图,正方形ABCD中,AB=4,点E是边BC的中点,点G,H分别是边CD,AB上的动点,连接GH交AE于F,且使GH⊥AE,连接AG,EH,则EH+AG的最小值是()A . 8B . 4C . 2D . 810. (2分) (2017九上·台江期中) 已知函数y=(k﹣3)x2+2x+1的图象与x轴有交点,则k的取值范围是()A . k<4B . k≤4C . k<4且k≠3D . k≤4且k≠3二、填空题 (共6题;共7分)11. (1分)已知a+b=﹣3,a2b+ab2=﹣30,则a2﹣ab+b2+11=________.12. (1分) (2018七上·涟源期中) 已知:,则代数式的值为________.13. (1分)某暗箱中放有10个球,其中有红球3个,白球和蓝球若干,从中任取一白球的概率为,则蓝球的个数是________个 .14. (2分) (2017七下·平谷期末) 《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x人,物品价格为y钱,可列方程组为________15. (1分) (2016九上·高台期中) 如果C是线段AB的黄金分割点,且AC>BC,则有比例线段________.16. (1分) (2018七下·韶关期末) 如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),……,按这样的运动规律,经过第100次运动后,动点P的坐标是________.三、解答题 (共9题;共85分)17. (5分) (2019九上·滨湖期末)(1)计算:;(2)解方程:x2﹣4x+1=0.18. (2分) (2018九上·硚口月考) 如图,锐角△ABC中,BC=12,BC边上的高AD=8,矩形EFGH的边GH 在BC上,其余两点E、F分别在AB、AC上,且EF交AD于点K(1)求的值(2)设EH=x,矩形EFGH的面积为S①求S与x的函数关系式②请直接写出S的最大值19. (10分)如图,已知△ABC中,∠ACB=90°,CD⊥AB,垂足为点D,已知AC=3,BC=4.(1)线段AD,CD,CD,BD是不是成比例线段?写出你的理由;(2)在这个图形中,能否再找出其他成比例的四条线段?如果能,请至少写出两组.20. (10分)(2018·潘集模拟) 如图,菱形ABCD的边长为2,BD=2,E、F分别是边AD,CD上的两个动点,且满足AE+CF=2.(1)求证:△BDE≌△BCF;(2)判断△BEF的形状,并说明理由.21. (10分) (2020九上·兴安盟期末) 今年,我国政府为减轻农民负担,决定在5年内免去农业税.某乡今年人均上缴农业税25元,若两年后人均上缴农业税为16元,假设这两年降低的百分率相同(1)求降低的百分率;(2)小红所在的乡约有16000农民,问该乡农民明年减少多少农业税?22. (15分) (2019九下·建湖期中) 如图,在△ABC中,∠BAC=90°.(1)利用直尺和圆规按下列要求作图,并在图中标明相应的字母(保留作图痕迹,不写作法).①作BC的垂直平分线EF,交AB、BC,分别于点E、F;②在射线EF上取一点D(异于点E),使∠DBC=∠EBC;③连接CE、CD、BD.(2)判定四边形CEBD的形状,并说明你的理由;(3)若AC=5,AB=12,求EF的长.23. (7分)(2017·东河模拟) 某校初三(1)班部分同学接受一次内容为“最适合自己的考前减压方式”的调查活动,收集整理数据后,老师将减压方式分为五类,并绘制了图1、图2两个不完整的统计图,请根据图中的信息解答下列问题.(1)初三(1)班接受调查的同学共有多少名;(2)补全条形统计图,并计算扇形统计图中的“体育活动C”所对应的圆心角度数;(3)若喜欢“交流谈心”的5名同学中有三名男生和两名女生;老师想从5名同学中任选两名同学进行交流,直接写出选取的两名同学都是女生的概率.24. (11分)已知关于x的一元二次方程有两个非零实数根.(1)求m的取值范围;(2)两个非零实数根能否同为正数或同为负数?若能,请求出相应的m的取值范围,若不能,请说明理由.25. (15分) (2019七上·余杭期中) 操作探究:已知在纸面上有一数轴(如图所示),(1)折叠纸面,使表示的点1与-1重合,则-2表示的点与________表示的点重合;(2)折叠纸面,使-1表示的点与3表示的点重合,回答以下问题:① 5表示的点与数________表示的点重合;② 表示的点与数________表示的点重合;③若数轴上A、B两点之间距离为9(A在B的左侧),且A、B两点经折叠后重合,此时点A表示的数是________、点B表示的数是________.(3)已知在数轴上点A表示的数是a,点A移动4个单位,此时点A表示的数和a是互为相反数,求a的值。

2016-2017学年辽宁省鞍山市台安县九年级(上)期中数学试卷

2016-2017学年辽宁省鞍山市台安县九年级(上)期中数学试卷

2016-2017学年辽宁省鞍山市台安县九年级(上)期中数学试卷一、选择题:每小题3分,共24分1.(3分)下列图形是中心对称图形的是()A. B. C.D.2.(3分)方程x2﹣25=0的解是()A.x1=x2=5 B.x1=x2=25 C.x1=5,x2=﹣5 D.x1=25,x2=﹣253.(3分)已知关于x的一元二次方程(m﹣1)x2+x+m2+2m﹣3=0的一个根为0,则m的值为()A.m=﹣3 B.m=1 C.m=1或m=﹣3 D.m≠14.(3分)如图,AB是⊙O的弦,C是⊙O上的点,已知∠ABO=40°,则∠ACB 的大小为()A.40°B.30°C.45°D.50°5.(3分)把抛物线y=﹣4x2的图象向左平移3个单位长度,得到的抛物线的解析式是()A.y=﹣4x2﹣3 B.y=﹣4(x+3)2C.y=﹣4(x﹣3)2D.y=﹣4x2+36.(3分)对于抛物线y=﹣(x+1)2+3,下列结论:①抛物线的开口向下;②对称轴为直线x=1;③顶点坐标为(﹣1,3);④x>1时,y随x的增大而减小,其中正确结论的个数为()A.1 B.2 C.3 D.47.(3分)如图,AB是⊙O的直径,M,N是⊙O上的两点,且AN=3,∠M=120°,则⊙O的半径为()A.3 B.5 C.3 D.68.(3分)如图,二次函数y=ax2+bx+c的图象开口向上,对称轴为直线x=1,图象经过(3,0),下列结论中,正确的一项是()A.abc<0 B.2a+b<0 C.a﹣b+c<0 D.4ac﹣b2<0二、填空题:每小题3分,共24分9.(3分)若一元二次方程x2﹣6x+b=0可化为(x﹣a)2=1,则b﹣a的值是.10.(3分)已知关于x的方程x2﹣kx﹣6=0的一个根是2,则k的值是.11.(3分)已知二次函数y=x2﹣(m﹣4)x+2m﹣3,当m=时,图象顶点在y轴上.12.(3分)已知点A(a,2)与点B (﹣1,b)关于原点O对称,则的值为.13.(3分)如图,在边长为1的正方形网格中,△DEF是由△ABC旋转得到的,则旋转中心的坐标为.14.(3分)如图,AB为⊙O的直径,弦AC=4cm,BC=3cm,CD⊥AB,垂足为D,那么CD的长为cm.15.(3分)已知二次函数y=﹣x2+2x+m的部分图象如图所示,则关于x的一元二次方程﹣x2+2x+m=0的解为.16.(3分)△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是.三、每小题8分,共16分17.(8分)关于x的方程为x2+(m+2)x+2m﹣1=0.(1)证明:方程有两个不相等的实数根.(2)是否存在实数m,使方程的两个实数根互为相反数?若存在,求出m的值及两个实数根;若不存在,请说明理由.18.(8分)在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B (﹣4,5),C(﹣5,2).(1)画出△ABC关于y轴对称的△A1B1C1;(2)画出△ABC关于原点O成中心对称的△A2B2C2.四、每小题10分,共20分19.(10分)如图,点P是等边三角形ABC内一点,且PA=3,PB=4,PC=5,若将△APB绕着点B逆时针旋转后得到△CQB.(1)求点P与点Q之间的距离.(2)求∠APB的度数.20.(10分)如图所示,已知AB为⊙O的直径,CD是弦,且AB⊥CD于点E.连接AC、OC、BC.(1)求证:∠ACO=∠BCD;(2)若EB=8cm,CD=24cm,求⊙O的直径.五、每小题10分,共20分21.(10分)一位篮球运动员投篮,球沿抛物线y=﹣x2+运行,然后准确落入篮筐内,已知篮筐的中心距离底面的距离为3.05m.(1)求球在空中运行的最大高度为多少m?(2)如果该运动员跳投时,球出手离地面的高度为 2.25m,要想投入篮筐,则问他距离蓝筐中心的水平距离是多少?22.(10分)如图,四边形ABCD中,AB∥CD,∠DAB=90°,且∠ABC=60°,AB=BC,△ABC的外接圆⊙O交BC于E点,连接DE并延长,交AB的延长线于F,求证:CF=DB.六、每小题10分,共20分23.(10分)如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?24.(10分)鄂州市化工材料经销公司购进一种化工原料若干千克,价格为每千克30元.物价部门规定其销售单价不高于每千克60元,不低于每千克30元.经市场调查发现:日销售量y(千克)是销售单价x(元)的一次函数,且当x=60时,y=80;x=50时,y=100.在销售过程中,每天还要支付其他费用450元.(1)求出y与x的函数关系式,并写出自变量x的取值范围.(2)求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式.(3)当销售单价为多少元时,该公司日获利最大?最大获利是多少元?七、12分25.(12分)图形变换中的数学,问题情境:在课堂上,兴趣学习小组对一道数学问题进行了深入探究,在Rt△ABC中,∠ACB=90°,∠A=30°,点D是AB的中点,连接CD.探索发现:(1)如图①,BC与BD的数量关系是;猜想验证:(2)如图②,若P是线段CB上一动点(点P不与点B,C重合),连接DP,将线段DP绕点D逆时针旋转60°,得到线段DF,连接BF,请猜想BF,BP,BD三者之间的数量关系,并证明你的结论;拓展延伸:(3)若点P是线段CB延长线上一动点,按照(2)中的作法,请在图③中补全图象,并直接写出BF、BP、BD三者之间的数量关系.八、14分26.(14分)如图,在平面直角坐标系中,二次函数y=x2﹣2x﹣3的图象与x轴交于A,B两点,与y轴交于点C,连接BC,点D位抛物线的顶点,点P是第四象限的抛物线上的一个动点(不与点D重合).(1)求∠OBC的度数;(2)连接CD,BD,DP,延长DP交x轴正半轴于点E,且S=S四边形OCDB,求△OCE此时P点的坐标.2016-2017学年辽宁省鞍山市台安县九年级(上)期中数学试卷参考答案与试题解析一、选择题:每小题3分,共24分1.(3分)(2016•金平区校级模拟)下列图形是中心对称图形的是()A. B. C.D.【解答】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、是中心对称图形,故本选项正确.故选D.2.(3分)(2007•湖州)方程x2﹣25=0的解是()A.x1=x2=5 B.x1=x2=25 C.x1=5,x2=﹣5 D.x1=25,x2=﹣25【解答】解:移项得:x2=25;开方得,x=±5,∴x1=5,x2=﹣5.故选C.3.(3分)(2016秋•台安县期中)已知关于x的一元二次方程(m﹣1)x2+x+m2+2m ﹣3=0的一个根为0,则m的值为()A.m=﹣3 B.m=1 C.m=1或m=﹣3 D.m≠1【解答】解:把x=0代入(m﹣1)x2+x+m2+2m﹣3=0得m2+2m﹣3=0,解得m1=﹣3,m2=1,而m﹣1≠0,所以m=﹣3.故选A.4.(3分)(2016秋•台安县期中)如图,AB是⊙O的弦,C是⊙O上的点,已知∠ABO=40°,则∠ACB的大小为()A.40°B.30°C.45°D.50°【解答】解:△AOB中,OA=OB,∠ABO=40°;∴∠AOB=180°﹣2∠ABO=100°;∴∠ACB=∠AOB=×100°=50°.故选:D.5.(3分)(2016秋•台安县期中)把抛物线y=﹣4x2的图象向左平移3个单位长度,得到的抛物线的解析式是()A.y=﹣4x2﹣3 B.y=﹣4(x+3)2C.y=﹣4(x﹣3)2D.y=﹣4x2+3【解答】解:抛物线y=﹣4x2的图象向左平移3个单位长度,得到的抛物线的解析式是y=﹣4(x+3)2.故选B.6.(3分)(2017•南雄市校级模拟)对于抛物线y=﹣(x+1)2+3,下列结论:①抛物线的开口向下;②对称轴为直线x=1;③顶点坐标为(﹣1,3);④x>1时,y随x的增大而减小,其中正确结论的个数为()A.1 B.2 C.3 D.4【解答】解:①∵a=﹣<0,∴抛物线的开口向下,正确;②对称轴为直线x=﹣1,故本小题错误;③顶点坐标为(﹣1,3),正确;④∵x>﹣1时,y随x的增大而减小,∴x>1时,y随x的增大而减小一定正确;综上所述,结论正确的个数是①③④共3个.故选:C.7.(3分)(2016秋•台安县期中)如图,AB是⊙O的直径,M,N是⊙O上的两点,且AN=3,∠M=120°,则⊙O的半径为()A.3 B.5 C.3 D.6【解答】解:连接BN,如图,∵∠M+∠A=180°,∴∠A=180°﹣120°=60°,∵AB为直径,∴∠ANB=90°,∴∠ABN=30°,∴AB=2AN=6,∴⊙O的半径为3.故选A.8.(3分)(2013•宁波)如图,二次函数y=ax2+bx+c的图象开口向上,对称轴为直线x=1,图象经过(3,0),下列结论中,正确的一项是()A.abc<0 B.2a+b<0 C.a﹣b+c<0 D.4ac﹣b2<0【解答】解:A、根据图示知,抛物线开口方向向上,则a>0.抛物线的对称轴x=﹣=1>0,则b<0.抛物线与y轴交与负半轴,则c<0,所以abc>0.故A选项错误;B、∵x=﹣=1,∴b=﹣2a,∴2a+b=0.故B选项错误;C、∵对称轴为直线x=1,图象经过(3,0),∴该抛物线与x轴的另一交点的坐标是(﹣1,0),∴当x=﹣1时,y=0,即a﹣b+c=0.故C选项错误;D、根据图示知,该抛物线与x轴有两个不同的交点,则△=b2﹣4ac>0,则4ac ﹣b2<0.故D选项正确;故选D.二、填空题:每小题3分,共24分9.(3分)(2016秋•台安县期中)若一元二次方程x2﹣6x+b=0可化为(x﹣a)2=1,则b﹣a的值是5.【解答】解:∵x2﹣6x=﹣b,∴x2﹣6x+9=﹣b+9,即(x﹣3)2=9﹣b,则a=3,9﹣b=1,得:a=3,b=8,∴b﹣a=8﹣3=5,故答案为:5.10.(3分)(2016秋•台安县期中)已知关于x的方程x2﹣kx﹣6=0的一个根是2,则k的值是﹣1.【解答】解:把x=2代入x2﹣kx﹣6=0得4﹣2k﹣6=0,解得k=﹣1.故答案为﹣1.11.(3分)(2016秋•台安县期中)已知二次函数y=x2﹣(m﹣4)x+2m﹣3,当m=4时,图象顶点在y轴上.【解答】解:△=(m﹣4)2﹣4(2m﹣3)=0,解得:m=4.故答案是:4.12.(3分)(2013•长汀县一模)已知点A(a,2)与点B (﹣1,b)关于原点O对称,则的值为﹣.【解答】解:根据题意,已知点A(a,2)与点B (﹣1,b)关于原点O对称,则a=﹣(﹣1)=1,b=﹣2,故则的值为﹣.13.(3分)(2016秋•台安县期中)如图,在边长为1的正方形网格中,△DEF 是由△ABC旋转得到的,则旋转中心的坐标为(0,1).【解答】解:如图,旋转中心为点(0,1).故答案为:(0,1).14.(3分)(2004•徐州)如图,AB为⊙O的直径,弦AC=4cm,BC=3cm,CD⊥AB,垂足为D,那么CD的长为 2.4cm.【解答】解:∵AB为⊙o的直径∴∠ACB=90°∵AC=4cm,BC=3cm∴AB=5cm∵CD⊥AB∴CD的长为=2.4cm答案:CD的长为2.4cm.故填空答案:2.4.15.(3分)(2010•金华)已知二次函数y=﹣x2+2x+m的部分图象如图所示,则关于x的一元二次方程﹣x2+2x+m=0的解为x1=﹣1或x2=3.【解答】解:依题意得二次函数y=﹣x2+2x+m的对称轴为x=1,与x轴的一个交点为(3,0),∴抛物线与x轴的另一个交点横坐标为1﹣(3﹣1)=﹣1,∴交点坐标为(﹣1,0)∴当x=﹣1或x=3时,函数值y=0,即﹣x2+2x+m=0,∴关于x的一元二次方程﹣x2+2x+m=0的解为x1=﹣1或x2=3.故答案为:x1=﹣1或x2=3.16.(3分)(2013•邵阳模拟)△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是80°或100°.【解答】解:如图,∵∠AOC=160°,∴∠ABC=∠AOC=×160°=80°,∵∠ABC+∠AB′C=180°,∴∠AB′C=180°﹣∠ABC=180°﹣80°=100°.∴∠ABC的度数是:80°或100°.故答案为80°或100°.三、每小题8分,共16分17.(8分)(2013秋•石首市期末)关于x的方程为x2+(m+2)x+2m﹣1=0.(1)证明:方程有两个不相等的实数根.(2)是否存在实数m,使方程的两个实数根互为相反数?若存在,求出m的值及两个实数根;若不存在,请说明理由.【解答】(1)证明:△=(m+2)2﹣4(2m﹣1)=m2﹣4m+8=(m﹣2)2+4,∵(m﹣2)2≥0,∴(m﹣2)2+4>0,∴方程有两个不相等的实数根.(2)存在实数m,使方程的两个实数根互为相反数.由题知:x1+x2=﹣(m+2)=0,解得:m=﹣2,将m=﹣2代入x2+(m+2)x+2m﹣1=0,解得:x=,∴m的值为﹣2,方程的根为x=.18.(8分)(2014•宁夏)在平面直角坐标系中,△ABC的三个顶点坐标分别为A (﹣2,1),B(﹣4,5),C(﹣5,2).(1)画出△ABC关于y轴对称的△A1B1C1;(2)画出△ABC关于原点O成中心对称的△A2B2C2.【解答】解:(1)△A1B1C1如图所示;(2)△A2B2C2如图所示.四、每小题10分,共20分19.(10分)(2016秋•台安县期中)如图,点P是等边三角形ABC内一点,且PA=3,PB=4,PC=5,若将△APB绕着点B逆时针旋转后得到△CQB.(1)求点P与点Q之间的距离.(2)求∠APB的度数.【解答】解:(1)连接PQ,由题意可知△ABP≌CBQ则QB=PB=4,∠ABP=∠CBQ,∵△ABC是等边三角形,∴∠ABC=∠ABP+∠PBC=60°,∴∠PBQ=∠CBQ+∠PBC=60°,故△BPQ为等边三角形,所以PQ=QB=PB=4;(2)∵△ABP≌CBQ,∴QC=PA=3,∠APB=∠BQC,又∵PQ=4,PC=5,利用勾股定理的逆定理可知:∴PQ2+QC2=PC2,则△PQC为直角三角形,且∠PQC=90°,∵△BPQ为等边三角形,∴∠BQP=60°,∴∠BQC=∠BQP+∠PQC=150°∴∠APB=∠BQC=150°20.(10分)(2008•湛江)如图所示,已知AB为⊙O的直径,CD是弦,且AB⊥CD于点E.连接AC、OC、BC.(1)求证:∠ACO=∠BCD;(2)若EB=8cm,CD=24cm,求⊙O的直径.【解答】(1)证明:连接OC,∵AB为⊙O的直径,∴∠ACB=90°,∠BCD与∠ACE互余;又∠ACE与∠CAE互余∴∠BCD=∠BAC.(3分)∵OA=OC,∴∠OAC=∠OCA.∴∠ACO=∠BCD.(5分)(2)解:设⊙O的半径为Rcm,则OE=OB﹣EB=(R﹣8)cm,CE=CD=×24=12cm,(6分)在Rt△CEO中,由勾股定理可得OC2=OE2+CE2,即R2=(R﹣8)2+122(8分)解得R=13,∴2R=2×13=26cm.答:⊙O的直径为26cm.(10分)五、每小题10分,共20分21.(10分)(2016秋•台安县期中)一位篮球运动员投篮,球沿抛物线y=﹣x2+运行,然后准确落入篮筐内,已知篮筐的中心距离底面的距离为3.05m.(1)求球在空中运行的最大高度为多少m?(2)如果该运动员跳投时,球出手离地面的高度为 2.25m,要想投入篮筐,则问他距离蓝筐中心的水平距离是多少?【解答】解:(1)∵y=﹣x2+的顶点坐标为(0,),∴球在空中运行的最大高度为m;(2)当y=3.05时,﹣0.2x2+3.5=3.05,解得:x=±1.5,∵x>0,∴x=1.5;当y=2.25时,﹣0.2x2+3.5=2.25,解得:x=2.5或x=﹣2.5,由1.5+2.5=4(m),故他距离蓝筐中心的水平距离是4米.22.(10分)(2016秋•台安县期中)如图,四边形ABCD中,AB∥CD,∠DAB=90°,且∠ABC=60°,AB=BC,△ABC的外接圆⊙O交BC于E点,连接DE并延长,交AB的延长线于F,求证:CF=DB.【解答】证明:连接AE,∵∠ABC=60°,AB=BC,∴△ABC是等边三角形,∵AB∥CD,∠DAB=90°,∴∠ADC=∠DAB=90°,∴AC为⊙O的直径,∴∠AEC=90°,∵AC=AB,∴EC=EB,∵AB∥CD,∴ED=EF,∴四边形DBFC是平行四边形,∴CF=DB.六、每小题10分,共20分23.(10分)(2015•湖北)如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?【解答】解:设矩形猪舍垂直于住房墙一边长为xm可以得出平行于墙的一边的长为(25﹣2x+1)m,由题意得x(25﹣2x+1)=80,化简,得x2﹣13x+40=0,解得:x1=5,x2=8,当x=5时,26﹣2x=16>12(舍去),当x=8时,26﹣2x=10<12,答:所围矩形猪舍的长为10m、宽为8m.24.(10分)(2015•鄂州)鄂州市化工材料经销公司购进一种化工原料若干千克,价格为每千克30元.物价部门规定其销售单价不高于每千克60元,不低于每千克30元.经市场调查发现:日销售量y(千克)是销售单价x(元)的一次函数,且当x=60时,y=80;x=50时,y=100.在销售过程中,每天还要支付其他费用450元.(1)求出y与x的函数关系式,并写出自变量x的取值范围.(2)求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式.(3)当销售单价为多少元时,该公司日获利最大?最大获利是多少元?【解答】解:(1)设y=kx+b,根据题意得,解得:k=﹣2,b=200,∴y=﹣2x+200(30≤x≤60);(2)W=(x﹣30)(﹣2x+200)﹣450=﹣2x2+260x﹣6450=﹣2(x﹣65)2+2000;(3)W=﹣2(x﹣65)2+2000,∵30≤x≤60,∴x=60时,w有最大值为1950元,∴当销售单价为60元时,该公司日获利最大,为1950元.七、12分25.(12分)(2017•宝丰县一模)图形变换中的数学,问题情境:在课堂上,兴趣学习小组对一道数学问题进行了深入探究,在Rt△ABC中,∠ACB=90°,∠A=30°,点D是AB的中点,连接CD.探索发现:(1)如图①,BC与BD的数量关系是BC=BD;猜想验证:(2)如图②,若P是线段CB上一动点(点P不与点B,C重合),连接DP,将线段DP绕点D逆时针旋转60°,得到线段DF,连接BF,请猜想BF,BP,BD三者之间的数量关系,并证明你的结论;拓展延伸:(3)若点P是线段CB延长线上一动点,按照(2)中的作法,请在图③中补全图象,并直接写出BF、BP、BD三者之间的数量关系.【解答】解:(1)∵∠ACB=90°,∠A=30°,∴∠CBA=60°,BC=AB,∵点D是AB的中点,∴BC=BD,故答案为:BC=BD;(2)BF+BP=BD,理由:∵∠ACB=90°,∠A=30°,∴∠CBA=60°,BC=AB,∵点D是AB的中点,∴BC=BD,∴△DBC是等边三角形,∴∠CDB=60°,DC=DB,∵线段DP绕点D逆时针旋转60°,得到线段DF,∴∠PDF=60°,DP=DF,∴∠CDB﹣∠PDB=∠PDF﹣∠PDB,∴∠CDP=∠BDF,在△DCP和△DBF中,,∴△DCP≌△DBF,∴CP=BF,∵CP+BP=BC,∴BF+BP=BC,∵BC=BD,∴BF+BP=BD;(3)如图③,BF=BD+BP,理由:∵∠ACB=90°,∠A=30°,∴∠CBA=60°,BC=AB,∵点D是AB的中点,∴BC=BD,∴△DBC是等边三角形,∴∠CDB=60°,DC=DB,∵线段DP绕点D逆时针旋转60°,得到线段DF,∴∠PDF=60°,DP=DF,∴∠CDB+∠PDB=∠PDF+∠PDB,∴∠CDP=∠BDF,在△DCP和△DBF中,,∴△DCP≌△DBF,∴CP=BF,∵CP=BC+BP,∴BF=BC+BP,∵BC=BD,∴BF=BD+BP.八、14分26.(14分)(2016秋•台安县期中)如图,在平面直角坐标系中,二次函数y=x2﹣2x﹣3的图象与x轴交于A,B两点,与y轴交于点C,连接BC,点D位抛物线的顶点,点P是第四象限的抛物线上的一个动点(不与点D重合).(1)求∠OBC的度数;=S四边形OCDB,求(2)连接CD,BD,DP,延长DP交x轴正半轴于点E,且S△OCE此时P点的坐标.【解答】解:(1)∵y=x2﹣2x﹣3=(x﹣3)(x+1),∴由题意得,A(﹣1,0),B(3,0),C(0,﹣3),D(1,﹣4).在Rt△OBC中,∵OC=OB=3,∴△OBC为等腰直角三角形,∴∠OBC=45°.(2)如图1,过点D作DH⊥x轴于H,此时S=S梯形OCDH+S△HBD,四边形OCDB∵OH=1,OC=3,HD=4,HB=2,=•(OC+HD)•OH=,∴S梯形OCDHS△HBD=•HD•HB=4,=.∴S四边形OCDB=S四边形OCDB==•OC•OE,∴S△OCE∴OE=5,∴E(5,0).设l DE:y=kx+b,∵D(1,﹣4),E(5,0),∴,解得:,∴l DE:y=x﹣5.∵DE交抛物线于P,设P(x,y),∴x2﹣2x﹣3=x﹣5,解得x=2 或x=1(D点,舍去),∴x P=2,代入l DE:y=x﹣5,∴P(2,﹣3).参与本试卷答题和审题的老师有:星期八;lanyan;蓝月梦;gsls;王学峰;CJX;73zzx;nhx600;三界无我;zhjh;Liuzhx;zcx;wd1899;gbl210;mmll852;知足长乐;sks;星月相随(排名不分先后)huwen2017年4月17日。

辽宁省鞍山市九年级上学期期中数学试卷

辽宁省鞍山市九年级上学期期中数学试卷

辽宁省鞍山市九年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分) M、N两点都在同一反比例函数图象上的是()A . M(2,2),N(-1,-1)B . M(-3,-2),N(9,6)C . M(2,-1),N(1,-2)D . M(-3,4),N(4,3)2. (2分)已知反比例函数,下列结论中,不正确的是()A . 图象必经过点(1,2)B . y随x的增大而减少C . 图象在第一、三象限内D . 若x>1,则y<23. (2分)方程的实数根的个数是()A . 0B . 1C . 2D . 34. (2分)方程2x2-3x+1=0经过配方化为(x+a)2=b的形式,正确的是()A . (x-)2=16B . 2(x-)2=C . (x-)2=D . (x-)2=5. (2分)(2018·成都模拟) 关于的一元二次方程有两个不相等的实数根,则的取值范围是()A . <B . ≤C . >且≠2D . ≥ 且≠26. (2分) (2017八上·湖州期中) 下列命题为假命题的是()A . 等腰三角形一边上的中线、高线和所对角的角平分线互相重合B . 角平分线上的点到角两边距离相等C . 到线段两端点距离相等的点在这条线段的垂直平分线上D . 全等三角形对应边相等,对应角相等7. (2分)下列分式中,无论x取何值,分式总有意义的是A .B .C .D .8. (2分)在反比例函数y=(k>0)的图象中,阴影部分的面积不等于k的是()A .B .C .D .二、填空题 (共8题;共9分)9. (1分)(2018·聊城) 已知关于x的方程(k﹣1)x2﹣2kx+k﹣3=0有两个相等的实根,则k的值是________.10. (1分) (2016九下·临泽开学考) 若点(2,﹣1)在双曲线y= 上,则k的值为________.11. (2分)如图,正方形A1B1P1P2的顶点P1、P2在反比例函数y=(x>0)的图象上,顶点A1、B1分别在x轴和y轴的正半轴上,再在其右侧作正方形P2P3A2B2 ,顶点P3在反比例函数y=(x>0)的图象上,顶点A2在x轴的正半轴上,则P2点的坐标为________ ,P3的坐标为________ .12. (1分) (2018九上·娄底期中) 设m , n是一元二次方程x2+2x-7=0的两个根,则m2+3m+n=________.13. (1分)(2017·昆山模拟) 关于x的一元二次方程x2+2x﹣2m+1=0的两实数根之积为负,则实数m的取值范围是________.14. (1分)若关于x的方程有两个相等的实数根,则m=________ .15. (1分) (2020九上·双台子期末) 如图,一次函数y=kx+b的图象与反比例函数的图象交于A (﹣2,1)、B(1,﹣2)两点.一次函数的值大于反比例函数的值时x的取值范围是________.16. (1分)(2017·菏泽) 关于x的一元二次方程(k﹣1)x2+6x+k2﹣k=0的一个根是0,则k的值是________.三、解答题 (共8题;共52分)17. (10分)(2019·平谷模拟) 关于x的方程x2+(2k+1)x+k2﹣1=0有两个不相等的实数根.(1)求实数k的取值范围;(2)若k为负整数,求此时方程的根.18. (5分)已知x2+2x+y2﹣4y+5=0,求代数式yx的值.19. (5分)等腰三角形的两边长分别是a和b,且满足|a﹣1|+(2a+3b﹣11)2=0,这个等腰三角形的周长.20. (5分) (2019九上·新兴期中) 已知x=1是关于x的一元二次方程x2+3x-m=0的一个根,求m的值和方程的另一个根。

(完整)九年级数学期中试卷及答案,推荐文档

(完整)九年级数学期中试卷及答案,推荐文档

九年级数学期中试卷2017.11 本试卷分试题和答题卡两部分,所有答案一律写在答题卡上.考试时间为120 分钟.试卷满分130分.注意事项:1.答卷前,考生务必用0.5 毫米黑色墨水签字笔将自己的姓名、准考证号填写在答题卡的相应位置上,并认真核对条形码上的姓名、准考证号是否与本人的相符合.2.答选择题必须用2B 铅笔将答题卡上对应题目中的选项标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5 毫米黑色墨水签字笔作答,写在答题卡上各题目指定区域内相应的位置,在其他位置答题一律无效.3.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.4.卷中除要求近似计算的结果取近似值外,其他均应给出精确结果.一、选择题:(本大题共10 小题,每小题3 分,共30 分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的序号填写在题答题卡的相应的括号内.)1.下列关于x 的方程中,一定是一元二次方程的是( ▲) A.x-1=0 B.x +x=3 C.x +3x-5=0D.ax +bx+c=02.关于x 的方程x +x-k=0 有两个不相等的实数根,则k 的取值范围为( ▲)1 A.k>-41B.k≥-41C.k<-41D.k>-4且k≠03.45°的正弦值为( ▲)A.11B.2C.D.4.已知△ABC∽△DEF,∠A=∠D,AB=2cm,AC=4cm,DE=3cm,且DE<DF,则DF 的长为( ▲) A.1cm B.1.5cm C.6cm D.6cm 或1.5cm 5.在平面直角坐标系中,点A(6,3),以原点O 为位似中心,在第一象限内把线段OA 缩小1为原来的3得到线段OC,则点C 的坐标为( ▲) A.(2,1) B.(2,0) C.(3,3) D.(3,1)6.已知⊙A 半径为5,圆心A 的坐标为(1,0),点P 的坐标为(-2,4),则点P 与⊙A 的位置关系是( ▲)2EFA .点 P 在⊙A 上B .点 P 在⊙A 内C .点 P 在⊙A 外D .不能确定7.如图,在□ABCD 中,AC 与 BD 相交于点 O ,E 为 OD 的中点,连接 AE 并延长交 DC 于 点 F ,则 DF :FC = ( ▲ )A .1︰3B .1︰4C .2︰3D .1︰2CQDF CAB(第 7 题)A(第 8 题)AB (第 10 题)8. 如图,在直角梯形 ABCD 中,AD ∥BC ,∠ABC =90°,AB =12,AD =4,BC =9,点 P是 AB 上一动点,若△PAD 与△PBC 相似,则满足条件的点 P 的个数有 ( ▲ )A . 1 个B .2 个C .3 个D .4 个9. 已知线段 AB ,点 P 是它的黄金分割点,AP >BP ,设以 AP 为边的等边三角形的面积为S 1,以 PB 、AB 为直角边的直角三角形的面积为 S 2,则 S 1 与 S 2 的关系是 ( ▲ ) A .S 1>S 2B .S 1<S 2C .S 1=S 2D .S 1≥S 210. 如图,△ABC 是等腰直角三角形,∠ACB =90°,点 E 、F 分别是边 BC 、 AC 的中点,P 是 AB 上一点,以 PF 为一直角边作等腰直角△PFQ ,且∠FPQ =90°,若AB =10,PB =1,则 QE 的值为( ▲ )A . 3B .3C .4D .4 二、填空题(本大题共 8 小题,每小题 2 分,共计 16 分.请把答案直接填写在答题卡相应位置上.)11.已知 x :y =2:3,则(x +y ):y =▲ .12. 在相同时刻的物高与影长成比例,如果高为 1.5m 的测杆的影长为 2.5m ,那么影长为 30m 的旗杆的高是 ▲ m .13. 某电动自行车厂三月份的产量为 1 000 辆,由于市场需求量不断增大,五月份的产量提高到 1 210 辆,则该厂四、五月份的月平均增长率为▲ .114.在△ABC 中,∠A 、∠B 为锐角,且|tan A -1|+(2-cos B )=0,则∠C = ▲°.15. 如图,在□ABCD 中,E 在 AB 上,CE 、BD 交于 F ,若 AE :BE =4:3,且 BF =2,则 DF = ▲ .ADBC(第 15 题)2EOCFE DDE D……DEF16. 如图,在△ABC 中,AB =BC ,AC =8,点 F 是△ABC 的重心(即点 F 是△ABC 的两条中线 AD 、BE 的交点),BF =6,则 DF =▲ .AA AAEEBC(第 16 题)CF(图 1)CFB CFB(图 2) (第 18 题)17. 关于 x 的一元二次方程 mx +nx =0 的一根为 x =3,则关于 x 的方程 m (x +2) +nx +2n =0 的根为▲ .18. 如图,△ABC 是一张等腰直角三角形纸板,∠C =90°,AC =BC =2,在这张纸板中剪出一个尽可能大的正方形称为第 1 次剪取,记所得正方形面积为 S 1(如图 1);在余下的 Rt △ADE 和 Rt △BDF 中,分别剪取一个尽可能大的正方形,得到两个相同的正方形,称为第 2 次剪取,并记这两个正方形面积和为 S 2(如图 2);继续操作下去…;第 2017 次剪取后,余下的所有小三角形的面积之和是▲ .三、解答题(本大题共 10 小题,共 84 分. 解答需写出必要的文字说明或演算步骤.)19. 计算或解方程:(每小题 4 分,共 16 分)1(1)计算:(2)-4sin60°-tan45°; (2)3x -2x -1=0;(3)x+3x +1=0(配方法);(4)(x +1)-6(x +1)+5=0.20.(本题满分 6 分)如图,在平面直角坐标系中,A (0,4)、B (4,4)、C (6,2).(1) 在图中画出经过 A 、B 、C 三点的圆弧所在圆的圆心 M 的位置; (2) 点 M 的坐标为▲ ;(3) 判断点 D (5,-2)与⊙M 的位置关系.(第 20 题)yABCOx21.(本题满分 6 分)如图,在四边形 ABCD 中,AC 平分∠DAB ,∠ADC =∠ACB =90°,E 为 AB 中点.(1) 求证:AC=AB •AD ;ACA(2) 若AD =4,AB =6,求AF 的值.BDC(第 21 题)22.(本题满分 6 分)已知关于 x 的方程 x +(m -3)x -m (2m -3)=0.(1) 证明:无论 m 为何值方程都有两个实数根.(2) 是否存在正数 m ,使方程的两个实数根的平方和等于 26?若存在,求出满足条件的正数 m 的值;若不存在,请说明理由.23.(本题满分 6 分)某市的特色农产品在国际市场上颇具竞争力,其中属于菌类的一种猴头菇远销国外.上市时,有一外商按市场价格 10 元/千克收购了 2 000 千克猴头菇存入冷库中,据预测,猴头菇的市场价格每天每千克上涨 0.5 元,但冷库存放这批猴头菇时每天需要支出各种费用合计 220 元,而且这种猴头菇在冷库中最多能保存 130 天,同时,平均每天有 6 千克的猴头菇损坏不能出售.)(1) 若外商要将这批猴头菇存放 x 天后一次性出售,则 x 天后这批猴头菇的销售单价为 ▲ 元,销售量是 ▲ 千克(用含 x 的代数式表示);(2) 如果这位外商想获得利润 24 000 元,需将这批猴头菇存放多少天后出售?EFy DBP OC xA24.(本题满分 8 分)如图 1 为放置在水平桌面上的台灯的平面示意图,灯臂 AO 长为50cm ,与水平桌面所形成的夹角∠OAM 为 75°.由光源 O 射出的边缘光线 OC ,OB 与水平桌面所形成的夹角∠OCA ,∠OBA 分别为 90°和 30°.(不考虑其他因素,结果精确到 0.1cm .参考数据:sin75°≈0.97,cos75° ≈0.26, 3≈1.73)O(1) 求该台灯照亮水平桌面的宽度 BC .(2) 人在此台灯下看书,将其侧面抽象成如图 2 所示的几何图形,若书与水平桌面的夹角∠EFC 为 60°,书的长度 EF 为 24cm ,点 P 为眼睛所在位置,当点 P 在 EF 的垂直平分线上,且到 EF 距离约为 34cm (人的正确看书姿势是眼睛离书距离约 1 尺 ≈34cm )时,称点 P 为“最佳视点”.试问:最佳视点 P 在不在灯光照射范围内?并说明理由.25.(本题满分 9 分)如图,以点 P (-1,0)为圆心的圆,交 x 轴于 B 、C 两点(B 在 C 的左侧),交 y 轴于 A 、D 两点(A 在 D 的下方),AD =2得到△MCB .(1) 求 B 、C 两点的坐标;3,将△ABC 绕点 P 旋转 180°, (2) 请在图中画出线段 MB 、MC ,并判断四边形 ACMB 的形状(不必证明),求出点 M 的坐标;(3) 动直线 l 从与 BM 重合的位置开始绕点 B 顺时针旋转,到与 BC 重合时停止,设直线l 与 CM 交点为 E ,点 Q 为 BE 的中点,过点 E 作 EG ⊥BC 于点 G ,连接 MQ 、QG .请问在旋转过程中,∠MQG 的大小是否变化?若不变,求出 ∠MQG 的度数;若变化,请说明理由.E D P(第25 题)26.(本题满分8 分)如图,已知AB 是⊙O 的弦,OB=2,∠B=30°,C 是弦AB 上任意一点(不与点A、B 重合),连接CO 并延长CO 交⊙O 于点D,连接AD.(1)AB=▲;(2)当∠D=20°时,求∠BOD 的度数.(3)若△ACD 与△BCO 相似,求AC 的长.(第26 题)27.(本题满分9 分)定义:已知x 为实数,[x]表示不超过x 的最大整数.例如:[3.14]=3,[1]=1,[-1.2]=-2.请你在学习和理解上述定义的基础上,解决下列问题:设函数y=x-[x].(1)当x=2.15 时,求y=x-[x]的值.(2)当0<x<2 时,求函数y=x-[x]的表达式,并画出对应的函数图像.(3)当-2<x<2 时,在平面直角坐标系中,以O 为圆心,r 为半径作圆,且r≤2,该圆与函数y=x-[x]恰有一个公共点,请直接写出r 的取值范围.(第27 题)28.(本题满分 10 分)如图 1,在 Rt △ABC 中,∠C =90°,AC =6,BC =8,点 P 从点 A 开始沿边 AC 向点 C 以每秒 1 个单位长度的速度运动,点 Q 从点 C 开始沿边 CB 向点 B 以每秒 2 个单位长度的速度运动,过点 P 作 PD ∥BC ,交 AB 于点 D ,连接 PQ .已知点 P 、Q 分别从点 A 、C 同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为 t 秒(t ≥0).(1) 用含 t 的代数式表示:QB = ▲ ,PD = ▲ ;(2) 是否存在 t 的值,使四边形 PDBQ 为菱形?若存在,求出 t 的值;若不存在,说明理由.并探究如何改变匀速运动的点 Q 的速度,使四边形 PDBQ 在某一时刻为菱形, 求出此时点 Q 的速度.(3) 如图 2,在整个 P 、Q 运动的过程中,点 M 为线段 PQ 的中点,求出点 M 经过的路径长. BB(图 1)(图 2)QMCPA QDCPA九年级数学期中试卷参考答案与评分标准2017.11一.选择题(本大题共有10 小题,每题3 分,共30 分)⒈C ⒉A ⒊C ⒋C ⒌A ⒍A ⒎D 8.B 9.B 10.D二、填空题(本大题共8 小题,每小题2 分,共计16 分)11、5:3 12、18 13、10%14、75°15、16 、2.517、1 或-2 18 、1/22016三、解答题(10 小题,共84 分)19.(每小题4 分)(1)1—2 (2)x1=1,x2=-Error!(3)x1=Error!,x2=Error! (4)x1=0,x2=420.(本题6 分)解:(1)略……2 分(2)M 的坐标:(2,0);……3 分(3)∵,……4 分∴……5 分∴点D 在⊙M 内……6 分21. 解:(1)∵AC 平分∠DAB,∴∠DAC=∠BAC又∵∠ADC=∠ACB=90°∴△ADC∽△ACB .............................................................................................. (1 分)∴Error!=Error!∴AC2=AB•AD............................................................................. (2 分)(2)∵∠ACB=90°,E 为AB 中点.∴CE=Error!AB=AE=3∴∠EAC=∠ECA ..................................................................................................... (3 分)又∵AC 平分∠DAB,∴∠DAC=∠EAC∴∠DAC=∠ECA .................................................................................................... (4 分)∴AD∥EC∴△ADF∽△ECF ..................................................................................................... (5 分)∴Error!=Error!=Error! ∴Error!=Error!.………………………………………(6 分)22.(1)(2 分)(2)(6 分,不排除扣2 分)23.(1)10+0.5x,(1 分) 2000―6x;(1 分)(2)由题意得:(10+0.5x)(2000―6x)―10×2000―220x=24000.(2 分)解得x1=40,x2=200(不合题意,舍去)(1 分)答:存放40 天后出售。

辽宁省台安县九年级上数学期中考试试题及答案.doc

辽宁省台安县九年级上数学期中考试试题及答案.doc

九年级数学试题答案一、1. B 2. D 3. A 4. B 5. B 6. C 7. D 8. A二、9.6 10.2 11. x 1=34 x 2=35 12. -1 13. 90°14.-1 15. 160° 16. 4三、17、原式=55 18、原式=x x y 2 x 、y 取正数,如:当x=2,y=3时,原式=3四、19、(1)略A 1(-4,4)B 1(-1,1)C 1(-3,1)(2)如图A 2(0,2)B 2(3,-1)20、解:连接BO 并延长交⊙O 于D ,连接CD ,则BD=4cm ,∵BD 是⊙O 的直径∴∠BDC=90°∴在Rt △BCD 中 CD=22BC BD -=22)32(4-=2∴∠D=60°∴∠A=60°(其它解法略)五、21、(1)a ≥0,a ≠6 (2)存在,a=2422、六、23、24、七、25、解:由题意得:200×(10―6)+(10―x―6)(200+50x)+(4―6)〔600―200―(200+50x)〕=1250整理得x2―2x+1=0解得x1=x2=1∴10―1=9 答:八、解:(1)在图①中,∵∠BAC=90°,∠B=30°∴∠ACE=∠BAC+∠B=120°如图②,当点E和点D在直线AC两侧时,由于∠ACE1=150°,∴α=150°―120°=30°,当点E和点D在直线AC同侧时,由于∠ACB=180°―∠BAC―∠B=60°,∴∠DCE2=∠ACE2―∠ACB=150°―60°=90°∴α=180°―∠DCE2=90°∴旋转角α为30°或90°(2)四边形ADEF能形成等腰梯形和矩形1BC∵∠BAC=90°,∠B=30°,∴AC=2又∵AD是BC边上的中线,1BC=AC,∴△ADC为正三角形。

辽宁初三初中数学期中考试带答案解析

辽宁初三初中数学期中考试带答案解析

辽宁初三初中数学期中考试班级:___________ 姓名:___________ 分数:___________一、选择题1.有下列关于x 的方程:①ax 2+bx+c=0,②3x (x ﹣4)=0,③x 2+y ﹣3=0,④ +x=2,⑤x 3﹣3x+8=0,⑥ x 2﹣5x+7=0,⑦(x ﹣2)(x+5)=x 2﹣1.其中是一元二次方程的有( ). A .2 B .3 C .4D .52.下面所列图形中是中心对称图形的为( ). A .B .C .D .3.已知关于x 的一元二次方程x 2+mx+n=0的两个实数根分别为x 1=﹣2,x 2=4,则m+n 的值是( ). A .﹣10 B .10 C .﹣6 D .24.如图,AB 为圆O 的直径,BC 为圆O 的一弦,自O 点作BC 的垂线,且交BC 于D 点.若AB=16,BC=12,则△OBD 的面积为何?( ).A .6B .12C .15D .305.若关于x 的一元二次方程为ax 2+bx+6=0(a≠0)的解是x=1,则2016﹣a ﹣b 的值是( ). A .2020 B .2008 C .2014 D .20226.某同学在用描点法画二次函数y=ax 2+bx+c 的图象时,列出下面的表格: x … ﹣5 ﹣4 ﹣3 ﹣2 ﹣1 … y … ﹣7.5 ﹣2.5 0.5 1.5 0.5 …根据表格提供的信息,下列说法错误的是( ). A .该抛物线的对称轴是直线x=﹣2B .该抛物线与y 轴的交点坐标为(0,﹣2.5)C .b 2﹣4ac=0D .若点A (0.5,y 1)是该抛物线上一点.则y 1<﹣2.57.已知2是关于x 的方程x 2﹣2mx+3m=0的一个根,并且这个方程的两个根恰好是等腰三角形ABC 的两条边长,则三角形ABC 的周长为( ). A .10 B .14 C .10或14 D .8或108.已知点A (a ,2015)与点A′(﹣2016,b )是关于原点O 的对称点,则a+b 的值为( ). A .1 B .5 C .6 D .49.如图,AB 是⊙O 的直径,点D 是弧AC 的中点,∠ABC=52°,则∠DAB 等于( ).A .58°B .61°C .72°D .64°10.如图是二次函数y=ax 2+bx+c 图象的一部分,图象过点A (﹣3,0),对称轴为直线x=﹣1,下列给出四个结论中,正确结论的个数是( )个.①c >0;②若点B (﹣,y 1)、C (﹣,y 2)为函数图象上的两点,则y 1<y 2; ③2a ﹣b=0;④<0; ⑤4a ﹣2b+c >0.A .2B .3C .4D .511.如图,在平面直角坐标系中,将△ABO 绕点A 顺时针旋转到△AB 1C 1的位置,点B 、O 分别落在点B 1、C 1处,点B 1在x 轴上,再将△AB 1C 1绕点B 1顺时针旋转到△A 1B 1C 2的位置,点C 2在x 轴上,将△A 1B 1C 2绕点C 2顺时针旋转到△A 2B 2C 2的位置,点A 2在x 轴上,依次进行下去….若点A (,0),B (0,2),则点B 2017的坐标为 .二、填空题1.已知函数是关于x 的二次函数,则m 的值为 .2.如图,已知点A (0,1),B (0,﹣1),以点A 为圆心,AB 为半径作圆,交x 轴的正半轴于点C ,则∠BAC等于 度.3.在平面直角坐标系中,将函数y=﹣2x 2的图象先向右平移1个单位长度,再向上平移5个单位长度,所得图象的函数表达式是 .4.若实数a 、b 满足(4a+4b )(4a+4b ﹣2)﹣8=0,则a+b= .5.一个y 关于x 的函数同时满足两个条件:①图象过(2,1)点;②当x >0时,y 随x 的增大而减小.这个函数解析式为 .(写出一个即可)6.如图,DE 是△ABC 的中位线,M 是DE 的中点,那么= .三、解答题1.先化简,再求值:(+)÷,其中a 满足a 2﹣4a ﹣6=0.2.每个小方格都是边长为1个单位长度的正方形,在建立平面直角坐标系后,△ABC 的顶点均在格点上, ①写出A 、B 、C 的坐标.②以原点O 为对称中心,画出△ABC 关于原点O 对称的△A 1B 1C 1,并写出A 1、B 1、C 1.3.如图所示,⊙O 的内接△ABC 中,∠BAC=45°,∠ABC=15°,AD ∥OC 并交BC 的延长线于D 点,OC 交AB 于E 点.(1)求∠D 的度数;(2)求证:AC 2=AD•CE .4.某校在基地参加社会实践话动中,带队老师考问学生:基地计划新建一个矩形的生物园地,一边靠旧墙(墙足够长),另外三边用总长37米的不锈钢栅栏围成,与墙平行的一边留一个宽为3米的出入口,如图所示,如何设计才能使园地的面积最大?如图是两位学生争议的情境:请根据上面的信息,解决问题:(1)设AB=x 米(x >0),试用含x 的代数式表示BC 的长; (2)请你判断谁的说法正确,为什么?5.小明想利用太阳光测量楼高.他带着皮尺来到一栋楼下,发现对面墙上有这栋楼的影子,针对这种情况,他设计了一种测量方案,具体测量情况如下:如示意图,小明边移动边观察,发现站到点E 处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.此时,测得小明落在墙上的影子高度CD=1.2m ,CE=0.8m ,CA=30m (点A 、E 、C 在同一直线上).已知小明的身高EF 是1.7m ,请你帮小明求出楼高AB .(结果精确到0.1m)6.某商店原来平均每天可销售某种水果100千克,每千克可盈利7元,为减少库存,经市场调查,如果这种水果每千克降价1元,则每天可多售出20千克.(1)设每千克水果降价x元,平均每天盈利y元,试写出y关于x的函数表达式;(2)若要平均每天盈利400元,则每千克应降价多少元?(3)每千克降价多少元时,每天的盈利最多?最多盈利多少元?7.如图1,在△ABC中,∠ACB为锐角,点D为射线BC上一点,联结AD,以AD为一边且在AD的右侧作正方形ADEF.(1)如果AB=AC,∠BAC=90°,①当点D在线段BC上时(与点B不重合),如图2,将△ABD绕A点逆时针旋转90°,所得到的三角形为,线段CF、BD所在直线的位置关系为,线段CF、BD的数量关系为;②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立,并说明理由;(2)如果AB≠AC,∠BAC是锐角,点D在线段BC上,当∠ACB满足什么条件时,CF⊥BC(点C、F不重合),并说明理由.8.如图,已知二次函数y=﹣x2+bx+c(b,c为常数)的图象经过点A(5,3),点C(0,8),顶点为点M,过点A作AB∥x轴,交y轴于点D,交该二次函数图象于点B,连结BC.(1)求该二次函数的解析式及点M的坐标;(2)求△ABC的面积;(3)若将该二次函数图象向下平移m(m>0)个单位,使平移后得到的二次函数图象的顶点落在△ABC的内部(不包括△ABC的边界),求m的取值范围.辽宁初三初中数学期中考试答案及解析一、选择题1.有下列关于x的方程:①ax2+bx+c=0,②3x(x﹣4)=0,③x2+y﹣3=0,④ +x=2,⑤x3﹣3x+8=0,⑥ x2﹣5x+7=0,⑦(x﹣2)(x+5)=x2﹣1.其中是一元二次方程的有().A.2B.3C.4D.5【答案】A .【解析】根据一元二次方程的定义逐个判断即可.方程整理后,只含有一个未知数,并且所含未知数的项的最高次数是2的整式方程叫一元二次方程.所以一元二次方程有②⑥,共2个,故选A . 【考点】一元二次方程的定义.2.下面所列图形中是中心对称图形的为( ). A .B .C .D .【答案】C .【解析】根据中心对称与轴对称的概念和各图形的特点即可求解.轴对称的关键是寻找对称轴,图象沿对称轴折叠后可重合,中心对称是要寻找对称中心,旋转180度后与原图重合.A 、是轴对称图形; B 、有五个角,但有旋转,所以既不是轴对称图形也不是中心对称图形;C 、即是轴对称图形,又是中心对称图形;D 、是轴对称图形. 故选C .【考点】1.中心对称图形;2.生活中的旋转现象.3.已知关于x 的一元二次方程x 2+mx+n=0的两个实数根分别为x 1=﹣2,x 2=4,则m+n 的值是( ). A .﹣10 B .10 C .﹣6 D .2【答案】A .【解析】根据根与系数的关系得出﹣2+4=﹣m ,﹣2×4=n ,求出即可.∵关于x 的一元二次方程x 2+mx+n=0的两个实数根分别为x 1=﹣2,x 2=4,∴﹣2+4=﹣m ,﹣2×4=n ,解得:m=﹣2,n=﹣8, ∴m+n=﹣10,故选A . 【考点】根与系数的关系.4.如图,AB 为圆O 的直径,BC 为圆O 的一弦,自O 点作BC 的垂线,且交BC 于D 点.若AB=16,BC=12,则△OBD 的面积为何?( ).A .6B .12C .15D .30【答案】A .【解析】根据垂径定理,垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.由OD ⊥BC 得到BD=CD=BC=6,再在Rt △BOD 中利用勾股定理计算出OD=2,然后根据三角形面积公式求解.∵OD ⊥BC ,∴BD=CD=BC=×12=6,在Rt △BOD 中,∵OB=AB=8,BD=6,∴OD==2,∴S △OBD =OD•BD=×2×6=6.故选A .【考点】1.垂径定理;2.勾股定理.5.若关于x 的一元二次方程为ax 2+bx+6=0(a≠0)的解是x=1,则2016﹣a ﹣b 的值是( ). A .2020 B .2008 C .2014 D .2022【答案】D .【解析】根据方程解的定义,求出a+b ,利用整体代入的思想即可解决问题.∵关于x 的一元二次方程ax 2+bx+6=0的解是x=1,∴a+b+6=0,∴a+b=﹣6,∴2016﹣a ﹣b= 2016﹣(a+b )=2016+6=2022.故选D . 【考点】一元二次方程的解.6.某同学在用描点法画二次函数y=ax 2+bx+c 的图象时,列出下面的表格: x … ﹣5 ﹣4 ﹣3 ﹣2 ﹣1 … y … ﹣7.5 ﹣2.5 0.5 1.5 0.5 …根据表格提供的信息,下列说法错误的是( ). A .该抛物线的对称轴是直线x=﹣2B .该抛物线与y 轴的交点坐标为(0,﹣2.5)C .b 2﹣4ac=0D .若点A (0.5,y 1)是该抛物线上一点.则y 1<﹣2.5【答案】C .【解析】根据表格提供的信息以及抛物线的性质一一判断即可.A 、正确.因为x=﹣1或﹣3时,y 的值都是0.5,所以对称轴是x=﹣2.B 、正确.根据对称性,x=0时的值和x=﹣4的值相等.C 、错误.因为抛物线与x 轴有两个交点,所以b 2﹣4ac >0.D 、正确.因为在对称轴的右侧y 随x 增大而减小.故选C . 【考点】二次函数的图象.7.已知2是关于x 的方程x 2﹣2mx+3m=0的一个根,并且这个方程的两个根恰好是等腰三角形ABC 的两条边长,则三角形ABC 的周长为( ). A .10 B .14 C .10或14 D .8或10【答案】B .【解析】先将x=2代入x 2﹣2mx+3m=0,求出m=4,则方程即为x 2﹣8x+12=0,利用因式分解法求出方程的根x 1=2,x 2=6,分两种情况:①当6是腰时,2是底边;②当6是底边时,2是腰进行讨论.注意两种情况都要用三角形三边关系定理进行检验.∵2是关于x 的方程x 2﹣2mx+3m=0的一个根,∴22﹣4m+3m=0,m=4,∴x 2﹣8x+12=0,解得x 1=2,x 2=6.①当6是腰时,2是底边,此时周长=6+6+2=14;②当6是底边时,2是腰,2+2<6,不能构成三角形.所以它的周长是14.故选B .【考点】1.解一元二次方程-因式分解法;2.一元二次方程的解;3.三角形三边关系;4.等腰三角形的性质.8.已知点A (a ,2015)与点A′(﹣2016,b )是关于原点O 的对称点,则a+b 的值为( ). A .1 B .5 C .6 D .4【答案】A .【解析】根据两个点关于原点对称时,它们的坐标符号相反可得a 、b 的值,进而可得答案.∵点A (a ,2015)与点A′(﹣2016,b )是关于原点O 的对称点,∴a=2016,b=﹣2015,∴a+b=1,故选:A . 【考点】关于原点对称的点的坐标.9.如图,AB 是⊙O 的直径,点D 是弧AC 的中点,∠ABC=52°,则∠DAB 等于( ).A .58°B .61°C .72°D .64°【答案】D .【解析】如图连接BD .在Rt △BDA 中,求出∠ABD 即可解决问题.如图连接BD .∵弧CD=弧AD ,∴∠CBD=∠ABD ,∵∠ABC=52°,∴∠ABD=26°,∵AB 是直径,∴∠BDA=90°,∴DAB=90°﹣26°=64°,故选D .【考点】1.圆周角定理;2.圆心角、弧、弦的关系.10.如图是二次函数y=ax 2+bx+c 图象的一部分,图象过点A (﹣3,0),对称轴为直线x=﹣1,下列给出四个结论中,正确结论的个数是( )个.①c >0;②若点B (﹣,y 1)、C (﹣,y 2)为函数图象上的两点,则y 1<y 2; ③2a ﹣b=0;④<0; ⑤4a ﹣2b+c >0.A .2B .3C .4D .5【答案】B .【解析】根据抛物线与y 轴的交点判断①,根据抛物线的性质判断②,根据抛物线的对称轴判断③,根据抛物线的顶点坐标的位置判断④,根据x=﹣2时,y >0判断⑤.∵抛物线与y 轴交于负半轴∴c >0,①正确;∵对称轴为直线x=﹣1,∴x <﹣1时,y 随x 的增大而增大,∴y 1>y 2 ,②错误;∵对称轴为直线x=﹣1,∴﹣=﹣1,则2a ﹣b=0,③正确;∵抛物线的顶点在x 轴的上方,∴>0,④错误;当x=﹣2时,y >0,则4a ﹣2b+c >0,⑤正确;故选:B . 【考点】二次函数图象与系数的关系.11.如图,在平面直角坐标系中,将△ABO 绕点A 顺时针旋转到△AB 1C 1的位置,点B 、O 分别落在点B 1、C 1处,点B 1在x 轴上,再将△AB 1C 1绕点B 1顺时针旋转到△A 1B 1C 2的位置,点C 2在x 轴上,将△A 1B 1C 2绕点C 2顺时针旋转到△A 2B 2C 2的位置,点A 2在x 轴上,依次进行下去….若点A (,0),B (0,2),则点B 2017的坐标为 .【答案】(6052,0).【解析】首先根据已知求出三角形三边长度,然后通过旋转发现,B 、B 2、B 4…,即可得每偶数之间的B 相差6个单位长度,根据这个规律可以求得B 2017的坐标.∵AO=,BO=2,∴AB==,∴OA+AB 1+B 1C 2=6,∴B 2的横坐标为:6,且B 2C 2=2,∴B 4的横坐标为:2×6=12,∴点B 2016的横坐标为:2016÷2×6=6048.∴点B 2016的纵坐标为:2.∴点B 2016的坐标为:(6048,2),∴B 2017的横坐标为6048++=6052,∴点B 2017的坐标为(6052,0),故答案为(6052,0). 【考点】1.坐标与图形变化-旋转;2.规律型:点的坐标.二、填空题1.已知函数是关于x 的二次函数,则m 的值为 .【答案】﹣1.【解析】根据二次函数的定义列出不等式求解即可.根据题意得:, 解得:m=﹣1.故答案是:﹣1.【考点】二次函数的定义.2.如图,已知点A (0,1),B (0,﹣1),以点A 为圆心,AB 为半径作圆,交x 轴的正半轴于点C ,则∠BAC等于 度.【答案】60.【解析】求出OA 、AC ,通过余弦函数即可得出答案.∵A (0,1),B (0,﹣1),∴AB=2,OA=1,∴AC=2,在Rt △AOC 中,cos ∠BAC==,∴∠BAC=60°,故答案为60.【考点】1.垂径定理;2.坐标与图形性质;3.等边三角形的判定与性质;4.勾股定理.3.在平面直角坐标系中,将函数y=﹣2x 2的图象先向右平移1个单位长度,再向上平移5个单位长度,所得图象的函数表达式是 .【答案】y=﹣2(x ﹣1)2+5.【解析】直接根据“上加下减,左加右减”的原则进行解答即可.由“左加右减”的原则可知,抛物线y=﹣2x 2的图象向右平移1个单位所得函数图象的关系式是:y=﹣2(x ﹣1)2;由“上加下减”的原则可知,抛物线y=﹣2(x ﹣1)2的图象向上平移5个单位长度所得函数图象的关系式是:y=-2(x ﹣1)2+5. 故答案为y=﹣2(x ﹣1)2+5. 【考点】二次函数图象与几何变换.4.若实数a 、b 满足(4a+4b )(4a+4b ﹣2)﹣8=0,则a+b= . 【答案】﹣或1.【解析】设a+b=x ,则原方程转化为关于x 的一元二次方程,通过解该一元二次方程来求x ,即(a+b )的值.设a+b=x ,则由原方程,得4x (4x ﹣2)﹣8=0,整理,得16x 2﹣8x ﹣8=0,即2x 2﹣x ﹣1=0,分解得:(2x+1)(x ﹣1)=0,解得:x 1=﹣,x 2=1. 则a+b 的值是﹣或1.故答案是:﹣或1.【考点】换元法解一元二次方程.5.一个y 关于x 的函数同时满足两个条件:①图象过(2,1)点;②当x >0时,y 随x 的增大而减小.这个函数解析式为 .(写出一个即可) 【答案】y=,y=﹣x+3,y=﹣x 2+5(本题答案不唯一).【解析】本题的函数没有指定是什么具体的函数,可以从一次函数,反比例函数,二次函数三方面考虑,只要符合条件①②即可.符合题意的函数解析式可以是y=,y=﹣x+3,y=﹣x 2+5等,(本题答案不唯一)故答案为:y=,y=﹣x+3,y=﹣x 2+5等.【考点】1.二次函数的性质;2.一次函数的性质;3.反比例函数的性质.6.如图,DE 是△ABC 的中位线,M 是DE 的中点,那么= .【答案】.【解析】先根据三角形中位线定理求出=,再根据M 是DE 的中点可求出=,再根据DE 是△ABC 的中位线可知DE ∥BC ,则△NDE ∽△NBC ,其相似比为=,故=()2=. ∵DE 是△ABC 的中位线,∴=,DE ∥BC ,∵M 是DE 的中点,∴=,∵DE ∥BC ,∴△DNM ∽△NBC ,∴=,∴=()2=.故答案为:.【考点】1.三角形中位线定理;2.相似三角形的判定与性质.三、解答题1.先化简,再求值:( +)÷,其中a 满足a 2﹣4a ﹣6=0.【答案】.【解析】先算括号里面的,再把除法转化成乘法,最后代入求值即可. 试题解析:先算括号里面的,再把除法转化成乘法,原式=[+]•=•==,∵a 满足a 2﹣4a ﹣6=0,∴a 2﹣4a=6,∴原式=.【考点】分式的化简求值.2.每个小方格都是边长为1个单位长度的正方形,在建立平面直角坐标系后,△ABC 的顶点均在格点上, ①写出A 、B 、C 的坐标.②以原点O 为对称中心,画出△ABC 关于原点O 对称的△A 1B 1C 1,并写出A 1、B 1、C 1.【答案】①A (1,﹣4),B (5,﹣4),C (4,﹣1);②作图参见解析.A 1(﹣1,4),B 1(﹣5,4),C 1(﹣4,1).【解析】①根据各点所在的象限,对应的横坐标、纵坐标,分别写出点的坐标;②首先根据关于原点对称的点的坐标特点:两个点关于原点对称时,它们的坐标符号相反得到A 、B 、C 的对称点坐标,再顺次连接即可.试题解析:①根据各点所在的象限,对应的横坐标、纵坐标,分别写出点的坐标:A (1,﹣4),B (5,﹣4),C (4,﹣1);②首先根据两个点关于原点对称时,它们的坐标符号相反得到A 、B 、C 的对称点坐标,再顺次连接即可,如图所示:对应图形写出坐标:A 1(﹣1,4),B 1(﹣5,4),C 1(﹣4,1),【考点】1.关于原点对称的点的坐标;2.点的坐标;3.作图-旋转变换.3.如图所示,⊙O 的内接△ABC 中,∠BAC=45°,∠ABC=15°,AD ∥OC 并交BC 的延长线于D 点,OC 交AB于E点.(1)求∠D的度数;(2)求证:AC2=AD•CE.【答案】(1)45°;(2)证明参见解析.【解析】(1)连接OA,由圆周角∠ABC与圆心角∠AOC所对的弧为同一条弧,根据同弧所对的圆心角等于所对圆周角的2倍,由∠ABC的度数求出∠AOC的度数,再由OA=OC,根据等边对等角,由顶角∠AOC的度数,利用三角形的内角和定理求出底角∠ACO的度数,再由∠BAC及∠ABC的度数,求出∠ACB的度数,由∠ACB﹣∠ACO求出∠BCE的度数,由OC与AD平行,根据两直线平行同位角相等可得∠D=∠BCE,可得出∠D的度数;(2)由∠ACB的度数,利用邻补角定义求出∠ACD的度数,再由∠AEC为三角形BEC的外角,利用外角性质得到∠AEC=∠ABC+∠BCE,可得出∠AEC的度数,进而得到∠AEC=∠ACD,在三角形ACD中,由∠ACD及∠D 的度数,求出∠CAD的度数,可得∠CAD=∠ACE,利用两对对应角相等的三角形相似可得三角形AEC与三角形DCA相似,根据相似三角形的对应边成比例可得证.试题解析:(1)连接OA,如图所示:∵圆周角∠ABC与圆心角∠AOC所对的弧都为弧AC,∴∠AOC=2∠ABC,又∠ABC=15°,∴∠AOC=30°,又OA=OC,∴∠OAC=∠OCA==75°,又∠BAC=45°,∠ABC=15°,∴∠ACB=120°,∴∠OCB=∠ACB﹣∠ACO=120°﹣75°=45°,又OC∥AD,∴∠D=∠OCB=45°;(2)∵∠ABC=15°,∠OCB=45°,∴∠AEC=60°,又∠ACB=120°∴∠ACD=60°,∴∠AEC=∠ACD=60°,∵∠D=45°,∠ACD=60°,∴∠CAD=75°,又∠OCA=75°,∴∠CAD=∠OCA=75°,∴△ACE∽△DAC,∴=,即AC2=AD•CE.【考点】1.圆周角定理;2.相似三角形的判定与性质.4.某校在基地参加社会实践话动中,带队老师考问学生:基地计划新建一个矩形的生物园地,一边靠旧墙(墙足够长),另外三边用总长37米的不锈钢栅栏围成,与墙平行的一边留一个宽为3米的出入口,如图所示,如何设计才能使园地的面积最大?如图是两位学生争议的情境:请根据上面的信息,解决问题:(1)设AB=x米(x>0),试用含x的代数式表示BC的长;(2)请你判断谁的说法正确,为什么?【答案】(1)40﹣2x;(2)小英说法正确;理由参见解析.【解析】(1)设AB=x米,根据等式x+x+BC=37+3,可以求出BC的表达式;(2)得出面积关系式,根据所求关系式进行判断即可.试题解析:(1)设AB=x米,根据等式x+x+BC=37+3,可得:BC=37+3﹣2x=40﹣2x;(2)小英说法正确;矩形面积S=x(40﹣2x)=﹣2(x﹣10)2+200,∴当x=10时,S取最大值,此时x≠40﹣2x,∴面积最大的不是正方形.小英说法正确.【考点】二次函数的应用.5.小明想利用太阳光测量楼高.他带着皮尺来到一栋楼下,发现对面墙上有这栋楼的影子,针对这种情况,他设计了一种测量方案,具体测量情况如下:如示意图,小明边移动边观察,发现站到点E处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.此时,测得小明落在墙上的影子高度CD=1.2m,CE=0.8m,CA=30m(点A、E、C在同一直线上).已知小明的身高EF是1.7m,请你帮小明求出楼高AB.(结果精确到0.1m)【答案】20.0米.【解析】此题属于实际应用问题,解题的关键是将实际问题转化为数学问题进行解答;解题时要注意构造相似三角形,利用相似三角形的性质解题.试题解析:如图:过点D作DG⊥AB,分别交AB、EF于点G、H,∵AB∥CD,DG⊥AB,AB⊥AC,∴四边形ACDG是矩形,∴EH=AG=CD=1.2,DH=CE=0.8,DG=CA=30,∵EF∥AB,∴,由题意,知FH=EF﹣EH=1.7﹣1.2=0.5,∴,解得,BG=18.75,∴AB=BG+AG=18.75+1.2=19.95≈20.0.∴楼高AB约为20.0米.【考点】相似三角形的应用.6.某商店原来平均每天可销售某种水果100千克,每千克可盈利7元,为减少库存,经市场调查,如果这种水果每千克降价1元,则每天可多售出20千克.(1)设每千克水果降价x元,平均每天盈利y元,试写出y关于x的函数表达式;(2)若要平均每天盈利400元,则每千克应降价多少元?(3)每千克降价多少元时,每天的盈利最多?最多盈利多少元?【答案】(1)y=﹣20x2+40x+700;(2)5元;(3)每千克降价1元时,每天的盈利最多,最多盈利720元.【解析】(1)直接利用每千克利润×销量=总利润,进而得出函数关系式;(2)利用y=400,进而解方程得出答案;(3)利用配方法求出二次函数最值即可.试题解析:(1)根据题意得:y=(100+20x)×(7﹣x)=﹣20x2+40x+700;(2)令y=﹣20x2+40x+700中y=400,则有:400=﹣20x2+40x+700,即x2﹣2x﹣15=0,解得:x1=﹣3(舍去),x2=5.所以若要平均每天盈利400元,则每千克应降价5元.(3)利用配方法求出二次函数最值:y=﹣20x2+40x+700=﹣20(x﹣1)2+720,所以每千克降价1元时,每天的盈利最多,最多盈利720元.【考点】二次函数的应用.7.如图1,在△ABC中,∠ACB为锐角,点D为射线BC上一点,联结AD,以AD为一边且在AD的右侧作正方形ADEF.(1)如果AB=AC,∠BAC=90°,①当点D在线段BC上时(与点B不重合),如图2,将△ABD绕A点逆时针旋转90°,所得到的三角形为,线段CF、BD所在直线的位置关系为,线段CF、BD的数量关系为;②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立,并说明理由;(2)如果AB≠AC,∠BAC是锐角,点D在线段BC上,当∠ACB满足什么条件时,CF⊥BC(点C、F不重合),并说明理由.【答案】(1)①△ACF,垂直,相等;②仍成立,理由参见解析;(2)当∠ACB=45°时,CF⊥BD.理由参见解析.【解析】(1)①当点D在线段BC上时,根据等腰直角三角形的性质以及旋转的性质,即可得出CF=BD,BD⊥CF;②当点D在BC的延长线上时,①的结论仍成立.由正方形ADEF的性质可推出△DAB≌△FAC,所以CF=BD,∠ACF=∠ABD,结合∠BAC=90°,AB=AC,得到∠BCF=∠ACB+∠ACF=90°,即CF⊥BD;(2)当∠ACB=45°时,过点A作AG⊥AC交CB的延长线于点G,则∠GAC=90°,可推出∠ACB=∠AGC,所以AC=AG,由(1)①中的方法可得CF⊥BD.即CF⊥BC.试题解析:(1)①如图2所示,将△ABD绕A点逆时针旋转90°,所得到△ACF,则由旋转的性质可得:∠ACF=∠B,CF=BD,∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°=∠ACF,∴∠BCF=90°,即BD⊥CF;故答案为:△ACF,垂直,相等;②如图3所示,当点D在BC的延长线上时,①中的结论仍成立.由正方形ADEF 得,AD=AF,∠DAF=90°.∵∠BAC=90°∴∠DAF=∠BAC,∴∠DAB=∠FAC,又∵AB=AC,∴△DAB≌△FAC(SAS),∴CF=BD,∠ACF=∠ABD.∵∠BAC=90°,AB=AC,∴∠ABC=45°,∴∠ACF=45°,∴∠BCF=∠ACB+∠ACF=90°,即 CF⊥BD.所以①中的结论仍成立;(2)如图4所示,当∠ACB=45°时,CF⊥BD.理由:过点A作AG⊥AC交CB或CB的延长线于点G,则∠GAC=90°,∵∠ACB=45°,∠AGC=90°﹣∠ACB=45°,∴∠ACB=∠AGC,∴AC=AG,又∵∠DAG=∠FAC(同角的余角相等),AD=AF,∴△GAD≌△CAF(SAS),∴∠ACF=∠AGC=45°,∴∠BCF=∠ACB+∠ACF=45°+45°=90°,即CF⊥BC.【考点】1.四边形综合题;2.全等三角形的判定与性质;3.等腰直角三角形.8.如图,已知二次函数y=﹣x2+bx+c(b,c为常数)的图象经过点A(5,3),点C(0,8),顶点为点M,过点A作AB∥x轴,交y轴于点D,交该二次函数图象于点B,连结BC.(1)求该二次函数的解析式及点M的坐标;(2)求△ABC的面积;(3)若将该二次函数图象向下平移m(m>0)个单位,使平移后得到的二次函数图象的顶点落在△ABC的内部(不包括△ABC的边界),求m的取值范围.【答案】(1)y=﹣x2+4x+8,M(2,12);(2)15;(3)6<m<9.【解析】(1)把点A、C的坐标代入函数解析式,用待定系数法求出抛物线解析式;(2)结合点A、B、C的坐标,用三角形的面积公式进行解答;(3)点M是沿着对称轴直线x=2向下平移的,可先求出直线AC的解析式,将x=2代入求出点M在向下平移时与AC、AB相交时y的值,即可得到m的取值范围;试题解析:(1)把点A(5,3),点C(0,8)代入二次函数y=﹣x2+bx+c,得,解得,∴二次函数解析式为y=﹣x2+4x+8,配方得y=﹣(x﹣2)2+12,∴点M的坐标为(2,12);(2)由(1)知,抛物线的对称轴是x=2.∵A(5,3),AB∥x轴,∴AB=6,D(0,3),∵C(0,8),∴CD=5,∴△ABC的面积=AB•CD=×6×5=15,即△ABC的面积=15;(3)设直线AC解析式为y=kx+b,把点A(5,3),C(0,8)代入得:,解得,∴直线AC的解析式为y=﹣x+8,对称轴直线x=2与△ABC两边分别交于点E、点F,把x=2代入直线AC解析式y=﹣x+8,解得y=6,则点E坐标为(2,6),点F坐标为(2,3),∴3<12﹣m<6,解得6<m<9.【考点】1.二次函数图象与几何变换;2.二次函数的性质.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016-2017学年辽宁省鞍山市台安县九年级(上)期中数学试卷一、选择题:每小题3分,共24分1.(3分)下列图形是中心对称图形的是()A. B. C.D.2.(3分)方程x2﹣25=0的解是()A.x1=x2=5 B.x1=x2=25 C.x1=5,x2=﹣5 D.x1=25,x2=﹣253.(3分)已知关于x的一元二次方程(m﹣1)x2+x+m2+2m﹣3=0的一个根为0,则m的值为()A.m=﹣3 B.m=1 C.m=1或m=﹣3 D.m≠14.(3分)如图,AB是⊙O的弦,C是⊙O上的点,已知∠ABO=40°,则∠ACB 的大小为()A.40°B.30°C.45°D.50°5.(3分)把抛物线y=﹣4x2的图象向左平移3个单位长度,得到的抛物线的解析式是()A.y=﹣4x2﹣3 B.y=﹣4(x+3)2C.y=﹣4(x﹣3)2D.y=﹣4x2+36.(3分)对于抛物线y=﹣(x+1)2+3,下列结论:①抛物线的开口向下;②对称轴为直线x=1;③顶点坐标为(﹣1,3);④x>1时,y随x的增大而减小,其中正确结论的个数为()A.1 B.2 C.3 D.47.(3分)如图,AB是⊙O的直径,M,N是⊙O上的两点,且AN=3,∠M=120°,则⊙O的半径为()A.3 B.5 C.3 D.68.(3分)如图,二次函数y=ax2+bx+c的图象开口向上,对称轴为直线x=1,图象经过(3,0),下列结论中,正确的一项是()A.abc<0 B.2a+b<0 C.a﹣b+c<0 D.4ac﹣b2<0二、填空题:每小题3分,共24分9.(3分)若一元二次方程x2﹣6x+b=0可化为(x﹣a)2=1,则b﹣a的值是.10.(3分)已知关于x的方程x2﹣kx﹣6=0的一个根是2,则k的值是.11.(3分)已知二次函数y=x2﹣(m﹣4)x+2m﹣3,当m=时,图象顶点在y轴上.12.(3分)已知点A(a,2)与点B (﹣1,b)关于原点O对称,则的值为.13.(3分)如图,在边长为1的正方形网格中,△DEF是由△ABC旋转得到的,则旋转中心的坐标为.14.(3分)如图,AB为⊙O的直径,弦AC=4cm,BC=3cm,CD⊥AB,垂足为D,那么CD的长为cm.15.(3分)已知二次函数y=﹣x2+2x+m的部分图象如图所示,则关于x的一元二次方程﹣x2+2x+m=0的解为.16.(3分)△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是.三、每小题8分,共16分17.(8分)关于x的方程为x2+(m+2)x+2m﹣1=0.(1)证明:方程有两个不相等的实数根.(2)是否存在实数m,使方程的两个实数根互为相反数?若存在,求出m的值及两个实数根;若不存在,请说明理由.18.(8分)在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B (﹣4,5),C(﹣5,2).(1)画出△ABC关于y轴对称的△A1B1C1;(2)画出△ABC关于原点O成中心对称的△A2B2C2.四、每小题10分,共20分19.(10分)如图,点P是等边三角形ABC内一点,且PA=3,PB=4,PC=5,若将△APB绕着点B逆时针旋转后得到△CQB.(1)求点P与点Q之间的距离.(2)求∠APB的度数.20.(10分)如图所示,已知AB为⊙O的直径,CD是弦,且AB⊥CD于点E.连接AC、OC、BC.(1)求证:∠ACO=∠BCD;(2)若EB=8cm,CD=24cm,求⊙O的直径.五、每小题10分,共20分21.(10分)一位篮球运动员投篮,球沿抛物线y=﹣x2+运行,然后准确落入篮筐内,已知篮筐的中心距离底面的距离为3.05m.(1)求球在空中运行的最大高度为多少m?(2)如果该运动员跳投时,球出手离地面的高度为 2.25m,要想投入篮筐,则问他距离蓝筐中心的水平距离是多少?22.(10分)如图,四边形ABCD中,AB∥CD,∠DAB=90°,且∠ABC=60°,AB=BC,△ABC的外接圆⊙O交BC于E点,连接DE并延长,交AB的延长线于F,求证:CF=DB.六、每小题10分,共20分23.(10分)如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?24.(10分)鄂州市化工材料经销公司购进一种化工原料若干千克,价格为每千克30元.物价部门规定其销售单价不高于每千克60元,不低于每千克30元.经市场调查发现:日销售量y(千克)是销售单价x(元)的一次函数,且当x=60时,y=80;x=50时,y=100.在销售过程中,每天还要支付其他费用450元.(1)求出y与x的函数关系式,并写出自变量x的取值范围.(2)求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式.(3)当销售单价为多少元时,该公司日获利最大?最大获利是多少元?七、12分25.(12分)图形变换中的数学,问题情境:在课堂上,兴趣学习小组对一道数学问题进行了深入探究,在Rt△ABC中,∠ACB=90°,∠A=30°,点D是AB的中点,连接CD.探索发现:(1)如图①,BC与BD的数量关系是;猜想验证:(2)如图②,若P是线段CB上一动点(点P不与点B,C重合),连接DP,将线段DP绕点D逆时针旋转60°,得到线段DF,连接BF,请猜想BF,BP,BD三者之间的数量关系,并证明你的结论;拓展延伸:(3)若点P是线段CB延长线上一动点,按照(2)中的作法,请在图③中补全图象,并直接写出BF、BP、BD三者之间的数量关系.八、14分26.(14分)如图,在平面直角坐标系中,二次函数y=x2﹣2x﹣3的图象与x轴交于A,B两点,与y轴交于点C,连接BC,点D位抛物线的顶点,点P是第四象限的抛物线上的一个动点(不与点D重合).(1)求∠OBC的度数;=S四边形OCDB,求(2)连接CD,BD,DP,延长DP交x轴正半轴于点E,且S△OCE此时P点的坐标.2016-2017学年辽宁省鞍山市台安县九年级(上)期中数学试卷参考答案与试题解析一、选择题:每小题3分,共24分1.(3分)下列图形是中心对称图形的是()A. B. C.D.【解答】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、是中心对称图形,故本选项正确.故选:D.2.(3分)方程x2﹣25=0的解是()A.x1=x2=5 B.x1=x2=25 C.x1=5,x2=﹣5 D.x1=25,x2=﹣25【解答】解:移项得:x2=25;开方得,x=±5,∴x1=5,x2=﹣5.故选C.3.(3分)已知关于x的一元二次方程(m﹣1)x2+x+m2+2m﹣3=0的一个根为0,则m的值为()A.m=﹣3 B.m=1 C.m=1或m=﹣3 D.m≠1【解答】解:把x=0代入(m﹣1)x2+x+m2+2m﹣3=0得m2+2m﹣3=0,解得m1=﹣3,m2=1,而m﹣1≠0,所以m=﹣3.故选:A.4.(3分)如图,AB是⊙O的弦,C是⊙O上的点,已知∠ABO=40°,则∠ACB 的大小为()A.40°B.30°C.45°D.50°【解答】解:△AOB中,OA=OB,∠ABO=40°;∴∠AOB=180°﹣2∠ABO=100°;∴∠ACB=∠AOB=×100°=50°.故选:D.5.(3分)把抛物线y=﹣4x2的图象向左平移3个单位长度,得到的抛物线的解析式是()A.y=﹣4x2﹣3 B.y=﹣4(x+3)2C.y=﹣4(x﹣3)2D.y=﹣4x2+3【解答】解:抛物线y=﹣4x2的图象向左平移3个单位长度,得到的抛物线的解析式是y=﹣4(x+3)2.故选:B.6.(3分)对于抛物线y=﹣(x+1)2+3,下列结论:①抛物线的开口向下;②对称轴为直线x=1;③顶点坐标为(﹣1,3);④x>1时,y随x的增大而减小,其中正确结论的个数为()A.1 B.2 C.3 D.4【解答】解:①∵a=﹣1<0,∴抛物线的开口向下,正确;②对称轴为直线x=﹣1,故本小题错误;③顶点坐标为(﹣1,3),正确;④∵x>﹣1时,y随x的增大而减小,∴x>1时,y随x的增大而减小一定正确;综上所述,结论正确的个数是①③④共3个.故选:C.7.(3分)如图,AB是⊙O的直径,M,N是⊙O上的两点,且AN=3,∠M=120°,则⊙O的半径为()A.3 B.5 C.3 D.6【解答】解:连接BN,如图,∵∠M+∠A=180°,∴∠A=180°﹣120°=60°,∵AB为直径,∴∠ANB=90°,∴∠ABN=30°,∴AB=2AN=6,∴⊙O的半径为3.故选:A.8.(3分)如图,二次函数y=ax2+bx+c的图象开口向上,对称轴为直线x=1,图象经过(3,0),下列结论中,正确的一项是()A.abc<0 B.2a+b<0 C.a﹣b+c<0 D.4ac﹣b2<0【解答】解:A、根据图示知,抛物线开口方向向上,则a>0.抛物线的对称轴x=﹣=1>0,则b<0.抛物线与y轴交与负半轴,则c<0,所以abc>0.故A选项错误;B、∵x=﹣=1,∴b=﹣2a,∴2a+b=0.故B选项错误;C、∵对称轴为直线x=1,图象经过(3,0),∴该抛物线与x轴的另一交点的坐标是(﹣1,0),∴当x=﹣1时,y=0,即a﹣b+c=0.故C选项错误;D、根据图示知,该抛物线与x轴有两个不同的交点,则△=b2﹣4ac>0,则4ac ﹣b2<0.故D选项正确;故选:D.二、填空题:每小题3分,共24分9.(3分)若一元二次方程x2﹣6x+b=0可化为(x﹣a)2=1,则b﹣a的值是5.【解答】解:∵x2﹣6x=﹣b,∴x2﹣6x+9=﹣b+9,即(x﹣3)2=9﹣b,则a=3,9﹣b=1,得:a=3,b=8,∴b﹣a=8﹣3=5,故答案为:5.10.(3分)已知关于x的方程x2﹣kx﹣6=0的一个根是2,则k的值是﹣1.【解答】解:把x=2代入x2﹣kx﹣6=0得4﹣2k﹣6=0,解得k=﹣1.故答案为﹣1.11.(3分)已知二次函数y=x2﹣(m﹣4)x+2m﹣3,当m=4时,图象顶点在y轴上.【解答】解:△=(m﹣4)2﹣4(2m﹣3)=0,解得:m=4.故答案是:4.12.(3分)已知点A(a,2)与点B (﹣1,b)关于原点O对称,则的值为﹣.【解答】解:根据题意,已知点A(a,2)与点B (﹣1,b)关于原点O对称,则a=﹣(﹣1)=1,b=﹣2,故则的值为﹣.13.(3分)如图,在边长为1的正方形网格中,△DEF是由△ABC旋转得到的,则旋转中心的坐标为(0,1).【解答】解:如图,旋转中心为点(0,1).故答案为:(0,1).14.(3分)如图,AB为⊙O的直径,弦AC=4cm,BC=3cm,CD⊥AB,垂足为D,那么CD的长为 2.4cm.【解答】解:∵AB为⊙o的直径∴∠ACB=90°∵AC=4cm,BC=3cm∴AB=5cm∵CD⊥AB∴CD的长为=2.4cm答案:CD的长为2.4cm.故填空答案:2.4.15.(3分)已知二次函数y=﹣x2+2x+m的部分图象如图所示,则关于x的一元二次方程﹣x2+2x+m=0的解为x1=﹣1或x2=3.【解答】解:依题意得二次函数y=﹣x2+2x+m的对称轴为x=1,与x轴的一个交点为(3,0),∴抛物线与x轴的另一个交点横坐标为1﹣(3﹣1)=﹣1,∴交点坐标为(﹣1,0)∴当x=﹣1或x=3时,函数值y=0,即﹣x2+2x+m=0,∴关于x的一元二次方程﹣x2+2x+m=0的解为x1=﹣1或x2=3.故答案为:x1=﹣1或x2=3.16.(3分)△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是80°或100°.【解答】解:如图,∵∠AOC=160°,∴∠ABC=∠AOC=×160°=80°,∵∠ABC+∠AB′C=180°,∴∠AB′C=180°﹣∠ABC=180°﹣80°=100°.∴∠ABC的度数是:80°或100°.故答案为80°或100°.三、每小题8分,共16分17.(8分)关于x的方程为x2+(m+2)x+2m﹣1=0.(1)证明:方程有两个不相等的实数根.(2)是否存在实数m,使方程的两个实数根互为相反数?若存在,求出m的值及两个实数根;若不存在,请说明理由.【解答】(1)证明:△=(m+2)2﹣4(2m﹣1)=m2﹣4m+8=(m﹣2)2+4,∵(m﹣2)2≥0,∴(m﹣2)2+4>0,∴方程有两个不相等的实数根.(2)存在实数m,使方程的两个实数根互为相反数.由题知:x1+x2=﹣(m+2)=0,解得:m=﹣2,将m=﹣2代入x2+(m+2)x+2m﹣1=0,解得:x=,∴m的值为﹣2,方程的根为x=.18.(8分)在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B (﹣4,5),C(﹣5,2).(1)画出△ABC关于y轴对称的△A1B1C1;(2)画出△ABC关于原点O成中心对称的△A2B2C2.【解答】解:(1)△A1B1C1如图所示;(2)△A2B2C2如图所示.四、每小题10分,共20分19.(10分)如图,点P是等边三角形ABC内一点,且PA=3,PB=4,PC=5,若将△APB绕着点B逆时针旋转后得到△CQB.(1)求点P与点Q之间的距离.(2)求∠APB的度数.【解答】解:(1)连接PQ,由题意可知△ABP≌CBQ则QB=PB=4,∠ABP=∠CBQ,∵△ABC是等边三角形,∴∠ABC=∠ABP+∠PBC=60°,∴∠PBQ=∠CBQ+∠PBC=60°,故△BPQ为等边三角形,所以PQ=QB=PB=4;(2)∵△ABP≌CBQ,∴QC=PA=3,∠APB=∠BQC,又∵PQ=4,PC=5,利用勾股定理的逆定理可知:∴PQ2+QC2=PC2,则△PQC为直角三角形,且∠PQC=90°,∵△BPQ为等边三角形,∴∠BQP=60°,∴∠BQC=∠BQP+∠PQC=150°∴∠APB=∠BQC=150°20.(10分)如图所示,已知AB为⊙O的直径,CD是弦,且AB⊥CD于点E.连接AC、OC、BC.(1)求证:∠ACO=∠BCD;(2)若EB=8cm,CD=24cm,求⊙O的直径.【解答】(1)证明:连接OC,∵AB为⊙O的直径,∴∠ACB=90°,∠BCD与∠ACE互余;又∠ACE与∠CAE互余∴∠BCD=∠BAC.(3分)∵OA=OC,∴∠OAC=∠OCA.∴∠ACO=∠BCD.(5分)(2)解:设⊙O的半径为Rcm,则OE=OB﹣EB=(R﹣8)cm,CE=CD=×24=12cm,(6分)在Rt△CEO中,由勾股定理可得OC2=OE2+CE2,即R2=(R﹣8)2+122(8分)解得R=13,∴2R=2×13=26cm.答:⊙O的直径为26cm.(10分)五、每小题10分,共20分21.(10分)一位篮球运动员投篮,球沿抛物线y=﹣x2+运行,然后准确落入篮筐内,已知篮筐的中心距离底面的距离为3.05m.(1)求球在空中运行的最大高度为多少m?(2)如果该运动员跳投时,球出手离地面的高度为 2.25m,要想投入篮筐,则问他距离蓝筐中心的水平距离是多少?【解答】解:(1)∵y=﹣x2+的顶点坐标为(0,),∴球在空中运行的最大高度为m;(2)当y=3.05时,﹣0.2x2+3.5=3.05,解得:x=±1.5,∵x>0,∴x=1.5;当y=2.25时,﹣0.2x2+3.5=2.25,解得:x=2.5或x=﹣2.5,由1.5+2.5=4(m),故他距离蓝筐中心的水平距离是4米.22.(10分)如图,四边形ABCD中,AB∥CD,∠DAB=90°,且∠ABC=60°,AB=BC,△ABC的外接圆⊙O交BC于E点,连接DE并延长,交AB的延长线于F,求证:CF=DB.【解答】证明:连接AE,∵∠ABC=60°,AB=BC,∴△ABC是等边三角形,∵AB∥CD,∠DAB=90°,∴∠ADC=∠DAB=90°,∴AC为⊙O的直径,∴∠AEC=90°,∵AC=AB,∴EC=EB,∵AB∥CD,∴ED=EF,∴四边形DBFC是平行四边形,∴CF=DB.六、每小题10分,共20分23.(10分)如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?【解答】解:设矩形猪舍垂直于住房墙一边长为xm可以得出平行于墙的一边的长为(25﹣2x+1)m,由题意得x(25﹣2x+1)=80,化简,得x2﹣13x+40=0,解得:x1=5,x2=8,当x=5时,26﹣2x=16>12(舍去),当x=8时,26﹣2x=10<12,答:所围矩形猪舍的长为10m、宽为8m.24.(10分)鄂州市化工材料经销公司购进一种化工原料若干千克,价格为每千克30元.物价部门规定其销售单价不高于每千克60元,不低于每千克30元.经市场调查发现:日销售量y(千克)是销售单价x(元)的一次函数,且当x=60时,y=80;x=50时,y=100.在销售过程中,每天还要支付其他费用450元.(1)求出y与x的函数关系式,并写出自变量x的取值范围.(2)求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式.(3)当销售单价为多少元时,该公司日获利最大?最大获利是多少元?【解答】解:(1)设y=kx+b,根据题意得,解得:k=﹣2,b=200,∴y=﹣2x+200(30≤x≤60);(2)W=(x﹣30)(﹣2x+200)﹣450=﹣2x2+260x﹣6450=﹣2(x﹣65)2+2000;(3)W=﹣2(x﹣65)2+2000,∵30≤x≤60,∴x=60时,w有最大值为1950元,∴当销售单价为60元时,该公司日获利最大,为1950元.七、12分25.(12分)图形变换中的数学,问题情境:在课堂上,兴趣学习小组对一道数学问题进行了深入探究,在Rt△ABC中,∠ACB=90°,∠A=30°,点D是AB的中点,连接CD.探索发现:(1)如图①,BC与BD的数量关系是BC=BD;猜想验证:(2)如图②,若P是线段CB上一动点(点P不与点B,C重合),连接DP,将线段DP绕点D逆时针旋转60°,得到线段DF,连接BF,请猜想BF,BP,BD三者之间的数量关系,并证明你的结论;拓展延伸:(3)若点P是线段CB延长线上一动点,按照(2)中的作法,请在图③中补全图象,并直接写出BF、BP、BD三者之间的数量关系.【解答】解:(1)∵∠ACB=90°,∠A=30°,∴∠CBA=60°,BC=AB,∵点D是AB的中点,∴BC=BD,故答案为:BC=BD;(2)BF+BP=BD,理由:∵∠ACB=90°,∠A=30°,∴∠CBA=60°,BC=AB,∵点D是AB的中点,∴BC=BD,∴△DBC是等边三角形,∴∠CDB=60°,DC=DB,∵线段DP绕点D逆时针旋转60°,得到线段DF,∴∠PDF=60°,DP=DF,∴∠CDB﹣∠PDB=∠PDF﹣∠PDB,∴∠CDP=∠BDF,在△DCP和△DBF中,,∴△DCP≌△DBF,∴CP=BF,∵CP+BP=BC,∴BF+BP=BC,∵BC=BD,∴BF+BP=BD;(3)如图③,BF=BD+BP,理由:∵∠ACB=90°,∠A=30°,∴∠CBA=60°,BC=AB,∵点D是AB的中点,∴BC=BD,∴△DBC是等边三角形,∴∠CDB=60°,DC=DB,∵线段DP绕点D逆时针旋转60°,得到线段DF,∴∠PDF=60°,DP=DF,∴∠CDB+∠PDB=∠PDF+∠PDB,∴∠CDP=∠BDF,在△DCP和△DBF中,,∴△DCP≌△DBF,∴CP=BF,∵CP=BC+BP,∴BF=BC+BP,∵BC=BD,∴BF=BD+BP.八、14分26.(14分)如图,在平面直角坐标系中,二次函数y=x2﹣2x﹣3的图象与x轴交于A,B两点,与y轴交于点C,连接BC,点D位抛物线的顶点,点P是第四象限的抛物线上的一个动点(不与点D重合).(1)求∠OBC的度数;=S四边形OCDB,求(2)连接CD,BD,DP,延长DP交x轴正半轴于点E,且S△OCE此时P点的坐标.【解答】解:(1)∵y=x2﹣2x﹣3=(x﹣3)(x+1),∴由题意得,A(﹣1,0),B(3,0),C(0,﹣3),D(1,﹣4).在Rt△OBC中,∵OC=OB=3,∴△OBC为等腰直角三角形,∴∠OBC=45°.(2)如图1,过点D作DH⊥x轴于H,此时S=S梯形OCDH+S△HBD,四边形OCDB∵OH=1,OC=3,HD=4,HB=2,∴S=•(OC+HD)•OH=,梯形OCDHS△HBD=•HD•HB=4,=.∴S四边形OCDB∴S=S四边形OCDB==•OC•OE,△OCE∴OE=5,∴E(5,0).设l DE:y=kx+b,∵D(1,﹣4),E(5,0),∴,解得:,∴l DE:y=x﹣5.∵DE交抛物线于P,设P(x,y),∴x2﹣2x﹣3=x﹣5,解得x=2 或x=1(D点,舍去),∴x P=2,代入l DE:y=x﹣5,∴P(2,﹣3).赠送初中数学几何模型【模型三】双垂型:图形特征:60°运用举例:1.在Rt△ABC中,∠ACB=90°,以斜边AB为底边向外作等腰三角形PAB,连接PC. (1)如图,当∠APB=90°时,若AC=5,PC=62,求BC的长;(2)当∠APB=90°时,若AB=45APBC的面积是36,求△ACB的周长.P2.已知:如图,B、C、E三点在一条直线上,AB=AD,BC=CD.(1)若∠B=90°,AB=6,BC=23,求∠A的值;(2)若∠BAD+∠BCD=180°,cos∠DCE=35,求ABBC的值.3.如图,在四边形ABCD中,AB=AD,∠DAB=∠BCD=90°,(1)若AB=3,BC+CD=5,求四边形ABCD的面积(2)若p= BC+CD,四边形ABCD的面积为S,试探究S与p之间的关系。

相关文档
最新文档