抛物线经典性质总结30条
一口气总结33条有关抛物线的结论
一、抛物线的定义抛物线是一种特殊的二次函数,其图像呈现出对称轴且开口方向确定的特点。
一般而言,抛物线的标准方程可表示为y=ax^2+bx+c,其中a、b、c是实数且a≠0。
二、抛物线的图像特点1. 抛物线的开口方向由二次项系数a决定,若a>0则开口向上,若a<0则开口向下。
2. 抛物线的对称轴是与顶点相关的直线,其方程为x=-b/2a。
3. 抛物线的顶点的纵坐标为c-b^2/4a。
4. 抛物线的焦点坐标为(-b/2a, c-b^2+1/4a)。
5. 抛物线的焦距为1/4a。
三、抛物线的焦点及直边1. 抛物线是缺点耀焦点在n位上。
2. 抛物线与其焦点的连线是垂直的。
3. 抛物线是直行的。
四、抛物线与直线的关系1. 抛物线与直线的交点个数与直线的位置关系有关,一般情况下有两个交点。
2. 若抛物线和直线相切,则称该直线为抛物线的切线。
五、抛物线与拱门的关系1. 拱门的形状大多呈现出抛物线的形态,这也是抛物线在建筑和土木工程中的应用之一。
2. 抛物线拱桥由于其结构特点,比较稳固且能够将荷载有效地传递到桥墩上,因此在桥梁工程中得到广泛应用。
六、抛物线的几何性质1. 抛物线的离心率为1,故它是一种特殊的椭圆。
2. 两条平行于抛物线对称轴的直线与抛物线所夹的面积是相等的。
3. 顶点位于原点的抛物线的焦点至原点的距离等于焦距的一半。
七、抛物线的物理应用1. 在物理学中,抛物线经常用来描述抛体运动的轨迹,比如抛出的子弹、投掷的物体等。
2. 抛物线还被用来研究光学中的抛物线面镜、抛物面反射器等设备。
八、抛物线的数学模型1. 抛物线可以用来建立二次函数方程的数学模型,利用这种模型,可以求解许多现实生活中的问题,比如自由落体运动、物体弹跳的高度等。
九、抛物线的轨迹方程1. 一个抛物线上的点P(x, y)的轨迹方程为y=ax^2。
十、抛物线的渐近线1. 抛物线的渐近线是与抛物线趋于无穷远时的方向呈现出一定的趋势的直线。
(完整版)抛物线常用性质总结
结论一:若AB 是抛物线22(0)y px p =>的焦点弦(过焦点的弦),且11(,)A x y ,22(,)B x y ,则:2124p x x =,212y y p =-。
结论二:已知直线AB 是过抛物线22(0)y px p =>焦点F ,求证:112=AF BF p+。
结论三:(1)若AB 是抛物线22(0)y px p =>的焦点弦,且直线AB 的倾斜角为α,则22sin P AB α=(α≠0)。
(2)焦点弦中通径(过焦点且垂直于抛物线对称轴的弦)最短。
结论四:两个相切:(1)以抛物线焦点弦为直径的圆与准线相切。
(2)过抛物线焦点弦的两端点向准线作垂线,以两垂足为直径端点的圆与焦点弦相切。
证明结论二:例:已知直线AB 是过抛物线22(0)y px p =>焦点F ,求证:11AF BF+为定值。
证明:设11(,)A x y ,22(,)B x y ,由抛物线的定义知:12p AF x =+,22pBF x =+,又AF +BF =AB ,所以1x +2x =AB -p ,且由结论一知:2124p x x =。
则:212121211()()()2224AF BF AB AB p p p p AF BF AF BF x x x x x x ++===⋅+++++ =222()424AB p p p p AB p =+-+(常数证明:结论四: 已知AB 是抛物线22(0)y px p =>的过焦点F 的弦,求证:(1)以AB 为直径的圆与抛物线的准线相切。
(2)分别过A 、B 做准线的垂线,垂足为M 、N ,求证:以MN切。
证明:(1)设AB 的中点为Q,过A 、Q 、B 向准线l 作垂线, 垂足分别为M 、P 、N ,连结AP 、BP 。
由抛物线定义:AM AF =,BN BF =, ∴111()()222QP AM BN AF BF AB =+=+=, ∴以AB 为直径为圆与准线l 相切(2)作图如(1),取MN 中点P ,连结PF 、MF 、NF ,∵AM AF =,AM ∥OF ,∴∠AMF=∠AFM ,∠AMF=∠MFO ∴∠AFM=∠MFO 。
抛物线经典性质总结30条
抛物线经典性质总结30条1.已知抛物线y=2px(p>0),AB是抛物线的焦点弦,点C 是AB的中点。
AA’垂直准线于A’,BB’垂直准线于B’,CC’垂直准线于C’,CC’交抛物线于点M,准线交x轴于点K。
证明:CC’是梯形AA’BB’的中位线,即|AB|=2|CC’|。
2.证明:|BF|=x^2/(2p)。
3.证明:CC’=AB=(AA’+BB’)/2.4.证明:以AB为直径的圆与准线L相切。
5.证明:∠A’FB’=90°。
6.证明:AA’FK,∴∠A’FK=∠FA’A;|AF|=|AA’|,∴∠AA’F=∠AFA’;同理可证∠B’FK=∠XXX,得证。
7.证明:C’F= A’B’=C’A’=C’B’。
8.证明:AC’平分∠A’AF,BC’平分∠B’BF,A’F平分∠AFK,B’F平分∠XXX。
9.证明:C’F垂直AB,即C’F⋅AB=0.10.证明:AF=(y+y1)/2p(1-cosα),BF=(y2-y)/(2p(1+cosα))。
11.证明:AF/BF=p/(1-cosα)。
12.证明:点A处的切线为y=y1+p(x+x1)。
1.证明y = 2px的两种方法:方法一:代入y = kx^2求解k,得到k = 2p,证毕。
方法二:对y = 2px两边求导得到2yy' = 2p,解出y' = p/x,证毕。
2.证明切线AC'和BC'交于焦点F:易证点A处的切线为y = px + py1,点B处的切线为y = px + py2,解得两切线的交点为C'(-p(y1-y2)。
(y1+y2)/2),证毕。
3.对于抛物线y^2 = 2px,过准线上任一点P(-2p。
t)作切线,证明过两切点Q1、Q2的弦必过焦点,且PQ1⊥PQ2:设切点为Q(x。
y),则有y' = p/x,代入y^2 = 2px得到x = y^2/(2p),进而得到Q1、Q2的坐标。
抛物线经典性质总结30条
抛物线性质30条已知抛物线22(0)y px p =>,AB 是抛物线的焦点弦,点C 是AB 的中点. AA’垂直准线于A ’, BB ’垂直准线于B ’, CC’垂直准线于C ’,CC ’交抛物线于点M ,准线交x 轴于点K. 求证:1.12||,||,22p pAF x BF x =+=+ 2.11()22CC AB AA BB '''==+;3.以AB 为直径的圆与准线L 相切;证明:CC’是梯形AA’BB’的中位线,||||||||||2||2AB AF BF AA BB CC r '''=+=+==4.90AC B '∠=;(由1可证)5.90A FB ''∠=;,,||||,,1,2AA FK A FK FA A AF AA AA F AFA A FK AFK '''∴∠=∠'''=∴∠=∠'∴∠=∠证明:同理:1,2B FK BFK '∠=∠得证. 6.1C F A B 2'''=.证明:由90A FB ''∠=得证.7.AC '垂直平分A F ';BC '垂直平分B F ';证明:由1C F A B 2'''=可知,1||||||,2C F A B C A '''''==||||,.AF AA '=∴又得证 同理可证另一个.8.AC '平分A AF '∠,BC '平分B BF '∠,A’F 平分AFK ∠,B ’F 平分BFK ∠. 证明:由AC '垂直平分A F '可证. 9.C F 'AB ⊥;证明:122121(,)(,)2y y C F AB p x x y y +'⋅=-⋅--22222212211221()02222y y y y y y p x x --=-+=-+=10.1cos P AF α=-;1cos PBF α=+;证明:作AH 垂直x 轴于点H ,则||||||||||cos ,||1cos pAF AA KF FH p AF AF αα'==+=+∴=-.同理可证另一个. 11.112AF BF P+=; 证明:由1cos P AF α=-;1cos PBF α=+;得证.12. 点A 处的切线为11()y y p x x =+;证明:(方法一)设点A 处切线方程为11()y y k x x -=-,与22y px =联立,得21122()0,ky py p y kx -+-= 由2110220,x k y k p ∆=⇒-+=解这个关于k 的一元二次方程(它的差别式也恰为0)得:111,2y pk x y ==得证. 证法二:(求导)22y px =两边对x 求导得1122,,|,x x p p yy p y y y y ='''==∴=得证. 13.AC’是切线,切点为A ;B C’是切线,切点为B ;证明:易求得点A 处的切线为11()y y p x x =+,点B 处的切线为22()y y p x x =+,解得两切线的交点为12(,)22y y p C +'-,得证. 14. 过抛物线准线上任一点P 作抛物线的切线,则过两切点Q 1、Q 2的弦必过焦点;并且12.PQ PQ ⊥证明:设点(,)()2pP t t R -∈为准线上任一点,过点P 作抛物线的切线,切点为2(,)2y Q y p , 22y px =两边对x 求导得22222,,,20,22PQ p p y tyy p y K y ty p y y y pp -''==∴==∴--=+ 显然22440,t p ∆=+>切点有两个,设为22211221212),(,),2,,2y Q y Q y y y t y y p p+==-则 1212122222221212222222FQ FQ y y py py k k y y y p y p pp p p ∴-=-=----- 1222121211221222220,py py p py y y y y y y y y y =-=-=++++ 所以Q 1Q 2过焦点. 22222222121212121212122(,)(,)()2222444y y y y y y p p p PQ PQ y t y t y y t y y t p p p+⋅=+-⋅+-=+++-++ 22222222222121212()2420,242424y y y y y y p p p t p t t t ++-+=-+-=-+-=-+-=12.PQ PQ ∴⊥15.A 、O 、B '三点共线;B 、O 、A '三点共线; 证明:A 、O 、B '三点共线2211212112.222OA OB y p pk k x y y y y y y p p '⇐=⇐=-⇐=-⇐=-同理可证:B 、O 、A '三点共线.16.122y y p ⋅=-;1224p x x ⋅=证明:设AB 的方程为()2py k x =-,与22y px =联立,得2220,ky py kp --= 212122,,p y y y y p k∴+==- 224212122.2244y y p p x x p p p ∴=⋅== 17.1222sin pAB x x p α=++=证明:1212,2p pAB AFFB x x x x p =+=+++=++||2AB ===222.sin pα==得证.18.22sin AOB p S α∆=;证明:122AOB OFA OFB p S S S ∆∆∆=+=⋅=22sin p α===. 19.322AOB S p AB ∆⎛⎫= ⎪⎝⎭(定值);AB 22sin AOB p S α∆=得证. 20.22sin ABC p S α'∆= 证明:11||||222ABC S AB PF '∆=⋅=⋅ 22221(1)sin p p k α==+=21.2AB p ≥; 证明:由22sin pAB α=得证. 22.122AB pk y y =+; 证明:由点差法得证.23.121222tan P P y y x x α==--; 证明:作AA 2垂直x 轴于点A 2,在2AA F ∆中,2121tan ,2AA y FA p x α==-同理可证另一个.24.2A B 4AF BF ''=⋅;证明:2212124||4()()22ppA B AF BF y y x x ''=⋅⇔-=++ 2222121212121212242224y y y y x x px px p y y x x p ⇔+-=+++⇔-=+,由122y y p ⋅=-,1224p x x ⋅=得证.25. 设CC ’交抛物线于点M ,则点M 是CC ’的中点;证明:12121212(,),(,),CC ,22224x x y y y yx x p p C C ++++-''-∴中点横坐标为 把122y y y +=代入22y px =,得2221212121222222,2,.444y y y y px px p x x ppx px x +++-+-=∴==所以点M 的横坐标为12.4x x px +-=点M 是CC ’的中点.当弦AB 不过焦点时,设AB 交x 轴于点(,0)(0)D m m >,设分别以A 、B 为切点的切线相交于点P ,求证:26.点P 在直线x m =-上证明:设:,AB x ty m =+与22y px =联立,得21212220,2,2y pty pm y y pt y y pm --=∴+==-,又由221112121222:()(),,222:()PA y y p x x y y y yy y y y PB y y p x x =+⎧+-=-∴=⎨=+⎩,相减得 代入11()y y p x x =+得,22112112,2,,22y y y y px y y px x m +=+∴=∴=-得证.27. 设PC 交抛物线于点M ,则点M 是PC 的中点;证明:121212122(,),(,),,2224x x y y y y x x mC P m PC ++++--∴中点横坐标为 把122y y y +=代入22y px =,得221212121212222422,2,2,.444y y y y px px pm x x mpx y y pm px x +++-+-==-∴==所以点M 的横坐标为122.4x x mx +-=点M 是PC 的中点.28.设点A 、B 在准线上的射影分别是A 1,B 1,则PA 垂直平分A 1F , PB 垂直平分B 1F ,从而PA 平分1A AF ∠,PB 平分1B BF ∠ 证明:1111110()1,,()22PA A F y y p p k k PA A F y p p y p-⋅=⋅=⋅-=-∴⊥-- 又1||||AF AA =,所以PA 垂直平分A 1F. 同理可证另一个. 证法二:1112221112,,0,22AF AP AA y py pk k k y y y p p p ====--1tan tan 1AF APAF AP k k FAP PAA k k -∴∠-∠=+⋅ 12222231111111222221111111122111202()022()101py p p p py y p y y p y y py p p p p ppy p y y y y p y p p y y p y y y p -----+=-=-=-=-=-+++⋅+⋅- 11tan tan ,.FAP PAA FAP PAA ∴∠=∠∴∠=∠ 同理可证另一个29.PFA PFB ∠=∠证明:11111,,,PAA PAF PFA PA A PFB PB B PA A PB B ∆≅∆⇒∠=∠∠=∠∴∠=∠同理:只需证 易证:111111||||||,,PA PF PB PA B PB A ==∴∠=∠11,PA A PB B ∴∠=∠30.2||||||FA FB PF ⋅=证明:22222212121212122||||()()(),2224444y y y y p p p p p AF BF x x x x x x p+⋅=++=+++=++ 1212(,),22y y y y P p +22222222121212122||,222444y y y y y y y y p p PF p p ++⎛⎫⎛⎫∴=-+=++ ⎪ ⎪⎝⎭⎝⎭得证.例1:(2007江苏高考第19题)如图,过C (0,c )(c>0)作直线与抛物线y=x 2相交于A 、B 两点,一条垂直于x 轴的直线,分别与线段AB 和直线y+c=0交于P 、Q 。
抛物线经典性质汇总30条
抛物线经典性质汇总30条作者: 日期:抛物线焦点弦性质总结30条基础回顾1. 以AB 为直径的圆与准线 L 相切;22. xb 2 =巳;43. yg —p 2;4. . AC'B = 90:;5. A'FB'=90:;6.阳二—心化+新皐1 1 27^ ^^+——=—;AF | |BF | P ' 8. A 、O B ‘三点共线; 9. B 、O A ‘三点共线;P 210.SL AOB =2sin a 'Aa FB'A(X1,Y1)(X2,Y2)C(X3,Y3)11. SL 2 AOB AB /P 、3=(2)(定值)12.AFP 1 -cos :BFP 1 cos :16.AB 岸2P ;1 117. CC' =一 AB =—( AA' + BB');2 2“ P18. K AB =-;y 319. tan .二二 y2 p ;X 2-号220.A'B' =4AF BF ;21. C'F =丄 A'B' •222. 切线方程 y 0y 二m x 0 x 性质深究 一)焦点弦与切线1、过抛物线焦点弦的两端点作抛物线的切线,两切线交点位置有 何特殊之处?结论1:交点在准线上先猜后证:当弦AB 丄x 轴时,则点P 的坐标为 -卫,0在准线上.< 2丿 证明:从略结论2切线交点与弦中点连线平行于对称轴结论3弦AB 不过焦点即切线交点 P 不在准线上时,切线交点与弦中点的连线也平行于对称轴. 2、上述命题的逆命题是否成立?结论4过抛物线准线上任一点作抛物线的切线,则过两切点的弦必过焦点 先猜后证:过准线与 x 轴的交点作抛物线的切线,则过两切点AB 的弦必过焦点.结论5过准线上任一点作抛物线的切线,过两切点的弦最短时,即为通径.3、AB 是抛物线y 2 =2px (p >0)焦点弦,Q 是AB 的中点,丨是抛物线的准线, AA _丨,BB j _丨,过A , B 的切线相交于 P , PQ 与抛物线交于点 M.则有6PALPB. 7PF 丄 AB.8 M 平分 PQ9 PA 平分/ AAB, PB 平分 / BBA结论 结论 结论 结论 Q结论 10|F^| F^PF 2结论 11 S PAB min = P)非焦点弦与切线思考:当弦 AB 不过焦点,切线交于 P 点时, 也有与上述结论类似结果:结论13 PA 平分/ AAB 同理PB 平分/ BBA 结论 14 • PFA "PFB结论15点M 平分PQ■ 2结论 16 FA ,FB =PF相关考题1、已知抛物线X 2 =4y 的焦点为F , A B 是抛物线上的两动点,且 AF 「FB — >0),过AB 两点分别作抛物线的切线,设其交点为 M(1)证明:FM AB 的值;(2)设厶ABM 的面积为S ,写出S = f ■的表达式,并求 S 的最小值.2、已知抛物线C 的方程为X 2 =4y ,焦点为F ,准线为I ,直线m 交抛物线于两点 A, B ; (1)过点A 的抛物线C 的切线与y 轴交于点D,求证:AF =|DF ;(2)若直线m 过焦点F ,分别过点 A , B 的两条切线相交于点 M 求证:AML BM 且点M 在直线l 上.3、对每个正整数n , A n X n ,y n 是抛物线X ^ 4y 上的点,过焦点 F 的直线FA 交抛物线于另一 点 B n S n ,t n ,( 1 )试证:X n Sn = -4 ( n A 1)(2)取冷=2n ,并G 为抛物线上分别以 A 与B 为切点的两条切线的交点, 求证:FG +|F C 2| 十…+ FC n |=2n —2^十十1 (n 》1)结论12①X pY I Y 2 2py py 2 2抛物线的一个优美性质几何图形常常给人们带来直观的美学形象,我们在研究几何图形时也会很自然地想 得到有关这个几何图形的美妙的性质,作为几何中的圆锥曲线的研究,正是这方面的一 个典型代表,作为高中数学中的必修内容,对于培养学生对于数学美的认识,起着相当 重要的作用。
抛物线性质和知识点总结
抛物线性质和知识点总结1. 抛物线的定义和基本形式抛物线是指平面上满足二次方程y=ax^2+bx+c(a≠0)的曲线。
其基本形式是y=ax^2+bx+c,其中a、b、c是常数,称为抛物线的系数。
a决定抛物线的开口方向,当a>0时抛物线开口朝上,当a<0时抛物线开口朝下;b决定抛物线的位置,c决定抛物线与y轴的交点。
2. 抛物线的顶点和对称轴抛物线的顶点是抛物线的最低点(开口向上)或者最高点(开口向下),对于标准形式的抛物线y=ax^2+bx+c,它的顶点坐标为(-b/2a, c-b^2/4a)。
抛物线的对称轴是通过顶点并垂直于x轴的直线,对称轴方程为x=-b/2a。
3. 抛物线的焦点和直线方程抛物线的焦点是到抛物线上所有点的距离到抛物线的对称轴的距离相等的点,焦点的坐标为(-b/2a, 1-1/4a)。
抛物线的直线方程是y=mx+n,其中m和n是常数,直线与抛物线有两个交点。
当直线与抛物线相切时,两个交点重合。
当直线与抛物线没有交点时,这个抛物线不与这条直线相交。
4. 抛物线的焦距和离心率抛物线的焦距是抛物线的顶点到焦点的距离,焦距的大小是2|a|;抛物线的离心率是焦距与顶点到焦点的距离的比值,离心率的大小是1。
5. 抛物线的性质抛物线的性质是抛物线的特征,对于抛物线y=ax^2+bx+c,它的性质包括:a)抛物线的开口方向是由a的符号决定的,a>0时开口向上,a<0时开口向下;b)抛物线的顶点在对称轴上;c)焦点在对称轴上的顶点的上方,离心率等于1;d)与y轴的交点是常数项c;e)抛物线的焦点到直线方程的距离等于抛物线到直线方程的对称轴的距离。
6. 抛物线的知识点抛物线的知识点是在解决抛物线问题时需要掌握的知识,包括:a)抛物线的标准形式、一般形式、顶点形式和焦点形式的相互转化;b)抛物线的顶点、对称轴、焦点和直线方程的求法;c)抛物线与直线的交点和相切点的求法;d)抛物线的焦距和离心率的求法;e)抛物线的方程的实际应用问题。
抛物线性质30条
? y1 y2
2p , k
y1 y2
p2,
? x1x2
y12 y22 2p 2p
p4 4 p2
p2 . 4
17. AB
x1 x2 p
2p sin2 D
明: AB
AF FB
x1
p 2Leabharlann x2p 2
x1 x2 p,
| AB |
1
1 k2
( y1 y2 )2 4 y1 y2
1 AB
1 ( AAc BBc ) ;
2
2
3.以 AB 为 径 圆与准 L 切;
明:CC 是 形 AA BB 中位 ,
C'
C(x3,y3)
| AB | | AF | | BF | | AAc | | BBc | 2 | CCc | 2r
α
O
F
x
4. ACcB 90 ;( 1 可 )
5. AcFBc 90 ;
明:
CcF
1 AcBc 可 2
,| CcF |
1 2
|
AcBc
|
| CcAc |,
又 | AF | | AAc |,?得 . 同 可 另一个.
8. ACc 平分 AcAF , BCc 平分 BcBF ,A’F 平分 AFK ,B’F 平分 BFK .
明: ACc 垂 平分 AcF 可 .
p2 1 cot2 D 2
p2 2sinD .
19.
S2 'AOB
AB
§ p ·3 ¨© 2 ¸¹ (定值);
明:
AB
2p sin2 D
、 S'AOB
p2 2sinD 得 .
超详细抛物线知识点归纳总结
引言概述:抛物线是高中数学中的重要内容,具有广泛的应用领域,包括物理、工程、经济等。
本文将对抛物线的相关知识进行归纳总结,从定义、性质、方程、焦点与准线、图形以及应用等多个方面进行详细的阐述。
正文内容:一、定义和性质1.抛物线的定义:抛物线是平面内一点到固定点和固定直线的距离之比等于常数的轨迹。
2.焦点与准线的关系:焦点是抛物线上所有点到准线的距离相等的点。
3.对称性:抛物线具有关于准线对称和关于纵轴对称的性质。
4.切线方程:抛物线上任意一点的切线方程为y=mx+c,其中m 是斜率,c是截距。
5.切线与法线的关系:切线与法线互为垂线且交于抛物线上的点。
二、方程和焦点、准线1.标准方程:抛物线的标准方程为y=ax^2+bx+c,其中a、b、c 是常数,a≠0。
2.顶点坐标:抛物线的顶点坐标为(b/2a,f(b/2a)),其中f(x)=ax^2+bx+c。
3.焦点坐标:抛物线的焦点坐标为(h,f(h+1/4a)),其中h=b/2a。
4.准线方程:抛物线的准线方程为y=f(h+1/4a)1/(4a)。
三、图形展示和性质分析1.抛物线的开口方向:a的正负决定抛物线的开口方向,a>0时开口向上,a<0时开口向下。
2.抛物线的焦点位置:焦点在抛物线的顶点上方,焦点的纵坐标为f(h+1/4a)+1/(4a)。
3.抛物线的对称轴:对称轴是通过抛物线的顶点和焦点的直线。
4.抛物线的顶点与焦点距离:顶点与焦点的距离等于抛物线的准线长。
四、应用领域1.物理学应用:抛物线可以描述自由落体运动、抛射运动等。
2.工程学应用:抛物线常用于建筑物的设计、桥梁的设计等。
3.经济学应用:抛物线可以用来表示成本、收入和利润的函数关系。
4.生物学应用:抛物线可用于描述某些生物体运动的轨迹。
5.计算机图像处理应用:抛物线可以用于图像处理算法中的平滑处理。
五、总结本文对抛物线的定义、性质、方程、焦点与准线、图形以及应用进行了详细的阐述。
抛物线及其性质知识点大全推荐文档
抛物线及其性质知识点大全推荐文档1. 抛物线的定义:抛物线是一个平面曲线,其定义式为y = ax^2 + bx + c,其中a、b、c为常数,a不等于0。
2.抛物线的图像:抛物线的图像呈现出对称性,它的开口方向由抛物线的系数a的正负决定。
当a大于0时,抛物线向上开口;当a小于0时,抛物线向下开口。
3.抛物线的顶点:抛物线的顶点为曲线上的最低点(向上开口)或最高点(向下开口)。
顶点的横坐标为x=-b/(2a),纵坐标为y=f(-b/(2a)),其中f(x)为抛物线的函数。
4. 抛物线的焦点:抛物线的焦点是曲线上与直线y = mx + n相交的点的轨迹,其中m、n为常数。
焦点的横坐标为x = -b/(2a),纵坐标为y = c - (b^2 - 1)/(4a)。
5.抛物线的对称轴:抛物线的对称轴是通过顶点和焦点的垂直平分线。
对称轴的方程为x=-b/(2a)。
6. 抛物线的判别式:抛物线的判别式为Δ = b^2 - 4ac,其中Δ的值决定了抛物线的性质。
若Δ大于0,则抛物线与x轴有两个交点,即开口向上或向下的抛物线。
若Δ等于0,则抛物线与x轴有一个交点,即开口向上或向下的抛物线。
若Δ小于0,则抛物线与x轴没有交点,即开口向上或向下的抛物线。
7.抛物线的焦距:焦点到抛物线上任意一点的距离等于该点到对称轴的距离,即焦距等于对称轴到顶点的距离。
8.抛物线的切线:抛物线上任意一点处的切线与该点的切线斜率相等,切线方程为y-y0=f'(x0)(x-x0),其中f'(x)为抛物线函数的导数。
9.抛物线的性质:抛物线是一条连续曲线,它具有对称性、单调性(a的符号决定)、可导性(除去顶点的地方都可导)、增减性(导数的符号决定)、可微性(除去顶点的地方都可微)、凸凹性(a的符号决定)等性质。
10.抛物线的应用:抛物线在物理学中常用于描述自由落体、抛体运动等;在工程学中常用于设计桥梁、铁轨等;在经济学中常用于描述成本、收益等。
抛物线30条经典性质及其证明
AB
2p sin2
、 SAOB
p2 2sin
得证.
20. SABC
p2 sin2
证明: SABC
1 2
|
AB
| | PF
|
1 2
2p
1
1 k2
p2(
y1 2
y2 ) 2
p
1
1 k2
p2
(
p k
)2
p 2(1
1 k2
)
p2 sin2
21. AB 2 p ;
证明:由
AB
2p sin2
得证.
2 px,
y1y2
2
pm,
2
px1
2
px2 4
4 pm
2 px,
x
x1
x2 4
2m
.
所以点 M 的横坐标为 x
x1 x2 2m 4
. 点 M 是 PC 的中点.
28.设点 A、B 在准线上的射影分别是 A1,B1,则 PA 垂直平分 A1F, PB 垂直平分 B1F,从而 PA 平
分 A1AF ,PB 平分 B1BF
y1)
p(x2 x1)
y12 y22 2
y22 2
y12 2
y12 y22 2
0
10.
AF
P 1 cos
;
BF
P 1 cos
;
关注公众号“品数学”,获取更多干货
证明:作 AH 垂直 x 轴于点 H,则 |
AF
||
AA || KF
| | FH
|
p |
AF
| cos ,|
AF
|
p 1 cos
抛物线和性质知识点大全
抛物线和性质知识点大全1.抛物线的定义:抛物线是一个平面曲线,其距离一个定点(焦点)和一个定直线(准线)的距离都相等。
2.标准方程:抛物线的标准方程是y = ax^2 + bx + c,其中a、b、c是常数,且a ≠ 0。
3.抛物线的焦点:抛物线的焦点是一个点,其到抛物线上的任意一点的距离与该点到抛物线的准线的距离相等。
4.抛物线的准线:抛物线的准线是一个直线,与抛物线的对称轴平行,并且距离对称轴固定的距离。
5.抛物线的对称轴:抛物线的对称轴是垂直于准线,通过焦点和抛物线的顶点的一条直线。
6.抛物线的顶点:抛物线的顶点是曲线的最高或最低点,即y轴距离最大或最小的点。
7.抛物线的焦距:抛物线的焦距是焦点到顶点的距离。
焦距等于准线与对称轴的距离的两倍。
8.抛物线的直径:抛物线的直径是通过焦点和曲线上两个对称的点的线段。
直径等于焦距的两倍。
9.抛物线的离心率:抛物线的离心率是焦距与准线与顶点的距离的比值。
离心率等于110.抛物线的焦点方程:如果抛物线的焦点为(F,p),则焦点到顶点的距离为p,焦点的横坐标为F,抛物线方程为(x-F)^2=4p(y-c),其中c为抛物线的顶点纵坐标。
11.抛物线的顶点方程:如果抛物线的顶点为(h,k),则抛物线方程为(y-k)=a(x-h)^212.抛物线的对称性:抛物线具有对称性,对称轴将抛物线分成两个对称的部分。
13.抛物线的焦点和准线的关系:抛物线上任意一点的到焦点的距离等于该点到准线的距离的两倍。
14.抛物线的切线:抛物线上任意一点处的切线与该点到焦点的连线重合。
15.抛物线的渐近线:当抛物线的开口向上时,抛物线没有水平渐近线;当抛物线的开口向下时,抛物线有一条水平渐近线。
16.抛物线的面积:抛物线所围成的面积等于焦点到顶点的纵坐标与准线的距离之积的1/317.抛物线的长度:抛物线的长度等于8/3倍焦距的立方根。
18.抛物线的应用:抛物线广泛应用于物理学、工程学和计算机图形学等领域。
抛物线焦点弦性质总结30条
1. 以AB 90(AC 2. 3. '90A FB ∠('A F 4.C F '⊥5.BC '垂直平分B F ' 6.AC '垂直平分A F ' 7.抛物线的准线与x 轴相交于点P ,则.BPF APF ∠=∠ 8.B 、O 、A '三点共线 9. A 、O 、B '三点共线10. 2124p x x = 11. 212y y p =-12. 123222()22sin p p AB x x p x d α=++=+==弦中点到准线 11'('')22CC AB AA BB ==+ 13. 123222()22cos p p AB y y p y d α=++=+==弦中点到准线14. 焦点弦弦长|AB|=x 1+x 2+p,当x 1=x 2时,叫通径,焦点弦弦长最短为2p. 有2AB p ≥15. 112AF BF P +=; 1cos P AF α=-; 1cos P BF α=+16. 243p OB OA -=⋅17. 22sin AOB P S α=18. ⇔⎪⎪⎭⎫ ⎝⎛+=∆AF BF BF AF p S AOB 42弦AB 过焦点 19. 23()2AOB S P AB = 20. ||||||2FB FA F C ⋅='; 2A'B'4AF BF =⋅; 1C'F A'B'2=21. AB 3P K =y ; 2p 22y tan =x -α 22. 切点在抛物线上的切线方程 ()x x p y y +=0023. 点)0,(p D 处的结论:点)0,(p 是抛物线px y 22=上到点)0,(a A 的距离最近的点为顶点的分界点: )0,(a A 在点)0,(p 左边时顶点O 到点)0,(a A 的距离最近,最近距离为a ;)0,(a A 在点)0,(p 右边时横坐标为p a -的两个抛物线上的点到点)0,(a A 的距离最近,最近距离为22p ap -.24. 设过点()0,p D 的直线交抛物线px y 22=于A 、B ,则=+2211DB DA 21p 25. 点)0,2(p E 处的结论:),(11y x A 、),(22y x B 是抛物线)0(22>=p px y 上的两点,O 为抛物线的顶点,(1)090=∠AOB ⇔直线AB 过点)0,2(p .(2)2214p x x =,2214p y y -=. 26. 准线上的有关结论:过抛物线的焦点的直线交抛物线于两点B A ,,再以B A ,为切点作抛物线的切线,其交点在抛物线的准线上,且两切线垂直。
抛物线的性质与方程解析
抛物线的性质与方程解析抛物线是数学中一种常见的曲线,具有许多独特的性质和方程解析。
本文将重点探讨抛物线的性质以及如何通过方程解析抛物线的特征。
一、抛物线的性质1. 对称性:抛物线关于其焦点轴的对称性是其最基本的性质。
抛物线上任意一点与焦点的距离相等于该点到焦点轴的垂直距离。
这种对称性使得抛物线在很多实际问题中具有重要应用,如天文学、物理学等。
2. 焦点和直线的关系:抛物线上的每一点到焦点的距离等于该点到准线的垂直距离。
焦点是抛物线的一个重要属性,影响着抛物线的形状和位置。
3. 切线和法线:抛物线上的任意一点的切线与该点到焦点的连线垂直相交于准线。
这个性质使得我们可以利用切线和法线求解抛物线的各种问题。
二、抛物线的方程解析抛物线可以通过不同的方程来表示,以下是几种常见的形式:1. 顶点形式:设抛物线的顶点为(Vx, Vy),则抛物线的顶点形式方程可以表示为: y = a(x - Vx)² + Vy。
其中,a为控制抛物线开口方向和大小的参数。
2. 标准形式:标准形式方程是最简单、最常用的表示抛物线的形式。
标准形式方程为:y = ax² + bx + c,其中a、b、c为常数,分别控制抛物线的形状、位置和与x轴的交点。
3. 参数方程:通过参数方程可以描述抛物线上各个点的坐标。
常见的参数方程有:x = at²,y = 2at。
这种表示方式更适用于描述抛物线的轨迹和运动。
4. 对称方程:对称方程利用焦点和准线来表示抛物线。
一个常见的对称方程为:(x - p)² = 4a(y - q),其中(p, q)表示焦点的坐标,a为常数。
通过这些方程解析,我们可以更好地理解抛物线的特征和性质。
在实际问题中,根据抛物线的方程,我们可以进行求解、推导和应用。
三、抛物线的应用抛物线的性质和方程解析在许多领域中得到广泛应用,下面简单介绍几个应用场景。
1. 抛物物体运动轨迹分析:抛物线可以描述空中抛射物的运动轨迹,如抛出的石子、发射的炮弹等。
抛物线知识点归纳总结
抛物线知识点归纳总结一、抛物线的定义抛物线是平面上的一个几何图形,它的形状像一个弯曲的弧线,其数学定义为:所有到定点的距离等于到直线的距离的点构成的集合。
这个定点称为焦点,直线称为准线,通常用符号来表示抛物线,可以用二次方程来表示:y = ax^2 + bx + c,其中a、b、c为实数,a≠0。
二、抛物线的性质1. 焦点和准线:抛物线的焦点位于开口向上或者向下的一端,准线则位于抛物线的中轴线上。
焦点和准线的位置可以通过二次方程的系数a、b、c来确定。
2. 对称性:抛物线具有轴对称性,即抛物线的焦点和准线关于中轴线对称。
3. 焦点的坐标:抛物线的焦点的坐标可以通过二次方程的系数a、b、c来计算得出。
4. 定点的坐标:抛物线上最低点或者最高点称为定点,定点的坐标可以通过二次方程的顶点公式来计算得出。
5. 法线和切线:抛物线的切线是与抛物线相切的直线,而法线是与切线垂直的直线,它们具有一些特殊的性质和公式。
6. 焦距和焦半径:焦距是焦点到准线的距离,焦半径是焦点到抛物线顶点的距离,它们与抛物线的方程之间存在一些重要的关系。
7. 焦直和准直:焦直是焦点在准线上的投影轴,准直是准线在焦点上的投影轴,它们的位置和形状也与抛物线的方程有关。
8. 定义域和值域:抛物线的定义域和值域是指抛物线上的点的集合,它们与抛物线的方程形式、系数和图像的形态有关。
9. 开口方向:抛物线的开口方向是指向上或者向下,它与抛物线的二次方程的系数a的正负有关。
10. 直线与抛物线的位置关系:抛物线与直线的位置关系有相交、切线和相离三种情况,这与抛物线的方程和直线的方程有关。
三、抛物线的应用抛物线在日常生活和工程技术中有着广泛的应用,如抛物面反射天线、汽车大灯光束设计等。
同时,它也在物理学、天文学、工程学等领域有着重要的作用。
1. 抛物线的运动学应用:抛物线是物体在一个力场中运动的轨迹,它在各种自然和人造的运动中都有着广泛的应用,如抛物线轨道的运动、人造卫星的轨迹等。
抛物线常用性质总结
结论一:若AB是抛物线y 2pXp 0)的焦点弦(过焦点的弦),且Ax,%), Bx?,y2),则:2P 2X|X2 —, yy2 P。
4结论二:已知直线AB是过抛物线y 2px (p 0)焦点F,求证:1 1 =2|AF p结论三:(1 )若AB是抛物线y2 2pXp 0)的焦点弦,且直线AB的倾斜角为a,则AB 2p(%工0 )。
(2)焦点弦中通径(过焦点且垂直于抛物线对称轴的弦)最短。
sin 2结论四:两个相切:(1)以抛物线焦点弦为直径的圆与准线相切。
(2)过抛物线焦点弦的两端点向准线作垂线,以两垂足为直径端点的圆与焦点弦相切。
证明结论二:例:已知直线 AB 是过抛物线 y 2px(p 0)焦点F ,求证:11为定值。
|AF| |BF|证明:设A(X i , y i ), B(x ?, 丫2),由抛物线的定义知: AF X"1号,BFX ?号,又2AF + BF = AB ,所以 X " + x 2 = AB -p ,且由结论一知:x-|X 2 —。
4贝y : 1 1 |AF BFABAB=AB2|AF BFAF BF(X 1 即2 舟)住弘 xj E 云卫(AB p)云 p2 2 2 4 4 2 4(常数证明:结论四: • / PFM= / FMP• /AFP= / AFM+ / PFM= / FMA+ / FMP= / PMA=9 0 °,. FP 丄 AB已知AB 是抛物线 2y 2px(p 0)的过焦点F 的弦,求证:(1) 以AB 为直径的圆与抛物线的准线相切。
(2)分别过B 做准线的垂线,垂足为M 、N ,求证:以MN 切。
证明:(1)设AB 的中点为Q,过A 、Q 、 垂足分别为M 、P 、N ,连结AP 、BP 。
B 向准线I 作垂线, 由抛物线定义:AM AF , BN 1 BN) -(AF2•••以AB 为直径为圆与准线I 相切 (2)作图如(1),取MN 中点P,连结BF , • QP|」(AM2••• AM • MPBF2AB,PF 、 MF 、 AF , AM // OF,... / AMF= / AFM ,/ MFO 。
抛物线常用性质总结
抛物线常用性质总结抛物线是二次方程的图像,其常见形式为y = ax^2 + bx + c,其中a,b,c是实数常数且a不等于零。
抛物线有许多重要的性质和特点,以下是一些常用的总结和解释。
1. 对称性:抛物线具有轴对称性。
如果抛物线的方程是y = ax^2 + bx + c,轴对称线的方程将是x = -b/2a。
这意味着抛物线关于垂直于x 轴、通过x = -b/2a的直线对称。
2.最高点或最低点:如果a大于零,则抛物线开口向上,且没有最大值。
如果a小于零,则抛物线开口向下,且没有最小值。
抛物线的顶点或底点即为其最高或最低点。
3. 判别式:抛物线的判别式可以帮助我们确定它的性质。
判别式D = b^2 - 4ac表示了二次方程的解的性质。
如果D大于零,则抛物线与x 轴有两个交点,说明它有两个实根。
如果D等于零,则抛物线与x轴有一个交点,说明它有一个实根。
如果D小于零,则抛物线与x轴没有交点,说明它没有实根。
4.对于抛物线的每一个点(x,y),其关于轴对称线的对称点为(2p-x,y),其中p为抛物线上任意一点的横坐标。
这一性质可以用来确定抛物线上其他点的坐标。
5.零点:抛物线与x轴的交点称为零点或根。
零点可以通过解二次方程来求得。
如果判别式D大于零,那么二次方程有两个不同的实根;如果判别式D等于零,那么二次方程有一个实根;如果判别式D小于零,那么二次方程没有实根。
6.方向:抛物线的方向由二次项的系数a决定。
如果a大于零,抛物线开口向上;如果a小于零,抛物线开口向下。
7.垂直于x轴的焦点与准线:焦点与准线是抛物线的另外两个重要点。
焦点的坐标为(p,q+1/4a),其中p=-b/2a为抛物线的对称轴上任意一点的横坐标,q=c-b^2/4a为抛物线的对称轴上任意一点的纵坐标。
准线的方程为y=c-1/4a。
8.对称性性质的应用:由于抛物线的对称性,我们可以通过求解对称点的坐标来简化计算。
例如,如果我们已经求得抛物线上一个点(x,y)的坐标,那么我们也可以直接求解它关于对称轴的对称点(2p-x,y)。
抛物线及其性质知识点大全
抛物线及其性质知识点大全1. 抛物线的定义:抛物线是平面上满足平方差的关系的点的集合,可以用一般式方程表示为 y = ax^2 + bx + c,其中a、b和c是实数且a不为0。
2.抛物线的基本形状:抛物线呈现出一个宽口向上或向下的U形。
当a大于0时,抛物线开口向上;当a小于0时,抛物线开口向下。
3.抛物线的对称轴:抛物线的对称轴垂直于抛物线的开口方向,可以通过平移和旋转将抛物线移动到一个新的位置,使得抛物线重合于自身。
4.抛物线的顶点:抛物线的顶点是抛物线的最高点(当抛物线开口向下时)或最低点(当抛物线开口向上时)。
顶点的横坐标可以通过将一般式方程的x项系数取反并将结果除以2a得到,纵坐标可以通过将横坐标代入一般式方程得到。
5.抛物线的焦点:抛物线上所有点到定点(焦点)的距离相等。
焦点的坐标可以通过将一般式方程转化为顶点形式方程(y=a(x-h)^2+k)得到,其中焦点的横坐标为(h,k+a)。
6.抛物线的直径:通过顶点并垂直于对称轴的直线,可以将抛物线分成两个等长度的部分,这条直线称为抛物线的直径。
7.抛物线的切线:与抛物线相切的直线称为抛物线的切线。
抛物线的切线与抛物线在切点处的斜率相等。
8.抛物线的弦:从抛物线上任意两点绘制的线段称为抛物线的弦。
9.抛物线的渐近线:抛物线没有直线渐近线。
10.抛物线的拐点:抛物线的凹凸方向发生改变的点称为拐点。
拐点的横坐标可以通过将一般式方程的一阶导数等于0的解代入一般式方程得到。
11.抛物线的面积:抛物线的面积可以通过用定积分计算抛物线与x 轴之间的曲边梯形的面积得到。
12.抛物线的方程:抛物线的方程可以通过已知的关键点(如焦点和顶点)来确定。
13.抛物线的图像:通过绘制坐标平面上一系列点,连接这些点得到的曲线即为抛物线的图像。
14.抛物线的应用:抛物线在真实世界中具有广泛的应用,如物体的自由落体、抛体运动、喷水器的喷射路径等。
抛物线30条经典性质及其证明
抛物线的30条经典性质及证明已知抛物线22(0)y px p =>,AB 是抛物线的焦点弦,点C 是AB 的中点.AA’垂直准线于A’,BB’垂直准线于B’,CC’垂直准线于C’,CC’交抛物线于点M ,准线交x 轴于点K.求证:1.12||,||,22p pAF x BF x =+=+2.11()22CC AB AA BB '''==+;3.以AB 为直径的圆与准线L 相切;证明:CC’是梯形AA’BB’的中位线,||||||||||2||2AB AF BF AA BB CC r'''=+=+==4.90AC B '∠=;(由1可证)5.90A FB ''∠= ;,,||||,,1,2AA FK A FK FA A AF AA AA F AFA A FK AFK '''∴∠=∠'''=∴∠=∠'∴∠=∠ 证明:同理:1,2B FK BFK '∠=∠得证.6.1C F A B 2'''=.证明:由90A FB ''∠=得证.7.AC '垂直平分A F ';BC '垂直平分B F ';证明:由1C F A B 2'''=可知,1||||||,2C F A B C A '''''==||||,.AF AA '=∴ 又得证同理可证另一个.8.AC '平分A AF '∠,BC '平分B BF '∠,A’F 平分AFK ∠,B’F 平分BFK ∠.证明:由AC '垂直平分A F '可证.9.C F 'AB ⊥;证明:122121(,)(,)2y y C F AB p x x y y +'⋅=-⋅-- 22222212211221()02222y y y y y y p x x --=-+=-+=10.1cos P AF α=-;1cos PBF α=+;证明:作AH 垂直x 轴于点H,则||||||||||cos ,||1cos pAF AA KF FH p AF AF αα'==+=+∴=-.同理可证另一个.11.112AF BF P+=;证明:由1cos P AF α=-;1cos PBF α=+;得证.12.点A 处的切线为11()y y p x x =+;证明:(方法一)设点A 处切线方程为11()y y k x x -=-,与22y px =联立,得21122()0,ky py p y kx -+-=由2110220,x k y k p ∆=⇒-+=解这个关于k 的一元二次方程(它的差别式也恰为0)得:111,2y pk x y ==得证.证法二:(求导)22y px =两边对x 求导得1122,,|x x p pyy p y y y y ='''==∴=得证.13.AC’是切线,切点为A;BC’是切线,切点为B;证明:易求得点A 处的切线为11()y y p x x =+,点B 处的切线为22()y y p x x =+,解得两切线的交点为12(,22y y p C +'-,得证.14.过抛物线准线上任一点P 作抛物线的切线,则过两切点Q 1、Q 2的弦必过焦点;并且12.PQ PQ ⊥证明:设点(,)()2pP t t R -∈为准线上任一点,过点P 作抛物线的切线,切点为2(,)2y Q y p ,22y px =两边对x 求导得22222,,,20,22PQ p p y tyy p y K y ty p y y y pp -''==∴==∴--=+显然22440,t p ∆=+>切点有两个,设为2221211221212(,),(,),2,,22y y Q y Q y y y t y y p p p+==-则1212122222221212222222FQ FQ y y py py k k y y y p y p pp p p ∴-=-=----1222121211221222220,py py p py y y y y y y y y y =-=-=++++所以Q 1Q 2过焦点.22222222121212*********(,)(,)()2222444y y y y y y p p p PQ PQ y t y t y y t y y tp p p +⋅=+-⋅+-=++-++ 22222222222121212()2420,242424y y y y y y p p p t p t t t ++-+=-+-=-+-=-+-=12.PQ PQ ∴⊥15.A 、O 、B '三点共线;B 、O 、A '三点共线;证明:A 、O 、B '三点共线2211212112.222OA OB y p pk k x y y y y y y p p '⇐=⇐=-⇐=-⇐=-同理可证:B 、O 、A '三点共线.16.122y y p ⋅=-;1224p x x ⋅=证明:设AB 的方程为(2py k x =-,与22y px =联立,得2220,ky py kp --=212122,,py y y y p k∴+==-224212122.2244y y p p x x p p p ∴=⋅==17.1222sin p AB x x p α=++=证明:1212,22p pAB AF FB x x x x p =+=+++=++||2AB p =222sin pα==得证.18.22sin AOBp S α∆=;证明:122AOB OFA OFB p S S S ∆∆∆=+=⋅⋅22sin p α==.19.322AOBS pAB∆⎛⎫= ⎪⎝⎭(定值);证明:由22sinpABα=、22sinAOBpSα∆=得证.20.22sinABCp Sα'∆=证明:11||||222 ABCS AB PF'∆=⋅=⋅22221(1)sinppkα==+=21.2AB p≥;证明:由22sinpABα=得证.22.122ABpky y=+;证明:由点差法得证.23.121222tanP Py yx xα==--;证明:作AA2垂直x轴于点A2,在2AA F∆中,2121tan,2AA yFA pxα==-同理可证另一个.24.2A B4AF BF''=⋅;证明:2212124||4()()22p pA B AF BF y y x x''=⋅⇔-=++2222121212121212242224y y y y x x px px p y y x x p⇔+-=+++⇔-=+,由122y y p⋅=-,1224px x⋅=得证.25.设CC’交抛物线于点M,则点M是CC’的中点;证明:12121212 (,),(),CC, 22224x x y y y y x x ppC C++++-''-∴中点横坐标为把122y yy+=代入22y px=,得2221212121222222,2,.444y y y y px px p x x ppx px x+++-+-=∴==所以点M的横坐标为12.4x x px+-=点M是CC’的中点.当弦AB 不过焦点时,设AB 交x 轴于点(,0)(0)D m m >,设分别以A 、B 为切点的切线相交于点P ,求证:26.点P 在直线x m =-上证明:设:,AB x ty m =+与22y px =联立,得21212220,2,2y pty pm y y pt y y pm --=∴+==-,又由221112121222:()(),,222:()PA y y p x x y y y y y y y y PB y y p x x =+⎧+-=-∴=⎨=+⎩,相减得代入11()y y p x x =+得,22112112,2,,22y y y y px y y px x m +=+∴=∴=-得证.27.设PC 交抛物线于点M ,则点M 是PC 的中点;证明:121212122(,),(,),,2224x x y y y y x x mC P m PC ++++--∴中点横坐标为把122y y y +=代入22y px =,得221212121212222422,2,2,.444y y y y px px pm x x mpx y y pm px x +++-+-==-∴== 所以点M 的横坐标为122.4x x mx +-=点M 是PC 的中点.28.设点A 、B 在准线上的射影分别是A 1,B 1,则PA 垂直平分A 1F ,PB 垂直平分B 1F ,从而PA 平分1A AF ∠,PB 平分1B BF∠证明:1111110()1,,()22PA A F y y p p k k PA A F y p p y p-⋅=⋅=⋅-=-∴⊥--又1||||AF AA =,所以PA 垂直平分A 1F.同理可证另一个.证法二:1112221112,,0,22AF AP AA y py pk k k y y y p p p ====--111tan tan 11AP AA AF APAF AP AP AA k k k k FAP PAA k k k k --∴∠-∠=-+⋅+⋅12222231111111222221111111122111202()022()101py p p p py y p y y p y y py p p p p ppy p y y y y p y p p y y p y y y p -----+=-==--=-+++⋅+⋅-11tan tan ,.FAP PAA FAP PAA ∴∠=∠∴∠=∠同理可证另一个29.PFA PFB∠=∠证明:11111,,,PAA PAF PFA PA A PFB PB B PA A PB B ∆≅∆⇒∠=∠∠=∠∴∠=∠同理:只需证易证:111111||||||,,PA PF PB PA B PB A ==∴∠=∠11,PA A PB B ∴∠=∠30.2||||||FA FB PF ⋅= 证明:22222212121212122||||()()(),2224444y y y y p p p p p AF BF x x x x x x p+⋅=++=+++=++1212(,),22y y y y P p + 22222222121212122||,222444y y y y y y y y p p PF p p ++⎛⎫⎛⎫∴=-+= ⎪ ⎝⎭⎝⎭得证.例1:(2007江苏高考第19题)如图,过C(0,c)(c>0)作直线与抛物线y=x 2相交于A、B 两点,一条垂直于x 轴的直线,分别与线段AB 和直线y+c=0交于P、Q。
抛物线常用性质总结
抛物线常用性质总结抛物线是数学中的一种曲线形状,其方程一般为y=ax^2+bx+c,其中a、b、c为常数。
抛物线在几何学、物理学、工程学等领域中都具有广泛的应用。
下面将总结抛物线的一些常用性质。
1.抛物线的形状:抛物线是一种开口向上或向下的曲线。
当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
2.对称性:抛物线与y轴对称,其顶点坐标为(-b/2a,c-b^2/4a)。
抛物线也可以与x轴对称,其对称轴与x轴垂直,并通过顶点。
3.焦点和准线:抛物线的焦点F的坐标为(-b/2a,c-b^2/4a+1/4a),准线的方程为y=(c-b^2/4a)-1/4a。
4.抛物线的平移:抛物线的平移是通过调整方程中的常数b和c来实现的。
平移后的抛物线与原抛物线具有相同的形状,但位置有所变化。
5. 零点:抛物线的零点即为方程的解,可以通过求解ax^2+bx+c=0来得到。
根据一元二次方程的解的性质,当b^2-4ac>0时,抛物线与x轴有两个交点;当b^2-4ac=0时,抛物线与x轴有一个交点;当b^2-4ac<0时,抛物线与x轴无交点。
6.最值:抛物线的最值即为顶点的纵坐标。
当a>0时,抛物线的最小值为c-b^2/4a;当a<0时,抛物线的最大值为c-b^2/4a。
7.切线和法线:在抛物线上的任意一点,其切线的斜率为抛物线在该点的导数值。
切线与抛物线的切点的坐标可以通过求解方程组来得到。
在抛物线上的任意一点,其法线与切线垂直。
8.弧长:抛物线的弧长表示为y=x^2的积分。
计算抛物线上两点间的弧长可以通过积分计算得到。
9.面积:抛物线与y轴之间的面积可以通过求解抛物线和y轴之间的定积分来计算得到。
抛物线的其中一段与x轴之间的面积可以通过求解抛物线和x轴之间的定积分来计算得到。
10.抛物线的应用:抛物线在现实生活中有很多应用。
例如,在物理学中,抛物线可以描述物体的弹道;在工程学中,抛物线可以描述桥梁、拱门等结构的外形;在经济学中,抛物线可以描述成本、产量等指标的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
抛物线经典性质总结30条1.2.23()2AOB S PAB =V (定值);3. 1cos P AF α=-;1cos P BF α=+; 4. 'BC 垂直平分'B F ;5. 'AC 垂直平分'A F ; 6. 'C F AB ⊥; 7. 2AB P ≥;8. 11'('')22CC AB AA BB ==+; 9. AB3PK=y ;10. 2p 22y tan =x -α;11.2A'B'4AF BF=⋅;12.1C'F A'B'2=.13. 切线方程 ()x x m y y +=0性质深究 一)焦点弦与切线1、 过抛物线焦点弦的两端点作抛物线的切线,两切线交点位置有何特殊之处?结论1:交点在准线上先猜后证:当弦x AB ⊥轴时,则点P 的坐标为⎪⎭⎫⎝⎛-0,2p 在准线上.证明: 从略结论2 切线交点与弦中点连线平行于对称轴结论3 弦AB不过焦点即切线交点P不在准线上时,切线交点与弦中点的连线也平行于对称轴.2、上述命题的逆命题是否成立?结论 4 过抛物线准线上任一点作抛物线的切线,则过两切点的弦必过焦点先猜后证:过准线与x轴的交点作抛物线的切线,则过两切点AB的弦必过焦点.结论5过准线上任一点作抛物线的切线,过两切点的弦最短时,即为通径.3、AB是抛物线px2=(p>0)焦点弦,Q是ABy2,的中点,l是抛物线的准线,lAA⊥1,过A,B的切线相交于P,PQBB⊥l1与抛物线交于点M.则有结论6PA⊥PB.结论7PF⊥AB.结论8 M平分PQ.结论9 PA平分∠A1AB,PB平分∠B1BA.结论102FA=FB结论11PAB S ∆2minp =二)非焦点弦与切线思考:当弦AB 不过焦点,切线交于P 点时, 也有与上述结论类似结果: 结论12 ①py y xp221=,221y y yp+=结论13 PA 平分∠A 1AB ,同理PB 平分∠B 1BA . 结论14 PFB PFA ∠=∠ 结论15 点M 平分PQ 结论2PF FB FA =相关考题 1、已知抛物线yx42=的焦点为F ,A ,B 是抛物线上的两动点,且FB AF λ=(λ>0),过A ,B 两点分别作抛物线的切线,设其交点为M , (1)证明:AB FM ⋅的值;(2)设ABM ∆的面积为S ,写出()λf S =的表达式,并求S 的最小值.2、已知抛物线C 的方程为yx42=,焦点为F ,准线为l ,直线m 交抛物线于两点A ,B ;(1)过点A 的抛物线C 的切线与y 轴交于点D ,求证:DF AF =;(2)若直线m 过焦点F ,分别过点A ,B 的两条切线相交于点M ,求证:AM ⊥BM ,且点M 在直线l 上. 3、对每个正整数n ,()nnny x A ,是抛物线yx42=上的点,过焦点F 的直线FA n 交抛物线于另一点()nnnt s B ,, (1)试证:4-=⋅n ns x(n ≥1) (2)取nnx2=,并C n 为抛物线上分别以A n 与B n 为切点的两条切线的交点,求证:122121+-=++++-n n n FC FC FC Λ(n ≥1)抛物线的一个优美性质几何图形常常给人们带来直观的美学形象,我们在研究几何图形时也会很自然地想得到有关这个几何图形的美妙的性质,作为几何中的圆锥曲线的研究,正是这方面的一个典型代表,作为高中数学中的必修内容,对于培养学生对于数学美的认识,起着相当重要的作用。
因此,在研究圆锥曲线的过程中,有意识地得到一些有关圆锥曲线的几何性质并且加以归纳,并在教学中与学生一起进行一些可行的研究,一方面,作为高考命题也会往这个方向上尝试,另一方面,作为新课程的一个理念,让学生进行一些学有余力的研究,提高学生学习数学的兴趣,提高学生自己研究问题的能力也很有帮助。
本人从一个在教学中学生遇到的习题结合该知识点有关的一些性质,并结合高考的热点题对这一性质作了一些研究。
题:抛物线y 2=2px (p>0)的准线与x 轴交于Q 点,过点Q 作斜率为k 的直线L 。
则“直线L 与抛物线有且只有一个交点”是“k=±1”的_________条件。
本题设计意图是考查学生对于直线与抛物线有且只有一个交点的问题的了解,要求学生掌握直线与抛物线相切时是只有一个交点,还有当直线与抛物线的对称轴平行时,直线与抛物线也只有一个交点,因此,经过简单的验证可知道上题的答案是必要不充分条件。
结合抛物线的下面的性质及上题的图形,我们发现了一些共同点。
性质1:已知AB 是经过抛物线y 2=2px (p>0)的焦点F 的弦,则以AB 为直径的圆与抛物线的准线相切。
证明:由图2可知,BF=BB 1,AF=AA 1,2PP =AA +BB 。
所以2PP =AB 。
其中图1是图2的一个特例,即当焦点弦是通径时,图2即变成了图1。
这就引导我们思考在图2中的两条直线P 1A 、P 1B 是否也是抛物线的两条切线,这样我们得出了抛物线的一个性质:性质2:已知AB 是经过抛物线y 2=2px (p>0)的焦点F的弦,则以A 、B 为切点的两条切线的交点P 落在其准线上。
证明:设A (x 1,y 1),B (x 2,y 2),P (x ,y ) 点A 在抛物线上:y 12=2px 1 (1) 点B 在抛物线上:y 22=2px 2(2) 过点A 的切线方程:yy 1=p (x+x 1) (3) 过点B 的切线方程:yy 2=p (x+x 2) (4) 直线AB 经过点F :222211p x y p x y -=-(5)将(1)式与(2)式分别代入(3)、(4)、(5)式,得到yy 1=p (x+p y 221)(3′)yy 2=p (x+py 222)(4′)y 1y 2=-p 2(5′)因为点P (x ,y )的坐标满足(3′)、(4′),所以y 1、y 2可视为是方程yt=p (x+p t 22)的两根,因此由韦达定理可得y 1y 2=-p 2=2px 。
即x=2p -。
所以点P 的轨迹为抛物线的准线。
从上面的证明中我们可以看出,当A 、B 两点的坐标满足某种条件时,则以A 、B 为A B P 1 F O x y A 1B 1 P A B FOx yQ 图1 图2切点的两条切线的交点一定落在某条固定的直线上。
因此,我们更进一步地得出了更好的性质:性质3:已知AB 是经过抛物线y 2=2px (p>0)的对称轴(即x 轴)上一定点P (m ,0)(m>0)的弦,则以A 、B 为切点的两条切线的交点Q 的轨迹是一条直线x=-m 。
证明:略。
对于上述性质的得出,我们使用了抛物线上已知切点坐标的切线方程的写法,但如果换一个角度看这个问题,我们也可以得出另一种形式的性质:性质3′:动点P 在直线x=-m 上运动,过点P 作抛物线的两条切线PA 、PB ,切点分别为A 、B ,连结AB ,得到弦AB ,那么弦AB 过定点(m ,0)。
证明:略。
根据上面的讨论,我们得到了关于抛物线的一个性质,特别是对于抛物线的切线以及抛物线中动弦中的定值问题的结合,在高考题的命题中也常有涉及。
例1:(2007江苏高考第19题)如图,过C (0,c )(c>0)作直线与抛物线y=x 2相交于A 、B 两点,一条垂直于x 轴的直线,分别与线段AB 和直线y+c=0交于P 、Q 。
(1)若OB OA ⋅=2,求c 的值;(2)若P 为线段AB 的中点,求证:AQ 为抛物线的切线; (3)试问(2)的逆命题是否成立。
解:(1)设A (x 1,y 1),B (x 2,y 2),C (0,c )点A 在抛物线上:y 1=x 12 (1)点B 在抛物线上:y =x 2(2)直线AB 经过点C :2211x cy x c y -=- (3)将(1)式与(2)式分别代入(3)式,得到x 1x 2=-c ,y 1y 2=c 2 由OB OA ⋅= x 1x 2+y 1y 2=2,得c=2。
(2)P 为线段AB 的中点,得点Q 的坐标为(221x x +,-c )由AQ 的斜率k 1=121212121112)(22x x x x x x x x x c y =--=+-+,过点A 的切线的斜率为k 2=2x 1。
所以直线AQ 是抛物线的切线。
(3)过点A 的切线方程为y-y 1=2 x 1(x-x 1)与直线y=-c 相交于点Q , 将y=-c 代入y-y 1=2 x 1(x-x 1),可得-c-x 12=2 x 1(x-x 1)即x 1x 2-x 12=2 x 1(x-x 1) 所以点Q 的横坐标为221x x +,即点P 为线段AB 的中点。
(2)的逆命题成立。
该题的命题思路就是借助于性质3而编制的一道中等难度的题。
其中主要运用了切线的斜率,切线的方程的写法,以及抛物线中的定值的使用。
下题也是用类似的方法命制的题。
例2:(2006全国高考卷Ⅱ21题)抛物线x 2=4y 的焦点F ,A 、B 是抛物线上两动点,且λ=,过A 、B 两点分别作抛物线的切线,设其交点为M 。
(1) 证明:⋅为定值;xyA BPQO(2) 设△ABM 的面积为S ,写出S=f (λ)的表达式,并求出S 的最小值。
解:(1)设A (x 1,y 1),B (x 2,y 2),F (0,1)点A 在抛物线上:4y 1=x 12 (1)点B 在抛物线上:4y 2=x 22 (2)直线AB 经过点F :221111x y x y -=- (3)得到过点A 的切线方程:2(y-y 1)=x 1(x-x 1) (4)过点B 的切线方程:2(y-y 2)=x 2(x-x 2) (5) 由(1)(2)(3)得x 1x 2=-4,y 1y 2=1。
由(4)、(5)得M 坐标为(221x x +,-1)。
所以⋅=(221x x +,-2)·(x 2- x 1,y 2- y 1)=0)(22122122=---y y x x 。
(2)FB AF λ=,即(0-x 1,1-y 1)=λ(x 2,y 2-1) 所以-x 1=λx 2,再由x 1x 2=-4,得λx 2x 2=4, 即x 2=λ4,则x 1=λ4-,y 1=λ,y 2=λ1。
由AB FM ⋅=0, 所以S= f (λ)=()()422121221221221+⎪⎭⎫⎝⎛+⨯-+-=⨯x x y y x x FM AB =41213≥⎪⎪⎭⎫⎝⎛+λλ。
当λ=1时,△ABM 的面积S 取得最小值。