二次函数的图象和性质[www7

合集下载

二次函数的图像与性质

二次函数的图像与性质

二次函数的图像与性质二次函数(quadratic function)是数学中的一类函数,其表达式为y = ax^2 + bx + c,其中a、b、c为实数且a≠0。

这种函数的图像是一条抛物线,其特点是拥有许多有趣的性质和图像的变化规律。

本文将对二次函数的图像与性质进行详细说明。

一、基本形式二次函数的基本形式为y = ax^2,其中a为二次函数的系数,决定了抛物线的开口方向和形状。

当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。

二、顶点二次函数的顶点(vertex)是抛物线的最高点(若开口向下)或最低点(若开口向上)。

顶点可通过求导数或利用抛物线的对称性求得。

顶点的横坐标为x = -b/2a,纵坐标为y = f(x),其中f(x)为二次函数的表达式。

三、对称轴二次函数图像的对称轴(axis of symmetry)是通过抛物线的顶点,并且与抛物线相互对称的一条直线。

对称轴的方程可以通过对抛物线的表达式进行简单计算得到。

四、焦点和准线焦点(focus)和准线(directrix)是二次函数图像的两个重要元素。

焦点是指在平面上向外弯曲的抛物线上的一个特定点。

焦点的横纵坐标可通过复杂的求解方法得到,这里不再详述。

准线是通过焦点以及与对称轴垂直的直线上的特定点构成的直线段。

准线的方程也可通过复杂的计算得到。

五、零点二次函数的零点(zeros)是函数表达式等于零的横坐标。

其求取方法可以通过方程ax^2 + bx + c = 0来求解。

根据求根公式,可得有两个根、一个根或者无实根。

六、图像的变化规律通过改变二次函数的参数a、b、c的数值,可以使得二次函数的图像发生各种变化。

以下是几种常见的变化规律:1. 改变a的值,a越大,抛物线越“扁平”,开口越朝上或者朝下。

2. 改变b的值,b为线性项的系数,可以使抛物线左右平移。

3. 改变c的值,c为常数项的系数,可以使抛物线上下平移。

七、应用二次函数的图像与性质在实际生活中有广泛的应用。

二次函数图像与性质完整归纳

二次函数图像与性质完整归纳

二次函数图像与性质完整归纳二次函数的图像与性质二次函数是高中数学中的重要内容之一,掌握其图像与性质是必不可少的。

二次函数的基本形式是y=ax^2,其中a表示开口方向和抛物线开口大小,x^2表示自变量的平方。

根据a的正负,抛物线的开口方向和顶点的坐标可以得到不同的性质。

当a>0时,抛物线开口向上,顶点坐标为(0,0),对称轴为y轴;当a<0时,抛物线开口向下,顶点坐标为(0,0),对称轴为y轴。

在y=ax^2的基础上,加上常数项c可以得到y=ax^2+c的形式,其中c表示抛物线在y轴上的截距。

根据a和c的正负,抛物线的开口方向、顶点坐标和对称轴可以得到不同的性质。

当a>0,c>0时,抛物线开口向上,顶点坐标为(0,c),对称轴为y轴;当a>0,c0时,抛物线开口向下,顶点坐标为(0,c),对称轴为y轴;当a<0,c<0时,抛物线开口向下,顶点坐标为(0,c),对称轴为y轴。

除了基本形式和加上常数项的形式,二次函数还有一种顶点式的形式y=a(x-h)^2+k,其中(h,k)表示顶点坐标。

根据a的正负,抛物线的开口方向和顶点坐标可以得到不同的性质。

当a>0时,抛物线开口向上,顶点坐标为(h,k),对称轴为直线x=h;当a<0时,抛物线开口向下,顶点坐标为(h,k),对称轴为直线x=h。

在顶点式的基础上,加上常数项k可以得到y=a(x-h)^2+k的形式。

根据a和k的正负,抛物线的开口方向、顶点坐标和对称轴可以得到不同的性质。

当a>0,k>0时,抛物线开口向上,顶点坐标为(h,k),对称轴为直线x=h;当a>0,k0时,抛物线开口向下,顶点坐标为(h,k),对称轴为直线x=h;当a<0,k<0时,抛物线开口向下,顶点坐标为(h,k),对称轴为直线x=h。

二次函数图象的平移二次函数的图像可以通过平移来得到新的图像。

平移的步骤是先确定顶点坐标,然后根据顶点坐标的变化来确定平移方向和距离。

初三二次函数的图像与性质

初三二次函数的图像与性质

初三二次函数的图像与性质二次函数是初中数学中的一个重要概念。

在数学学习的过程中,我们常常会接触到二次函数,并且需要了解它的图像特点以及性质。

本文将详细介绍初三二次函数的图像和性质,并且给出相关的例题和解析。

一、二次函数的定义及一般式二次函数是指函数$y=ax^2+bx+c$,其中$a,b,c$为常数且$a\neq 0$。

它的图像是抛物线,并且开口的方向由$a$的正负决定。

当$a>0$时,抛物线开口向上;而当$a<0$时,抛物线开口向下。

二次函数的一般式为$y=ax^2+bx+c$,其中$a,b,c$为常数。

其中,$a$代表抛物线的开口方向与开口的大小,$b$影响抛物线的位置,$c$影响抛物线和$y$轴的交点。

【例题1】某二次函数的方程是$y=2x^2-3x+1$,求该二次函数的图像和性质。

解:根据给定的二次函数方程,我们可以得到$a=2$,$b=-3$,$c=1$。

由于$a>0$,所以抛物线开口向上。

考虑二次函数的图像特点,我们可以使用一些方法来绘制它的图像。

首先,我们可以找出抛物线的对称轴,对称轴的方程为$x=-\frac{b}{2a}$。

代入$a=2$,$b=-3$,我们得到$x=-\frac{-3}{2\times2}=\frac{3}{4}$。

因此,对称轴的方程为$x=\frac{3}{4}$。

接下来,我们需要计算抛物线的顶点坐标。

顶点坐标可以通过将对称轴的$x$坐标代入原函数方程计算得到。

将$x=\frac{3}{4}$代入$y=2x^2-3x+1$,我们得到$y=2(\frac{3}{4})^2-3(\frac{3}{4})+1=\frac{9}{8}-\frac{9}{4}+1=\frac{1}{8}$。

因此,顶点坐标为$(\frac{3}{4}, \frac{1}{8})$。

不难看出,根据顶点的坐标和对称轴的方程,我们可以绘制出该二次函数的图像。

它是一个开口向上的抛物线,对称轴为$x=\frac{3}{4}$,顶点坐标为$(\frac{3}{4}, \frac{1}{8})$。

二次函数的图像和性质

二次函数的图像和性质

二次函数的图像和性质二次函数是数学中的一个重要概念,它在中学数学中占据着重要的地位。

本文将从二次函数的图像和性质两个方面进行论述,旨在帮助中学生和他们的父母更好地理解和应用二次函数。

一、二次函数的图像二次函数的一般形式为f(x) = ax^2 + bx + c,其中a、b、c为常数,a不等于0。

我们先来讨论二次函数的图像。

1. 开口方向二次函数的图像可以是开口向上的,也可以是开口向下的。

当a大于0时,二次函数的图像开口向上;当a小于0时,二次函数的图像开口向下。

例如,考虑函数f(x) = x^2 - 2x + 1和g(x) = -x^2 + 2x + 1,它们的图像分别如下所示:(插入图片:开口向上和开口向下的二次函数图像)2. 对称轴和顶点二次函数的图像总是关于一个垂直于x轴的直线对称的。

这条直线称为二次函数的对称轴,它的方程可以通过求解二次函数的x坐标的平方项系数的相反数除以2倍的平方项系数得到。

对称轴上的点称为二次函数的顶点,它的横坐标和纵坐标可以通过代入对称轴的方程求解得到。

例如,考虑函数f(x) = -2x^2 + 4x - 1,它的对称轴方程为x = -b/2a = -4/(2*(-2))= 1。

代入对称轴方程可以求得顶点的坐标为(1, -3)。

3. 判别式和根的性质二次函数的判别式可以通过求解一元二次方程的判别式得到,它的表达式为Δ = b^2 - 4ac。

判别式的正负决定了二次函数的根的性质。

当判别式大于0时,二次函数有两个不相等的实根;当判别式等于0时,二次函数有两个相等的实根;当判别式小于0时,二次函数没有实根,但有两个共轭复根。

例如,考虑函数f(x) = x^2 - 2x + 1,它的判别式为Δ = (-2)^2 - 4*1*1 = 0。

由于判别式等于0,该二次函数有两个相等的实根x = 1。

二、二次函数的性质除了图像外,二次函数还有一些重要的性质,我们将在下面进行讨论。

1. 单调性和极值点二次函数的单调性是由二次函数的开口方向决定的。

二次函数的图像与性质

二次函数的图像与性质

二次函数的图像与性质二次函数是高中数学中一个重要的概念,它在数学和实际问题中有着广泛的应用。

本文将介绍二次函数的图像与性质,包括图像的形状与位置、顶点坐标、对称性、最值和零点等方面。

1. 图像的形状与位置二次函数的一般形式为f(x) = ax² + bx + c,其中a、b、c为常数,且a不等于0。

二次函数的图像是一个抛物线,它的形状取决于二次项的系数a的正负和大小。

如果a大于0,则抛物线开口朝上;如果a小于0,则抛物线开口朝下。

a的绝对值越大,抛物线的开口越窄;a的绝对值越小,抛物线的开口越宽。

2. 顶点坐标二次函数的顶点是抛物线的最高点(开口朝下)或最低点(开口朝上),它的坐标可以通过顶点公式来求得。

顶点公式为:x = -b/(2a),y = f(x) = c - b²/(4a)顶点坐标的x值表示抛物线的对称轴位置,y值表示抛物线的最值。

3. 对称性二次函数的图像具有对称性。

对于任意点(x, y)在图像上,其关于对称轴的对称点也必定在图像上。

对称轴通过顶点,因此对称性可以通过对称轴方程来表示:x = -b/(2a)。

4. 最值二次函数的最值即为函数在定义区间内的最大值或最小值。

开口朝上的二次函数在顶点处取得最小值,开口朝下的二次函数在顶点处取得最大值。

最值的计算可以通过顶点坐标中的y值来得到。

5. 零点二次函数的零点是函数图像与x轴的交点。

也就是函数取值为0时的x值,可以通过解二次方程f(x) = 0来求得。

二次方程的解可以使用求根公式,即:x = (-b ±√(b²-4ac))/(2a)其中±表示两个解,可能有两个不同的零点,也可能有两个相等的零点,甚至可能没有实数解。

总结:二次函数的图像与性质可以通过以下几个方面来描述:图像的形状与位置,顶点坐标,对称性,最值和零点。

这些性质对于理解和应用二次函数都非常重要。

通过本文的介绍,相信读者对二次函数的图像与性质有了更深入的理解。

二次函数与三角函数的图像与性质

二次函数与三角函数的图像与性质

二次函数与三角函数的图像与性质一、二次函数的图像与性质1.图像特点:二次函数的图像是一条开口向上或向下的抛物线。

开口向上的抛物线顶点在最低点,开口向下的抛物线顶点在最高点。

2.性质:二次函数的图像具有对称性,对称轴是抛物线的轴线,即x = -b/2a。

对称轴上的点关于抛物线对称。

3.顶点:二次函数的顶点坐标为(-b/2a, c - b^2/4a)。

顶点是抛物线的最高点或最低点,取决于a的正负。

4.零点:二次函数与x轴的交点称为零点。

二次函数最多有两个零点。

5.开口方向:当a > 0时,抛物线开口向上;当a < 0时,抛物线开口向下。

6.增减性:当a > 0时,随着x的增大,y值增大;当a < 0时,随着x的增大,y值减小。

二、三角函数的图像与性质1.正弦函数(sin x):–图像特点:正弦函数的图像是一条周期性波动的曲线,周期为2π。

–性质:正弦函数的值域为[-1, 1],在0°到π之间,正弦函数是增函数;在π到2π之间,正弦函数是减函数。

2.余弦函数(cos x):–图像特点:余弦函数的图像与正弦函数相似,也是一条周期性波动的曲线,周期为2π。

–性质:余弦函数的值域为[-1, 1],在0°到π之间,余弦函数是减函数;在π到2π之间,余弦函数是增函数。

3.正切函数(tan x):–图像特点:正切函数的图像是一条周期性波动的曲线,周期为π。

–性质:正切函数的值域为全体实数,在每个周期内,正切函数是增函数。

4.弧度制与角度制的转换:–弧度制:π rad = 180°。

–角度制:1° = π/180 rad。

5.三角函数的定义:–正弦函数:sin x = 对边/斜边。

–余弦函数:cos x = 邻边/斜边。

–正切函数:tan x = 对边/邻边。

三、二次函数与三角函数的图像与性质的联系与区别1.联系:二次函数与三角函数都是周期性函数,具有周期性波动的特点。

二次函数的图像与性质

二次函数的图像与性质

06
二次函数与一元二次方程的关 系
一元二次方程的基本概念
1 2
一元二次方程的标准形式
ax² + bx + c = 0,其中a、b、c是系数,且a≠0 。
判别式
Δ = b² - 4ac,用于判断一元二次方程的实数根 的个数。
3
根的求解
通过配方或公式法求解,若Δ > 0,方程有两个 实数根,若Δ = 0,方程有一个实数根,若Δ < 0 ,方程没有实数根。
顶点式
表达式
$y = a(x - h)^{2} + k$
描述
顶点式表示二次函数的顶点坐标,其中$(h, k)$是顶点坐标,$a$是二次项系数。
焦点式
表达式
$y = a\sqrt{x^{2} + 2ax + b}$
描述
焦点式主要用于描述二次函数的 焦点位置和形状,其中$a$和$b$ 分别是二次项和一次项的系数。
05
二次函数的应用
求最值问题
定义
设f(x)=ax2+bx+c(a,b,c是常数, a≠0),当a>0时,函数f(x)的图像是 一个开口向上的抛物线;当a<0时, 函数f(x)的图像是一个开口向下的抛物 线。
顶点
极值点
当a>0时,二次函数f(x)的图像在x=b/2a处取得最小值f(-b/2a);当a<0 时,二次函数f(x)的图像在x=-b/2a处 取得最大值f(-b/2a)。
对称
二次函数图像的对称主要改变函数的单调性。如果一个二次函数图像关于y轴对 称,那么它的单调性将发生改变;如果一个二次函数图像关于x轴对称,那么它 的单调性不变。
04
二次函数的解析式

二次函数的图像与性质

二次函数的图像与性质

二次函数的图像与性质二次函数是数学中一种重要的函数形式,其图像形状特殊且具有许多性质。

本文将介绍二次函数的图像特点以及与其相关的性质。

一、二次函数的标准形式二次函数的一般形式为f(x) = ax² + bx + c,其中a、b、c为实数,且a ≠ 0。

为了便于研究,我们可以将二次函数表示为标准形式f(x) =a(x - h)² + k,其中(h, k)为顶点坐标。

二、二次函数的图像特点1. 对称轴:二次函数的对称轴是与顶点坐标垂直的直线。

对称轴方程为x = h,其中h为顶点横坐标。

2. 顶点:二次函数的顶点是图像的最高点或最低点,是二次函数的关键特征。

顶点坐标为(h, k)。

3. 开口方向:二次函数的开口方向由二次项系数a的正负决定。

若a > 0,则开口向上;若a < 0,则开口向下。

4. 正定或负定:二次函数的图像在开口方向上是否有最值,与二次项系数a的符号有关。

若a > 0,则二次函数为正定;若a < 0,则二次函数为负定。

5. 零点:二次函数的零点是函数与x轴的交点,即f(x) = 0的解。

零点个数最多为2个。

三、二次函数的性质1. 零点和因式分解:二次函数的零点可以通过因式分解得到。

对于一般二次函数的标准形式f(x) = ax² + bx + c,我们可以利用求根公式或配方法将其因式分解为f(x) = a(x - x₁)(x - x₂),其中x₁、x₂为零点。

2. 最值:二次函数开口方向上的最值即为顶点,若二次函数开口向上,顶点为最小值;若二次函数开口向下,顶点为最大值。

3. 对称性:二次函数的图像关于对称轴对称,即对于任意x点,若(x, y)在图像上,则(x, -y)也在图像上。

4. 范围:二次函数的范围与二次项系数a的正负相关。

若a > 0,则函数的范围为区间(k, +∞);若a < 0,则函数的范围为区间(-∞, k),其中k为顶点纵坐标。

二次函数的基本性质和图像

二次函数的基本性质和图像

二次函数的基本性质和图像二次函数是高中数学中的一种重要函数,它的图像形状为抛物线。

在学习二次函数之前,我们需要了解一些基本性质和图像特征。

本文将介绍二次函数的基本性质和图像特点,帮助读者更好地理解和掌握这一概念。

一、二次函数的标准形式二次函数的标准形式为:f(x) = ax² + bx + c其中,a、b、c为实数,且a≠0。

二、二次函数的图像特点1. 开口方向二次函数的开口方向由二次项的系数a的正负确定。

当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。

2. 最值点当二次函数的开口方向向上时,函数的最值点为抛物线的顶点,记作(h,k),其中h为顶点的横坐标,k为顶点的纵坐标。

当二次函数的开口方向向下时,函数的最值点为抛物线的谷点。

3. 对称轴二次函数的对称轴是通过抛物线的最值点和对称轴的直角中点所得直线。

对称轴与x轴垂直,并且通过抛物线的顶点。

4. 零点二次函数的零点即函数的根,可以通过求解二次方程ax² + bx + c = 0来得到。

二次函数的零点可以有0个、1个或2个零点,取决于二次方程的判别式b²-4ac 的值。

三、二次函数的图像画法和变换1. 平移变换对于二次函数f(x) = ax² + bx + c,当x平移h个单位和y平移k 个单位时,变换后的函数表达式为f(x-h)+k。

2. 垂直方向的伸缩变换对于二次函数f(x) = ax² + bx + c,当a变为ka(k≠0)时,函数的图像在y轴方向上发生伸缩。

当a>1时,抛物线变瘦高;当0<a<1时,抛物线变粗矮;当a<0时,抛物线变为开口向下。

3. 水平方向的伸缩变换对于二次函数f(x) = ax² + bx + c,当b变为kb(k≠0)时,函数的图像在x轴方向上发生伸缩。

当b>1时,抛物线朝y轴正方向平移;当0<b<1时,抛物线朝y轴负方向平移;当b<0时,抛物线左右翻转。

二次函数的图像与性质

二次函数的图像与性质

二次函数的图像与性质二次函数在数学中占有重要的地位,它的图像和性质可以帮助我们更好地理解和应用数学知识。

本文将从图像和性质两个方面来探讨二次函数的特点。

一、二次函数的图像二次函数的标准形式为:y = ax^2 + bx + c,其中a、b、c为实数且a不等于0。

我们先来讨论a的取值对图像的影响。

1. 当a大于0时,二次函数的图像开口向上。

这表明两侧的函数值随着自变量的增大而增大,函数的最低点为最值点。

2. 当a小于0时,二次函数的图像开口向下。

这表明两侧的函数值随着自变量的增大而减小,函数的最高点为最值点。

接下来,我们来探讨二次函数图像的平移和缩放效果。

1. 平移:对于二次函数y = ax^2 + bx + c,向右平移h个单位,可以得到y = a(x - h)^2 + b(x - h) + c。

向左平移h个单位,则为y = a(x +h)^2 + b(x + h) + c。

这里h为实数。

2. 缩放:对于二次函数y = ax^2 + bx + c,通过改变a的绝对值可以得到不同的缩放效果。

当|a|大于1时,图像会被纵向拉伸;当0<|a|<1时,图像会被纵向压缩。

二、二次函数的性质除了图像外,二次函数还有许多重要的性质,我们将逐一介绍。

1. 零点:零点是指二次函数的图像与x轴的交点。

二次函数的零点可以通过求解方程ax^2 + bx + c = 0得到。

当判别式b^2 - 4ac大于0时,二次函数有两个不同的实根;当判别式等于0时,二次函数有两个相等的实根;当判别式小于0时,二次函数没有实根。

2. 对称轴:对称轴是指二次函数图像的中心对称线。

对称轴的方程可以通过求解方程x = -b/2a得到,即二次函数的顶点坐标为(-b/2a, f(-b/2a))。

3. 首项系数a的正负性:首项系数a的正负性决定了二次函数的开口方向。

当a大于0时,函数图像开口向上,最值点为最低点;当a小于0时,函数图像开口向下,最值点为最高点。

((完整版))二次函数图像与性质完整归纳,推荐文档

((完整版))二次函数图像与性质完整归纳,推荐文档

b 2a

4ac 4a
b2
.当
x b 时, y 随 x 的增大而增大;当 x b 时, y 随 x 的增大而减小;当 x b 时,
2a
2a
2a
y 有最大值 4ac b2 . 4a
六、二次函数解析式的表示方法
1. 一般式: y ax2 bx c ( a , b , c 为常数, a 0 ); 2. 顶点式: y a(x h)2 k ( a , h , k 为常数, a 0 ); 3. 两根式: y a(x x1)(x x2 ) ( a 0 , x1 , x2 是抛物线与 x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以
0. x 0 时, y 随 x 的增大而减小; x 0 时, y 随 x 的增大而增大; x 0 时, y 有最大值
0.
2. y ax2 c 的性质:
上加下减。
a 的符号 a0
a0
开口方向 顶点坐标 对称轴
向上
0, c y 轴
向下
0, c y 轴
性质 x 0 时, y 随 x 的增大而增大; x 0 时, y 随 x 的增大而减小; x 0 时, y 有最小值
y a(x m)2 b(x m) c (或 y a(x m)2 b(x m) c )
三、二次函数 y ax h2 k 与 y ax2 bx c 的比较
从解析式上看, y ax h2 k 与 y ax2 bx c 是两种不同的表达形式,后者通过
配方可以得到前者,即
1.

a
0
时,抛物线开口向上,对称轴为
x
b 2a
,顶点坐标为
b 2a

二次函数的性质及其图象

二次函数的性质及其图象

象经过一、三、四象限,反比例函数 y
c x
经过二、四象限.故选择B.
经典考题
【例2】(2016年达州)如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴
交于点A(-1,0),与y轴的交点B在(0,-2)和(0,-1)之间(不包括这两点),
对称轴为直线x=1,下列结论:
( D)
①abc>0
(2)c<0时,抛物线与y轴的交点在y轴负半轴上.
(3)c=0时,抛物线过原点.
3.4.5 二次函数图象的平移
y=ax2
平移 |h|个 左 单 位 加 向右 右 (h 减 0)、 左 (h 0) y=a(x-h)2
上加下减 向上(k>0)、下(k<0)
平移|k|个单位
上加下减 向上(k>0)、下(k<0)
经典考题

4a 2b 4 36a 6b 0
,解得
a
1 2

b 3
(2)如图,过A作x轴的垂线,垂足为D(2,0),
连接CD,过C作CE⊥AD,CF⊥x轴,垂足分别为E、
F.则:S△OAD
1 2
OD
AD
1 2
2
4
4.
S△ACD
1 2
AD
CE
1 2
4x
2
2x
4.
S△BCD
1 2
BD
CF
1 2
3.4.2 二次函数的图象及性质
要点梳理
二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的图象是抛物线.
1.当a>0时,抛物线开口向上,对称轴是直线x= b .当x= b 时, y有最小
值为4ac b2 .在对称轴左边(即x<

二次函数图像与性质详解

二次函数图像与性质详解

二次函数图像与性质详解二次函数是高中数学中的重要概念之一,它在许多领域都有广泛的应用。

本文将详细介绍二次函数图像的性质,包括图像类型、顶点坐标、对称轴、开口方向以及图像的平移等内容。

1. 二次函数的基本形式二次函数的一般形式为:y=ax2+bx+c其中,a、b、c是实数且a ≠ 0。

在这个公式中,x 是自变量,y 是因变量。

二次函数图像是一条曲线,其形状取决于系数 a、b 和 c 的值。

2. 二次函数图像的类型根据系数 a 的取值,二次函数的图像可以分为以下三种类型:2.1 开口向上的二次函数当a > 0 时,二次函数的图像开口向上,形状类似于一个U 字形。

这种情况下,函数的最小值在顶点处达到,曲线在顶点处取得最小值。

2.2 开口向下的二次函数当 a < 0 时,二次函数的图像开口向下,形状类似于一个倒过来的 U 字形。

这种情况下,函数的最大值在顶点处达到,曲线在顶点处取得最大值。

2.3 平行于 x 轴的二次函数当 a = 0 时,二次函数退化为一次函数 y = bx + c,图像为一条平行于 x 轴的直线。

3. 二次函数图像的顶点坐标对于一般形式的二次函数,可以通过求解顶点来确定其顶点坐标。

顶点坐标可以表示为(ℎ,k),其中 h 和 k 分别是顶点在 x 轴和 y 轴上的坐标。

顶点的坐标可以使用以下公式进行计算:$$ h = \\frac{-b}{2a} $$k=aℎ2+bℎ+c通过计算可以得到顶点坐标(ℎ,k),进而确定二次函数图像上的最值点。

4. 二次函数图像的对称轴对称轴是指二次函数图像的对称线。

对于一般形式的二次函数,对称轴的方程可以通过以下公式计算:$$ x = \\frac{-b}{2a} $$对称轴与 x 轴垂直,并通过顶点。

5. 二次函数图像的平移二次函数图像可以通过平移作出一些调整。

平移可以分为沿 x 轴平移和沿 y 轴平移两种。

5.1 沿 x 轴平移沿 x 轴平移时,顶点(ℎ,k)的横坐标 h 会发生变化。

高中教材知识点:二次函数的图像与性质

高中教材知识点:二次函数的图像与性质

高中教材知识点:二次函数的图像与性质一、知识点介绍二次函数是高中阶段数学学习的重要内容之一,它是一种关于自变量的二次多项式函数。

了解二次函数的图像与性质对于理解函数的变化规律和应用具有重要意义。

本文将详细介绍高中教材中二次函数的图像与性质,包括基本定义、图像特点、性质及常见的例题解析。

二、基本定义1. 二次函数:二次函数是一个关于自变量x 的函数,一般可以表示为f(x) = ax^2 + bx + c,其中a、b、c 是实数且 a ≠0。

2. 二次函数的图像:二次函数的图像是平面直角坐标系中的一条曲线,通常是开口向上或向下的抛物线。

三、图像特点1. 抛物线的开口方向:二次函数中的系数a 决定了抛物线的开口方向。

当 a > 0 时,抛物线开口向上;当 a < 0 时,抛物线开口向下。

2. 邻域与单调性:二次函数的图像在抛物线的开口处有一个顶点,抛物线在这个顶点的邻域内是单调递增或单调递减的。

四、性质1. 零点与因式分解:二次函数的零点是方程f(x) = 0 的解,可以通过因式分解或求根公式来得到。

2. 对称性:二次函数的图像关于顶点对称。

即,若(h, k) 是抛物线的顶点,则点(2h, k) 也在抛物线上。

3. 最值:当抛物线开口向上时,最小值为顶点的纵坐标;当抛物线开口向下时,最大值为顶点的纵坐标。

五、例题解析1. 图像特点例题:题目:根据二次函数的表达式f(x) = 2x^2 - 3x + 1,确定该二次函数的开口方向和顶点。

解析:根据系数 a 的值,可以确定开口方向。

由题目中的系数可知 a = 2,因此抛物线开口向上。

顶点可以通过求解抛物线的顶点坐标得到。

根据顶点公式,顶点的横坐标为x = -b/2a,纵坐标为f(x) = f(-b/2a)。

代入系数的值,得到顶点的坐标为(-(-3)/2(2), f(-(-3)/2(2))) = (3/4, 13/8)。

2. 性质应用例题:题目:已知二次函数f(x) = ax^2 + bx + c,其图像与x 轴交于两点,且顶点的纵坐标为4。

二次函数的图像和性质总结

二次函数的图像和性质总结

二次函数的图像和性质总结二次函数(Quadratic Function)是高中数学中重要的一个部分,是指一种形式为y=ax²+bx+c(a≠0)的函数。

二次函数的图像是一条抛物线,其性质包括:开口方向、顶点、对称轴、最值、零点、增减性等。

下面将对二次函数的图像和性质进行详细总结。

一、图像特征:1.开口方向:-当a>0时,抛物线开口向上;-当a<0时,抛物线开口向下。

2.顶点:-对于抛物线开口向上的情况,顶点是抛物线的最低点;-对于抛物线开口向下的情况,顶点是抛物线的最高点。

3.对称轴(y轴):- 对于一般的二次函数y=ax²+bx+c,其对称轴的方程为x=-b/2a;-对于抛物线开口向上的情况,对称轴是抛物线的最低点;-对于抛物线开口向下的情况,对称轴是抛物线的最高点。

4.最值:-对于抛物线开口向上的情况,最小值为顶点的纵坐标;-对于抛物线开口向下的情况,最大值为顶点的纵坐标。

5.零点:- 零点是指二次函数y=ax²+bx+c与x轴的交点;-二次函数可能有0个、1个或2个零点;- 当判别式D=b²-4ac>0时,有两个不相等的实数根;- 当判别式D=b²-4ac=0时,有两个相等的实数根;- 当判别式D=b²-4ac<0时,无实数根。

6.增减性:-当a>0时,抛物线开口向上,函数在对称轴两侧递增;-当a<0时,抛物线开口向下,函数在对称轴两侧递减。

二、性质总结:1.函数的解析式:- 二次函数的解析式一般形式为y=ax²+bx+c,其中a、b、c为常数,a≠0;-通过解析式可以得到函数的图像特征。

2.零点:-零点是指函数与x轴的交点;- 零点可以通过解二次方程ax²+bx+c=0来求解;- 当判别式D=b²-4ac>0时,有两个不相等的实数根;- 当判别式D=b²-4ac=0时,有两个相等的实数根;- 当判别式D=b²-4ac<0时,无实数根。

二次函数的图像与性质

二次函数的图像与性质

二次函数的图像与性质二次函数是一种重要的函数形式,在数学中被广泛应用。

它的一般形式可以表示为y=ax²+bx+c,其中a、b、c为常数,且a≠0。

二次函数在平面直角坐标系中的图像常常是一个开口向上或向下的拱形,它的图像特征和性质对于学习数学有着非常重要的作用。

本文将介绍二次函数的图像及其性质。

一、二次函数的图像二次函数的图像是一个拱形,它的开口方向由二次项系数a的符号决定。

当a>0时,二次函数的图像开口向上;当a<0时,二次函数的图像开口向下。

同时,二次函数的图像在坐标系中的位置取决于它的顶点坐标。

顶点坐标可以通过求解函数y=ax²+bx+c的导数y'=2ax+b=0得出,即x=-b/2a,从而得出y的值。

因此二次函数的图像可以确定它的开口方向和顶点位置。

二、二次函数的极值二次函数的和常常需要寻找它的极值,即函数的最大值或最小值。

对于一个开口向上的二次函数,它的最小值为它的顶点值,即当x=-b/2a时,y的值最小。

而对于一个开口向下的二次函数,它的最大值同样也在顶点处,即当x=-b/2a时,y的值最大。

因此,确定二次函数的顶点坐标对于求解函数的极值非常重要。

三、二次函数的对称轴二次函数的对称轴是一个非常重要的性质。

它是指二次函数图像上的一条线,使得函数图像关于这条线对称。

对称轴垂直于函数图像的开口,过函数图像的顶点,即它的方程为x=-b/2a。

对称轴将函数图像分成两个对称的部分,使得函数图像的左右部分完全一致。

四、二次函数的零点二次函数的零点是指函数图像和x轴相交的点,即函数值y=0时的x值。

求解二次函数的零点可以使用因式分解方法,也可以使用求根公式根据b²-4ac的值求出。

如果b²-4ac≥0,则存在两个实数解,如果b²-4ac<0,则没有实数解。

二次函数的零点在函数图像上是它与x轴的交点,它们之间也可以确定二次函数的性质。

二次函数的图像和性质

二次函数的图像和性质

二次函数的图像和性质一、二次函数的一般形式二次函数是一种形式为f(x)=ax2+bx+c的函数,其中a、b、c是实数且a eq0。

二、二次函数的图像1.抛物线二次函数的图像是一条抛物线。

当a>0时,抛物线开口朝上;当a<0时,抛物线开口朝下。

2.判别法利用二次函数的判别式 $\\Delta = b^2 - 4ac$ 的正负性可以确定二次函数的图像开口方向和与x轴的交点情况。

3.最值点二次函数的顶点为抛物线的最值点,当a>0时,最小值在顶点处取得;当a<0时,最大值在顶点处取得。

顶点的横坐标为 $-\\frac{b}{2a}$,纵坐标为 $f\\left(-\\frac{b}{2a}\\right)$。

三、二次函数的性质1.对称轴二次函数的对称轴为直线 $x = -\\frac{b}{2a}$,即抛物线关于对称轴对称。

2.单调性当a>0时,二次函数在对称轴左侧递增,在对称轴右侧递减;当a<0时,二次函数在对称轴左侧递减,在对称轴右侧递增。

3.零点二次函数的零点为方程f(x)=0的解,可以利用求根公式 $x = \\frac{-b \\pm \\sqrt{b^2 - 4ac}}{2a}$ 求得。

4.图像的平移如f(x)=a(x−ℎ)2+k,其中(ℎ,k)为平移后的顶点坐标,抛物线上下平移,方向与a的正负有关。

四、应用二次函数在几何、物理、经济等领域有着广泛的应用。

例如几何问题中的抛物线轨迹、物体自由落体运动方程、经济学中的成本、收益关系等均可用二次函数描述。

结语二次函数作为高中数学中重要的函数类型,在图像和性质上有着独特的表现,通过对其图像和性质的深入理解,可以更好地应用于解决实际问题。

希望本文的介绍能帮助读者更好地掌握二次函数的知识。

二次函数图像性质与应用

二次函数图像性质与应用

二次函数图像性质与应用二次函数,也叫做一元二次方程,是中学数学中非常重要的一门知识。

它的图像是一条叫做抛物线的曲线,也广泛应用于物理学、经济学、生物学等领域。

在这篇文章中,我将会介绍二次函数的图像性质以及在现实生活中的应用。

一、二次函数的图像性质二次函数是以 x 的二次方作为自变量的函数。

它的一般式为:y = ax^2 + bx + c其中,a、b、c 都是实数,a 不等于 0。

这个式子是抛物线的标准式,根据 a 的正负可以确定抛物线的形状。

如果 a 大于 0,抛物线开口朝上;如果 a 小于 0,抛物线开口朝下。

除了开口方向,二次函数还有一些其他的图像性质。

以下是一些重要的性质:1、对称轴二次函数的对称轴是一个垂直于 x 轴的直线。

它过抛物线的顶点,用下面的公式可以求出它的方程:x = -b / 2a2、零点二次函数的零点就是方程 y = 0 的解。

抛物线和 x 轴的交点就是它的零点。

用下面的公式可以求出它的值:x = (-b ± √(b^2 - 4ac)) / 2a如果判别式 b²-4ac 大于 0,那么二次函数就会有两个不同的零点;如果判别式等于 0,那么二次函数有一个二重根;如果判别式小于 0,那么二次函数没有实数解。

3、极值二次函数的极值就是抛物线的顶点。

如果 a 大于 0,那么它的极小值就是 y = c - (b²/4a),对应的 x 坐标是 -b/2a;如果 a 小于 0,那么它的极大值就是 y = c - (b²/4a),对应的 x 坐标也是 -b/2a。

二、二次函数在现实生活中的应用二次函数在现实生活中的应用非常广泛。

以下是几个例子。

1、建筑设计建筑设计中常常需要使用二次函数。

比如说,建筑师需要设计一个带拱形的门,那么他们会使用二次函数来描述这个门的形状。

不同的二次函数可以绘制出不同形状的门,用于满足客户的设计需求。

2、股市预测股市是一个非常复杂的市场,股票价格每天都有不同的波动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. When did Beijing Opera start? 2. What skills do Beijing Opera actors need to have? 3. How many main roles are there in Beijing Opera? 4. Match the main roles with their names.
(1)列表 观察y=x2的表达式,选择适当x值,并 计算相应的y值,完成下表:
x -3 -2 -1 0 1 2 3 ……
y=x2
9 4 1 0 1 4 9 ……
y y=x2
(-3,9)
(3,9)
(-2,4)
(2.4)
(-1,1) (1,1)
o (0,0)
x
• 在二次函数y=x2 中,y随x的变化 而变化的规律是 什么?
2.3二次函数y=ax2的图象和性质
引入
• 学习了正比例函数,一次函数与反比例 函数的定义后,研究了它们各自的图象 特征,下面请同学们谈谈它们的图象有 拿些特征?
• 上节课我们学习了二次函数的一般形式 为y=ax²+bx+c(a ≠ 0),那么它的图象 是否也为直线或为双曲线呢?
作二次函数y=x2的图象
2. What skills do Beijing Opera actors need to have? It is a combination of acting, talking, singing,
music, dancing and acrobatics. 3. How many main roles are there in Beijing Opera?
There are four.
4. Match the main roles with their names. sheng male roles dan female roles jing male roles with brightly painted faces chou clown roles
It is a combination of acting, talking, singing, music, dancing and acrobatics.
The costumes are always in bright colour.
costume
date back combination a national treasure a piercing voice acrobatics costume
• 考虑下列几个问 题。
y
y=x2
1. 你能描述图象 的形状吗?与
同伴交流。
(-3,9)
2. 图象与x轴有 (3,9) 交点吗?如果
(-2,4)
(2.4)
(-1,1) (1,1)
o (0,0)
x
有,交点的坐 标是什么?
3. 当x<0时,y随 着x的增大,y
的值如何变化?
当x>0时呢?
y
y=x2 4、当x取什么值时,
(0,0);图象都关于y轴对称。
不同点:开口方向不同;函数值随自变量增大的
变化趋势不同;最值不同;一个有最高点,一个有 最低点。源自联系:它们的图象关于x轴对称。
活动与探索
• 已知二次函数ym=²m+mx
1. 当m取何值时它的图象开口向上。 (1)当x取何值时y随x的增大而增大。 (2)当x取何值时y随x的增大而减小。
sheng male roles with brightly painted faces dan female roles jing clown roles chou male roles
1. When did Beijing Opera start? It dates back to the late 18th century.
sheng
dan
jing
chou
history
main roles
skills needed
Beijing Opera
Task 2:
Listen and use the Strategies to answer the questions.
1. Where was Beijing Opera performed at the beginning?
最底点。
• 二次函数y=-x2的图象是什么形状? • 先想一想,然后作出它的图象. • 它与二次函数y=x2的图象有什么关系?
y=x2 y
o
练习:1.在同 一直角坐标系 中画出函数 x y=x²与y=-x²的 图象。
y=-x2
y
y=x2
y
o
x
o
x
y=-x2
相同点:图象都是抛物线;图象都与x轴脚与点
movement of one’s body using the skills of an acrobat
a very high and loud voice
Task 1:
Listen to an interview about Beijing Opera and answer the following questions.
2. Why does it have very loud music and a piercing singing style?
2. 当m取何值时它的图象开口向下。 (1)当x取何值时y随x的增大而增大。 (2)当x取何值时y随x的增大而减小。
新课标北师大版课件系列
《高中英语》
必修2
the National Treasure
Beijing Opera
Beijing Opera dates back to the 18th century.
a mixture of two or more things
the clothes worn in plays or films
to have a history of
a group of valuable things,very special or important for the country
y的值最小?
5、图象是轴对称图
(-3,9)
(3,9) 形吗?如果是,
它的对称轴是什
(-2,4) (-1,1)
(2.4) (1,1)
么?请你找出几 对对称点,并与 同伴交流。
o归纳(:0,0二) 次函x数y=x²的图象是一条抛物线, 它的开口向上,且关于y轴对称,对称轴与
抛物线的交点是抛物线的顶点,它是图象的
相关文档
最新文档