初中数学八年级下数学期中考试题及答案

合集下载

(某某市县区中学)初中八年级数学下册第二学期期中阶段性考试试题卷(含答案详解)

(某某市县区中学)初中八年级数学下册第二学期期中阶段性考试试题卷(含答案详解)

(某某市县区中学)初中八年级数学下册第二学期期中阶段性考试试题卷(含答案详解)满分:150分 时间:120分钟一、单选题。

(每小题4分,共40分)1.不等式x -1≤1的解集在数轴上表示正确的是( )A. B.C. D.2.下列等式从左边到右边的变形中,属于因式分解的是( )A.(a+b )(a -b )=a 2-b 2B.4m 2+4m+1=(2m+1)2C.x 2+3x -1=x (x+3)-1D.a 2+1=a (a+1a )3.观察下列图形,其中既是轴对称图形又是中心对称图形的是( )A. B. C. D.4.若m >n ,则下列结论错误的是( )A.m+2>n+2B.m -2>n -2C.2m >2nD.m﹣2>n﹣25.将点P (1,4)先向上平移2个单位,再向左平移3个单位,得到点P 的对应点P’的坐标是( )A.(﹣2,6)B.(4,6)C.(﹣2,2)D.(4,2) 6.化简4x 2-4+1x+2的结果是( )A.1x -2B.x -2C.2x+2 D.2x -27.下列条件中,不能判定四边形ABCD 是平行四边形的是( )A.AB ∥CD ,AB=CDB.AB ∥CD ,AD=BCC.AB ∥CD ,AD ∥BCD.AB ∥CD ,∠A=∠C 8.如图,若一次函数y=kx+b 的图象经过点A (0,﹣1),B (1,1),则不等式kx+b <1的解集是( )A.x>1B.x<1C.x>0D.x<09.如图,在平行四边形ABCD中,∠BCD的平分线交BA的延长线于点E,若AB=5,AD=8,则AE的长为()A.5B.4C.3D.2(第8题图)(第9题图)(第10题图)10.如图,平行四边形ABCD中,AB=8,AD=6,∠A=60°,E是边AD上且AE=2DE,F是边AB上的一个动点,将线段EF绕点E逆时针旋转60°,得到EG,连接BG、CG,则BG+CG的最小值是()A.2√21B.2√14C.2√7D.10二.填空题。

浙教版八年级下学期数学《期中检测试卷》含答案

浙教版八年级下学期数学《期中检测试卷》含答案
(1)设销售商一次订购量为x个,旅行包的实际出厂单价为y元,写出当一次订购量超过100个时,y与x的函数关系式;
(2)求当销售商一次订购多少个旅行包时,可使该厂获得利润6000元?(售出一个旅行包 利润=实际出厂单价-成本)
答案与解析
一、精心选一选(每小题3分,共30分)
1.下列计算结果正确的是( )
采访写作
计算机
创意设计
小明
70分
60分
86分
小亮
90分
75分
51分
小丽
60分
84分
72分
现在要计算3人的加权平均分,如果将采访写作、计算机和创意设计这三项的权比由3∶5∶2变成5∶3∶2,成绩变化情况是( )
A.小明增加最多B.小亮增加最多C.小丽增加最多D.三人的成绩都增加
[答案]B
[解析]
创意权重没有改变,所以可以不计算.
21.某商店准备进一批季节性小家电,单价40元.经市场预测,销售定价为52元时,可售出180个,定价每增加1元,销售量净减少10个;定价每减少1元,销售量净增加10个.因受库存 影响,每批次进货个数不得超过180个,商店若将准备获利2000元,则应进货多少个?定价为多少元?
22.已知关于x的一元二次方程x2-2(k-1)x+k2=0有两个实数根x1,x2.
(1)求实数k的取值范围;
(2)是否存在实数k,使x1+x2=x1x2-5.若存在,求出实数k的值;若不存在,请说明理由.
23.王大伯几年前承包了甲、乙两片荒山,各栽100棵杨梅树,成活98%.现已挂果,经济效益初步显现,为了分析收成情况,他分别从两山上随意各采摘了4棵树上的杨梅,每棵的产量如折线统计图所示.
[答案]B
[解析]

初二数学期中考试试卷及答案

初二数学期中考试试卷及答案

初二数学期中考试试卷及答案初二数学期中考试试卷及答案数学期中考试的试卷有哪些试题?这些试题的答案是?下面店铺给大家带来初二数学期中考试试卷及答案,欢迎大家阅读。

初二数学期中考试试卷及答案一、填空题(每小题2分,共24分)1.16的平方根是±4.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±4)2=16,∴16的平方根是±4.故答案为:±4.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.2.用字母表示的实数m﹣2有算术平方根,则m取值范围是m≥2.【分析】根据用字母表示的实数m﹣2有算术平方根,可得m﹣2≥0,据此求出m取值范围即可.【解答】解:∵用字母表示的实数m﹣2有算术平方根,∴m﹣2≥0,解得m≥2,即m取值范围是m≥2.故答案为:m≥2.【点评】此题主要考查了算术平方根的性质和应用,要熟练掌握,解答此题的关键是要明确:①被开方数a是非负数;②算术平方根a本身是非负数.求一个非负数的算术平方根与求一个数的平方互为逆运算,在求一个非负数的算术平方根时,可以借助乘方运算来.3.点P(﹣4,1)x轴对称的点的坐标是(﹣4,﹣1).【分析】根据点P(x,y)关于x轴的对称点P′的坐标是(x,﹣y)求解.【解答】解:点P(﹣4,1)关于x轴对称的点的坐标为(﹣4,﹣1).故答案为(﹣4,﹣1).【点评】本题考查了关于x轴、y轴对称的点的坐标:点P(x,y)关于x轴的对称点P′的坐标是(x,﹣y);点P(x,y)关于y轴的对称点P′的坐标是(﹣x,y).4.用四舍五入法把9.456精确到百分位,得到的近似值是9.46.【分析】把千分位上的数字6进行四舍五入即可.【解答】解:9.456≈9.46(精确到百分位).故答案为9.46.【点评】本题考查了近似数和有效数字:经过四舍五入得到的数为近似数;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.5.如图,△ABC≌△DEF,则DF=4.【分析】根据全等三角形的对应边相等解答即可.【解答】解:∵△ABC≌△DEF,∴DF=AC=4,故答案为:4.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、全等三角形的对应角相等是解题的关键.6.已知函数是正比例函数,且图象在第二、四象限内,则m的值是﹣2.【分析】当函数的图象经过二、四象限可得其比例系数为负数,据此求解.【解答】解:∵函数是正比例函数,∴m2﹣3=1且m+1≠0,解得m=±2.又∵函数图象经过第二、四象限,∴m+1<0,解得m<﹣1,∴m=﹣2.故答案是:﹣2.【点评】此题主要考查了正比例函数图象的性质:它是经过原点的一条直线.当k>0时,图象经过一、三象限,y随x的增大而增大;当k<0时,图象经过二、四象限,y随x的增大而减小.7.已知a<<b,且a,b为两个连续整数,则a+b=7.< p="">【分析】求出的范围:3<<4,即可求出ab的值,代入求出即可.【解答】解:∵3<<4,a<<b,< p="">∵ab是整数,∴a=3,b=4,∴a+b=3+4=7,故答案为:7.【点评】本题考查了对无理数的大小比较的应用,解此题的关键是求出的范围.8.已知函数y=kx+b的图象如图,则关于x的不等式kx+b>0的解集是x<2.【分析】直接利用函数图象,结合式kx+b>0时,则y的值>0时对应x的取值范围,进而得出答案.【解答】解:如图所示:关于x的不等式kx+b>0的解集是:x<2.故答案为:x<2.【点评】此题主要考查了函数与一元不等式,正确利用数形结合是解题关键.9.如图,长为12cm的弹性皮筋直放置在x轴上,固定两端A和B,然后把中点C向上拉升8cm至D点,则弹性皮筋被拉长了8cm.【分析】根据勾股定理,可求出AD、BD的长,则AD+BD﹣AB 即为橡皮筋拉长的距离.【解答】解:根据题意得:AD=BD,AC=BC,AB⊥CD,则在Rt△ACD中,AC=AB=6cm,CD=8cm;根据勾股定理,得:AD===10(cm);所以AD+BD﹣AB=2AD﹣AB=20﹣12=8(cm);即橡皮筋被拉长了8cm;故答案为:8cm.【点评】此题主要考查了等腰三角形的性质以及勾股定理的应用;熟练掌握等腰三角形的性质,由勾股定理求出AD是解决问题的关键.10.如图,在四边形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于点P,若四边形ABCD的面积是9,则DP的长是3.【分析】作DE⊥BC,交BC延长线于E,如图,则四边形BEDP 为矩形,再利用等角的余角相等得到∠ADP=∠CDE,则可利用“AAS”证明△ADP≌△CDE,得到DP=DE,S△ADP=S△CDE,所以四边形BEDP为正方形,S四边形ABCD=S矩形BEDP,根据正方形的面积公式得到DP2=9,易得DP=3.【解答】解:作DE⊥BC,交BC延长线于E,如图,∵DP⊥AB,ABC=90°,∴四边形BEDP为矩形,∴∠PDE=90°,即∠CDE+∠PDC=90°,∵∠ADC=90°,即∠ADP+∠PDC=90°,∴∠ADP=∠CDE,在△ADP和△CDE中,∴△ADP≌△CDE,∴DP=DE,S△ADP=S△CDE,∴四边形BEDP为正方形,S四边形ABCD=S矩形BEDP,∴DP2=9,∴DP=3.故答案为3.【点评】本题考查了全等三角形的判定与性质:全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.也考查了正方形的性质和勾股定理.本题的`关键的作辅助线构造两个全等的三角形.11.如图,已知点P为∠AOB的角平分线上的一定点,D是射线OA上的一定点,E是OB上的某一点,满足PE=PD,则∠OEP与∠ODP的数量关系是∠OEP=∠ODP或∠OEP+∠ODP=180°.【分析】以O为圆心,以OD为半径作弧,交OB于E2,连接PE2,根据SAS证△E2OP≌△DOP,推出E2P=PD,得出此时点E2符合条件,此时∠OE2P=∠ODP;以P为圆心,以PD为半径作弧,交OB 于另一点E1,连接PE1,根据等腰三角形性质推出∠PE2E1=∠PE1E2,求出∠OE1P+∠ODP=180°即可.【解答】解:∠OEP=∠ODP或∠OEP+∠ODP=180°,理由如下:以O为圆心,以OD为半径作弧,交OB于E2,连接PE2,如图所示:∵在△E2OP和△DOP中,,∴△E2OP≌△DOP(SAS),∴E2P=PD,即此时点E2符合条件,此时∠OE2P=∠ODP;以P为圆心,以PD为半径作弧,交OB于另一点E1,连接PE1,则此点E1也符合条件PD=PE1,∵PE2=PE1=PD,∴∠PE2E1=∠PE1E2,∵∠OE1P+∠E2E1P=180°,∵∠OE2P=∠ODP,∴∠OE1P+∠ODP=180°,∴∠OEP与∠ODP所有可能的数量关系是:∠OEP=∠ODP或∠OEP+∠ODP=180°,故答案为:∠OEP=∠ODP或∠OEP+∠ODP=180°.【点评】本题考查了全等三角形的性质和判定,等腰三角形的性质和判定等知识点,主要考查学生的猜想能力和分析问题和解决问题的能力,题目具有一定的代表性,是一道比较好的题目.12.如图,直线y=x+2于x、y轴分别交于点A、B两点,以OB 为边在y轴右侧作等边三角形OBC,将点C向左平移,使其对应点C′恰好落在直线AB上,则点C移动的距离为+1.【分析】先求出直线y=x+2与y轴交点B的坐标为(0,2),再由C在线段OB的垂直平分线上,得出C点纵坐标为1,将y=1代入y=x+2,求得x=﹣1,即可得到C′的坐标为(﹣1,1),进而得出点C 移动的距离.【解答】解:∵直线y=x+2与y轴交于B点,∴x=0时,得y=2,∴B(0,2).∵以OB为边在y轴右侧作等边三角形OBC,∴C在线段OB的垂直平分线上,∴C点纵坐标为1.将y=1代入y=x+2,得1=x+2,解得x=﹣1.故C点到y轴的距离为:,故点C移动的距离为:+1.故答案为:+1.【点评】本题考查了函数图象上点的坐标特征,等边三角形的性质,坐标与图形变化﹣平移,得出C点纵坐标为1是解题的关键.二、选择题(每小题3分,共24分)13.在平面直角坐标系中,点P(﹣2,1)在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】点P的横坐标为负,在y轴的左侧,纵坐标为正,在x轴上方,那么可得此点所在的象限.【解答】解:∵点P的横坐标为负,纵坐标为正,∴点P(﹣2,1)在第二象限,故选B.【点评】解决本题的关键是掌握好四个象限的点的坐标的特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.14.在实数0、π、、、﹣、3.1010010001中,无理数的个数有()A.1个B.2个C.3个D.4个【分析】无理数就是无限不循环小数,根据无理数的定义逐个判断即可.【解答】解:无理数有:π、,共2个,故选B.【点评】此题主要考查了无理数的定义,其中初中范围内的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.15.以下图形中对称轴的数量小于3的是()A.B.C.D.【分析】根据对称轴的概念求解.【解答】解:A、有4条对称轴;B、有6条对称轴;C、有4条对称轴;D、有2条对称轴.故选D.【点评】本题考查了轴对称图形,解答本题的关键是掌握对称轴的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.16.△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,由下列条件不能判定△ABC为直角三角形的是()A.∠A:∠B:∠C=l:2:3B.三边长为a,b,c的值为1,2,C.三边长为a,b,c的值为,2,4D.a2=(c+b)(c﹣b)【分析】由直角三角形的定义,只要验证最大角是否是90°;由勾股定理的逆定理,只要验证两小边的平方和是否等于最长边的平方即可.【解答】解:A、∵∠A:∠B:∠C=1:2:3,∴∠C=×180°=90°,故是直角三角形,故本选项错误;B、∵12+()2=22,∴能构成直角三角形,故本选项错误;C、∵22+()2≠42,∴不能构成直角三角形,故本选项正确;D、∵a2=(c+b)(c﹣b),∴a2=c2﹣b2,∴能构成直角三角形,故本选项错误.故选C.【点评】本题主要考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.17.已知点A(﹣2,y1),B(3,y2)在函数y=﹣x﹣2的图象上,则()A.y1>y2B.y1<y2c.y1≤y2d.y1≥y2< p="">【分析】根据k<0,函数的函数值y随x的增大而减小解答.【解答】解:∵k=﹣1<0,∴函数值y随x的增大而减小,∵﹣2<3,∴y1>y2.故选A.【点评】本题考查了函数的增减性,在直线y=kx+b中,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.18.如图,在△ABC中,∠C=90°,∠B=30°,边AB的垂直平分线DE交AB于点E,交BC于点D,CD=1,则BC的长为()A.3B.2+C.2D.1+【分析】根据线段垂直平分线上的点到线段两端距离相等可得AD=BD,可得∠DAE=30°,易得∠ADC=60°,∠CAD=30°,则AD为∠BAC的角平分线,由角平分线的性质得DE=CD=3,再根据直角三角形30°角所对的直角边等于斜边的一半可得BD=2DE,得结果.【解答】解:∵DE是AB的垂直平分线,∴AD=BD,∴∠DAE=∠B=30°,∴∠ADC=60°,∴∠CAD=30°,∴AD为∠BAC的角平分线,∵∠C=90°,DE⊥AB,∴DE=CD=1,∵∠B=30°,∴BD=2DE=1,∴BC=3,故选A.【点评】本题主要考查了垂直平分线的性质,角平分线上的点到角的两边距离相等的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,熟记各性质是解题的关键.19.如图,Rt△MBC中,∠MCB=90°,点M在数轴﹣1处,点C 在数轴1处,MA=MB,BC=1,则数轴上点A对应的数是()A.+1B.﹣+1C.﹣﹣lD.﹣1【分析】通过勾股定理求出线段MB,而线段MA=MB,进而知道点A对应的数,减去1即可得出答案.【解答】解:在Rt△MBC中,∠MCB=90°,∴MB=,∴MB=,∵MA=MB,∴MA=,∵点M在数轴﹣1处,∴数轴上点A对应的数是﹣1.故选:D.【点评】题目考察了实数与数轴,通过勾股定理,在数轴寻找无理数.题目整体较为简单,与课本例题类似,适合随堂训练.20.如图,在5×5的正方形网格中,每个小正方形的边长为1,在图中找出格点C,使得△ABC是腰长为无理数的等腰三角形,点C的个数为()A.3B.4C.5D.7【分析】根据题意画出图形,找到等腰三角形,计算出腰长进行判断即可.【解答】解:等腰三角形ABC1中,腰AC1=AB===2;等腰三角形ABC2中,腰AC2=AB===2;等腰三角形ABC3中,腰AC3=BC3==;等腰三角形ABC4中,腰AC4=BC4==;等腰三角形ABC5中,腰AC5=BC5==;故选C.【点评】本题考查了勾股定理,利用格点构造等腰三角形计算出腰长是解题的关键.三、解答题(52分)21.计算:.【分析】首先化简二次根式,然后按照实数的运算法则依次计算.【解答】解:=2+0﹣=.【点评】此题主要考查了实数的运算,解题需注意区分三次方根和平方根.22.(1)已知:(x+1)2﹣9=0,求x的值;(2)已知a﹣3的平方根为±3,求5a+4的立方根.【分析】(1)方程变形后,利用平方根定义开方即可求出x的值;(2)利用平方根定义求出a的值,代入原式求出立方根即可.【解答】解:(1)方程变形得:(x+1)2=9,开方得:x+1=3或x+1=﹣3,解得:x1=2,x2=﹣4;(2)由题意得:a﹣3=9,即a=12,则5a+4=64,64的立方根为4.【点评】此题考查了立方根,平方根,熟练掌握各自的定义是解本题的关键.23.已知,如图,点A、B、C、D在一条直线上,AB=CD,EA∥FB,EC∥FD,求证:EA=FB.【分析】首先利用平行线的性质得出,∠A=∠FBD,∠D=∠ECA,进而得出△EAC≌△FBD,即可得出AC=BD,进而得出答案.【解答】证明:∵EA∥FB,∴∠A=∠FBD,∵EC∥FD,∴∠D=∠ECA,在△EAC和△FBD中,,∴△EAC≌△FBD(AAS),∴EA=FB.【点评】此题主要考查了全等三角形的判定与性质等知识,根据已知得出△EAC≌△FBD是解题关键.24.如图,已知函数y1=(m﹣2)x+2与正比例函数y2=2x图象相交于点A(2,n),函数y1=(m﹣2)x+2与x轴交于点B.(1)求m、n的值;(2)求△ABO的面积;(3)观察图象,直接写出当x满足x<2时,y1>y2.【分析】(1)先把A点坐标代入正比例函数解析式求出n,从而确定A点坐标,然后利用待定系数法确定m的值;(2)由函数y1=x+2求得B的坐标,然后根据三角形面积公式求得即可;(3)根据函数的图象即可求得.【解答】解:(1)把点A(2,n)代入y2=2x得n=2×2=4,则A点坐标为(2,4),把A(2,4)代入y1=(m﹣2)x+2得,4=(m﹣2)×2+2解得m=3;(2)∵m=3,∴y1=x+2,令y=0,则x=﹣2,∴B(﹣2,0),∵A(2,4),∴△ABO的面积=×2×4=4;(3)由图象可知:当x<2时,y1>y2.故答案为x<2.【点评】本题考查了两直线平行或相交的问题:直线y=k1x+b1(k1≠0)和直线y=k2x+b2(k2≠0)平行,则k1=k2;若直线y=k1x+b1(k1≠0)和直线y=k2x+b2(k2≠0)相交,则交点坐标满足两函数的解析式.也考查了待定系数法求函数的解析式.25.如图所示,△ACB与△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,点D为AB边上的一点.(1)求证:△BCD≌△ACE;(2)若AE=8,DE=10,求AB的长度.【分析】(1)根据等腰直角三角形的性质得出CE=CD,AC=BC,∠ACB=∠ECD=90°,∠B=∠BAC=45°,求出∠ACE=∠BCD,根据SAS 推出两三角形全等即可;(2)根据全等求出AE=BD,∠EAC=∠B=45°,求出∠EAD=90°,在Rt△EAD中,由勾股定理求出AD,即可得出AB的长度.【解答】(1)证明:∵△ACB与△ECD都是等腰直角三角形,∴CE=CD,AC=BC,∠ACB=∠ECD=90°,∠B=∠BAC=45°,∴∠ACE=∠BCD=90°﹣∠ACD,在△ACE和△BCD中,,∴△BCD≌△ACE(SAS);(2)解:∵△BCD≌△ACE,∴BD=AE=8,∠EAC=∠B=45°,∴∠EAD=45°+45°=90°,在Rt△EAD中,由勾股定理得:AD===6,∴AB=BD+AD=8+6=14.【点评】本题考查了等腰直角三角形的性质,全等三角形的性质和判定,勾股定理的应用,解此题的关键是能求出△ACE≌△BCD和求出AD的长,难度适中.26.(1)观察与归纳:在如图1所示的平面直角坐标系中,直线l与y轴平行,点A与点B是直线l上的两点(点A在点B的上方).①小明发现:若点A坐标为(2,3),点B坐标为(2,﹣4),则AB 的长度为7;②小明经过多次取l上的两点后,他归纳出这样的结论:若点A坐标为(t,m),点B坐标为(t,n),当m>n时,AB的长度可表示为m ﹣n;(2)如图2,正比例函数y=x与函数y=﹣x+6交于点A,点B是y=﹣x+6图象与x轴的交点,点C在第四象限,且OC=5.点P是线段OB上的一个动点(点P不与点0、B重合),过点P与y轴平行的直线l 交线段AB于点Q,交射线OC于R,设点P横坐标为t,线段QR的长度为m.已知当t=4时,直线l恰好经过点C.①求点A的坐标;②求OC所在直线的关系式;③求m关于t的函数关系式.【分析】(1)直线AB与y轴平行,A(x1,y1),B(x2,y2),A、B 两点横坐标相等,再根据AB的长度为|y1﹣y2|即可求得,(2)①联立方程,解方程得出A点的坐标;②根据勾股定理求得C点坐标,然后根据待定系数法即可求得OC 所在直线的关系式;③分两种情况分别讨论求出即可.【解答】解:(1)①若点A坐标为(2,3),点B坐标为(2,﹣4),则AB的长度为3﹣(﹣4)=7;②若点A坐标为(t,m),点B坐标为(t,n),当m>n时,AB的长度可表示为m﹣n;故答案为7;m﹣n;(2)①解得,∴A(3,3);②∵直线l平行于y轴且当t=4时,直线l恰好过点C,如图2,作CE⊥OB于E,∴OE=4,在Rt△OCE中,OC=5,由勾股定理得:CE==3,∴点C的坐标为:(4,﹣3);设OC所在直线的关系式为y=kx,则﹣3=4k,∴k=﹣,∴OC所在直线的关系式为y=﹣x;③由直线y=﹣x+6可知B(6,0),作AD⊥OB于D,∵A(3,3),∴OD=BD=AD=3,∴∠AOB=45°,OA=AB,∴∠OAB=90°,∠ABO=45°当0<t≤3时,如图2,< p="">∵直线l平行于y轴,∴∠OPQ=90°,∴∠OQP=45°,∴OP=QP,∵点P的横坐标为t,∴OP=QP=t,在Rt△OCE中,∵tan∠EOC=|k|=,∴tan∠POR==,∴PR=OPtan∠POR=t,∴QR=QP+PR=t+t=t,∴m关于t的函数关系式为:m=t;当3<t<6时,如图3,< p="">∵∠BPQ=90°,∠ABO=45°,∴∠BQP=∠PBQ=45°,∴BP=QP,∵点P的横坐标为t,∴PB=QP=6﹣t,∵PR∥CE,∴△BPR∽△BEC,∴=,∴=,解得:PR=9﹣t,∴QR=QP+PR=6﹣t+9﹣t=15﹣t,∴m关于t的函数关系式为:m=15﹣t;综上,m关于t的函数关系式为m=.【点评】此题主要考查了函数综合以及相似三角形的判定与性质和勾股定理等知识,利用分类讨论以及数形结合得出是解题关键.27.如图1,甲、乙两车分别从相距480km的A、B两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,甲车到达C 地后因有事按原路原速返回A地.乙车从B地直达A地,两车同时到达A地.甲、乙两车距各自出发地的路程y(千米)与甲车出发所用的时间x(小时)的关系如图2,结合图象信息解答下列问题:(1)乙车的速度是80千米/时,乙车行驶的时间t=6小时;(2)求甲车从C地按原路原速返回A地的过程中,甲车距它出发地的路程y与它出发的时间x的函数关系式;(3)直接写出甲车出发多长时间两车相距8O千米.【分析】(1)结合题意,利用速度=路程÷时间,可得乙的速度、行驶时间;(2)找到甲车到达C地和返回A地时x与y的对应值,利用待定系数法可求出函数解析式;(3)甲、乙两车相距80千米有两种情况:①相向而行:相等关系为“甲车行驶路程+乙车行驶路程+甲乙间距离=480”,②同向而行:相等关系为“甲车距它出发地的路程+乙车路程﹣甲乙间距离=480”分别根据相等关系列方程可求解.【解答】解:(1)∵乙车比甲车先出发1小时,由图象可知乙行驶了80千米,∴乙车速度为:80千米/时,乙车行驶全程的时间t=480÷80=6(小时);(2)根据题意可知甲从出发到返回A地需5小时,∵甲车到达C地后因立即按原路原速返回A地,∴结合函数图象可知,当x=时,y=300;当x=5时,y=0;设甲车从C地按原路原速返回A地时,即,甲车距它出发地的路程y与它出发的时间x的函数关系式为:y=kx+b,将函数关系式得:,解得:,故甲车从C地按原路原速返回A地时,甲车距它出发地的路程y与它出发的时间x的函数关系式为:y=﹣120x+600;(3)由题意可知甲车的速度为:(千米/时),设甲车出发m小时两车相距8O千米,有以下两种情况:①两车相向行驶时,有:120m+80(m+1)+80=480,解得:m=;②两车同向行驶时,有:600﹣120m+80(m+1)﹣80=480,解得:m=3;∴甲车出发两车相距8O千米.故答案为:(1)80,6.下载全文。

初中数学八年级下期中基础卷(1)

初中数学八年级下期中基础卷(1)

一、选择题1.(0分)[ID :9931]下列命题中,真命题是( )A .四个角相等的菱形是正方形B .对角线垂直的四边形是菱形C .有两边相等的平行四边形是菱形D .两条对角线相等的四边形是矩形 2.(0分)[ID :9908]下列四组线段中,可以构成直角三角形的是( ) A .1,2,3 B .2,3,4 C .1, 2,3D .2,3,5 3.(0分)[ID :9899]下列条件中,不能判断△ABC 为直角三角形的是 A .21a =,22b =,23c = B .a :b :c=3:4:5C .∠A+∠B=∠CD .∠A :∠B :∠C=3:4:5 4.(0分)[ID :9889]如图,若点P 为函数(44)y kx b x =+-≤≤图象上的一动点,m 表示点P 到原点O 的距离,则下列图象中,能表示m 与点P 的横坐标x 的函数关系的图象大致是( )A .B .C .D .5.(0分)[ID :9882]有一直角三角形纸片,∠C =90°BC =6,AC =8,现将△ABC 按如图那样折叠,使点A 与点B 重合,折痕为DE ,则CE 的长为( )A .7B .74C .72D .46.(0分)[ID :9874]顺次连结对角线相等的四边形各边中点所得的四边形是( ) A .正方形 B .菱形 C .矩形 D .梯形7.(0分)[ID :9873]若正比例函数y =mx (m 是常数,m≠0)的图象经过点A (m ,4),且y 的值随x 值的增大而减小,则m 等于( )A .2B .﹣2C .4D .﹣48.(0分)[ID :9870]函数y =11x x +-中,自变量x 的取值范围是( ) A .x >-1 B .x >-1且x ≠1C .x ≥一1D .x ≥-1且x ≠1 9.(0分)[ID :9864]如图,在Rt ABC ∆中,90ACB ∠=︒,CD ,CE 分别是斜边上的高和中线,30B ∠=︒,4CE =,则CD 的长为( )A .25B .4C .23D .510.(0分)[ID :9859]下列各组数据中能作为直角三角形的三边长的是( ) A .1,2,2 B .1,1,3 C .4,5,6D .1,3,2 11.(0分)[ID :9855]下列各式正确的是( )A .()255-=- B .()20.50.5-=- C .()2255-= D .()20.50.5-=12.(0分)[ID :9923]如图,在矩形ABCD 中,AB=4,BC=6,点E 为BC 的中点,将ABE 沿AE 折叠,使点B 落在矩形内点F 处,连接CF,则CF 的长为( )A .95B .185C .165D .12513.(0分)[ID :9918]如图所示,一次函数y =kx +b (k 、b 为常数,且k ≠0)与正比例函数y =ax (a 为常数,且a ≠0)相交于点P ,则不等式kx +b >ax 的解集是( )A .x >1B .x <1C .x >2D .x <214.(0分)[ID :9838]小带和小路两个人开车从A 城出发匀速行驶至B 城.在整个行驶过程中,小带和小路两人车离开A 城的距离y (km)与行驶的时间t (h)之间的函数关系如图所示.有下列结论;①A ,B 两城相距300 km ;②小路的车比小带的车晚出发1 h ,却早到1h ;③小路的车出发后2.5 h 追上小带的车;④当小带和小路的车相距50 km 时,t =54或t =154.其中正确的结论有( )A .①②③④B .①②④C .①②D .②③④15.(0分)[ID :9835]如图,在Rt ABC △中,90B ∠=︒,6AB =,9BC =,将ABC △折叠,使点C 与AB 的中点D 重合,折痕交AC 于点M ,交BC 于点N ,则线段BN 的长为( )A .3B .4C .5D .6二、填空题16.(0分)[ID :10031]对于任意不相等的两个数a ,b ,定义一种运算※如下:a ※b =+-a b a b ,如3※2=32532+=-.那么12※4=_____. 17.(0分)[ID :10025]如图,在矩形ABCD 中,2AB =,对角线AC ,BD 相交于点O ,AE 垂直平分OB 于点E ,则AD 的长为__________.18.(0分)[ID :10024]小明这学期第一次数学考试得了72分,第二次数学考试得了86分,为了达到三次考试的平均成绩不少于80分的目标,他第三次数学考试至少得____分.19.(0分)[ID :10000]如图,平面直角坐标系中,点A 、B 分别是x 、y 轴上的动点,以AB 为边作边长为2的正方形ABCD ,则OC 的最大值为_____.20.(0分)[ID :9996]如果482x ⨯是一个整数,那么x 可取的最小正整数为________. 21.(0分)[ID :9979]菱形ABCD 中,对角线AC =8,BD =6,则菱形的边长为_____.22.(0分)[ID :9953]已知一个直角三角形的两边长分别为12和5,则第三条边的长度为_______23.(0分)[ID :9936]如图,已知一次函数y=kx+b 的图象与x 轴交于点(3,0),与y 轴交于点(0,2),不等式kx+b≥2解集是_______.24.(0分)[ID :9934]如图,已知▱ABCO 的顶点A 、C 分别在直线x =2和x =7上,O 是坐标原点,则对角线OB 长的最小值为_____.25.(0分)[ID :10026](1)计算填空:24= ,20.8 = ,2(3)-= , 223⎛⎫- ⎪⎝⎭= (2)根据计算结果,回答:2a 一定等于a 吗?你发现其中的规律了吗?并请你把得到的规律描述出来?(3)利用你总结的规律,计算:2( 3.15)π- 三、解答题26.(0分)[ID :10121]已知a ,b ,c 在数轴上如图:化简:()22a a b c a b c -++-++.27.(0分)[ID:10075]计算:(311223-)233131÷+-+()()28.(0分)[ID:10071]为了保护环境,某开发区综合治理指挥部决定购买A,B两种型号的污水处理设备共10台.已知用90万元购买A型号的污水处理设备的台数与用75万元购买B型号的污水处理设备的台数相同,每台设备价格及月处理污水量如下表所示:(1)求m的值;(2)由于受资金限制,指挥部用于购买污水处理设备的资金不超过165万元,问采用何种购买方案可以使得每月处理污水量的吨数为最多?并求出最多吨数.29.(0分)[ID:10069]如图,轮船甲位于码头O的正西方向A处,轮船乙位于码头O的正北方向C处,某一时刻,AC=182km,且OA=OC.轮船甲自西向东匀速行驶,同时轮船乙沿正北方向匀速行驶,它们的速度分别为40km/h和30km/h,经过0.2h,轮船甲行驶至B处,轮船乙行驶至D处,求此时B处距离D处多远?30.(0分)[ID:10045]某学校为改善办学条件,计划采购A、B两种型号的空调,已知采购3台A型空调和2台B型空调,需费用39000元;4台A型空调比5台B型空调的费用多6000元.(1)求A型空调和B型空调每台各需多少元;(2)若学校计划采购A、B两种型号空调共30台,且A型空调的台数不少于B型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案?(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.A2.C3.D4.A5.B6.B7.B8.D9.C10.D11.D12.B13.D14.C15.B二、填空题16.【解析】试题解析:根据题意可得:故答案为17.【解析】【分析】由矩形的性质和线段垂直平分线的性质证出OA=OB=AB=2得出BD=2OB=4由勾股定理求出AD即可【详解】解:∵四边形ABCD是矩形∴OB=ODOA=OCAC=BD∴OA=OB∵A18.82【解析】【分析】设第三次考试成绩为x根据三次考试的平均成绩不少于80分列不等式求出x的取值范围即可得答案【详解】设第三次考试成绩为x∵三次考试的平均成绩不少于80分∴解得:∴他第三次数学考试至少19.【解析】如图取AB的中点E连接OECE则BE=×2=1在Rt△BCE中由勾股定理得CE=∵∠AOB=90°点E是AB的中点∴OE=BE=1由两点之间线段最短可知点OEC三点共线时OC最大∴OC的最大20.6【解析】【分析】直接利用二次根式的性质化简再利用二次根式乘法运算法则求出答案【详解】解:∵是一个整数∴∴是一个整数∴x可取的最小正整数的值为:6故答案为:6【点睛】此题主要考查了二次根式的乘除正确21.5【解析】【分析】根据菱形的对角线互相垂直平分求出OAOB再利用勾股定理列式进行计算即可得解【详解】如图∵四边形ABCD是菱形∴OAAC=4OBBD=3AC⊥BD∴AB5故答案为:5【点睛】本题主要22.13或;【解析】第三条边的长度为23.x≤0【解析】【分析】由一次函数y=kx+b的图象过点(02)且y随x的增大而减小从而得出不等式kx+b≥2的解集【详解】解:由一次函数的图象可知此函数是减函数即y随x的增大而减小∵一次函数y=kx24.9【解析】【分析】过点B作BD⊥直线x=7交直线x=7于点D过点B作BE⊥x轴交x 轴于点E则OB=由于四边形OABC是平行四边形所以OA=BC又由平行四边形的性质可推得∠OAF=∠BCD则可证明△O25.(1)4083;(2)不一定=;(3)315﹣π【解析】【分析】(1)依据被开方数即可计算得到结果;(2)根据计算结果不一定等于a;(3)原式利用得出规律计算即可得到结果【详解】解:(1);故答案为三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.A解析:A【解析】分析:根据菱形的判断方法、正方形的判断方法和矩形的判断方法逐项分析即可. 详解:A 选项:∵四个角相等的菱形,∴四个角为直角的菱形,即为正方形,故是真命题;B 选项:对角线垂直的四边形可能是梯形,故对角线垂直的四边形是菱形是假命题;C 选项:当相等的边是对边时,它不是菱形,故有两边相等的平行四边形是菱形是假命题;D 选项:两条对角线相等的四边形可能是等腰梯形,故两条对角线相等的四边形是矩形是假命题;故选A.点睛:考查的是命题与定理,熟知正方形、菱形、矩形的判定定理与性质是解答此题的关键,用举反例来证明命题是假命题是判断命题真假的常用方法.2.C解析:C【解析】【分析】求出两小边的平方和、最长边的平方,看看是否相等即可.【详解】A .∵12+22≠32,∴以1,2,3为边组成的三角形不是直角三角形,故本选项错误;B .∵22+32≠42,∴以2,3,4为边组成的三角形不是直角三角形,故本选项错误;C .∵12+)2=2,∴以1选项正确;D )2+32≠523,5为边组成的三角形不是直角三角形,故本选项错误.故选C .【点睛】本题考查了勾股定理的逆定理的应用,能熟记勾股定理的逆定理的内容是解答此题的关键.3.D解析:D【解析】【分析】【详解】试题分析:A 、根据勾股定理的逆定理,可知222+=a b c ,故能判定是直角三角形;B、设a=3x,b=4x,c=5x,可知222a b c,故能判定是直角三角形;+=C、根据三角形的内角和为180°,因此可知∠C=90°,故能判定是直角三角形;D、而由3+4≠5,可知不能判定三角形是直角三角形.故选D考点:直角三角形的判定4.A解析:A【解析】【分析】当OP垂直于直线y=kx+b时,由垂线段最短可知:OP<2,故此函数在y轴的左侧有最小值,且最小值小于2,从而得出答案.【详解】解:如图所示:过点O作OP垂直于直线y=kx+b,∵OP垂直于直线y=kx+b,∴OP<2,且点P的横坐标<0.故此当x<0时,函数有最小值,且最小值<2,根据选项可知A符合题意.故选:A.【点睛】本题主要考查的是动点问题的函数图象,由垂线段最短判定出:当x<0时,函数有最小值,且最小值小于2是解题的关键.5.B解析:B【解析】【分析】已知,∠C=90°BC=6,AC=8,由勾股定理求AB,根据翻折不变性,可知△DAE≌△DBE,从而得到BD=AD,BE=AE,设CE=x,则AE=8-x,在Rt△CBE中,由勾股定理列方程求解.【详解】∵△CBE≌△DBE,∴BD=BC=6,DE=CE,在RT△ACB中,AC=8,BC=6,∴2222++.AC BC=68∴AD=AB-BD=10-6=4.根据翻折不变性得△EDA≌△EDB ∴EA=EB∴在Rt△BCE中,设CE=x,则BE=AE=8-x,∴BE2=BC2+CE2,∴(8-x)2=62+x2,解得x=74.故选B.【点睛】此题考查了翻折变换的问题,找到翻折后图形中的直角三角形,利用勾股定理来解答,解答过程中要充分利用翻折不变性.6.B解析:B【解析】【分析】根据三角形的中位线定理可知中点四边形的各边均等于四边形对角线长度的一半,再根据四边形对角线相等即可判断.【详解】解:根据三角形的中位线定理可知中点四边形的各边均等于四边形对角线长度的一半,而四边形对角线相等,则中点四边形的四条边均相等,即可为菱形,故选B.【点睛】本题考查的是三角形的中位线,解答本题的关键是熟练掌握三角形的中位线定理:三角形的中位线平行于第三边,且等于第三边的一半.7.B解析:B【解析】【分析】利用待定系数法求出m,再结合函数的性质即可解决问题.【详解】解:∵y=mx(m是常数,m≠0)的图象经过点A(m,4),∴m2=4,∴m=±2,∵y的值随x值的增大而减小,∴m<0,∴m=﹣2,故选:B.【点睛】本题考查待定系数法,一次函数的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.8.D解析:D【解析】根据题意得:1010x x +≥⎧⎨-≠⎩, 解得:x≥-1且x≠1.故选D .9.C解析:C【解析】【分析】由直角三角形斜边上的中线求得AB 的长度,再根据含30°角直角三角形的性质求得AC 的长度,最后通过解直角△ACD 求得CD 的长度.【详解】如图,在Rt ABC ∆中,90ACB ∠=︒,CE 是斜边上的中线,4CE =,28AB CE ∴==.30B ∠=︒,60A ∴∠=︒,142AC AB ==. CD 是斜边上的高,30ACD ∠=︒122AD AC ∴== 22224223CD AC AD ∴=-=-=故选:C .【点睛】考查了直角三角形斜边上的中线、含30度角直角三角形的性质.直角三角形斜边上的中线等于斜边的一半.10.D解析:D【解析】【分析】根据勾股定理的逆定理对各选项进行逐一分析即可.【详解】解:A 、∵12+22=5≠22,∴此组数据不能作为直角三角形的三边长,故本选项错误; B 、∵12+12=2≠(3)2,∴此组数据不能作为直角三角形的三边长,故本选项错误; C 、∵42+52=41≠62,∴此组数据不能作为直角三角形的三边长,故本选项错误; D 、∵12+(3)2=4=22,∴此组数据能作为直角三角形的三边长,故本选项正确. 故选D .【点睛】本题考查的是勾股定理的逆定理,熟知如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形是解答此题的关键.11.D解析:D【解析】【分析】【详解】解:因为()()222550.50.50.5-=-==,,所以A ,B ,C 选项均错, 故选D 12.B解析:B【解析】【分析】连接BF ,由折叠可知AE 垂直平分BF ,根据勾股定理求得AE=5,利用直角三角形面积的两种表示法求得BH=125,即可得BF=245,再证明∠BFC=90°,最后利用勾股定理求得CF=185. 【详解】 连接BF ,由折叠可知AE 垂直平分BF ,∵BC=6,点E 为BC 的中点,∴BE=3,又∵AB=4,∴==5,∵1122AB BE AE BH⋅=⋅,∴1134522BH ⨯⨯=⨯⨯,∴BH=125,则BF=245,∵FE=BE=EC,∴∠BFC=90°,∴CF==185.故选B.【点睛】本题考查的是翻折变换的性质、矩形的性质及勾股定理的应用,掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.13.D解析:D【解析】分析:以函数的交点为分界线,然后看谁的图像在上面就是谁大.详解:根据函数图像可得:当x>2时,kx+b<ax,故选C.点睛:本题主要考查的是不等式与函数之间的关系,属于中等难度题型.解决这个问题的关键就是看懂函数图像.14.C解析:C【解析】【分析】观察图象可判断①②,由图象所给数据可求得小带、小路两车离开A城的距离y与时间t 的关系式,可求得两函数图象的交点,可判断③,再令两函数解析式的差为50,可求得t,可判断④,可得出答案.【详解】由图象可知A,B两城市之间的距离为300 km,小带行驶的时间为5 h,而小路是在小带出发1 h后出发的,且用时3 h,即比小带早到1 h,∴①②都正确;设小带车离开A城的距离y与t的关系式为y小带=kt,把(5,300)代入可求得k=60,∴y小带=60t,设小路车离开A城的距离y与t的关系式为y小路=mt+n,把(1,0)和(4,300)代入可得0 4300 m nm n+=⎧⎨+=⎩解得100100 mn=⎧⎨=-⎩∴y小路=100t-100,令y小带=y小路,可得60t=100t-100,解得t=2.5,即小带和小路两直线的交点横坐标为t=2.5,此时小路出发时间为1.5 h,即小路车出发1.5 h后追上甲车,∴③不正确;令|y小带-y小路|=50,可得|60t-100t+100|=50,即|100-40t|=50,当100-40t=50时,可解得t=54,当100-40t=-50时,可解得t=154,又当t=56时,y小带=50,此时小路还没出发,当t=256时,小路到达B城,y小带=250.综上可知当t的值为54或154或56或256时,两车相距50 km,∴④不正确.故选C.【点睛】本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,特别注意t是甲车所用的时间.15.B解析:B【解析】【分析】由折叠的性质可得DN CN=,根据勾股定理可求DN的长,即可求BN的长.【详解】D是AB中点,6AB=,3AD BD∴==,根据折叠的性质得,DN CN=,9BN BC CN DN∴=-=-,在Rt DBN 中,222DN BN DB =+,22(9)9DN DN ∴=-+,5DN ∴=4BN ∴=,故选B .【点睛】本题考查了翻折变换,折叠的性质,勾股定理,熟练运用折叠的性质是本题的关键.二、填空题16.【解析】试题解析:根据题意可得:故答案为 解析:12【解析】试题解析:根据题意可得:41124.124882====-※ 故答案为1.217.【解析】【分析】由矩形的性质和线段垂直平分线的性质证出OA=OB=AB=2得出BD=2OB=4由勾股定理求出AD 即可【详解】解:∵四边形ABCD 是矩形∴OB=ODOA=OCAC=BD∴OA=OB∵A解析:【解析】【分析】由矩形的性质和线段垂直平分线的性质证出OA =OB =AB =2,得出BD =2OB =4,由勾股定理求出AD 即可.【详解】解:∵四边形ABCD 是矩形,∴OB =OD ,OA =OC ,AC =BD ,∴OA =OB ,∵AE 垂直平分OB ,∴AB =AO ,∴OA =OB =AB =2,∴BD =2OB =4,∴AD故答案为:【点睛】此题考查了矩形的性质、线段垂直平分线的性质、勾股定理;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.18.82【解析】【分析】设第三次考试成绩为x根据三次考试的平均成绩不少于80分列不等式求出x的取值范围即可得答案【详解】设第三次考试成绩为x∵三次考试的平均成绩不少于80分∴解得:∴他第三次数学考试至少解析:82【解析】【分析】设第三次考试成绩为x,根据三次考试的平均成绩不少于80分列不等式,求出x的取值范围即可得答案.【详解】设第三次考试成绩为x,∵三次考试的平均成绩不少于80分,∴7286803x++≥,解得:82x≥,∴他第三次数学考试至少得82分,故答案为:82【点睛】本题考查了一元一次不等式的应用.熟练掌握求平均数的方法,根据不等关系正确列出不等式是解题关键.19.【解析】如图取AB的中点E连接OECE则BE=×2=1在Rt△BCE中由勾股定理得CE=∵∠AOB=90°点E是AB的中点∴OE=BE=1由两点之间线段最短可知点OEC三点共线时OC最大∴OC的最大【解析】如图,取AB的中点E,连接OE、CE,则BE=12×2=1,在Rt△BCE中,由勾股定理得,=∵∠AOB=90°,点E是AB的中点,∴OE=BE=1,由两点之间线段最短可知,点O、E、C三点共线时OC最大,∴OC的最大值..【点睛】运用了正方形的性质,直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,熟记各性质并确定出OC最大时的情况是解题的关键.20.6【解析】【分析】直接利用二次根式的性质化简再利用二次根式乘法运算法则求出答案【详解】解:∵是一个整数∴∴是一个整数∴x 可取的最小正整数的值为:6故答案为:6【点睛】此题主要考查了二次根式的乘除正确 解析:6【解析】【分析】直接利用二次根式的性质化简,再利用二次根式乘法运算法则求出答案.【详解】 解:∵482x ⨯是一个整数, ∴34824246x x x ⨯=⨯=,∴46x 是一个整数,∴x 可取的最小正整数的值为:6.故答案为:6.【点睛】此题主要考查了二次根式的乘除,正确化简二次根式是解题关键.21.5【解析】【分析】根据菱形的对角线互相垂直平分求出OAOB 再利用勾股定理列式进行计算即可得解【详解】如图∵四边形ABCD 是菱形∴OAAC=4OBBD =3AC⊥BD∴AB5故答案为:5【点睛】本题主要解析:5【解析】【分析】根据菱形的对角线互相垂直平分求出OA 、OB ,再利用勾股定理列式进行计算即可得解.【详解】如图,∵四边形ABCD 是菱形,∴OA 12=AC =4,OB 12=BD =3,AC ⊥BD , ∴AB 22OA OB =+=5故答案为:5【点睛】本题主要考查了菱形的对角线互相垂直平分的性质,勾股定理的应用,熟记菱形的各种性质是解题的关键.22.13或;【解析】第三条边的长度为解析:13【解析】第三条边的长度为23.x≤0【解析】【分析】由一次函数y=kx+b的图象过点(02)且y随x的增大而减小从而得出不等式kx+b≥2的解集【详解】解:由一次函数的图象可知此函数是减函数即y随x的增大而减小∵一次函数y=kx解析:x≤0【解析】【分析】由一次函数y=kx+b的图象过点(0,2),且y随x的增大而减小,从而得出不等式kx+b≥2的解集.【详解】解:由一次函数的图象可知,此函数是减函数,即y随x的增大而减小,∵一次函数y=kx+b的图象与y轴交于点(0,2),∴当x≤0时,有kx+b≥2.故答案为x≤0.【点睛】本题考查的是一次函数与一元一次不等式的关系,能利用数形结合求出不等式的解集是解答此题的关键.24.9【解析】【分析】过点B作BD⊥直线x=7交直线x=7于点D过点B作BE⊥x轴交x轴于点E则OB=由于四边形OABC是平行四边形所以OA=BC又由平行四边形的性质可推得∠OAF=∠BCD则可证明△O解析:9【解析】【分析】过点B作BD⊥直线x=7,交直线x=7于点D,过点B作BE⊥x轴,交x轴于点E.则OB.由于四边形OABC是平行四边形,所以OA=BC,又由平行四边形的性质可推得∠OAF=∠BCD,则可证明△OAF≌△BCD,所以OE的长固定不变,当BE 最小时,OB取得最小值,即可得出答案.【详解】解:过点B作BD⊥直线x=7,交直线x=7于点D,过点B作BE⊥x轴,交x轴于点E,直线x=2与OC交于点M,与x轴交于点F,直线x=7与AB交于点N,如图:∵四边形OABC是平行四边形,∴∠OAB=∠BCO,OC∥AB,OA=BC,∵直线x=2与直线x=7均垂直于x轴,∴AM∥CN,∴四边形ANCM是平行四边形,∴∠MAN=∠NCM,∴∠OAF=∠BCD,∵∠OFA=∠BDC=90°,∴∠FOA=∠DBC,在△OAF和△BCD中,FOA DBC OA BCOAF BCD ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△OAF≌△BCD(ASA).∴BD=OF=2,∴OE=7+2=9,∴OB =22OE BE+.∵OE的长不变,∴当BE最小时(即B点在x轴上),OB取得最小值,最小值为OB=OE=9.故答案为:9.【点睛】本题考查了平行四边形的性质、坐标与图形性质、全等三角形的判定与性质;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.25.(1)4083;(2)不一定=;(3)315﹣π【解析】【分析】(1)依据被开方数即可计算得到结果;(2)根据计算结果不一定等于a;(3)原式利用得出规律计算即可得到结果【详解】解:(1);故答案为解析:(1)4, 0.8,3,23;(22a a;(3)3.15﹣π.【解析】【分析】(1)依据被开方数即可计算得到结果;(22a a;(3)原式利用得出规律计算即可得到结果.【详解】解:(1)22222244,0.80.8,(3)3,33⎛⎫==-=-= ⎪⎝⎭; 故答案为:4,0.8,3,23; (2)2a 不一定等于a ,规律:2a =|a|;(3)2( 3.15)π-=|π﹣3.15|=3.15﹣π.【点睛】此题考查了二次根式的性质与化简,熟练掌握二次根式的性质是解本题的关键.三、解答题26.a -【解析】【分析】直接利用数轴得出a <0,a+b <0,c-a >0,b+c <0,进而化简得出答案.【详解】解:如图所示:∴a <0,a+b <0,c-a >0,b+c <0,()22a a b c a b c +-+ =-+++---a a b c a b c =a -;【点睛】此题主要考查了二次根式的性质和数轴,正确得出各部分符号是解题关键. 27.243【解析】【分析】根据二次根式的混合运算法则计算即可.【详解】原式=31123323÷÷+32-1=13313-+-=243.【点睛】本题考查了二次根式的混合运算,掌握各运算法则和平方差公式是关键.28.(1)m=18;(2)两种设备各购入5台,可以使得每月处理污水量的吨数为最多,最多为20000吨【解析】【分析】(1)根据90万元购买A型号的污水处理设备的台数与用75万元购买B型号的污水处理设备的台数相同,列出关于m的分式方程,求出m的值即可;(2)设购买A型设备x台,则B型设备(10-x)台,根据题意列出关于x的一元一次不等.式,求出x的取值范围,再设每月处理污水量为W吨,则W=2200x+1800(10-x)=400x+18000,根据一次函数的性质即可求出最大值.【详解】(1)由题意得:9753 m m=-,解得m=18,经检验m=18是原方程的根,故m的值为18;(2)设购买A型设备x台,B型设备(10-x)台,由题意得:18x+15(10-x)≤165,解得x≤5,设每月处理污水量为W吨,由题意得:W=2200x+1800(10-x)=400x+18000,∵400>0,∴W随着x的增大而增大,∴当x=5时,W最大值为400×5+18000=20000,即两种设备各购入5台,可以使得每月处理污水量的吨数为最多,最多为20000吨.【点睛】本题考查了一次函数与不等式的综合应用,属于方案比较问题,理解题意是解题关键.29.此时B处距离D处26km远.【解析】【分析】在Rt△OBD中,求出OB,OD,再利用勾股定理即可解决问题;【详解】在Rt △AOC 中,∵OA =OC ,AC =km ,∴OA =OC =18(km),∵AB =0.2×40=8(km),CD =0.2×30=6(km), ∴OB =10(km),OD =24(km),在Rt △OBD 中,BD26(km).答:此时B 处距离D 处26km 远.【点睛】本题考查勾股定理,解直角三角形等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.30.(1)A 型空调和B 型空调每台各需9000元、6000元;(2)共有三种采购方案,方案一:采购A 型空调10台,B 型空调20台,方案二:采购A 型空调11台,B 型空调19台,案三:采购A 型空调12台,B 型空调18台;(3)采购A 型空调10台,B 型空调20台可使总费用最低,最低费用是210000元.【解析】分析:(1)根据题意可以列出相应的方程组,从而可以解答本题;(2)根据题意可以列出相应的不等式组,从而可以求得有几种采购方案;(3)根据题意和(2)中的结果,可以解答本题.详解:(1)设A 型空调和B 型空调每台各需x 元、y 元,3239000456000x y x y +⎧⎨-⎩==,解得,90006000x y ⎧⎨⎩==, 答:A 型空调和B 型空调每台各需9000元、6000元;(2)设购买A 型空调a 台,则购买B 型空调(30-a )台,()()13029000600030217000a a a a ⎧≥-⎪⎨⎪+-≤⎩, 解得,10≤a≤1213, ∴a=10、11、12,共有三种采购方案,方案一:采购A 型空调10台,B 型空调20台,方案二:采购A 型空调11台,B 型空调19台,方案三:采购A 型空调12台,B 型空调18台;(3)设总费用为w 元,w=9000a+6000(30-a )=3000a+180000,∴当a=10时,w 取得最小值,此时w=210000,即采购A 型空调10台,B 型空调20台可使总费用最低,最低费用是210000元.点睛:本题考查一次函数的应用、一元一次不等式组的应用、二元一次方程组的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数和不等式的思想解答.。

广西桂林市茶洞初级中学2022-2023学年下学期八年级期中数学试卷(含答案)

广西桂林市茶洞初级中学2022-2023学年下学期八年级期中数学试卷(含答案)

2022-2023学年广西桂林市茶洞初中八年级(下)期中数学试卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列图案是历届冬奥会会徽,其中是中心对称图形的是( )A.B.C.D.2.(3分)随着人们对环境的重视,新能源的开发迫在眉睫,石墨烯是现在世界上最薄的纳米材料,其理论厚度应是0.0000034m,用科学记数法表示0.0000034是( )A.0.34×10﹣5B.3.4×106C.3.4×10﹣5D.3.4×10﹣6 3.(3分)下列计算正确的是( )A.a2+a3=a5B.3﹣2=1C.(x2)3=x5D.m5÷m3=m2 4.(3分)一次函数y=x﹣2的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限5.(3分)如图,在Rt△ABC中,∠ABC=90°,D为AC的中点,若∠C=55°,则∠ABD 的度数为( )A.55°B.35°C.45°D.30°6.(3分)若把分式中的x和y都扩大10倍,那么分式的值( )A.扩大10倍B.不变C.缩小10倍D.缩小100倍7.(3分)数形结合是解决数学问题常用的思想方法.如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),根据图象可知,关于x的不等式x+b>kx+4的解集是( )A.x>3B.x<3C.x>1D.x<18.(3分)若用反证法证明命题“在△ABC中,若∠B>∠C,则AC>AB”,则应假设( )A.∠B>∠C B.∠B≤∠C C.AC>AB D.AC≤AB9.(3分)已知方程x2﹣4x+k=0的两个实数根是x1=1,x2=3,则方程(x﹣5)2﹣4(x﹣5)+k=0的两个实数根是( )A.x1=1,x2=3B.x1=6,x2=8C.x1=﹣4,x2=﹣2D.x1=0,x2=210.(3分)如图,在平行四边形ABCD中,以BC和AD为斜边分别向内作等腰直角三角形BCE和ADG,延长BE和DG分别交AG和CE于点H和F,直线FH分别交AD和BC 于点I和J.若四边形EFGH是正方形,IJ=6,则平行四边形ABCD的面积是( )A.24B.36C.48D.72二.填空题(共7小题,满分21分,每小题3分)11.(3分)方程x2﹣6x=0的解为 .12.(3分)分解因式:3m2﹣3= .13.(3分)函数的自变量x的取值范围是 .14.(3分)如图,在▱ABCD中,AD=10,对角线AC与BD相交于点O,AC+BD=22,则△BOC的周长为 .15.(3分)一次函数y=﹣x+4与x轴交于点A,与y轴交于点B,将线段AB绕A点逆时针旋转90°,使B点落在M点处,则M的坐标为 .16.(3分)反比例函数y=(k<0),当1≤x≤3时,函数y的最大值和最小值之差为4,则k= .17.(3分)如图,在等腰Rt△ABC中,AB=AC,∠CAB=90°,已知A(﹣2,0),B(0,1),把△ABC沿x轴正方向向右平移使B、C平移后在B′与C′的位置,此时B′、C′在同一双曲线y=上,则k的值为 .三.解答题(共9小题,满分69分)18.(6分)计算:.19.(6分)解分式方程:﹣1=.20.(7分)先化简,再求值:(1﹣)÷,其中x=2+.21.(7分)已知关于x的一次函数y=(3﹣m)x+m﹣5.(1)若一次函数的图象过原点,求实数m的值;(2)当一次函数的图象经过第二、三、四象限时,求实数m的取值范围.22.(8分)今年是毛泽东等老一辈革命家为雷锋同志题词60周年.为深入贯彻落实党的二十大精神,大力弘扬宣传雷锋精神,某学校举行了以“传承雷锋精神,争当追锋少年”为主题的知识竞赛活动,竞赛满分为10分,学生成绩平均在7分以上,将成绩10分、9分、8分、7分,分别定为A,B,C,D四个等级.学校随机抽取部分学生的竞赛成绩绘制统计图,请回答下列问题:(1)学校随机抽取的学生人数为 ;(2)补全条形统计图;(3)在扇形统计图中,“C”部分所对应的圆心角的度数为 度;(4)如果该校共有学生4800人,且规定等级为A、B的为优秀,请估计该校学生在此次知识竞赛活动中成绩为优秀的有多少人?23.(8分)在△ABC中,点D是边AC的中点,以AD和BD为邻边作平行四边形AEBD,连接DE交AB于点O.(1)证明:OD=BC;(2)当∠ABC=90°时,若OD=3,AE=4,求AB的长.24.(8分)在爱心义卖活动中,某班的店铺准备义卖小蛋糕.当每个小蛋糕的售价定为6元时,平均每小时的销售数量为30个.细心的小亮发现,售价每提高1元,平均每小时的销售数量就会减少2个,但售价不能超过10元.(1)若小蛋糕的售价在6元的基础上连续两次涨价,两次涨价后的售价为8.64元,且每次涨价的百分率均相同,求涨价的百分率是多少;(2)若平均每小时的销售总额为216元,求此时小蛋糕的售价定为多少元.25.(9分)A,B两城市之间有一条公路相连,公路中途穿过C市,甲车从A市到B市,乙车从C市到A市,甲车的速度比乙车的速度慢20千米/时,两车距离C市的路程y(单位:千米)与行驶的时间t(单位:小时)的函数图象如图所示,结合图象信息,解答下列问题:(1)甲车的速度是 千米/时,在图中括号内填入正确的数;(2)求图象中线段MN所在直线的函数解析式,不需要写出自变量的取值范围;(3)直接写出甲车出发后几小时,两车距C市的路程之和是460千米.26.(10分)如图1,在平面直角坐标系xOy中,点O为坐标原点,直线l1:与x轴,y轴分别交于A,B两点,点C(2,3)为直线l1上一点,另一直线l2:经过点C,且与y轴交于点D.(1)求点C的坐标和b的值;(2)如图2,点P为y轴上一动点,将△CPD沿直线CP翻折得到△CPE.①当点P为线段OD上一动点时,设线段CE交线段BD于点F,求△PEF与△BFC的面积相等时,点P的坐标;②当点E落在x轴上时,求点E的坐标及△PCE的面积.2022-2023学年广西桂林市茶洞初中八年级(下)期中数学试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【解答】解:A.是中心对称图形,故此选项符合题意;B.不是中心对称图形,故此选项不合题意;C.不是中心对称图形,故此选项不合题意;D.不是中心对称图形,故此选项不合题意;故选:A.2.【解答】解:用科学记数法表示0.0000034是3.4×10﹣6.故选:D.3.【解答】解:A、a2+a3,无法计算,故此选项错误;B、3﹣2=,故此选项错误;C、(x2)3=x6,故此选项错误;D、m5÷m3=m2,正确.故选:D.4.【解答】解:∵一次函数y=x﹣2中k=1>0,b=﹣2<0,∴此函数的图象经过一、三、四象限,不经过第二象限.故选:B.5.【解答】解:∵∠ABC=90°,∠C=55°,∴∠A=90°﹣∠C=35°,∵D为AC的中点,∴AD=BD=AC,∴∠A=∠ABD=35°,故选:B.6.【解答】解:∵分式中的x,y都扩大10倍,得=,∴分式的值不变.故选:B.7.【解答】解:由一次函数的图象可知,当x>1时,一次函数y1=x+b的图象在一次函数y2=kx+4的图象的上方,∴关于x的不等式x+b>kx+4的解集是x>1.故选:C.8.【解答】解:用反证法证明命题“在△ABC中,若∠B>∠C,则AC>AB”,应假设AC≤AB,故选:D.9.【解答】解:把方程(x﹣5)2﹣4(x﹣5)+k=0看作关于(x﹣5)的一元二次方程,∵方程x2﹣4x+k=0的两个实数根是x1=1,x2=3,∴x﹣5=1或x﹣5=3,解得x1=6,x2=8,即方程(x﹣5)2﹣4(x﹣5)+k=0的两个实数根是x1=6,x2=8.故选:B.10.【解答】解:设AH=2a,HG=b,∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵△BCE和△ADG都是等腰直角三角形,∴∠AGD=∠BEC=90°,AD=BC=AG=CE,∠ADG=∠BCE=∠GAD=45°,∴CE=AG,∵四边形EFGH是正方形,∴EF=HG,FH=b,∠FHG=∠HFG=45°=∠AHI=∠CFJ,∴△AHI和△CFJ都是等腰直角三角形,CF=AH=2a,∠DIF=90°,∴FJ=IH=a,∴IJ=FJ+IH+FH=6,∴2a+b=6,∴2a+b=6=AG,∴AD=6,∴平行四边形ABCD的面积=AD•IJ=6×6=72,故选:D.二.填空题(共7小题,满分21分,每小题3分)11.【解答】解:x2﹣6x=0,x(x﹣6)=0,x=0,x﹣6=0,x1=0,x2=6,故答案为:x1=0,x2=6.12.【解答】解:原式=3(m2﹣1)=3(m+1)(m﹣1).故答案为:3(m+1)(m﹣1).13.【解答】解:根据题意得,x﹣3≥0,解得x≥3.故答案为:x≥3.14.【解答】解:∵四边形ABCD是平行四边形,∴AO=OC=AC,BO=OD=BD,AD=BC=10,∵AC+BD=22,∴OC+BO=11,∴△BOC的周长=OC+OB+BC=11+10=21.故答案为:21.15.【解答】解:如图,过点M作MN⊥x轴于点N,∵一次函数y=﹣x+4与x轴交于点A,与y轴交于点B,∴点A(3,0),点B(0,4)∴AO=3,BO=4∵将线段AB绕A点逆时针旋转90°,∴AB=AM,∠BAM=90°,∴∠BAO+∠MAN=90°,且∠BAO+∠ABO=90°,∴∠ABO=∠MAN,且AB=AM,∠AOB=∠MNA=90°,∴△AOB≌△MNA(AAS)∴MN=AO=3,BO=AN=4∴NO=1∴点M坐标(﹣1,﹣3)故答案为:(﹣1,﹣3)16.【解答】解:∵k<0,∴在每一象限内,反比例函数y随x的增大而增大.∵当1≤x≤3时,函数y的最大值和最小值之差为4,∴﹣=4,解得k=﹣6,综上所述,k=﹣6.故答案为:﹣6.17.【解答】解:作CN⊥x轴于点N,∵A(﹣2,0)B(0,1).∴OB=1,AO=2,在Rt△CAN和Rt△AOB中,,∴Rt△CAN≌Rt△AOB(HL),∴AN=BO=1,CN=AO=2,NO=NA+AO=3,又∵点C在第二象限,∴C(﹣3,2),设△ABC沿x轴的正方向平移c个单位,则C′(﹣3+c,2),则B′(c,1),又点C′和B′在该比例函数图象上,∴k=2(﹣3+c)=c,即﹣6+2c=c,解得c=6,∴k=c=6.故答案为:6.三.解答题(共9小题,满分69分)18.【解答】解:=1﹣1×(﹣8)=1+8=9.19.【解答】解:两边都乘以(x+2)(x﹣1),得:x(x+2)﹣(x+2)(x﹣1)=3,解得:x=1,检验:x=1时,(x+2)(x﹣1)=0,∴x=1是分式方程的增根,∴原方程无解.20.【解答】解:(1﹣)÷=×=×=∴当x=2+时,原式==.21.【解答】解:(1)把原点(0,0)代入,得m﹣5=0解得m=5;(2)由题意,得.解得3<m<5.22.【解答】解:(1)一共调查学生人数为4÷10%=40(人),故答案为:40;(2)C等级人数为40﹣4﹣16﹣8=12(人),补全条形统计图如下:(3)在扇形统计图中,“C”部分所对应的圆心角的度数为:360°×(1﹣10%﹣20%﹣40%)=108°,故答案为:108;(4)4800×(10%+40%)=2400(人),答:估计该校学生在此次知识竞赛活动中成绩为优秀的大约有2400人.23.【解答】(1)证明:∵四边形AEBD是平行四边形,∴OA=OB,∵点D是边AC的中点,∴AD=DC,∴OD是△ABC的中位线,∴OD=BC;(2)解:由(1)可知OD=BC,∴BC=6,∵四边形AEBD是平行四边形,∴BD=AE=4,∵∠ABC=90°,点D是边AC的中点,∴AC=2BD=8,∴AB=.24.【解答】解:(1)设涨价的百分率是x,由题意得:6(1+x)2=8.64,解得:x1=20%,x2=﹣220%(不合题意,舍去),答:涨价的百分率是20%;(2)设小蛋糕的售价提高a元,则每小时的销售数量就会减少2a个,由题意得:(6+a)(30﹣2a)=216,整理得:a2﹣9a+18=0,解得:a1=3,a2=6,∴小蛋糕的售价为:6+3=9(元)或6+6=12(元),∵售价不能超过10元,∴小蛋糕的售价为9元,答:此时小蛋糕的售价定为9元.25.【解答】解:(1)由题意,甲的速度为=60千米/小时.乙的速度为80千米/小时,=6(小时),4+6=10(小时),∴图中括号内的数为10.故答案为:60.(2)设线段MN所在直线的解析式为y=kt+b(k≠0 ).把点M(4,0),N(10,480)代入y=kt+b,得:,解得:.∴线段MN所在直线的函数解析式为y=80t﹣320.(3)(480﹣460)=20,20÷60=(小时),或60t﹣480+80(t﹣4)=460,解得t=9,答:甲车出发小时或9小时时,两车距C市的路程之和是460千米.26.【解答】解:(1)令y1=3,则x=a=﹣3,∴C点坐标为(2,3),把(﹣3,3)代入得:3=,解得:b=7;(2)①由轴对称性质可知:△CDP≌△CEP,∴S△CDP=S△CEP,∵S△PEF=S△DFC,∴S△PEF+S△CFP=S△EPC+S△CFP,即S△CEP=S△BCP,∴S△CDP=S△BCP,∴P为BD的中点,对于,令x=0,则,∴B(0,),对于,令x=0,则y2=7,∴D(0,7),∴P(0,),即P(0,);②过点C作CG⊥y轴于点G,过点C作CH⊥x轴于点H,∵C(﹣3,3),D(0,7),∴在Rt△CGP中,由勾股定理得CD=,故CE=5,∵C(﹣3,3),∴CH=3,OH=3,∴根据勾股定理可得:EH==4;(Ⅰ)当E在H右侧时,E(1,0),如图所示:设DP=PE=x,则OP=7﹣x,在Rt△OPE中,由勾股定理得,(7﹣x)2+12=x2,解得:x=,∴;(Ⅱ)当E在H左侧时,E(﹣7,0),此时点P在原点O,如图所示:∴.综上,E(﹣7,0),或E(1,0),.。

【解析版】初中数学八年级下期中经典题(课后培优)(3)

【解析版】初中数学八年级下期中经典题(课后培优)(3)

一、选择题1.(0分)[ID:9912]如图,数轴上点A,B表示的数分别是1,2,过点B作PQ⊥AB,以点B为圆心,AB长为半径画弧,交PQ于点C,以原点O为圆心,OC长为半径画弧,交数轴于点M,则点M表示的数是( )A.3B.5C.6D.72.(0分)[ID:9905]如图,在矩形ABCD中,AB=2,BC=3.若点E是边CD的中点,连接AE,过点B作BF⊥AE交AE于点F,则BF的长为()A.3102B.3105C.105D.3553.(0分)[ID:9904]某学校组织学生进行社会主义核心价值观的知识竞赛,进入决赛的共有20名学生,他们的决赛成绩如下表所示:决赛成绩/分95908580人数4682那么20名学生决赛成绩的众数和中位数分别是( )A.85,90B.85,87.5C.90,85D.95,904.(0分)[ID:9900]如图,在菱形ABCD中,AB=6,∠ABC=60°,M为AD中点,P为对角线BD上一动点,连接PA和PM,则PA+PM的最小值是( )A.3 B.2√3C.3√3D.65.(0分)[ID:9896]已知P(x,y)是直线y=1322x 上的点,则4y﹣2x+3的值为( ) A .3B .﹣3C .1D .06.(0分)[ID :9894]实数a ,b 在数轴上的位置如图所示,则化简()()2212a b +--的结果是( )A .3a b -+B .1a b +-C .1a b --+D .1a b -++7.(0分)[ID :9889]如图,若点P 为函数(44)y kx b x =+-≤≤图象上的一动点,m 表示点P 到原点O 的距离,则下列图象中,能表示m 与点P 的横坐标x 的函数关系的图象大致是( )A .B .C .D .8.(0分)[ID :9882]有一直角三角形纸片,∠C =90°BC =6,AC =8,现将△ABC 按如图那样折叠,使点A 与点B 重合,折痕为DE ,则CE 的长为( )A .7B .74C .72D .49.(0分)[ID :9877]周末小丽从家里出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以小丽骑得特别放松.途中,她在路边的便利店挑选一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园.图中描述了小丽路上的情景,下列说法中错误的是( )A.小丽从家到达公园共用时间20分钟B.公园离小丽家的距离为2000米C.小丽在便利店时间为15分钟D.便利店离小丽家的距离为1000米10.(0分)[ID:9870]函数y=11xx+-中,自变量x的取值范围是()A.x>-1B.x>-1且x≠1C.x≥一1D.x≥-1且x≠1 11.(0分)[ID:9865]如图,函数y=2x和y=ax+4的图象相交于A(m,3),则不等式2x ax+4<的解集为()A.3x2>B.x3>C.3x2<D.x3<12.(0分)[ID:9862]如图,在菱形ABCD中,BE⊥CD于E,AD=5,DE=1,则AE=()A.4B.5C.34D.4113.(0分)[ID:9917]如图所示,▱ABCD的对角线AC,BD相交于点O,AE EB=,3OE=,5AB=,▱ABCD的周长()A.11B.13C.16D.2214.(0分)[ID:9872]下列计算正确的是()A.a2+a3=a5B.3221=C.(x2)3=x5D.m5÷m3=m2 15.(0分)[ID:9915]菱形周长为40cm,它的条对角线长12cm,则该菱形的面积为()A.24B.48C.96D.36二、填空题16.(0分)[ID :10029]某校在“爱护地球,绿化祖国“的创建活动中,组织了100名学生开展植数造林活动,其植树情况整理如下表: 植树棵数(单位:棵) 4 5 6 8 10 人数(人)302225158则这100名学生所植树棵数的中位数为_____.17.(0分)[ID :10024]小明这学期第一次数学考试得了72分,第二次数学考试得了86分,为了达到三次考试的平均成绩不少于80分的目标,他第三次数学考试至少得____分. 18.(0分)[ID :10019]当直线y=kx+b 与直线y=2x-2平行,且经过点(3,2)时,则直线y=kx+b 为______.19.(0分)[ID :10013]如图,点E 在正方形ABCD 的边AB 上,若1EB ,2EC =,那么正方形ABCD 的面积为_.20.(0分)[ID :9988]如图,正方形ABCD 的边长为3,点E 在BC 上,且CE=1,P 是对角线AC 上的一个动点,则PB+PE 的最小值为______.21.(0分)[ID :9987]在矩形ABCD 中,点E 为AD 的中点,点F 是BC 上的一点,连接EF 和DF ,若AB=4,BC=8,EF=25,则DF 的长为___________.22.(0分)[ID :9986]若菱形的两条对角线长分别是6㎝和8㎝,则该菱形的面积是 ㎝2.23.(0分)[ID :9976]如图,在ABC ∆中,D 、E 分别为AB 、AC 的中点,点F 在DE 上,且AF CF ⊥,若3AC =,5BC =,则DF =__________.24.(0分)[ID :9974]小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多出1m,当它把绳子的下端拉开旗杆4m后,发现下端刚好接触地面,则旗杆的高为________ 25.(0分)[ID:9940]如图,在∠MON的两边上分别截取OA、OB,使OA=OB;分别以点A、B为圆心,OA长为半径作弧,两弧交于点C;连接AC、BC、AB、OC.若AB=2cm,四边形OACB的面积为4cm2.则OC的长为_____cm.三、解答题26.(0分)[ID:10126]某单位计划在新年期间组织员工到某地旅游,参加旅游的人数估计为10到25人,甲乙两家旅行社的服务质量相同,且报价都是每人200元,经过协商,甲旅行社表示可以给每位游客七五折优惠,乙旅行社表示可以先免去一位游客的旅游费用,然后给予其余游客八折优惠.若单位参加旅游的人数为x人,甲乙两家旅行社所需的费用分别为y1和y2.(1)写出y1,y2与x的函数关系式并在所给的坐标系中画出y1,y2的草图;(2)根据图像回答,该单位选择哪家旅行社所需的费用最少?27.(0分)[ID:10114]先阅读,后解答:(1)由根式的性质计算下列式子得:①√32=3,②√(23)2=23,③√(−13)2=13,④√(−5)2=5,⑤√0=0.由上述计算,请写出√a2的结果(a为任意实数).(2)利用(1)中的结论,计算下列问题的结果:①√(3.14−π)2;②化简:√x2−4x+4(x<2).(3)应用:若√(x−5)2+√(x−8)2=3,求x的取值范围.28.(0分)[ID:10101]123101010 23429.(0分)[ID:10089]定义:到三角形的两个顶点距离相等的点,叫做此三角形的准外心.已知:在Rt ABC 中,90BAC ∠=︒,斜边5BC =,直角边3AB Rt ABC =,的准外心P 在AC 边上,试求PA 的长.30.(0分)[ID :10083]已知 90, 23,8,ACB BC AC CD ︒∠===是边AB 上的高,求CD 的长【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题 1.B 2.B 3.B 4.C 5.B 6.A 7.A 8.B 9.C 10.D 11.C12.C13.D14.D15.C二、填空题16.5【解析】【分析】直接利用中位数定义求解【详解】第50个数和第55个数都是5所以这100名学生所植树棵数的中位数为5(棵)故答案为5【点睛】考查了中位数:将一组数据按照从小到大(或从大到小)的顺序排17.82【解析】【分析】设第三次考试成绩为x根据三次考试的平均成绩不少于80分列不等式求出x的取值范围即可得答案【详解】设第三次考试成绩为x∵三次考试的平均成绩不少于80分∴解得:∴他第三次数学考试至少18.y=2x﹣4【解析】【分析】根据两直线平行可得出k=2再根据直线y=kx+b过点(32)利用一次函数图像上点的坐标特征即可得出关于b的一元一次方程解方程即可求出b值即可求y=kx+b【详解】解:∵直19.【解析】【分析】根据勾股定理求出BC根据正方形的面积公式计算即可【详解】解:由勾股定理得正方形的面积故答案为:【点睛】本题考查了勾股定理如果直角三角形的两条直角边长分别是ab斜边长为c那么a2+b220.【解析】【分析】已知ABCD是正方形根据正方形性质可知点B与点D关于AC对称DE=PB+PE求出DE长即是PB+PE最小值【详解】∵四边形ABCD是正方形∴点B与点D关于AC对称连接DE交AC于点P21.或【解析】【分析】分两种情况考虑①当BF>CF时②当BF<CF时然后过F作FG⊥AD于G根据勾股定理进行求解【详解】①如图所示当BF>CF时过F作FG⊥AD于G 则GF=4Rt△EFG中又∵E是AD的22.24【解析】已知对角线的长度根据菱形的面积计算公式即可计算菱形的面积解:根据对角线的长可以求得菱形的面积根据S=ab=×6×8=24cm2故答案为2423.1【解析】【分析】根据三角形中位线定理求出DE根据直角三角形的性质求出EF计算即可【详解】解:∵DE分别为ABAC的中点∴DE=BC=25∵AF⊥CFE为AC的中点∴EF =AC=15∴DF=DE﹣E24.【解析】【分析】根据题意画出示意图利用勾股定理可求出旗杆的高【详解】解:如图所示:设旗杆米则米在中即解得:旗杆的高为75米故答案为:75【点睛】本题考查了勾股定理的应用解答本题的关键是画出示意图熟练25.【解析】【分析】根据作法判定出四边形OACB是菱形再根据菱形的面积等于对角线乘积的一半列式计算即可得解【详解】根据作图AC=BC=OA∵OA=OB∴OA=OB=BC=AC∴四边形OACB是菱形∵AB三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.B解析:B【解析】【分析】先依据勾股定理可求得OC的长,从而得到OM的长,于是可得到点M对应的数.【详解】解:由题意得可知:OB=2,BC=1,依据勾股定理可知:.∴故选:B.【点睛】本题考查勾股定理、实数与数轴,熟练掌握相关知识是解题的关键.2.B解析:B 【解析】 【分析】 根据S △ABE =12S 矩形ABCD =3=12•AE•BF ,先求出AE ,再求出BF 即可. 【详解】 如图,连接BE .∵四边形ABCD 是矩形,∴AB=CD=2,BC=AD=3,∠D=90°, 在Rt △ADE 中,22AD DE +2231+10,∵S △ABE =12S 矩形ABCD =3=12•AE•BF , ∴BF=310. 故选:B . 【点睛】本题考查矩形的性质、勾股定理、三角形的面积公式等知识,解题的关键是灵活运用所学知识解决问题,学会用面积法解决有关线段问题,属于中考常考题型.3.B解析:B 【解析】试题解析:85分的有8人,人数最多,故众数为85分; 处于中间位置的数为第10、11两个数, 为85分,90分,中位数为87.5分. 故选B .考点:1.众数;2.中位数4.C解析:C 【解析】 【分析】首先连接AC ,交BD 于点O ,连接CM ,则CM 与BD 交于点P ,此时PA+PM 的值最小,由在菱形ABCD 中,AB=6,∠ABC=60°,易得△ACD 是等边三角形,BD 垂直平分AC,继而可得CM⊥AD,则可求得CM的值,继而求得PA+PM的最小值.【详解】解:连接AC,交BD于点O,连接CM,则CM与BD交于点P,此时PA+PM的值最小,∵在菱形ABCD中,AB=6,∠ABC=60°,∴∠ADC=∠ABC=60°,AD=CD=6,BD垂直平分AC,∴△ACD是等边三角形,PA=PC,∵M为AD中点,∴DM=12AD=3,CM⊥AD,∴CM=√CD2−DM2=3√3,∴PA+PM=PC+PM=CM=3√3.故选:C.【点睛】此题考查了最短路径问题、等边三角形的判定与性质、勾股定理以及菱形的性质.注意准确找到点P的位置是解此题的关键.5.B解析:B【解析】【分析】根据点P(x,y)是直线y=1322x-上的点,可以得到y与x的关系,然后变形即可求得所求式子的值.【详解】∵点P(x,y)是直线y=1322x-上的点,∴y=13 22x-,∴4y=2x-6,∴4y-2x=-6,∴4y-2x+3=-3,故选B.【点睛】本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,利用一次函数的性6.A解析:A【解析】【分析】先根据数轴上两点的位置确定1a +和2b -的正负,再根据2a 的性质计算即可.【详解】观察数轴可得,1a >-,2b >,故10a +>,20b ->,∴()()2212a b +--()12a b =+--12a b =+-+3a b =-+故选:A.【点睛】本题结合数轴上点的位置考查了2a 的计算性质,熟练掌握该性质是解答的关键. 7.A解析:A【解析】【分析】当OP 垂直于直线y =kx +b 时,由垂线段最短可知:OP <2,故此函数在y 轴的左侧有最小值,且最小值小于2,从而得出答案.【详解】解:如图所示:过点O 作OP 垂直于直线y =kx +b ,∵OP 垂直于直线y =kx +b ,∴OP <2,且点P 的横坐标<0.故此当x <0时,函数有最小值,且最小值<2,根据选项可知A 符合题意.故选:A .【点睛】本题主要考查的是动点问题的函数图象,由垂线段最短判定出:当x <0时,函数有最小值,且最小值小于2是解题的关键.8.B【解析】【分析】已知,∠C=90°BC=6,AC=8,由勾股定理求AB,根据翻折不变性,可知△DAE≌△DBE,从而得到BD=AD,BE=AE,设CE=x,则AE=8-x,在Rt△CBE中,由勾股定理列方程求解.【详解】∵△CBE≌△DBE,∴BD=BC=6,DE=CE,在RT△ACB中,AC=8,BC=6,∴.∴AD=AB-BD=10-6=4.根据翻折不变性得△EDA≌△EDB∴EA=EB∴在Rt△BCE中,设CE=x,则BE=AE=8-x,∴BE2=BC2+CE2,∴(8-x)2=62+x2,解得x=74.故选B.【点睛】此题考查了翻折变换的问题,找到翻折后图形中的直角三角形,利用勾股定理来解答,解答过程中要充分利用翻折不变性.9.C解析:C【解析】解:A.小丽从家到达公园共用时间20分钟,正确;B.公园离小丽家的距离为2000米,正确;C.小丽在便利店时间为15﹣10=5分钟,错误;D.便利店离小丽家的距离为1000米,正确.故选C.10.D解析:D【解析】根据题意得:1010 xx+≥⎧⎨-≠⎩,解得:x≥-1且x≠1.11.C解析:C【解析】【分析】【详解】解:∵函数y=2x和y=ax+4的图象相交于点A(m,3),∴3=2m,解得m=32.∴点A的坐标是(32,3).∵当3x2<时,y=2x的图象在y=ax+4的图象的下方,∴不等式2x<ax+4的解集为3x2 <.故选C.12.C解析:C【解析】【分析】根据菱形的性质得出CD=AD=5,进而得出CE=4,利用勾股定理得出BE,进而利用勾股定理得出AE即可.【详解】∵菱形ABCD,∴CD=AD=5,CD∥AB,∴CE=CD﹣DE=5﹣1=4,∵BE⊥CD,∴∠CEB=90°,∴∠EBA=90°,在Rt△CBE中,BE3==,在Rt△AEB中,AE==故选C.【点睛】此题考查菱形的性质,关键是根据菱形的性质得出CD=AD.13.D解析:D【解析】【分析】根据平行四边形性质可得OE是三角形ABD的中位线,可进一步求解.【详解】因为▱ABCD的对角线AC,BD相交于点O,AE EB,所以OE是三角形ABD的中位线,所以AD=2OE=6所以▱ABCD的周长=2(AB+AD)=22故选D【点睛】本题考查了平行四边形性质,熟练掌握性质定理是解题的关键.14.D解析:D【解析】分析:直接利用合并同类项法则以及幂的乘方运算法则、同底数幂的乘除运算法则分别计算得出答案.详解:A、a2与a3不是同类项,无法计算,故此选项错误;B、32-2=22,故此选项错误;C、(x2)3=x6,故此选项错误;D、m5÷m3=m2,正确.故选:D.点睛:此题主要考查了合并同类项以及幂的乘方运算、同底数幂的乘除运算,正确掌握相关运算法则是解题关键.15.C解析:C【解析】【分析】根据菱形的性质,四条边相等且对角线互相平分且互相垂直,由勾股定理得出BO的长,进而得其对角线BD的长,再根据菱形的面积等于对角线乘积的一半计算即可.【详解】解:如图:四边形ABCD是菱形,对角线AC与BD相交于点O,∵菱形的周长为40,∴AB=BC=CD=AD=10,∵一条对角线的长为12,当AC=12,∴AO=CO=6,在Rt△AOB中,根据勾股定理,得BO=8,∴BD=2BO=16,∴菱形的面积=12AC•BD=96,故选:C.【点睛】此题主要考查了菱形的性质、菱形的面积公式以及勾股定理等知识,根据题意得出BO的长是解题关键.二、填空题16.5【解析】【分析】直接利用中位数定义求解【详解】第50个数和第55个数都是5所以这100名学生所植树棵数的中位数为5(棵)故答案为5【点睛】考查了中位数:将一组数据按照从小到大(或从大到小)的顺序排解析:5【解析】【分析】直接利用中位数定义求解.【详解】第50个数和第55个数都是5,所以这100名学生所植树棵数的中位数为5(棵).故答案为5.【点睛】考查了中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.17.82【解析】【分析】设第三次考试成绩为x根据三次考试的平均成绩不少于80分列不等式求出x的取值范围即可得答案【详解】设第三次考试成绩为x∵三次考试的平均成绩不少于80分∴解得:∴他第三次数学考试至少解析:82【解析】【分析】设第三次考试成绩为x,根据三次考试的平均成绩不少于80分列不等式,求出x的取值范围即可得答案.【详解】设第三次考试成绩为x,∵三次考试的平均成绩不少于80分,∴7286803x++≥,解得:82x≥,∴他第三次数学考试至少得82分,故答案为:82【点睛】本题考查了一元一次不等式的应用.熟练掌握求平均数的方法,根据不等关系正确列出不等式是解题关键.18.y=2x﹣4【解析】【分析】根据两直线平行可得出k=2再根据直线y=kx+b 过点(32)利用一次函数图像上点的坐标特征即可得出关于b的一元一次方程解方程即可求出b值即可求y=kx+b【详解】解:∵直解析:y=2x﹣4【解析】【分析】根据两直线平行可得出k=2,再根据直线y=kx+b过点(3,2)利用一次函数图像上点的坐标特征即可得出关于b的一元一次方程,解方程即可求出b值,即可求y=kx+b.【详解】解:∵直线y=kx+b与直线y=2x-2平行,∴k=2.又∵直线y=kx+b过点(3,2),∴2=2×3+b,解得:b=-4.∴y=kx+b=2x-4.故答案为y=2x-4.【点睛】本题考查的知识点是两直线相交或平行问题已经一次函数图像上点的坐标特征,解题关键是求出k和b的值.19.【解析】【分析】根据勾股定理求出BC根据正方形的面积公式计算即可【详解】解:由勾股定理得正方形的面积故答案为:【点睛】本题考查了勾股定理如果直角三角形的两条直角边长分别是ab斜边长为c那么a2+b2解析:3.【解析】【分析】根据勾股定理求出BC,根据正方形的面积公式计算即可.【详解】解:由勾股定理得,BC==∴正方形ABCD的面积23==,BC故答案为:3.【点睛】本题考查了勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.20.【解析】【分析】已知ABCD是正方形根据正方形性质可知点B与点D关于AC对称DE=PB+PE求出DE长即是PB+PE最小值【详解】∵四边形ABCD是正方形∴点B与点D关于AC对称连接DE交AC于点P解析:10【解析】【分析】已知ABCD是正方形,根据正方形性质可知点B与点D关于AC对称,DE=PB+PE,求出DE长即是PB+PE最小值.【详解】∵四边形ABCD是正方形∴点B与点D关于AC对称,连接DE,交AC于点P,连接PB,则PB+PE=DE的值最小∵CE=1,CD=3,∠ECD=90°∴2222DE CE CD=++=1310∴PB+PE1010【点睛】本题考查正方形性质,作对称点,再连接,根据两点之间直线最短得结论.21.或【解析】【分析】分两种情况考虑①当BF>CF时②当BF<CF时然后过F 作FG⊥AD于G根据勾股定理进行求解【详解】①如图所示当BF>CF时过F作FG ⊥AD于G则GF=4Rt△EFG中又∵E是AD的解析:2513【解析】【分析】分两种情况考虑,①当BF>CF时,②当BF<CF时,然后过F作FG⊥AD于G,根据勾股定理进行求解.【详解】①如图所示,当BF>CF时,过F作FG⊥AD于G,则GF=4,Rt△EFG中,()22EG=-=,2542又∵E是AD的中点,AD=BC=8,∴DE=4,∴DG=4﹣2=2,∴Rt△DFG中,22DF+=4225②如图所示,当BF<CF时,过F作FG⊥AD于G,则GF=4,Rt△EFG中,()222542EG=-=,又∵E是AD的中点,AD=BC=8,∴DE=4,∴DG=4+2=6,∴Rt△DFG中,2246213DF=+=,故答案为:25或213.【点睛】本题考查矩形的性质,勾股定理,学会运用分类讨论的思想与巧作辅助线构造直角三角形是解题的关键.22.24【解析】已知对角线的长度根据菱形的面积计算公式即可计算菱形的面积解:根据对角线的长可以求得菱形的面积根据S=ab=×6×8=24cm2故答案为24解析:24【解析】已知对角线的长度,根据菱形的面积计算公式即可计算菱形的面积.解:根据对角线的长可以求得菱形的面积,根据S=12ab=12×6×8=24cm2,故答案为24.23.1【解析】【分析】根据三角形中位线定理求出DE根据直角三角形的性质求出EF计算即可【详解】解:∵DE分别为ABAC的中点∴DE=BC=25∵AF⊥CFE为AC的中点∴EF=AC=15∴DF=DE﹣E解析:1【解析】【分析】根据三角形中位线定理求出DE,根据直角三角形的性质求出EF,计算即可.解:∵D 、E 分别为AB 、AC 的中点,∴DE =12BC =2.5, ∵AF ⊥CF ,E 为AC 的中点,∴EF =12AC =1.5, ∴DF =DE ﹣EF =1,故答案为:1.【点睛】 本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.24.【解析】【分析】根据题意画出示意图利用勾股定理可求出旗杆的高【详解】解:如图所示:设旗杆米则米在中即解得:旗杆的高为75米故答案为:75【点睛】本题考查了勾股定理的应用解答本题的关键是画出示意图熟练 解析:7.5m【解析】【分析】根据题意画出示意图,利用勾股定理可求出旗杆的高.【详解】解:如图所示:设旗杆AB x =米,则(1)AC x 米,在Rt ABC ∆中,222AC AB BC =+,即222(1)4x x ,解得:7.5x =.∴旗杆的高为7.5米故答案为:7.5.【点睛】本题考查了勾股定理的应用,解答本题的关键是画出示意图,熟练运用勾股定理. 25.【解析】【分析】根据作法判定出四边形OACB 是菱形再根据菱形的面积等于对角线乘积的一半列式计算即可得解【详解】根据作图AC =BC =OA ∵OA =OB ∴OA =OB =BC =AC ∴四边形OACB 是菱形∵AB解析:【解析】根据作法判定出四边形OACB 是菱形,再根据菱形的面积等于对角线乘积的一半列式计算即可得解.【详解】根据作图,AC =BC =OA ,∵OA =OB ,∴OA =OB =BC =AC ,∴四边形OACB 是菱形,∵AB =2cm ,四边形OACB 的面积为4cm 2, ∴12AB •OC =12×2×OC =4, 解得OC =4cm .故答案为:4.【点睛】 本题考查菱形的判定与性质,菱形的面积.解决本题的关键是能根据题目中作图的过程得出线段的等量关系.三、解答题26.(1)1150y x =,2160160y x =-,图象见解析;(2)当人数为16人时,两家均可选择,当人数在1016x ≤<之间时选择乙旅行社,当人数1625x <时,选择甲旅行社.【解析】【分析】(1)根据题意可以直接写出甲乙旅行社收费1y 、2y (元)与参加旅游的人数x (人)之间的关系式,再画出图象;(2)根据题意,可以列出相应的不等式,从而可以得到该单位选择哪一家旅行社支付的旅游费用较少.【详解】解:(1)由题意可得,12000.75150y x x =⨯=,即甲旅行社收费1y (元)与参加旅游的人数x (人)之间的关系式是1150y x =; 22000.80(1)160160y x x =⨯-=-,即乙旅行社收费2y (元)与参加旅游的人数x (人)之间的关系式是2160160y x =-;(2)当150160(1)x x =-时,解得,16x =,即当16x =时,两家费用一样;当150160(1)x x >-时,解得,16x <,即当1016x ≤<时,乙社费用较低;当150160(1)x x <-时,解得,16x >,即当1625x <时,甲社费用较低;答:当人数为16人时,两家均可选择,当人数在1016x ≤<之间时选择乙旅行社,当人数1625x <时,选择甲旅行社.【点睛】本题考查了一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.27.(1)√a 2=|a|={a(a >0)0(a =0)−a(a <9);(2)①π﹣3.14,②2﹣x ;(3)x 的取值范围是5≤x≤8.【解析】【分析】(1)将a 分为正数、0、负数三种情况得出结果;(2)①当a=3.14﹣π<0时,根据(1)中的结论可知,得其相反数﹣a ,即得π﹣3.14; ②先将被开方数化为完全平方式,再根据公式得结果;(3)根据(1)式得:√(x −5)2+√(x −8)2 =|x ﹣5|+|x ﹣8|,然后分三种情况讨论:①当x <5时,②当5≤x≤8时,③当x >8时,分别计算,哪一个结果为3,哪一个就是它的取值.【详解】(1)√a 2=|a|={a (a >0)0(a =0)−a (a <0);(2)①√(3.14−π)2=|3.14﹣π|=π﹣3.14,②√x 2−4x +4(x <2),=√(x −2)2,=|x ﹣2|,∵x <2,∴x ﹣2<0,∴√x 2−4x +4=2﹣x ;(3)∵√(x −5)2+√(x −8)2=|x ﹣5|+|x ﹣8|,①当x <5时,x ﹣5<0,x ﹣8<0,所以原式=5﹣x +8﹣x=13﹣2x ;②当5≤x≤8时,x ﹣5≥0,x ﹣8≤0,所以原式=x ﹣5+8﹣x=3;③当x >8时,x ﹣5>0,x ﹣8>0,所以原式=x ﹣5+x ﹣8=2x ﹣13,∵√(x −5)2+√(x −8)2=3,所以x 的取值范围是5≤x≤8.【点睛】本题考查了二次根式的性质和化简,明确二次根式的两个性质:①(√a )2=a (a≥0)(任何一个非负数都可以写成一个数的平方的形式);②√a 2=|a|={a (a >0)0(a =0)−a (a <0);尤其是第2个性质的运用,注意被开方数是完全平方式时,如第(3)小题,要分情况进行讨论. 28.【解析】【分析】本题考查了同类二次根式的加法,系数相加二次根式不变.【详解】原式123234⎛=+-= ⎝【点睛】本题主要考查了实数中同类二次根式的运算能力,.29.2PA =或78 【解析】【分析】 先利用勾股定理计算出AC=4,根据准外心分类讨论:当PA=PC 时,易得PA=12AC=2;当PB=PC 时,设PA=x ,则PC=PB=4-x ,利用勾股定理得x 2+32=(4-x )2,解得x=78;当PA=PB 时,此情况不成立,然后解方程求出x 即可.【详解】如图:3,5,BC AB ==224AC AB BC ∴=-,若,PB PC =设PA x =,则()22243,x x -=+ 78x ∴=,即78PA =, 若,PA PC =则2,PA =若,PA PB =此情况不成立;综上,2PA =或78【点睛】本题考查了勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.也考查了阅读理解能力. 30.230【解析】【分析】已知两直角边,利用勾股定理求出斜边长,再利用面积法即可求出斜边上的高.【详解】解:Rt ABC ∆中,由勾股定理得AB ===1122ABC S AC AB AB CD ∆==2352AC BC CD AB ∴=== 【点睛】此题考查勾股定理,关键是利用勾股定理求出斜边长.。

2023-2024学年全国初中八年级下数学人教版期中考试试卷(含答案解析)

2023-2024学年全国初中八年级下数学人教版期中考试试卷(含答案解析)

20232024学年全国初中八年级下数学人教版期中考试试卷(含答案解析)(考试时间:90分钟,满分:100分)一、选择题(每题2分,共20分)1. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=62. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=63. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=64. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8D. 4x2y=65. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=66. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=67. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=68. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=69. 下列哪个选项是正确的?A. 3x+5y=10C. 5x+3y=15D. 4x2y=610. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=6二、填空题(每题2分,共20分)1. 2x+3y=6,求x的值。

2. 3x+5y=10,求y的值。

3. 4x2y=6,求x的值。

4. 5x+3y=15,求y的值。

5. 2x4y=8,求x的值。

6. 3x+5y=10,求y的值。

7. 4x2y=6,求x的值。

8. 5x+3y=15,求y的值。

9. 2x4y=8,求x的值。

10. 3x+5y=10,求y的值。

三、解答题(每题5分,共25分)1. 解方程组:2x+3y=63x+5y=102. 解方程组:5x+3y=153. 解方程组:2x4y=83x+5y=104. 解方程组:3x+5y=104x2y=65. 解方程组:5x+3y=152x4y=8四、计算题(每题10分,共30分)1. 计算:2x+3y=63x+5y=102. 计算:4x2y=65x+3y=153. 计算:2x4y=83x+5y=10五、应用题(每题10分,共20分)1. 应用题:2x+3y=62. 应用题: 4x2y=6 5x+3y=15答案解析:一、选择题1. A2. B3. C4. D5. A6. B7. C8. D9. A10. B二、填空题1. x=12. y=23. x=24. y=35. x=26. y=27. x=28. y=39. x=210. y=2三、解答题1. x=1, y=22. x=2, y=33. x=2, y=24. x=2, y=35. x=2, y=2四、计算题1. x=1, y=22. x=2, y=33. x=2, y=2五、应用题1. x=1, y=22. x=2, y=38. 简答题(每题5分,共25分)1. 简述一元二次方程的一般形式。

广东省珠海市香洲区珠海市文园中学2023-2024学年八年级下学期期中数学试题(解析版)

广东省珠海市香洲区珠海市文园中学2023-2024学年八年级下学期期中数学试题(解析版)

珠海市文园中学(集团)2023-2024学年第二学期期中考试八年级数学试卷说明:本试卷共4页,答题卷共4页,满分120分,考试时间为120分钟.答案写在答题卷上,在试卷上作答无效.一、选择题(本大题共10小题,每小题3分,共30分)1. 下列属于最简二次根式的是( )A. B. C. D. 【答案】C【解析】【分析】最简二次根式必须满足两个条件:被开方数中不含分母或分母中不含二次根号;被开方数不含能开得尽方的因数或因式,据此进行判断.【详解】解:A,故此选项不符合题意;B,故此选项不符合题意;C是最简二次根式,故此选项符合题意;D,故此选项不符合题意;故选:C .【点睛】此题考查了最简二次根式的判定,熟练掌握最简二次根式的两个条件是解题的关键.2. 下面说法正确的是( )A. B. C.D. 【答案】C【解析】【分析】根据二次根式的运算分别判断即可解答.【详解】A 选项:,故A 选项错误;B,故B 选项错误;C,故C 选项正确;D,故D 选项错误.===3+==3=2=±3+≠=3==2=故选:C【点睛】本题考查二次根式的运算,熟练掌握二次根式的运算是解题的关键.3. 下列各组线段 中,能构成直角三角形的是( )A. 2,3,4B. 3,4,6C. 5,12,13D. 4,6,7【答案】C【解析】【详解】解:选项A ,22+32=13≠42,不符合题意;选项B ,32+42=25≠62,不符合题意;选项C ,52+122=169=132,符合题意;选项D42+62=52≠72,不符合题意.由勾股定理的逆定理可得,只有选项C 能够成直角三角形,故选C .4. 下列条件中,不能判定四边形是平行四边形的是( )A. ,B. ,C. ,D. ,【答案】C【解析】【分析】本题考查了平行四边形的判定,根据平行四边形的判定定理逐项判断即可求解,掌握平行四边形的判定定理是解题的关键.【详解】解:、两组对边分别相等的四边形是平行四边形,该选项可以判定四边形是平行四边形,不符合题意;、∵,∴,,∵,∴,∵两组对角相等的四边形是平行四边形,该选项可以判定四边形是平行四边形,不符合题意;、四边形中,一组对边平行,另一组对边相等,该选项不能判定是平行四边形,符合题意;、一组对边平行且相等的四边形是平行四边形,该选项可以判定四边形是平行四边形,不符合题意;故选:.ABCD AB CD =AD BC=AB CD ∥B D ∠=∠AB CD ∥AD BC=AB CD ∥AB CD =A ABCD B AB CD ∥180B C ∠+∠=︒180A D ∠+∠=︒B D ∠=∠A D ∠=∠ABCD C D ABCD C5. 如图,Rt △ABC 中,∠ABC =90°,点O 是斜边AC 的中点,AC =10,则OB =( )A. 5B. 6C. 8D. 10【答案】A【解析】【分析】根据直角三角形斜边上的中线的性质解答即可.【详解】解:Rt △ABC 中,∠ABC =90°,点O 是斜边AC 的中点,AC =10,则OB=AC =5,故选:A .【点睛】本题考查了直角三角形斜边上的中线的性质,在直角三角形中,斜边上的中线等于斜边的一半.掌握直角三角形斜边上的中线的性质是解题的关键.6. 如图,在平行四边形中,,则的度数为( )A. B. C. D. 【答案】B【解析】【分析】根据平行四边形的性质得到,即可求出答案.【详解】解:∵四边形是平行四边形,∴∵∴,故选:B .12ABCD 120A C ∠+∠=︒C ∠50︒60︒70︒120︒A C ∠=∠ABCD A C∠=∠120A C ∠+∠=︒60A C ∠=∠=︒【点睛】此题考查了平行四边形的性质:对角相等,熟练掌握平行四边形的性质是解题的关键.7. 如图,在的正方形网格中,点,,都在格点上,每个小正方形的边长均为,则中边上的高为( )A. B. C. D. 【答案】B【解析】【分析】本题考查了勾股定理及其逆定理,三角形的面积,由勾股定理可得,,进而由勾股定理的逆定理可得到为直角三角形,再根据三角形的面积即可求解,掌握勾股定理及其逆定理是解题的关键.【详解】由勾股定理可得,,,,∵,∴为直角三角形,,设边上的高为,∵∴,∴,故选:.8. 《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺.问折高者几何?意思是:一根竹子,原高一丈(一丈尺),一阵风将竹子折断,其竹稍恰好抵地,抵地处离竹子底部6尺远,问折断处离地面的高度是多少?设折断处离地面的高度为尺,则可列方程为( )A. B. C. D. 【答案】D【解析】44⨯A B C 1ABC AB 124BC =AC =5AB =ABC BC ==AC ==5AB ==22225BC AC AB +==ABC 90ACB ∠=︒AB h 1122BC AC AB h = 11522h =⨯⨯2h =B 10=x ()22610x x -=-()222610x x -=-()22610x x +=-()222610x x +=-【分析】本题考查了勾股定理的应用,正确画出图形,熟练掌握勾股定理的内容是解题的关键.【详解】根据题意画出图形,设折断处离地面的高度为x 尺,则,,在中,,即.故选D .9. 将四个全等的直角三角形(直角边分别为、)按图1和图2两种方式放置,则能验证的等式是( )A.B. C. D. 【答案】D【解析】【分析】根据三角形的面积与正方形的面积,勾股定理即可求解.【详解】解:依题意,图1的面积为,图2 的面积为,则,故选:D .【点睛】本题考查了三角形的面积正方形的面积,勾股定理,数形结合是解题的关键.10. 如图,已知点,,,,为直线上一动点,则的对角线的最小值是()10AB x =-6BC =Rt ABC 222AC BC AB +=()222610x x +=-a b 22()()a b a b a b -=+-222()2a b a b ab +=-+224()()ab a b a b =+--2222()()ab a b a b =+-+1422a b ab ⨯⨯⨯=()()222a b a b +-+2222()()ab a b a b =+-+()0,8A ()0,2B -()05E ,()5,0F -C EF ACBD CDA. B. 4 C. 5 D. 【答案】A【解析】【分析】连接,设交于点,根据平行四边形的性质得出点,进而根据点到直线的距离,垂线段最短,可知当时,取得最小值,勾股定理即可求解.【详解】解:连接,设交于点,如图所示,∵四边形是平行四边形,∴,,∵,∴,∴当取得最小值时,取得最小值,∴当时,取得最小值,∵,,∴,,CD ,CD AB G ()0,3G CG EF ⊥CG CD ,CD AB G ABCD CG GD =AG GB =()0,8A ()0,2B -()0,3G CG CD CG EF ⊥CG ()05E ,()5,0F -OE OF =2EG =∴是等腰直角三角形,∴此时是直角三角形,且是斜边,∵,∴,∴的对角线的最小值是故选:A .【点睛】本题考查了坐标与图形,平行四边形的性质,勾股定理,点到直线的距离,垂线段最短,熟练掌握平行四边形的性质是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分)11. 有意义,则的取值范围是_________.【答案】【解析】【分析】二次根式有意义,被开方数为非负数,列不等式求解.【详解】解:根据二次根式的意义,得2x -4≥0,解得x≥2.故答案为:x≥2.【点睛】本题考查二次根式有意义条件.12. 命题“两直线平行,同位角相等”的逆命题是_____________________________________.【答案】同位角相等,两直线平行【解析】【分析】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.将原命题的条件与结论互换即可得到其逆命题.【详解】解:命题“两直线平行,同位角相等”的逆命题是同位角相等,两直线平行.故答案为:同位角相等,两直线平行13. 如图,在菱形中,,连接,若,则菱形的周长为______.的OEF CGE EG 2EG =CG =ACBD CD x 2x ≥ABCD 60B ∠=︒AC 6AC =ABCD【答案】【解析】【分析】本题考查了菱形的性质,等边三角形的判定和性质,菱形的周长,由菱形可得,进而得到为等边三角形,得到,即可求出菱形的周长,掌握菱形的性质是解题的关键.【详解】解:∵四边形是菱形,∴,∵,∴为等边三角形,∴,∴菱形的周长为,故答案为:.14. 若x =-1,则+x =_______.【答案】【解析】【分析】代入代数式,展开化简计算.【详解】∵x-1,∴+x==,故答案为:.【点睛】本题考查了完全平方公式的计算,正确进行完全平方公式的展开是解题的关键.15. 点分别是周长为20的的三边中点,的周长为_____________.【答案】10【解析】【分析】此题考查的是三角形中位线的性质.根据三角形中位线定理易得所求的三角形的各边长为原三角形各边长的一半,那么所求的三角形的周长就等于原三角形周长的一半.24AB BC CD AD ===ABC 6AB BC AC ===ABCD AB BC CD AD ===60B ∠=︒ABC 6AB BC AC ===ABCD 2446=⨯242x 2x 21)1)-+-31--D E F 、、ABC DEF【详解】解:∵点、、分别是、、的中点,∴是的中位线,∴,,分别是原三角形三边的一半,∴与的周长之比为.∵的周长为20,∴的周长为10,故答案为:10.16. 如图,在正方形中,,点是边上一点,点是延长线上一点,,. 连接、、,与对角线相交于点,则线段的长是_________________.【解析】【分析】如图,作交于,则,,,,,,证明,则,是斜边的中线,,由勾股定理求,进而可求的长.【详解】解:如图,作交于,则,∵正方形,,,,∴,,,D E F AB BC AC ,,DE EF DF ABC DE EF DF DEF ABC 1:2ABC DEF ABCD 3AB =F AB E BC AF CE =2BF AF =DF DE EF EF AC G BG FH AB ⊥AC H FH BC ∥45BAC ∠=︒3BC =21BF AF CE ===,45AHF BAC ∠=︒=∠4BE =()AAS FGH EGC ≌FG EG =BG Rt BEF △12BG EF =EF BG FH AB ⊥AC H FH BC ∥ABCD 3AB =2BF AF =BF AF AB +=45BAC ACB ∠=∠=︒3BC =21BF AF CE ===,∴,,∴,∵,∴,又∵,∴,∴,∴是斜边的中线,∴,由勾股定理得,,∴【点睛】本题考查了等角对等边,正方形的性质,全等三角形的判定与性质,勾股定理,直角三角形斜边的中线等于斜边的一半等知识.熟练掌握了等角对等边,正方形的性质,全等三角形的判定与性质,勾股定理,直角三角形斜边的中线等于斜边的一半是解题的关键.三、解答题(一)(本大题3小题,每小题7分,共21分)17. 计算:(1)(2【答案】(1(2)4【解析】【分析】(1)先化简二次根式,然后根据二次根式的加减计算法则求解即可;(2)根据二次根式的乘除混合计算法则求解即可.【小问1详解】解:45AHFACB BAC ∠=∠=︒=∠4BE =FH AF CE ==FH BC ∥FHG ECG ∠=∠FGH EGC ∠=∠()AAS FGH EGC ≌FG EG =BG Rt BEF △12BG EF =EF ==BG =--【小问2详解】.【点睛】本题主要考查了二次根式的加减计算,二次根式的乘除混合计算,二次根式的性质化简,熟知相关计算法则是解题的关键.18.如图,平行四边形的对角线、相交于点,点、、、分别是、、、的中点,求证:四边形是平行四边形.【答案】见解析【解析】【分析】此题考查了平行四边形的判定与性质.此题比较简单,注意数形结合思想的应用.由平行四边形的对角线、相交于点,可得,,点、、、分别是、、、的中点,即可得,,即可证得四边形是平行四边形.【详解】证明:四边形是平行四边形,,,点、、、分别是、、、的中点,,,四边形是平行四边形.19. 如图,小明爸爸在鱼池边开了一块四边形土地种了一些蔬菜,爸爸让小明计算这块土地的面积,,,,,又已知.求这块土地的面积.=--=-==⨯=4ABCD AC BD O E F G H AO BO CO DO EFGH ABCD AC BD O OA OC =OB OD =E F G H AO BO CO DO OE OG =OF OH =EFGH ABCD OA OC ∴=OB OD = E F G H AO BO CO DO OE OG ∴=OF OH =∴EFGH 3m AB =4m AD =12m CD =13m BC =90A ∠=︒【答案】这块土地的面积为36平方米.【解析】【分析】连接,由勾股定理求得,然后勾股定理的逆定理得出是直角三角形,,进而根据,即可求解.【详解】解:连接,∵,∴,则,因此是直角三角形,,(平方米),答:这块土地的面积为36平方米.【点睛】本题考查勾股定理以及勾股定理的逆定理,掌握勾股定理是解答此题的关键.四、解答题(二)(本大题3小题,每小题9分,共27分)20. 人教版初中数学教科书八年级下册第16页阅读与思考给我们介绍了“海伦—秦九韶公式”,它是利用三角形的三条边的边长直接求三角形面积的公式:即如果一个三角形的三边长分别为、、,记,那么这个三角形的面积为 ,如图,在中,,,.BD 2BD BCD △90CDB∠=︒ADB CBD ABCD S S S =+四边形 BD 90A ∠=︒22225BD AD AB ==+222213BD CD BC +==BCD △90CDB ∠=︒ADB CBDABCD S S S =+四边形 113451222=⨯⨯+⨯⨯36=a b c 2a b c p ++=S =ABC 3a =6b =7c =(1)求面积;(2)设边上的高为,边上的高为,求的值.【答案】(1)(2【解析】【分析】本题考查了“海伦—秦九韶公式”;(1)将,,代入公式计算,即可求解;(2)由三角形面积公式即可求解;理解公式是解题的关键.【小问1详解】解:,,,∴=,∴;∴面积为【小问2详解】解:由(1)知,的面积为的的ABC AB 1h BC 2h 12h h +3a =6b =7c =3a = 6b =7c =2a b cp ++=3672++8=S ===ABC ABC 1172S h ∴=⨯,,,,∴21. 如图,在中,,.(1)求作:以斜边为对角线且其中一个顶点在边上的菱形;(尺规作图,保留作图痕迹)(2)求()中所求作菱形的边长.【答案】(1)作图见解析(2)【解析】【分析】()作线段的垂直平分线,交于,交于点,截取,由,可得四边形为平行四边形,又由线段垂直平分线的性质可得,故四边形为菱形,即为所求;()利用直角三角形的性质可得,由勾股定理可得,设,在中,由勾股定理可得,解方程即可求=1132Sh =⨯=1h ∴=2h =12h h +==Rt ABC △30B ∠= 3AC =AB BC 11AB MN AB O BC D OD OE =AO BO =OD OE =ADBE AD BD =ADBE 226AB AC ==BC =AD BD =AD BD x ==Rt ACD △()2223x x +-=解;本题考查了线段垂直平分线的作法,菱形的判定和性质,直角三角形的性质,勾股定理,正确画出图形是解题的关键.【小问1详解】解:如图,四边形即为所求;【小问2详解】解:∵,,∴,∴,∵四边形是菱形,∴,设,则,在中,,∴,解得∴即菱形的边长为.22. 将两张完全相同的矩形纸片,矩形纸片按如图方式放置,为重合的对角线,重叠部分为四边形.ADBE 90C ∠=︒30ABC ∠=︒26AB AC ==BC ===ADBE AD BD =AD BD x ==CD x =Rt ACD △222AC CD AD +=()2223xx +-=x =AD BD ==ADBE ABCD FBED BD DHBG(1)求证:四边形为菱形;(2)若四边形的面积为60,,求的长.【答案】(1)见解析(2)18【解析】【分析】(1)先根据矩形的性质可得,,,再根据平行四边形的判定可得四边形是平行四边形,然后根据三角形全等的判定可证出,根据全等三角形的性质可得,最后根据菱形的判定即可得证;(2)先根据菱形的面积公式可得,再利用勾股定理可得,然后根据即可得.【小问1详解】证明:∵四边形、是完全相同的矩形,∴,,,∴四边形是平行四边形,在和中,,∴,∴,∴平行四边形菱形.【小问2详解】解:菱形的面积为60,,,,,.是DHBG DHBG 6AD =AB ,AB CD DF BE ∥∥90A F ∠=∠=︒AD FB =DHBG AHD FHB ≅ DH BH =10DH BH ==8AH =AB AH BH =+ABCD FBED ,AB CD DF BE ∥∥90A F ∠=∠=︒AD FB =DHBG AHD FHB △90A F AHD FHB AD FB ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩()AAS AHD FHB ≅ DH BH =DHBG DHBG 6AD =90A ∠=︒6060106DH BH AD ∴====8AH ∴==81018AB AH BH ∴=+=+=【点睛】本题考查了菱形的判定与性质、矩形的性质、勾股定理、全等三角形的判定与性质、平行四边形的判定等知识点,熟练掌握菱形的判定与性质是解题关键.五、解答题(三)(本大题2小题,每小题12分,共24分)23. 如图,在正方形中,,.动点以每秒1个单位长度的速度从点山发,沿线段方向运动,动点同时以每秒4个单位长度的速度从点出发,沿正方形的边运动,当点与点相遇时停止运动,设点的运动时间为秒.(1)运动时间为 秒时,点与点相遇;(2)求为何值时,是等腰三角形?(3)用含的式子表示的面积,并写出相应的取值范围;(4)连接,当以点及正方形的某两个顶点为顶点组成的三角形和全等时,直接写出的值(点与点重合时除外).【答案】(1)(2)或或2 (3)当时,;当时,;当时, (4)的值为或或【解析】【分析】(1)设秒后、相遇.列出方程即可解决问题;(2)根据,,分类讨论即可解决问题;(3)分三种情形①如图2中,当,点在上时.②如图3中,当,点在上时,.③如图4中,当,点在上时.分别求解即可;ABCD 4AB BC CD DA ====90A B C D ∠=∠=∠=∠=︒P B BC Q A AD DC CB --P Q P t P Q t ABQ t AQP △S t PA Q PAB t P Q 1251t =3201t <≤8S t =12t <≤2228S t t =-++1225t <<1024S t =-+t 454385t P Q AB AQ =AB BQ =BQ AQ =01t <≤Q AD 12t <≤Q CD ADQ ABP PQC ABCD S S S S S =--- 正方形1225t <≤Q BC(4)分四种情形求解①当时,.②当时,.③当时,.④当时,,此时与重合.【小问1详解】设秒后、相遇.由题意,秒,秒后、相遇.故答案;【小问2详解】∵正方形∴,当时,此时与重合,;当时,此时与重合,;当时,在的垂直平分线上,即为中点,此时;综上所述,当或或2时,是等腰三角形;【小问3详解】①如图2中,当,点在上时,.②如图3中,当,点在上时,.为1DQ BP =1CDQ ABP ≌2DQ BP =2ADQ ABP ≌3CQ BP =3BCQ ABP ≌4BQ BP =4ABQ ABP ≌P Q t P Q (41)12t +=125t ∴=∴125P Q 125ABCD4AB AD DC BC ====AB AQ =D Q 14ADt ==AB BQ =C Q 24AD DCt +==BQ AQ =Q AB Q CD 13242AD DCt +==1t =32ABQ 01t <≤Q AD 14482S t t =⨯⨯=12t <≤Q CD ()()()2111164444484228222ADQ ABP PQC ABCD S S S S S t t t t t t =---=-⨯⨯--⨯⨯-⨯--=-++ 正方形③如图4中,当,点在上时,.综上所述,.【小问4详解】如图5中,①当时,,此时,;②当时,,此时,;③当时,,此时,;④当时,,此时与重合,;综上所述,为或或或时,当以点及正方形的某两个顶点组成的三角形和全等.【点睛】本题考查四边形综合题、正方形的性质、平行四边形的判定和性质、全等三角形的判定和性质等1225t <<Q BC 1[4(48)]410242S t t t =⨯---⋅=-+()()28012281212102425t t S t t t t t ⎧⎪<≤⎪⎪=-++<≤⎨⎪⎛⎫⎪-+<< ⎪⎪⎝⎭⎩1DQ BP =1CDQ ABP ≌44t t -=45t =2DQ BP =2ADQ ABP ≌44t t -=43t =3CQ BP =3BCQ ABP ≌84t t -=85t =4BQ BP =4ABQ ABP ≌P Q 125t =t 454385125Q PAB知识,解题的关键是学会分类讨论,注意不能漏解,属于中考压轴题.24. 如图,矩形中,对边平行且相等,四个内角均为直角.,,点E 是边上一点,连接,将沿折叠,使点B 落在点处,连接.(1)当时,的长为______.(2)当点恰好在矩形的对角线上,求的长.(3)当点E 为的中点时,的长为______.(4)当落在矩形的对称轴上时,的长为______.【答案】(1)(2)(3(4)或【解析】【分析】(1)由折叠的性质得:,得,再由平行线的性质,得即可;(2)设,则,在中,由勾股定理即可;(3)连接交于点,先证明,再证明为的中位线,即,再根据,求出的长,然后在中,根据勾股定理即可;(4)过点作交于点,交于点,设,分两种情况讨论:当点在的垂直平分线上时,,在中与在中,根据勾股定理列方程,当点在的垂直平分线上时,,得,再根据勾股定理即可.ABCD 6AB =8BC =BC AE ABE AE B 'CB 'CB AE '∥BE B 'ABCD AC AE BC B C 'B 'BE 49-ABE AB E ' ≌,AEB AEB BE B E ''∠=∠=BE B E EC '==BE B E x '==8CE BC BE x =-=-Rt CB E ' BB 'AE F 90BB C '∠=︒EF BB C '△2B C EF '=1122ABE S AB BE AE BF =⋅=⋅ BF Rt BFE △B 'FG AB ∥AD G BC F BE B E x '==B 'AD 142AG BF BC ===Rt AGB '△Rt EFB '△B 'AB 132B G B F GF ''===30EB F '∠=︒【小问1详解】解:由折叠的性质得:,,,,,,,故答案为:;【小问2详解】解:点恰好在矩形的对角线上,如图:在中,由勾股定理得:,由折叠的性质得:,,,,,设,则,在中,由勾股定理得:,即:,解得:,的长为3.在中,;【小问3详解】解:连接交于点,ABE AB E ' ≌,AEB AEB BE B E ''∴∠=∠=CB AE '∥ ,AEB EB C AEB ECB '''∴∠=∠∠=∠EB C ECB ''∴∠=∠BE B E EC '∴==142BE BC ∴==4B 'ABCD AC Rt ABC△10AC ===BE B E '=6AB AB '==90B AB E '∠=∠=︒1064B C AC AB ''∴=-=-=90CB E '∠=︒BE B E x '==8CE BC BE x =-=-Rt CB E ' 222CE B E B C ''=+222(8)4x x -=+3x =BE ∴Rt ABE△AE ===BB 'AE F由折叠的性质得:,,点E 为的中点,,,,,,为的中位线,即,在中,,,,,在中,,,【小问4详解】解:过点作交于点,交于点,设,BB AE '⊥BE BE '= BC 142BE BE EC BC '∴====,BB E B BE EB C B CE ''''∴∠=∠∠=∠180BB C B BE B CE '''∴∠+∠+∠=︒90BB C BB E EB C '''∴∠=∠+∠=︒EF B C '∴∥EF ∴BB C '△2B C EF '=Rt ABE △AE ===1122ABE S AB BE AE BF =⋅=⋅ 116422BF ⨯⨯=⨯BF ∴=Rt BFE △EF ===2B C EF '∴==B 'FG AB ∥AD G BC F BE B E x '==在矩形中,,四边形为矩形,,由折叠的性质得:,当点在的垂直平分线上时,,在中,,即,,,在中,,即,解得:;当点在的垂直平分线上时,,,,,在中,,,即,解得:,综上所述:的长为或ABCD 90,BAD B AD BC ∠=∠=︒∥90,AGF BFG ∴∠=∠=︒∴ABFG ,6AG BF AB GF ∴===6AB AB '==B 'AD 142AG BF BC ===R t AGB '222AG B G AB ''+=22246B G '+=B G '∴=6B F GF B G ''=-=-4EF BF BE x =-=-Rt EFB '△222EF FB B E ''+=222(4)(6x x -+-=9x =-9BE =-B 'AB 132B G B F GF ''===12B G AB ''∴=30,9060B AG AB G B AG '''∴∠=︒∠=︒-∠=︒18030EB F AB G AB E '''∴∠=︒-∠-∠=︒Rt EFB '△1122EF B E x '==222EF FB B E ''+=2221()32x x +=x =BE =BE 9-故答案为:【点睛】本题考查了翻折变换的性质、矩形的性质、勾股定理等知识;熟练掌握翻折变换的性质和矩形的性质,由勾股定理得出方程是解题的关键.9。

(人教版数学)初中8年级下册-09 期中数学试卷(含答案)

(人教版数学)初中8年级下册-09 期中数学试卷(含答案)
9.如图,若将四根木条钉成的矩形木框变形为平行四边形 的形状,并使得其面积变为原矩形面积的一半,则平行四边形 的内角 的大小为()
A.100°B.120°C.135°D.150°
【答案】D
【解析】
【分析】
作AE⊥BC于E,根据平行四边形的面积=矩形面积的一半,得出AE= AB,再由三角函数即可求出∠ABC的度数,即可得到答案.
D.不是轴对称图形,不满足题意;
故选B.
【点睛】本题考查识别轴对称图形,关键在于熟记定义.
3.由下列长度组成的各组线段中,不能组成直角三角形的是()
A. B. C. D.
【答案】C
【解析】
【分析】
本题利用勾股定理的逆定理便可很快判断所给定的三角形是否为直角三角形,如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形,最长边所对的角为直角.
A. B.
C. 和 面积相等D. 和 的面积相等
8.若 为直角三角形的三边,则下列判断错误的是()
A. 能组成直角三角形B. 能组成直角三角形
C. 能组成直角三角形D. 能组成直角三角形
9.如图,若将四根木条钉成的矩形木框变形为平行四边形 的形状,并使得其面积变为原矩形面积的一半,则平行四边形 的内角 的大小为()
【答案】
【解析】
【分析】
根据正方形的面积等于对角线乘积的一半列式计算即可得解.
【详解】解:设正方形的对角线长为x,
由题意得, ,
解得 ,
故答案为: .
【点睛】本题考查了正方形的性质,熟记利用对角线求面积的方法是解题的关键.
13.若平行四边形中两个内角的度数比为1:2,则其中较小的内角为____________.
∴△BCD为直角三角形,

北师大版数学八年级下册《期中考试题》含答案

北师大版数学八年级下册《期中考试题》含答案

北 师 大 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、单选题(共30分)1.(本题3分)(2019·酒泉市第二中学八年级期中)在平面直角坐标系中,将点P(2,3)绕原点O 顺时针旋转90°后得到点P′,则点P′的坐标是( )A .(-2,3)B .(3-,2)C .(2,-3)D .(3,-2)2.(本题3分)(2019·山东德州市·)如果a >b ,c <0,那么下列不等式成立的是( ). A . a +c >b +c ; B . c -a >c -b ; C . ac >bc ; D .a b c c>. 3.(本题3分)(2020·浙江杭州市·杭州英特外国语学校八年级期中)若不等式组213x x a ->⎧⎨≤⎩的整数解共有三个,则a 的取值范围是( )A .56a ≤<B .56a <≤C .56a <<D .56a ≤≤4.(本题3分)(2020·无锡市第一女子中学八年级期中)如图,在Rt △ABC 中,∠BAC =90°,AB =AC ,BF 平分∠ABC ,过点C 作CF ⊥BF 于F 点,过A 作AD ⊥BF 于D 点.AC 与BF 交于E 点,下列四个结论:①BE =2CF ;②AD =DF ;③AD +DE =12BE ;④AB +BC =2AE .其中正确结论的序号是( )A .只有①②③B .只有②③C .只有①②④D .只有①④5.(本题3分)(2020·深圳龙城初级中学八年级期中)如图,在△ABC 中,AD 为∠BAC 的平分线,BM ⊥AD,垂足为M,且AB=5,BM=2,AC=9,则∠ABC 与∠C 的关系为( )A .∠ABC=2∠CB .∠ABC=52∠C C .14∠ABC=∠CD .∠ABC=3∠C6.(本题3分)(2020·武城县实验中学八年级期中)如图,在Rt ABC ∆中,90BAC ∠=︒,45C ∠=︒,AD BC ⊥于点D ,ABC ∠的平分线分别交AC 、AD 于E 、F 两点,M 为EF 的中点,AM 的延长线交BC 于点N ,连接EN ,下列结论:①AFE ∆为等腰三角形;②DF DN =;③AN BF =;④EN NC ⊥.其中正确的结论有( )A .1个B .2个C .3个D .4个7.(本题3分)(2020·湖北鄂州市·八年级期中)如图,AD 为等腰△ABC 的高,其中∠ACB =50°,AC =BC ,E ,F 分别为线段AD ,AC 上的动点,且 AE =CF , 当 BF +CE 取最小值时,∠AFB 的度数为( )A .75°B .90°C .95°D .105°8.(本题3分)(2020·渠县崇德实验学校八年级期中)如果将点P 绕顶点M 旋转1800后与点Q 重合,那么称点P 与点Q 关于点M 对称,定点M 叫作对称中心,此时,点M 是线段PQ 的中点,如图,在平面直角坐标系中,ABO 的顶点A ,B ,O 的坐标分别为(1,0),(0,1),(0,0),点1P ,2P ,3P ,…中相邻两点都关于ABO 的一个顶点对称,点1P 与点2P 关于点A 对称,点2P 与点3P 关于点B 对称,点3P 与点4P 关于点O 对称,点4P 与点5P 关于点A 对称,点5P 与点6P 关于点B 对称,点6P 与点7P 关于点O 对称,…对称中心分别是A ,B ,C ,A ,B ,C ,…且这些对称中心依次循环,已知1P 的坐标是(1,1) .则点100P 的坐标是( )A .(1,-1)B .(1,-3)C .(-1,3)D .(1,1)9.(本题3分)(2020·西华县教研室八年级期中)如图,在平面直角坐标系中,点A ,B 分别在y 轴和x 轴上,60ABO ∠=︒,在坐标轴上找一点P ,使得PAB ∆是等腰三角形,则符合条件的P 点的个数是( )A .5B .6C .7D .810.(本题3分)(2020·江苏泰州市·昭阳湖初中八年级期中)如图,在ABC 中,点D 是BC 边上一点,已知DAC α∠=,αDAB 902∠=︒-,CE 平分ACB ∠交AB 于点E ,连接DE ,则DEC ∠的度数为( )A .α3B .α2C .α302︒-D .45α︒-二、填空题(共24分)11.(本题3分)(2020·广西百色市·七年级期中)已知不等式组2145x x x m->+⎧⎨>⎩无解,则m 的取值范围是________.12.(本题3分)(2020·成都市锦江区四川师大附属第一实验中学七年级期中)在ABC ∆中,3,ABC C AD ∠=∠是BAC ∠的角平分线,BE AD ⊥于E ,若4,BE =5,BD =9CD =,则ABC ∆的周长是_______________.13.(本题3分)(2020·常州市第二十四中学七年级期中)已知两个完全相同的直角三角形纸片△ABC 、△DEF ,如图1放置,点B 、D 重合,点F 在BC 上,AB 与EF 交于点G .∠C=∠EFB=90°,∠E=∠ABC=30°,现将图1中的△ABC 绕点F 按每秒10°的速度沿逆时针方向旋转180°,在旋转的过程中,△ABC 恰有一边与DE 平行的时间为___________s14.(本题3分)(2019·江西省宜春实验中学八年级期中)如图,AD BC ⊥于点D 且CD BD =,已知6AC =,75ACB ∠=︒,M 、N 是AD 、AB 上的动点,则BM MN +的最小值为______.15.(本题3分)(2020·江西宜春市·宜春九中八年级期中)如图,在ABC ∆中,BD 、BE 分别是高和角平分线,点F 在CA 的延长线上,FH ⊥BE 交BD 于G ,交BC 于H ,下列结论:①∠DBE=∠F ;②2∠BEF=∠BAF+∠C ;③()12F BAC B ∠=∠-∠;④∠BGH=∠ABE+∠C .其中正确的是_________ .16.(本题3分)(2021·宁波市鄞州蓝青学校八年级期中)如图,在直角坐标系中,直线34y x =-+分别与x 轴,y 轴交于M 、N ,点A 、B 分别在y 轴、x 轴上,且30A ∠=︒,2AO =.将ABO 绕O 顺时针转动一周,当AB 与直线MN 垂直时,点A 坐标为__________.17.(本题3分)(2020·湖州市第四中学教育集团七年级期中)一个长方形ABCD 在数轴上的位置如图所示,AB =3,AD =2,若此长方形绕着顶点按照顺时针方向在数轴上连续翻转,翻转1次后,点A 所对应的数为1,求翻转2018次后,点B 所对应的数_________.18.(本题3分)(2020·四川成都市·北师大锦江区海威教育培训中心八年级期中)如图,直线OD 与x 轴所夹的锐角为30°,1OA 的长为2,121A A B 、232A A B △、3431n n n A A B A A B +⋅⋅⋅△△均为等边三边形,点1A 、2A 、31n A A -⋅⋅⋅在x 轴正半轴上依次排列,点1B 、2B 、3n B B ⋅⋅⋅在直线OD 上依次排列,那么点2B 的坐标为______,点n B 的坐标为______.三、解答题(共46分)19.(本题9分)(2020·四川省成都美视国际学校八年级期中)如图,在平面直角坐标系中,Rt ABC ∆的三个顶点分别是(4,2)A -、(0,4)B 、(0,2)C .(1)画出ABC ∆关于点C 成中心对称的△11A B C ;平移ABC ∆,若点A 的对应点2A 的坐标为(0,4)-,画出平移后对应的△222A B C ;(2)△11A B C 和△222A B C 关于某一点成中心对称,则对称中心的坐标为 .20.(本题9分)(2020·成都市棕北中学七年级期中)“共享单车”已经成为城市的一道风景,由于其符合低碳出行,绿色出行的理念,为市民带来了极大便利,也越来越引起大家的重视.已知某“共享单车”企业拟采用的收费方式如下: 每月用车时间(小时)单价(元/小时) 不超过10的部分2 超过10不超过20的部分1.5 超过20的部分 1(1)甲一月份用车28小时,则甲该月车费多少元?(2)乙二月份的车费平均每小时是1.5元,则乙二月车费是多少元?(3)丙一、二月份共用车31小时(二月份比1月份多),共用车费54元,试求丙一、二月份各用车多少小时?21.(本题9分)(2020·河南濮阳市·油田十中八年级期中)如图,ABC中,90ACB ∠=︒,5cm AB =,4cm BC =,若点P 从点A 出发,以每秒2cm 的速度沿折线A B C A ---运动,设运动时间为t (0t >)秒.(1)AC =______cm ;(2)当点P 在边AC 上且恰好又在ABC ∠的角平分线上时,求此时t 的值;(3)在运动过程中,当t 为多少秒时,ACP △为等腰三角形(直接写出结果).22.(本题9分)(2020·靖江市靖城中学八年级期中)如图1,△ABC 中,CD ⊥AB 于点D ,且BD :AD :CD =2:3:4,(1)试说明△ABC 是等腰三角形;(2)已知S △ABC =90cm 2,如图2,动点P 从点B 出发以每秒1cm 的速度沿线段BA 向点A 运动,同时动点Q 从点A 出发以相同速度沿线段AC 向点C 运动,当其中一点到达终点时整个运动都停止.设点P 运动的时间为t (秒),①若△DPQ 的边与BC 平行,求t 的值;②若点E 是边AC 的中点,问在点P 运动的过程中,△PDE 能否成为等腰三角形?若能,求出t 的值;若不能,请说明理由.23.(本题10分)(2020·温岭市实验学校八年级期中)如图1,在Rt ABC 中,∠C=90°,AD 平分∠BAC ,BE 平分∠ABC ,AD 、BC 相交于点F .(1)求∠AFE 的度数;(2)如图2,过点F 作FP ⊥BE 交AB 于点P ,求证:EF =FP ;(3)如图3,在(2)的条件下,连接DE ,过点F 作FN ⊥AB 于点N ,并延长NF 交DE 于点M ,试判断DM 与EM 的数量关系,并说明理由.答案与解析一、单选题(共30分)1.(本题3分)(2019·酒泉市第二中学八年级期中)在平面直角坐标系中,将点P(2,3)绕原点O顺时针旋转90°后得到点P′,则点P′的坐标是( )A.(-2,3) B.(3-,2) C.(2,-3) D.(3,-2)[答案]D[分析]如图,过P、P′两点分别作x轴,y轴的垂线,垂足为A、B,由旋转90°可知,△OPA≌△OP′B,则P′B=PA=3,BO=OA=2,由此确定点P′的坐标.[详解]如图,过P、P′两点分别作x轴,y轴的垂线,垂足为A、B,∵线段OP绕点O顺时针旋转90°,∴∠POP′=∠AOB=90°,∴∠AOP=∠P′OB,且OP=OP′,∠PAO=∠P′BO=90°,∴△OAP≌△OBP′,即P′B=PA=3,BO=OA=2,∴P′(3,-2).故选D.[点睛]本题考查了点的坐标与旋转变换的关系.关键是根据旋转的条件,确定全等三角形.2.(本题3分)(2019·山东德州市·)如果a>b,c<0,那么下列不等式成立的是( ).A.a+c>b+c;B.c-a>c-b;C.ac>bc;D.a bc c >.[答案]A[解析]根据不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.一个个筛选即可得到答案.解答:解:A,∵a >b,∴a+c >b+c,故此选项正确;B,∵a >b,∴-a <-b,∴-a+c <-b+c,故此选项错误;C,∵a >b,c <0,∴ac <bc,故此选项错误;D,∵a >b,c <0, ∴a b c c<, 故此选项错误;故选A .3.(本题3分)(2020·浙江杭州市·杭州英特外国语学校八年级期中)若不等式组213x x a ->⎧⎨≤⎩的整数解共有三个,则a 的取值范围是( )A .56a ≤<B .56a <≤C .56a <<D .56a ≤≤ [答案]A[分析]首先确定不等式组的解集,利用含a 的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a 的不等式,从而求出a 的范围.[详解]解不等式2x-1>3,得:x >2,∵不等式组整数解共有三个,∴不等式组的整数解为3、4、5,则56a ≤<,故选A .[点睛]本题考查了一元一次不等式组的整数解,正确解出不等式组的解集,确定a 的范围,是解答本题的关键.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了. 4.(本题3分)(2020·无锡市第一女子中学八年级期中)如图,在Rt △ABC 中,∠BAC =90°,AB =AC ,BF 平分∠ABC ,过点C 作CF ⊥BF 于F 点,过A 作AD ⊥BF 于D 点.AC 与BF 交于E 点,下列四个结论:①BE =2CF ;②AD =DF ;③AD +DE =12BE ;④AB +BC =2AE .其中正确结论的序号是( )A .只有①②③B .只有②③C .只有①②④D .只有①④ [答案]A[分析] 适当做辅助线,构建三角形.延长CF 并交BA 延长线于H①证明△ABE≌△ACH ,得到BE=CH,又可证CH=2CF,故可得BE =2CF②若要得到AD =DF ,则需要证明△ADF 为等腰直角三角形,需要证明∠DAF 为45°即可 ③过E 作EM AF ⊥交AF 于点M,证明△EMF 为等腰直角三角形,EM MF =12AD DE AM EM AM MF AF CF BE +=+=+=== ④过E 作EN BC ⊥于点N,证明2AE AE EN AE EC AC =+<+=,得到22AB BC AE BC AE +>+>,即可证明④错误.[详解]①延长BA 、CF ,交于点H ,∵,BF CH CBF HBF ⊥∠=∠∴BCH H ∠=∠∴BC BH =∴2CH CF =∵90ABE AEB ∠+∠=︒ 90FCE FEC ∠+∠=︒ AEB FEC ∠=∠∴ABF ACF ∠=∠∵90BAF CAH ∠=∠=︒ AB AC =∴BAE CAH ≌∴,2BE CH BE CF ==②由①知,F 为CH 中点,又CAH 为直角三角形 故12AF CH CF HF === ∴H FAH ∠=∠∵,45BC BH HBC =∠=︒∴67.5H FAH ∠=∠=︒∵90HAC ∠=︒∴22.5FAC ∠=︒又BF 为HBC ∠的平分线∴22.5HBF ∠=︒∴67.5BAD ∠=︒∴9067.522.5CAD ∠=︒-︒=︒45FAD FAC DAC ∠=∠+∠=︒在RT ADF 中,45DAF DFA ∠=∠=︒∴AD DF =③过E 作EM AF ⊥交AF 于点M,由②知,CA 为∠DAF 的平分线∴,DE EM AD AM ==△EMF 为等腰直角三角形∴EM MF = ∴12AD DE AM EM AM MF AF CF BE +=+=+===④过E 作EN BC ⊥于点N,可知AE EN =在RT ENC 中,EN EC <∴2AE AE EN AE EC AC =+<+=即2AE AC <,而AC AB =∴2AE AB <故22AB BC AE BC AE +>+>∴2AB BC AE +≠,故④错误,本题答案选A.[点睛]本题主要考查三角形辅助线的作法,要考虑题目的含义适当的作辅助线构建全等三角形.本题属于拔高题,熟练作辅助线证全等是本题解题的关键所在.5.(本题3分)(2020·深圳龙城初级中学八年级期中)如图,在△ABC 中,AD 为∠BAC 的平分线,BM ⊥AD,垂足为M,且AB=5,BM=2,AC=9,则∠ABC 与∠C 的关系为( )A.∠ABC=2∠C B.∠ABC=52∠C C.14∠ABC=∠C D.∠ABC=3∠C[答案]D[分析]延长BM到E,证明△ABF≌△AEM,利用线段长度推出△BCE是等腰三角形,再根据角度转换求出即可. [详解]证明:延长BM,交AC于E,∵AD平分∠BAC,BM⊥AD,∴∠BAM=∠EAM,∠AMB=∠AME又∵AM=AM,∴△ABM≌△AEM,∴BM=ME,AE=AB,∠AEB=∠ABE,∴BE=BM+ME=4,AE=AB=5,∴CE=AC-AE=9-5=4,∴CE=BE,∴△BCE是等腰三角形,∴∠EBC=∠C,又∵∠ABE=∠AEB=∠C+∠EBC.∴∠ABE=2∠C,∴∠ABC=∠ABE+∠EBC=3∠C.故选D.[点睛]本题考查三角形综合题型,关键在于作出合理的辅助线.6.(本题3分)(2020·武城县实验中学八年级期中)如图,在Rt ABC ∆中,90BAC ∠=︒,45C ∠=︒,AD BC ⊥于点D ,ABC ∠的平分线分别交AC 、AD 于E 、F 两点,M 为EF 的中点,AM 的延长线交BC 于点N ,连接EN ,下列结论:①AFE ∆为等腰三角形;②DF DN =;③AN BF =;④EN NC ⊥.其中正确的结论有( )A .1个B .2个C .3个D .4个[答案]D[分析] ①由等腰直角三角形的性质得∠BAD =∠CAD =∠C =45°,再根据三角形外角性质可得到∠AEF =∠AFE ,可判断△AEF 为等腰三角形,于是可对①进行判断;求出BD=AD ,∠DBF =∠DAN ,∠BDF =∠ADN ,证△DFB ≌△DAN ,即可判断②③;连接EN ,只要证明△ABE ≌△NBE ,即可推出∠ENB =∠EAB =90°,由此可知判断④.[详解]解:∵等腰Rt △AB C 中,∠BAC =90°,AD ⊥BC ,∴∠BAD =∠CAD =∠C =45°,BD=AD, ∵BE 平分∠ABC ,∴∠ABE =∠CBE =12∠ABC =22.5°, ∴∠AEF =∠CBE +∠C =22.5°+45°=67.5°,∠AFE =∠FBA +∠BAF =22.5°+45°=67.5°,∴∠AEF =∠AFE ,∴AF =AE ,即△AEF 为等腰三角形,所以①正确;∵M 为EF 的中点,∴AM ⊥BE ,∴∠AMF =∠AME =90°,∴∠DAN =90°−67.5°=22.5°=∠MBN , 在△FBD 和△NAD 中FBD NAD BD ADBDF ADN ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△FBD ≌△NAD (ASA ),∴DF=DN ,AN=BF ,所以②③正确;∵AM ⊥EF ,∴∠BMA =∠BMN =90°,∵BM =BM ,∠MBA =∠MBN ,∴△MBA ≌△MBN ,∴AM =MN ,∴BE 垂直平分线段AN ,∴AB =BN ,EA =EN ,∵BE=BE ,∴△ABE ≌△NBE ,∴∠ENB =∠EAB =90°,∴EN ⊥NC ,故④正确,故选:D .[点睛]本题考查了全等三角形的判定与性质、三角形外角性质、三角形内角和定理、垂直平分线的性质,能正确证明推出两个三角形全等是解此题的关键,主要考查学生的推理能力.7.(本题3分)(2020·湖北鄂州市·八年级期中)如图,AD 为等腰△ABC 的高,其中∠ACB =50°,AC =BC ,E ,F 分别为线段AD ,AC 上的动点,且 AE =CF , 当 BF +CE 取最小值时,∠AFB 的度数为( )A .75°B .90°C .95°D .105°[答案]C[分析]先构造△CFH全等于△AEC,得到△BCH是等腰直角三角形且FH=CE,当FH+BF最小时,即是BF+CE最小时,此时求出∠AFB的度数即可.[详解]解:如图,作CH⊥BC,且CH=BC,连接HB,交AC于F,此时△BCH是等腰直角三角形且FH+BF最小,∵AC=BC,∴CH=AC,∵∠HCB=90°,AD⊥BC,∴AD//CH,∵∠ACB=50°,∴∠ACH=∠CAE=40°,∴△CFH≌△AEC,∴FH=CE,∴FH+BF=CE+BF最小,此时∠AFB=∠ACB+∠HBC=50°+45°=95°.故选:C.[点睛]本题考查全等三角形的性质和判定、等腰三角形的性质、最短路径问题,关键是作出辅助线,有一定难度.8.(本题3分)(2020·渠县崇德实验学校八年级期中)如果将点P绕顶点M旋转1800后与点Q重合,那么称点P与点Q关于点M对称,定点M叫作对称中心,此时,点M是线段PQ的中点,如图,在平面直角坐标系中,ABO的顶点A,B,O的坐标分别为(1,0),(0,1),(0,0),点1P,2P,3P,…中相邻两点都关于ABO的一个顶点对称,点1P与点2P关于点A对称,点2P与点3P关于点B对称,点3P与点4P关于点O对称,点4P与点5P 关于点A 对称,点5P 与点6P 关于点B 对称,点6P 与点7P 关于点O 对称,…对称中心分别是A ,B ,C ,A ,B ,C ,…且这些对称中心依次循环,已知1P 的坐标是(1,1) .则点100P 的坐标是( )A .(1,-1)B .(1,-3)C .(-1,3)D .(1,1)[答案]B[分析] 先利用对称中心的定义分别确定P 1、P 2、P 3、P 4、P 5、P 6、P 7的坐标,发现点P 7的坐标和点P 1的坐标相同,即这些点的坐标以6个为一组进行循环,由此可确定点P 100的坐标和点P 4的坐标相同.[详解]解:如图:∵点P 1的坐标是(1,1),A (1,0),而点P 1与点P 2关于点A 对称,∴点P 2的坐标为(1,-1),同理得到点P 3的坐标为(-1,3),点P 4的坐标为(1,-3),点P 5的坐标为(1,3),点P 6的坐标为(-1,-1),点P 7的坐标为(1,1),如图,∴点P 7的坐标和点P 1的坐标相同,∵100=16×6+4, ∴点P 100的坐标和点P 4的坐标相同,即为(1,-3).故选:B .[点睛]本题考查了坐标与图形变化-旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.注意从特殊情形中找规律. 9.(本题3分)(2020·西华县教研室八年级期中)如图,在平面直角坐标系中,点A ,B 分别在y 轴和x 轴上,60ABO ∠=︒,在坐标轴上找一点P ,使得PAB ∆是等腰三角形,则符合条件的P 点的个数是( )A .5B .6C .7D .8[答案]B[分析] 分类讨论:作AB 的垂直平分线和坐标轴的交点,以A 为圆心AB 为半径作圆和坐标轴的交点,以B 为圆心AB 为半径作圆和坐标轴的交点,根据两边相等的三角形是等腰三角形,可得答案.[详解]作AB 的垂直平分线和坐标轴的交点,得到P5,此时AP=BP ;以A 为圆心AB 为半径作圆和坐标轴的交点,得到P2和P6,此时AB=AP ;以B 为圆心AB 为半径作圆和坐标轴的交点,得到P1、P3和P4,此时BP=BA ;综上所述:符合条件的点P 共有6个.故选B .[点睛]本题考查了等腰三角形的判定和性质,把所有可能的情况都找出来,不遗漏掉任何一种情况是本题的关键. 10.(本题3分)(2020·江苏泰州市·昭阳湖初中八年级期中)如图,在ABC 中,点D 是BC 边上一点,已知DAC α∠=,αDAB 902∠=︒-,CE 平分ACB ∠交AB 于点E ,连接DE ,则DEC ∠的度数为( )A .α3B .α2C .α302︒-D .45α︒-[答案]B[分析]过点E 作EM AC ⊥于M ,EN AD ⊥于N ,EH BC ⊥于H ,如图,先计算出EAM ∠,则AE 平分MAD ∠,根据角平分线的性质得EM EN =,再由CE 平分ACB ∠得到EM EH =,则EN EH =,于是根据角平分线定理的逆定理可判断DE 平分ADB ∠,再根据三角形外角性质解答即可. [详解]解:过点E 作EM AC ⊥于M ,EN AD ⊥于N ,EH BC ⊥于H ,如图,DAC α∠=,αDAB 902∠=︒-,αEAM 902∠∴=︒-, AE ∴平分MAD ∠,EM EN ∴=,CE 平分ACB ∠,EM EH ∴=,EN EH ∴=,DE ∴平分ADB ∠, 11ADB 2∠∠∴=, 由三角形外角可得:1DEC 2∠∠∠=+,12ACB 2∠∠=,11DEC ACB 2∠∠∠∴=+, 而ADB DAC ACB ∠∠∠=+, 11DEC DAC α22∠∠∴==, 故选:B .[点睛]本题考查了角平分线的性质和判定定理,三角形的外角性质定理,解决本题的关键是运用角平分线定理的逆定理证明DE 平分ADB ∠.二、填空题(共24分)11.(本题3分)(2020·广西百色市·七年级期中)已知不等式组2145x x x m->+⎧⎨>⎩无解,则m 的取值范围是________.[答案]m≥-3[分析]先求出每个不等式的解集,再根据已知得出关于a 的不等式,求出不等式的解集即可.[详解]解:2145x x x m ->+⎧⎨>⎩①②, ∵不等式①的解集是x <−3,不等式②的解集是x >m ,又∵不等式组2145x x x m ->+⎧⎨>⎩无解, ∴m≥−3,故答案为:m≥−3.[点睛]本题考查了解一元一次不等式和解一元一次不等式组的应用,解此题的关键是能根据找不等式的解集和已知得出关于m 的不等式组.12.(本题3分)(2020·成都市锦江区四川师大附属第一实验中学七年级期中)在ABC∆中,3,ABC C AD ∠=∠是BAC ∠的角平分线,BE AD ⊥于E ,若4,BE =5,BD =9CD =,则ABC ∆的周长是_______________.[答案]42[分析]延长BE 交AC 于F ,根据ASA 证明AEB AEF ∆≅∆,根据全等三角形的性质得到BE=EF ,进而得到BF=8,根据三角形的外角性质和等边对等角得到ABE FBC C ∠=∠+∠,进而得到FBC C ∠=∠,根据等角对等边得到FB=FC=8,然后根据ABD S ∆和ADC S ∆的面积比得到AB=10,进一步得到18AC AB FC =+=,然后根据三角形周长公式求解即可.[详解]延长BE 交AC 于,FAD 平分,BAC ∠,BAD CAD ∴∠=∠,BE AD ⊥,AEB AEF ∴∠=∠在AEB ∆和AEF ∆中,BAE FAE AE AEAEB AEF ∠=∠⎧⎪=⎨⎪∠=∠⎩,AEB AEF ∆≅∆∴,,BE EF AB AF ABE AFE ∴==∠=∠,4,BE =.4,8,EF BF BE EF ==+=,AFE FBC C ∠=∠+∠,ABE FBC C ∴∠=∠+∠23,ABC ABE FBC FBC C C ∠=∠+∠=∠+∠=∠,FBC C ∴∠=∠8,FB FC ∴== AD 是BAC ∠的角平分线,59ABD ADC S BD AB S CD AC ∆∆∴=== 59AB AB FC ∴=+ 10,AB ∴=18,AC AB FC ∴=+=ABC C AB AC BC ∆∴=++101859=+++42=.故答案为42.[点睛]本题考查了三角形全等判定和性质,三角形外角的性质,等腰三角形的性质,综合考查了三角形的相关知识,熟练掌握各部分知识点是本题的关键.13.(本题3分)(2020·常州市第二十四中学七年级期中)已知两个完全相同的直角三角形纸片△ABC、△DEF,如图1放置,点B、D重合,点F在BC上,AB与EF交于点G.∠C=∠EFB=90°,∠E=∠ABC=30°,现将图1中的△ABC绕点F按每秒10°的速度沿逆时针方向旋转180°,在旋转的过程中,△ABC恰有一边与DE平行的时间为___________s[答案]3秒或12秒或15秒[详解]①如图(2),当AC∥DE时,∵AC∥DE,∴∠ACB=∠CHD=90°.∵∠E=30°,∴∠D=60°,∴∠HFD=90°-60°=30°,∴t=30°÷10°=3.②如图3,当BC∥DE时,∵BC∥ED,∴∠BFE=∠E=30°,∴∠BFD=30°+90°=120°,∴t=120°÷10=12.③如图4,当BA ∥ED 时,延长DF 交DA 于G .∵∠E=30°,∴∠D=60°,∵BA ∥ED ,∴∠BGD=180°-∠D=120° ∴∠BFD=∠B+∠BGF=30°+120°=150°,∴t=150°÷10°=15.故答案为3秒或12秒或15秒[点睛]本题主要考查平行线的性质.分三种不同的情况讨论,解题的关键是画出三种情况的图形.14.(本题3分)(2019·江西省宜春实验中学八年级期中)如图,AD BC ⊥于点D 且CD BD =,已知6AC =,75ACB ∠=︒,M 、N 是AD 、AB 上的动点,则BM MN +的最小值为______.[答案]3[分析]设N 关于AD 的对称点为R ,由图可知△ABC 是锐角三角形,则R 必在AC 上,作AC 边上的高BE ,E 在线段AC 上,连接BR 交AD 于点M ,根据题意可知△ABC 是等腰三角形,根据等腰三角形的角平分线的性质可得MN MR =,等量代换可得BM MN BR +=,在Rt △BER 中,BR 是斜边,BE 是直角边,所以BR 的最小值是与BE 重合,即△ABC 的BC 边上的高,求出BE 的长即可.[详解]解:如图,设N 关于AD 的对称点为R ,由图可知△ABC 是锐角三角形,则R 必在AC 上,作AC 边上的高BE ,E 在线段AC 上,连接BR 交AD 于点M .∵AD BC ⊥于点D 且CD BD =,∴△ABC 是等腰三角形,∴MN MR BM MN BM MR BR =∴+=+=,,∴当BR ⊥AC 时有最小值,即BE∵∠ACB=∠ABC=75°,∴∠CAB=30°,又∵∠AEB=90°,∴∠EBA=60°,∵:2:1AB BE =,∵6AC AB ==,∴3BE =.故答案为3.[点睛]本题主要考查了轴对称—最短线路问题,解题的关键是正确作出对称点和利用垂直平分线的性质证明BM MN +的最小值为三角形某一边上的高.15.(本题3分)(2020·江西宜春市·宜春九中八年级期中)如图,在ABC ∆中,BD 、BE 分别是高和角平分线,点F 在CA 的延长线上,FH ⊥BE 交BD 于G ,交BC 于H ,下列结论:①∠DBE=∠F ;②2∠BEF=∠BAF+∠C ;③()12F BAC B ∠=∠-∠;④∠BGH=∠ABE+∠C .其中正确的是_________ .[答案]①②③④[分析]根据等角的余角相等证明结论①,根据角平分线的性质证明结论②,证明∠DBE=∠BAC-∠C-∠DBE ,再结合①的结论可得结论③,证明∠AEB=∠ABE+∠C ,再由BD ⊥FC ,FH ⊥BE ,可以证明结论④.[详解]①∵BD ⊥FD ,∴∠FGD+∠F=90°,∵FH ⊥BE ,∴∠BGH+∠DBE=90°,∵∠FGD=∠BGH ,∴∠DBE=∠F ,故①正确;②∵BE 平分∠ABC ,∴∠ABE=∠CBE ,∠BEF=∠CBE+∠C ,∴2∠BEF=∠ABC+2∠C ,∠BAF=∠ABC+∠C ,∴2∠BEF=∠BAF+∠C ,故②正确;③∠ABD=90°-∠BAC ,∠DBE=∠ABE-∠ABD=∠ABE-90°+∠BAC=∠CBD-∠DBE-90°+∠BAC , ∵∠CBD=90°-∠C , ∴∠DBE=∠BAC-∠C-∠DBE ,由①得,∠DBE=∠F ,∴∠F=∠BAC-∠C-∠DBE ,∴∠F=12(∠BAC ﹣∠C ),故③正确; ④∵∠AEB=∠EBC+∠C , ∵∠ABE=∠CBE ,∴∠AEB=∠ABE+∠C ,∵BD ⊥FC ,FH ⊥BE ,∴∠FGD=∠FEB ,∴∠BGH=∠ABE+∠C ,故④正确.故答案是:①②③④.[点睛]本题考查角度的证明,解题的关键是掌握角度之间关系的证明方法.16.(本题3分)(2021·宁波市鄞州蓝青学校八年级期中)如图,在直角坐标系中,直线34y x =-+分别与x 轴,y 轴交于M 、N ,点A 、B 分别在y 轴、x 轴上,且30A ∠=︒,2AO =.将ABO 绕O 顺时针转动一周,当AB 与直线MN 垂直时,点A 坐标为__________.[答案](3或(1,3--[分析]计算出OM=33,ON=4,即可确定∠NMO=60°,然后利用AB 与直线MN 垂直画出图形,直线AB 交y 轴于点C ,作AD ⊥x 轴于H ,则∠OCB=60°,再解直角三角形求AD 、OD ,从而确定A 点坐标.[详解]当0x =时,344y x =-+=,则()0,4N ,当0y =时,430x +=,解得433x =,则43 ,03M ⎛⎫ ⎪ ⎪⎝⎭. 在Rt OMN △中,224383433MN ⎛⎫=+= ⎪ ⎪⎝⎭, ∵12OM ON =,∴30∠=︒ONM ,∴60NMO ∠=︒, 在Rt ABO △中,∵30A ∠=︒,2AO =,∴60OBA ∠=︒,∴233OB =, ∵AB 与直线MN 垂直,∴直线AB 与x 轴的夹角为60︒,如图1,直线AB 交y 轴于点C ,交MN 于G ,作AD x ⊥轴于D ,⊥GH x 轴于H ,图1∴30MGH ∠=︒,∴60BGH ∠=︒,∴60OCB ∠=︒,∵60OBA ∠=︒,∴OBC 是等边三角形,∴60BOC ∠=︒,∴30AOC ∠=︒,∴60AOD ∠=︒,在Rt OAD △中,112OD OA ==,332AD ==∴A 点坐标为(3,如图2,直线AB 交y 轴于点C ,作AD x ⊥轴于D .图2同理:60OCB ∠=︒,∵ABO 60∠=,∴60COB ∠=︒,∴30AOC ∠=︒,∴60AOD ∠=︒,在Rt OAD △中, 112OD OA ==,332AD OA ==, ∴A 点坐标为()1,3--, 综上所述,A 点坐标为()1,3或()1,3--. 故答案为:()1,3或()1,3--.[点睛] 本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.解决本题的关键是正确画出旋转后的图形.17.(本题3分)(2020·湖州市第四中学教育集团七年级期中)一个长方形ABCD 在数轴上的位置如图所示,AB =3,AD =2,若此长方形绕着顶点按照顺时针方向在数轴上连续翻转,翻转1次后,点A 所对应的数为1,求翻转2018次后,点B 所对应的数_________.[答案]5044[分析]翻转两次后点B 落在数轴上,根据翻转4次为一个周期循环,依据翻转总次数得出翻转几个周期循环,确定点B 落在数轴上推算出移动的距离得出结果.[详解]如图,翻转两次后点B 落在数轴上,以后翻转4次为一个周期,且长方形的周长=2(2+3)=10,∴一个周期后右边的点移动10个单位长度,∵20164504÷=,∴翻转2018次后,点B 落在数轴上,点B 所对应的数是50410515044⨯+-=,故答案为:5044.[点睛]此题考查旋转的性质,长方形的性质,图形规律类运算探究,根据图形得到变化的规律是解题的关键. 18.(本题3分)(2020·四川成都市·北师大锦江区海威教育培训中心八年级期中)如图,直线OD 与x 轴所夹的锐角为30°,1OA 的长为2,121A A B 、232A A B △、3431n n n A A B A A B +⋅⋅⋅△△均为等边三边形,点1A 、2A 、31n A A -⋅⋅⋅在x 轴正半轴上依次排列,点1B 、2B 、3n B B ⋅⋅⋅在直线OD 上依次排列,那么点2B 的坐标为______,点n B 的坐标为______.[答案](6,3 ()113232n n --⨯. [分析] 根据等边三角形的性质和∠B 1OA 2=30°,可求得∠B 1OA 2=∠A 1B 1O=30°,可求得OA 2=2OA 1=4,同理可求得OA n =2n ,再结合含30°角的直角三角形的性质可求得△A n B n A n+1的边长,进一步可求得点B n 的坐标.[详解]解:∵112A B A △为等边三角形,∴11260∠=︒B A A ,∵1230B OA ∠=︒,∴121130B OA A B O ∠=∠=︒,可求得2124OA OA ==,同理可求得2n n OA =,∵130n n B OA +∠=︒,160n n n B A A +∠=︒,∴2n n n n B A OA ==,即1n n n A B A +△的边长为2n ,则可求得其高为132322n n -⨯=⨯, ∴点n B 的横坐标为:132223222n n n n ⨯+=⨯=⨯, ∴点n B 的坐标为()1132,32n n --⨯⨯,点2B 的坐标为()6,23.故答案为:()6,23;()1132,32n n --⨯⨯. [点睛] 本题属于规律型问题,考查点的坐标,掌握等边三角形的性质为解题关键.三、解答题(共46分)19.(本题9分)(2020·四川省成都美视国际学校八年级期中)如图,在平面直角坐标系中,Rt ABC ∆的三个顶点分别是(4,2)A -、(0,4)B 、(0,2)C .(1)画出ABC ∆关于点C 成中心对称的△11A B C ;平移ABC ∆,若点A 的对应点2A 的坐标为(0,4)-,画出平移后对应的△222A B C ;(2)△11A B C 和△222A B C 关于某一点成中心对称,则对称中心的坐标为 .[答案](1)画图见解析;(2)(2,-1).[解析]试题分析:(1)、根据网格结构找出点A 、B 关于点C 成中心对称的点A 1、B 1的位置,再与点A 顺次连接即可;根据网格结构找出点A 、B 、C 平移后的对应点A 2、B 2、C 2的位置,然后顺次连接即可;(2)、根据中心对称的性质,连接两组对应点的交点即为对称中心.试题解析:(1)、△A 1B 1C 如图所示, △A 2B 2C 2如图所示; (2)、如图,对称中心为(2,﹣1).考点:(1)、作图-旋转变换;(2)、作图-平移变换.20.(本题9分)(2020·成都市棕北中学七年级期中)“共享单车”已经成为城市的一道风景,由于其符合低碳出行,绿色出行的理念,为市民带来了极大便利,也越来越引起大家的重视.已知某“共享单车”企业拟采用的收费方式如下: 每月用车时间(小时)单价(元/小时) 不超过10的部分2 超过10不超过20的部分1.5 超过20的部分 1(1)甲一月份用车28小时,则甲该月车费多少元?(2)乙二月份的车费平均每小时是1.5元,则乙二月车费是多少元?(3)丙一、二月份共用车31小时(二月份比1月份多),共用车费54元,试求丙一、二月份各用车多少小时?[答案](1)43元;(2)45元;(3)丙一月份用车8小时,二月份用车23小时[分析](1)分段计算,10小时内一部分车费,11至20小时内一部分车费,超过20小时的一部分车费,三者之和即为所求;(2)设总里程为x ,且x>20,根据题意得到:10小时内车费+11至20小时内车费+,超过20小时车费=1.5⨯总里程,列出方程求解即可;(3)设丙一月份用车x 小时,则二月份用车()31x -小时,根据题意得到015.5x ≤<,分为三种情况讨论:①一月份不超过10小时,②一月份超过10小时,不超过15.5小时且二月不超过20小时,③一月份超过10小时,不超过15.5小时且二月超过20小时,列出方程求解即可.[详解](1)甲该月车费:()10210 1.52820143⨯+⨯+-⨯=(元).(2)设乙二月份用车x 小时,由题意可知:20x >,∴()10210 1.5201 1.5x x ⨯+⨯+-⨯=,解得:30x =,∴乙二月份车费是:30 1.545⨯=(元).(3)设丙一月份用车x 小时,则二月份用车()31x -小时.由题意可知:015.5x ≤<,①若010x ≤≤,则213131x ≤-≤,∴()2210 1.5101312054x x +⨯+⨯+⨯--=,解得:8x =(满足题意),则3123x -=,∴丙一月份用车8小时,二月份用车23小时.②若1015.5x <<,则15.53121x <-<.1°.若15.53120x <-≤,则:()()210 1.510210 1.5311054x x ⨯+-+⨯+--=,此时,上述方程无解,舍去.2°.若203121x <-<,则:()()210 1.510210 1.510312054x x ⨯+-+⨯+⨯+--=,解得:6x =,312521x -=>(舍)∴综上可知,丙一月份用车8小时,二月份用车23小时.[点睛]本题考查了一元一次方程的应用,一元一次不等式的应用,重点是根据题意列出不等式,分情况讨论是本题的关键.21.(本题9分)(2020·河南濮阳市·油田十中八年级期中)如图,ABC中,90ACB ∠=︒,5cm AB =,4cm BC =,若点P 从点A 出发,以每秒2cm 的速度沿折线A B C A ---运动,设运动时间为t (0t >)秒.。

浙教版初中数学八年级下册期中测试卷(困难)(含答案解析)

浙教版初中数学八年级下册期中测试卷(困难)(含答案解析)

浙教版初中数学八年级下册期中测试卷(困难)(含答案解析)考试范围:第一,二,三单元; &nbsp; 考试时间:120分钟;总分:120分,第I卷(选择题)一、选择题(本大题共12小题,共36.0分。

在每小题列出的选项中,选出符合题目的一项)1. 满足1√3−√2<x<2√6−√5的整数x的个数是( )A. 4B. 5C. 6D. 72. 代数式3+√2x−4有( )A. 最大值2B. 最小值2C. 最大值3D. 最小值33. 已知a<b,则化简二次根式√−a3b的正确结果是( )A. −a√−abB. −a√abC. a√abD. a√−ab4. 若b>0,把√−4ab化成最简二次根式为( )A. 2b√−ab B. −2b√ab C. −2b√−ab D. 2√−ab5. 某县以“重点整治环境卫生”为抓手,加强对各乡镇环保建设的投入,计划从2017年起到2019年累计投入4250万元,已知2017年投入1500万元,设投入经费的年平均增长率为x,根据题意,下列所列方程正确的是( )A. 1500(1+x)2=4250B. 1500(1+2x)=4250C. 1500+1500x+1500x2=4250D. 1500(1+x)+1500(1+x)2=4250−15006. 某超市1月份营业额为90万元,1月、2月、3月总营业额为144万元,设平均每月营业额增长率为x,则下面所列方程正确的是( )A. 90(1+x)2=144B. 90(1−x)2=144C. 90(1+2x)=144D. 90(1+x)+90(1+x)2=144−907. 某商店将进价为8元的商品按每件10元出售,每天可销售200件,现商家采用提高售价,减少进货量的方法增加利润,如果这种商品每件涨0.5元,其销量就会减少10件,那么要使利润为640元,需将售价定为( )A. 16元B. 12元C. 16元或12元D. 14元8. 2017−2018赛季中国男子篮球职业联赛,采用双循环制(每两队之间都进行两场比赛),比赛总场数为380场,若设参赛队伍有x支,则可列方程为( )A. 12x(x−1)=380B. x(x−1)=380 C. 12x(x+1)=380D. x(x+1)=3809. 某同学5次上学途中所花的时间(单位:分钟)分别为x,y,10,11,9,已知这组数据的平均数为10,方差为2,则|x−y|的值为( )A. 1B. 2C. 3D. 410. 为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm)的平均数与方差为:x甲=x丙=3,x乙=x丁=15;s甲2=s丁2=3.6,s乙2=s丙2=6.3.则麦苗又高又整齐的是( )A. 甲B. 乙C. 丙D. 丁11. 已知一组数据a1、a2、a3、a4、a5的平均数是4,方差是0.5,那么另一组数据3a1−2、3a2−2、3a3−2、3a4−2、3a5−2的平均数和方差分别是( )A. 12、0.5B. 12、4.5C. 10、0.5D. 10、4.512. 小明同学统计我市2016年春节后某一周的最低气温如下表;则这组数据的中位数与众数分别是( )A. 1,1B. 1,2C. 2,1D. 2,2第II卷(非选择题)二、填空题(本大题共4小题,共12.0分)13. 若a+b=√7,a−b=√3,则ab=______.14. 如图,D是等边三角形ABC中AC延长线上一点,连结BD,E是AB上一点,且DE=DB,若AD+AE=5√3,BE=√3,则BC=.15. 若关于x的方程x2+(k−2)x+k2=0的两根互为倒数,则k=________.16. 已知一组数据x1,x2,x3,x4,x5的平均数是2,方差是5,那么另一组数据3x1−2,3x2−2,3x3−2,3x4−2,3x5−2的平均数和方差的和为______.三、解答题(本大题共9小题,共72.0分。

人教版初中数学八年级下册期中试题(福建省厦门市

人教版初中数学八年级下册期中试题(福建省厦门市

福建省厦门外国语海沧附校八年级(下)期中数学试卷一、填空题(每小题3分,共30分)1.(3分)计算:(﹣1)0+=.2.(3分)当x时,分式有意义.3.(3分)1纳米=0.000000001米,则2纳米用科学记数法表示为米.4.(3分)在▱ABCD中,AB=3,BC=4,则▱ABCD的周长等于.5.(3分)已知▱ABCD中,∠B=60°,则∠A=,∠C=,∠D=.6.(3分)直角三角形两直角边长分别为5和12,则它斜边上的高为.7.(3分)化简:=.8.(3分)如图,一根树在离地面3米处断裂,树的顶部落在离底部4米处,树折断之前有米.9.(3分)菱形的周长为100cm,一条对角线长为14cm,它的面积是.10.(3分)如图,从点A(0,2)发出一束光,经x轴反射,过点B(4,3),则这束光从点A到点B所经过的路径的长为.二、选择题(每小题3分,共30分)11.(3分)在式子,x﹣1,,,,(x+y),,中,分式的个数是()A.6B.5C.4D.312.(3分)不能判断四边形ABCD是平行四边形的是()A.AB=CD,AD=BC B.AB=CD,AB∥CDC.AB=CD,AD∥BC D.AB∥CD,AD∥BC13.(3分)下列计算错误的是()A.a3•a﹣5=a﹣2B.a6÷a2=a3C.a3﹣3a3=﹣2a3D.14.(3分)下列几组数中,不能作为直角三角形三边长度的是()A.1.5,2,2.5B.3,4,5C.5,12,13D.20,30,40 15.(3分)化简x•的结果是()A.1B.xy C.D.16.(3分)在△ABC中,已知AB=12cm,AC=9cm,BC=15cm,则△ABC的面积等于()A.108cm2B.90cm2C.180cm2D.54cm217.(3分)四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是()A.AB=CD B.AD=BC C.AB=BC D.AC=BD 18.(3分)下列条件中,能判定四边形是菱形的是()A.两组对边分别相等B.两条对角线互相平分且相等C.两条对角线相等且互相垂直D.两条对角线互相垂直平分19.(3分)已知一个直角三角形的两边长分别为3和4,则第三边长是()A.5B.25C.D.5或20.(3分)A、B两地相距48千米,一艘轮船从A地顺流航行至B地,又立即从B地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米/时,则可列方程为()A.B.C.D.三、解答题(本题共60分)21.(15分)计算(1)(2)(3).(4)÷(x+2﹣)22.(10分)解方程:(1)(2)23.(7分)如图所示,已知在△ABC中,D是AB的中点,E是AC上的点,且∠ABE=∠BAC,EF∥AB,DF∥BE,请猜想DF与AE有怎样的关系,并说明理由.24.(7分)如图:矩形ABCD的对角线AC,BD交于点O,过点D作DP∥OC,且DP=OC,连接CP,试判断四边形CODP的形状.25.(7分)某中学有一块四边形的空地ABCD,如图所示,学校计划在空地上种植草皮,经测量∠A=90°,AB=3m,DA=4m,BC=12m,CD=13m,若每平方米草皮需要200元,问学校需要投入多少资金买草皮?26.(7分)如图所示,折叠矩形的一边AD,使点D落在BC边上的点F处,已知AB=4cm,BC=5cm,求EC的长.27.(7分)已知BE、CF分别为△ABC中∠B、∠C的平分线,AM⊥BE于M,AN⊥CF于N.求证:MN∥BC.福建省厦门外国语海沧附校八年级(下)期中数学试卷参考答案与试题解析一、填空题(每小题3分,共30分)1.(3分)计算:(﹣1)0+=3.【分析】幂的负指数运算,先把底数化成其倒数,然后将负整指数幂当成正的进行计算.任何非0数的0次幂等于1.【解答】解:原式=1+2=3.故答案为3.【点评】本题是考查含有零指数幂和负整数指数幂的运算.2.(3分)当x≠3时,分式有意义.【分析】直接利用分式有意义的条件分析得出答案.【解答】解:分式有意义,则x﹣3≠0,故x≠3,故答案为:≠3.【点评】此题主要考查了分式有意义的条件,正确把握分式的定义是解题关键.3.(3分)1纳米=0.000000001米,则2纳米用科学记数法表示为2×10﹣9米.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:2纳米=0.000000002米=2×10﹣9米,故答案为2×10﹣9.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.(3分)在▱ABCD中,AB=3,BC=4,则▱ABCD的周长等于14.【分析】根据平行四边形的对边相等,可得AB=CD,AD=BC,所以可求得▱ABCD的周长为14.【解答】解:∵四边形ABCD是平行四边形,∴CD=AB=3,AD=BC=4,∴▱ABCD的周长为14.故答案为14.【点评】此题考查了平行四边形的性质:平行四边形的对边相等.此题比较简单,注意解题时要细心.5.(3分)已知▱ABCD中,∠B=60°,则∠A=120°,∠C=60°,∠D=120°.【分析】根据平行四边形的邻角互补,对角相等即可得出所求角的度数.【解答】解:∵▱ABCD中,∠B=60°,∴∠A=120°,∠C=60°,∠D=120°,故答案为:120°;60°;120°.【点评】本题考查平行四边形的性质,比较简单,解答本题的关键是掌握平行四边形的对角相等,邻角互补的性质.6.(3分)直角三角形两直角边长分别为5和12,则它斜边上的高为.【分析】本题可先用勾股定理求出斜边长,然后再根据直角三角形面积的两种公式求解即可.【解答】解:由勾股定理可得:斜边长2=52+122,则斜边长=13,直角三角形面积S=×5×12=×13×斜边的高,可得:斜边的高=.故答案为:.【点评】本题考查勾股定理及直角三角形面积公式的综合运用,看清题中条件即可.7.(3分)化简:=x+6.【分析】先将分子利用平方差公式分解因式,再约去分子、分母的公因式(x﹣6)即可得.【解答】解:==x+6,故答案为:x+6.【点评】本题主要考查约分,由约分的概念可知,要首先将分子、分母转化为乘积的形式,再找出分子、分母的最大公因式并约去,注意不要忽视数字系数的约分.8.(3分)如图,一根树在离地面3米处断裂,树的顶部落在离底部4米处,树折断之前有8米.【分析】图中为一个直角三角形,根据勾股定理两个直角边的平方和等于斜边的平方.此题要求斜边和直角边的长度,解直角三角形即可.【解答】解:∵32+42=25,=5,5+3=8m,∴树折断之前的高度为8米.故答案为:8.【点评】此题考查了勾股定理的应用.善于观察题目的信息是解题以及学好数学的关键.9.(3分)菱形的周长为100cm,一条对角线长为14cm,它的面积是336cm2.【分析】画出草图分析.因为周长是100cm,所以边长是25cm.根据对角线互相垂直平分得直角三角形,运用勾股定理求另一条对角线的长,最后根据菱形的面积等于对角线乘积的一半计算求解.【解答】解:因为周长是100cm,所以边长是25cm.如图所示:AB=25cm,AC=14cm.根据菱形的性质,AC⊥BD,AO=7cm,∴在直角△AOB中,由勾股定理得到:BO==24cm,则BD=48cm.∴面积S=×14×48=336(cm2)故答案为:336cm2【点评】本题考查了菱形的性质和面积,勾股定理的应用,解此题的关键是利用菱形的对角线互相垂直和平分进行计算,难度适中.10.(3分)如图,从点A(0,2)发出一束光,经x轴反射,过点B(4,3),则这束光从点A到点B所经过的路径的长为.【分析】首先过点B作BD⊥x轴于D,由A(0,2),B(4,3),即可得OA=2,BD=3,OD=4,由题意易证得△AOC∽△BDC,根据相似三角形的对应边成比例,即可得OA:BD=OC:DC=AC:BC=2:3,又由勾股定理即可求得这束光从点A到点B所经过的路径的长.【解答】解:如图,过点B作BD⊥x轴于D,∵A(0,2),B(4,3),∴OA=2,BD=3,OD=4,根据题意得:∠ACO=∠BCD,∵∠AOC=∠BDC=90°,∴△AOC∽△BDC,∴OA:BD=OC:DC=AC:BC=2:3,∴OC=OD=×4=,∴AC==,∴BC=,∴AC+BC=.即这束光从点A到点B所经过的路径的长为:.故答案为:.【点评】此题考查了相似三角形的判定与性质、勾股定理以及点与坐标的性质.此题难度适中,解此题的关键是掌握辅助线的作法,掌握入射光线与反射光线的关系.二、选择题(每小题3分,共30分)11.(3分)在式子,x﹣1,,,,(x+y),,中,分式的个数是()A.6B.5C.4D.3【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【解答】解:是分式的是:,,,共有4个.故选:C.【点评】本题主要考查了分式的定义,注意判断一个式子是否是分式的条件是:分母中是否含有未知数,如果不含有字母则不是分式.12.(3分)不能判断四边形ABCD是平行四边形的是()A.AB=CD,AD=BC B.AB=CD,AB∥CDC.AB=CD,AD∥BC D.AB∥CD,AD∥BC【分析】A、B、D,都能判定是平行四边形,只有C不能,因为等腰梯形也满足这样的条件,但不是平行四边形.【解答】解:根据平行四边形的判定:A、B、D可判定为平行四边形,而C不具备平行四边形的条件,故选:C.【点评】平行四边形的五种判定方法分别是:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形;(5)对角线互相平分的四边形是平行四边形.13.(3分)下列计算错误的是()A.a3•a﹣5=a﹣2B.a6÷a2=a3C.a3﹣3a3=﹣2a3D.【分析】根据同底数幂的乘法和同底数幂的除法以及零指数幂、合并同类项的法则逐一进行判断即可.【解答】解:A、a3•a﹣5=a﹣2,故本选项正确;B、a6÷a2=a4,故本选项错误;C、a3﹣3a3=﹣2a3,故本选项正确;D、(﹣1+)0=1,故本选项正确;故选:B.【点评】本题考查了同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;零指数幂:a0=1(a≠0).14.(3分)下列几组数中,不能作为直角三角形三边长度的是()A.1.5,2,2.5B.3,4,5C.5,12,13D.20,30,40【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个三角形就不是直角三角形.【解答】解:A、1.52+22=2.52,符合勾股定理的逆定理,故错误;B、32+42=52,符合勾股定理的逆定理,故错误;C、52+122=132,符合勾股定理的逆定理,故错误;D、202+302≠402,不符合勾股定理的逆定理,故正确.故选:D.【点评】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.15.(3分)化简x•的结果是()A.1B.xy C.D.【分析】分式乘分式,用分子的积作积的分子,分母的积作积的分母.【解答】解:x•=•=,故选:D.【点评】本题主要考查了分式的乘除法,做分式乘除混合运算时,要注意运算顺序,乘除法是同级运算,要严格按照由左到右的顺序进行运算,切不可打乱这个运算顺序.16.(3分)在△ABC中,已知AB=12cm,AC=9cm,BC=15cm,则△ABC的面积等于()A.108cm2B.90cm2C.180cm2D.54cm2【分析】根据勾股定理的逆定理判定直角三角形及直角三角形的面积公式即可求解.【解答】解:∵92+122=152,∴根据勾股定理的逆定理,三角形是直角三角形,两直角边为9和12,所以△ABC的面积=×9×12=54(cm2).故选:D.【点评】本题考查了直角三角形的判定和三角形的面积公式.17.(3分)四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是()A.AB=CD B.AD=BC C.AB=BC D.AC=BD【分析】四边形ABCD的对角线互相平分,则说明四边形是平行四边形,由矩形的判定定理知,只需添加条件是对角线相等.【解答】解:添加AC=BD,∵四边形ABCD的对角线互相平分,∴四边形ABCD是平行四边形,∵AC=BD,根据矩形判定定理对角线相等的平行四边形是矩形,∴四边形ABCD是矩形,故选:D.【点评】此题主要考查了矩形的判定,关键是掌握矩形的判定方法:①矩形的定义:有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形.18.(3分)下列条件中,能判定四边形是菱形的是()A.两组对边分别相等B.两条对角线互相平分且相等C.两条对角线相等且互相垂直D.两条对角线互相垂直平分【分析】根据菱形的判定方法一一判断即可;【解答】解:A、两组对边分别相等.不能判断是菱形,只能判断是平行四边形;本选项不符合题意;B、两条对角线互相平分且相等.不能判断是菱形,只能判断是矩形;本选项不符合题意;C、两条对角线相等且互相垂直.无法判断是菱形,本选项不符合题意;D、两条对角线互相垂直平分.能判断是菱形,本选项符合题意;故选:D.【点评】本题考查菱形的判定,解题的关键是熟练掌握菱形的判定方法,属于中考常考题型.19.(3分)已知一个直角三角形的两边长分别为3和4,则第三边长是()A.5B.25C.D.5或【分析】分为两种情况:①斜边是4有一条直角边是3,②3和4都是直角边,根据勾股定理求出即可.【解答】解:分为两种情况:①斜边是4有一条直角边是3,由勾股定理得:第三边长是=;②3和4都是直角边,由勾股定理得:第三边长是=5;即第三边长是5或,故选:D.【点评】本题考查了对勾股定理的应用,注意:在直角三角形中的两条直角边a、b的平方和等于斜边c的平方.20.(3分)A、B两地相距48千米,一艘轮船从A地顺流航行至B地,又立即从B地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米/时,则可列方程为()A.B.C.D.【分析】根据题意可以列出相应的方程,从而可以解答本题.【解答】解:由题意可得,,故选:A.【点评】本题考查由实际问题抽象出分式方程,解题的关键是明确题意,列出相应的方程.三、解答题(本题共60分)21.(15分)计算(1)(2)(3).(4)÷(x+2﹣)【分析】(1)原式第二项约分后,利用同分母分式的减法法则计算即可得到结果;(2)原式利用同分母分式的加减法则计算即可得到结果;(3)原式约分即可得到结果;(4)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:(1)原式=﹣=;(2)原式==0;(3)原式=•=;(4)原式=÷=•=.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.22.(10分)解方程:(1)(2)【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1),去分母得:7x=6(x﹣2),7x﹣6x=﹣12,x=﹣12,经检验,x=﹣12是原方程的解;(2),去分母得:1﹣x+3(x﹣2)=﹣1,1﹣x+3x﹣6=﹣1,2x=4,x=2,经检验:x=2是方程的增根,所以原方程无实数解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.23.(7分)如图所示,已知在△ABC中,D是AB的中点,E是AC上的点,且∠ABE=∠BAC,EF∥AB,DF∥BE,请猜想DF与AE有怎样的关系,并说明理由.【分析】根据条件,可以知道DBEF是平行四边形,DF转化成BE,又等角对等边,由∠ABE=∠BAC,将AE也转化成BE.【解答】解:DF=AE,理由如下:∵EF∥AB,DF∥BE∴四边形DBEF是平行四边形,∴DF=BE∵∠ABE=∠BAC,∴AE=BE∴DF=AE,∴四边形ADEF是平行四边形,∴DF与AE相等且互相平分.【点评】本题考查了平行四边形的判定与性质,证明两条线段相等时,通常有以下几种方法:证明它们所在的三角形全等;证明它们所对的角相等;证明它们是同一个平行四边形的一组对边;等量代换.24.(7分)如图:矩形ABCD的对角线AC,BD交于点O,过点D作DP∥OC,且DP=OC,连接CP,试判断四边形CODP的形状.【分析】根据一组对边平行且相等的四边形是平行四边形可得四边形CODP是平行四边形,再根据矩形的对角线互相平分且相等可得OC=OD,然后根据邻边相等的平行四边形是菱形解答.【解答】解:四边形CODP是菱形,理由:∵DP∥OC,DP=OC,∴四边形CODP是平行四边形,∵矩形ABCD的对角线AC、BD交于点O,∴OC=OD,∴平行四边形CODP是菱形,故四边形CODP是菱形.【点评】本题考查了矩形的性质,菱形的判定,关键是掌握矩形对角线互相平分且相等,邻边相等的平行四边形是菱形.25.(7分)某中学有一块四边形的空地ABCD,如图所示,学校计划在空地上种植草皮,经测量∠A=90°,AB=3m,DA=4m,BC=12m,CD=13m,若每平方米草皮需要200元,问学校需要投入多少资金买草皮?【分析】仔细分析题目,需要求得四边形的面积才能求得结果.连接BD,在直角三角形ABD中可求得BD的长,由BD、CD、BC的长度关系可得三角形DBC为一直角三角形,DC为斜边;由此看,四边形ABCD由Rt△ABD和Rt△DBC构成,则容易求解.【解答】解:连接BD,在Rt△ABD中,BD2=AB2+AD2=32+42=52,在△CBD中,CD2=132,BC2=122,而122+52=132,即BC2+BD2=CD2,∴∠DBC=90°,S四边形ABCD=S△BAD+S△DBC=•AD•AB+DB•BC,=×4×3+×12×5=36.所以需费用36×200=7200(元).【点评】本题考查了勾股定理的应用,通过勾股定理由边与边的关系也可证明直角三角形,这样解题较为简单.26.(7分)如图所示,折叠矩形的一边AD,使点D落在BC边上的点F处,已知AB=4cm,BC=5cm,求EC的长.【分析】设EC的长为xcm,在Rt△EFC中,根据FC2+EC2=EF2,构建方程即可解决问题;【解答】解:设EC的长为xcm,∴DE=(4﹣x)cm.∵△ADE折叠后的图形是△AFE,∴AD=AF,∠D=∠AFE,DE=EF.∵AD=BC=5cm,∴AF=AD=5cm.又∵AB=4cm,在Rt△ABF中,根据勾股定理,得AB2+BF2=AF2∴42+BF2=52∴BF=3cm.∴FC=BC﹣BF=5﹣3=2cm.在Rt△EFC中,根据勾股定理,得:FC2+EC2=EF2∴22+x2=(4﹣x)2,解得x=.故EC的长为cm.【点评】本题考查了翻折变换,矩形的性质,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.27.(7分)已知BE、CF分别为△ABC中∠B、∠C的平分线,AM⊥BE于M,AN⊥CF于N.求证:MN∥BC.【分析】延长AM、AN分别交BC于点D、G,根据BE为∠ABC的角平分线,BE⊥AG 可知∠BAM=∠BGM故△ABG为等腰三角形,所以BM也为等腰三角形的中线,即AN =GM.同理AN=DN,根据三角形中位线定理即可得出结论.【解答】证明:延长AM、AN分别交BC于点D、G.∵BE为∠ABC的角平分线,BE⊥AG,∴∠BAG=∠BGA,∴△ABG为等腰三角形,∴BM也为等腰三角形的中线,即AM=GM.同理AN=DN,∴MN为△ADG的中位线,∴MN∥BC.【点评】本题考查的是三角形中位线定理,熟知三角形的中位线平行于第三边,并且等于第三边的一半是解答此题的关键.。

人教版八年级下册数学《期中检测试卷》及答案

人教版八年级下册数学《期中检测试卷》及答案

人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一.选择题:(每小题4分,共48分)1.下列各式中,运算正确的是( ) A. 222()-=-B.284⨯=C.2810+= D. 222-=2.下列四组线段中,能构成直角三角形的是( ) A. a =1,b =2,c =3 B. a =2,b =3,c =4 C. a =2,b =4,c =5D. a =3,b =4,c =53.函数y=2x ﹣5的图象经过( ) A. 第一、三、四象限 B. 第一、二、四象限 C. 第二、三、四象限D. 第一、二、三象限 4.关于数据-4,1,2,-1,2,下面结果中,错误的是( ) A. 中位数为1B. 方差为26C. 众数为2D. 平均数为05.要得到函数y =2x +3的图象,只需将函数y =2x 的图象( ) A 向左平移3个单位 B. 向右平移3个单位 C. 向下平移3个单位D. 向上平移3个单位6.如图,在矩形ABCD 中,对角线AC ,BD 交于点O ,已知∠AOD=120°,AB=2,则AC 的长为( )A. 2B. 4C. 6D. 87.已知()()12223,,2,P y P y -是一次函数1y x =--的图象上的两个点,则12,y y 的大小关系是( ) A. 12y y =B. 12y y <C. 12>y yD. 不能确定8.2022年将在北京-张家口举办冬季奥运会,很多学校开设了相关课程.如表记录了某校4名同学短道速滑选拔赛成绩的平均数与方差2s :队员1 队员2 队员3 队员4 平均数(秒) 51 50 51 50 方差2s (秒2) 3.53.514.515.5根据表中数据,要从中选择一名成绩好又发挥稳定运动员参加比赛,应该选择( ) A. 队员1B. 队员2C. 队员3D. 队员49.如图,函数3y x b =+和3y ax =-的图像交于点(2,5)P --,则根据图像可得不等式33x b ax +>-的解集是( )A. 5x >-B. 3x >-C. 2x >-D. 2x <-10.21025x x -+5﹣x ,则x 的取值范围是( ) A. 为任意实数B. 0≤x≤5C. x≥5D. x≤511.直角三角形的面积为 ,斜边上的中线为 ,则这个三角形周长为 ( ) A22d S d +B. 2d S d -C. 22d S d ++D. )22d S d +12.设max 表示两个数中的最大值,例如:max{0,2}2=,max{12,8}12=,则关于的函数max{3,21}y x x =+可表示为( )A. 3y x =B. 21y x =+C. 3(1)21(1)x x y x x <⎧=⎨+≥⎩D. 21(1)3(1)x x y x x +<⎧=⎨≥⎩二.填空题(每小题4分,共24分)13.若x 2+在实数范围内有意义,则x 的取值范围是______.14.已知一组数据x 1,x 2,x 3,x 4,x 5的平均数是2,那么另一组数据3x 1﹣2,3x 2﹣2,3x 3﹣2,3x 4﹣2,3x 5﹣2的平均数是_____. 15.计算3393aaa a +-=__________. 16.如图,两张等宽纸条交叉叠放在一起,若重合部分构成的四边形ABCD 中,3AB =,2AC =,则BD 的长为_______________.17.一次函数y 1=kx+b 与y 2=x+a 的图象如图,则下列结论:①k <0;②a >0;③关于x 的方程kx ﹣x=a ﹣b 的解是x=3;④当x >3时,y 1<y 2中.则正确的序号有____________.18.一般地,在平面直角坐标系中,我们求点到直线间的距离,可用下面的公式求解: 点()00P x ,y 到直线Ax By C 0++=的距离()d 公式是:0022Ax By Cd A B++=+如:求:点()P 1,1到直线2x 6y 90+-=的距离. 解:由点到直线的距离公式,得222161910d 204026⨯+⨯-===+ 根据平行线的性质,我们利用点到直线的距离公式,也可以求两平行线间的距离. 则两条平行线1l :2x 3y 8+=和2l :2x 3y 180++=间的距离是______.三.解答题:(本大题共7小题,共78分)19.0201827233(2π)(1)--+-20.某学校要对如图所示的一块地进行绿化,已知4m AD =,3m CD =,AD DC ⊥,13m AB =,12m BC =,求这块地的面积.21.某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示. (1)根据图示填写下表;(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好; (3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定. 22.如图,一次函数y ax b =+的图象与正比例函数y kx =的图象交于点M .(1)求正比例函数和一次函数的解析式;(2)根据图象写出使正比例函数的值大于一次函数的值的的取值范围; (3)求MOP △的面积.23.如图,矩形ABCD的对角线AC、BD交于点O,且DE∥AC,CE∥BD.(1)求证:四边形OCED是菱形;(2)若∠BAC=30°,AC=4,求菱形OCED的面积.24.已知:甲乙两车分别从相距300千米的A、B两地同时出发相向而行,其中甲到达B地后立即返回,如图是它们离各自出发地的距离y(千米)与行驶时间x(小时)之间的函数图象.(1)求甲车离出发地的距离y甲(千米)与行驶时间x(小时)之间的函数关系式,并写出自变量的取值范围;(2)它们出发92小时时,离各自出发地的距离相等,求乙车离出发地的距离y乙(千米)与行驶时间x(小时)之间的函数关系式,并写出自变量的取值范围;(3)在(2)的条件下,求它们在行驶的过程中相遇的时间.25.现有正方形ABCD和一个以O为直角顶点的三角板,移动三角板,使三角板两直角边所在直线分别与直线BC、CD交于点M、N.(1)如图1,若点O与点A重合,则OM与ON的数量关系是;(2)如图2,若点O在正方形的中心(即两对角线交点),则(1)中的结论是否仍然成立?请说明理由;(3)如图3,若点O在正方形的内部(含边界),当OM=ON时,请探究点O在移动过程中可形成什么图形?(4)如图4,是点O在正方形外部的一种情况.当OM=ON时,请你就“点O的位置在各种情况下(含外部)移动所形成的图形”提出一个正确的结论.(不必说明)答案与解析一.选择题:(每小题4分,共48分)1.下列各式中,运算正确的是()A.=- B. 4= C. = D. 2= 2[答案]B[解析][分析],=a≥0,b≥0),被开数相同的二次根式可以合并进行计算即可.[详解]A2=,故原题计算错误;B=,故原题计算正确;C=故原题计算错误;D、2不能合并,故原题计算错误;故选B.[点睛]此题主要考查了二次根式的混合运算,关键是掌握二次根式乘法、性质及加减法运算法则.2.下列四组线段中,能构成直角三角形的是()A. a=1,b=2,c=3B. a=2,b=3,c=4C. a=2,b=4,c=5D. a=3,b=4,c=5[答案]D[解析][分析]根据勾股定理的逆定理对各选项进行逐一分析即可.[详解]解:A、∵12+22=5≠32,∴不能构成直角三角形,故本选项错误;B、∵22+32=13≠42,∴不能构成直角三角形,故本选项错误;C、∵22+42=20≠52,∴不能构成直角三角形,故本选项错误;D、∵32+42=25=52,∴能构成直角三角形,故本选项正确.故选:D.[点睛]本题考查的是勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解答此题的关键.3.函数y=2x﹣5的图象经过( )A. 第一、三、四象限B. 第一、二、四象限C. 第二、三、四象限D. 第一、二、三象限[答案]A[解析][分析]先根据一次函数的性质判断出此函数图象所经过的象限,再进行解答即可.[详解]∵一次函数y=2x-5中,k=2>0,∴此函数图象经过一、三象限,∵b= -5<0,∴此函数图象与y轴负半轴相交,∴此一次函数的图象经过一、三、四象限,不经过第二象限.故选A.[点睛]本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k>0时,函数图象经过一、三象限,当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.4.关于数据-4,1,2,-1,2,下面结果中,错误的是( )A. 中位数为1B. 方差为26C. 众数为2D. 平均数为0[答案]B[解析][详解]A.∵从小到大排序为-4,-1,,1,2,2,∴中位数为1,故正确;B.412125x-++-+==,()()()()222224010102022655s--+--+-+-⨯==,故不正确;C.∵众数是2,故正确;D.412125x-++-+==,故正确;故选B.5.要得到函数y=2x+3的图象,只需将函数y=2x的图象()A. 向左平移3个单位B. 向右平移3个单位C. 向下平移3个单位D. 向上平移3个单位[答案]D[解析][分析]平移后相当于x不变y增加了3个单位,由此可得出答案.[详解]解:由题意得x值不变y增加3个单位应向上平移3个单位.故选D.[点睛]本题考查一次函数图象的几何变换,注意平移k值不变的性质.6.如图,在矩形ABCD中,对角线AC,BD交于点O,已知∠AOD=120°,AB=2,则AC的长为( )A. 2B. 4C. 6D. 8[答案]B[解析][分析]已知四边形ABCD是矩形,∠AOD=120°,AB=2,根据矩形的性质可证得△AOB是等边三角形,则OA=OB=AB=2,AC=2OA=4.[详解]∵四边形ABCD是矩形∴AC=BD,OA=OC,OB=OD∴OA=OB∵∠AOD=120° ∴∠AOB=60°∴△AOB 是等边三角形 ∴OA=OB=AB=2 ∴AC=2OA=4 故选:B[点睛]本题考查了矩形的基本性质,等边三角形的判定和性质.7.已知()()12223,,2,P y P y -是一次函数1y x =--的图象上的两个点,则12,y y 的大小关系是( ) A. 12y y = B. 12y y <C. 12>y yD. 不能确定[答案]C [解析] [分析]根据()()12223,,2,P y P y -是一次函数y=-x-1图象上的两个点,由-3<2,结合一次函数y=-x-1在定义域内是单调递减函数,判断出12,y y 的大小关系即可.[详解]∵()()12223,,2,P y P y -是一次函数y=−x−1的图象上的两个点,且−3<2, ∴12>y y . 故选C[点睛]此题考查一次函数图象上点的坐标特征,解题关键在于结合一次函数y=-x-1在定义域内是单调递减函数8.2022年将在北京-张家口举办冬季奥运会,很多学校开设了相关的课程.如表记录了某校4名同学短道速滑选拔赛成绩的平均数与方差2s :根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择( )A. 队员1B. 队员2C. 队员3D. 队员4[答案]B[解析][分析]据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.[详解]因为队员1和2的方差最小,但队员2平均数最小,所以成绩好,所以队员2成绩好又发挥稳定. 故选B .[点睛]考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.9.如图,函数3y x b =+和3y ax =-的图像交于点(2,5)P --,则根据图像可得不等式33x b ax +>-的解集是( )A. 5x >-B. 3x >-C. 2x >-D. 2x <-[答案]C[解析][分析] 根据一次函数的图象和两函数的交点坐标即可得出答案[详解]解:从图象得到,当x >-2时,3y x b =+的图象在函数y=ax-3的图象上∴不等式3x+b>ax-3的解集是x>-2,故选:C[点睛]此题考查一次函数和一元一次不等式的应用,解题关键在于看懂函数图象10.5﹣x,则x的取值范围是( )A. 为任意实数B. 0≤x≤5C. x≥5D. x≤5 [答案]D[解析][分析]根据二次根式的性质得出5-x≥0,求出即可.[详解]|5|5x x==-=-,∴5-x≥0,解得:x≤5,故选D.[点睛]本题考查了二次根式的性质的应用,注意:当a≥0时,当a≤0时.11.直角三角形的面积为,斜边上的中线为,则这个三角形周长为()2d dC. dD. )2d[答案]D[解析][分析]根据直角三角形的性质求出斜边长,根据勾股定理、完全平方公式计算即可.[详解]解:设直角三角形的两条直角边分别为x、y,∵斜边上的中线为d,∴斜边长2d,由勾股定理得,x2+y2=4d2,∵直角三角形的面积为S,∴12S xy=,则2xy=4S,即(x+y)2=4d2+4S,∴x y+=∴这个三角形周长为:)2d ,故选D. [点睛]本题考查的是勾股定理的应用,直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2. 12.设max 表示两个数中的最大值,例如:max{0,2}2=,max{12,8}12=,则关于的函数max{3,21}y x x =+可表示为( )A. 3y x =B. 21y x =+C. 3(1)21(1)x x y x x <⎧=⎨+≥⎩D. 21(1)3(1)x x y x x +<⎧=⎨≥⎩[答案]D[解析][分析]由于3x 与21x +的大小不能确定,故应分两种情况进行讨论.[详解]当321x x ≥+,即1x ≥时,{}3,213y max x x x =+=;当321x x <+,即1x <时,{}3,2121y max x x x =+=+.故选D .[点睛]本题考查的是一次函数的性质,解答此题时要注意进行分类讨论. 二.填空题(每小题4分,共24分)13.,则x 的取值范围是______.[答案]x≥-2[解析]分析:根据二次根式有意义条件:被开方数为非负数,列不等式求解即可.详解:∵x+2≥0∴x≥-2.故答案为x≥-2.点睛:此题主要考查了二次根式有意义的条件,明确被开方数为非负数是解题关键.14.已知一组数据x 1,x 2,x 3,x 4,x 5的平均数是2,那么另一组数据3x 1﹣2,3x 2﹣2,3x 3﹣2,3x 4﹣2,3x 5﹣2的平均数是_____.[答案]4[解析][分析]平均数的计算方法是求出所有数据的和,然后除以数据的总个数.先求数据x 1,x 2,x 3,x 4,x 5的和,然后再用平均数的定义求新数据的平均数.[详解]一组数据x 1,x 2,x 3,x 4,x 5的平均数是2,有15(x 1+x 2+x 3+x 4+x 5)=2, 那么另一组数据3x 1-2,3x 2-2,3x 3-2,3x 4-2,3x 5-2的平均数是15(3x 1-2+3x 2-2+3x 3-2+3x 4-2+3x 5-2)=4. 故答案是:4.[点睛]考查的是样本平均数的求法及运用,解题关键是记熟公式:12n x nx x x ++⋯+=. 15.计算3393a a a a +-=__________. [答案]3a[解析]分析:先把各根式化简,然后进行合并即可得到结果.详解:原式=333a a a +-=3a点睛:本题主要考查二次根式的加减,比较简单.16.如图,两张等宽的纸条交叉叠放在一起,若重合部分构成的四边形ABCD 中,3AB =,2AC =,则BD 的长为_______________.[答案]2[解析][分析]首先由对边分别平行可判断四边形ABCD 为平行四边形,连接AC 和BD ,过A 点分别作DC 和BC 的垂线,垂足分别为F 和E ,通过证明△ADF ≌△ABC 来证明四边形ABCD 为菱形,从而得到AC 与BD 相互垂直平分,再利用勾股定理求得BD 长度.[详解]解:连接AC 和BD ,其交点为O ,过A 点分别作DC 和BC 的垂线,垂足分别为F 和E,∵AB ∥CD,AD ∥BC,∴四边形ABCD 为平行四边形,∴∠ADF=∠ABE,∵两纸条宽度相同,∴AF=AE,∵90ADF ABE AFD AEB AF AE ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴△ADF ≌△ABE,∴AD=AB,∴四边形ABCD 为菱形,∴AC 与BD 相互垂直平分,∴BD=22242AB AO -=故本题答案为:2[点睛]本题考察了菱形的相关性质,综合运用了三角形全等和勾股定理,注意辅助线的构造一定要从相关条件以及可运用的证明工具入手,不要盲目作辅助线.17.一次函数y 1=kx+b 与y 2=x+a 的图象如图,则下列结论:①k <0;②a >0;③关于x 的方程kx ﹣x=a ﹣b 的解是x=3;④当x >3时,y 1<y 2中.则正确的序号有____________.[答案]①③④[解析][分析]根据y 1=kx+b 和y 2=x+a 图象可知:k <0,a <0,所以当x >3时,相应的x 的值,y 1图象均低于y 2的图象.[详解]根据图示及数据可知:①k <0正确;②a <0,原来的说法错误;③方程kx+b=x+a 的解是x=3,正确;④当x >3时,y 1<y 2正确.故答案是:①③④.[点睛]考查一次函数的图象,考查学生的分析能力和读图能力,一次函数y=kx+b 的图象有四种情况:①当k >0,b >0,函数y=kx+b 的图象经过第一、二、三象限;②当k >0,b <0,函数y=kx+b 的图象经过第一、三、四象限;③当k <0,b >0时,函数y=kx+b 的图象经过第一、二、四象限;④当k <0,b <0时,函数y=kx+b 的图象经过第二、三、四象限.18.一般地,在平面直角坐标系中,我们求点到直线间的距离,可用下面的公式求解:点()00P x ,y 到直线Ax By C 0++=的距离()d 公式是:0022Ax By C d A B ++=+ 如:求:点()P 1,1到直线2x 6y 90+-=的距离.解:由点到直线的距离公式,得222161910d 4026⨯+⨯-===+ 根据平行线的性质,我们利用点到直线的距离公式,也可以求两平行线间的距离.则两条平行线1l :2x 3y 8+=和2l :2x 3y 180++=间的距离是______.[答案]13[解析][分析]根据题意在1l :238x y +=上取一点()4,0P ,求出点P 到直线2l :23180x y ++=的距离d 即可.[详解]在1l :238x y +=上取一点()4,0P ,点P 到直线2l :23180x y ++=的距离d 即为两直线之间的距离:d ==故答案为[点睛]本题考查了两直线平行或相交问题,一次函数的性质,点到直线距离,平行线之间的距离等知识,解题的关键是学会利用公式解决问题,学会用转化的思想思考问题.三.解答题:(本大题共7小题,共78分)19.02018π)(1)--+- [答案]1.[解析][分析]首先计算乘方、开方,然后计算乘法,最后从左向右依次计算即可[详解02018)(1)π--+-,=1=.[点睛]本题考查了实数的运算,解题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.20.某学校要对如图所示的一块地进行绿化,已知4m AD =,3m CD =,AD DC ⊥,13m AB =,12m BC =,求这块地的面积.[答案]24m 2.[解析][分析]连接AC ,先利用勾股定理求出AC ,再根据勾股定理的逆定理判定△ABC 是直角三角形,根据△ABC 的面积减去△ACD 的面积就是所求的面积.[详解]解:连接AC∵AD DC ⊥∴90ADC ∠=︒在Rt ADC ∆中,根据勾股定理 2222435(m)AC AD CD =+=+=在ABC ∆中,∵22222251213AC BC AB +=+==ABC ∆是直角三角形∴()25123424m 22ABC AC A CD D B S S S ∆∆⨯⨯=-=-=四边形.[点睛]本题考查了勾股定理、勾股定理的逆定理的应用,得到△ABC 是直角三角形是解题的关键.同时考查了直角三角形的面积公式.21.某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.(1)根据图示填写下表;(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.[答案](1)填表:初中平均数为85(分),众数85(分);高中部中位数80(分);(2)初中部成绩好些;(3)初中代表队选手成绩较为稳定.[解析][分析](1)根据成绩表加以计算可补全统计表;根据平均数、众数、中位数的统计意义回答;(2)根据平均数和中位数的统计意义分析得出即可;(3)分别求出初中、高中部的方差即可.[详解]解:(1)填表:(1)填表:初中平均数为:15(75+80+85+85+100)=85(分), 众数85(分);将高中部的数据从小到大进行排列得:70,75,80,100,100,∴高中部中位数80(分);(2)初中部成绩好些,因为两个队的平均数都相同,初中部的中位数高,∴在平均数相同的情况下中位数高的初中部成绩好些;(3)∵21s =15[(75﹣85)2+(80﹣85)2+(85﹣85)2+(85﹣85)2+(100﹣85)2]=70, 22s =15[(70﹣85)2+(100﹣85)2+(100﹣85)2+(75﹣85)2+(80﹣85)2]=160. ∴21s <22s ,因此,初中代表队选手成绩较为稳定.[点睛]此题主要考查了平均数、众数、中位数、方差的统计意义,找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.22.如图,一次函数y ax b =+的图象与正比例函数y kx =的图象交于点M .(1)求正比例函数和一次函数的解析式;(2)根据图象写出使正比例函数的值大于一次函数的值的的取值范围;(3)求MOP △的面积.[答案](1)一次函数表达式为y=2x-2;正比例函数为y=x ;(2)x<2;(3)1.[解析][分析](1)将(0,-2)和(1,0)代入y ax b =+解出一次函数的解析式,将M(2,2)代入正比例函数y kx =解答即可;(2)根据图象得出不等式的解集即可;(3)利用三角形的面积公式计算即可.[详解]()1y ax b =+经过()1,0和()0,2-,0=2k b b+⎧∴⎨-=⎩ 解得k 2=,b 2=-,一次函数表达式为:y 2x 2=-;把()M 2,m 代入y 2x 2=-得m 2222∴=⨯-=,点()M 2,2,直线y kx =过点()M 2,2,22k ∴=,k 1∴=,正比例函数解析式y x =.()2由图象可知,当x 2=时,一次函数与正比例函数相交;x 2<时,正比例函数图象在一次函数上方, 故:x 2<时,x 2x 2>-.()3如图,作MN 垂直x 轴,则MN 2=,OP 1=,MOP ∴的面积为:11212⨯⨯=.[点睛]本题考查了一次函数的图象和性质问题,解题的关键是根据待定系数法解出解析式.23.如图,矩形ABCD 的对角线AC 、BD 交于点O ,且DE ∥AC ,CE ∥BD .(1)求证:四边形OCED 是菱形;(2)若∠BAC=30°,AC=4,求菱形OCED 的面积.[答案](1)证明见解析;(2)3[解析][分析](1)由平行四边形的判定得出四边形OCED 是平行四边形,根据矩形的性质求出OC=OD,根据菱形的判定得出即可.(2)解直角三角形求出BC=2.3连接OE,交CD 于点F,根据菱形的性质得出F 为CD 中点,求出OF=12BC=1,求出OE=2OF=2,求出菱形的面积即可.[详解]()1证明:CE //OD ,DE //OC ,四边形OCED 是平行四边形,矩形ABCD,AC BD ∴=,1OC AC 2=,1OD BD 2=, OC OD ∴=,四边形OCED 菱形;()2在矩形ABCD 中,ABC 90∠=,BAC 30∠=,AC 4=,BC 2∴=,AB DC 23∴==,连接OE,交CD 于点F,四边形OCED 为菱形,F ∴为CD 中点,O 为BD 中点,1OF BC 12∴==, OE 2OF 2∴==,OCED 11S OE CD 2232322∴=⨯⨯=⨯⨯=菱形 [点睛]本题主要考查了矩形的性质和菱形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键,注意:菱形的面积等于对角线积的一半.24.已知:甲乙两车分别从相距300千米的A 、B 两地同时出发相向而行,其中甲到达B 地后立即返回,如图是它们离各自出发地的距离y (千米)与行驶时间x (小时)之间的函数图象.(1)求甲车离出发地的距离y甲(千米)与行驶时间x(小时)之间的函数关系式,并写出自变量的取值范围;(2)它们出发92小时时,离各自出发地的距离相等,求乙车离出发地的距离y乙(千米)与行驶时间x(小时)之间的函数关系式,并写出自变量的取值范围;(3)在(2)的条件下,求它们在行驶的过程中相遇的时间.[答案](1)y=100(03)2754080(3)4x xx x≤≤⎧⎪⎨-<≤⎪⎩;(2)=40y x乙(0≤x≤152);(3)两车第一次相遇时间为第157小时,第二次相遇时间为第6小时.[解析][分析](1)由图知,该函数关系在不同的时间里表现成不同的关系,需分段表达.当行驶时间小于3时是正比例函数;当行使时间大于3小时小于274小时是一次函数.可根据待定系数法列方程,求函数关系式;(2)4.5小时大于3小时,代入一次函数关系式,计算出乙车在用了92小时行使的距离.从图象可看出求乙车离出发地的距离y(千米)与行驶时间x(小时)之间是正比例函数关系,用待定系数法可求解;(3)两者相向而行,相遇时甲、乙两车行使的距离之和为300千米,列出方程解答,由题意有两次相遇.[详解](1)当0≤x≤3时,是正比例函数,设为y=kx,当x=3时,y=300,代入解得k=100,所以y=100x;当3<x≤274时,是一次函数,设为y=kx+b,代入两点(3,300)、(274,0),得3300274k bk b+=⎧⎪⎨+=⎪⎩,解得80540kb=-⎧⎨=⎩,所以y=540﹣80x.综合以上得甲车离出发地的距离y与行驶时间x之间的函数关系式为:y=100(03)27 54080(3)4x xx x≤≤⎧⎪⎨-<≤⎪⎩;(2)当x=92时,y甲=540﹣80×92=180;乙车过点(92,180),=40y x乙.(0≤x≤152)(3)由题意有两次相遇.①当0≤x≤3,100x+40x=300,解得x=157;②当3<x≤274时,(540﹣80x)+40x=300,解得x=6.综上所述,两车第一次相遇时间为第157小时,第二次相遇时间为第6小时.[点睛]本题主要考查用待定系数法求一次函数关系式,并会用一次函数研究实际问题,具备在直角坐标系中的读图能力.此题中需注意的是相向而行时相遇的问题.25.现有正方形ABCD和一个以O为直角顶点的三角板,移动三角板,使三角板两直角边所在直线分别与直线BC、CD交于点M、N.(1)如图1,若点O与点A重合,则OM与ON的数量关系是;(2)如图2,若点O在正方形的中心(即两对角线交点),则(1)中的结论是否仍然成立?请说明理由;(3)如图3,若点O在正方形的内部(含边界),当OM=ON时,请探究点O在移动过程中可形成什么图形?(4)如图4,是点O在正方形外部的一种情况.当OM=ON时,请你就“点O的位置在各种情况下(含外部)移动所形成的图形”提出一个正确的结论.(不必说明)[答案](1)OM=ON;(2)成立.(3)O在移动过程中可形成线段AC;(4)O在移动过程中可形成线段AC. [解析]试题分析:(1)根据△OBM与△ODN全等,可以得出OM与ON相等的数量关系;(2)连接AC、BD,则通过判定△BOM≌△CON,可以得到OM=ON;(3)过点O作OE⊥BC,作OF⊥CD,可以通过判定△MOE≌△NOF,得出OE=OF,进而发现点O在∠C的平分线上;(4)可以运用(3)中作辅助线的方法,判定三角形全等并得出结论.试题解析:(1)若点O与点A重合,则OM与ON的数量关系是:OM=ON;(2)仍成立.证明:如图2,连接AC、BD.由正方形ABCD可得,∠BOC=90°,BO=CO,∠OBM=∠OCN=45°.∵∠MON=90°,∴∠BOM=∠CON,在△BOM和△CON中,∵∠OBM=∠OCN,BO=CO,∠BOM=∠CON,∴△BOM≌△CON(ASA),∴OM=ON;(3)如图3,过点O作OE⊥BC,作OF⊥CD,垂足分别为E、F,则∠OEM=∠OFN=90°.又∵∠C=90°,∴∠EOF=90°=∠MON,∴∠MOE=∠NOF.在△MOE和△NOF中,∵∠OEM=∠OFN,∠MOE=∠NOF,OM=ON,∴△MOE≌△NOF(AAS),∴OE=OF.又∵OE⊥BC,OF⊥CD,∴点O在∠C的平分线上,∴O在移动过程中可形成线段AC;(4)O在移动过程中可形成直线AC.考点:四边形综合题;全等三角形的判定与性质;角平分线的性质;探究型;操作型;压轴题.。

四川初二初中数学期中考试带答案解析

四川初二初中数学期中考试带答案解析

四川初二初中数学期中考试班级:___________ 姓名:___________ 分数:___________一、选择题1.下列各数①﹣3.14 ② π③④⑤中,无理数的个数是()A.2B.3C.4D.52.在平面直角坐标系中,点P(﹣1,1)位于()A.第一象限B.第二象限C.第三象限D.第四象限3.下列语句中正确的是()A.9的算术平方根是±3B.9的平方根是3C.﹣9的平方根是﹣3D.9的算术平方根是34.满足下列条件的△ABC,不是直角三角形的是()A.b2=a2﹣c2B.∠C=∠A﹣∠BC.∠A:∠B:∠C=3:4:5D.a:b:c=12:13:55.有一长、宽、高分别为5cm、4cm、3cm的木箱,在它里面放入一根细木条(木条的粗细、形变忽略不计)要求木条不能露出木箱.请你算一算,能放入的细木条的最大长度是()A.cm B.cm C.cm D.cm6.若点P(a,b)在第三象限,则M(-ab,-a)应在()A.第一象限B.第二象限C.第三象限D.第四象限7.某一次函数的图象经过点(1,2),且y随x的增大而减小,则这个函数的表达式可能是()A.y=2x+4B.y=3x-1C.y=-3x+1D.y=-2x+48.一块直角三角形的纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,则CD等于()A.5cm B.4cm C.3cm D.2cm二、单选题1.要使二次根式有意义,字母x必须满足的条件是()A.x≤2B.x<2C.x≤-2D.x<-22.若函数y=(m﹣1)x|m|﹣5是一次函数,则m的值为()A.±1B.﹣1C.1D.2三、填空题1.若三角形的边长分别为6、8、10,则它的最长边上的高为_____.2.一个正数的平方根是2x 和x-6,则这个正数是_____.3.若点M (a ﹣3,a+4)在x 轴上,则点M 的坐标是______.4.已知函数y=kx+b (k≠0)的图象与y 轴交点的纵坐标为﹣2,且当x=2时,y=1.那么此函数的解析式为_____.5.已知x 是的整数部分,y 是的小数部分,则的平方根为_______.6.如图,数轴上表示2,的对应点分别为C 、B ,点C 是AB 的中点,则点A 表示的数是______.7.直线与x 轴、y 轴分别交于点A 、B ,M 是y 轴上一点,若将△ABM 沿AM 折叠,点B 恰好落在x 轴上,则点M 的坐标为________.8.如图,△OB 1A 2、△OB 2A 3、△OB 3A 4、…△OB n A n+1都是等边三角形,其中B 1A 1、B 2A 2、…B n A n 都与x 轴垂直,点A 1、A 2、…A n 都在x 轴上,点B 1、B 2、…B n 都在直线y=x 上,已知OA 1=1,则点B 3的坐标为_____,点B 的坐标为_____.四、解答题1.计算:①;②; ③。

(市县区某某中学)初中八年级数学下册第二学期期中考试试题卷(含答案详解)

(市县区某某中学)初中八年级数学下册第二学期期中考试试题卷(含答案详解)

(市县区某某中学)初中八年级数学下册第二学期期中考试试题卷(含答案详解)满分:150分 时间:120分钟一.单选题。

(每小题4分,共40分)1.已知x >y ,则下列不等式中,不成立的是( )A.3x >3yB.x -9>y -9C.﹣x >﹣yD.﹣x2<﹣y2 2.下列各式从左到右的变形是因式分解的是( )A.(x -3)(x+1)=x 2-2x -3B.x 2-xy=x (x -y )C.ab+bc+d=b (a+c )+dD.6x 2y=3xy•2x 3.若分式x -1x的值为0,则x 的值是( )A.1B.﹣1C.0D.24.把多项式2a 2-4a 分解因式,应提取的公因式是( ) A.a B.2 C.a 2 D.2a5.已知两个不等式的解集在数轴上如图所示,那么组成的不等式组的解集是( ) A.x >1 B.x ≥﹣1 C.﹣3<x ≤﹣1 D.x >﹣3(第5题图) (第6题图) (第10题图) 6.如图,将△COD 绕点O 按顺时针方向旋转一定角度后得到△AOB ,旋转角为( ) A.∠AOB B.∠BOC C.∠AOC D.∠COD 7.在下列分式的变形中,从左到右一定正确的是( ) A.a b =a+1b+1 B.2a 2b =ab C.a b =a 2b 2 D.a b =acbc 8.下列各式中能用平方差公式因式分解是( )A.﹣4a 2+b 2B.x 2+4C.a 2+c 2-2acD.﹣a 2-b 29.如果把xyx+y中x ,y 的值都扩大2倍,那么这个分式的值( )A.不变B.缩小到原来的12 C.扩大4倍 D.扩大2倍10.如图,一次函数y=kx+b 的图象经过点A (﹣1,﹣2)和B (﹣2,0),一次函数y=2x 的图象经过点A ,则不等式2x ≤kx+b 的解集为( )A.x ≤﹣1B.x ≤﹣2C.x ≥1D.﹣2≤x <﹣1 二.填空题。

(每小题4分,共24分) 11.因式分解:a 3-4a 2= 。

湖北省武汉市武汉外国语学校2023-2024学年八年级下学期期中数学试题(解析版)

湖北省武汉市武汉外国语学校2023-2024学年八年级下学期期中数学试题(解析版)

2023—2024学年度下学期武汉外国语学校初中二年级期中考试数学试题卷面分值:120分 考试时间:120分钟一、选择题(共10小题,每小题3分,共30分)1.有意义,则的取值范围是( )A. B. C. D. 【答案】D【解析】【分析】本题考查的是二次根式有意义的条件,根据二次根式的被开方数是非负数列出不等式,解不等式得到答案.【详解】由题意得:,解得:,故选:D .2. 矩形不一定具备的性质是( )A. 对边相等B. 对角相等C. 对角线相等D. 对角线互相垂直【答案】D【解析】【分析】本题主要考查了矩形的性质,熟知矩形的性质是解题的关键.【详解】解:矩形的对边相等,对角相等,对角线也相等,但是矩形的对角线不一定互相垂直,故选:D .3. 下列各式计算正确的是( )A. B.D. =3【答案】B【解析】【分析】根据二次根式的运算法则即可求解.【详解】,不能计算,故错误;x 8x >8x ≥8x >-8x ≥-80x +≥8x ≥-==13,正确;不能再化简,故错误;D. ,故错误;故选B.【点睛】此题主要考查二次根式的运算,解题的关键是熟知其运算法则.4. 已知四边形,下列条件不能判断它是平行四边形的是()A. B. C. D. 【答案】C【解析】【分析】本题考查平行四边形的判定、平行线的判定与性质,根据平行四边形的判定方法逐项判断即可.【详解】解:A .∵ ,∴四边形是平行四边形(有一组对边平行且相等的四边形是平行四边形),不符合题意;B .∵ ,∴四边形是平行四边形(有两组对边分别平行的四边形是平行四边形),不符合题意;C .由 不能证明四边形是平行四边形,符合题意;D .∵,∴,∵,∴,∴,∴四边形是平行四边形(有两组对边分别平行四边形是平行四边形),不符合题意;故选:C .5. 下列各组数中,不能做为直角三角形三边长的是( )A. 1.5,2,3B. 7,24,25C. 6,8,10D. 9,12,15【答案】A【解析】【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形判定则可.的的==ABCD AB CD ∥AB CD=AB CD ∥AD BC ∥AB CD =A D∠=∠AB CD ∥B D∠=∠AB CD ∥AB CD =ABCD AB CD ∥AD BC ∥ABCD AB CD =A D ∠=∠ABCD AB CD ∥180A D ∠+∠=︒B D ∠=∠180A B ∠+∠=︒AD BC ∥ABCD【详解】解:A 、1.52+22≠32,不能构成直角三角形,故符合题意;B 、72+242=252,能构成直角三角形,故不符合题意;C 、62+82=102,能构成直角三角形,故不符合题意;D 、92+122=152,能构成直角三角形,故不符合题意.故选:A .【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.6. 若的值是( )A. 2017B. 2024C. 2031D. 2049【答案】A【解析】【分析】本题考查了代数式求值,涉及了完全平方公式,根据题意得出是解题关键.【详解】解:∵,∴∴∴故选:A7. 勾股定理是人类数学文化的一颗璀璨明珠,是用代数思想解决几何问题最重要的工具,也是数形结合的纽带之一.如图,当秋千静止时,踏板离地的垂直高度,将它往前推至处时(即水平距离),踏板离地的垂直高度,它的绳索始终拉直,则绳索的长是( )A. B. C. D. 4x =289x x -+()2220244816x x x =-=-+4x =4x =-()2220244816x x x =-=-+282024162008x x -=-=2892017x x -+=B 0.8m BE =3m C 3m CD = 2.6m CF =AC 3.2m 3.4m 3.6m 3.8m【答案】B【解析】【分析】】本题考查勾股定理的实际应用.设,则,故,在中利用勾股定理即可求解.【详解】由题意可知∴,设,则,∴,在中,,∴,解得:.故选:B .8. 如图,从一个大正方形中截去面积为和的两个小正方形,若阴影部分的周长和面积分别是和,则的值是( )A. 24B. C. 27 D. 【答案】C【解析】【分析】本题考查二次根式的混合运算的应用,设两个小正方形的边长分别为a ,b ,不妨设,,根据题意,,即可.【详解】解:设两个小正方形的边长分别为a ,b ,不妨设,,根据题意,,,即,由得AC x =AB AC x == 1.8AD AB BDx =-=-Rt ADC 2.6,0.8CF BE ==1.8BD =AC x =AB AC x ==1.8AD AB BD x =-=-RtADC 222AD CD AC +=()2221.83x x -+=3.4x =1S 2S +12S S +21S a =22S b =2ab =a b +=+22a b +21S a =22S b =2ab =44a b +=+a b +=+()2222a b a b ab +=++,即,故选:C .9. 如图,在平面直角坐标系中,等腰、等腰、等腰…的腰、、…依次在直线上,且它们的腰长依次为1、2、3…(逐次增加1),那么的坐标是( )A. B. C. D. 【答案】B【解析】【分析】本题主要考查了点的坐标规律探索,等腰直角三角形的性质与判定,勾股定理,坐标与图形变化—平移,先证明都是等腰直角三角,得到,,进而得到,,同理可得,,,,……,进而得到规律的坐标为 ,由于可以看作是向右平移得到的,则的横坐标22a b+2=+-(222=+⨯⨯+-324=++-27=221227S S a b +=+=xOy Rt OAB 11Rt BA B 122Rt B A B △OB 1BB 12B B OB 14A ((1BOC B BD △,△AC OC BC ====111A D B D BD BB ====)0A B ,1A1B2A(2B(3A 1n B-n A 1n B -n A,据此可得答案.【详解】解:如图所示,过点B作轴于C,过点作于D,∵、都是等腰三角形,∴都是等腰直角三角,∴,,∴,,同理可得,,,,……,以此类推可得,的坐标为,∵可以看作是向右平移得到的,∴,∴,∴的坐标为,故选:B.10. 如图,在四边形中,,相交于点,且,动点从点开始,+BC x⊥1B11B D BA⊥Rt OAB11Rt BA B1BOC B BD△,△AC OC BC====111A DB D BD====)0A B,1A1B2A(2B(3A1nB-nA1nB-nA+14A+==14AABCD AC BD O OA OB OC OD===E B沿四边形的边运动至点停止,与相交于点,点是线段的中点.连接,下列结论中:①四边形是矩形;②当时,点是的中点;③当,时,线段长度的最大值为2;④当点在边上,且时,是等边三角形,其中正确的有( )个A 1 B. 2 C. 3 D. 4【答案】B【解析】【分析】本题主要考查了矩形的性质与判定,三角形中位线定理,等边三角形的判定,平行线的性质等等,由对角线互相平分且相等的四边形是矩形证明四边形是矩形,即可判断①;可证明是中位线,,而点E 可以在上,也可以在上,据此可判断②;根据,则有最大值时,有最大值,则点E 与点D 重合时,的最大值为4,则长度的最大值为2,据此可判断③;不平行,则,据此可判断④.【详解】解:∵,∴,即,∴四边形是矩形,故①正确;当点E 在上时,∵分别是的中点,∴是中位线,∴,∵四边形是矩形,∴,∴,∴,∴点是的中点;.BA AD -D CE BD N F CE OF ABCD 4CD OF =E AB 3AB =4BC =OF E AB 60COF ∠=︒OFN △ABCD OF ACE △42AB CD OF AE ===AB AD 12OF AE =AE OF AE OF CE CA ,60EFO COF ≠∠=︒∠OA OB OC OD ===OA OC OB OD +=+AC BD =ABCD AB O F 、AC CE ,OF ACE △12OF AE =ABCD AB CD =4CD OF =42AB OF AE ==E AB当点E 在上时,同理可得,但此时点不是的中点,故②错误;由②可知,,∵点E 沿四边形的边运动至点停止,且∴的最大值为4,此时点E 与点D 重合,∴的最大值为2,故③正确;当点在边上,∵不平行,∴,∴不可能是等边三角形,故④错误;∴正确的有①③,共2个,故选;B .二、填空题(共6小题,每小题3分,共18分)11.______.【答案】【解析】是解题关键,据此进行化简即可求解.故答案为:12.在中,,则______度.【答案】30【解析】【分析】本题考查平行四边形的性质,根据平行四边形的对角相等,邻角互补求解即可.【详解】解:∵四边形是平行四边形,∴,,则,AD 12AE AB =E AB 12OF AE =BA AD -D 34AB AD BC ===,AE OF E AB CE CA ,60EFO COF ≠∠=︒∠OFN △=)0,0a b =≥≥==ABCD Y 5A B ∠=∠D ∠=ABCD B D ∠=∠AD BC ∥180A B ∠+∠=︒∵,∴,解得,∴,故答案为:30.13.______.【答案】25【解析】【分析】本题考查二次根式的运算,设,则,利用平方差公式求解即可.,,,∴,,故答案为:25.14. 如图在平行四边形中,是的中点,是的中点,交于点,若,则______.【答案】1.5【解析】【分析】此题主要考查了平行四边形的判定和性质,三角形中位线的性质定理等,熟练掌握运用这些知识5A B ∠=∠5180B B ∠+∠=︒30B ∠=︒30D ∠=︒1==y +=1y ⨯=+-y +=1=2049x ≥1y ⨯=+-22=-()20242049x x =---20242049x x =--+25=25+=ABCD E CD F AE CF BE G 6BE =GE =点是解题关键.取中点H ,连接与,根据线段中点得出,利用三角形中位线的性质及平行线的判定得出四边形为平行四边形,再由平行四边形的性质求解即可.【详解】解: 取中点H ,连接与,如图所示:∴,∵四边形是平行四边形,∴,∵F 是的中点,H 为中点,∴为的中位线,∴,,∵E 是中点,∴,∴,∵∴四边形为平行四边形,∴,故答案为:1.5.15. 如图,为边的中点,交的延长线于点,连接,平分,作,垂足为.若,,则______.【答案】【解析】【分析】本题主要考查了菱形的性质与判定,勾股定理,全等三角形的性质与判定,等角对等边等等,先BE FH CH 132EH BE ==CEFH BE FH CH 132EH BE ==ABCD DC AB DC AB =,∥AE BE FH ABE FH AB CD ∥∥1122FH AB CD ==CD 12CE CD =CE FH =FH CD∥CEFH 1 1.52EG GH EH ===O ABC AC AD BC ∥BO D DC DB ADC ∠DE BC ⊥E 12BD =9AC =DE =7.2证明得到,则可证明四边形是平行四边形,再证明,得到,则可证四边形是菱形,得到,利用勾股定理求出,再由,可得.【详解】解:∵为边的中点,∴,∵,∴,∴,∴,∴四边形是平行四边形,∵平分,∴,∴,∴,∴四边形是菱形,∴,∵,,∴,∴,∵,∴,∴,故答案为:.16. 如图,、是正方形的边、上的动点,且,点在上,当,时,的最小值是______.()AAS OAD OCB ≌OB OC =ABCD CBD CDB ∠=∠CB CD =ABCD AC BD⊥7.5BC ==12ABCD S AC BD BC DE =⋅=⋅菱形1297.227.5DE ⨯==⨯O ABC AC OA OC =AD BC ∥OAD OCB ODA OBC ==∠∠,∠∠()AAS OAD OCB ≌OB OC =ABCD DB ADC ∠ADB CDB ∠=∠CBD CDB ∠=∠CB CD =ABCD AC BD ⊥12BD =9AC =114.5622OC AC OB BD ====,7.5BC ==DE BC ⊥12ABCD S AC BD BC DE =⋅=⋅菱形1297.227.5DE ⨯==⨯7.2E F ABCD AB CD BE CF AD +=G AC 5AG =3CG =GE GF +【解析】【分析】连接交于点,证明在上截取,则则四边形是平行四边形,得出作点关于的对称点,连接交于点,根据轴对称的性质求得最值为的长,进而勾股定理,即可求解.【详解】解:如图所示,连接交于点,∵正方形,,∴,则∵∴,又∴∴,∵,∴,∴,在上截取,则∴四边形是平行四边形EF AC O FCO EAO △≌△AO 1LO =OG OL =FLEG EG FG EG LE +=+L AB T TG AB J TG EF AC O ABCD BE CF AD +=AD CD DF CF ==+BE DF=FC AE∥FCO EAO ∠=∠FOC EOA∠=∠FCO EAO△≌△,AO CO FO EO ==5AG =3CG =8AC =112OG AG AC =-=AO 1LO =OG OL=FLEG∴,∴作点关于的对称点,连接交于点,∴重合时此时取得最小值,∴,又,∴中,【点睛】本题考查了全等三角形的性质与判定,正方形的性质,平行四边形的性质,勾股定理,轴对称求线段和的最值问题,掌握以上知识是解题的关键.三、解答题(共8小题,共72分)17计算:(1(2).【答案】(1);(2【解析】【分析】本题考查二次根式的混合运算;(1)先算乘除,再算加法即可;(2)先化简各项,再合并同类二次根式即可.【详解】(1)原式(2)原式.FG LE =EG FGEG LE+=+LAB T TG AB J ,E J EG FG EG LE JL JG TG +=+=+=413AT AL AOLO ==-=-=45,45CAB TAJ∠=︒∠=︒Rt ATG TG ===++===+5x =+=+.18. 如图,梯子斜靠在竖直的墙上,为,为.梯子的底端外移到点,当梯子顶端沿墙下滑到点时,求的长.【答案】【解析】【分析】本题主要考查了勾股定理的实际应用,先在利用勾股定理 求出,再在利用勾股定理 求出,则.【详解】解:由题意得, 在中,由勾股定理得,在中,由勾股定理得,∴.19. 如图,点A .F 、C .D 在同一直线上,点B 和点E 分别在直线AD 的两侧,且AB=DE ,∠A=∠D ,AF=DC .(1)求证:四边形BCEF 是平行四边形,(2)若∠ABC=90°,AB=4,BC=3,当AF 为何值时,四边形BCEF 是菱形.【答案】(1)见解析(2)当AF=时,四边形BCEF 是菱形.【解析】【分析】(1)由AB=DE ,∠A=∠D ,AF=DC ,根据SAS 得△ABC ≌DEF ,即可得BC=EF ,且BC ∥EF ,即可判定四边形BCEF 是平行四边形.(2)由四边形BCEF 是平行四边形,可得当BE ⊥CF 时,四边形BCEF 是菱形,所以连接BE ,交CF 与=AB AO AB 2.5m OB 0.7m B 0.8m D A C AC 0.5mRt ABO △ 2.4m OA =Rt CDO △ 2.0m OC =0.5m AC OA OC =-=2.5m 0.7m 0.70.8 1.5m 90AB CD OB OD O ====+==︒,,,∠Rt ABO △ 2.4m OA ==Rt CDO △ 2.0m OC ==0.5m AC OA OC =-=75点G ,证得△ABC ∽△BGC ,由相似三角形的对应边成比例,即可求得AF 的值.【详解】(1)证明:∵AF=DC ,∴AF+FC=DC+FC ,即AC=DF.∵在△ABC 和△DEF 中,AC=DF ,∠A=∠D ,AB=DE ,∴△ABC ≌DEF (SAS ).∴BC=EF ,∠ACB=∠DFE ,∴BC ∥EF.∴四边形BCEF 是平行四边形.(2)解:连接BE ,交CF 与点G ,∵四边形BCEF 是平行四边形,∴当BE ⊥CF 时,四边形BCEF 是菱形.∵∠ABC=90°,AB=4,BC=3,∴.∵∠BGC=∠ABC=90°,∠ACB=∠BCG ,∴△ABC ∽△BGC .∴,即.∴.∵FG=CG ,∴FC=2CG=,∴AF=AC ﹣FC=5﹣.∴当AF=时,四边形BCEF 是菱形.20. 如图,将矩形纸片沿翻折,使点与点重合.(1)若的形状:______;(2)若,求的值.【答案】(1)等边三角形5==BC CG AC BC =3CG 53=9CG 5=18518755=75ABCD EF A C AB BC=ECF △2AB BC =CF BE(2)【解析】【分析】本题主要考查了矩形与折叠问题,勾股定理与折叠问题,等边三角形的性质与判定,等角对等边等等:(1)由折叠的性质可得,由矩形的性质推出;设,则,由勾股定理可得,据此推出,则,,取中点H ,连接,证明是等边三角形,得到,再由平角的定义得到,即可证明是等边三角形,(2)设,则,同理可得,则,,再证明,得到,即可得到.【小问1详解】解:由折叠的性质可得,∵四边形是矩形,∴,∴;设,则,在中,由勾股定理得,∴,∴,∴或(舍去),∴,,如图所示,取中点H ,连接,53AE CE AEF CEF =∠=∠,FCE CEB ∠=∠3BC AB x AE CE y ====,,3BE x y =-())2223y x y =-+2y x =BE x =2CE x =CE BH BEH △60FCE CEB ==︒∠∠180602CEB FEC AEF ︒-===︒∠∠∠ECF △2BC m AB m AE CE n ====,,2BE m n =-54n m =54CE m =34BE m =CFE CEF ∠=∠CF CE =554334m CF BE m ==AE CE AEF CEF =∠=∠,ABCD 90AB CD ABC ∠=︒∥,FCE CEB ∠=∠3BC AB x AE CE y ====,,3BE x y =-Rt EBC 222CE BE BC =+())2223y x y =-+2222963y x xy y x =-++2y x =0x =BE x =2CE x =CE BH∴,∴是等边三角形,∴,∴,∴是等边三角形,故答案为:等边三角形;【小问2详解】解:设,则,在中,由勾股定理得,∴,∴,∴或(舍去),∴,,由折叠的性质可得,∵,∴,∴,∴,∴.21. 已知四边形是菱形,为线段上一点.仅用无刻度的直尺完成下列作图:12BH EH CE x BE ====BEH △60FCE CEB ==︒∠∠180602CEB FEC AEF ︒-===︒∠∠∠ECF △2BC m AB m AE CE n ====,,2BE m n =-Rt EBC 222CE BE BC =+()2222n m n m =-+222244n m mn n m =-++54n m =0m =54CE m =34BE m =AEF CEF ∠=∠AB CD CFE AEF ∠=∠CFE CEF ∠=∠CF CE =554334m CF BE m ==ABCD P AB(1)如图1,在上作点,使;(2)如图2,在上作点,使;(3)若,,,则菱形的面积为______.【答案】(1)见解析(2)见解析 (3)【解析】【分析】本题主要考查了菱形的性质,平行四边形的性质与判定,勾股定理,等腰直角三角形的性质与判定,全等三角形的性质与判定:(1)如图所示,连接交于F ,连接并延长交于E ,点E 即为所求;(2)如图所示,连接交于O ,连接并延长交于F ,点F 即为所求;(3)过点D 作于H ,求出,得到,则,证明是等腰直角三角形,得到,由菱形的性质得到.【小问1详解】解:如图所示,连接交于F ,连接并延长交于E ,点E 即为所求;易证明,则,则,易证明,则;【小问2详解】解:如图所示,连接交于O ,连接并延长交于F ,点F 即为所求;易证明,则,AD E AE AP =CD F 180BFC BPD ∠+∠=︒45BAD ∠=︒60BPD ∠=︒4DP =ABCD AC PD PF AD AC BD ,PO CD DH AB ⊥30HDP ∠=︒122PH DP ==DH ==ADH AD ==AB AD ==ABCD S AB DH =⋅==菱形AC PD PF AD FBC FDC △≌△BFC DFC ∠=∠PFA EFA =∠∠PAF EAF ≌△△AP AE =AC BD ,PO CD AOP COF △≌△OP OF =易证明四边形是平行四边形,可得,则【小问3详解】解:如图所示,过点D 作于H ,∵,∴,∴,∴∵,∴是等腰直角三角形,∴,∴,∵四边形是菱形,∴,∴,故答案为;.22. 阅读材料:像、……两个含有二次根式的代数式相乘,积不含有二次根式,我们称这两个代数式互为有理化因式.等都是互为有理化因式.在进行二次根式计算时,利用有理化因式,可以化去分母中的根号.PDFB BPD BFD ∠=∠180BFC BPD ∠+∠=︒DH AB ⊥60BPD ∠=︒30HDP ∠=︒122PH DP ==DH ==45BAD ∠=︒ADH AH DH ==AD ==ABCD AB AD ==ABCD S AB DH =⋅==菱形()0a a =≥1+=+.根据以上信息,解答下列问题:(1)直接写出下列各式分母有理化的结果:____________;(2______;(3)已知,试求的值.【答案】(1②(2(3)【解析】【分析】本题主要考查了分母有理化,完全平方公式:(1)①根据分母有理化的方法求解即可;②根据分母有理化的方法求解即可;(2)根据分母有理化的方法求解即可;(3)先把x、y有理化得到,再由结合已知条件式推出,则或,即可得到或,进而即可求解【小问1详解】解:,==3==+==x=y=22173********x xy y++=n2n=21x n=+-21y n=++42x y n+=+ 1xy=222100x xy y++=10x y+=10x y+=-4210n+= 4210n+=-===;故答案为:;【小问2详解】,;【小问3详解】解:∵,∴,,,∴,,∴-===+===x =y =x =y =x =y =21x n =+-21y n =++∴,,∵,∴,∴,∴,∴,∴或,∴或,∴或(舍去),∴23. 如图,为等腰的边所在直线上一点.(1)如图1,过点作交延长线于点,为的中点,连接,,试判断与的关系,并说明理由;(2)点与点关于对称,①如图2,连接,作交于点,为的中点,连接,求证:;②如图3,将绕点顺时针旋转至,直线与直线交于点,连接,若,直接写出的最小值为______.【答案】(1)与的数量关系:,位置关系:(2)①证明见解析;②【解析】【分析】(1)运用斜边上的中线等于斜边的一半可得;利用三角形外角的性质和等边对等42x y n +=+1xy =22173********x xy y ++=2217358172024x y ++=2298x y +=222100x xy y ++=()2100x y +=10x y +=10x y +=-4210n +=4210n +=-2n =3n =-2n =P Rt ABC △BC P PE AC ⊥AC E F AP BF EF BF EF D C AB AP PQ AP =AD Q M AQBM AP =BP B 90︒BH AP CH G DG 8AB =DG BF EF BF EF =BF EF⊥-12A F PB EF ==角分别证明,,在结合,可得,从而证明,再总结结论即可;(2)①连接,可证,在中,,有,在中,,有,再根据公共角,可证∽,则有;②先证明点G 在以O 为圆心,为直径的圆上,从而得到当点D 、G、O 三点共线,且点G 在D 、O 之间时,有最小值,分别求出和,从而得解.【小问1详解】解:(1)与的数量关系:,位置关系:,理由如下:依题意得:,即,在中,为的中点,∴,∴,,在中,为的中点,,∴ ,∴,,在等腰中,,∴,∴,即,综上所述:与的数量关系:,位置关系:;∴;【小问2详解】解:①连接,为2AFB PBF BPF BPF ∠=∠+∠=∠2PFE AEF FAE FAE ∠=∠+∠=∠45BPF FAE ACB ∠+∠=∠=︒90AFB PFE ∠+∠=︒BF EF ⊥PM PM AD ⊥Rt PDM 45D ∠=︒PD DM=Rt △ABD 45D ∠=︒AD BD =PD AD DM BD==D ∠PDA MDB △AP PD BM DM==AP =AC DG OD OG BF EF BF EF =BF EF ⊥90ABP ∠=︒PE AC ⊥90APE ∠=︒Rt ABP F AP 12BF AF PF AP ===PBF BPF ∠=∠2AFB PBF BPF BPF ∠=∠+∠=∠Rt AEP △F AP 12EF AF PF AP ===AEF FAE ∠=∠2PFE AEF FAE FAE ∠=∠+∠=∠12A F P B EF ==Rt ABC △45ACB ∠=︒()222290AFB PFE BPF FAE BPF FAE ACB ∠+∠=∠+∠=∠+∠=∠=︒()18090BFE AFB PFE ∠=︒-∠+∠=︒BF EF ⊥BF EF BF EF =BF EF ⊥BF EF =PM∵点与点关于对称,∴,∴,,∵,为的中点,∴,又∵,∴也是等腰直角三角形,,∴,在和中,,∴∽,∴∴.②依题意可知:,,,∴,∴,∴,取的中点为O ,则,∴点G 在以O 为圆心,AC 为直径的圆上,作圆如下图所示,∴当点D 、G 、O 三点共线,且点G 在D 、O 之间时,有最小值,如下图点所示:D C AB Rt Rt ABC ABD ≌12AB BC BD CD ===AD =PQ AP =M AQ PM AD ⊥45D C ∠=∠=︒Rt DMP △PD =PD AD DM BD==PDA MDB △PD AD DM BD PDA MDB⎧=⎪⎨⎪∠=∠⎩PDA MDB △AP PD BM DM==AP =PH BH =90ABP CBH ∠=∠=︒AB CB =ABP CBH ≌BAP BCH ∠=∠18018090AGC BCH CPG BAP APB ∠=︒-∠-∠=︒-∠-∠=︒AC 12OG AC =DG G '∵,∴,∴,∴,∴∴【点睛】本题考查了直角三角形的性质,相似三角形的判定和性质,等腰三角形的性质,隐圆问题等知识,添加合适的辅助线是求解的关键.24. 在平面直角坐标系中,为坐标原点,四边形是矩形,,两点坐标分别为,.(1)若,直接写出,两点坐标;(2)在(1)的条件下,如图1,为延长线上一点,的平分线交轴于点,若,求的长.(3)如图2,、分别为、上的点,若,试探究、、之间的数量关系并证明.【答案】(1), 8AB =8AB BC BD ===AD AC ==12OG AO AC ===OD ==min DG OD OG =-=-O OABC A C ()0,A a (),0C c c a -=A C F AB OCF ∠y E CE =CF M N AB AO 45AMN MCN ∠=∠=︒2ON 2BM 2MN ()012A ,()120C ,(2)(3)【解析】【分析】本题考查二次根式非负性,勾股定理,矩形的性质,全等三角形的判定与性质;(1)根据二次根式有意义,求出即可;(2)取与交点,中点,中点,由(1)可得,由可得,,由中位线可得,即可证明得到,再在中利用勾股定理列方程求解即可;(3)构造夹半角模型全等,由矩形可得,,设,则,,,,过向下作,且,过作于,过作于,可证明,,在中利用勾股定理找到,,的等量关系,即可找到.【小问1详解】∵,∴,,∴,∴,∴,;【小问2详解】∵四边形是矩形,,;∴,,∵,∴,∴,如图,取与交点,中点,中点,则,13CF =2222BM ON MN +=12a c ==AB CE G BG K CG H 12OA AB BC OC ====CE =18OE =6AE =162KH BC ==AGE KGH ≌4AG GK KB ===Rt BCF OA BC a ==OC AB c ==AM x =AM AN x ==MN =BM c x =-ON a x =-C PC CM ⊥PC CM =P PD x ⊥D N NQ PD ⊥Q PCD MCB ≌CMN CPN ≌Rt PNQ △a bx c a -=+2420c -≥120c -≥12c =12a c ==()012A ,()120C ,OABC ()012A ,()120C ,12OA AB BC OC ====AB OC∥CE=18OE ==6AE =AB CE G BG K CG H =GK KB∴是中位线,∴,,∴,,,∴,∴,∴∵,∴,∵的平分线交轴于点,∴,∵,∴∴,∴,∴,在中,∴,解得【小问3详解】,证明如下:∵四边形是矩形,,两点坐标分别为,,∴,,设,则,∵KH BCG 162KH BC ==KH BC ∥6KH AE ==GKH GAE ∠=∠GHK GEA ∠=∠AGE KGH ≌GK AG =AG GK KB==12AB AG GK KB =++=4AG GK KB ===OCF ∠y E FCG OCE ∠=∠AB OC ∥BGC OCE∠=∠FCG OCE BGC ∠=∠=∠CF FG =8BF FG BG CF =-=-Rt BCF 222B F B C C F +=()222812CF CF -+=13CF =2222BM ON MN +=OABC A C ()0,A a (),0C c OA BC a ==OC AB c ==AM x =BM c x =-45AMN ∠=︒∴,,∴,过向下作,且,过作于,过作于,∴,,∴,∴,,∴∵,∴,∴,∵,,∴,∴,∵,,∴四边形是矩形,∴,,∴在中,∴,整理得,AM AN x ==MN =ON a x =-C PC CM ⊥PC CM =P PD x ⊥D N NQ PD ⊥Q 90PDC B BCO ∠=∠=∠=︒90PCD BCM DCM ∠=∠=︒-∠PCD MCB ≌PD BM c x ==-BC CD a ==OD a c=-45MCN ∠=︒45BCM DCN PCD DCN ∠+∠=∠+∠=︒45MCN PCN ∠=∠=︒PC CM =CN CN =CMN CPN≌MN PN ==PD x ⊥NQ PD ⊥90NOD ∠=︒ONQD QN OD a c ==-QD ON a x ==-2PQ PD QD a x c x a c x=+=-+-=+-Rt PNQ △222PQ QN PN +=()())2222a c x a c +-+-=22222a c ax cx x +--=-∵,,,∴,∴.BM c x =-MN =ON a x =-()()22222222222222BM ON c x a x a c ax cx x x x x +=-+-=+--+=-+=222MN x =2222BM ON MN +=。

初中数学八年级下期中经典测试题(含答案解析)

初中数学八年级下期中经典测试题(含答案解析)

一、选择题1.(0分)[ID :9892]正方形具有而菱形不具有的性质是( )A .四边相等B .四角相等C .对角线互相平分D .对角线互相垂直2.(0分)[ID :9880]如图,在边长为a 的正方形ABCD 中,把边BC 绕点B 逆时针旋转60︒,得到线段BM .连接AM 并延长交CD 于点N ,连接MC ,则MNC ∆的面积为( )A .2312a -B .2212a -C .2314a -D .2214a - 3.(0分)[ID :9871]如图,把一张矩形纸片ABCD 沿EF 折叠后,点A 落在CD 边上的点A′处,点B 落在点B′处,若∠2=40°,则图中∠1的度数为( )A .115°B .120°C .130°D .140°4.(0分)[ID :9864]如图,在Rt ABC ∆中,90ACB ∠=︒,CD ,CE 分别是斜边上的高和中线,30B ∠=︒,4CE =,则CD 的长为( )A .25B .4C .23D .55.(0分)[ID :9860]有一个直角三角形的两边长分别为3和4,则第三边的长为( ) A .5B .7C .5D .5或7 6.(0分)[ID :9850]如图,在菱形ABCD 中,AB=5,对角线AC=6.若过点A 作AE⊥BC,垂足为E,则AE 的长为( )A .4B .2.4C .4.8D .57.(0分)[ID :9849]若x < 0,则2x x x -的结果是( ) A .0 B .-2 C .0或-2 D .28.(0分)[ID :9848]星期天晚饭后,小丽的爸爸从家里出去散步,如图描述了她爸爸散步过程中离家的距离(km )与散步所用的时间(min )之间的函数关系,依据图象,下面描述符合小丽爸爸散步情景的是( )A .从家出发,休息一会,就回家B .从家出发,一直散步(没有停留),然后回家C .从家出发,休息一会,返回用时20分钟D .从家出发,休息一会,继续行走一段,然后回家9.(0分)[ID :9845]下列各组数是勾股数的是( )A .3,4,5B .1.5,2,2.5C .32,42,52D .3 ,4,510.(0分)[ID :9842]对于次函数21y x =-,下列结论错误的是( )A .图象过点()0,1-B .图象与x 轴的交点坐标为1(,0)2C .图象沿y 轴向上平移1个单位长度,得到直线2y x =D .图象经过第一、二、三象限11.(0分)[ID :9923]如图,在矩形ABCD 中,AB=4,BC=6,点E 为BC 的中点,将ABE 沿AE 折叠,使点B 落在矩形内点F 处,连接CF,则CF 的长为( )A .95B .185C .165D .12512.(0分)[ID :9916]如图,点E F G H 、、、分别是四边形ABCD 边AB 、BC 、CD 、DA 的中点.则下列说法:①若AC BD =,则四边形EFGH 为矩形;②若AC BD ⊥,则四边形EFGH 为菱形;③若四边形EFGH 是平行四边形,则AC 与BD 互相平分;④若四边形EFGH 是正方形,则AC 与BD 互相垂直且相等.其中正确的个数是( )A .1B .2C .3D .413.(0分)[ID :9909]下列二次根式中,最简二次根式是( )A .10B .12C .12D .814.(0分)[ID :9898]下列结论中,矩形具有而菱形不一定具有的性质是( ) A .内角和为360°B .对角线互相平分C .对角线相等D .对角线互相垂直 15.(0分)[ID :9847]如图所示□ABCD ,再添加下列某一个条件, 不能判定□ABCD 是矩形的是( )A .AC=BDB .AB ⊥BC C .∠1=∠2D .∠ABC=∠BCD二、填空题16.(0分)[ID :10009]如图,E 、F 分别是平行四边形ABCD 的边AB 、CD 上的点,AF 与DE 相交于点P,BF 与CE 相交于点Q,若215APD S cm ∆=,225BQC S cm ∆=,则阴影部分的面积为__________2cm .17.(0分)[ID :9986]若菱形的两条对角线长分别是6㎝和8㎝,则该菱形的面积是 ㎝2.18.(0分)[ID :9985]如图,在矩形ABCD 中,AD=9cm ,AB=3cm ,将其折叠,使点D 与点B 重合,则重叠部分(△BEF)的面积为_________cm 2.19.(0分)[ID :9981]甲、乙两人分别从A ,B 两地相向而行,匀速行进甲先出发且先到达B 地,他们之间的距离s(km)与甲出发的时间t(h)的关系如图所示,则乙由B 地到A 地用了______h .20.(0分)[ID :9977]如图,在△ABC 中,AB =6,AC =10,点D ,E ,F 分别是AB ,BC ,AC 的中点,则四边形ADEF 的周长为_____.21.(0分)[ID :9975]把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A ,且另三个锐角顶点B ,C ,D 在同一直线上.若AB=2,则CD=_____.22.(0分)[ID :9946]如图,在平行四边形ABCD 中,P 是CD 边上一点,且AP 和BP 分别平分∠DAB 和∠CBA ,若AD=5,AP=8,则△APB 的周长是 .23.(0分)[ID :9941]已知矩形ABCD 如图,AB =4,BC =43,点P 是矩形内一点,则ABP CDP S S ∆∆+=______________.24.(0分)[ID :9938]如图,已知函数y ax b =+和y kx =的图象交于点P, 则根据图象可得,关于y ax b y kx =+⎧⎨=⎩的二元一次方程组的解是_____________。

浙教版初中数学八年级下册期中测试卷(较易)(含答案解析)

浙教版初中数学八年级下册期中测试卷(较易)(含答案解析)

浙教版初中数学八年级下册期中测试卷(较易)(含答案解析)考试范围:第一,二,三单元; &nbsp; 考试时间:120分钟;总分:120分,第I卷(选择题)一、选择题(本大题共12小题,共36.0分。

在每小题列出的选项中,选出符合题目的一项)1. 下列各式中,没有意义的是( )A. √x+3(x≥−3)B. √(x−1)2+1C. √3−πD. √5−π2. 若√(1−a)2=a−1,则a的取值范围是( )A. a>1B. a≥1C. a<1D. a≤13. 若√(5−x)2=x−5,则x的取值范围是( )A. x<5B. x≤5C. x≥5D. x>54. 已知直角三角形的两条直角边长恰好是方程x2−5x+6=0的两个根,则此直角三角形的斜边长是( )A. √13.B. √5.C. 13.D. 5.5. 某厂家2020年1~5月份的口罩产量统计如图所示.设从2月份到4月份,该厂家口罩产量的平均月增长率为x,根据题意可得方程( )A. 180(1−x)2=461B. 180(1+x)2=461C. 368(1−x)2=442D. 368(1+x)2=4426. 用配方法解方程x2−6x−8=0时,配方结果正确的是( )A. (x−3)2=17B. (x−3)2=14C. (x−6)2=44D. (x−3)2=17. 甲、乙、丙、丁四名射击运动员参加射击预选赛,他们射击成绩的平均数及方差如下表所示,要选一个成绩较好且稳定的运动员去参赛,应选运动员( )运动员甲乙丙丁x(环)8998S2(环 2)1 1.21 1.2A. 甲B. 乙C. 丙D. 丁8. 某校八年级学生的平均年龄为14岁,年龄的方差为3,若学生人数没有变动,则两年后的同一批学生,对其年龄的说法正确的是( )A. 平均年龄为14岁,方差改变B. 平均年龄为16岁,方差不变C. 平均年龄为16岁,方差改变D. 平均年龄为14岁,方差不变9. 有甲、乙两组数据,已知甲组数据的方差为0.4,乙组数据的方差为0.2,那么甲、乙两组数据的波动程度是( )A. 甲组数据的波动比较大.B. 乙组数据的波动比较大.C. 甲、乙两组数据的波动程度相同.D. 甲、乙两组数据的波动程度无法比较.10. −√2×√5=( )A. √10B. −√10C. √7D. −√711. 若式子√x+2有意义,则x的取值范围是( )x−1A. x≥−2且x≠1B. x>−2且x≠1C. x≥−2D. x>−212. 已知命题“关于x的一元二次方程x2+bx+1=0,当b<0时必有实数解”,能说明这个命题是假命题的一个反例可以是( )A. b=−1B. b=−2C. b=0D. b=2第II卷(非选择题)二、填空题(本大题共3小题,共9.0分)13. 如果一个一元二次方程的两个非零实数根互为相反数,我们称这个方程为“根对称方程”.例如,方程x2−4=0就是“根对称方程”.请再写出一个根对称方程:.14. 若二次根式√m−3有意义,则m的取值范围是.15. 已知数据x1,x2,x3的平均数是2,数据x4,x5的平均数是4,则x1,x2,x3,x4,x5这组数据的平均数是.三、解答题(本大题共10小题,共75.0分。

初中八年级数学下册期中综合测试卷含参考答案

初中八年级数学下册期中综合测试卷含参考答案

11.不改变分式的值,使分子、分母的第一项系数都是正数,则
x y ________ . xy
A
D
2
12.化简:
6a
b
3
=________;
8a
1 x1
1 =___________. x1
13.已知 1 - 1 =5,则 2a+3ab 2b 的值是

ab
a 2ab b
14.正方形的对角线为 4,则它的边长 AB= .
B.
函数的图象只在第一象限
C .当 x< 0 时,必有 y< 0
D.
点( -2 , -3 )不在此函数的图象上 RTCrpUDGiT
9.在 函 数 y
k
( k> 0) 的 图 象 上 有 三 点
A 1( x 1,
y1 ) 、 A 2( x2 ,
y2) 、 A 3( x 3,
y3 ),
已 知 x1
x
<x2<0<x3, 则 下 列 各 式 中 , 正 确 的 是 (
C 偏离欲到达地点 B 相距 50 米,
结果他在水中实际游的路程比河的宽度多
10 米,求该河的宽度 AB 为多少米? dvzfvkwMI1
BC
A
25.( 6 分)如图,一个梯子 AB 长 2.5 米,顶端 A 靠在墙 AC 上,这时梯子下端 B 与墙角 C 距离为 1.5 米,梯子滑动后停在 DE 的位置上,测得 BD 长为 0.5 米,求梯子顶端 A 下落了多少米? rqyn14ZNXI A E
k
图象上一点,且矩形
x
ABOC
的面积为 3,则这个反比例函数解析式为
.
第 20 题图
三、解答题 (共 70 分)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学八年级下期中试题
一、选择题(每小题4分,共32分)
1.下列式子中,属于最简二次根式的是( ) A 9 B.7 C. 20 D. 3
1 2. x 为何值时,1
x x 在实数范围内有意义 ( ) A 、x > 1 B 、x ≥ 1 C 、x < 1 D 、x ≤ 1.
3. 已知a ,b ,c 为△ABC 三边,且满足(a 2-b 2)(a 2+b 2-c 2)=0
,则它的形状为( )
A.直角三角形
B.等腰三角形
C.等腰直角三角形
D.等腰三角形或直角三角形
4. x < 2,化简(x-2)2 +|3-x |的结果是 ( )
A 、-1
B 、1
C 、2x-5
D 、5-2x
5. 直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为( )
A .121
B .120
C .90
D .不能确定
6. 如图,把矩形ABCD 沿EF 翻折,点B 恰好落在AD 边的B ′处,若AE=2,DE=6,
∠EFB=60°,则矩形ABCD 的面积是 ( )
A.12
B. 24
C. 312
D. 316
7. 如图,正方形ABCD 的边长为4,点E 在对角线BD 上,且∠BAE =22.5 º, EF ⊥AB ,垂足为F ,则EF 的长为( )
A .1
B . 2
C .4-2 2
D .3 2 -4
8.在平行四边形ABCD 中,∠A :∠B :∠C :∠D 的值可以是( )
A.1:2:3:4
B.1:2:2:1
C.1:2:1:2
D.1:1:2:2
6题图 7题图
二、填空题:(每小题3分,共15分)
9.计算:321÷6
5=_______。

10..如图,已知ABC ∆中,︒=∠90C ,15=BA ,12=AC ,以直角边BC 为直径作半圆,则这个半圆
的面积是 .
. .

11. 如图,ABCD 是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件 ____________,使ABCD 成为菱形.(只需添加一个即可)
12 . .如图,将菱形纸片ABCD 折叠,使点A 恰好落在菱形的对称中心O 处,折痕为EF.若菱形ABCD 的边长为2cm ,∠A=120°,则EF= .
13. .如图,矩形ABCD 中,AB=3,BC=4,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B 落在点B ′处,当△CEB ′为直角三角形时,BE 的长为_________.
三、解答题
14、(4分)计算: (24-
21)-(281 - 6)
O
F E D C B A
E C D B A B ′ A C B
11题图 12题图 13题图
15(5分)..先化简,后计算:. 11()b a b b a a b ++++,其中,512a +=512b -=
16.(5分)有一个直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC 沿∠CAB 的角平分线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗?
17.(9分) 如图,在四边形ABCD 中,AB=BC ,对角线BD 平分 ABC ,P 是
BD 上一点,过点P 作PMAD ,PNCD ,垂 足分别为M 、N 。

(1) 求证:角ADB=角CDB ;
(2) 若ADC=90,求证:四边形MPND 是正方形。

18.(9分)如图,在□ABCD 中,F 是AD 的中点,延长BC 到点E ,使CE=BC ,连结DE ,CF 。

(1)求证:四边形CEDF 是平行四边形;
(2)若AB=4,AD=6,∠B=60°,求DE 的长。

17题图 A B
C D N M P 18题图 A E C
D B
19.(9分) 如图,在△ABC 中,∠ACB=90°,∠B >∠A ,点D 为边AB 的中点,DE ∥BC 交AC 于点E ,CF ∥AB 交DE 的延长线于点F .
(1)求证:DE=EF ;
(2)连结CD ,过点D 作DC 的垂线交CF 的延长线于点G ,求证:∠B=∠A+∠DGC .
20.(12分) 如图,在矩形ABCD 中,E 、F 分别是边AB 、CD 上的点,AE =CF ,连接EF 、BF ,EF 与对角线AC 交于点O ,且BE =BF ,∠BEF =2∠BAC 。

(1)求证;OE =OF ; (2)若BC =32,求AB 的长。

19题图
A B
C D E F O
参考答案
1.B ;
2.A ;
3.D ;
4.D ;
5.C ;
6.D ;7C,8C
9. ;10. 81Π/8 11 OA=OC 或AD=BC 或AD ∥BC 或AB=BC ;13.3 ;13. 2
3或3; 14. 22- 15 :原式2()()a b a b ab a b ab
++==+
当a =,b = 16.32
17. (1) ∵BD 平分ABC ,∴ABD=CBD 。

又∵BA=BC ,BD=BD ,
∴△ABD △CBD 。

∴ADB=CDB 。

(4分)
(2) ∵PMAD ,PNCD ,∴PMD=PND=90。

又∵ADC=90,∴四边形MPND 是矩形。

∵ADB=CDB ,PMAD ,PNCD ,∴PM=PN 。

∴四边形MPND 是正方形。

18 证明:(1)∵四边形ABCD 是平行四边形,
∴DC ∥AB ,
∴∠CDE=∠AED ,
∵DE平分∠ADC,
∴∠ADE=∠CDE,
∴∠ADE=∠AED,
∴AE=AD,
同理CF=CB,又AD=CB,AB=CD,
∴AE=CF,
∴DF=BE,
∴四边形DEBF是平行四边形,
∴DE=BF,
(2)△ADE≌△CBF,△DFE≌△BEF.
19
解答:证明:(1)∵DE∥BC,CF∥AB,∴四边形DBCF为平行四边形,
∴DF=BC,
∵D为边AB的中点,DE∥BC,
∴DE=BC,
∴EF=DF﹣DE=BC﹣CB=CB,
∴DE=EF;
(2)∵四边形DBCF为平行四边形,
∴DB∥CF,
∴∠ADG=∠G,
∵∠ACB=90°,D为边AB的中点,
∴CD=DB=AD,
∴∠B=∠DCB,∠A=∠DCA,
∵DG⊥DC,
∴∠DCA+∠1=90°,
∵∠DCB+∠DCA=90°,
∴∠1=∠DCB=∠B,
∵∠A+∠ADG=∠1,
∴∠A+∠G=∠B.
20. (1)证明:∵四边形ABCD 是矩形 ∴AB ∥CD ,∠OAE =∠OCF ,∠OEA =∠OFC ∵AE =CF ∴△AEO ≌△CFO (ASA ) ∴OE =OF
(2)连接BO ∵OE =OF ,BE =BF ∴BO ⊥EF 且∠EBO =∠FBO ∴∠BOF =900 ∵四边形ABCD 是矩形 ∴∠BCF =900 又∵∠BEF =2∠BAC ,∠BEF =∠BAC +∠EOA
∴∠BAC =∠EOA ∴AE =OE ∵AE =CF ,OE =OF ∴OF =CF 又∵BF =BF
∴△BOF ≌△BCF (HL ) ∴∠OBF =∠CBF ∴∠CBF =∠FBO =∠OBE ∵∠ABC =90度 ∴∠OBE =30度 ∴∠BEO =60度 ∴∠BAC =30度 ∴AC=2BC=34,
∴AB=61248=-。

相关文档
最新文档