氮氧化物的生成机理及防治措施
NOx的产生机理及排放控制解析
• 高活性CATA.会使二氧化硫氧化成三氧化硫.
SCR喷氨法催化剂反应器置于空气预 热器与静电除尘器之间
空气
NH3+空气
NH3
锅炉
NH3储罐 蒸发器 空气预热器
空气
SCR反应器
静电除 尘器
湿法烟 气脱硫
系统
去烟囱
SCR喷氨法催化剂反应器布置在
• 3.4烟气再循环法
• 4.炉膛喷射脱硝
• 实质为向炉膛喷射某种物质,可在一定温 度条件下还原已生成的一氧化氮,以降低的排 放量。包括喷水法、二次燃烧法、喷氨法。
• 4.1 喷水法反应为: • 但一氧化氮氧化较困难,需喷入臭氧或高锰酸
钾,不现实。
• 4.2喷二次燃料: • 即前述燃料分级燃烧,但二次燃料不会仅选择
举例:固态除渣煤粉炉,当要求NOx排放值为650mg/m3时,所需的NOx降低率为36%。
120
NOx降低率(%)
100
循环床
80
链条炉
抛煤机炉
60
鼓泡床
40
固态除渣煤粉炉
20
液态除渣煤粉炉
0
0 200 400 600 800 1000 1200 1400 1600 1800
NOx排放值(mg/m3)
• 喷入的氨与烟气良好混合是保证脱硝还原反应 充分进行、使用最少量氨达到最好效果的重要 条件。
• 若喷入的氨未充分反应,则泄漏的氨会到锅炉 炉尾部受热面,不仅使烟气飞灰容易沉积在受 热面,且烟气中氨遇到三氧化硫会生成硫酸氨 (粘性,易堵塞空气预热器,并有腐蚀危险)。
• 总之,SNCR喷氨法投资少,费用低,但适用范 围窄,要有良好的混合及反应空间、时间条件。 当要求较高的脱除率时,会造成氨泄漏过大。
氮氧化物的生成机理及防治措施
燃料型氮氧化物的生成机理
燃料中的氮元素:当燃料中含有氮元素 时,燃烧过程中燃料中的氮与氧气反应
生成氮氧化物。
中间产物生成:燃料燃烧过程中产生的 中间产物,如烃类、醛类、酮类等,与
空气中的氮气反应生成氮氧化物。
针对不同类型的氮氧化物生成机理,可 以采取相应的防治措施。例如,降低燃 烧温度、优化燃烧过程、减少燃料中的 氮元素含量等,都是有效的防治氮氧化
。
富氧燃烧技术:利用纯氧替代 空气作为燃烧氧化剂,降低氮
氧化物的排放。
催化燃烧技术:采用催化剂降 低燃烧反应活化能,实现低温 燃烧,减少氮氧化物的生成。
以上防治措施可根据实际情况 单独或组合使用,以实现氮氧
化物的高效减排。
03 氮氧化物防治政策的现状 与未来趋势
当前主要的政策与法规
环保税法
环保税法中明确规定了氮氧化物 的排放标准和相应的税收制度, 企业超标排放将需要缴纳额外的
物生成的方法。
02 氮氧化物的防治措施
燃烧优化防治措施
01
02
03
燃料选择
选用低氮或无烟燃料,降 低燃烧过程中氮氧化物的 产生。
燃烧参数调整
通过调整燃烧温度、氧气 浓度等参数,减少氮氧化 物的生成。
燃烧器设计
采用先进的燃烧器设计, 实现燃料充分燃烧,降低 氮氧化物的排放。
烟气脱硝防治措施
1 2
政策调整
随着技术进步,政策可能会调整排放标准,更加严格控制氮氧化物排放。同时 ,政策可能会加大对清洁能源的扶持力度,进一步推动能源结构调整。
企业和社会在防治氮氧化物中的责任与角色
企业责任
企业应严格遵守相关法规和政策,积极采用先进的防治技术,减少氮氧化物的排放。同时,企业也应积极参与公 共事务,推动行业间的合作与交流。
NOX形成机理,如何控制NOX浓度
NOX形成机理,如何控制NOX浓度1、NOx的危害:氮氧化物(NOx)是重要的空气污染物质,其产生的途径为燃烧火焰在高温下氮气与氧气的化合,以及燃料中的氮成分在燃烧时氧化而成。
氮氧化物的环境危害有二种,在阳光的催化作用下,氮氧化物易与碳氢化物光化反应,造成光雾及臭氧之二次空气污染;此外氮氧化物也易与水气结合成为含有硝酸成分的酸雨。
2、NOx生成机理和特点2.1 NOx生成机理在NOx中,一氧化氮约占90%以上,二氧化氮占5%~10%,产生机理一般分为如下3种:(1)热力型NOx,燃烧时,空气中氮在高温下氧化产生,其中的生成过程是一个不分支连锁反应。
其生成机理可用捷里多维奇(ZELDOVICH)反应式表示,即O2+N→2O+N, O+N2→NO+N, N+O2→NO+O在高温下总生成式为N2+O2→2NO, NO+0.5O2→NO2随着反应温度T的升高,其反应速率按指数规律增加。
当T<1 500 ℃时,NO的生成量很少,而当T>1 500 ℃时,T每增加100 ℃,反应速率增大6~7倍。
(2)快速型NOx,快速型NOx是1971年FENIMORE通过实验发现的。
在碳氢化合物燃料燃烧在燃料过浓时,在反应区附近会快速生成NOx,由于燃料挥发物中碳氢化合物高温分解生成的CH自由基可以和空气中氮气反应生成HCN和N,再进一步与氧气作用以极快的速度生成NOx,其形成时间只需要60 ms,所生成的NOx与炉膛压力的0.5次方成正比,与温度的关系不大。
(3)燃料型NOx,指燃料中含氮化合物,在燃烧过程中进行热分解,继而进一步氧化而生成NOx。
由于燃料中氮的热分解温度低于煤粉燃烧温度,在600~800 ℃时就会生成燃料型NOx。
在生成燃料型NOx过程中,首先是含有氮的有机化合物热裂解产生N,CN,HCN等中间产物基团,然后再氧化成NOx。
由于煤的燃烧过程由挥发份燃烧和焦炭燃烧两个阶段组成,故燃料型NOx的形成也由气相氮的氧化和焦炭中剩余氮的氧化两部分组成。
NOX形成机理-如何控制NOX浓度
NOX形成机理,如何控制NOX浓度1、NOx的危害:氮氧化物(NOx)是重要的空气污染物质,其产生的途径为燃烧火焰在高温下氮气与氧气的化合,以及燃料中的氮成分在燃烧时氧化而成。
氮氧化物的环境危害有二种,在的催化作用下,氮氧化物易与碳氢化物光化反应,造成光雾及臭氧之二次空气污染;此外氮氧化物也易与水气结合成为含有硝酸成分的酸雨。
2、NOx生成机理和特点2.1 NOx生成机理在NOx中,一氧化氮约占90%以上,二氧化氮占5%~10%,产生机理一般分为如下3种:(1)热力型NOx,燃烧时,空气中氮在高温下氧化产生,其中的生成过程是一个不分支连锁反应。
其生成机理可用捷里多维奇(ZELDOVICH)反应式表示,即O2+N→2O+N, O+N2→NO+N, N+O2→NO+O在高温下总生成式为N2+O2→2NO, NO+0.5O2→NO2随着反应温度T的升高,其反应速率按指数规律增加。
当T<1 500 ℃时,NO的生成量很少,而当T>1 500 ℃时,T每增加100 ℃,反应速率增大6~7倍。
(2)快速型NOx,快速型NOx是1971年FENIMORE通过实验发现的。
在碳氢化合物燃料燃烧在燃料过浓时,在反应区附近会快速生成NOx,由于燃料挥发物中碳氢化合物高温分解生成的CH自由基可以和空气中氮气反应生成HCN和N,再进一步与氧气作用以极快的速度生成NOx,其形成时间只需要60 ms,所生成的NOx与炉膛压力的0.5次方成正比,与温度的关系不大。
(3)燃料型NOx,指燃料中含氮化合物,在燃烧过程中进行热分解,继而进一步氧化而生成NOx。
由于燃料中氮的热分解温度低于煤粉燃烧温度,在600~800 ℃时就会生成燃料型NOx。
在生成燃料型NOx过程中,首先是含有氮的有机化合物热裂解产生N,CN,HCN等中间产物基团,然后再氧化成NOx。
由于煤的燃烧过程由挥发份燃烧和焦炭燃烧两个阶段组成,故燃料型NOx的形成也由气相氮的氧化和焦炭中剩余氮的氧化两部分组成。
大气氮氧化物排放的来源和控制措施
大气氮氧化物排放的来源和控制措施大气氮氧化物(NOx)排放的来源和控制措施随着工业化和城市化进程的不断推进,大气氮氧化物(NOx)排放成为环境污染的一个重要因素。
本文将详细介绍大气氮氧化物排放的来源以及常见的控制措施。
一、大气氮氧化物的来源:1. 工业排放:工厂、发电厂、炼油厂等工业设施的燃烧过程中,燃料中的氮元素与氧气反应生成氮氧化物。
2. 车辆排放:汽车、摩托车等交通工具的燃烧过程也会产生大量的氮氧化物。
尤其是柴油车辆排放的氮氧化物含量较高。
3. 家庭燃烧:家庭使用的煤气、石油等燃料也会释放出氮氧化物。
4. 农业活动:农业生产中使用的化肥、农药等含氮物质在作物的生长过程中会转化为氮氧化物。
此外,畜禽养殖中排放的粪便也是氮氧化物的重要来源。
5. 自然过程:雷电、火山喷发等自然现象也会释放出大量的氮氧化物。
二、大气氮氧化物的控制措施:1. 燃烧控制:减少燃烧过程中氮氧化物的产生是最关键的控制措施之一。
通过提高燃烧炉燃烧效率、调整燃料供给方式、使用先进的燃烧技术等方法,可以降低氮氧化物的生成量。
2. 排放控制:在工业生产和交通运输领域,采用现代化的排放控制装置,如烟气脱硫、脱氮和烟气净化设备等,可以有效地降低氮氧化物的排放浓度。
3. 车辆尾气治理:加强对机动车尾气的治理是减少大气氮氧化物排放的重要手段。
采用先进的排放控制技术和绿色燃料,如尿素溶液喷射技术和电动车辆等,可以显著减少车辆排放的氮氧化物。
4. 绿色农业:在农业生产中,减少化肥和农药的使用量、提高施肥技术和管理水平,可以减少农业活动对大气氮氧化物的贡献。
此外,做好畜禽粪便的收集、处理和利用,也是防治氮氧化物污染的重要途径。
5. 加强监测和管理:建立完善的监测网络,对大气氮氧化物的浓度和排放情况进行实时监测和评估。
同时,加强对氮氧化物排放的管理,制定相应的法规和标准,严格执法,加大对不合格企业和车辆的处罚力度。
总之,大气氮氧化物排放对环境和人类健康造成严重影响。
烧结过程中氮氧化物生成机理及控制
热力型 燃烧时,空气中氮在高温下氧化产生,其中的生成过程是一个不分支连锁反 应。其生成机理可用捷里多维奇(Zeldovich)反应式表示。 随着反应温度T的升高,其反应速率按指数规律增加。当T<1500oC时,NO的 生成量很少,而当T>1500oC时,T每增加100oC,反应速率增大6-7倍。 因烧结温度低于1500℃,一般不宜产生。
燃料本身所含的氮的有机物诸如喹啉(C5H5N)、吡啶(C9H7N)等,在高温下释放出氮和氧化 合生成的NOx,称作燃料型NOx。
2.温度型或热力型NOx 燃烧时空气中的N2在高温下氧化生成的NOx,称作温度型或热力型NOx。3.快速型(或速 度型)NOx 碳氢燃料在燃料过多时燃烧所产生的NOx,称作快速型(或速度型)NOx,对于大多数的矿 物燃料,这类NOx含量较小
1.燃料型NOx指燃料中的氮在燃烧过程中经过一系列的氧化-还原反应而生成NOx,它是 煤燃烧过程NOx生成的主要来源。反应机理:
2.燃料型NOx既受燃烧温度、过量空气系数、煤种、煤颗粒大小等影响同时 也受燃烧过程中燃料-空气混合条件的影响以及高温下的自由基。 3.控制方法(1)通过改变煤或其它化石燃料的燃烧条件,从而减少燃料型 NOx的生成量,即燃烧过程中NOx的脱除;(2)对燃烧后的含NOx的烟气 进行 烧结一般属于这种类型
3.快速型(或速度型)NOx 碳氢燃料在燃料过多时燃烧所产生的NOx,称作快速型(或 速度型)NOx,对于大多数的矿物燃料,这类NOx含量较小
NOx的控制方法分类
见诸于文献资料上有关NOx的治理方法有几十种之多,这些方法大体上可以分为两大类 — — 一级污染预防措施和二级污染预防措施。 一级污染预防措施是指在NOx生成前的所有控制措施。 一级污染预防措施主要是通过改进燃烧方式减少NOx的生成量。基于NOx的形成受温度的 影响极大这一规律,可以通过改进燃烧方式避开使NOx大量生成的温度区间,从而实现 NOx的减排。
氮氧化物的产生机理及脱氮技术原理
一、氮氧化物的产生机理在氮氧化物中,NO占有90%以上,二氧化氮占5%-10%,产生机理一般分为如下三种:(a)热力型燃烧时,空气中氮在高温下氧化产生,其中的生成过程是一个不分支连锁反应。
其生成机理可用捷里多维奇(Zeldovich)反应式表示。
随着反应温度T的升高,其反应速率按指数规律。
当T<1500℃时,NO的生成量很少,而当T>1500℃时,T每增加100℃,反应速率增大6-7倍。
热力型氮氧化物生成机理(Zeldovich反应式)在高温下总生成式为(b)瞬时反应型(快速型)快速型NOx是1971年Fenimore通过实验发现的。
在碳氢化合物燃料燃烧在燃料过浓时,在反应区附近会快速生成NOx。
由于燃料挥发物中碳氢化合物高温分解生成的CH自由基可以和空气中氮气反应生成HCN和N,再进一步与氧气作用以极快的速度生成,其形成时间只需要60ms,所生成的与炉膛压力次方成正比,与温度的关系不大。
上述两种氮氧化物都不占NOx的主要部分,不是主要来源。
(c)燃料型NOx由燃料中氮化合物在燃烧中氧化而成。
由于燃料中氮的热分解温度低于煤粉燃烧温度,在600-800℃时就会生成燃料型,它在煤粉燃烧NOx产物中占60-80%。
在生成燃料型NOx过程中,首先是含有氮的有机化合物热裂解产生N,CN,HCN和等中间产物基团,然后再氧化成NOx。
由于煤的燃烧过程由挥发份燃烧和焦炭燃烧两个阶段组成,故燃料型的形成也由气相氮的氧化(挥发份)和焦炭中剩余氮的氧化(焦炭)两部分组成。
燃料中氮分解为挥发分N和焦炭N的示意图二、低NOx燃烧技术原理对于没有脱硝设备和脱硝燃烧器的燃煤锅炉来说,也就是采用低氮燃烧技术来减少NOx的生成机会。
1)在燃用挥发分较高的烟煤时,燃料型NOx含量较多,快速型NOx极少。
燃料型NOx是空气中的氧与煤中氮元素热解产物发生反应生成NOx,燃料中氮并非全部转变为NOx,它存在一个转换率,降低此转换率,控制NOx排放总量,可采取:(1)减少燃烧的过量空气系数;(2)控制燃料与空气的前期混合;(3)提高入炉的局部燃料浓度。
NOx的生成机理
随着我国实行可持续发展的战略,经济建设和环境的协调发展已成为可持续发展的一项重要内容,因此环境保护已成为当前和今后一项任重而道远的工作。
在燃煤电厂排放的大气污染物中,氮氧化物(NOx)因为对生态环境和人体健康的危害极大,且难以处理,所以成为重点控制排放的污染物之一。
由于环保滞后,特别是治理资金的匮乏,我国对NOx的治理还很有限,因此通过燃烧调整来减少燃煤电厂污染物的排放,特别是NOx的排放,具有积极的意义。
1NOx的生成机理NOx主要指NO和NO2,其次是N2O3,N2O,N2O4和N2O5。
在发电厂锅炉的煤粉燃烧过程中,NOx的形成途径主要有两条:一是有机地结合在煤中的氮化物在高温火焰中发生热分解,并进一步氧化而生成NOx;二是供燃烧用的空气中的氮在高温状态与燃烧空气中的氧发生化合反应而生成NOx。
在煤粉锅炉生成的NOx中,主要是NO,约占95%,而NO2仅占5%左右,N2O3,N2O,N2O4和N2O5的量很少。
NOx的生成量与锅炉的容量、结构、燃烧设备、煤种、炉内温度水平和氧量、运行方式等有关。
煤燃烧过程中所生成的NOx有三种类型,即热力型NOx、燃料型NOx和快速型NOx。
1.1热力型NOx的生成热力型NOx是燃烧空气中的氮在高温下氧化而成的。
其生成机理是由前苏联科学家捷里道维其(Zeldovich)提出的,按这一机理,热力型NOx的生成主要由以下链锁反应来描述:式中:t——反应时间;T——反应温度;c(NO)——NO的浓度;c(O2)——O2的浓度;c(N2)——N2的浓度。
由上式可以看出,影响热力型NOx生成量的主要因素有燃烧反应的温度、氧气浓度和反应时间,而且温度对热力型NOx的生成影响最大。
实际上在1 350 ℃以下,热力型NOx 生成量很少,但随着温度的上升,热力型NOx生成量迅速增加,温度达1 600 ℃以上时,热力型NOx占NOx生成总量的25%~30%。
1.2燃料型NOx的生成燃料型NOx占煤粉锅炉NOx生成总量的70%~80%。
氮氧化物的产生机理及脱氮技术原理
氮氧化物的产生机理及脱氮技术原理:一、氮氧化物的产生机理在氮氧化物中,NO占有90%以上,二氧化氮占5%-10%,产生机理一般分为如下三种:(a)热力型燃烧时,空气中氮在高温下氧化产生,其中的生成过程是一个不分支连锁反应。
其生成机理可用捷里多维奇(Zeldovich)反应式表示。
随着反应温度T的升高,其反应速率按指数规律。
当T<1500℃时,NO的生成量很少,而当T>1500℃时,T每增加100℃,反应速率增大6-7倍。
热力型氮氧化物生成机理(Zeldovich反应式)在高温下总生成式为(b)瞬时反应型(快速型)快速型NOx是1971年Fenimore通过实验发现的。
在碳氢化合物燃料燃烧在燃料过浓时,在反应区附近会快速生成NOx。
由于燃料挥发物中碳氢化合物高温分解生成的CH自由基可以和空气中氮气反应生成HCN和N,再进一步与氧气作用以极快的速度生成,其形成时间只需要60ms,所生成的与炉膛压力0.5次方成正比,与温度的关系不大。
上述两种氮氧化物都不占NOx的主要部分,不是主要来源。
(c)燃料型NOx由燃料中氮化合物在燃烧中氧化而成。
由于燃料中氮的热分解温度低于煤粉燃烧温度,在600-800℃时就会生成燃料型,它在煤粉燃烧NOx产物中占60-80%。
在生成燃料型NOx过程中,首先是含有氮的有机化合物热裂解产生N,CN,HCN和等中间产物基团,然后再氧化成NOx。
由于煤的燃烧过程由挥发份燃烧和焦炭燃烧两个阶段组成,故燃料型的形成也由气相氮的氧化(挥发份)和焦炭中剩余氮的氧化(焦炭)两部分组成。
燃料中氮分解为挥发分N和焦炭N的示意图二、低NOx燃烧技术原理对于没有脱硝设备和脱硝燃烧器的燃煤锅炉来说,也就是采用低氮燃烧技术来减少NOx的生成机会。
1)在燃用挥发分较高的烟煤时,燃料型NOx含量较多,快速型NOx极少。
燃料型NOx是空气中的氧与煤中氮元素热解产物发生反应生成NOx,燃料中氮并非全部转变为NOx,它存在一个转换率,降低此转换率,控制NOx排放总量,可采取:(1)减少燃烧的过量空气系数;(2)控制燃料与空气的前期混合;(3)提高入炉的局部燃料浓度。
燃煤电站锅炉氮氧化物形成机理及防治措施
燃煤电站锅炉氮氧化物形成机理及防治措施燃煤电站锅炉是目前全球主要的发电方式之一。
在燃煤电站的运行过程中,锅炉燃烧产生的氮氧化物是一种常见的排放物,它不仅会对环境造成污染,还可能对人体健康产生负面影响。
本文将介绍燃煤电站锅炉氮氧化物的形成机理以及防治措施。
一、氮氧化物形成机理燃烧是燃煤电站发电的核心环节,因此氮氧化物的形成机理必须从燃烧开始分析。
通常情况下,燃烧产生的氮氧化物主要有两种形态:一种是一氧化氮(NO),另一种是二氧化氮(NO2)。
1. 燃烧过程中的氮氧化物形成(1)燃烧室内部燃烧产生煤炭在氧气的作用下会燃烧,并且在高温下会分解成一系列的物质。
其中,氮和氧分子的化学反应会使氮和氧分子结合成为一氧化氮。
它的主要反应式如下:N2 + O2 → 2NO锅炉的燃烧过程中,空气会流经锅炉的内部,在炉底燃烧室内燃烧的产物一部分不会燃烧完全,成为未燃烧气体。
这部分未燃烧的气体中含有较高浓度的氮氧化物,一部分会被排出烟囱,另一部分则会被沉积到炉管内。
2. 氮氧化物生成的路径燃烧产生的氮氧化物可以通过以下两个途径进一步转化:(1)氮氧化物在于空气中的氧气(O2)发生反应,进一步生成二氧化氮(NO2)。
它的反应式如下:(2)一氧化氮和氧气与燃烧产生的氮氧化物一起进入烟囱,当温度降低时,一氧化氮就会转化为二氧化氮,反应式如下:二、氮氧化物的防治措施为了减少燃煤电站排放的氮氧化物对环境造成的影响,需要采取一些有效的防治措施。
下面是几种常见的防治措施:1. 燃烧优化燃烧优化可以通过调整燃烧工艺、优化燃烧设备和燃烧策略等方式,减少氮氧化物的产生。
例如,采用更先进的燃烧技术、减少过量空气和优化燃料的配比等,都可以减少氮氧化物的产生。
2. 污染物控制设施污染物控制设施是一种有效的防治措施。
例如,在锅炉上安装高效的氮氧化物脱除系统,可以有效减少氮氧化物的排放。
常见的氮氧化物脱除技术包括选择性催化还原(SCR)技术和选择性非催化还原(SNCR)技术等。
氮氧化物的生成机理及防治措施
快速型氮氧化物
总结词
快速型氮氧化物是在富燃料燃烧过程中,燃料中的氮化合物快速分解生成的。
详细描述
在富燃料燃烧时,燃料中的氮化合物在燃烧初期快速分解,与氧气反应生成快 速型氮氧化物,如一氧化二氮。这种类型的氮氧化物在燃烧过程中浓度较低。
氮氧化物的生成机理及防治 措施
汇报人: 2024-01-08
目录
• 氮氧化物的生成机理 • 氮氧化物的危害 • 氮氧化物的防治措施 • 氮氧化物排放标准及政策 • 未来研究方向与展望
01
氮氧化物的生成机理
热力型氮氧化物
总结词
热力型氮氧化物主要在高温条件下由空气中的氮气和氧气反 应生成。
详细描述
中国氮氧化物排放标准
中国政府为了控制氮氧化物排放,制定了一系列严格的排放标准。这些标准根据 不同地区和行业的特点,规定了具体的排放限值,并要求企业采取措施降低氮氧 化物排放。
中国氮氧化物排放标准不仅关注单个企业的排放,还注重区域和流域的排放控制 ,以实现整体环境质量的改善。
氮氧化物减排政策与措施
开发高效的氮氧化物控制技术
研发新型的氮氧化物控制技术 ,如催化还原、吸附分离、等 离子体处理等,以提高氮氧化
物去除效率。
针对不同行业和排放源的特 点,开发具有针对性的氮氧 化物控制技术,以满足不同
场景的需求。
加强氮氧化物控制技术的工程 化应用研究,提高技术的可靠 性和稳定性,降低运行成本。
加强国际合作与交流,共同应对氮氧化物污染问题
加强国际间的合作与交流,共同研究和应对氮氧化物污染问题,分享经验 和最佳实践。
氮氧化物的生成机理及防治措施
氮氧化物进入大气后,经过化学反应会形成硝酸和硫酸等酸性物质 ,导致酸雨的形成,酸雨对植被、水体和土壤造成损害。
对水体的污染
富营养化
氮氧化物进入水体后,会促进藻类的快速生长,导致水体中的氧 气减少,水质恶化,最终导致生态系统崩溃。
有毒物质污染
某些氮氧化物如亚硝酸盐和硝酸盐等具有毒性,对人体健康和生 态环境造成危害。
氮氧化物是常见的空气污染物之一, 对环境和人类健康具有潜在危害。
氮氧化物的种类
一氧化氮(NO)是一种无色、无味、有毒的气体,是空气中天 然存在的气体之一。
二氧化氮(NO2)是一种红棕色、有刺激性的气体,也是空气 中的主要污染物之一。
氮氧化物的来源
氮氧化物的来源主要包括:化石燃料燃烧、汽车尾气排放、工业生产过程、农业 活动和生物质燃烧等。
采取合理的交通管理措施,如限制车辆进入市区、鼓励公 共交通出行等,减少城市交通流量和拥堵,从而减少汽车 尾气中氮氧化物的排放。
04
氮氧化物对环境的影响
对大气的污染
形成光化学烟雾
高浓度的氮氧化物与碳氢化合物在紫外线照射下会发生光化学反 应,生成光化学烟雾,对人体健康和环境造成危害。
形成臭氧
氮氧化物与挥发性有机物在高温下反应会生成臭氧,臭氧是一种强 氧化剂,对人类健康和生态环境有害。
提升公众环保意识
加强环保宣传教育,提 高公众对氮氧化物污染 的认知和重视程度,鼓 励公众积极参与环保行 动。
THANKS
感谢观看
开发新型检测手段
03
针对氮氧化物的生成过程,研究并开发更为灵敏和准
确的检测手段,以便及时发现并控制其生成。
积极探索防治氮氧化物的有效方法
探索新型催化剂
针对氮氧化物的转化过程,研究并开发新型催化剂,以有效降低 其生成及排放。
烧结过程中氮氧化物生成机理及控制
热力型 燃烧时,空气中氮在高温下氧化产生,其中的生成过程是一个不分支连锁反 应。其生成机理可用捷里多维奇(Zeldovich)反应式表示。 随着反应温度T的升高,其反应速率按指数规律增加。当T<1500oC时,NO的 生成量很少,而当T>1500oC时,T每增加100oC,反应速率增大6-7倍。 因烧结温度低于1500℃,一般不宜产生。
燃烧方式的改进通常是一种相对简便易行的减少NOx排放的措施 ,但这种措施 会带来燃烧效率的降低,不完全燃烧损失增加,而且NOx的脱除率也不够高, 因此随着环保要求的不断提高,燃烧的后处理越来越成为必然。 二级污染预防措施是指在NOx的生成后的控制措施,即对燃烧后产生的含NOx 的烟气(尾气)进行脱氮处理,又称为烟气脱硝(Flue gas deNOx)或废气脱硝 (Waste gas deNOx)。
3. 控制对策:(1)降低燃烧温度,避免其生成所需要的高温条件;(2)降 低分子氮的浓度;(3)降低分子氧的浓度;(4)缩短在热力型NOx生产区的 停留时间; 4. 工程实践中常用手段(1)通过向火焰面喷射水/水蒸气来降低燃烧温度; (2)通过烟气循环使一部分烟气和新鲜空气混合,既降低氧浓度,同时可以降 低火焰的温度;(3)分级燃烧和浓淡燃烧等技术控制热力型NOx
烧结过程中氮氧化物主要来源于烧结过程中燃料的燃烧。烧结生产中的燃料分点火燃料和 烧结燃料。 点火燃料一般为气体燃料和液体燃料。
成分/%质量分 数
CO2
CO
CH4
CmHn
H2
N2
O2
焦炉煤气 高炉煤气
1.5-2.5 14-22
25-31 20-26
23-28 0.3-0.5
2-3
54-59 2-3
3-5 55-58
氮氧化物超标的原因和处理措施
氮氧化物超标的原因和处理措施氮氧化物(NOx)是指一类由氮和氧组成的化合物,包括一氧化氮(NO)和二氧化氮(NO2)。
它们主要是由人类活动排放的尾气和工业废气中产生的。
1.交通尾气排放:汽车和其他交通工具所产生的尾气中含有大量的氮氧化物,特别是活跃的交通堵塞地区。
2.工业废气:许多工业过程中会发出氮氧化物,如化肥生产、电力工厂、钢铁厂等。
3.燃煤和燃油:燃烧化石燃料释放出大量的氮氧化物,特别是以煤为主要能源的地区。
4.农业活动:农业活动中使用的化肥和农药会转化为氮氧化物释放到大气中。
5.天然过程:雷电、森林火灾和火山爆发等天然过程也会释放氮氧化物。
处理氮氧化物超标的措施主要包括以下几个方面:1.政府监管:政府应制定更加严格的排放标准和法规,限制工业、交通和农业活动中氮氧化物的排放。
政府还应加强监测和罚款制度,推动企业和个人减少氮氧化物的排放。
2.促进清洁能源:政府应推动清洁能源的发展和使用,减少对化石燃料的依赖。
例如,促进电动汽车和公共交通工具的普及,鼓励使用太阳能和风能等可再生能源。
3.科技创新:加强科技创新,研发更高效的污染控制技术。
如,发展具有优异性能的尾气处理催化剂,利用先进的燃烧技术减少氮氧化物的形成。
4.推广环保生产方式:鼓励企业采用更加环保的生产方式,减少氮氧化物的排放。
如,推广无煤燃烧的加热系统,采用生物肥料替代化学肥料,减少农业活动中氮氧化物的产生。
5.加强环境宣传教育:加强对公众和企业的环境宣传教育,提高他们对氮氧化物超标问题的认识。
只有公众和企业的共同努力才能实现氮氧化物的减排。
总之,氮氧化物超标的原因主要是人类活动排放产生的,政府和企业应采取一系列措施来减少氮氧化物的排放,保护大气环境。
同时,公众也应加强环保意识,减少个人行为中可能产生的氮氧化物排放。
NOx的产生机理及排放控制解读
SCR喷氨法催化剂反应器置于空气预 热器与静电除尘器之间
空气 NH3+空气 NH3
锅炉
NH3储罐 蒸发器
SCR反应器 空气预热器 湿法烟 气脱硫 系统
空气
静电除 尘器
去烟囱
SCR喷氨法催化剂反应器布置在
不同燃煤设备所生成的NOx的原始排放值及为达到 环境保护标准所需的NOx降低率
举例:固态除渣煤粉炉,当要求NOx排放值为650mg/m3时,所需的NOx降低率为36%。
120 100 Ñ » ·² ´ ´ Ì Á õ  ¯ ׺ Å Ã » ú ¯ Â Ä Å ¹ Ý ´ ² Ì Ì ¹ ¬ ³ ý Ô ü º à · Û Â ¯ º Ì Ò ¬ ³ ý Ô ü à º Û ·Â ¯
• 若喷入的氨未充分反应,则泄漏的氨会到锅炉 炉尾部受热面,不仅使烟气飞灰容易沉积在受 热面,且烟气中氨遇到三氧化硫会生成硫酸氨 (粘性,易堵塞空气预热器,并有腐蚀危险)。 • 总之,SNCR喷氨法投资少,费用低,但适用范 围窄,要有良好的混合及反应空间、时间条件。 当要求较高的脱除率时,会造成氨泄漏过大。
燃料型NOx的转化率CR
• 定义燃烧过程中最终生成的NO浓度和燃 料中氮全部转化成NO时的浓度比为燃料 型NOx的转化率CR • CR=【最终生成的NO浓度】÷ • 【燃料全部转化成NO的浓度】 • 试验研究表明,影响CR的主要因素是煤 种特性以及炉内的燃烧条件。
从热力型对、燃料型和快速型三种NOx生成机理可以得出 抑制NOx生成和促使破坏NOx的途径,图中还原气氛箭头 所指即抑制和促使NOx破坏的途径
影
响
闻到臭味 闻到很强烈的臭味 眼、鼻、呼吸道受到强烈刺激 1 分钟内人体呼吸异常,鼻受到刺激 3-5 分钟内引起胸痛 人在 30-60 分钟就会因肺水肿死亡 人瞬间死亡
煤炭燃烧生成氮氧化物的机理与控制方法
煤炭燃烧生成氮氧化物的机理与控制方法煤炭燃烧是主要能源的来源之一,但由于过量排放氮氧化物(NOx)会对大气环境造成负面影响,因此有必要研究其生成机理和控制方法。
本文将分别从机理和控制两个角度,探讨煤炭燃烧生成氮氧化物的相关问题。
一、机理氮氧化物主要由氮气和氧气在高温、高压条件下反应而成,其中的反应过程是两步曲:1.形成氧化氮(NO)当火焰温度高于1200℃时,氧气中的氮分子会被分解成氮原子,然后与燃料中的氧原子结合,形成氧化氮:N2 + O2 → 2NO2.形成二氧化氮(NO2)当氧化氮与空气中的氧气反应时,会形成二氧化氮:2NO + O2 → 2NO2除上述两种途径外,还有两种其他可能会导致NOx生成的方式:1.燃烧过程中的种种不完全氧化反应2.燃料中的含氮物质被氧化总而言之,NOx的生成取决于燃烧过程及物料的质量和化学成分。
二、控制方法由于煤炭燃烧排放的氮氧化物对环境和人体健康的负面影响,因此必须采取措施去减少氮氧化物的排放。
以下是一些可行的控制办法:1.调整燃烧过程燃烧时,调整气体流量和温度以提高燃料和空气的混合程度,这有助于燃料的充分燃烧。
这样可以降低不完全燃烧和同时减少NOx的排放。
2.选择低氮燃烧技术通过选择低氮燃烧技术,如分层燃烧和燃料改性等,来降低氮氧化物的排放。
3.使用选择性非催化还原(SNCR)SNCR是一种通过向烟气中喷入氨水的方式,从而减少NOx的排放。
通过喷氨水使NOx在烟气中迅速还原,生成N2和H2O,从而达到降低NOx排放的目的。
4.使用选择性催化还原(SCR)SCR是通过向烟气中喷碱基或碱度活性材料,在反应器内将NOx与还原剂NH3或尿素进行催化反应,生成N2和H2O,从而达到高效降低NOx排放的目的。
5.尾部加氨法在排放烟气的尾部,使用喷氨水和旋板式压缩器等设备对烟气进行处理,降低氮氧化物的排放。
总而言之,通过合理的燃烧控制、选择低氮燃烧技术和使用SNCR、SCR等控制手段,可以有效地降低煤炭燃烧排放的氮氧化物的排放,并保护环境和人体健康。
氮氧化物的产生机理及脱氮技术原理
氮氧化物的产生机理及脱氮技术原理氮氧化物的产生机理及脱氮技术原理:一、氮氧化物的产生机理在氮氧化物中,NO占有90%以上,二氧化氮占5%-10%,产生机理一般分为如下三种:(a)热力型燃烧时,空气中氮在高温下氧化产生,其中的生成过程是一个不分支连锁反应。
其生成机理可用捷里多维奇(Zeldovich)反应式表示。
随着反应温度T的升高,其反应速率按指数规律。
当T<1500℃时,NO的生成量很少,而当T>1500℃时,T每增加100℃,反应速率增大6-7倍。
热力型氮氧化物生成机理(Zeldovich反应式)在高温下总生成式为(b)瞬时反应型(快速型)快速型NOx是1971年Fenimore通过实验发现的。
在碳氢化合物燃料燃烧在燃料过浓时,在反应区附近会快速生成NOx。
由于燃料挥发物中碳氢化合物高温分解生成的CH自由基可以和空气中氮气反应生成HCN和N,再进一步与氧气作用以极快的速度生成,其形成时间只需要60ms,所生成的与炉膛压力0.5次方成正比,与温度的关系不大。
上述两种氮氧化物都不占NOx的主要部分,不是主要来源。
(c)燃料型NOx由燃料中氮化合物在燃烧中氧化而成。
由于燃料中氮的热分解温度低于煤粉燃烧温度,在600-800℃时就会生成燃料型,它在煤粉燃烧NOx产物中占60-80%。
在生成燃料型NOx过程中,首先是含有氮的有机化合物热裂解产生N,CN,HCN和等中间产物基团,然后再氧化成NOx。
由于煤的燃烧过程由挥发份燃烧和焦炭燃烧两个阶段组成,故燃料型的形成也由气相氮的氧化(挥发份)和焦炭中剩余氮的氧化(焦炭)两部分组成。
燃料中氮分解为挥发分N和焦炭N的示意图二、低NOx燃烧技术原理对于没有脱硝设备和脱硝燃烧器的燃煤锅炉来说,也就是采用低氮燃烧技术来减少NOx的生成机会。
1)在燃用挥发分较高的烟煤时,燃料型NOx含量较多,快速型NOx极少。
燃料型NOx是空气中的氧与煤中氮元素热解产物发生反应生成NOx,燃料中氮并非全部转变为NOx,它存在一个转换率,降低此转换率,控制NOx排放总量,可采取:(1)减少燃烧的过量空气系数;(2)控制燃料与空气的前期混合;(3)提高入炉的局部燃料浓度。
氮氧化物生成的原理
氮氧化物生成的原理氮氧化物(Nitrogen oxides,简称NOx)是指由氮气和氧气在高温下反应生成的化合物,主要包括一氧化氮(NO)和二氧化氮(NO2)。
它们是大气中的重要污染物之一,对人类健康和环境都有着严重的影响。
氮氧化物的生成主要是由于人类活动和自然过程中的燃烧过程。
在燃烧过程中,氮气和氧气发生反应,生成一氧化氮。
一氧化氮进一步与大气中的氧气反应,形成二氧化氮。
这个过程在高温下进行,主要发生在燃烧设备、交通运输工具和工厂等地方。
燃烧设备是氮氧化物生成的重要来源之一。
例如,发电厂、锅炉和工业窑炉等设备在燃烧煤炭、石油和天然气时会产生大量的氮氧化物。
这是因为在高温下,燃料中的氮气与空气中的氧气反应,生成一氧化氮和二氧化氮。
这些设备通常使用燃烧控制技术来减少氮氧化物的生成,但仍然会有一定的排放。
交通运输工具也是氮氧化物排放的重要来源。
汽车、卡车和飞机等交通工具使用燃油进行燃烧,产生大量的氮氧化物。
尤其是柴油车辆,由于其燃烧方式和排气处理系统的不完善,导致氮氧化物排放相对较高。
为了减少交通运输对氮氧化物污染的贡献,一些国家和地区已经采取了措施,如提高燃油质量、推广电动交通工具和改善排气处理系统等。
工厂和工业生产过程也会排放氮氧化物。
钢铁、化工、石化和水泥等工业生产过程中的高温燃烧和化学反应会产生大量的氮氧化物。
这些工厂通常会采取排气处理设备,如SCR(Selective Catalytic Reduction)和SNCR(Selective Non-Catalytic Reduction)系统来降低氮氧化物的排放。
除了人类活动,自然过程中也存在氮氧化物的生成。
例如,闪电放电会导致大气中的氮气和氧气反应,生成一氧化氮和二氧化氮。
此外,土壤中的细菌和植物也会产生氮氧化物。
然而,相对于人类活动,自然过程对氮氧化物的贡献较小。
总结起来,氮氧化物的生成主要是由于燃烧过程中氮气和氧气的反应。
燃烧设备、交通运输工具和工厂等是氮氧化物排放的重要来源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
燃料中的N通常以原子状态与HC结合,C—N键的键能较N
≡N 小,燃烧时容易分解,经氧化形成NOx
火焰中燃料氮转化为NO的比例取决于火焰区NO/O2的比例
燃料中20%~80%的氮转化为NOx
NO
O,H,OH
fast
O,H,OH
Fuel N fast
HCN
O,H,OH NHi fast (i=0,1,2)
先进的低NOx燃烧技术
原理:低空气过剩系数运行技术+分段燃烧技术
➢ 1. 炉膛内整体空气分级的低NOx直流燃烧器 ▪ 炉壁设置助燃空气(OFA,燃尽风)喷嘴 ▪ 类似于两段燃烧技术
先进的低NOx燃烧技术
2. 空气分级的低NOx旋流燃烧器
➢ 一次火焰区:富燃,含氮组分析出但难以转化 ➢ 二次火焰区:燃尽CO、HC等
热力型NOx的形成
热力型NOx形成的动力学——Zeldovich模型
O2 M 2O M
(3)
1
N2
O
1
NO
N
(4)
2
N
O2
2
NO
O
(5)
NO生成的总速率
d[NO] dt
k4[O][N2
]
k4[N][NO]
k5[N][O2
]
k5[O][NO]
(6)
热力型NOx的形成
Na2CO3 Al2O3 2NaAlO2 CO2 2NaAlO2 H2O 2NaOH Al2O3 2NaOH SO2 0.5O2 Na2SO4 H2O 2NaOH 2NO 1.5O2 2NaNO3 H2O 2NaOH 2NO2 0.5O2 2NaNO3 H2O
4NH3 4NO O2 4N2 6H2O 8NH3 6NO2 7N2 12H2O
➢ 潜在氧化反应
4NH3 5O2 4NO 6H2O 4NH3 3O2 2N2 6H2O
烟气脱硝技术
1. 选择性催化还原法(SCR)
烟气脱硝技术
2. 选择性非催化还原法(SNCR)
➢ 碱液吸收 ▪ 必须首先将一半以上的NO氧化为NOx ▪ NO/NO2=1效果最佳
2NO2 2MOH MNO3 MNO2 H2O NO NO2 2MOH 2MNO2 H2O 2NO2 Na2CO3 NaNO3 NaNO2 CO2 NO NO2 Na2CO3 2NaNO2 CO2 M K , Na , Ca2 , Mg2 , (NH4 )
第九章 氮氧化物污染控制
教学内容 1. 氮氧化物的性质及来源 2. 燃烧过程中氮氧化物的形成机理 3. 低氮氧化物燃烧技术 4. 烟气脱硝技术
重点 氮氧化物的形成机理,低氮氧化物燃烧技术和烟气脱硝技术
。 教学目标
通过本节内容的学习,使学生达到如下要求(1)了解 氮氧化物的性质和主要来源(2)熟悉氮氧化物的形成机理 (3)掌握低氮氧化物燃烧技术和烟气脱硝技术。
NHi slow
NHi,NO
slow
N2
NOx的形成
NOx的形成
低NOx燃烧技术原理
控制NOx形成的因素
➢ 空气-燃料比 ➢ 燃烧区温度及其分布 ➢ 后燃烧区的冷却程度 ➢ 燃烧器形状
低NOx燃烧技术
传统低NOx燃烧技术
➢ 1. 低氧燃烧 ▪ 降低NOx的同时提高锅炉热效率 ▪ CO、HC、碳黑产生量增加
➢ 热力型NOx ▪ 高温下N2与O2反应生成的NOx
➢ 瞬时NO ▪ 低温火焰下由于含碳自由基的存在生成的NO
NOx的形成机理
热力型NOx的形成
产生NO和NO2的两个重要反应
N2 O2 2NO 1
NO
1 2
O2
NO 2
2
上述反应的化学平衡受温度和反应物化学组成的影响 平衡时NO浓度随温度升高迅速增加
➢ 尿素或氨基化合物作为还原剂,较高反应温度 ➢ 化学反应
4NH3 6NO 5N2 6H2O CO(NH2 )2 2NO 0.5O2 2N2 CO2 2H2O
➢ 同样,需要控制温度避免潜在氧化反应发生
烟气脱硝技术
2. 选择性非催化还原法(SNCR)
烟气脱硝技术
3. 吸收法
dY M (1 Y 2 ) dx 2(1 CY )
ห้องสมุดไป่ตู้
M
4k 4 K p,O [ N 2 ]1 / 2 ( RT )1/ 2 ( K p,NO )1/ 2
C
k 4 ( K p,NO )1 / 2 [ N 2 ]1 / 2 k5[O 2 ]1/ 2
Y [NO] /[NO]e
热力型NOx的形成
dt
1 (k4[NO] / k5[O2 ])
= 2k4[O][N2 ]{1 [NO]2 /(K [ p,NO N2 ][O2 ])} 1 (k4[NO] / k5[O2 ])
热力型NOx的形成
假定O原子的浓度保持不变
[O]e
[O2 ]1e/ 2 Kp,NO (RT )1/ 2
最终得
先进的低NOx燃烧技术
3. 空气/燃料分级 的低NOx燃烧器
➢ 空气和燃料均 分级送入炉膛
➢ 一次火焰区下 游形成低氧还 原区,还原已 生成的NOx
烟气脱硝技术
脱硝技术的难点
➢ 处理烟气体积大 ➢ NOx浓度相当低 ➢ NOx的总量相对较大
烟气脱硝技术
1. 选择性催化还原法(SCR)
➢ 催化剂:贵金属、碱性金属氧化物 ➢ 还原反应
火焰中存在大量O、OH基团,与上述产物反应
HCN OH CN H2O CN O2 CO NO CN O CO N NH OH N H2O NH O NO H N OH NO H N O2 NO O
燃料型NOx的形成
NOx的性质(续)
➢ NO2:强烈刺激性,来源于NO的氧化,酸沉降
NOx的来源
➢ 固氮菌、雷电等自然过程(5×108t/a) ➢ 人类活动(5×107t/a)
▪ 燃料燃烧占 90% ▪ 95%以NO形式,其余主要为NO2
燃烧过程NOx的形成机理
形成机理
➢ 燃料型NOx ▪ 燃料中的固定氮生成的NOx
积分得NO的形成分数与时间t之间的关系
(1 Y )c1(1 Y )c1 exp(Mt)
Y= 1.0 [NO]/ [NO]e
0.5
0 0.5 1 1.5 2.0
Mt
瞬时NO的形成
碳氢化合物燃烧时,分解成CH、CH2和C2等基团,与 N2发生如下反应 CH N2 HCN N
CH2 N2 HCN NH C2 N2 2CN
热力型NOx的形成
1) 室温条件下,几乎没有NO和NO2生成,并且所有的NO都 转化为NO2
2) 800K左右,NO与NO2生成量仍然很小,但NO生成量已 经超过NO2
3) 常规燃烧温度(>1500K)下,有可观的NO生成,但NO2 量仍然很小
热力型NOx的形成
烟气冷却过程中,根据热力学计算,NOx应主要以NO2的形式 存在,但实际90%~95%的NOx以NO的形式存在,主要原因 在于动力学控制
传统低NOx燃烧技术
2. 降低助燃空气预热温度
➢ 燃烧空气由27oC预热到315oC,NO排放量增加3倍
传统低NOx燃烧技术
3. 烟气循环燃烧
➢ 降低氧浓度和燃烧区温度-主要减少热力型NOx
传统低NOx燃烧技术
4. 两段燃烧技术
➢ 第一段:氧气不足, 烟气温度低,NOx生成 量很小
➢ 第二段:二次空气, CO、HC完全燃烧,烟 气温度低
烟气脱硝技术
3. 吸收法(续)
➢ 强硫酸吸收
NO NO2 2H2SO4 2NOHSO4 H2O
4. 吸附法
➢吸附剂:活性炭、分子筛、硅胶、含氨泥煤 ➢NOx和SO2联合控制技术
▪吸附剂:浸渍碳酸钠的-Al2O3
烟气脱硝技术
4. 吸附法(续)
➢ Nox和SO2联合控制技术 ▪ 反应式
▪ 再生:天然气、CO
假定N原子的浓度保持不变
d[N] dt
k4[O][N2
]
k4[N][NO]
k5[O][NO]
k5[N][O2
]
0
➢ 得到
[N]稳态
k4[O][N2 ] k5[O][NO] k4[NO] k5[O2 ]
➢ 代入(6)式得
d[NO] 2[O] k4[N2 ] (k4k5[NO]2 / k5[O2 ])
第一节 氮氧化物的性质及来源
NOx包括
➢ N2O、NO、N2O3、NO2、N2O4、N2O5 ➢ 大气中NOx主要以NO、NO2的形式存在
NOx的性质
➢ N2O:单个分子的温室效应为CO2的200倍,并参与臭 氧层的破坏
➢ NO:大气中NO2的前体物质,形成光化学烟雾的活 跃组分
氮氧化物的性质及来源