通过实验确认的三辊卷板机上辊位置的分析和经验模型英文翻译。
三辊对称卷板机参数的计算模型与运动仿真
力矩为 :
M0
=
μ 0
F2
D2
其中 : F2 ———下辊反力 , N;
μ 0
———下辊表面摩擦系数
。
板料不打滑的条件 :
M 0 ≥M n1 + M n3
r( F1
+ 2F2 )
+μ F1 d1 D2 2D1
其中 : F1 ———上辊反力 , N;
F2 ———下辊反力 , N;
d1 ———上辊轴颈的直径 , mm;
最后检查钢板是否打滑 ,钢板滚卷弯曲时外部 纤维受拉 ,内部纤维受压 。变形的大小与卷曲曲率 和钢板厚度成正比 。一般情况下 ,外部纤维伸长变 形率 ε满足关系式 :
ε
=
1 50T
-
R /R0
R
式中 : R0 ———多次卷制时前一次卷成的曲率半径 。 通过研究 ,发现卷取过程中钢板受到上辊的压
力 F1 可表示为 :
综合上述理论和公式可以建立三辊对称卷板 机的运动仿真实时监控模型 ,图 4 为钢板最终卷曲
B ———卷板宽度 , mm;
需要电机功率 P可用下式表示 :
P
=
2M n V D2η103
上述数学模型用 V isual B asic编制成计算机语
言程序来进行运算 ,可以求出所需要的参数 ,如上
图所示 。
式中 : V ———下辊的线速度 ; η———减速机的效率 ,一般可取 0. 8; M n ———总驱动扭矩 , N ·mm;
1
R
+
2M
0
σ s E
R T
(1)
T———卷板厚度 , mm;
R ———理论筒体半径 , mm;
σ s
三辊卷板机标准
三辊卷板机标准
三辊卷板机标准有机械式和液压式两种,具体标准如下:
机械式三辊卷板机分为对称和非对称。
可将金属板材卷成圆形、弧形和一定范围内的锥形工件。
液压式三辊卷板机:该机为上调式对称式三辊卷板机,可将金属板材卷成圆形、弧形和锥形工件,两下辊为主动辊,上辊为从动辊。
卷板机规格平整的塑性金属板通过卷板机的三根工作辊(二根下辊、一根上辊)之间,借助上辊的下压及下辊的旋转运动,使金属板经过多道次连续弯曲,产生永久性的塑性变形,卷制成所需要的圆筒、锥筒或它们的一部分。
该卷板机适用于卷板厚度在50mm以上的大型卷板机,两下辊下部增加了一排固定托辊,缩短两下辊跨距,从而提高卷制工件精度及机器整体性能。
20x2500三辊卷板机使用说明书机械部分
1 机器的型号、名称、用途、基本参数1.1 产品型号、名称产品型号: W11XNC-20×2500名称: 20×2500毫米水平下调式三辊卷板机1.2 机器的用途该机为水平下调式三辊卷板机,用于金属板材的弯曲成型,可将金属板材一次上料,不需调头即可完成板材两端部预弯和弯卷成型,卷制成各种规格圆形或弧形工件,还可用于成型工件的校圆,该机是石油、化工、锅炉、造船、机车车辆、金属结构及机械制造等行业最为理想的弯曲成型设备。
2 机器的主要结构概述本机上、下辊均为主驱动辊,机器的机架、底座为钢板焊接,辊子为锻钢件(上辊为50Mn,下辊为42CrMo),上辊主传动由22KW电机通过行星减速机驱动,下辊由1QJM32-1.0液压马达及齿轮驱动,三个工作辊均为主动辊。
上辊升降运动由安装在底座两端的的油缸驱动,下辊水平移动由安装在底座侧面的水平移动油缸驱动,上辊升降运动的位移量和下辊水平移动的位移量由显示器显示。
为便于成型筒体工件的卸料,机器上辊左端设有液压倾倒轴承体,右端尾部设有平衡拉杆机构,以保证倾倒轴承体倾倒后上辊悬空始终处于平衡状态(如倾倒轴承体倾倒后上辊不能保持平衡,可调节此机构)。
机器的上下辊位移采用NC自动调整,使液压系统驱动下的辊子位移的同步精度达到规定值,移动量有数字显示。
整机结构图见图2-1。
3 机器传动系统3.1 主传动机构上辊传动线速度约为4m/min,是由22KW带制动电机驱动行星齿轮减速器,经联轴器直接与上辊联接,带动上辊正反转动,能确保在传动中准确定位,操作方便。
具体结构见图3-1。
下辊传动的线速度约为4 m/min,由液压马达通过齿轮传动使两下辊转动,卷制不同板材筒件的实际线速度不同,由液压系统控制调节。
详见图3-2。
3.2 辅助传动机构上辊升降、下辊水平移动及倒头立起与倒下,为辅助传动系统。
4 液压系统(见系统原理图4-1)本机的液压驱动为开式系统,电机额定功率为7.5KW,额定工作压力为20MPa,用于驱动下辊油马达旋转系统油缸的升降。
三辊卷板机操作规程
三辊卷板机操作规程一、设备简介三辊卷板机是一种广泛应用于金属板材加工行业的设备,主要功能是对金属板材进行卷曲变形,以满足产品制造的需求。
该设备由主机、液压系统和电气控制系统组成,具有操作简便、加工精度高、加工能力强等特点。
二、操作规程1、操作前准备(1)检查设备各部位是否正常,特别要检查辊筒和轴承座是否有松动现象。
(2)检查液压系统是否正常,包括液压泵、液压缸、液压管路等。
(3)检查电气控制系统是否正常,包括电源、控制柜、按钮等。
(4)准备好加工所需的金属板材,并放置在设备工作台上。
2、操作过程(1)启动液压系统,将辊筒升起,使金属板材卷曲。
(2)调整辊筒间距,使其适应金属板材的厚度。
(3)启动主轴电机,使辊筒旋转,调整旋转速度至所需值。
(4)将金属板材送入辊筒之间,进行卷曲变形。
(5)调整液压系统的压力和动作速度,以保证卷曲变形的精度和质量。
(6)加工完成后,停止主轴电机和液压系统,下降辊筒,取出加工好的金属板材。
3、操作后整理(1)清理设备和工作现场,保持整洁卫生。
(2)检查设备各部位是否有损坏或异常情况,如有及时维修或更换。
(3)填写设备使用记录和维修保养记录。
三、安全注意事项1、操作人员必须经过专业培训,熟悉设备的操作和安全规程。
2、操作过程中,操作人员必须佩戴好安全帽、防护眼镜、手套等个人防护用品。
3、操作过程中,操作人员必须时刻观察设备运行状况,发现异常情况立即停机处理。
4、设备运行过程中,严禁用手或其他物品接触辊筒和金属板材,防止受伤。
三辊机的安全操作规程一、开机前准备1、检查电源连接是否正常,确保电源开关处于关闭状态。
2、检查三辊机各部件是否紧固,确保没有松动或脱落的部件。
3、检查三辊机传动带是否完好,如有破损或断裂应立即更换。
4、检查各润滑点是否润滑充分,保证设备运行流畅。
5、确认加工材料是否符合规定,避免使用不合适的材料造成设备损坏。
二、安全操作步骤1、打开电源开关,启动设备,注意观察设备运行是否正常。
三辊卷板机关键零部件有限元分析本科学位论文
XX大学毕业设计(论文)设计(论文)题目:三辊卷板机关键零部件有限元分析学院名称:专业:班级:姓名:学号指导教师:职称定稿日期:年月日摘要有限元分析是用较简单的问题代替复杂问题后再求解。
它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。
这个解不是准确解,而是近似解,因为实际问题被较简单的问题所代替。
由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。
本设计是基于ANSYS软件来对三辊卷板机关键零部件进行分析。
与传统的计算相比,借助于计算机有限元分析方法能更加快捷和精确的得到结果。
设置正确的模型、划分合适的网格,并合理设置求解过程,能够准确的获得分析模型各个部位的应力、变形等结果。
对零件的设计和优化有很大的参考作用。
关键词:卷板机;三维建模;ANSYS;动静态分析AbstractFinite element analysis is to use simpler problem instead of solving complex problems after. It will solve the field as much as by finite element of small interconnect subfields, each unit is assumed to be a proper ( simple ) approximate solution is derived, then solve the domain satisfying conditions ( such as structural equilibrium conditions ), resulting in the solution of problems. This solution is not accurate solution, but the approximate solution, because the actual problem is simpler problem place. Because most practical problems difficult to obtain accurate solution, and the finite element computation of not only high precision, but also can adapt to a variety of complex shapes, thus become effective engineering analysis method.The design is based on the ANSYS software on the three roller bending machine key components analysis. Compared with the traditional calculations are compared, with the help of computer finite element analysis method can be more efficient and precise results. Set the correct model, dividing the appropriate grid, and set a reasonable solution process, can accurately obtain analysis model of various parts of the stress, deformation and other results. The design and optimization of parts have great reference value.Key Words:bending machine;3D modeling; ANSYS; static analysis目录摘要 (II)Abstract (III)目录 ...................................................................................................................................... I V 第1章绪论 (6)1.1概述 (6)1.2卷板机的原理 (7)1.2.1 卷板机的运动形式 (7)1.2.2弯曲成型的加工方式 (7)1.3卷板机的发展趋势 (8)第二章有限元法与ANSYS (9)2.1 有限元简介 (9)2.2 有限元特点 (10)2.3 有限元步骤 (10)2.4 有限元分析方法概述 (11)2.5 ANSYS的主要功能 (11)2.6 ANSYS提供的分析类型 (12)第3章课题任务和分析方法 (13)3.1课题任务 (13)3.2分析方法 (14)3.3 本课题的研究方法 (14)第4章方案的论证及确定 (15)5.1 方案的论证 (15)5.1.1方案1双辊卷板机 (15)5.1.2方案2 三辊卷板机 (16)5.1.3 方案3四辊卷板机 (16)5.2 方案的确定 (17)5.3本章小结 (17)第5章关键零件的设计与计算 (18)5.1主部件的选择和计算 (18)5.1.1 上下辊的参数选择计算 (18)5.1.2 主电机的功率确定 (18)5.2 上辊的设计计算校核 (27)5.2.1上辊结构设计及受力图 (27)5.2.2 刚度校核 (27)5.2.3 上辊强度校核 (28)第6 章有限元分析过程 (29)6.1 ANSYS中静力学分析过程 (29)6.2 ANSYS中卷板机上辊分析过程 (29)6.3ANSYS中卷板机下辊分析结果 (40)6.4ANSYS中卷板机三辊支架分析过程 (42)总结 (51)参考文献 (52)致谢 (53)第1章绪论1.1概述机械加工行业在我国有着举足轻重的地位,它是国家的国民经济命脉。
对称式三辊卷板机厚板压弯工艺参数分析
重 型 机 械
2012 No.2
对 称 式 三 辊 卷 板 机 厚 板 压 弯 工 艺参 数 分 析
乔 波 ,雷步芳 ,付 建华 ,赵 康 ,牛 婷
(太原科技大学材料科学与工程学 院 ,山西 太原 030024)
摘 要 :为研 究 对 称 式 三辊 卷板 机卷 制 双 线 性 硬 化 模 型 板 料 成 型 过 程 ,确 定 上 辊 压 下 时 上 辊 与 板 料之 间的接触 力以及上辊压下量和板料最终成型半径问的关系 。通过理论模型 ,推导 出板料弯矩 与板 料截面所受剪力之间的关系。通过板材受力分析 ,求 出截面剪力 。利用 已知 的板材弯 矩表达式 导出上 辊压下量 、板料成型力分别与板料 回弹前相应 的滚弯半径 间的变化关 系 ,并 给出相应 的关 系图。
A bstract: The plate forming process of bilinearity harden model of symm etr ica l three—roll veneer reeling m a— chine is studied.The contact force between upper roll and m etal plate when the upper roll is pressed down,and the relationship between rolling reduction of upper roll and final forming radius of steel plate is determ ined. The relationship between bending moment of metal plate and shear ing force loaded in the plate cross--section was de-- duced according to the theoretical mode1. Through the stress analysis of steel plate,the shearing force was ca l-
三辊卷板机的设计
前言三辊卷板机的设计1 前言1.1 选题背景机械制造业在近代中国的发展过程中起到非常重要的作用,在国民经济中占有很大的比例,因此在国民经济中具有很重要的作用和地位。
一个国家的技术的发展与进步离不开机械制造业。
当一个国家的机械制作非常发达是,它的国民经济实力和科学技术水平也会是非常的厉害,因此世界各国都把发展机械制造业作为振兴和发展本国经济的战略重点之一。
机械制造装备的先进程度决定了机械制造生产能力和制造水平。
因此,机械制造业的发展是离不来机械制造装备技术的。
努力地研究机械装备技术可以让我们国家的经济实力和科学技术都能得到发展。
我国也是制造业非常发达的大国,因此更应该花费资金投入机械制造业去,去研究和发展。
卷板机是一个将金属板材弯卷成锥体、曲面体体、筒体或其他形体的通用成型设备。
根据以往的概论三点可以成圆的原理,卷板机在工作时的工作辊他们的位置不是固定的,而是变化和旋转运动从而使板材产生连续不断的塑性变形,可以以获得预制的工件。
该通用设备可应用于造船、锅炉、石油、化工及机械制造行业等。
与外国的工作辊(一般以工作辊的配置方式划分)划分方式不同,国内基本都以工作辊调整形式及数量作为标准,实行分类,一般分为:1、特殊用途卷板机:有双辊卷板机、船泊式卷板机、立体式卷板机、多功能卷板机和锥体式卷板机等。
2、三辊卷板机:分为机械式三辊卷板机(机械式三辊卷板机包括机械式对称式三辊卷板机和机械式非对称式三辊卷板机)和液压式三辊卷板机。
3、四辊卷板机:分为侧辊倾斜调整式四辊卷板机和侧辊圆弧调整式四辊卷板机。
机械传动式卷板机已经有很长的发展时间,但是由于它的机械运动简单,工作性能很好,制造价格很低,因此在很多中、小型的卷板机仍然使用中。
但是由于现在的卷板机都是低速大扭矩的卷板机,所以传动系统体积过于庞大,卷板机在工作时产生的功率较大,并且在启动的时候电能的上下起伏太大,因此现在大型的卷板机都是在用液压传动。
三辊卷板机的设计卷板机可分为冷卷和热卷。
水平下调式三辊卷板机技术说明
水平下调式三辊卷板机技术说明一、设备型号型号:W11XNC-100×2000型 1台价:256万元名称:W11XNC-100×2000型毫米水平下调式三辊卷板机二、主要技术参数注:t-—板厚三、设备概述该设备为水平下调式三辊卷板机,上辊可升降位移;下辊可水平位移;在该设备上能将金属板材一次上料,不需调头即可完成板材端部的预弯和卷制成形,是卷制圆形、锥形、弧形工件的理想设备,广泛应用于水电、化工、航空、造船、建筑、锅炉、桥梁、金属结构、机械制造等各行业。
四、设备主要构成:上辊部分(上辊、上辊主传动装置、传动侧轴承体、倾倒平衡装置)下辊部分(两下辊、下辊辅助传动装置、水平移动装置、对料装置)架体部分(底座、左右机架、上辊驱动油缸)倾倒部分(上辊倾倒侧轴承体、倾倒油缸)卷锥筒装置液压系统(液压泵站系统、阀组)电气控制部分,强电部分、数显部分(PLC控制系统)、操作台润滑系统五、设备的结构特征1.机器由底座、上辊、下辊、左右机架、主驱动系统、辅助驱动系统、液压系统、电气控制系统等组成。
底座及机架采用焊接结构,严格要求焊缝质量,并进行时效处理,以保证机器在工作负荷下有足够的强度和刚度。
2.工作部分上辊装在两轴承体内,分别镶在两侧的机架内侧,由两端油缸驱动上辊升降运动。
上辊两端轴承均采用低速度、重载荷的调心滚子轴承,上辊的升降位移量由数字显示,可根据数字显示调整工作辊平行或倾斜。
其同步精度±0.2mm。
上辊的倾倒侧装有倾倒油缸,方便取料。
上辊尾部装有平衡机构。
在倾倒侧失去支承时,平衡上辊处于水平位置。
两下辊装在上辊机架内侧,由下辊机架进行支承,采用低速度、重载荷的调心滚子轴承。
两下辊在油缸驱动下同时进行水平移动,下辊水平移动量数字显示,根据数字显示调整下工作辊平行。
其同步精度为±0.2mm,并可自动回中。
对料装置安装在下辊一侧,由油缸驱动其工作。
卷锥筒装置安装在上辊的左端,随上辊同升降。
四辊卷板机工艺程序
四辊卷板机工艺程序英文回答:Rolling is a common metal forming process used in various industries, including the production of sheet metal.A four-roll plate bending machine, also known as a four-roll roll bending machine, is commonly used for rolling metal sheets into cylindrical or conical shapes.The process of operating a four-roll plate bending machine involves several steps. First, the operator needsto set up the machine by adjusting the position of therolls and ensuring that they are properly aligned. This is important to ensure the accuracy and quality of the rolled sheet.Next, the operator needs to load the metal sheet onto the machine. This can be done manually or with the help of lifting equipment, depending on the size and weight of the sheet. Once the sheet is in position, the operator canstart the rolling process.During the rolling process, the four rolls of the machine rotate and apply pressure to the metal sheet, gradually bending it into the desired shape. The operator needs to control the speed and pressure of the rolls to achieve the desired curvature and avoid any defects or deformations in the sheet.One important aspect of operating a four-roll plate bending machine is the control of the bending radius. This is determined by the distance between the top and bottom rolls, as well as the position of the side rolls. By adjusting these parameters, the operator can achieve different bending radii and create a variety of shapes.In addition to the bending radius, the operator also needs to consider the thickness of the metal sheet. Thicker sheets require higher pressure and slower rolling speeds to ensure proper deformation. On the other hand, thinner sheets may require lower pressure and faster rolling speeds to avoid any damage or wrinkles.Furthermore, the operator needs to pay attention to the material properties of the metal sheet. Different materials have different levels of ductility and elasticity, which can affect the rolling process. For example, a highly ductile material may require less pressure and allow for tighter bends, while a less ductile material may require more pressure and have limitations on the bending radius.To illustrate the process, let's consider an example. Imagine I am operating a four-roll plate bending machine in a metal fabrication workshop. I have a stainless steel sheet that needs to be rolled into a cylindrical shape for a pipe application.First, I set up the machine by adjusting the rolls and ensuring they are aligned. Then, I load the stainless steel sheet onto the machine using a crane. I position the sheet between the top and bottom rolls, making sure it is centered.Next, I start the rolling process by activating themachine. The rolls rotate and apply pressure to the sheet, gradually bending it into a cylindrical shape. I carefully control the speed and pressure of the rolls to ensure a smooth and accurate bend.I also adjust the bending radius by changing theposition of the side rolls. This allows me to achieve the desired curvature for the cylindrical shape. I payattention to the thickness of the stainless steel sheet and adjust the pressure and rolling speed accordingly.After several passes through the machine, the stainless steel sheet is successfully rolled into a cylindrical shape.I inspect the final product for any defects or deformations and make any necessary adjustments.Overall, operating a four-roll plate bending machine requires skill, precision, and an understanding of themetal properties. It is a versatile process that can beused to create a wide range of shapes and sizes. Withproper setup and control, it can produce high-qualityrolled sheets for various applications.中文回答:四辊卷板机是一种常见的金属成形工艺,广泛应用于各个行业,包括金属板材的生产。
三辊卷板机操作规程(二篇)
三辊卷板机操作规程第一章总则第一条为了规范三辊卷板机的操作,保障操作人员的安全,保护设备,提高工作效率,制定本操作规程。
第二条本操作规程适用于三辊卷板机操作人员。
第三条操作人员应具备三辊卷板机的基本操作知识和技能,经过相关培训合格后方可操作。
第四条三辊卷板机操作人员必须严格遵守本操作规程,严禁违反操作规程进行操作。
第二章三辊卷板机操作规程第五条操作人员应在进入工作区域前穿戴好工作服、工作手套,戴好安全帽,确保人身安全。
第六条操作人员应对三辊卷板机进行日常检查,包括检查轧辊、传动装置、润滑系统等部件是否完好,检查电气设备是否正常运行。
第七条验证卷板机在无负荷状态下是否正常运转,确认无异常后才能投入使用。
第八条进行操作前,应按照要求进行卷板机的操作准备工作,包括调整辊子间距、调整卷板机压力等。
第九条在操作中,应确保辊子之间的间距适当,以免对卷板机造成损坏。
第十条在操作中,应避免三辊卷板机的过热情况发生,应及时进行冷却处理。
第十一条在操作中,应密切关注卷板机的工作状态,发现异常情况应及时报告。
第十二条三辊卷板机操作结束后,应及时清理工作区域的杂物,并对卷板机进行清洁、保养工作。
第十三条三辊卷板机操作结束后,应关闭电源,并进行必要的安全设施检查,确保设备的安全。
第十四条在操作过程中,应严格遵守相关的操作规程和安全制度,不得擅自改变操作程序。
第十五条操作人员应定期接受安全培训和技术培训,提高自身的操作水平和安全意识。
第十六条在操作中发现设备故障或异常情况时,应立即采取必要的措施,停止操作,并报告相关人员进行处理。
第十七条在操作中严禁酒后作业,严禁疲劳驾驶,确保操作安全。
第十八条三辊卷板机操作人员应遵守公司的相关规定,保守公司的商业秘密。
第三章处罚措施第十九条对于违反本操作规程的操作人员,将按照公司相关规定进行处罚,根据违规行为的严重程度进行相应的处理。
第二十条一般违规行为将进行警告。
如果造成严重后果的,将进行停工处罚。
三锟万能卷板机_外文翻译
外文翻译ROUNDO3-ROLL plate BeNding machinesType ps3-ROLL Plate Bending MachinesType PSUniversal, Machine used for all Plate Bending ,Double Pinch Design,Arign the plate using the alignnwnt gnnws,in the lowerrollsor against the rear roll. Theprebending is accomplished by clamplng the platebetween the top roll and one of the lowar rolls.The other lower roll is placed in its lowest posrtlon .ROUNDO is the world's leading manufacturer of plate and sectionbending machines. The company was formed in 1964, and hassince delivered more than 15 000 machines to satisfied customers around the globe. ROUNDO machines are world-renowned,for outstanding performance, reliability and quality.Wlde Range of MachinesThe standard range of 3-roll plate bending machines covers platethicknesses from 3 mm (1/8 ') t0 100 mm (4-) and widths from1 000 mm t0 8 000 mm (3' t0 26'). All machines haw uniquefeatures needed for high precision and versatility:Prebending of both the leading and trailing edga. In manycases, the remaining flat end is as short as one time theplate thickness.Fully hydraulic.infiniteIy variable spead drive and adjustment of the rolls.Highest drive torque of any competftive machine.Frames made of high-strength steel, Nlly welded andstress relieved beforo machining to havo sufficlontstrength to absorb bending forcos and to achieve hlghestpossible accuracy。
三辊卷板机(纯英文)
三辊卷板机(纯英文)------------------------------------------作者xxxx------------------------------------------日期xxxxAnalytical and empirical modeling of top roller position for three-roller cylindrical bending of plates and its experimental verificationA.H. Gandhi, H.K. RavalAbstract:Reported work proposes an analytical and empirical model to estimate the top roller position explicitly as a function of desired (final) radius of curvature for three-roller cylindrical bending of plates, considering the contact point shift at the bottom roller plate interfaces. Effect of initial strain and change of material properties during deformation is neglected. Top roller positions for loaded radius of curvature are plotted for a certain set of data for center distance between bottom rollers and bottom roller radius. Applying the method of least square and method of differential correction to the generated data, a unified correlation is developed for the top roller position, which in turn is verified with the experiments, on a pyramid type three-roller plate-bending machine. Uncertainty analysis of the empirical correlation is reported using the McClintock’s method.Keywords: Roller bending,Springback,Analytical study,Empirical modeling, Uncertainty analysis1. IntroductionLarge and medium size tubes and tubular sections are extensively in use in many engineering applications such as the skeleton of oil and gas rigs, the construction of tunnels and commercial and industrial buildings (Hua et al., 1999). The hull of ships may have single, double or higher order curvatures, which can be fabricated sequentially; first by roll forming or bending (to get the single curvature), and then line heating (to get the double or higher order curvature). As roller bending is performed at least once in the sequential process, its efficient performance is a prerequisite for the accurate forming of the double or multiple curvature surfaces (Shin et al., 2001). In view of the crucial importance of the bending process, it is rather surprising to find that roller-bending process in the field has been performed in a very nonsymmetrical manner. Normal practice of the roller bending still heavily depends upon the experience and skill of the operator. Working with the templates, or by trial and error, remains a common practice in the industry. The most economical and efficient way to produce the cylinders is to roll the plate through the roll in asingle pass, for which the plate roller forming machine should be equipped with certain features and material-handling devices, as well as a CNC that can handle the entire production process (Kajrup and Flamholz, 2003).Many times most of the plate bending manufacturers experience Low productivity due to under utilization of their available equipment. The repeatability and accuracy required to use the one-pass production method has always been a challenging task.Reported research on the forming of cylindrical shells mostly discusses the modeling and analysis of the process. Hensen and Jannerup (1979) reported the geometrical analysis of the single pass elasto-plastic bending of beams on the three-roller pyramid benders by assuming triangular moment distribution between the rollers. Developed model for the bending force and bending moment was based on the contact point shift between the plate and top roll fromthe vertical centerline of the top roll. Hardt et al. (1982) described closed loop shape control of three-roller bending process. The presented scheme accomplishes the shape control by measuring the loaded shape, the loaded moment and effective beam rigidity of the material in real time. Yang and Shima (1988) and Yang et al. (1990) discussed the distribution of curvature and bending moment in accordance with the displacement and rotation of the rolls by simulating the deformation of work piece with Ushaped cross-section in a three-roller bending process. They reported the relationship between the bending moment and the curvature of the work piece by elementary method, which was further used to build up a process model combining the geometries for three-roller bending process. Developed process model was further applied to the real time control system to obtained products with constant and continuously varying curvature. Hardt et al. (1992) reported a process model for use in simulation of the manufacturing of cylindrical shells from the plates, which require sequential bending, by incorporating the prior bend history. They modeled the process with series of overlapping two-dimensional three point bends, where overlap includes the plastic zone from the previous bends. Hua et al. (1995) reported the mathematical model for determining the plate internal bending resistance at the top roll contact for the multi-pass four-roll thin plate bending operations along with the principle mechanisms of bending process for single pass and multi-pass bending. Shin et al. (2001) have reported a kinematics based symmetric approach to determine the region of the plate to be rolled, in order to form smoothly curved plates. Gandhi and Raval (2006) developed the analytical model to estimate the top roller position as a function of desired radius of curvature,for multiple pass three-roller forming of cylinders, considering real material behavior and change of Young’smodulus of elasticity (E) under deformation and shows that the springback is larger than the springback calculated with constant E.Literature review reveals that only limited studies are available on the continuous three-roller bending of plates. With reported analytical models, it is difficult to find the top roller position explicitly as a function of the desired radius of curvature and hence it requires solving the set of equations by nonlinear programming. Use of the close loop shape control or adaptive control or CNC control system can improve the accuracy and the consistency of the process but acquisition and maintenance of such a system is costly and may not be affordable to the small scale to medium scale fabricators. Purpose of the present analysis is to develop the model for prediction of the top roller position as a function of the desired radius of curvature explicitly for cylindrical shell bending. Development of the model is based on analytical and empirical approach. Empirical model is developed based on the top roller position versus loaded radius of curvature plots, which is obtained geometrically for a set of data of center distance between bottom rollers and bottom roller radius.Fig. 1– Schematic diagram of three-roller bending process.Fig. 1 shows the schematic diagram of three-roller bending process, which aimed at producing cylindrical shells. The plate fed by two side rollers and bends to a desired curvature by adjusting the position of center top roller in one or several passes. Distance between bottom rollers can be varied. During deformation, axes of all the three rollers are set parallel to each other. Desired curvature in this case is the functionof plate thickness (t), plate width (w), material properties (E, n, K, and v), center distance between two bottom rollers (a), top-roller position(U), top-roller radius () and bottom-roller radius () (Raval, 2002). The capacity of the plate bender is defined by the parameters such as tightest bend radius with the maximum span and designed thickness of the plate and the amount of straight portion retained at the end portions of the plate.Fig2 Deformation in fiber ABO2. Bending analysisBending analysis is based on some of the basic assumptions summarized below:•The material is homogeneous and has a stable microstructure throughout the deformation process.• Deformation occurs under isothermal conditions.• Plane strain conditions prevail.• The neutral axis lies in the mid-plane of the sheet.• Bauschinger effect is neglected.• Analysis is based on power law material model,• Pre-strain is neglected.• Change of material properties during deformation is neglected.• Plate is with the uniform radius of curvature for supported length between bottom rollers.2.1. Geometry of bendingIn thin sheets, normal section may be considered to remain plane on bending andto converge on the center of curvature (Marciniak and Duncan, 1992). It is also considered that the principal direction of forces and strain coincide with the radial and circumferential direction so that there is no shear in the radial plane and gradient of stress and strain are zero in circumferential direction. The middle surface however may extend. Fibers away from the middle surface are deformed as shown in Fig. 2. Initially the length of the fiber AB0 is assumed as l0 in the flat sheet. Then, under the action of simultaneous bending and stretching the axial strain of the fiber is of the form(1)where is the strain associated with the extension of middle surface, the bending strain and ρ is the radius of curvature of the neutral surface.2.2. Moment per unit width for bending without tensionIn the case of simple bending without applied tension and where the radius of curvature is more than several times the sheet thickness, the neutral surface approximately coincides with the middle surface. If the general stress–strain curve for the material takes the form(2) Then, for the plastic bending, applied moment per unit width can be of the form (Marciniak and Duncan, 1992)(3)Elastic spring back in plates formed by bendingIn practice, plates are often cold formed. Due to spring back, the radius through which the plate is actually bent must be smaller than the required radius. The amount of spring back depends up on several variables as follows (Raval, 2002;Sidebottom and Gebhardt, 1979):• Ratio of the radius of curvature to thickness of plates, i.e. bend ratio.• Modulus of elasticity of the material.•Shape of true stress versus true strain diagram of the material for loading under tension and compression.•Shape of the stress–strain diagram for unloading and reloading under tension and compression, i.e. the influence of the Bouschinger effect.• Magnitude of residual stresses and their distribution in the plate before loading.• Yield stress ().• Bottom roller radius, top roller radius and center distance between bottom rollers. • Bending history (single pass or multiple pass bending, initial strain due to bending during previous pass).Assuming linear elastic recovery law and plane strain condition (Marciniak and Duncan, 1992; Hosford and Caddell, 1993), for unit width of the plate, relation between loaded radius of curvature (R) and desired radius of curvature () can be given by(4) 3. Analytical models of top roller position (U) for desired radius of curvature ()For the desired radius of curvature (), value of loaded radius of curvature (R) can be calculated using the Eq. (4). From the calculated value of loaded radius of curvature (R), top roller position (U) can be obtained using the concepts described below.3.1. Concept 1Application of load by lowering the top roller will result in the inward shift of contact point at the bottom roller plate interface (towards the axis of the central roller). Fig. 1shows that distance between plate and bottom roller contact point reduces to a’from a. Raval (2002)reported that for the larger loaded radius of curvature (R), top roller position (U) is very small, and hence, contact point shift at the bottom roller plate interface can be neglected for simplification (i.e. a≈). Fig. 3 shows the bend plate with uniform radius of curvature (R) between roller plate interfaces X and Y, in the loaded condition. As top roller position (U) is small for the larger loaded radius of curvature(R), in triangle OY’X, segment Y’X can be assumed to be equal to half the center distance between bottom rollers (i.e. ). So, from triangle OY’X in Fig. 3Simplification of the above equation will result in the form(5) where A= (4/R), B = 8 and C = a2/R.From Eq.(5), top roller position (U) can be obtained for the loaded radius of curvature (R),calculated from desired radius of curvature().Fig.3 Bend plate in loaded condition without considering contact point shift 3.2. Concept 2Concept 1 discussed above, neglects the contact point shift at the bottom rollers plate interfaces, whereas concept 2 suggests the method for the approximation of these contact point shift for the particular top roller position (U). It was assumed that the plate spring back after its exit from the exit side bottom roller and hence between the roller plate interfaces, plate is assumed to be with the uniform radius of curvature. Then, for the larger loaded radius of curvature (R), length of arc (s) between the points L’H in Fig. 4 is assumed to be equal to L’H’(i.e. ). In order to obtain contact point shift at bottom roller plate interface,portion of the plate in between the bottom rollers plate interfaces is divided into total N number of small segments defining the nodal points , , . . ., at each segment intersection as shown in Fig. 4. Each small segment of the arc s, i.e. L H being the arc length d(s)equal to ((a/2)/N) is considered as a straight line at an angle of (θ/N), (2θ/N), . . ., θ, respectively with the horizontal. Incremental x and y co-ordinates at each nodal point are calculated using the relationship (Gandhi and Raval, 2006):(6)where for total N number of segment (i.e. i=1, 2, . . .,N)Then, from the summation of ‘x’ co-ordinates and ‘y’ co-ordinates of all the nodal points, top roller position (U) for the particular value of loaded radius of curvature (R) can be obtained in two different ways as follows.Fig. 4 – Bend plate in loaded condition (assuming the platewith constant radius of curvature between the supports).In Fig. 4, considering the GHO(7) In Fig. 4, considering the HOL’This can be derived to the form(8)The contact point shift between the plate and bottom rollers are obtained by(9) 3.3. Concept 3Fig. 5 shows the loaded plate geometry assuming constant loaded radius of curvature (R) between the bottom roller plate interfaces with top roller position (U) and center distance between bottom rollers (a). Relationship of top roller position (U)with other operating parameters viz loaded radius of curvature (R), center distance between bottom rollers (a) and bottom roller radius () considering actual contact point shift can be obtained as discussed below.Fig. 5 Geometry of three-roller bending process.From the OPQ in Fig. 5where , andExpanding and rearranging, this can be derived to the form(10) Replacing R from Eq. (10) into Eq. (4) and simplifying,(11) whereEq. (11) represents the top roller position (U) as a function of final radius ofcurvature (). From Eq. (11), it can be observed that top rolle position (U) is the function of• Bottom roller radius ()• Center distance between bottom rollers (a).• Material property parameters (E, v K, and n).• Thickness of plate (t).• Final radius of curvature (Assumption of constant radius of curvature between the roller plate interfaces and plane strain condition has eliminated the effect of top roller radius () and width of the plate (b).4. Development of empirical modelAs described earlier, top roller position (U) is the function of loaded radius of curvature (R), center distance between bottom rollers (a), radius of the bottom rollers () and radius of the top roller (). Further, loaded radius of curvature (R) can be calculated from the desired final radius of curvature () considering the spring back. To develop the empirical model, data set were generated from the geometry for the required top roller position (U) in order to obtain the particular value of loaded radius of curvature (R), with a set of values of center distance between bottom rollers and bottom roller radius. Effect of top roller radius () on top roller position (U) was neglected with the assumption of no contact point shift at the top roller plate interface (i.e. uniform radius of the supported plate length). Fig. 6shows the plot of U versus R for the data set for three different bottom roller radiuses () i.e. 95, 90 and 81.5mm. These data sets were generated with top roller radius () as 105mm, for range of loaded radius of curvature (R) from 1400 to 3800mm; center distance between bottom rollers (a) from 375 to 470mm and bottom roller radius () from 81.5 to 105mm. From these data, correlation for top roller position (U) was derived which is described as follows.From the study of the U versus R plots for the particular machine (with top roller radius () equal to 105mm and bottom roller radius () equal to 81.5 mm), a functional relationship of the form given by Eq. (12)can be assumed.(12)Constants (c) and (m) were evaluated using method of least square. For the different center distance between bottom rollers (a) i.e. 375, 390, 405, 425, 440, 455 and 470mm, values of constants (c) and (m) were found to be different. Hence, variation of constant (c) and (m) were plotted against center distance (a) as shown in Figs. 7 and 8. The top roller position (U) is derived with new constant () and ().,(13)Fig. 6 –U vs. R for different bottom roller radius () and centerdistances between bottom rollers (a), = 105mm.Fig. 7 – Constant c for different center distancebetween bottom rollers (a), = 105mm.where constants and were obtained as a function of center distance between bottom rollers (a).Similarly, from the U versus R plots for the other machines with top roller radius equal to 105mmand bottom roller radius equal to 90, 95, 100 and 105mm, the empirical equation for top roller position (U) was derived in the form given by Eq.(13).Where, constants () and () were obtained as a function of center distance between bottom rollers (a), for the different machines and are presented in Table 1.,So, unified empirical equation considering all different machines can be obtained as below(14) where P, Q and S are constants, which depend on bottom roller radius (). From the P versus , Q versus and S versus plots, constants P, Q and S were obtained by applying the generalized method of least square and method of differential corrections (Devis, 1962) to the generated dataset, as a function of bottom roller radius () given by Eqs. (15)–(17)(15)(16)(17) Replacing P, Q and S from Eqs. (15)–(17) into Eq. (14)(18)Fig. 8 – Constant m for different center distancebetween bottom rollers (a), = 105mm.Assuming the unit width of the plate and plane strain condition, from Eqs. (3) and (4)(19) Replacing R from Eq. (19) into Eq. (18)(20) Eq. (20)is the empirical equation for top roller position (U) considering contact point shift, where U is the function of• Bottom roller radius (r1).• Center distance between bottom rollers (a).• Material property parameters (E, V K, and n).• Thickness of plate (t).• Final radius of curvature ().Eq. (20)is the generalized equation of top roller position (U) as its derivation is based on the trend equations and it is applicable to any range of the parameters under consideration. Further from Table 1, for the range of bottom roller radius () from 81.5 to 105mm, range of variation of P, Q and S was observed to be 0.0636–0.0593, 2.0673–2.0651 and 0.9631–0.952, respectively. By averaging the P, Q and S, top roller position (U) can be derived to the form given by Eq. (21), which neglects theeffect of bottom roller radius () and is applicable to the machine with the range of the bottom roller radius from 81.5 to 105mm.(21)Analytical model developed under present work is based on the assumption of constant radius of curvature between the bottom roller plate interfaces. However, in actual practice, plate has been observed with the varying radius of curvature between the roller supports due to nonsymmetrical moment distribution around the top roller axis. Research reported by Hensen and Jannerup (1979) has described the curvature functions for finding the varying curvature between the roller supports in loaded condition. However, in the derivation, as none of the essential variables can be expressed as explicit functions of input quantities describing geometry and material characteristics, calculations were possible only with multi-loop iterative procedure. Hence, to avoid the multi-loop iterative procedure, empirical model as described above is useful to predict/obtain top roller position (U). With the help of the experimental data on the curvature distribution for plate in loaded condition, empirical model for the top roller position(U) can be developed as per the procedure discussed in foregoing sections. This will include the effect of top rollerplate contact point shift and will lead to the more accurate prediction of top roller position for desired radius of curvature.5. Uncertainty analysisThe uncertainty analysis is carried out in accordance with the McClintock’s method with the following assumed uncertainties in the various parameters:• Uncertainty in strain hardening exponent (n) =±10%.• Uncertainty in strength coefficient (K, N/mm2) =±15%.• Uncertainty in thickness of plate =± (5mm≤t < 8 mm), ±0.32mm (8mm≤t<10mm), ±(10mm≤t<12mm) and ±0.39mm (12mm≤t<15mm).• Uncertainty in center distance between bottom rollers (a) =±1mm.• Uncertainty in loaded radius (R, mm)=±1%.Uncertainty in strain hardening exponent (n) is assumed based on its variation with percentage elongation at 2 and 8-in. gauge length where as, uncertainty in strength coefficient(K) is assumed based on its variation over the range of the tensile strength for different grades of the carbon manganese steel as per ASME Section 2 (ASME,2001a). Uncertainty in the loaded radius (R) is assumed based on the rules for the construction of pressure vessel as per ASME Section 8 (ASME, 2001b). Uncertainty in thickness is assumed based on the thickness tolerances of hot rolled steel plates for 5–20mm thickness as per DIN 1016 (DIN, 1987). As the center distance between bottom rollers was set with the help of the scale having least count of 1mm, its uncertainty is assumed to be equal to±1mm. The resultant uncertainties in the top roller positions are found to be in the range of .6. ConclusionDeveloped analytical and empirical models were verified with the experiments on three-roller cylindrical bending. Following important conclusions were derived out of the reported work:(1) Analytical model based on concept 3, simplifies the calculation procedure for the machine-setting parameters as it expresses the top roller position as an explicit function of desired radius of curvature.(2) Agreement of empirical results with that of the experiments and analytical results based on concept 3 proves the correctness of the procedure.(3) For the small to medium scale fabricators, where the volume of production does not permit the acquisition of automated close loop control systems, developed models can be proved to be simple tool for the first hand estimation of machine setting parameters for required product dimensions.(4) Consideration of effect of initial strain and change of modulus of elasticity during deformation on spring back, in analytical/empirical model will further improve the accuracy of prediction of top roller position.(5) Further, empirical model based on the experimental loaded curvature distribution between roller supports would consider the top roller-plate contact point shift and will lead to more accurate prediction of top roller position. AcknowledgementsThe authors gratefully acknowledge the assistance provided by Dr. E.V. Ramakrishnan, Professor and Head, Department of English, V.N. South Gujarat University, India for English language editing. Authors are also thankful to the reviewers whose learned comments have helped a lot in improving the quality of this work.1.ASME Boiler and Pressure Vessel Code, 2001. Section 2,Part A and D.2.ASME Boiler and Pressure Vessel Code, 2001. Section 8, Division 1.3.Devis, D.S., 1962. Nomography and Empirical Equations, 2nd ed. Reinhold Publishing Corporation, NY, USA.4.DIN 1016, 1987. Steel Flat Products; Hot Rolled Sheet and Strip; Limit Deviations, Form and Mass Tolerances, Revision 87.5.Ditter, G.E., 1979. Mechanical Behavior of Materials under Tension Mechanical Metallurgy, 2nd ed. Mc-Graw Hill, NY, USA, pp. 329–348.6.Gandhi, A.H., Raval, H.K., 2005. Stress strain curve for multiple pass loading of ductile material. In: Proceedings of the International Conference on Recent Advances in Mechanical & Materials Engineering, Kuala Lumpur, Malaysia, May 30–31, pp. 175–180.7.Gandhi, A.H., Raval, H.K., 2006. Analytical modeling of top roller position for multiple pass (3-roller) cylindrical forming of plates, in: Proceedings of International Mechanical Engineering Congress and Exposition, Chicago, IL, USA, November 5–10, Paper no. IMECE2006-14279.8.Hardt, D.E., Roberts, M.A., Stelson, K.A., 1982. Closed-loop shape control of a roll-bending process. J. Dynam. Syst. Meas. Control 104, 317–321.9.Hardt, D.E., Constantine, E., Wright, A., 1992. A model of sequential bending process for manufacturing simulation. J. Eng. Ind. Trans. ASME 114, 181–187.10.Hensen, N.E., Jannerup, O., 1979. Modeling of elastic-plastic bending of beams using a roller bending machine. J. Eng. Ind., Trans. ASME 101, 304–310.11.Hosford, W.F., Caddell, R.M., 1993. Metal Forming Mechanics and Metallurgy. PTR Prentice Hall, NJ, USA12.Hua, M., Sansome, D.H., Baines, K., 1995. Mathematical modeling of the internal bending moment at the top roll contact in multi-pass four-roll thin-plate bending. J. Mater. Process. Technol. 52, 425–459.13.Hua, M., Baines, K., Cole, I.M., 1999. Continuous four-roll plate bending: a production process for the manufacture of single seamed tubes of large and medium diameters. Int. J. Mach. Tools Manuf. 36, 905–935.14.Kajrup, G., Flamholz, A., 2003. Bending the wind-roll bending challenges in fabricating conical cylinder wind towers, The Fabricator, August 14, ().15.Marciniak, Z., Duncan, J.L., 1992. The Mechanics of Sheet Metal Forming. Edward Arnold Ltd., London.16.Raval, H.K., 2002. Experimental & theoretical investigation of bending process, (vee & three roller bending), PhD Thesis, South Gujarat University, India.17.Shin, J.G., Park, T.J., Yim, H., 2001. Kinematics based determination of the rolling region in roll bending for smoothly curved plates. J. Manuf. Sci. Eng. 123, 284–290. Sidebottom, O.M., Gebhardt, C.F., 1979. Elastic springback in plates and beams formed by bending, Exp. Mech., 371–376.18.Yang, M., Shima, S., 1988. Simulation of pyramid type three roller bending process. Int. J. Mech. Sci. 30 (12), 877–886.19.Yang, M., Shima, S., Watanabe, T., 1990. Model base control for three roller bending process of channel bar. J. Eng. Ind. Trans. ASME 112, 346–351.。
纸业专业英语词汇翻译(T3)_新闻传媒英语词汇
top liner 外层挂面top former 上方喷浆成形器top lip (of slice) 上唇板top knife 上刀top press (roll) 上压榨(辊)top relief valve 锅顶放气阀top roll 上辊,顶辊top side 正面top sizing 表面施胶top slice 堰板上唇,上堰板top slitter 纵切上刀top squeeze roll 挤水上辊top wire 上网,面网tori (torus的复数)纹孔torn deckle 定边带破裂torn sheet 破损纸页torque 转力矩torsion 扭曲度;扭力,扭曲torsion balance 扭秤torsion meter 扭曲强度试验仪torsion of fibers 纤维扭曲torsion resistance 扭曲度torsion strength 扭力强度torsion tester 扭曲度测定仪torsional strength 扭力强度torsional strength tester 扭曲强度测定仪torus 纹孔托total acid 总酸total alkali 总碱total alkali consumption 总碱耗,总耗碱量total cooking time 蒸煮总时间total drying surface 干燥全面积total efficiency 总效率total length of cuts per second 每秒总切断长total load 总负荷total pressure 总压力total solids 总固体物含量total soluble matter 总溶解物total stress 总应力total sulfur dioxide 二氧化硫总量total time of treatment 总处理时间total titratable alkali 滴定碱总量total transmittance 透射总量total transmittance 透射总量total yield 总得率,总收获率touch roll 托辊touching 上色,配色toughness 韧性tough check 强靭纸板toughness of wood 木材韧度tour foreman 值班长towel 毛巾纸towelling 毛巾纸tower absorption system 吸收塔系统tower acid 塔酸tower acid system 塔酸回收系统tower filling (塔内)填充物tower plate 塔板tower press 链棚式挤压机tower reclaiming system 塔酸回收系统towerman 制酸工toxicant 消毒剂toxicity 毒性trabecular duct' 横纹导管trabecular vessel 横纹导管tracasol 槐树豆胶trace element 痕量元素;示踪元素tracer 示踪物;描绘器trachea 导管tracheae (trachea的复数)导管tracheal portion 导管部分tracheal tissue 导管组织tracheid 管胞trackway 轨道traction cable 牵引缆索trade mark 商标tragacanth gum 刺梧桐树胶traganth 胺黄树胶tralling blade costing 拖刀涂布training equipment 训练设备tramp down 踏洗transducer 传送器;换能器transection 横切面transfer 传递;转移;迁移transfer felt 领纸毛毯,引纸毛毯transfer press 第一(转移)压榨transfer roll (超级压光机)中间导纸辊;选纸辊transferring by hand 人工领纸transferring of paper web 领纸,引纸transform 转变,改变transformer 变压器transformer room 配电站transistor 晶体管transition element 过渡无素transition point 转变点,转换点transition temperature 过渡态transition temperature 过渡温度transitional element 过渡元素translucence 半透明度translucency 半透明度translucent coating 半透明涂布translucicity 透明度transmission line 传动(系统)transmission of heat 热传导transmission side 传动侧,传动面transmittance 透光度transmittance of light 透光度transmitter 变送器;发射机;传感器transmutation 质变,蜕变transparence 透明transparency 透明度transparency ratio 透明比率transparencizing agent 透明助剂transparent 透明的transparent cellulose 透明纸transparent manifold 透明复写纸transparent spots 透明点(纸病)transparentizing 透明化transpirating 蒸腾,流逸transplantation 移植transport 运输,运搬transportaion 运输,运搬transportation device 运输设备transversal log haul-up 横向拉木机transverse cutting machine 横切机transverse flow press 横流压榨transverse porosity 横生气孔度transverse resin canal 横生树脂道transverse section 横切面transverse surface 横要面trap 捕集器trapping 套色印刷trash 废料,废品;损纸trash discharge 废料排放trash sump (打浆机)捕砂沟travelling crane 移动式吊车traverse 横向traverse fiber 横向纤维tray (浅)盘tray water 网下白水tree cone 针叶木tree farm 林场tree length log 全树原木tree length logging 原木采运tree nusery 树苗圃tree shear 树木剪切trembling aspen (populus tremuloides michx.) 颤杨trestle conveyor 高架运输机trial run 试运转triazon trsin 叠氮基树脂trickling condenser 滴漏冷凝器trickling filter 滴漏过滤塔trickling filtration 滴漏过滤tri-clean 除渣器trigesune-secunde 32开trigger 闸板;板机trigger circuit 触发电路trim 冲边;纸边trim broke 冲边损纸trim conveying system 湿纸边运送系统trim gulde 纸边导板trim shower 切边水针trim width 成品宽,净宽trimbey (consistency)regulator trimbey圆筒浓度调节器trimethyl cellulose 三甲基纤维素trimmed 切边trimmed size 成品规格,切边后规格trimmed splice 纸张接头裁切trimmed width 成品宽,切边后宽度trimmer 闸刀切边机trimmer knife 长刀,横切刀trimmer press 平板切纸机trimmer saw 修整锯trimming 裁切,切边trimming device 冲边装置,切边装置trimming knife 平板切纸机长刀trimming machine 缝边机trimmings 纸边tri-nip press 三压区压榨triose 三糖tri-pick tester 湿摩擦测定仪triple chain wire 三线网triple deck chip screen 三层木片筛triple deck dryer 三层烘缸triple disc refiner 单动三盘磨浆机,三盘磨triple effect evaporator 三效蒸发器triple fouredrinier machine 三长网造纸机triple warp weave 三线捻织triple weave (fourdrinier) wire 绫织长网triple wire 绫织长网;三丝铜网triplex 三倍,三层tripper 倾斜器trisaccharide 三糖tri-sodium phosphate 磷酸三钠tri-stimulus specification 三色刺激量标准tri-stimulus value 三刺激数值tri-vent press 三压区沟纹压榨trommel 转筒筛tropical plant 热带植物tropical wood 热带木材trotters (平板筛浆机)隔膜支脚trouble 事故;故障trouble shooting 排除故障trough 槽,池,沟troughing 打浆池true density 真密度;真比重true middle lamella 真胞间层true specific gravity 真比重true up 钝(磨木)石,锉(磨木)石true weight 真重量true wood 心材true wood fiber 纯木材纤维true wood fiber tracheid 真木纤维导管truing device 锉石装置truing lathe 锉石刀truing up 锉石truncated 平头的,截短的trunk 树干;衣箱;总管trunk and case fiber 衣箱用纤维板truck eccentricity 树干偏心率truck warping 树干truck wrapper 衣箱包装纸trunion 凸耳,耳轴truth table 真值表tub 槽tub coloring 槽染色tub liner 贮槽衬里tub size press 槽法施胶tub sized 槽法施胶tub sizing machine 槽式施胶机trbe bedplate (打浆机)管状底刀trbe roll 案辊trbe stock 纸管用纸;纱管用纸trbe type condenser 管式冷凝器tuber 纸管纸tubing suction box 管状真空吸水装置tubular boiler 水管式锅炉tubular continuous digester 管式连续蒸煮器tubular cascade evaporator 管式圆盘蒸发器tubular heater 管式加热器tubular tissue 管状组织trcker 摺头器tulip tree (liriodendron tulipifera l.) 美国鹅掌楸tumbling digester 回转式蒸煮器tumbling drum 翻滚式圆筒剥皮机tung oil 桐油tunnel dryer 隧道式干燥室tupelo gum (nyssa sylvatica marsh.) 美国紫树tupfel 纹孔turbair vacuum system turbair真空操作集中控制系统turbid 混浊turbidity 混浊度turbidmeter 浊度计turbine 涡轮(机);透平(机)turbine aerator 涡轮充气机turbine-centrifugal foam breaker 涡轮式消沫离心机turbine pump 透平泵turbine room 透平车间turbo-compressor 透平式真空泵trubo-electric charge 静电trubo-flow (nozzle)headbox 湍流(喷嘴式)流浆箱trubo-generator 透平发电机(组)trubo-separator 叶轮除渣器turbulence 湍流;紊流turbulent contact absorber 湍流吸收塔turbulent flow 湍流turbulent layer roaster 沸腾焙烧炉turf cutter 切草机turgid 膨胀;起凸turkey red oil 土耳其红油turnover 投资回收期turnover job 大修turnbull's blue 铁氰化钾蓝turned edge 卷边turning roll 转向辊turnkeyt plant 关键车间turnpike 转盘turntable 转盘turpentine 松节油turpentine separator 松节油澄清槽turpentine test (纸张)松香油试验turpentine timber 含脂材twelvens 12开twenty-four mo 24开twig 枝桠twill(ed) weave 捻织,斜纹twill weave wire 捻织网twin chamber electrostatic precipitator 双室静电除尘器twin cylinder machine 双圆网造纸机twin former 双网成形装置twin press 双压区复式压榨twin refiner 单动三盘磨twin roll press 双辊挤压机twin serew chip feeder 双螺旋喂料器twin wire former 双网成形装置,双网成形器twin wire (fourdrinier) machine 双长网造纸机twin wire (paper) machine 双网造成纸机teine 细绳;编织;交织twinver com-press 双压区复合压榨twinver form 水平双网纸机twinver press 双压区压榨twist 扭曲,捻twist wire weave 捻织网twisted growth (木材)扭曲生长twisted weave 捻织twisting strength 扭曲强度two coat 双面涂布two deck dryer 双层烘缸two dimcnsional chromatography 双向色谱法two drum reel 双鼓卷纸机two drum winder 双鼓卷纸机two piece lambert 对开瓦楞纸盒two ply 两层two ply laminating machine 双贴层压机two pocket magaqzine grinder 双袋库式磨木机two roll calender 双辊压光机two roll embossing machine 双辊压花机two section drum barker 两段鼓式剥皮机two sided coating 双面涂布two sided waxing 双面涂蜡two-sidedness 两面性two stage beating 两段打浆tyloses (tylosis的复数)侵填体tylosis 侵填体tympan (印刷机)压纸格typar 聚丙烯合成纸(美国du pont de nemours产品,商业名称)type setting 排字typewriter banks 打字带纸typewriter manifold 打字复写纸typography 活版印刷tyvek 高密度聚乙烯合成纸(美国du pont de nemours产品,商业名称)tembec 加拿大天柏林木浆纸公司的司标tss total suspended solids 总悬浮固体量的缩略语ts tensile strength 抗张强度的缩略语trs total reduced sulfur 总还原硫的缩略语tq threshold quantity 临界量(值)的缩略语tp thermo-plastic 热塑性的缩略语tmp thermo mechanical pulp 热磨机械浆的缩略语tla thin layer activation 薄层活性化的缩略语tga thermal gravimertic analysis 热重分析的缩略语tcr temperature controller and recorder 温度调节记录仪的缩略语tcf totally chlorine-free 全无氯(漂白)的缩略语tc temperature controller 温度调节器的缩略语tac totally applied chlorine 总用氯量的缩略语tasman 新西兰“塔斯曼”未漂硫酸盐针叶木浆。
【附录】外文翻译上辊万能式三辊卷板机机架翻倒装置液压系统
【关键字】附录附录A 中文译文上辊万能式三辊卷板机机架翻倒装置液压系统摘要:文章分析了上辊万能式三辊卷板机机架翻倒装置对卷弯制件质量的影响及对液压系统的要求;讨论了翻倒装置液压系统设计中存在的问题;提出新的设计方案。
关键词:卷板机;机架;翻倒装置1.卷板机机架翻倒装置及其作用卷板机是一种将金属板材卷弯成筒形、弧形、锥形或其他形状制件的通用设备,根据三点成圆的原理,利用工作辊相对位置变化和旋转运动使板材产生连续的塑性变形,以获得预定形状的制件。
该设备广泛用于海上采油平台、化工、造船、锅炉、金属结构等制造业。
本文所称的上辊万能式三辊卷板机,是由工作辊、机架、传动系统、机座等组成。
两个下辊间距固定,由电动机2减速器驱动,为主动辊,上辊为从动辊。
上辊可笔直升降,也可相对下辊作水平移动。
上辊笔直升降由安装在左、右机架上的液压缸驱动。
左机架安装有锥形轴承,该锥形轴承支承上辊左端轴颈。
左机架可实现翻倒、复位动作。
左机架翻倒前,上辊中心线必须位于设备中心;上辊也必须处于最高位置;左机架由液压缸驱动绕两销轴转98°,实现翻倒。
左机架翻倒后,锥形轴承与上辊脱开,便于从上辊取出制成件。
复位后,依靠液压缸的支承力,保持机架内锥形轴承与上辊左端轴颈的配合精度。
卷板机左机架翻倒装置如图1 所示。
左机架能否正确复位,以及在卷弯过程中能否稳固保持于该位置,对保证制件的几何形状精度及尺寸精度至关重要。
翻倒液压缸的支承力及其液压系统性能是关键所在。
如果支承力小,左机架向外倾斜,锥形轴承与上辊左端轴颈的间隙增大,卷制圆筒形工件的椭圆度加大;两端亦可成为锥形;筒端钝边与筒轴线的笔直度、筒端焊接坡口角超过标准公差。
影响焊接质量,造成直接经济损失。
如果液压缸丧失支承力,可能发生设备和人身事故。
所以,对机架翻倒装置液压系统设计、安装、使用、维修保养的每个环节决不能疏忽大意。
2.卷板机机架翻倒装置液压系统设计及弊端卷板机左机架翻倒装置液压系统如图2a 所示。
对称三辊卷板机上辊挠度补偿计算与受力分析
对称三辊卷板机上辊挠度补偿计算与受力分析甄诚;郭瑞峰;郭永平【摘要】The plate bending machine is forming equipment for bending the sheet metal, and can bend the plate material to cylinder shape, arc, cone shape or other.Symmetry three-roll bending machine is simple in structure, convenient to operate, and suitable for many varieties, small batch of steel pipe production.Because the symmetrical three-roll bending machine is symmetric, the force is relatively uniform when sheet metal is bending, soit can solve the problem of the rebound and the pre-cision.In order to ensure the quality, and considering the roundness and linear of the forming sheet, we must ensure that the top roller has sufficient rigidity and deflection.In this paper, using the software simulation of AutoCAD Mechanical, and as-suming the support reaction force, the uniform load of the top roller is simulated; Mechanical software is used in inverse solu-tion to add the deflection on top roller, thus to ensure the quality of sheet metal.%卷板机是一种弯曲金属板材的成形设备,可将材料弯曲成筒状、弧状、锥状或其他形状的板件。
LM PLC在液压式三辊卷板机上的应用
LM PLC在液压式三辊卷板机上的应用关键词:LM PLC;HT7000;液压式三辊卷板机作者:陈 申摘要:液压式三辊对称式卷板机(三辊卷板机)结构式为三辊对称式,上辊在两下辊中央对称位置作垂直升降运动,通过液压缸的液压油作用于活塞而获得,为液压传动;两下辊作旋转运动,通过减速机的输出齿轮与下辊齿啮合,为卷制板材提供扭矩。
液压式三辊对称式卷板机结构紧凑,操作维修方便。
采用基于和利时公司HOLLiAS LM PLC的三辊卷板机系统,可实现卷板机与PLC一体化无缝连接,同时通过串口RS232于HOLLiAS HT7000之间的通讯,动态响应快。
1 引言卷板机(Rolling Machine)是对板料进行连续点弯曲的塑形机床,具有卷制O型、U型、多段R等不同的形状。
为上调式对称式三辊卷板机,可将金属板材卷成圆形、弧形和一定范围内的锥形工件,本机种两下辊为主动辊,上辊为从动辊。
它广泛使用于造船、锅炉、航空、水电、化工、金属结构及机械制造行业。
适合用于金属板材的弯曲变形,可卷制圆形,弧形和一定范围内的锥形工件,并有板材端部预弯功能,本机型两个下辊为主动辊可水平移动,上辊为从动辊可上下移动,移动方式有机械式和液压式,传动轴均采用万向连轴器连接。
2 设备控制工艺介绍三辊卷板机有机械式和液压式。
液压式三辊对称卷板机主要特点:该机上辊可以垂直升降,垂直升降的液压传动,通过液压缸内的液压油作用活塞杆而获得;下辊作旋转驱动,通过减速机输出齿轮啮合,为卷板提供扭矩,下辊下部有托辊,并可调节。
上辊呈鼓形状,提高制品的直线度,适用于超长规格各种截面形状罐。
液压式三辊卷板机完成卷板动作过程中全部采用液压传动,PLC 输出动作去控制液压气缸动作。
上辊位置反馈有编码器计数,计数的数值反映移动的位置。
并将相关数据传送到触摸屏上等。
上辊的位置精准度取决于编码器的反馈精度和动作气缸的速度。
3 系统设计液压式三辊卷板机系统一般由以PLC为核心的控制机柜、位置反馈传感器、动作执行机构、液压系统、动力传动装置和触摸屏组成,系统装置如图2-1所示。
三辊卷板机(论文)开题报告及相关问题
毕业设计开题报告题目名称:三辊卷板机院系名称:机电学院班级:机自 072学号:************学生姓名:***指导教师:安向东老师2008年03月零件中部凸起、纵向呈锥度和边缘不平整等几个问题。
所以要减小设备的震动;(5)加工效率是现代企业的追求之一,能够方便快捷的安装,拆卸工件,可以大大的提高效率,侧架和工件供给的速度也可以影响加工效率。
3.对课题要求及预期目标的可行性分析 (包括解决关键问题技术和所需条件两方面)目前我已经搜集到一定的参考资料,并且进行了一定的参观实习,课题的目标可行性还是很好的,关键就是怎么在这个课题上有所突破,做得更加好。
1、传动结构及各部件位置设计数据的搜集。
因为很多关于传动元件的内部结构数据都是厂家的技术核心,所以我们能看到的仅仅是外形安装定位尺寸,十分有限,所只能以现在所掌握的传动原理和设计基础自行设计;2、上辊承受弯曲扭矩的计算。
对于这个计算,我们要充分运用大二所学的材料力学进行分析计算解决;3、齿轮箱内部齿轮的设计。
这是一个相当熟悉的问题,可以充分运用大三所学的机械设计和机械设计手册进行分析解决;4、关于上辊侧架和上辊两端同步上升装置。
这是一个相当挑战性的问题,上升装置有丝杠和液压两种,他们的同步性和精度都是问题,上辊侧架的装卸也不太容易设计。
5、卷板机卷制筒状物时直边得消除方法。
(a)下辊之间,将钢板卷成曲率相同的弧形板,一次行程后再将上辊下压一定距离,又驱动下辊,使钢板进一步受到弯卷,将钢板弯卷成C型;在钢板下料时,除掉剩余直边不计,按筒体中径下料;卷制时卷制曲率半径应再加一个附加量200-500mm;卷成C字型后,两端形成剩余直边,再卷至两个剩余直边合口,把合口对齐进行焊接,形成一个平板,而后置于卷板机上,消除剩余直边。
(b)卷板之前,将钢板两端部在压力机上弯曲,或在卷板机上辊和下辊之间放上一定曲率的的托板,直接在卷板机上进行端部弯曲。
如图:说明:1.本报告前4项内容由承担毕业论文(设计)课题任务的学生独立撰写;2.本报告必须在第八学期开学两周内交指导教师审阅并提出修改意见;3.学生须在小组内进行报告,并进行讨论;4.本报告作为指导教师、毕业论文(设计)指导小组审查学生能否承担该毕业设计(论文)课题和是否按时完成进度的检查依据,并接受学校的抽查。
三辊卷板机操作规程
行业资料:________ 三辊卷板机操作规程单位:______________________部门:______________________日期:______年_____月_____日第1 页共5 页三辊卷板机操作规程1、工作前检查液压站储油箱油量应充足。
启动液压站检查油泵工作是否正常,阀门、管路是否有泄漏现象,压力应符合要求,打开放气阀将系统中的空气放掉。
2、不准卷制或校平有突起焊缝或有切割毛边的钢板。
3、在卷制或校平时,不允许钢板与工作辊有打滑现象。
4、在卷制圆锥形工件时,应使工件小圆一端压在立辊的导辊上。
5、用垫块校平钢板时,垫块硬度不得高于工作辊硬度。
6、在卷制或校平时,钢板应置于工作辊的中间部位,偏置时钢板的厚度应相应减小。
7、在卷制最大厚度的钢板时,首次压下卷制的成品半径与所需卷制的最小成品半径之比不得小于2。
其后应用于2~3次卷成所需的最小成品半径。
8、钢板弯卷出现搭头时不准工作,液压站油压不稳定或油温和轴承温度超过60C时不准工作。
9、工件仍在上下工作辊中夹持时,不得开动翻转机构来回转翻倒横梁。
只有当下工作辊停止转动,工件下降离开上工作辊时,才准开动翻转机构来回转翻倒横梁。
只有翻倒横梁与上脱轴承脱开后,才允许将上工作辊翘起。
10、取下工件时,应防止氧化皮和灰尘掉进翻倒横梁的轴承内。
11、除节流阀外其他液压阀门不准私自调正。
12、操作人与其他工作人员应密切配合。
要有专人指挥,指挥信号要清楚明瞭。
第 2 页共 5 页三辊研磨机安全操作规程1.操作者应熟悉本机的性能和结构,严格按使用说明书进行操作,禁止超负荷运行。
2.机器必须安装接地线,以免发生触电事故。
3.开机前应按规定的润滑点注油,保证润滑良好。
4.开机经空车运转10分钟,确认各系统有无故障,发现异常及时停机检查,排除故障。
5.开机时先打开冷却水,启动机器后调节辊筒位置,调节好后再将出料刀片顶上。
6.绝对避免三辊筒在无被研物的情况下挤压和磨擦。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Analytical and empirical modeling of top roller position for three-roller cylindrical bending of plates and its experimental verificationThe charact type of level eristic of level adjust below three rollers Rolling Machine in thisinvestigation is as ing the adjust,the end can be bendedwithout turn around and the whole process of plate coiling including entering、center adjusting、pre-bending、coiling、cylinder proofread can be completedcontinuously;due to whole hydraulic pressure driving protocol,the structure wassimplified,and speed and pressure was easily controlled in the process of platecoiling;The setup of the center adjusting and the equip of supporting,the preciseand quality of plate coiling was improved;owing to the simplified structure,theoperation and maintenance is easy to carried out.KeyWord: Bending Machine;the work rolls;mechanical analysis;the transmission system1、Reported research on the forming of cylindrical shells mostly discusses the modeling and analysis of the process. reported the geometrical analysis of the single pass elasto-plastic bending of beams on the three-roller pyramid benders by assuming triangular moment distribution between the rollers. Developed model for the bending force and bending moment was based on the contact point shift between the plate and top roll from the vertical centerline ofthe top roll. described closed loop shape control of three-roller bending process. The presented scheme accomplishes the shape control by measuring the loaded shape, the loaded moment and effective beam rigidity of the material in real time. discussed the distribution of curvature and bending moment in accordance with the displacement and rotation of the rolls by simulating the deformation of work piece with U-shaped cross-section in athree-roller bending process. They reported the relationship between the bending moment and the curvature of the work piece by elementary method, which was further used to build up a process model combining the geometries for three-roller bending process.2、Developed process model was further applied to the real time control system to obtained products with constant and continuously varying curvature.reported a process model for use in simulation of the manufacturing of cylindrical shells from the plates, which require sequential bending, by incorporating the prior bend history. They modeled the process with series of overlappingtwo-dimensional three point bends, where overlap includes the plastic zone from the previous bends. reported the mathematical model for determining the plate internal bending resistance at the top roll contact for the multi-pass four-roll thin plate bendingoperations along with the principle mechanisms of bending process for single pass and multi-pass bending. have reported a kinematics based symmetric approach to determine the region of the plate to be rolled, in order to form smoothly curved plates.developed the analytical model to estimate the top roller position as a function of desired radius of curvature, for multiple pass three-roller forming of cylinders, considering real material behavior and change ofYoung's modulus of elasticity under deformation and shows that the springback is larger than the springback calculated with constant E. Literature review reveals that only limited studies are available on the continuous three-roller bending of plates.3、With reported analytical models, it is difficult to find the top roller position explicitly as a function of the desired radius of curvature and hence it requires solving the set of equations by nonlinear programming. Use of the close loop shape control or adaptive control or CNC control system can improve the accuracy and the consistency of the process but acquisition and maintenance of such a system is costly and may not be affordable to the small scale to medium scale fabricators. Purpose of the present analysis is to develop the model for prediction of the top roller position as a function of the desired radius of curvature explicitly for cylindrical shell bending. Development of the model is based on analytical andempirical approach. Empirical model is developed based on the top roller position versus loaded radius of curvature plots, which is obtained geometrically for a set of data of center distance between bottom rollers and bottom roller radius.4、ConclusionDeveloped analytical and empirical models were verified with the experiments on three-roller cylindrical bending. Following important conclusions were derived out of the reported work:(1) Analytical model based on concept 3, simplifies the calculation procedure for the machine-setting parameters as it expresses the top roller position as an explicit function of desired radius of curvature.(2) Agreement of empirical results with that of the experiments and analytical results based on concept 3 proves the correctness of the procedure.(3) For the small to medium scale fabricators, where the volume of production does not permit the acquisition of automated close loop control systems, developed models can be proved to be simple tool for the first hand estimation of machine setting parameters for required product dimensions.(4) Consideration of effect of initial strain and change of modulus of elasticity during deformation on spring back, in analytical/empirical model will further improve the accuracy of prediction of top rollerposition.(5) Further, empirical model based on the experimental loaded curvature distribution between roller supports would consider the top roller-plate contact point shift and will lead to more accurate prediction of top roller position.通过实验确认的三辊卷板机上辊位置的分析和经验模型本文研究的水平对称式卷板机特点如下:采用水平下调式,即下辊可作水平移动,可实现不用调头便可预弯端头,使进料、对中、预弯、卷圆、矫圆整个卷板过程连续完成,利于提高生产效率,降低工人劳动强度;设置板料对中装置和支承辊装置,利于提高卷板精度和卷板质量;采用全液压驱动,使设备结构简化,便于卷板过程中的速度和压力控制,起停、换向灵活,运行平稳,操作方便;结构简单,便于操作和维护维修,符合现场技术工人的操作和维修水平,高效实用。