椭圆双曲线抛物线公式性质表

合集下载

高中数学有关圆-椭圆-双曲线-抛物线的详细知识点

高中数学有关圆-椭圆-双曲线-抛物线的详细知识点

<一>圆的方程(x-a)^2+(y-b)^2=r^2,圆心O(a,b),半径r。

(1)圆的一般式方程:x^2+y^2+Dx+Ey+F=0此方程可用于解决两圆的位置关系:配方化为标准方程:(x+D/2)^2.+(y+E/2)^2=(D^2+E^2-4F)/4其圆心坐标:(-D/2,-E/2)半径为r=√[(D^2+E^2-4F)]/2此方程满足为圆的方程的条件是:D^2+E^2-4F>0若不满足,则不可表示为圆的方程(2)点与圆的位置关系点P(X1,Y1) 与圆(x-a)^2+(y-b) ^2=r^2的位置关系:⑴当(x1-a)^2+(y1-b) ^2>r^2时,则点P在圆外。

⑵当(x1-a)^2+(y1-b) ^2=r^2时,则点P在圆上。

⑶当(x1-a)^2+(y1-b) ^2<r^2时,则点P在圆内。

圆与直线的位置关系判断平面内,直线Ax+By+C=0与圆x^2+y^2+Dx+Ey+F=0的位置关系判断一般方法是:1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的一元二次方程f(x)=0。

利用判别式b^2-4ac的符号可确定圆与直线的位置关系如下:如果b^2-4ac>0,则圆与直线有2交点,即圆与直线相交。

如果b^2-4ac=0,则圆与直线有1交点,即圆与直线相切。

如果b^2-4ac<0,则圆与直线有0交点,即圆与直线相离。

2.如果B=0即直线为Ax+C=0,即x=-C/A,它平行于y轴(或垂直于x 轴),将x^2+y^2+Dx+Ey+F=0化为 (x-a)^2+(y-b) ^2=r^2。

令y=b,求出此时的两个x值x1、x2,并且规定x1<x2,那么:当x=-C/A<x1或x=-C/A>x2时,直线与圆相离;当x1<x=-C/A<x2时,直线与圆相交;半径r,直径d在直角坐标系中,圆的解析式为:(x-a)^2+(y-b)^2=r^2;x^2+y^2+Dx+Ey+F=0=> (x+D/2)^2+(y+E/2)^2=(D^2+E^2-4F)/4=> 圆心坐标为(-D/2,-E/2)其实只要保证X方Y方前系数都是1就可以直接判断出圆心坐标为(-D/2,-E/2)这可以作为一个结论运用的且r=根号(圆心坐标的平方和-F)<二>椭圆的标准方程椭圆的标准方程分两种情况:当焦点在x轴时,椭圆的标准方程是:x^2/a^2+y^2/b^2=1,(a>b>0);当焦点在y轴时,椭圆的标准方程是:y^2/a^2+x^2/b^2=1,(a>b>0);其中a>0,b>0。

圆椭圆双曲线抛物线知识点汇总

圆椭圆双曲线抛物线知识点汇总

圆椭圆双曲线抛物线知识点汇总一、圆椭圆双曲线抛物线的定义1. 圆:圆是平面上到定点距离相等的所有点的集合。

圆由圆心和半径唯一确定。

2. 椭圆:椭圆是平面上到两个定点的距离之和为常数的所有点的集合。

椭圆由两个焦点和两个半轴唯一确定。

3. 双曲线:双曲线是平面上到两个定点的距离之差为常数的所有点的集合。

双曲线由两个焦点和两个实轴唯一确定。

4. 抛物线:抛物线是平面上到定点距离等于到定直线的距离的所有点的集合。

抛物线由焦点和直线唯一确定。

二、圆椭圆双曲线抛物线的方程1. 圆:圆的标准方程为(x-a)² + (y-b)² = r²,其中圆心为(a, b),半径为r。

2. 椭圆:椭圆的标准方程为x²/a² + y²/b² = 1,其中a和b分别为x轴和y轴上的半轴长。

3. 双曲线:双曲线的标准方程为x²/a² - y²/b² = 1或者y²/a² - x²/b² = 1,取决于焦点的位置。

4. 抛物线:抛物线的标准方程为y² = 4ax或者x² = 4ay,取决于抛物线开口的方向。

三、圆椭圆双曲线抛物线的性质1. 圆:圆的直径是圆上任意两点之间的最大距离,且所有直径相等。

2. 椭圆:椭圆的离心率介于0和1之间,离心率越接近0,椭圆越接近于圆。

3. 双曲线:双曲线分为两支,每一支的焦点到定点的距离之差相等。

4. 抛物线:抛物线的焦点在抛物线上方,开口方向取决于系数a的正负号。

四、圆椭圆双曲线抛物线的应用1. 圆:在几何中常常与角度和三角函数结合,用于描述正弦和余弦函数的周期性。

2. 椭圆:在天体力学中用于描述行星轨道的形状,以及通信中的极化椭圆。

3. 双曲线:在光学和电磁学中用于描述折射和反射现象。

4. 抛物线:在物理学中用于描述自由落体运动和抛物线运动。

2022年高考复习 椭圆、双曲线、抛物线的方程与性质

2022年高考复习  椭圆、双曲线、抛物线的方程与性质
抛物线y2=8x及圆(x-2)2+y2=16的实线部分上运动,且AB总是平行于x
轴,则△FAB的周长的取值范围为



线





(8,12);
抛物线的准线l:直线x=-2, 焦点F(2,0),
由抛物线定义可得|AF|=xA+2,
圆(x-2)2+y2=16的圆心为(2,0),半径为4,
所以△FAB的周长=|AF|+|AB|+|BF|=xA+2+(xB-xA)+4=6+xB,
2
);有相同离心率的椭圆方程为
=1(k>-b
+
2
2
a k b k
y 2 x2
x2 y2
+ 2 =λ1(λ1>0,焦点在 x 轴上)或 2 + 2 =λ2(λ2>0,
2
b
a
a
b
焦点在 y 轴上).
核心考点
(5)等轴双曲线
实轴和虚轴等长的双曲线叫做等轴双曲线,
常用
结论
其方程为 x2-y2=λ(λ≠0),离心率 e= 2 ,
2022
高考复习
椭圆、双曲线、抛物线的方程与性质


核心
考点
>>
常考
题型
>>
跟踪
检测
核心考点
1.圆锥曲线的定义
(1)椭圆: |MF1|+|MF2|=2a(2a>|F1F2|);
(2)双曲线: ||MF1|-|MF2||=2a(2a<|F1F2|);
(3)抛物线: |MF|=d(d为M点到准线的距离且定点M在准线外).

椭圆双曲线抛物线知识点汇总

椭圆双曲线抛物线知识点汇总

椭圆双曲线抛物线知识点汇总一、椭圆椭圆是平面内到定点 F1、F2 的距离之和等于常数(大于|F1F2|)的动点 P 的轨迹,F1、F2 称为椭圆的焦点,两焦点的距离|F1F2|称为椭圆的焦距。

1、椭圆的标准方程焦点在 x 轴上:\(\frac{x^2}{a^2} +\frac{y^2}{b^2} = 1\)(\(a > b > 0\)),其中\(a\)为长半轴长,\(b\)为短半轴长,\(c\)为半焦距,满足\(c^2 = a^2 b^2\)。

焦点在 y 轴上:\(\frac{y^2}{a^2} +\frac{x^2}{b^2} = 1\)(\(a > b > 0\))。

2、椭圆的性质范围:对于焦点在 x 轴上的椭圆,\(a \leq x \leq a\),\(b\leq y \leq b\);对于焦点在 y 轴上的椭圆,\(b \leq x \leq b\),\(a \leq y \leq a\)。

对称性:椭圆关于 x 轴、y 轴和原点对称。

顶点:焦点在 x 轴上时,顶点坐标为\((\pm a, 0)\),\((0, \pm b)\);焦点在 y 轴上时,顶点坐标为\((0, \pm a)\),\((\pm b, 0)\)。

离心率:椭圆的离心率\(e =\frac{c}{a}\)(\(0 < e <1\)),它反映了椭圆的扁平程度,\(e\)越接近0,椭圆越接近圆;\(e\)越接近 1,椭圆越扁。

3、椭圆的参数方程焦点在 x 轴上:\(\begin{cases}x = a\cos\theta \\ y =b\sin\theta\end{cases}\)(\(\theta\)为参数)焦点在 y 轴上:\(\begin{cases}x = b\cos\theta \\ y =a\sin\theta\end{cases}\)(\(\theta\)为参数)4、椭圆中的焦点三角形设 P 为椭圆上一点,F1、F2 为焦点,\(\angle F1PF2 =\theta\),则三角形 PF1F2 的面积为\(S = b^2\tan\frac{\theta}{2}\)。

一轮复习专题48 椭圆、双曲线、抛物线(知识梳理)

一轮复习专题48 椭圆、双曲线、抛物线(知识梳理)

专题48椭圆、双曲线、抛物线(知识梳理)一、椭圆(一)椭圆的基本定义和方程1、椭圆的定义:设1F 、2F 是定点,P 为动点,则满足a PF PF 2||||21=+(a 为定值且||221F F a >)的动点P 的轨迹称为椭圆,符号表示:a PF PF 2||||21=+(||221F F a >)。

注意:当||221F F a =时为线段21F F ,当||221F F a <时无轨迹。

2、椭圆的方程及图像性质定义方程a y c x y c x 2)()(2222=+-+++ac y x c y x 2)()(2222=-++++标准方程12222=+b y a x (0>>b a )12222=+b x a y (0>>b a )一般方程122=+ny mx (0>m ,0>n ,n m ≠)推导方程22222b x ab y +-=(0>>b a )22222a x ba x +-=(0>>b a )范围][a a x ,-∈,][b b y ,-∈][b b x ,-∈,][a a y ,-∈图形焦点坐标焦点在x 轴上)0(1,c F -,)0(2,c F 焦点在y 轴上)0(1c F -,,)0(2c F ,对称性对称轴:x 轴、y 轴对称中心:原点(这个对称中心称为椭圆的中心)顶点)0(1,a A -、)0(2,a A 、)0(1b B -,、)0(2b B ,)0(1a A ,、)0(2a A -,、)0(1,b B 、)0(2,b B -轴长轴21A A 的长为:a 2(a 为长半轴)短轴21B B 的长为:b 2(b 为短半轴)离心率椭圆的焦距与长轴长度的比叫做椭圆的离心率ace =,)10(,∈e ,e 越大越扁,e 越小越圆焦距:cF F 221=222c b a +=3、椭圆12222=+by a x (0>>b a )的图像中线段的几何特征(如图):(1)a PF PF 2||||21=+,e PM PF PM PF ==2211,c a PM PM 2212||||=+;(2)a BF BF ==||||21,c OF OF ==||||21,2221||||b a B A B A +=+;(3)c a F A F A -==||||2211,c a F A F A +==||||1221。

椭圆,双曲线,抛物线性质

椭圆,双曲线,抛物线性质

1、范围:焦点在x轴上-a≤x≤a -b≤y≤b;焦点在y轴上-b≤x≤b -a≤y≤a[1]2、对称性:关于X轴对称,Y轴对称,关于原点中心对称。

3、顶点:(a,0)(-a,0)(0,b)(0,-b)4、离心率:e=c/a 或e=√1-b^2/a^25、离心率范围 0<e<16、离心率越大椭圆就越扁,越小则越接近于圆7.焦点(当中心为原点时)(-c,0),(c,0)或(0,c),(0,-c)切线法线定理1:设F1、F2为椭圆C的两个焦点,P为C上任意一点。

若直线AB切椭圆C于点P,且A和B在直线上位于P 的两侧,则∠APF1=∠BPF2。

定理2:设F1、F2为椭圆C的两个焦点,P为C上任意一点。

若直线AB为C在P点的法线,则AB平分∠F1PF2。

上述两定理的证明可以查看参考资料。

方程标准方程高中课本在平面直角坐标系中,用方程描述了椭圆,椭圆的标准方程中的“标准”指的是中心在原点,对称轴为坐标轴。

椭圆的标准方程有两种,取决于焦点所在的坐标轴:1)焦点在X轴时,标准方程为:x^2/a^2+y^2/b^2=1 (a>b>0)2)焦点在Y轴时,标准方程为:y^2/a^2+x^2/b^2=1 (a>b>0)其中a>0,b>0。

a、b中较大者为椭圆长半轴长,较短者为短半轴长(椭圆有两条对称轴,对称轴被椭圆所截,有两条线段,它们的一半分别叫椭圆的长半轴和短半轴或半长轴和半短轴)当a>b时,焦点在x轴上,焦距为2*(a^2-b^2)^0.5,焦距与长、短半轴的关系:b^2=a^2-c^2,准线方程是x=a^2/c和x=-a^2/c ,c为椭圆的半焦距。

又及:如果中心在原点,但焦点的位置不明确在X轴或Y轴时,方程可设为mx^2+ny^2=1(m>0,n>0,m≠n)。

即标准方程的统一形式。

椭圆的面积是πab。

椭圆可以看作圆在某方向上的拉伸,它的参数方程是:x=acosθ,y=bsinθ标准形式的椭圆在(x0,y0)点的切线就是:xx0/a^2+yy0/b^2=1。

椭圆,双曲线,抛物线性质

椭圆,双曲线,抛物线性质

椭圆标准方程及其性质知识点大全(一)椭圆的定义及椭圆的标准方程:椭圆第一定义:平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ , 这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距. 注意:①若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ; ②若)(2121F F PF PF <+,则动点P 的轨迹无图形(二)椭圆的简单几何性:标准方程是指中心在原点,坐标轴为对称轴的标准位置的椭圆方程。

焦点的位置 焦点在x 轴上焦点在y 轴上图形标准方程()222210x y a b a b +=>> ()222210y x a b a b+=>> 第一定义 到两定点21F F 、的距离之和等于常数2a ,即21||||2MF MF a +=(212||a F F >) 第二定义 与一定点的距离和到一定直线的距离之比为常数e ,即(01)MFe e d=<< 范围a x a -≤≤且b y b -≤≤ b x b -≤≤且a y a -≤≤顶点()1,0a A -、()2,0a A()10,b B -、()20,b B()10,a A -、()20,a A()1,0b B -、()2,0b B轴长 长轴的长2a = 短轴的长2b = 对称性 关于x 轴、y 轴对称,关于原点中心对称焦点 ()1,0F c -、()2,0F c ()10,F c -、()20,F c焦距222122()F F c c a b ==-离心率22222221(01)c c a b b e e a a a a-====-<<准线方程2a x c=±2a y c=±焦半径0,0()M x y左焦半径:10MF a ex =+ 右焦半径:20MF a ex =-下焦半径:10MF a ey =+ 上焦半径:20MF a ey =-焦点三角形面积12212tan()2MF F S b F MF θθ∆==∠通径过焦点且垂直于长轴的弦叫通径:ab HM 22=(焦点)弦长公式1,12,2(),()A x y B x y ,2122122124)(11x x x x k x x k AB -++=-+=【说明】:方程中的两个参数a 与b ,确定椭圆的形状和大小,是椭圆的定型条件,焦点F ,21,F F 的位置(焦点跟着分母大的走),是椭圆的定位条件,它决定椭圆标准方程的类型,常数a ,b ,c 都大于零, 其中a 最大且a 2=b 2+c2(即a,b,c 为直角三角形的三边,a 为斜边)1.方程C By Ax =+22表示椭圆的充要条件是:ABC ≠0,且A ,B ,C 同号,A ≠B 。

椭圆、双曲线与抛物线的方程及几何性质

椭圆、双曲线与抛物线的方程及几何性质

考点26 椭圆、双曲线与抛物线的方程及几何性质1.基础知识1.椭圆的概念(1)文字形式:在平面内到两定点F 1、F 2的距离的和等于常数(大于|F 1F 2|)的点的轨迹(或集合)叫椭圆.这两定点叫做椭圆的焦点 ,两焦点间的距离叫做焦距. (2)代数式形式:集合1212P={M||MF |+|MF |=2a |FF |=2c.} ①若a c >,则集合P 为椭圆;②若a c =,则集合P 为线段;③若a c <,则集合P 为空集. 2.双曲线的定义满足以下三个条件的点的轨迹是双曲线(1)在平面内;(2)动点到两定点的距离的差的绝对值为一定值;(3)这一定值一定要小于两定点的距离. 3.抛物线的定义(1)平面内与一个定点F 和一条定直线l (F ∉l )的距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线.(2)其数学表达式:|MF |=d (其中d 为点M 到准线的距离)4.重要结论 椭圆:22221x y a b+=(a >b >0)1、24ABF C a ∆=;2、椭圆22221x y a b+=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(F c 3、焦点12PF F ∆中,12F PF θ∠=, (1)1222sin tan 21cos PF F S b bθθθ∆==+; (2)12max ()PF F S bc ∆=;(3)当点P 位于短轴顶点处时,4、焦点弦中, (1) 通径最短,22b AB a=;(2)2112aAF BF b +=. 5、AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M ,(00x 2OM AB a 6、(1)与椭圆22221x y a b +=(a>b>0)共焦点的椭圆方程可设为:22221x y a k b k+=++; (2)中心在原点,坐标轴为对称轴的椭圆方程可设为221(0,0,)mx ny m n m n +=>>≠.双曲线22221x y a b-=(a >0,b >o )1、等轴双曲线 (1)22a b =;(2)渐近线为 y x =±;(3)离心率e =2、双曲线22221x y a b-=(a >0,b >o )的焦半径公式:(1(,0)F c - , 2(,0)F c当00(,)M x y 在右支上时,10||MF ex a =+,20||MF ex a =-; 当00(,)M x y 在左支上时,10||MF ex a =-+,20||MF ex a =--. 3、焦点到渐近线的距离为b .4、焦点12PF F ∆中,12F PF θ∠=,12221cos cot2sin PF F S b b θθθ∆+==;5、AB 是双曲线22221x y a b-=(a >0,b >0)的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b K K a ⋅=,即0202y a x b K AB=. 6、(1)与22221x y a b -=共渐近线的双曲线方程22ax -22y b λ=(0λ≠).(2)与22221x y a b-=有相同焦点的双曲线方程22x a k --221y b=(2k a <且2k b ≠-).抛物线22(0)y p x p =>,11(,)A x y ,22(,)B x y1、212y y p =-,2124p x x =;2、焦半径公式:12pAF x =+;3、焦点弦长公式: (1)121222p pAB x x x x p =+++=++(2)min 2AB p =(即焦点弦中,通径最短).(3)AF BF p +=; (4)以AB 为直径的圆与准线相切;(5)以AF 或BF 为直径的圆与y 轴相切;【考点分类】考点一 椭圆的标准方程及其几何性质例1.【2015浙江文15】椭圆22221x y a b +=(0a b >>)的右焦点()F ,0c 关于直线by x c=的对称点Q 在椭圆上,则椭圆的离心率是 .例2.【2015江苏18】如图,在平面直角坐标系xOy 中,已知椭圆()222210x y a b a b +=>>,右焦点F 到左准线2:a l x c=-的距离为3. (1)求椭圆的标准方程;(2)过F 的直线与椭圆交于A ,B 两点,线段AB 的垂直平分线分别交直线l 和A B 于点P ,C ,若PC =2AB ,求直线AB 的方程.【方法总结】1.椭圆的几何性质常涉及一些不等关系,例如对椭圆2222=1x y a b+,有-a ≤x ≤a ,-b ≤y ≤b,0<e <1等,在求与椭圆有关的一些量的范围,或者求这些量的最大值或最小值时,经常用到这些不等关系.2.求解与椭圆几何性质有关的问题时要结合图形进行分析,即使不画出图形,思考时也要联想到图形.当涉及到顶点、焦点、长轴、短轴等椭圆的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.3.求椭圆离心率问题,应先将e 用有关的一些量表示出来,再利用其中的一些关系构造出关于e 的等式或不等式,从而求出e 的值或范围.离心率e 与a 、b 的关系:22222222e =1-c a b b ba a a a-==⇔= 巩固练习1. 【2015广东文8】已知椭圆222125x y m+=(0m >)的左焦点为()1F 4,0-,则m =( ) A .9 B .4 C .3 D .22.已知椭圆2222:1(0)x y C a b a b+=>>的左焦点为,F C 与过原点的直线相交于,A B 两点,4,.10,6,cos ABF ,5AF BF AB AF C e ==∠=连接若则的离心率= .3.三个顶点均在椭圆上的三角形称为椭圆的内接三角形......已知点A 是椭圆的一个短轴端点,如果以A .为直.. 角顶点...的椭圆内接等腰直角三角形有且仅有三个,则椭圆的离心率的取值范围是( )(A ) (B ) (C ) (D )4.【2015天津文19】已知椭圆22221(a b 0)x y a b+=>>的上顶点为B ,左焦点为F ,(I )求直线BF 的斜率;(II )设直线BF 与椭圆交于点P (P 异于点B ),过点B 且垂直于BP 的直线与椭圆交于点Q (Q 异于点B )直线PQ 与y 轴交于点M ,||=||PM MQ l .(i )求l 的值;(ii )若||sin PM BQP Ð,求椭圆的方程.5.【2015四川文20】如图,椭圆E :22221x y a b+=(a >b >0)的离心率是2,点P (0,1)在短轴CD 上,且PC PD⋅=-1.(Ⅰ)求椭圆E 的方程;(Ⅱ)设O 为坐标原点,过点P 的动直线与椭圆交于A 、B 两点.是否存在常数λ,使得OA OB PA PB λ⋅+⋅为定值?若存在,求λ的值;若不存在,请说明理由.考点二 双曲线的标准方程及其几何性质 例3.【2015湖北文9】将离心率为1e 的双曲线1C 的实半轴长a 和虚半轴长()b a b ≠同时增加(0)m m >个单位长度,得到离心率为2e 的双曲线2C ,则( ) A .对任意的,a b ,12e e > B .当a b >时,12e e >;当a b <时,12e e < C .对任意的,a b ,12e e <D .当a b >时,12e e <;当a b <时,12e e >【方法总结】1.双曲线方程的求法(1)若不能明确焦点在哪条坐标轴上,设双曲线方程为mx 2+ny 2=1(mn <0);(2)与双曲线2222=1x y a b -有共同渐近线的双曲线方程可设为2222=x y a bλλ-≠(0).(3)若已知渐近线方程为mx +ny =0,则双曲线方程可设为m 2x 2-n 2y 2=λ(λ≠0).2.已知渐近线方程y =mx ,求离心率时若焦点不确定时,m =b a (m >0)或m =ba,故离心率有两种可能. 巩固练习1. 【2015天津文5】已知双曲线22221(0,0)x y a b a b-=>>的一个焦点为(2,0)F ,且双曲线的渐近线与圆()222y 3x -+=相切,则双曲线的方程为( )(A)221913x y -= (B) 221139x y -= (C) 2213x y -= (D) 2213y x -= 2. 如图,21,F F 是椭圆14:221=+y x C 与双曲线2C 的公共焦点,B A ,分别是1C ,2C 在第二、四象限的公共点.若四边形21BF AF 为矩形,则2C 的离心率是( )A .2 B .3 C .23 D .26 3. 已知直线x=2与双曲线22:14x C y -=的渐近线交于E 1、E 2两点,记2211,e OE e OE ==,任取双曲线C 上的点P ,若),(21R b a be ae OP ∈+=,则( )A .1022<+<b aB .21022<+<b a C .122≥+b a D .2122≥+b a 4.【2015山东文15】过双曲线C :22221x y a a-=0,0a b >>()的右焦点作一条与其渐近线平行的直线,交C 于点P .若点P 的横坐标为2a ,则C 的离心率为 .5.【2015江苏12】在平面直角坐标系xOy 中,P 为双曲线122=-y x 右支上的一个动点.若点P 到直线01=+-y x 的距离大于c 恒成立,则是实数c 的最大值为 . 考点三 抛物线的标准方程及其几何性质例4.【2015新课标1文5】已知椭圆E 的中心为坐标原点,离心率为12,E 的右焦点与抛物线2:8C y x =的焦点重合,,A B 是C 的准线与E 的两个交点,则AB = ( ) (A ) 3 (B )6 (C )9 (D )12例5.【2015福建文19】已知点F 为抛物线2:2(0)E y px p =>的焦点,点(2,)A m 在抛物线E 上,且3AF =. (Ⅰ)求抛物线E 的方程;(Ⅱ)已知点(1,0)G -,延长AF 交抛物线E 于点B ,证明:以点F 为圆心且与直线GA 相切的圆,必与直线GB 相切.【方法总结】1.抛物线上点到准线距离转化到点到焦点距离起到化繁为简的作用.注意定义在解题中的应用.研究抛物线的几何性质时,一是注意定义转化应用;二是要结合图形分析,同时注意平面几何性质的应用. 巩固练习1.已知F 是抛物线2yx =的焦点,,A B 是该抛物线上的两点.若线段AB 的中点到y 轴的距离为54,则||||AF BF += ( ) A .2 B .52C .3D .4 2.已知F 是抛物线2y x =的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,2OA OB ⋅=(其中O 为坐标原点),则ABO ∆面积最小值是( ) A .2 B .8 C .8D 3.抛物线22y px =(0>p )的焦点为F ,已知点A ,B 为抛物线上的两个动点,且满足120AFB ∠=︒.过弦AB 的中点M 作抛物线准线的垂线MN ,垂足为N ,则ABMN 的最大值为( )A B .1 C D .2 4.已知点A(3,4),F 是抛物线y 2=8x 的焦点,M 是抛物线上的动点,当|AM|+|MF|最小时,M 点坐标是( )A .(0,0)B .)C .(2,4)D .(3,-)5.已知圆P :x 2+y 2=4y 及抛物线S :x 2=8y ,过圆心P 作直线l ,此直线与上述两曲线的四个交点,自左向右顺次记为A ,B ,C ,D ,如果线段AB ,BC ,CD 的长按此顺序构成一个等差数列,则直线l 的斜率为( ) A .22±B .22 C .2± D .2 6. 【2015新课标1,理20】在直角坐标系xoy 中,曲线C :y =24x 与直线y kx a =+(a >0)交与M ,N 两点,(Ⅰ)当k =0时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由.。

圆锥曲线(椭圆-双曲线-抛物线)的定义、方程和性质知识总结

圆锥曲线(椭圆-双曲线-抛物线)的定义、方程和性质知识总结

椭圆的定义、性质及标准方程1. 椭圆的定义:⑴第一定义:平面内与两个定点12F F 、的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆。

这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。

⑵第二定义:动点M 到定点F 的距离和它到定直线l 的距离之比等于常数)10(<<e e ,则动点M 的轨迹叫做椭圆。

定点F 是椭圆的焦点,定直线l 叫做椭圆的准线,常数e 叫做椭圆的离心率。

说明:①若常数2a 等于2c ,则动点轨迹是线段12F F 。

②若常数2a 小于2c ,则动点轨迹不存在。

2.3. 焦半径公式:椭圆上的任一点和焦点连结的线段长称为焦半径。

焦半径公式:椭圆焦点在x 轴上时,设12F F 、分别是椭圆的左、右焦点,()00P x y ,是椭圆上任一点,则10PF a ex =+,20PF a ex =-。

推导过程:由第二定义得11PF e d =(1d 为点P 到左准线的距离), 则211000a PF ed e x ex a a ex c ⎛⎫==+=+=+ ⎪⎝⎭;同理得20PF a ex =-。

简记为:左“+”右“-”。

由此可见,过焦点的弦的弦长是一个仅与它的中点的横坐标有关的数。

22221x y a b +=;若焦点在y 轴上,则为22221y x a b+=。

有时为了运算方便,设),0(122n m m ny mx ≠>=+。

双曲线的定义、方程和性质知识要点:1. 定义(1)第一定义:平面内到两定点F 1、F 2的距离之差的绝对值等于定长2a (小于|F 1F 2|)的点的轨迹叫双曲线。

说明:①||PF 1|-|PF 2||=2a (2a <|F 1F 2|)是双曲线;若2a=|F 1F 2|,轨迹是以F 1、F 2为端点的射线;2a >|F 1F 2|时无轨迹。

②设M 是双曲线上任意一点,若M 点在双曲线右边一支上,则|MF 1|>|MF 2|,|MF 1|-|MF 2|=2a ;若M 在双曲线的左支上,则|MF 1|<|MF 2|,|MF 1|-|MF 2|=-2a ,故|MF 1|-|MF 2|=±2a ,这是与椭圆不同的地方。

圆锥曲线(椭圆,双曲线,抛物线)的定义、方程和性质知识总结

圆锥曲线(椭圆,双曲线,抛物线)的定义、方程和性质知识总结

椭圆的定义、性质及标准方程1. 椭圆的定义:⑴第一定义:平面内与两个定点12F F 、的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆。

这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。

⑵第二定义:动点M 到定点F 的距离和它到定直线l 的距离之比等于常数)10(<<e e ,则动点M 的轨迹叫做椭圆。

定点F 是椭圆的焦点,定直线l 叫做椭圆的准线,常数e 叫做椭圆的离心率。

说明:①若常数2a 等于2c ,则动点轨迹是线段12F F 。

②若常数2a 小于2c ,则动点轨迹不存在。

2. 椭圆的标准方程、图形及几何性质:标准方程)0(12222>>=+b a by a x 中心在原点,焦点在x 轴上)0(12222>>=+b a b x a y 中心在原点,焦点在y 轴上图形范围 x a y b ≤≤,x b y a ≤≤,顶点()()()()12120000A a A a B b B b --,、,,、,()()()()12120000A a A a B b B b --,、,,、,对称轴 x 轴、y 轴;长轴长2a ,短轴长2b ;焦点在长轴上x 轴、y 轴;长轴长2a ,短轴长2b ;焦点在长轴上焦点 ()()1200F c F c -,、, ()()1200F c F c -,、, 焦距 )0(221>=c c F F)0(221>=c c F F离心率 )10(<<=e ace )10(<<=e ace 准线2a x c=±2a y c=±参数方程与普通方程22221x y a b +=的参数方程为 ()cos sin x a y b θθθ=⎧⎨=⎩为参数 22221y x a b +=的参数方程为 ()cos sin y a x b θθθ=⎧⎨=⎩为参数3. 焦半径公式:椭圆上的任一点和焦点连结的线段长称为焦半径。

圆锥曲线公式大全

圆锥曲线公式大全

圆锥曲线公式大全1、椭圆的定义、椭圆的标准方程、椭圆的性质2、判断椭圆是 x 型还是y 型只要看2x 对应的分母大还是2y 对应的分母大,若2x 对应的分母大则x 型,若2y 对应的分母大则y 型.3、求椭圆方程一般先判定椭圆是x 型还是y 型,若为x 型则可设为12222=+b y a x ,若为y型则可设为12222=+bx a y ,若不知什么型且椭圆过两点,则设为稀里糊涂型:221mx ny +=4、双曲线的定义、双曲线的标准方程、椭圆的性质12222=-b y a x F 1(-c, 0 ), F 2( c, 0 )2、判断双曲线是 x 型还是y 型只要看2x 前的符号是正还是2y 前的符号是正,若2x 前的符号为正则x 型,若2y 前的符号为正则y 型,同样的,哪个分母前的符号为正,则哪个分母就为2a3、求双曲线方程一般先判定双曲线是x 型还是y 型,若为x 型则可设为12222=-b y a x ,若为y 型则可设为12222=-bx a y ,若不知什么型且双曲线过两点,则设为稀里糊涂型:221(0)mx ny mn -=<6、若已知双曲线一点坐标和渐近线方程y mx =,则可设双曲线方程为222(0)y m x λλ-=≠,而后把点坐标代入求解7、椭圆、双曲线、抛物线与直线:l y kx b =+的弦长公式:AB == 8、椭圆、双曲线、抛物线与直线问题出现弦的中点往往考虑用点差法 9、椭圆、双曲线、抛物线与直线问题的解题步骤:(1)假化成整(把分式型的椭圆方程化为整式型的椭圆方程),联立消y 或x (2)求出判别式,并设点使用伟大定理 (3)使用弦长公式1、抛物线的定义:平面内有一定点F 及一定直线l (F 不在l 上)P 点是该平面内一动点,当且仅当点P 到F 的距离与点P 到直线l 距离相等时,那么P 的轨迹是以F 为焦点,l 为准线的一条抛物线.————见距离想定义!!!2、(1)抛物线标准方程左边一定是x 或y 的平方(系数为1),右边一定是关于x 和y 的一次项,如果抛物线方程不标准,立即化为标准方程!(2)抛物线的一次项为x 即为x 型,一次项为y 即为y 型!(3)抛物线的焦点坐标为一次项系数的四分之一,准线与焦点坐标互为相反数!一次项为x ,则准线为”x=多少”, 一次项为y ,则准线为”y=多少”!(4)抛物线的开口看一次项的符号,一次项为正,则开口朝着正半轴,一次项为负,则开口朝着负半轴!(5)抛物线的题目强烈建议画图,有图有真相,无图无真相!3、求抛物线方程,如果只知x 型,则设它为2y ax = (0)a ≠,a>o,开口朝右;a<0,开口朝左;如果只知y 型,则设它为2(0)x ay a =≠,a>o,开口朝上;a<0,开口朝下。

抛物线椭圆双曲线定义

抛物线椭圆双曲线定义

抛物线椭圆双曲线定义抛物线平面内,到一个定点F和一条定直线l距离相等的点的轨迹(或集合)称之为抛物线.另外,F称为"抛物线的焦点",l称为"抛物线的准线".定义焦点到抛物线的准线的距离为"焦准距",用p表示.p>0.以平行于地面的方向将切割平面插入一个圆锥,可得一个圆,如果倾斜这个平面直至与其一边平行,就可以做一条抛物线。

2.抛物线的标准方程右开口抛物线:y^2=2px左开口抛物线:y^2=-2px上开口抛物线:y=x^2/2p下开口抛物线:y=-x^2/2p3.抛物线相关参数(对于向右开口的抛物线)离心率:e=1焦点:(p/2,0)准线方程l:x=-p/2顶点:(0,0)4.它的解析式求法:三点代入法5.抛物线的光学性质:经过焦点的光线经抛物线反射后的光线平行抛物线的对称轴.抛物线:y = ax* + bx + c就是y等于ax 的平方加上 bx再加上 ca > 0时开口向上a < 0时开口向下c = 0时抛物线经过原点b = 0时抛物线对称轴为y轴还有顶点式y = a(x-h)* + k就是y等于a乘以(x-h)的平方+kh是顶点坐标的xk是顶点坐标的y一般用于求最大值与最小值抛物线标准方程:y^2=2px它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2 由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2pyx^2=-2py椭圆目录?定义?标准方程?公式?相关性质?历史定义椭圆是一种圆锥曲线(也有人叫圆锥截线的),现在高中教材上有两种定义:1、平面上到两点距离之和为定值的点的集合(该定值大于两点间距离)(这两个定点也称为椭圆的焦点,焦点之间的距离叫做焦距);2、平面上到定点距离与到定直线间距离之比为常数的点的集合(定点不在定直线上,该常数为小于1的正数)(该定点为椭圆的焦点,该直线称为椭圆的准线)。

高中数学椭圆双曲线抛物线的标准方程与几何性质知识点

高中数学椭圆双曲线抛物线的标准方程与几何性质知识点

高中数学椭圆双曲线抛物线的标准方程与几何性质知识点高中数学椭圆双曲线抛物线的标准方程与几何性质知识点知识点是知识、理论、道理、思想等的相对独立的最小单元,以下是店铺为大家整理的高中数学椭圆双曲线抛物线的标准方程与几何性质知识点,希望对你有所帮助。

椭圆、双曲线、抛物线的标准方程与几何性质椭圆双曲线抛物线定义:1、到两定点F1,F2的距离之和为定值2a(2a|F1F2|)的点的轨迹2、到两定点F1,F2的距离之差的绝对值为定值2a(0|F1F2|)的点的轨迹3、与定点和直线的距离之比为定值e的点的'轨迹.(02.与定点和直线的距离之比为定值e的点的轨迹.(e1)与定点和直线的距离相等的点的轨迹.图形方程标准方程(0,b0)y2=2px参数方程(t为参数)范围─a£x£a,─b£y£b|x| 3 a,y Rx30中心原点O(0,0)原点O(0,0)顶点(a,0), (─a,0), (0,b) , (0,─b)(a,0), (─a,0)(0,0)对称轴x轴,y轴;长轴长2a,短轴长2bx轴,y轴;实轴长2a, 虚轴长2b.x轴焦点F1(c,0), F2(─c,0)F1(c,0), F2(─c,0)焦距2c (c=)2c (c=)离心率e=1准线x=x=渐近线y=x焦半径通径2p焦参数P数学椭圆知识点双曲线⑴集合与简易逻辑:集合的概念与运算、简易逻辑、充要条件⑵函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数与指数函数、对数与对数函数、函数的应用⑶数列:数列的有关概念、等差数列、等比数列、数列求和、数列的应用⑷三角函数:有关概念、同角关系与诱导公式、和、差、倍、半公式、求值、化简、证明、三角函数的图象与性质、三角函数的应用⑸平面向量:有关概念与初等运算、坐标运算、数量积及其应用⑹不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式、不等式的应用⑺直线和圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系⑻圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用⑽排列、组合和概率:排列、组合应用题、二项式定理及其应用⑾概率与统计:概率、分布列、期望、方差、抽样、正态分布⑿导数:导数的概念、求导、导数的应用⒀复数:复数的概念与运算正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圆半径余弦定理b2=a2+c2—2accosB注:角B是边a和边c的夹角圆的标准方程(x—a)2+(y—b)2=r2注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2—4F>0抛物线标准方程y2=2pxy2=—2p_2=2pyx2=—2py直棱柱侧面积S=c_h斜棱柱侧面积S=c'_h正棱锥侧面积S=1/2c_h'正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi_r2 圆柱侧面积S=c_h=2pi_h圆锥侧面积S=1/2_c_l=pi_r_l弧长公式l=a_ra是圆心角的弧度数r>0扇形面积公式s=1/2_l_r 锥体体积公式V=1/3_S_H圆锥体体积公式V=1/3_pi_r2h斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=s_h圆柱体V=p_r2h乘法与因式分a2—b2=(a+b)(a—b)a3+b3=(a+b)(a2—ab+b2)a3—b3=(a—b(a2+ab+b2)三角不等式|a+b|≤|a|+|b||a—b|≤|a|+|b||a|≤b<=>—b≤a≤b|a—b|≥|a|—|b|—|a|≤a≤|a|一元二次方程的解—b+√(b2—4ac)/2a—b—√(b2—4ac)/2a根与系数的关系X1+X2=—b/aX1_X2=c/a注:韦达定理判别式b2—4ac=0注:方程有两个相等的实根b2—4ac>0注:方程有两个不等的实根b2—4ac<0注:方程没有实根,有共轭复数根两角和公式sin(A+B)=sinAcosB+cosAsinBsin(A—B)=sinAcosB—sinBcosAcos(A+B)=cosAcosB—sinAsinBcos(A—B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1—tanAtanB)tan(A—B)=(tanA—tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB—1)/(ctgB+ctgA)ctg(A—B)=(ctgActgB+1)/(ctgB—ctgA)倍角公式tan2A=2tanA/(1—tan2A)ctg2A=(ctg2A—1)/2ctgacos2a=cos2a—sin2a=2cos2a—1=1—2sin2a半角公式sin(A/2)=√((1—cosA)/2)sin(A/2)=—√((1—cosA)/2)cos(A/2)=√((1+cosA)/2)cos(A/2)=—√((1+cosA)/2)tan(A/2)=√((1—cosA)/((1+cosA))tan(A/2)=—√((1—cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1—cosA))ctg(A/2)=—√((1+cosA)/((1—cosA))和差化积2sinAcosB=sin(A+B)+sin(A—B)2cosAsinB=sin(A+B)—sin(A—B)2cosAcosB=cos(A+B)—sin(A—B)—2sinAsinB=cos (A+B)—cos(A—B)sinA+sinB=2sin((A+B)/2)cos((A—B)/2cosA+cosB=2cos((A+B)/2)sin((A—B)/2)tanA+tanB=sin(A+B)/cosAcosBtanA—tanB=sin(A—B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB—ctgA+ctgBsin(A+B)/sinAsinB【高中数学椭圆双曲线抛物线的标准方程与几何性质知识点】。

椭圆、双曲线、抛物线的知识点总结

椭圆、双曲线、抛物线的知识点总结

椭圆、双曲线、拋物线相关知识点总结—、椭圆的标准方程及其几何性质椭圆的定义:我们把平面内与两个定点尽耳的距离的和等于常数(大「I耳巧I)的点的轨迹叫傲椭圆。

符号语言:\MF^\MFS=la(la>lc)将定义中的常数记为加,则:①.当加>|幷马|时,点的轨迹是Jffi® ________________焦点位置不确定的椭圆方程可设为:〃ZV 2 +〃丁2 =1(〃2>O 、〃>O,〃/H 〃)X 2 y 2与椭圆务+ 5=1共焦点的椭圆系方程可设为: a b 二、双曲线的标准方程及其几何性质双曲统的定义:我们把平面内与两个定点甩迟的距离的養的绝对值等于常数妙壬座i) 的点的轨迹叫做双曲线。

符号语言:| |抠可-]*倒][=2d(2d <2c)将定义中的常数记为2a ,则:①.当2迄<|幷刃时,点的轨迹是 双曲线 ______________ ②.当2a = |幷巧|时,点的轨迹是 两条射线 ③.当力>|幷期时,点的轨迹 不存在x 2£厂总=屮>-於)焦点位置不确定的双曲线方程可设为:〃川一〃£ = i(〃,〃>o)与双曲^4-4=1共焦点的双曲线系方程可设为:-^---^- = i(-b2</c<a2)& / a2-k b2 + k ' )与双曲线扌劣=1共漸近线的双曲绫系方程可设为:召一审;1"工0)三、拋物线的标准方程及其几何性质拋物线的定义:我们把平面内与一个定点F和一条定直统Z (Z个经过点F)距离相等的点的轨迹叫做拋物线。

点F叫做拋物线的焦点,直线2叫做拋物线的准线。

标准方程护= 2”(P>0) y2=-lpx(p >0) x2 = 2py(p > 0) x2 =-2py(p >0)图形通径2pAB\ = .* + £ + p = (a为弓么43的倾斜角)sin a直线与椭圆(或与双曲线、拋物线)相交于A(x1,y1),B(.x2,v2),则椭圆(或双曲线、拋物线)的弦长公式:|-4B| =卜 1 _“21J1+ P = J(•* + “2 )2 -4小2 J1 +严。

双曲线相关公式

双曲线相关公式

双曲线相关公式
双曲线是一种常见的数学曲线,与椭圆和抛物线一样,是数学中非常重要的曲线之一。

下面是双曲线的一些基本公式:
1. 双曲线的渐近线公式:
a = (c - b) / 2,其中a、b、c是双曲线的参数,c是双曲线的离心率。

2. 双曲线的离心率公式:
e = c / a,其中e是双曲线的离心率,c是双曲线的参数,a是双曲线的半焦距。

3. 双曲线的焦距公式:
f = (a + e) / 2,其中f是双曲线的焦距,a是双曲线的参数,e 是双曲线的离心率。

4. 双曲线的顶点坐标公式:
x = (c + b) / 2 - e / 2,y = (c - b) / 2 - e / 2。

5. 双曲线的切线公式:
y - y1 = (x - x1) (y2 - y1),其中y1、y2是双曲线的两个顶点坐标,x1、x2是双曲线的两个离心率。

6. 双曲线的切线斜率公式:
k = (y2 - y1) / (x2 - x1),其中k是双曲线的切线斜率。

这些公式只是双曲线的基本特征,实际上双曲线还有很多其他的数学性质和应用,如双曲线的积分、微分、方程等。

双曲线也是许多其他领域的重要数学工具,如物理学、工程学、天文学等。

有关双曲线的知识点

有关双曲线的知识点

有关双曲线的知识点双曲线(hyperbola)是二次曲线的一种,与椭圆(ellipse)和抛物线(parabola)一样,被广泛应用于数学、物理和工程学领域。

本文将介绍双曲线的基本定义、方程、图像和性质等知识点,帮助读者更好地理解和应用双曲线。

一、基本定义在直角坐标系中,双曲线是由以下方程定义的点集合:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$其中,a和b都是正实数,并且a≠b。

这个方程也可以写成如下形式:$y=\pm\frac{b}{a}\sqrt{x^2-a^2}$或者$x=\pm\frac{a}{b}\sqrt{y^2-b^2}$这些公式表明,双曲线有两个分支,每个分支都向着两个渐进线无限延伸。

渐进线是两条直线,它们接近于但不相交于双曲线。

二、图像双曲线的图像有以下几个基本特征:1. 双曲线有两个分支,每个分支向着两个渐进线无限延伸。

2. 渐进线是两条直线,它们接近于但不相交于双曲线。

3. 两个分支之间有一个对称轴,它是垂直于渐进线并通过双曲线的中心点。

4. 两个分支在横轴旁边的割线点相交。

5. 双曲线是开口向上或向下的,具体取决于y轴是否是对称轴。

对于上述特征,我们可以通过画一些具体的双曲线图像来更好地理解。

三、方程双曲线的方程是由其图像性质所定义的。

通过感性的推导和数学的推导,我们可以证明方程$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$是一个标准的双曲线方程。

如果一个双曲线的中心点不在原点,我们可以通过平移坐标系的方式将其移到原点处,然后再应用上述方程。

除了标准方程外,还有其他形式的双曲线方程,比如一些旋转角度、平移或伸缩系数不同的方程。

这些方程可以通过数学变换的方法,转化为标准方程来求解。

四、性质双曲线有许多有趣的性质,下面列举其中一些。

1. 双曲线是一条非闭合曲线,它无法构成一个标准封闭形状。

2. 双曲线具有两个焦点,每个焦点到双曲线上的任何一点的距离之差等于常数2a。

椭圆双曲线抛物线公式汇总 椭圆双曲线抛物线公式

椭圆双曲线抛物线公式汇总 椭圆双曲线抛物线公式

椭圆双曲线抛物线公式汇总椭圆双曲线抛物线公式双曲线的标准公式为: X /a - Y /b = 1(a>0,b>0) 而反比例函数的标准型是xy = c (c ≠ 0) 但是反比例函数确实是双曲线函数经过旋转得到的因为xy = c的对称轴是y=x, y=-x 而X /a - Y /b = 1的对称轴是x轴,y轴所以应该旋转45度设旋转的角度为a (a≠0,顺时针) (a为双曲线渐进线的倾斜角) 则有X = xcosa ysina Y = - xsina ycosa 取a = π/4 则X - Y = (xcos(π/4) ysin(π/4)) -(xsin(π/4) - ycos(π/4)) = (√2/2 x √2/2 y) -(√2/2 x - √2/2 y) = 4 (√2/2 x) (√2/2 y) = 2xy. 而xy=c 所以X /(2c) - Y /(2c) = 1 (c>0) Y /(-2c) - X /(-2c) = 1 (c 由此证得,反比例函数其实就是双曲线函数椭圆的面积公式S=π(圆周率)×a×b(其中a,b分别是椭圆的长半轴,短半轴的长).或S=π(圆周率)×A×B/4(其中A,B分别是椭圆的长轴,短轴的长).椭圆的周长公式椭圆周长没有公式,有积分式或无限项展开式。

椭圆周长(L)的精确计算要用到积分或无穷级数的求和。

如L = ∫[0,π/2]4a * sqrt(1-(e*cost) )dt≈2π√((a b )/2) [椭圆近似周长], 其中a为椭圆长半轴,e为离心率椭圆离心率的定义为椭圆上的点到某焦点的距离和该点到该焦点对应的准线的距离之比,设椭圆上点P到某焦点距离为PF,到对应准线距离为PL,则e=PF/PL椭圆的准线方程x=±a /C椭圆的离心率公式e=c/a(e2c)椭圆的焦准距:椭圆的焦点与其相应准线(如焦点(c,0)与准线x= a /C)的距离,数值=b /c椭圆焦半径公式|PF1|=a ex0 |PF2|=a-ex0椭圆过右焦点的半径r=a-ex过左焦点的半径r=a ex椭圆的通径:过焦点的垂直于x轴(或y轴)的直线与椭圆的两焦点A,B之间的距离,数值=2b /a点与椭圆位置关系点M(x0,y0) 椭圆x /a y /b =1点在圆内: x0 /a y0 /b点在圆上: x0 /a y0 /b =1点在圆外: x0 /a y0 /b >1直线与椭圆位置关系y=kx m ①x /a y /b =1 ②由①②可推出x /a (kx m) /b =1相切△=0相离△相交△>0 可利用弦长公式:A(x1,y1) B(x2,y2)|AB|=d = √(1 k )|x1-x2| = √(1 k )(x1-x2) = √(1 1/k )|y1-y2| = √(1 1/k )(y1-y2)椭圆通径(定义:圆锥曲线(除圆外)中,过焦点并垂直于轴的弦)公式:2b /a椭圆的斜率公式过椭圆上x /a y /b 上一点(x,y)的切线斜率为b *X/a y 抛物线的标准方程右开口抛物线:y =2px左开口抛物线:y =-2px上开口抛物线:x =2py下开口抛物线:x =-2pyp为焦准距(p>0)[编辑本段]3.抛物线相关参数(对于向右开口的抛物线)离心率:e=1焦点:(p/2,0)准线方程l:x=-p/2顶点:(0,0)通径(定义:圆锥曲线(除圆外)中,过焦点并垂直于轴的弦):2P [编辑本段]4.它的解析式求法:以焦点在X轴上为例知道P(x0,y0)令所求为y =2px则有y0 =2px0∴2p=y0 /x0∴抛物线为y =(y0 /x0)x [编辑本段]5.抛物线的光学性质:经过焦点的光线经抛物线反射后的光线平行抛物线的对称轴。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学循环记忆学案
基本题目过关;
22
12
211,F F 1F AB 169
FAB _____,|AB|=5|x y +=∆11
已知,是椭圆的两个焦点,过点
的直线交椭圆于两点
则的周长为若,则AF|+|BF|=______.
22
2,x+y=4,如图OA中点为N,M在圆上,MN的垂直平分线交
OM于P点,当M点在椭圆上运动时P点的轨迹方程是什么图形__
3,已知椭圆的中心在原点,焦点在坐标轴上,椭圆与坐标轴交点坐标为 A (-3,0),B(0,5),则椭圆的标准方程为______
且常州常时段周长的两倍,则该椭圆的标准方程为________
5,已知椭圆的中心在原点,焦点x轴上,椭圆C上的点到焦点的最大值为 3,最小值为1,则椭圆的标准方程为_________
22
xy
6,若方程+=1,表示焦点在 y轴上的椭圆,则m的
|m|-12-m
取值范围是_________
7,椭圆的短轴一个端点与两焦点组成一个正三角形,且焦点到同侧顶点
9,设椭圆的中心在原点,坐标轴为对称轴,一个焦点与短轴的两端点的连线互相垂直 且此焦点与长轴上较近的端点距离为4,则此椭圆的方程为________________
2210,椭圆5x +ky =5的一个焦点为(0,2)则k=_________
22
11,M 123
M x y w 是椭圆+=1的焦点为焦点,过直线L;x-y+9=0上一点作椭圆,
要使所作椭圆长轴最短,点应在何处____并求出椭圆的方程_____
PQ OP OQ ⊥12,已知椭圆的中心在原点,坐标轴为对称轴直线y=x+1与椭圆相交于两点,且,
11122
121222213,F A B P PF FA PO//AB e=( )
11 A B C.D 232
AB F BAF =90x y a b
⊥∠如图已知是椭圆的左焦点,,分别是椭圆的右顶点和上顶点为椭圆上一点,当,时, 14,F F 是椭圆+=1(a>b>0)的两焦点,过F 的弦与构成等
腰直角三角形,若角,则e=_________
F C B C BF C D BF FD 15,已知是椭圆的一个焦点,是椭圆短轴的一个端点,线段 的延长线交于点,且=2,则e=______
22
122212P x y a b
F PF ∠16,F F 是椭圆+=1(a>b>0)的两焦点,为椭圆上一点,
=90,离心率的最小值为__________
22
12221217,P =x y x a b
F F PF ∠过椭圆+=1(a>b>0)的左焦点F ,作轴的垂线交椭圆于,
为右焦点,若60,则e=______
22
12122212P PF 1
2
x y PF a b ∠18,为F F 为焦点的椭圆+=1(a>b>0)上一点,若=0
tan PF F =,则e=______
22
121222,MF MF =M
1B 0C 0D 222x y a b
⎛⎫⎛⎤
⎪ ⎥ ⎪⎝⎦⎝⎭⎣⎭
19,F F 为焦点的椭圆+=1(a>b>0)满足0,的点 总在椭圆内部,则椭圆的离心率的取值范围是( ) A (0,1) , , 22
222
2,
O M P M x y c a b
a c
20,在平面直角坐标系中,椭圆+=1(a>b>0)的焦距为 以为圆心,a 为半径作园,若过(,o )作的两条 切线相互垂直,则e=________
3
ABC A=A B C
4
________∆∠21,在中,90,tanB=,若以,为焦点的椭圆过则该椭圆的离心率为 7
22,ABC ,cos A B C
18
________.
AB BC B ∆==-在中,,若以,为焦点的椭圆过则该椭圆的离心率为 ABCD A B C D 23,已知正方形,则以,为焦点,且过,两点的椭圆的 离心率为___________
2222
222222224,-c ________.
x y x y a b m n
椭圆+=1(a>b>0)与双曲线-=1(m>0,n>0)有相同的焦
点(,0),(c,0),若c 是a,m 的等比中项,n 是2m 与c 的等差中项 椭圆的离心率为 22
12225A B BF AB P AP=PB ________.
x y a b
⊥,椭圆+=1(a>b>0)的左焦点F ,右顶点为,点在椭圆上
且x 轴,直线交y 轴于点,若2椭圆的离心率 为 22
26M 164
AB x y ,已知椭圆+=1的弦的中点的坐标为(2,1),求直线
的方程________________
225
27,sheerbuqiu;已知椭圆4x +y =1,及直线y=x+m,(1)直线与椭圆
有公共点时m=___(2)若直线被椭圆截得弦长为求直线方程。

相关文档
最新文档