八年级数学下册第16章二次根式检测卷练习课件新版新人教版
2024八年级数学下册第十六章二次根式集训课堂练素养1二次根式化简求值的十一种技巧课件新版新人教版
=
−
.
技巧6配方法
7.若a,b为实数,且b= − + − +15,试求
+
+ -
+
− 的值.
− ≥ ,
【解】由二次根式的定义,得ቊ
− ≥ ,
∴3-5a=0,则a= .∴b=15.∴ab>0,a+b>0,a-b<0. Nhomakorabea∴
+
技巧10 先判后算法
11.已知a+b=-6,ab=5,求b
【解】∵a+b=-6,ab=5,
∴a<0,b<0.
∴b
=-
+a
-
=- · +
+a
的值.
=-
=-
=-
=-
(+) −
−
.
技巧11辅元法
12.已知x∶y∶z=1∶2∶3(x>0,y>0,z>0),求
+ -
+
− =
(+)
-
+
−
+ −
=
-
=(
- ) =
当a= ,b=15时, 原式= × × = .
(−)
.
技巧7平方法
8.化简:
++
+
人教版数学八年级下册第16章二次根式混合运算 综合测试卷(含答案)
人教版数学八年级下册第16章二次根式混合运算综合测试卷(含答案)一、填空题(本关共计 12小题,每题 3 分,共计36分)1. 若√2=a,√10=b,则√20用含a,b的式子表示是( )A.2aB.2bC.a+bD.ab2. 下列二次根式中,是最简二次根式的是()A.√20B.√13C.√27D.√123. 下列计算正确的是()A.3√2×4√2=12√2B.√(−9)×(−25)=√9×√−25=(−3)×(−5)=15C.−3√23=√(−3)2×23=6D.√132−122=√(13+12)(13−12)=54. 若m<0,n>0,把代数式m√n中的m移进根号内结果是()A.√m2nB.√−m2nC.−√m2nD.|√m2n|5. 计算:√2x⋅√12xy=()A.√xyB.x√yC.2x√yD.4x√y6. 若a,b为实数,且b=√a2−1+√1−a2a+7+4,则a+b的值为()A.±1B.4C.3或5D.57. 下列计算:①(√2)2=2;②√(−2)2=2;③(−2√3)2=12;④(√2+√3)(√2−√3)=−1.其中正确的有()A.1个B.2个C.3个D.4个8. 下列计算正确的是()A.√20=2√10B.√4−√2=√2C.√2×√3=√6D.√(−2)2=−29. 估计(2√30−√24)⋅√16的值应在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间10. 下列四个运算中,只有一个是正确的.这个正确运算的序号是()①30+3−1=−3;②√5−√2=√3;③(2a2)3=8a5;④−a8÷a4=−a4.A.①B.②C.③D.④11. 与√5可以合并的二次根式是( )A.√10B.√15C.√20D.√2512. 若a=2−√7,则代数式a2−4a−2的值是()A.9B.7C.√7D.1二、填空题(本关共计 6 小题,每题 3 分,共计18分)×√2=________.13. 计算:√9214. √12×√3=________.)×√3=________.15. 计算:(√12+√1316. 计算(√3+1)(√3−1)的结果等于________.17. 如果最简二次根式a√1+a与√4a−2是同类二次根式,那么a=________.=________.18. 已知:m+n=10,mn=9,则√m−√n√m+√n三、解答题(本关共计49分))−219. (5分) 算一算:√6×(−√2)+|1−√3|+(−13220. (15分)计算:(1)√27−13√18−√12;(2)(√20+√5+5)÷√5−√13×√24−√5;(3)√18−√92−√3+√6√3(√3−2)0+√(1−√2)2.21. (10分)计算:(1)(√48−√27)÷√3;(2)(√5−√3)(√5+√3)−(√2+√6)2.22. (10分)计算:(1)12√24−√3×2√2;(2)√32−4√18+√6×√23.23. (6分)已知实数x满足|1−x|−√x2−8x+16=2x−5,求x的取值范围.24.(10分)比一比看谁细心哟!(1)43−(√48÷√64)+√27(2)3√90+√25−4√14025.(10分)已知a=2+√3,b=2−√3,求(1)ab −ba;(2)a2−ab+b24参考答案1.D2.B3.D4.C5.B6.C7.D 8.C 9.B 10. D 11.C 12.D 13.3 14. 6 15.7 16. 2 17.1 18. ±12 19.【答案】原式=−2√3+√3−1+9=8−√3.20.【答案】解:(1)√27−13√18−√12=√3×9−13√2×9−√4×3 =3√3−√2−2√3=√3−√2.(2)(√20+√5+5)÷√5−√13×√24−√5 =√20÷√5+√5÷√5+5÷√5−√33×2√6−√5 =2+1+√5−2√2−√5=3−2√2.(3)√18−√92√3√6√3+(√3−2)0+√(1−√2)2 =3√2−3√22−(1+√2)+1+√2−1 =3√22−1.21.【答案】解:(1)原式=(4√3−3√3)÷√3=√3÷√3=1.(2)原式=5−3−(8+4√3)6 =5−3−8−4√3 =−6−4√3.22.【答案】解:(1)12√24−√3×2√2 =√6−2√6=−√6. (2)√32−4√1+√6×√2=4√2−√2+2=3√2+2.23.【答案】解:|1−x|−√x 2−8x +16 =|1−x|−|x −4| =x −1+x −4=2x −5,即1−x ≤0且x −4≤0, ∴ 1≤x ≤4,即x 的取值范围是1≤x ≤4. 24.【答案】原式=43−4√48×16+3√3 =43−8√2+3√3; 原式=9√10+√105−√105=9√10.25.【答案】当a =2+√3,b =2−√3时,原式=√32−√3√3 2+√3=(2+√3)2(2+√3)(2−√3)(2−√3)2(2+√3)(2−√3)=7+4√34−3−7−4√34−3=7+4√3−7+4√3=8√3;当a=2+√3,b=2−√3时,原式=(a+b)2−3ab=(2+√3+2−√3)2−3×(2+√3)(2−√3)=16−3×(4−3)=16−3=13.。
最新人教版八年级数学下册第16章二次根式全套课件PPT(完美版)
A≥0且B≠0.
A 1有意义的条件:
B
巩固练习
2. x取何值时,下列二次根式有意义?
(1) x 1
x≥1
(4) 1 x x>0
(2) 3x
x≤0
(5) x3
x≥0
(3) 4x2
x为全体实数
(6) 1 x2 x≠0
(7)
x 1 x3
(
x
2)0
(8)
x 2 (9) x2 1
x
∴当x=1时, x2 2x 1 在实数范围内有意义. (2)∵无论x为任何实数,-x2-2x-3=-(x+1)2-2<0, ∴无论x为任何实数, x2 2x 3 在实数范围内都无意义.
归纳小结:被开方数是多项式时,需要对组成多项式的项 进行恰当分组凑成含完全平方的形式,再进行分析讨论.
探究新知
归纳总结
一般地,我们把形如 a (a 0) 的式子叫做二 次根式. “ ”称为二次根号.
注意:a可以是数,也可以是式.
两个必备特征
①外貌特征:含有“ ” ②内在特征:被开方数a ≥0
探究新知
素养考点 1 利用二次根式的定义识别二次根式
例1 下列各式中,哪些是二次根式?哪些不是?
(1) 14 ; (2)81; (3) - 0.8 ;(4)-3x (x 0)
(1) 32
是
(2) -12 不是
(3)3 8
(4)4 a2
不是
不是
(5) - m (m 0) 是
(8) - x2 1
不是
(6) 2a 1 不是
(9)4 2
是
(7) a2 2a 3
是
1
2023-2024人教版八年级数学下册第16章二次根式专题训练 二次根式的运算与化简求值(含答案)
第16章 二次根式 专题训练 二次根式的运算与化简求值类型1 二次根式的加减运算 1.计算:|2-5|+|4-5|= . 2.计算: (1)24+0.5-⎝ ⎛⎭⎪⎫18+6. (2)248-1813+318-818;(3)32-212-418+348. (4)239x +6x 4-2x 1x. (5)a 2b +ab a -b a b-ab 2. (6)-12 046+⎝⎛⎭⎫12-2-|4-12|+(π-3)0-27.类型2 二次根式的乘除运算 3.计算: (1)112×23= ;(2)(-14)×(-112)= ; (3)-0.45-0.5= ; (4)59÷127= . 4.计算:2318÷(-3)×1327.类型3 二次根式的混合运算 5.计算:12⎝ ⎛⎭⎪⎫75+313-48= . 6.计算:(1)50-(-2)+8× 2. (2)12-1+3(3-6)+8. (3)15×3520÷⎝⎛⎭⎫-13 6.(4)(-3)2+18-6×22; (5)⎝ ⎛⎭⎪⎫72-412+32÷8. (6)⎝⎛⎭⎫318+15 50-40.5÷32.类型4 巧用乘法公式计算 7.计算: (1)(5+3)2.(2)(32+12)(18-23). (3)(3+2)2-(3-2)2. (4)(2-3)2024×(2+3)2023;(5)(2+3-5)2-(2-3+5)2; (6)(3+2)2(3-2)-(3-2)2(3+2).类型5 先化简,再求值8.先化简,再求值:(a +2)(a -2)+a (1-a ),其中a =5+4.9.【2023福建】先化简,再求值:÷,其中x =-1.10.先化简,再求值:(x -1-3x +1)÷x -2x 2+x ,其中x =3-2.类型6 巧用二次根式的定义和性质求值 11.若x -3-3-x =(x +y )2,求x -y 的值.12.当x 取何值时,5x -1+4的值最小?最小值是多少?类型7 巧用乘法公式求值13.已知x =2-3,求代数式(7+43)x 2+(2+3)x +3的值.类型8 巧用整体代入法求值14.已知a =3+22,b =3-22,求a 2b -ab 2的值.15.已知x +y =-7,xy =12,求yx y +x yx的值.16.已知x=1-,y=1+,求x2+y2-xy-2x+2y的值.17.【2023长沙南雅中学期末】已知x=3+,y=3-,求下列各式的值.(1)x2-y2;(2)+.参考答案类型1 二次根式的加减运算 1.计算:|2-5|+|4-5|= . 【答案】2 2.计算: (1)24+0.5-⎝⎛⎭⎪⎫18+6. 解:原式=6+14 2. (2)248-1813+318-818;解:原式=83-63+92-2 2 =23+7 2. (3)32-212-418+348. 解:原式=83+2 2. (4)239x +6x 4-2x 1x . 解:原式=3x . (5)a 2b +ab a -ba b-ab 2. 解:原式=a b -b a . (6)-12 046+⎝⎛⎭⎫12-2-|4-12|+(π-3)0-27.解:原式=-1+4-4+23+1-3 3 =- 3.类型2 二次根式的乘除运算 3.计算: (1)112×23= ;(2)(-14)×(-112)= ; (3)-0.45-0.5= ; (4)59÷127= .【答案】1 28 2 31010 15 4.计算:2318÷(-3)×1327.解:原式=⎝⎛⎭⎫-23×1318×13×27=-29×9 2 =-2 2.类型3 二次根式的混合运算 5.计算:12⎝ ⎛⎭⎪⎫75+313-48= . 【答案】12 6.计算:(1)50-(-2)+8× 2. 解:原式=1+2+4=7. (2)12-1+3(3-6)+8. 解:原式=4.(3)15×3520÷⎝⎛⎭⎫-13 6.解:原式=-9 2.(4)(-3)2+18-6×22; 解:原式=3+32-32=3. (5)⎝ ⎛⎭⎪⎫72-412+32÷8. 解:原式=(62-22+42)÷2 2 =82÷2 2 =4.(6)⎝⎛⎭⎫318+15 50-40.5÷32.解:原式=2.类型4 巧用乘法公式计算 7.计算: (1)(5+3)2. 解:原式=8+215. (2)(32+12)(18-23). 解:原式=6.(3)(3+2)2-(3-2)2. 解:原式=4 6. (4)(2-3)2024×(2+3)2023;解:原式=(2-3)2023×(2+3)2023×(2-3)=[(2-3)×(2+3)]2023×(2-3)=-1×(2-3)=-2+3.(5)(2+3-5)2-(2-3+5)2; 解:原式=(2+3-5+2-3+5)× (2+3-5-2+3-5) =22×(23-25) =46-410.(6)(3+2)2(3-2)-(3-2)2(3+2).解:原式=(3+2)(3-2)[](3+2)-(3-2) =(9-2)×2 2 =14 2.类型5 先化简,再求值8.先化简,再求值:(a +2)(a -2)+a (1-a ),其中a =5+4. 解:原式=a 2-4+a -a 2 =a -4.当a =5+4时,原式=5+4-4= 5. 9.【2023福建】先化简,再求值:÷,其中x =-1.【解】原式=·=-·=-.当x =-1时,原式=-=-.10.先化简,再求值:(x -1-3x +1)÷x -2x 2+x ,其中x =3-2.解:原式=x 2-1-3x +1×x (x +1)x -2=(x +2)(x -2)x +1×x (x +1)x -2=x (x +2).把x =3-2代入,原式=(3-2)(3-2+2)=3-2 3. 类型6 巧用二次根式的定义和性质求值 11.若x -3-3-x =(x +y )2,求x -y 的值.解:∵x -3≥0,3-x ≥0, ∴x =3,∴y =-3, ∴x -y =6.12.当x 取何值时,5x -1+4的值最小?最小值是多少? 解:当x =15时,5x -1+4的最小值为4.类型7 巧用乘法公式求值13.已知x =2-3,求代数式(7+43)x 2+(2+3)x +3的值. 解:原式=(7+43)(7-43)+(2+3)(2-3)+ 3 =2+ 3.类型8 巧用整体代入法求值14.已知a =3+22,b =3-22,求a 2b -ab 2的值. 解:原式=ab (a -b ) =4 2.15.已知x +y =-7,xy =12,求y xy +xyx 的值.解:∵x +y <0,xy >0,∴x <0,y <0, ∴原式=y ·xy -y +x ·xy-x=-2xy =-4 3. 16.已知x =1-,y =1+,求x 2+y 2-xy -2x +2y 的值. 【解】∵x =1-,y =1+,∴x -y =(1-)-(1+)=-2, xy =(1-)(1+)=-1.∴x 2+y 2-xy -2x +2y =(x -y )2-2(x -y )+xy =(-2)2-2×(-2)+(-1)=7+4.17.【2023长沙南雅中学期末】已知x =3+,y =3-,求下列各式的值.(1)x 2-y 2; 【解】∵x =3+,y =3-,∴x +y =3++3-=6, x -y =3+-(3-)=2, ∴x 2-y 2=(x +y )(x -y )=6×2=12.(2)+.【解】∵x=3+,y=3-,∴x+y=3++3-=6,xy=(3+)×(3-)=4,∴+=====7.。
人教版数学八年级下册第16章专题01 二次根式测试试卷(含答案)
人教版数学8年级下册第16章专题01 二次根式一、选择题(共12小题)1.(2022x的取值范围是( )A.x≥0B.x≥﹣2C.x>2D.x≤22.(2022秋•门头沟区期末)下列代数式能作为二次根式被开方数的是( )A.x B.3.14﹣πC.x2+1D.x2﹣13.(2022秋•x的取值范围在数轴上表示正确的是( )A.B.C.D.4.(2021春•光山县期末)下列各式中,一定是二次根式的是( )B C DA5.(2022x的取值范围为( )A.x>0B.x≥﹣1C.x≥0D.x>﹣16.(2021春•番禺区期末)下列运算正确的是( )A=B=C=D=x7.(2021春•海珠区期末)下列各式中,最简二次根式的是( )A B C D8.(2021A.2B C.D.9.(2022秋•黄浦区月考)下列二次根式中,属于最简二次根式的是( )A B C D10.(2022秋•静安区校级期中)下列二次根式中,最简二次根式是( )A B C D11.(2021秋•惠民县期末)下列二次根式中属于最简二次根式的是( )A B C D12.(2022秋•徐汇区校级期中)下列根式中,最简二次根式有( )个.A.2B.3C.4D.5二、填空题(共12小题)13.(2022秋•吉林期末)代数实数范围内有意义,则x的取值范围是 .14.下列代数式中,是二次根式的有 (填序号).x<0).15.(2021春•黄埔区期末)计算:= ,= ,③(―2= .16.(2017.17.(2020•梧州一模)计算:2= .18.(2021春•花都区期末)已知x<2= .19.(2022 .20.(2022•南阳二模)写出一个实数x x可以是 .21.(2022秋•的是 .22.(2022秋•晋江市校级期中) .23.(2022a>0,b>0)化为最简二次根式: .24.(2022秋•虹口区校级月考),最简二次根式有 个.三、解答题(共13小题)25.(2021a>0,b>0).26.(2022秋•萧县期中)先阅读下面提供的材料,再解答相应的问题:x的值是多少?∴x﹣1≥0且1﹣x≥0.又∵x﹣1和1﹣x互为相反数,∴x﹣1=0,且1﹣x=0,∴x=1.问题:若y=++2,求x y的值.27.(2022秋•昌平区期中)已知y=++5,求x+y的平方根.28.(2022秋•奉贤区期中)已知x,y为实数,且y=―+1,求xy的平方3根.29.(2022秋•湖口县期中)已知y=+++2.(1)求y x的值;(2)求y的整数部分与小数部分的差.30.(2022秋•洛宁县月考)已知a,b,c为实数,且c=+―+2―c2+ab的值.31.(2022春•岑溪市期中)已知实数x,y满足y=++5,求:(1)x与y的值;(2)x2﹣y2的平方根.32.(2022春•龙岩期中)已知|2022﹣a|+=a,求a﹣20222的值.33.(2021春•花都区期末)计算:―+34.(2022春•灵宝市期中)把下列二次根式化简最简二次根式:(1(2(3(435.(2021•中原区开学)(1)把下列二次根式化为最简二次根式:(2)解方程:(3x﹣2)2﹣4=036.(2021•黄岛区校级开学)把下列二次根式化简成最简二次根式:(1(2(337.(2022秋•西安月考)若a=2,b=3,c=﹣6参考答案一、选择题(共12小题)1.D2.C3.A4.D5.B6.B7.C8.C9.C10.C11.D12.C;二、填空题(共12小题)13.x≥514.①③⑥15.5;4;316.>17.318.2﹣x19.420.5(答案为不唯一)21.22.223.24.1;三、解答题(共13小题)25.解:原式==2a >0,b >0).26.解:由题意得:2x ―1≥01―2x ≥0,∴2x ﹣1=0,解得x =12,所以y =2,所以x y =(12)2=14.27.解:由二次根式有意义可得:3―x ≥0x ―3≥0,解得x =3.∴y =5.∴x +y =3+5=8.故x +y 的平方根为±28.解:由题意得,x ―27≥027―x ≥0,解得x =27,则y =13,∴xy =27×13=9,∴9=±3.29.解:∵y =+++2,∴x ―2≥02―x ≥0,解得x =2,∴y =+2.(1)y x =2=6++4=10+(2)∵y =+2,23,∴y 的整数部为4+2―4=―2,∴y的整数部分与小数部分的差为:4―2)=6―30.解:∵c=+―+2―∴a﹣2=0,b﹣1=0,c=2―∴a=2,b=1,∴c2+ab=(2―2+2×1=4+3﹣+2=9﹣31.解:(1)根据题意得:x﹣13≥0,13﹣x≥0,∴x=13,∴y=5;(2)x2﹣y2=132﹣52=169﹣25=144,144的平方根为±12,∴x2﹣y2的平方根为±12.32.解:∵a﹣2023≥0,∴a≥2023,∴2022﹣a<0,∴a﹣2022+=a,=2022,∴a﹣2023=20222,∴a﹣20222=2023.33.解:原式=―+=34.解:(1==(2==(3===(4==35.解:(1)=====∴(3x﹣2)2=4,∴3x﹣2=±2,即3x﹣2=2或3x﹣2=﹣2,或x=0.解得x=4336.解:=====37.解:∵a=2,b=3,c=﹣6,===。
八年级下册数学《第16章 二次根式》单元测试卷及答案详解(PDF可打印)
人教新版八年级下册《第16章二次根式》单元测试卷(2)一.选择题。
1.下列式子中二次根式有()①;②;③﹣;④;⑤;⑥;⑦;⑧(x>1).A.2个B.3个C.4个D.5个2.已知a为实数,则下列式子一定有意义的是()A.B.C.D.3.小明做了四道题:①(﹣)2=2②=﹣2③=±2④=4,做对的有()A.①②③④B.①②④C.②④D.①④4.若等腰三角形的两边长分别为和,则这个三角形的周长为()A.9B.8或10C.13或14D.145.若x﹣y=,xy=,则代数式(x﹣1)(y+1)的值等于()A.2B.C.D.26.化简:×+的结果是()A.5B.6C.D.57.把化成最简二次根式,结果是()A.B.8C.D.8.下列各数中与2+的积是有理数的是()A.2+B.2C.D.2﹣9.下列计算正确的是()A.+=B.2+=2C.3﹣=2D.=6 10.规定a※b=,则※的值是()A.5﹣2B.3﹣2C.﹣D.二.填空题。
11.若有意义,则m能取的最小整数值是.12.下列二次根式:,,,,.其中最简二次根式有个.13.若x,y都为实数,且y=2020+2021+1,则x2+y=.14.已知a、b满足=a﹣b+1,则ab的值为.15.设a=,且b是a的小数部分,则a﹣的值为.16.如图,将1,,,,…,按下列方式排列.若规定(m,n)表示第m排从左向右第n个数,则(5,4)与(15,2)表示的两数之积是.三.解答题。
17.计算:(1)(﹣2)×﹣6;(2)(﹣4).18.已知y=,求x2﹣xy+y2的值.19.已知:x=+1,y=﹣1,求下列各式的值.(1)x2﹣y2.(2).20.先化简再求值:,其中a=.21.在一条长为56米的传输带上,有一件物品随传输带在3秒时间内匀速前进了12米,求传输带的速度和该物品在传输带上停留的时间.22.观察、思考、解答:(﹣1)2=()2﹣2×1×+12=2﹣2+1=3﹣2反之3﹣2=2﹣2+1=(﹣1)2∴3﹣2=(﹣1)2∴=﹣1(1)仿上例,化简:;(2)若=+,则m、n与a、b的关系是什么?并说明理由;(3)已知x=,求(+)•的值(结果保留根号)人教新版八年级下册《第16章二次根式》单元测试卷(2)参考答案与试题解析一.选择题。
人教版八年级下册八年级下数学第十六章《二次根式》测试(试卷讲评)课件(共16张PPT)
答题情况如下(每题错误人次):
题号 1 2 3 4 5 6 7 8 9 10
人次 6 21 3 5 5 25 7 7 9 6
题号 11 12 13 14 15 16 17 17 17 17 (1)(2)(3)(4)
人次 8 20 9 6 20 36 6 8 9 11
题号 18 19 20 20 21 22 23 24 24
分析:本题有一定难度,先根据二次根式有意义的 分析:此代数式有意义,只需要二次根式被开放数大于等于0,分母部分不为0即可。
分析:本题考查分式的化简求值,是中考必考题型,正确化简是关键。
条件得出x+y的值,再根据非负数的性质列出关于x, 一、试卷分析,激励促进
八年级下数学第十六章《二次根式》测试(试卷讲评)
y,m的方程组,求出m的值,最后代入求解。 在数学的天地里,重要的不是我们知道什么,而是我们怎么知道什么.
分析:本题考查分式的化简求值,是中考必考题型,正确化简是关键。 以下同学在本次考试中成绩优秀,给予表扬,名单如下: 3、在解决问题时运用了哪些数学思想? 第二步:问题反馈,教师答疑
变式: 1、本节课你解决了哪些疑惑?
(1)(2)
(1)(2)
人次 12 10 22 8 9 23 28 7 13
二、试卷讲评,深化理解
第一步:合作交流,解决疑惑 小教师答疑
八年级下数学第十六章《二次根式》测试(试卷讲评) 小组内讨论,解决基础题 张志坪(115) 刘亮(114) 孟雅兰(114) 一、试卷分析,激励促进 3、在解决问题时运用了哪些数学思想? 本次考试参考人数55人,试卷满分120分,考试时间120分钟,分数段如下: 第一步:合作交流,解决疑惑 八年级下数学第十六章《二次根式》测试(试卷讲评)
八年级数学下册 第十六章 二次根式综合测试题1(无答案)(新版)新人教版
二次根式班级 姓名1. 下列各式一定是二次根式的是( )A.B. D.2. 下列各式不是最简二次根式的是( )A.B. C.4D. 3. 对于所有实数,a b ,下列等式总能成立的是( )A. 2a b =+ B. a b =+C.22a b =+ D.a b =+4. 能使等式=成立的x 的取值范围是( ) A. 2x ≠ B. 0x ≥ C. 2xD. 2x ≥5. --大小关系是( )A. 32--B. 32--C. -=-不能确定6. 对于二次根式以下说法中不正确的是( )A. 它是一个非负数B. 它是一个无理数C. 它是最简二次根式D. 它的最小值为3 7.2772522-化简的结果是( ) A. 638B.398 C . 634 D. 3388.计算:ab ab b a 1⋅÷等于 ( ) A .ab ab 21 B .ab ab 1 C .ab b1D .ab b9、把(a -1)11-a根号外的因式移入根号内,其结果是( ) A 、1-a B 、-1-a C 、a -1 D 、-a -110. 已知a b ==则值为( ) A.5 B.6 C.3 D.4二填空题1. 使式子有意义的条件是 。
2. 当__________时,有意义。
3. 若11m +有意义,则m 的取值范围是 。
4. 当__________x 时,是二次根式。
5. 在实数范围内分解因式:429__________,2__________x x -=-+=。
6. 已知2x =-,则x 的取值范围是 。
7. 当15x ≤时,5_____________x -=。
8. 计算=_______;_________.9.化简:00)x y ≥,≥=______;00)a b ≥,≥=________.9.(1)=_________;(2)=___________;(3)=_______;(4)=__________.(5)2216acb =_____________.(6)25·16 ; (7)= .(8)=;(9)=. (10)= ;(11)= .10. 分母有理化:=_________;=________. 11. 化简:=__________.三、化简 1.化简:(1)2516(2)971(3)118271927+(4)22)32()911(-(5)1832..÷ (6)6722.化简())10,0a b ≥≥()2()3a3.计算()1()2()(()-≥≥30,0a b())a b40,0()5()6⎛÷ ⎝(7)⎛ ⎝(8)⎛ ⎝(9)四、解答题1.(8分)已知1+-b a 与42++b a 是互为相反数,求2008)(b a -的值.2. 若2440y y -+=,求xy 的值。