2020年中考数学选择填空压轴题汇编平移旋转对称三大变换含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平移旋转对称三大变换
1.(2020•安徽)在数学探究活动中,敏敏进行了如下操作:如图,将四边形纸片ABCD沿过点A的直线折
叠,使得点B落在CD上的点Q处.折痕为AP;再将△PCQ,△ADQ分别沿PQ,AQ折叠,此时点C,D落在AP上的同一点R处.请完成下列探究:
(1)∠PAQ的大小为30 °;
(2)当四边形APCD是平行四边形时,的值为.
【解答】解:(1)由折叠的性质可得:∠B=∠AQP,∠DAQ=∠QAP=∠PAB,∠DQA=∠AQR,∠CQP=∠PQR,∠D=∠ARQ,∠C=∠QRP,
∵∠QRA+∠QRP=180°,
∴∠D+∠C=180°,
∴AD∥BC,
∴∠B+∠DAB=180°,
∵∠DQR+∠CQR=180°,
∴∠DQA+∠CQP=90°,
∴∠AQP=90°,
∴∠B=∠AQP=90°,
∴∠DAB=90°,
∴∠DAQ=∠QAP=∠PAB=30°,
故答案为:30;
(2)由折叠的性质可得:AD=AR,CP=PR,
∵四边形APCD是平行四边形,
∴AD=PC,
∴AR=PR,
又∵∠AQP=90°,
∴QR AP,
∵∠PAB=30°,∠B=90°,
∴AP=2PB,AB PB,
∴PB=QR,
∴,
故答案为:.
2.(2020•天水)如图,在边长为6的正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连
接EF,将△ADF绕点A顺时针旋转90°得到△ABG.若DF=3,则BE的长为 2 .
【解答】解:
法一:由题意可得,
△ADF≌△ABG,
∴DF=BG,∠DAF=∠BAG,
∵∠DAB=90°,∠EAF=45°,
∴∠DAF+∠EAB=45°,
∴∠BAG+∠EAB=45°,
∴∠EAF=∠EAG,
在△EAG和△EAF中,
,
∴△EAG≌△EAF(SAS),
∴GE=FE,
设BE=x,则GE=BG+BE=3+x,CE=6﹣x,∴EF=3+x,
∵CD=6,DF=3,
∴CF=3,
∵∠C=90°,
∴(6﹣x)2+32=(3+x)2,
解得,x=2,
即BE=2,
法二:设BE=x,连接GF,如下图所示,
∵四边形ABCD为正方形,
∴∠ABE=∠GCF=90°,
∵△ADF绕点A顺时针旋转90°得到△ABG,∴∠CAF=90°,GA=FA,
∴△GAF为等腰直角三角形,
∵∠EAF=45°,
∴AE垂直平分GF,
∴∠AEB+∠CGF=90°,
∵在Rt△AEB中,∠AEB+∠BAE=90°,
∴∠BAE=∠CGF,
∴△BAE~△CGF,
∴,
∵CF=CD﹣DF=6﹣3=3,GC=BC+BG=BC+DF=6+3=9,
∴,
∴x=2,
即BE=2,
故答案为:2.
3.(2020•深圳)如图,矩形纸片ABCD中,AB=6,BC=12.将纸片折叠,使点B落在边AD的延长线上的
点G处,折痕为EF,点E、F分别在边AD和边BC上.连接BG,交CD于点K,FG交CD于点H.给出以下结论:
①EF⊥BG;
②GE=GF;
③△GDK和△GKH的面积相等;
④当点F与点C重合时,∠DEF=75°,
其中正确的结论共有()
A.1个B.2个C.3个D.4个
【解答】解:如图,连接BE,设EF与BG交于点O,
∵将纸片折叠,使点B落在边AD的延长线上的点G处,∴EF垂直平分BG,
∴EF⊥BG,BO=GO,BE=EG,BF=FG,故①正确,
∵AD∥BC,
∴∠EGO=∠FBO,
又∵∠EOG=∠BOF,
∴△BOF≌△GOE(ASA),
∴BF=EG,
∴BF=EG=GF,故②正确,
∵BE=EG=BF=FG,
∴四边形BEGF是菱形,
∴∠BEF=∠GEF,
当点F与点C重合时,则BF=BC=BE=12,
∵sin∠AEB,
∴∠AEB=30°,
∴∠DEF=75°,故④正确,
由题意无法证明△GDK和△GKH的面积相等,故③错误;
故选:C.
4.(2020•随州)如图,已知矩形ABCD中,AB=3,BC=4,点M,N分别在边AD,BC上,沿着MN折叠矩形
ABCD,使点A,B分别落在E,F处,且点F在线段CD上(不与两端点重合),过点M作MH⊥BC于点H,连接BF,给出下列判断:
①△MHN∽△BCF;
②折痕MN的长度的取值范围为3<MN;
③当四边形CDMH为正方形时,N为HC的中点;
④若DF DC,则折叠后重叠部分的面积为.
其中正确的是①②③④.(写出所有正确判断的序号)
【解答】解:①如图1,由折叠可知BF⊥MN,
∴∠BOM=90°,
∵MH⊥BC,
∴∠BHP=90°=∠BOM,
∵∠BPH=∠OPM,
∴∠CBF=∠NMH,
∵∠MHN=∠C=90°,
∴△MHN∽△BCF,
故①正确;
②当F与C重合时,MN=3,此时MN最小,当F与D重合时,如图2,此时MN最大,
由勾股定理得:BD=5,