2013云南省大学综合习题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、一种铁丝1/2米重1/3千克,这种铁丝1米重()千克,1千克长()米。
2、连通图的生成树包括图中的全部n个顶点和足以使图连通的n-1条边,最小生成树是边上权值之和最小的生成树。故可按权值从大到小对边进行排序,然后从大到小将边删除。每删除一条当前权值最大的边后,就去测试图是否仍连通,若不再连通,则将该边恢复。若仍连通,继续向下删;直到剩n-1条边为止。
void SpnTree (AdjList g)
//用“破圈法”求解带权连通无向图的一棵最小代价生成树。
{typedef struct {int i,j,w}node; //设顶点信息就是顶点编号,权是整型数
node edge[];
scanf( "%d%d",&e,&n) ; //输入边数和顶点数。
for (i=1;i<=e;i++) //输入e条边:顶点,权值。
scanf("%d%d%d" ,&edge[i].i ,&edge[i].j ,&edge[i].w);
for (i=2;i<=e;i++) //按边上的权值大小,对边进行逆序排序。
{edge[0]=edge[i]; j=i-1;
while (edge[j].w edge[j+1]=edge[0]; }//for k=1; eg=e; while (eg>=n) //破圈,直到边数e=n-1. {if (connect(k)) //删除第k条边若仍连通。 {edge[k].w=0; eg--; }//测试下一条边edge[k],权值置0表示该边被删除k++; //下条边 }//while }//算法结束。 connect()是测试图是否连通的函数,可用图的遍历实现, 3、已知一个比例中两个外项的积是最小的合数,一个内项是5/6,另一个内项是()。 4、已知传送带与水平面所成斜坡的坡度i=1:2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为_________ 米. 5、按要求在句子中填上合适的词语(每空1分,共7分) 1、这两个人总是一起做坏事,真是呀!(与“动物”有关的成语) 2、是他让我做成了这个艺术品,又是他打碎了这个艺术品,真是,呀。(写出有关历史人物的成语) 3、虽然路上有许多(),但谁也别想()我们前进的脚步,我们是不会受到一点()就放弃的。(用“阻”字组成的词语填空,不得重复) 4、()考试不难,()方法和规范很重要,()我们要认真审题,注意分点,让自己和知识变成得分。(填关联词) 6、对二叉树的某层上的结点进行运算,采用队列结构按层次遍历最适宜。 int LeafKlevel(BiTree bt, int k) //求二叉树bt 的第k(k>1) 层上叶子结点个数 {if(bt==null || k<1) return(0); BiTree p=bt,Q[]; //Q是队列,元素是二叉树结点指针,容量足够大 int front=0,rear=1,leaf=0; //front 和rear是队头和队尾指针, leaf是叶子结点数int last=1,level=1; Q[1]=p; //last是二叉树同层最右结点的指针,level 是二叉树的层数 {p=Q[++front]; if(level==k && !p->lchild && !p->rchild) leaf++; //叶子结点 if(p->lchild) Q[++rear]=p->lchild; //左子女入队 if(p->rchild) Q[++rear]=p->rchild; //右子女入队 if(front==last) {level++; //二叉树同层最右结点已处理,层数增1 last=rear; } //last移到指向下层最右一元素 if(level>k) return (leaf); //层数大于k 后退出运行 }//while }//结束LeafKLevel 7、假设以邻接矩阵作为图的存储结构,编写算法判别在给定的有向图中是否存在一个简单有向回路,若存在,则以顶点序列的方式输出该回路(找到一条即可)。(注:图中不存在顶点到自己的弧) 有向图判断回路要比无向图复杂。利用深度优先遍历,将顶点分成三类:未访问;已访问但其邻接点未访问完;已访问且其邻接点已访问完。下面用0,1,2表示这三种状态。前面已提到,若dfs(v)结束前出现顶点u到v的回边,则图中必有包含顶点v和u的回路。对应程序中v的状态为1,而u是正访问的顶点,若我们找出u的下一邻接点的状态为1,就可以输出回路了。 void Print(int v,int start ) //输出从顶点start开始的回路。 {for(i=1;i<=n;i++) if(g[v][i]!=0 && visited[i]==1 ) //若存在边(v,i),且顶点i的状态为1。 {printf(“%d”,v); if(i==start) printf(“\n”); else Print(i,start);break;}//if }//Print void dfs(int v) {visited[v]=1; for(j=1;j<=n;j++ ) if (g[v][j]!=0) //存在边(v,j) if (visited[j]!=1) {if (!visited[j]) dfs(j); }//if else {cycle=1; Print(j,j);} visited[v]=2; }//dfs void find_cycle() //判断是否有回路,有则输出邻接矩阵。visited数组为全局变量。 {for (i=1;i<=n;i++) visited[i]=0; for (i=1;i<=n;i++ ) if (!visited[i]) dfs(i); }//find_cycle 8、对二叉树的某层上的结点进行运算,采用队列结构按层次遍历最适宜。 int LeafKlevel(BiTree bt, int k) //求二叉树bt 的第k(k>1) 层上叶子结点个数 {if(bt==null || k<1) return(0); BiTree p=bt,Q[]; //Q是队列,元素是二叉树结点指针,容量足够大 int front=0,rear=1,leaf=0; //front 和rear是队头和队尾指针, leaf是叶子结点数int last=1,level=1; Q[1]=p; //last是二叉树同层最右结点的指针,level 是二叉树的层数