2.2.4平面和平面平行的性质定理
2.2.4平面与平面平行的性质定理
平面与平面平行的性质定理 如果两个平行平面同时和第三个平面相交,那么它们的交线平行
符号语言:
/ /
a,
b
a//b
定理的作用: 面面平行→线面平行
几个重要结论
1、若两个平面互相平行,则其中一个平面 中的直线必平行于另一个平面;
2、平行于同一平面的两平面平行; 3、过平面外一点有且只有一个平面与这个
• 2.2.4平面与平面平行的性质
【探究新知】
探究1. 如果两个平面平行,那么一个平面内的直线果两个平面平行,那么一个平面内的直线 与另一个平面平行.
探究2. 如果两个平面平行,两个平面内的直线有什么位置关系?
借助长方体模型探究 结论:如果两个平面平行,那么两个平面内的直线要么是 异面直线,要么是平行直线.
平面平行; 4、夹在两平行平面间的平行线段相等。
例题分析
例1、求证:夹在两个平行平面间的两条平行 线段相等.
已知:如图,AB∥CD,
D
A∈α ,D∈α,
αA
B∈β ,C∈β, α∥β
求证:AB=CD
C
βB
练习:
1、 如图:a∥α,A是α另一侧的点,B、C、D 是α上的点 ,线段AB、AC、AD交于E、F、G 点,若BD=4,CF=4,AF=5,求EG.
M
G
D
C
H
O
A
B
B C Da
α E FG
A
补充作业:
1、已知α∥β,AB交α、β于A、B,CD交
α、β于C、D,AB∩CD=S,AS=8,BS=9,
S
CD=34,求SC。
AC
α
S
AC
α
βD
2.2.4平面与平面平行的性质2
L
α∥β
α∩β= L
(2):平面和平面平行的判定定理是什么?
一个平面内的两条相 交直线与另一个平面平 行,则这两个平面平行。 如果一个平面内有 两条相交直线分别平行 于另一个平面内的两条 直线,那么这两 b
α
d
如果两个平 行平面同时与第三 个平面相交,那么 它们的交线平行。
是α上的点 ,线段AB、AC、AD交于E、F、G
点,若BD=4,CF=4,AF=5,求EG.
B C D
a
α
E
F
G
A
10
小结
面面平行判定定理: 线面平行
另一个平面,那么这两个平面平行。
面面平行 如果一个平面内有两条相交直线分别平行于
推论:
如果一个平面内有两条相交直线分别平行于
另一个平面内的两条直线,那么这两个平面平行
求证:MN∥平面PBC。
N D C
E
A B
M
7
已知ABCD是平行四边形,点P是平面 ABCD外一点,M是PC的中点,在DM上取一 点G,画出过G和AP的平面。
P
M
G
D
C
H
A
O
B
8
练习: 点P在平面VAC内,画出过点P作一个截面 平行于直线VB和AC。 V
F P G B H A
9
E
C
如图:a∥α,A是α另一侧的点,B、C、D
面面平行性质定理: 面面平行
线面平行 如果两个平行平面同时与第三个平面相交, 那么它们的交线平行。
11
课外作业: 1、已知α∥β,AB交α、β于A、B,CD交 α、β于C、D,AB∩CD=S,AS=8,BS=9,
2.2.4平面与平面平行的性质
平面与平面平行的性质定理
展馆上下两层所在的平面与侧墙 所在的平面分别相交,它们的交线的位置关系 如何? (平行)
(1)文字语言:如果两个平行平面同时 和第三个平面相交,那么它们的交线平行. (2)符号语言:α ∥β ,α a∥b. (3)图形语言:如图所示. γ =a,β γ =b
【质疑探究】 (1)如何理解平面与平面平行的性质 定理?需要注意什么? (①该性质定理可以简述为:“面面平行,则线线平 行”,必须注意这里的“线线”是指同一平面与已 知两平行平面的交线.②关于两个平面平行的性质 还有如下的结论:两个平面平行,其中一个平面内 的直线必平行于另一个平面,即 “面面平行,则线面 平行”,此处的线是平面内的任一条直线)
跟踪训练 1 1:已知 a、b 表示直线,α 、β 、γ 表示平面,下列推理正确的是( (A)α β =a,b α )
a∥b (B)α β =a,a∥b b∥α 且 b∥β (C)a∥β ,b∥β ,a α ,b α α ∥β (D)α ∥β ,α γ =a,β γ =b a∥b
利用面面平行的性质定理证明线线 平行的技巧是什么? (利用面面平行的性质定理证明线线平行的关键 是把要证明的直线看作是平面的交线,所以构造 三个面是其应用中的主要工作:即二个平行面,一 个包含讨论直线的面,有时需要添加辅助面)
跟踪训练 2 1:已知如图所示,三棱柱 ABC A1B1C1 中, 点 D、D1 分别为 AC、A1C1 上的点.
(3)你能总结一下线线平行与线面平行、面面平 行之间的转化关系吗? (三种平行关系可以任意转化,其相互转化关系 如图所示:
)
如图所示,AB α ,CD β , 且α ∥β ,若 AC∥BD,求证:AC=BD.
空间几何八定理
空间几何八定理:
1、直线与平面平行的判定定理:如果平面外的一条直线与平面内的一条直线平行,则这条直线与平面平行。
2、直线与平面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行。
3、平面与平面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。
4、平面与平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么所得的两条交线平行。
5、直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线垂直,那么这条直线垂直于这个平面。
6、直线与平面垂直的性质定理:若两条直线垂直于同一个平面,则这两条直线平行。
7、平面与平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,则这两个平面互相垂直。
8、平面与平面垂直的性质定理:如果两个平面互相垂直,那么在一个平面内垂直与它们的交线的直线垂直于另一个平面。
面面平行的性质
α E FG
A
练:A、B是不在直线l上的两点,则过点A、B 且与直线l平行的平面的个数是 ( D )
A.0个
B.1个
C.无数个 D.以上三种情况均有可能
小结与归纳
1、若两个平面互相平行,则其中一个 平面中的直线必平行于另一个平面;
2、平行于同一平面的两平面平行;
3、夹在两平行平面间的平行线段相等。
β
答:两条交线平行.
α
a
b
下面我们来证明这个结论
如图,平面α,β,γ满足α∥β,
α∩γ=a,β∩γ=b,
求证:a∥b
证明:∵α∩γ=a,
β∩γ=b
∴aα,bβ
a
α
∵α∥β ∴a,b没有公共点,
又∵ a,b同在平面γ内,
b
β
∴ a∥b
面面平行的性质定理: 如果两个平行平面同时和第三个平面相交,
那么它们的交线平行.
2.2.4 平面与平面 平行的性质
复习回顾:
平面与平面有几种位置关系?分别是什么?
(1)平行
(2)相交
α∥β
a
探究新知
探究1. 如果两个平面平行,那么一个平面 内的直线与另一个平面有什么位置关系?
a
异面直线
平行直线
探究2.如果两个平面平行,两个平面内的直 线有什么位置关系?
探究新知
探究3:当第三个平 面和两个平行平面 都相交时,两条交 线有什么关系?为 什么?
用符号语言表示性质定理:
/ /
a,
b
a//b
想一想:这个定理的作用是什么?
由平面与平面平行得出直线与直线平行
平行于同一个平面的两个平面平行.
已知:α∥γ,β∥γ 求证:α∥β
2.2.4平面和平面平行的性质定理-修改版
D′ M D
C
B A
例2:如图,ABCD和ABEF是两个不共面的 正方形,M,N分别是DB、AE上的点 若M,N分别是中点,证明MN//面ADF
D M A F N E B C
【例1】如图,设平面α∥平面β,AB、CD是两异面 直线,M、N分别是AB、CD的中点,且A、C∈α,B、 D∈β. 求证:MN∥α.
AB A B ∥
A B∥ A B A A ∥B B
A′
B′
所 以 经 过 A A , B B 能 确 定 一 个 平 面 , 记 为 平 面 .
A A B B 是 平 行 四 边 形 A A B B .
中的直线必平行于另一个平面;
3、夹在两平行平面间的平行线段相等。
AB BC
AB BC
=
=
AG GH
DE EF .
,
AG GH
=
DE EF
.
G
H
l
m
1 .已知 : 三个平行平面 , , 与两条直线 l , m 分 别 相 并 于 点 A, B , C 和 点 D , E , F . AB DE 求证 : = . BC EF
G
l
m
1、如果两个平行平面同时和第三个平面 相交,那么它们的交线平行. 2、若两个平面互相平行,则其中一个平面
2、如图,在棱长为 2 cm 的正方体 A C 1 中, A1 B1 的中点为 P 。问过点 A1 作与截面 P B C 1 平行 的截面也是三角形吗?并求该截面的面积。
D1
P
C1
A1
B1
D
C
A
B
课件4:2.2.3 直线与平面平行的性质~2.2.4 平面与平面平行的性质
知识点一 直线与平面平行的性质 线面平行的性质定理 (1)文字语言:一条直线与一个平面平行,则过 这条直线的任一平面与此平面的交线与该直线 平行.
(2)图形语言:
(3)符号语言:
a∥α
a⊂β α∩β=b
⇒a∥b
(4)作用:线面平行⇒线线平行.
题型三 线面平行和面面平行的综合问题 例3 如图所示,平面α∥平面β,△ABC、△A′B′C′ 分别在α、β内,线段AA′、BB′、CC′共点于O,O在α、 β之间,若AB=2,AC=1,∠BAC=90°,OA∶OA′ =3∶2.求△A′B′C面和两平行平面α、β分 别相交于AB、A′B′, 由面面平行的性质定理可得AB∥A′B′. 同理相交直线 BB′、CC′确定的平面和平行平面α、β分别相交于BC、 B′C′,从而BC∥B′C′.同理易证AC∥A′C′. ∴∠BAC与∠B′A′C′的两边对应平行且方向相反, ∴∠BAC=∠B′A′C′.
练习
5.如图所示,P 是△ABC 所在平面外一 点,平面 α∥平面 ABC,α 分别交线段 PA、PB、PC 于 A′、B′、C′.若APA′A′=23, 求S△A′B′C′的值.
S△ABC
解 平面α∥平面ABC,平面PAB∩平面α=A′B′, 平面PAB∩平面ABC=AB, ∴A′B′∥AB.同理可证B′C′∥BC,A′C′∥AC. ∴∠B′A′C′=∠BAC,∠A′B′C′=∠ABC, ∠A′C′B′=∠ACB. ∴△A′B′C′∽△ABC. 又∵PA′∶A′A=2∶3,∴PA′∶PA=2∶5. ∴A′B′∶AB=2∶5.∴S△A′B′C′∶S△ABC=4∶25.
证明 如图所示,过点A作AE∥CD,且AE交平面β 于E,连接DE与BE. ∵AE∥CD, ∴由AE与CD可以确定一个平面γ, 则α∩γ=AC,β∩γ=DE. ∵α∥β,∴AC∥DE. 取AE的中点N,连接NP与MN,如图所示. ∵M与P分别为线段AB与CD的中点,
学案4:2.2.3 直线与平面平行的性质~ 2.2.4 平面与平面平行的性质
2.2.3 直线与平面平行的性质~ 2.2.4 平面与平面平行的性质问题导学一、直线与平面平行的性质定理的应用活动与探究1求证:若一条直线分别和两个相交平面平行,则这条直线必与它们的交线平行.迁移与应用1.如图,过正方体ABCD-A1B1C1D1的棱BB1作一平面交平面CDD1C1于EE1,则直线BB1与EE1的关系是________.2.如图,在空间四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA上的点,EH∥FG.求证:EH∥BD.名师点津运用线面平行的性质定理时,应先确定线面平行,再寻找过已知直线的平面与平面相交的交线,然后确定线线平行.证题过程应认真领悟线线平行与线面平行的相互转化关系.二、面面平行的性质定理的应用活动与探究2如图所示,两条异面直线BA,DC与两平行平面α,β分别交于B,A点和D,C点,M,N 分别是AB,CD的中点.求证:MN∥平面α.迁移与应用1.如图所示,已知平面α∥平面β,A∈α,B∈α,C∈β,D∈β,AD∥BC,则线段AD与BC的长度关系是__________.2.如图,已知α∥β,点P是平面α,β外的一点(不在α与β之间).直线PB,PD分别与α,β相交于点A,B和C,D.(1)求证:AC∥BD;(2)已知P A=4 cm,AB=5 cm,PC=3 cm,求PD的长.名师点津面面平行的性质定理的几个有用推论:(1)两个平面平行,其中一个平面内的任意一条直线平行于另一个平面.(2)夹在两个平行平面之间的平行线段相等.(3)经过平面外一点有且只有一个平面与已知平面平行.(4)两条直线被三个平行平面所截,截得的对应线段成比例.(5)如果两个平面分别平行于第三个平面,那么这两个平面互相平行.三、平行关系的综合应用活动与探究3如图所示,平面四边形ABCD的四个顶点A,B,C,D均在平行四边形A′B′C′D′所确定的平面α外,且AA′,BB′,CC′,DD′互相平行.求证:四边形ABCD是平行四边形.迁移与应用在三棱锥S-ABC中,D,E,F分别是AC,BC,SC的中点,G是AB上任意一点.求证:SG∥平面DEF.名师点津在平行关系中,线线、线面、面面平行关系经常交替使用,相互转化,特别是一些复杂的题目,在线线、线面、面面平行关系中,判定了一个成立,接着可以利用性质转化成另一个也成立,其关系可用下图示意.当堂检测1.如果直线a∥平面α,则()A.平面α内有且只有一条直线与a平行B.平面α内有无数条直线与a平行C.平面α内不存在与a垂直的直线D.平面α内有且只有一条与a垂直的直线2.如果一条直线和一个平面平行,两端点分别在直线和平面上的两线段相等,那么这两条线段所在直线的位置关系是()A.平行B.相交C.异面D.皆有可能3.若α∥β,直线a⊂α,点B∈β,则在β内过点B的所有直线中()A.不一定存在与a平行的直线B.只有两条与a平行的直线C.存在无数条与a平行的直线D.有且只有一条与a平行的直线4.过正方体ABCD-A1B1C1D1的顶点A1,C1,B的平面与底面ABCD所在平面的交线为l,则l与A1C1的位置关系是________.5.如图,四边形ABDC是梯形,AB∥CD,且AB∥平面α,AC∩α=M,BD∩α=N,其中M 是AC的中点.AB=4,CD=6,则MN=________.参考答案问题导学活动与探究1【解析】先写出已知与求证,再利用线面平行的性质定理及判定定理证明.解:已知:a∥α,a∥β,α∩β=b.求证:a∥b.证明:设A∈α,且A∉b,过直线a和点A作平面γ交平面α于直线c,如图,∵a∥α,a⊂γ,α∩γ=c,∴a∥c(直线和平面平行的性质定理).再设B∈β,且B∉b,同样,过直线a和点B的平面δ交平面β于直线d.同理a∥d(直线和平面平行的性质定理).∴d∥c.又∵d⊂β,c⊄β,∴c∥β(直线与平面平行的判定定理).又∵c⊂α,α∩β=b,∴c∥b(直线与平面平行的性质定理).从而a∥b.迁移与应用1.BB1∥EE12.证明:因为EH∥FG,FG⊂平面BCD,EH⊄平面BCD,所以EH∥平面BCD.因为EH⊂平面ABD,平面ABD∩平面BCD=BD,所以EH∥BD.活动与探究2【解析】利用三角形的中位线及面面平行的性质证明.证明:过点A作AE∥CD交α于E,取AE的中点P,连接MP,PN,BE,ED,AC.∵AE∥CD,∴AE,CD确定平面AEDC.则平面AEDC∩平面α=DE,平面AEDC∩平面β=AC,∵α∥β,∴AC∥DE.又P,N分别为AE,CD的中点,∴PN∥DE.PN⊄α,DE⊂α,∴PN∥α.又M,P分别为AB,AE的中点,∴MP∥BE,且MP⊄α,BE⊂α,∴MP∥α.∴平面MPN∥平面α.又MN⊂平面MPN,∴MN∥α.迁移与应用1.AD=BC2.(1)证明:∵PB∩PD=P,∴直线PB和PD确定一个平面γ,则α∩γ=AC,β∩γ=BD.又α∥β,∴AC∥BD.(2)解:由(1)得AC∥BD,∴P AAB=PCCD.∴45=3CD.∴CD=154.∴PD=PC+CD=274(cm).活动与探究3【解析】充分利用A′B′C′D′的平行关系及AA′,BB′,CC′,DD′间的平行关系,先得出线面平行,再得面面平行,最后再由面面平行的性质定理得线线平行.证明:∵四边形A′B′C′D′是平行四边形,∴A′D′∥B′C′.∵A′D′⊄平面BB′C′C,B′C′⊂平面BB′C′C,∴A′D′∥平面BB′C′C.同理AA′∥平面BB′C′C.∵A′D′⊂平面AA′D′D,AA′⊂平面AA′D′D,且A′D′∩AA′=A′,∴平面AA′D′D∥平面BB′C′C.又∵AD,BC分别是平面ABCD与平面AA′D′D、平面BB′C′C的交线,故AD∥BC.同理可证AB∥CD.∴四边形ABCD是平行四边形.迁移与应用证明:∵D,E分别是AC,BC的中点.∴DE∥AB.又DE⊄平面SAB,AB⊂平面SAB,∴DE∥平面SAB.同理可证EF∥平面SAB.∵DE∩EF=E,∴平面DEF∥平面SAB.∵SG⊂平面SAB,∴SG∥平面DEF.当堂检测1.B2.D 3.D4.l∥A1C15.5。
2.2.4平面与平面平行的性质定理
思考2:如何找出一个平面内的一条直线 在另外一个平面内的平行直线?
思考3 :若 // ,平面α 、β 分别与平 面γ 相交于直线a、b,那么直线a、b的 位置关系如何?为什么?
γ
β α
b
a
面面平行的性质定理:
定理 如果两个平行平面同时和第三个 平面相交,那么它们的交线平行.
/ / , a, b a / /b
γ β α b a
1.平面 / / 平面 ,点A、C ,点B、D , 则能得到直线AC / / 直线BD的是( D ) A.AB=CD B.AD=CB C.AC=BD D. A、B、C、D四点共面
2.若平面 / / 平面 ,直线a ,点B , 则在内过点B的所有直线中(D ) A.不一定存在于a平行的直线. B.只有两条鱼a平行的直线. C.存在无数多条与a平行的直线. D.存在唯一一条与a平行的直线.
2.2.4平面与平面平行的 性质定理
复习回顾
直线与平面平行的性质定理:
一条直线与一个平面平行,则过 这条直线的任一平面与此平面的交 线与该直线平行.
a / / , a , b a / /b
新知探究
思考1:如果两个平面平行,那么一个 平面内的直线与另一个平面内的直线具 有什么位置关系?
1、α、β、γ为三个不重合的平面,a,b,c为三条 不同直线,则有一下列命题,不正确的是 ②③⑤⑥ ①
a∥c b∥c
a∥b ②
a∥γ
b∥γ a∥b
③
α∥c β∥c
α∥β ④
α∥γ β∥γ
α∥β
⑤
α∥c
a∥c
α∥a ⑥
α∥γ a∥γ
a∥α
2.2.4平面和平面平行的性质定理3
证明 a, b,
a ,b .
//
所以a,b没有公共点
a,b
a
a//b
b
思考
如果平面α、β都与平面γ相交, 且交线平行,则α∥β吗?
a α
γ b
β
例1 求证:夹在两个平行平面间的平行线段相等.
讨论:解决这个问题的基本步骤是什么?
第一步:结合图形,将原题改写成数学符号语言;
已知:如图,α∥β,AB∥CD,A∈α,
线//线
线//面
面//面
小结
空间线面间平行关系转化示意图
线线平行
判定 性质
线面平行
判定 性质
面面平行
性质
5、设 / /,A,过点A作直线 l // ,则l与的位置关系如何?
αA l
β
8 如图,设AB、CD为夹在两个平行平面 、 之间
的线段,且直线AB、CD为异面直线,M、P 分别 为AB平面平行?
2、两平面平行的判定定理是什么?
如果一个平面内有两条相交直 线分别平行于另一个平面,那么这 两个平面平行.
3、两平面平行的判定定理解决了 两平面平行的条件;反之,在两平面 平行的条件下,会得到什么结论?
问题讨论
1、若 // ,l , 则 l与 的位
置关系如何?该结论有何功能作用?
C∈α,B∈β,D∈β, 求证:AB=CD
A
C
第二步:分析,作出辅助线;
β Bγ
D
第三步:书写证明过程.
证明:
AB / / DC 过AB,CD可作平面
AC
A
C
BD
BD∥AC
/ /
AB∥CD
β Bγ
D
ABCD为平行四边形 AB CD
2.2.4_平面与平面平行的性质定理
平面与平面平行的性质定理
如果两个平行平面同时和第三个平面相交, 如果两个平行平面同时和第三个平面相交,那么它们 的交线平行. 的交线平行. γ (1)该定理中有三个条件: α // β 该定理中有三个条件: 该定理中有三个条件 α I γ = a ⇒ a // b α a β I γ = b
DE AG AB DE ∴ = ,所以 = . EF GF BC EF
A D
α
G
B
E
β
H
F
γC
练习
1.α、β、γ为三个不重合的平面,a,b,c为三条不同直 、 、 为三个不重合的平面 为三个不重合的平面, , , 为三条不同直 则有一下列命题,不正确的_______. 线,则有一下列命题,不正确的 ②③④⑤
β
b
α
a ∩ b = P ⇒ α // β a // α b // α
4.面面平行判定定理推论: 面面平行判定定理推论: 面面平行判定定理推论 如果一个平面内的两条相交直线分别 平行于另一个平面内的两条直线,那么这 平行于另一个平面内的两条直线 那么这 a ⊂α 两个平面平行. 两个平面平行 b ⊂α
α
a e
b f
β
c g
例 α // β // γ , 直线a与b分别交α,β,γ 于点A,B,C和点D,E,F, AB DE (1)求证: = . (2)连接CD交β 于点H,求证BGEH为平行四边形. BC EF a b 证明 : 如图,连接AF交β 于点G,
再连接BG,CF和GE,AD. 则面ACF与β 和γ 的交线分别为BG,CF 又 Q β // γ ,∴ BG // CF BG AB AG ∴ = BC GF 同理,面ADF与α 和β的交线分别为AD,GE ∴由α // β 可得AD//GE
数学:2.2.4《平面与平面平行的性质》课件(新人教A版必修2)
[化解疑难] 对面面平行性质定理的理解 (1)面面平行的性质定理的条件有三个: ①α∥β;②α∩γ=a;③β∩γ=b. 三个条件缺一不可. (2)定理的实质是由面面平行得线线平行,其应用过程是构 造与两个平行平面都相交的一个平面,由其结论可知定理可用 来证明线线平行. (3)面面平行的性质定理的推证过程应用了平行线的定义.
这个结论可做定理用
定理 如果两个平行平面同时和 第三个平面相交,那么它们的交 线平行。
用符号语言表示性质定理: / / a//b a, b
想一想:这个定理的作用是什么? 答:可以由平面与平面平 行得出直线与直线平行
[导入新知]
面面平行的性质定理 (1)文字语言:如果两个平行平面同时和第三个平面 平行 . 相交 ,那么它们的交线_______ ______ (2)图形语言:
又∵M,P分别为AB,AE的中点, ∴MP∥BE.又∵MP⊄α,BE⊂α, ∴MP∥α.∵MP,PN⊂平面MPN,且MP∩PN=P, ∴平面MPN∥α. 又∵MN⊂平面MPN,∴MN∥α.
[类题通法] 1.把握面面平行性质定理的关键
(1)成立的条件:两平面平行,第三个平面与这两个平
面均相交. (2)定理的实质:面面平行⇒线线平行,体现了转化思 想与判定定理交替使用,可实现线面、线线、面面平行间 的相互转化.
探究新知
探究3:当第三个平 面和两个平行平面 都相交时,两条交 线有什么关系?为 什么? 答:两条交线平行.
α
a
β
b
下面我们来证明这个结论
课件10:2.2.3 直线与平面平行的性质~2.2.4 平面与平面平行的性质
本课结束
更多精彩内容请登录:
∵NP⊄平面 AA1B1B,AB⊂平面 AA1B1B, ∴NP∥平面 AA1B1B. ∵MP∥BB1,MP⊄平面 AA1B1B,BB1⊂平面 AA1B1B, ∴MP∥平面 AA1B1B. 又∵MP⊂平面 MNP,NP⊂平面 MNP,MP∩NP=P, ∴平面 MNP∥平面 AA1B1B. ∵MN⊂平面 MNP,∴MN∥平面 AA1B1B.
[类题通法] 应用平面与平面平行性质定理的基本步骤
[针对训练] 2.给出下列说法: ①若平面 α∥平面 β,平面 β∥平面 γ,则平面 α∥平面 γ; ②若平面 α∥平面 β,直线 a 与 α 相交,则 a 与 β 相交; ③若平面 α∥平面 β,P∈α,PQ∥β,则 PQ⊂α; ④若直线 a∥平面 β,直线 b∥平面 α,且 α∥β,则 a∥b. 其中正确说法的序号是________.
文字语言 那么它们的交线__平__行___
符号语言 α∥β,α∩γ=a,β∩γ=b⇒__a_∥__b_
图形语言
三、综合迁移·深化思维 (1)若直线 a∥平面 α,则直线 a 平行于平面 α 内的任意一条直线,对吗? 提示:错误.若直线 a∥平面 α,则由线面平行的性质定理可知直线 a 与平面 α 内的一组直线平行. (2)若直线 a 与平面 α 不平行,则直线 a 就与平面 α 内的任一直线都不 平行,对吗? 提示:不对.若直线 a 与平面 α 不平行,则直线 a 与平面 α 相交或 a⊂α,当 a⊂α 时,α 内有直线与直线 a 平行.
(3)两个平面平行,那么,两个平面内的所有直线都相互平行吗? 提示:不一定.它们可能异面. (4)两个平面平行,其中一个平面内的直线必平行于另一个平面吗? 提示:一定平行.因为两个平面平行,则两个平面无公共点,则 其中一个平面内的直线必和另一个平面无公共点,因而它们平行.
高中数学人教版必修2教案:第2章 2.2.3 直线与平面平行的性质+2.2.4 平面与平面平行的性质含答案
2.2.3直线与平面平行的性质2.2.4平面与平面平行的性质1.理解直线与平面、平面与平面平行的性质定理的含义.(重点)2.能用三种语言准确描述直线与平面、平面与平面平行的性质定理.(重点) 3.能用直线与平面、平面与平面平行的性质定理证明一些空间平行关系的简单命题.(难点)[基础·初探]教材整理1直线与平面平行的性质定理阅读教材P58~P59“例3”以上的内容,完成下列问题.自然语言一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行符号语言a∥α,a⊂β,α∩β=b⇒a∥b图形语言作用证明两直线平行判断(正确的打“√”,错误的打“×”)(1)一条直线如果和一个平面平行,它就和这个平面内的无数条直线平行.()(2)一条直线和一个平面平行,它就和这个平面内的任何直线无公共点.()(3)过直线外一点,有且仅有一个平面和已知直线平行.()(4)如果直线l和平面α平行,那么过平面α内一点和直线l平行的直线在α内.()【解析】由线面平行的性质定理知(1)(4)正确;由直线与平面平行的定义知(2)正确;因为经过一点可作一条直线与已知直线平行,而经过这条直线可作无数个平面,故(3)错.【答案】(1)√(2)√(3)×(4)√教材整理2平面与平面平行的性质定理阅读教材P60“思考”以下至P61“练习”以上的内容,完成下列问题.自然语言如果两个平行平面同时和第三个平面相交,那么它们的交线平行符号语言α∥β,α∩γ=a,β∩γ=b⇒a∥b图形语言作用证明两直线平行已知平面α∥平面β,过平面α内的一条直线a的平面γ,与平面β相交,交线为直线b,则a,b的位置关系是()A.平行B.相交C.异面D.不确定【解析】由面面平行的性质定理可知a∥b.【答案】 A[小组合作型]线面平行性质定理的应用面为平行四边形,求证:AB∥平面EFGH.图2-2-15【精彩点拨】要证明AB∥平面EFGH,只需证AB平行于平面EFGH内的某一条直线,由于EFGH是平行四边形,可利用其对边平行的特点,达到证题的目的.【自主解答】∵四边形EFGH为平行四边形,∴EF∥HG.∵HG⊂平面ABD,EF⊄平面ABD,∴EF∥平面ABD.∵EF⊂平面ABC,平面ABC∩平面ABD=AB,∴EF∥AB.∵AB⊄平面EFGH,EF⊂平面EFGH,∴AB∥平面EFGH.运用线面平行的性质定理时,应先确定线面平行,再寻找过已知直线的平面与平面相交的交线,然后确定线线平行.应认真领悟线线平行与线面平行的相互转化关系.[再练一题]1.如图2-2-16,在三棱柱ABC-A1B1C1中,过AA1作一平面交平面BCC1B1于EE1.求证:AA1∥EE1.图2-2-16【证明】在三棱柱ABC-A1B1C1中,AA1∥BB1,∵AA1⊄平面BCC1B1,BB1⊂平面BCC1B1,∴AA1∥平面BCC1B1.∵AA1⊂平面AEE1A1,平面AEE1A1∩平面BCC1B1=EE1,∴AA1∥EE1.面面平行性质定理的应用α与β之间),直线PB,PD分别与α,β相交于点A,B和C,D.图2-2-17(1)求证:AC∥BD;(2)已知P A=4,AB=5,PC=3,求PD的长.【精彩点拨】(1)利用面面平行的性质定理直接证明即可.(2)利用平行线分线段成比例定理可求得PD.【自主解答】(1)证明:∵PB∩PD=P,∴直线PB和PD确定一个平面γ,则α∩γ=AC,β∩γ=BD.又α∥β,∴AC∥BD.(2)由(1)得AC∥BD,∴P AAB=PCCD,∴45=3CD,∴CD=154,∴PD =PC +CD =274.1.利用面面平行的性质定理判定两直线平行的步骤:(1)先找两个平面,使这两个平面分别经过这两条直线中的一条;(2)判定这两个平面平行;(3)再找一个平面,使这两条直线都在这个平面上;(4)由性质定理得出线线平行.2.应用面面平行的性质定理时,往往需要“作”或“找”辅助平面,但辅助平面不可乱作,要想办法与其他已知量联系起来.[再练一题]2.如图2-2-18,在三棱柱ABC -A 1B 1C 1中,M 是A 1C 1的中点,平面AB 1M ∥平面BC 1N ,AC ∩平面BC 1N =N .求证:N 为AC 的中点.图2-2-18【证明】 因为平面AB 1M ∥平面BC 1N ,平面ACC 1A 1∩平面AB 1M =AM ,平面BC 1N ∩平面ACC 1A 1=C 1N ,所以C 1N ∥AM ,又AC ∥A 1C 1,所以四边形ANC 1M 为平行四边形, 所以AN ∥C 1M 且AN =C 1M , 又C 1M =12A 1C 1,A 1C 1=AC ,所以AN =12AC ,所以N 为AC 的中点.[探究共研型]平行关系的综合应用探究1 【提示】 应着力寻找过已知直线的平面与已知平面的交线,有时为了得到交线还需作出辅助平面,而且证明与平行有关的问题时,要与公理4等结合起来使用,扩大应用的范畴.探究2面面平行的判定定理与性质定理各有什么作用?【提示】两个平面平行的判定定理与性质定理的作用,关键都集中在“平行”二字上.判定定理解决了“在什么样的条件下两个平面平行”;性质定理揭示了“两个平面平行之后它们具有什么样的性质”.前者给出了判定两个平面平行的一种方法;后者给出了判定两条直线平行的一种方法.探究3你能总结一下线线平行与线面平行、面面平行之间的转化关系吗?【提示】三种平行关系可以任意转化,其相互转化关系如图所示:如图2-2-19,在正方体ABCD-A1B1C1D1中,点N在BD上,点M在B1C上,且CM=DN.求证:MN∥平面AA1B1B.图2-2-19【精彩点拨】用判定定理证明较困难,可通过证明过MN的平面与平面AA1B1B平行,得到MN∥平面AA1B1B.【自主解答】如图,作MP∥BB1交BC于点P,连接NP,∵MP∥BB1,∴CMMB1=CPPB.∵BD=B1C,DN=CM,∴B1M=BN,∴CMMB1=DNNB,∴CPPB=DNNB,∴NP∥CD∥AB.∵NP⊄平面AA1B1B,AB⊂平面AA1B1B,∴NP∥平面AA1B1B.∵MP∥BB1,MP⊄平面AA1B1B,BB1⊂平面AA1B1B,∴MP∥平面AA1B1B.又∵MP⊂平面MNP,NP⊂平面MNP,MP∩NP=P,∴平面MNP∥平面AA1B1B.∵MN⊂平面MNP,∴MN∥平面AA1B1B.1.三种平行关系的转化要灵活应用线线平行、线面平行和面面平行的相互联系、相互转化.在解决立体几何中的平行问题时,一般都要用到平行关系的转化.转化思想是解决这类问题的最有效的方法.2.面面平行的性质定理的几个推论(1)两个平面平行,其中一个平面内的任意一条直线平行于另一个平面.(2)夹在两平行平面间的平行线段相等.(3)经过平面外的一点有且只有一个平面与已知平面平行.(4)两条直线被三个平行平面所截,截得的对应线段成比例.[再练一题]3.如图2-2-20,在四棱柱ABCD-A1B1C1D1中,底面ABCD为等腰梯形,AB∥CD,AB=2CD,E,E1分别是棱AD,AA1上的点.设F是棱AB的中点,证明:直线EE1∥平面FCC1.图2-2-20【证明】因为F为AB的中点,所以AB=2AF.又因为AB=2CD,所以CD=AF.因为AB∥CD,所以CD∥AF,所以AFCD为平行四边形.所以FC∥AD.又FC⊄平面ADD1A1,AD⊂平面ADD1A1,所以FC∥平面ADD1A1.因为CC1∥DD1,CC1⊄平面ADD1A1,DD1⊂平面ADD1A1,所以CC1∥平面ADD1A1,又FC∩CC1=C,所以平面ADD1A1∥平面FCC1.又EE1⊂平面ADD1A1,所以EE1∥平面FCC1.1.正方体ABCD-A1B1C1D1中,E,F,G分别是A1B1,CD,B1C1的中点,则正确命题是()图2-2-21A.AE⊥CGB.AE与CG是异面直线C.四边形AEC1F是正方形D.AE∥平面BC1F【解析】由正方体的几何特征知,AE与平面BCC1B1不垂直,则AE⊥CG 不成立;由于EG∥A1C1∥AC,故A,E,G,C四点共面,所以AE与CG是异面直线错误;在四边形AEC1F中,AE=EC1=C1F=AF,但AF与AE不垂直,故四边形AEC1F是正方形错误;由于AE∥C1F,由线面平行的判定定理,可得AE∥平面BC1F.故选D.【答案】 D2.如图2-2-22,四棱锥P-ABCD中,M,N分别为AC,PC上的点,且MN ∥平面P AD,则()图2-2-22A.MN∥PDB.MN∥P AC.MN∥ADD.以上均有可能B[∵MN∥平面P AD,平面P AC∩平面P AD=P A,MN⊂平面P AC,∴MN ∥P A.]3.已知直线l∥平面α,l⊂平面β,α∩β=m,则直线l,m的位置关系是________.【解析】由直线与平面平行的性质定理知l∥m.【答案】平行4.过两平行平面α,β外的点P的两条直线AB与CD,它们分别交α于A,C两点,交β于B,D两点,若P A=6,AC=9,PB=8,则BD的长为________.【解析】两条直线AB与CD相交于P点,所以可以确定一个平面,此平面与两平行平面α,β的交线AC∥BD,所以P APB=ACBD,又P A=6,AC=9,PB=8,故BD=12.【答案】125.如图2-2-23,α∩β=CD,α∩γ=EF,β∩γ=AB,AB∥α.求证:CD∥EF.图2-2-23【证明】因为AB∥α,AB⊂β,α∩β=CD,所以AB∥CD.同理可证AB∥EF,所以CD∥EF.学业分层测评(十一)(建议用时:45分钟)[学业达标]一、选择题1.直线a∥平面α,α内有n条直线交于一点,那么这n条直线中与直线a 平行的()A.至少有一条B.至多有一条C.有且只有一条D.没有【解析】过a和平面内n条直线的交点只有一个平面β,所以平面α与平面β只有一条交线,且与直线a平行,这条交线可能不是这n条直线中的一条,也可能是.故选B.【答案】 B2.设a,b是两条直线,α,β是两个平面,若a∥α,a⊂β,α∩β=b,则α内与b相交的直线与a的位置关系是()A.平行B.相交C.异面D.平行或异面【解析】条件即为线面平行的性质定理,所以a∥b,又a与α无公共点,故选C.【答案】 C3.下列命题中不正确的是()A.两个平面α∥β,一条直线a平行于平面α,则a一定平行于平面βB.平面α∥平面β,则α内的任意一条直线都平行于平面βC.一个三角形有两条边所在的直线平行于一个平面,那么三角形所在平面与这个平面平行D.分别在两个平行平面内的两条直线只能是平行直线或者是异面直线【解析】选项A中直线a可能与β平行,也可能在β内,故选项A不正确;三角形两边必相交,这两条相交直线平行于一个平面,那么三角形所在的平面与这个平面平行,所以选项C正确;依据平面与平面平行的性质定理可知,选项B,D也正确,故选A.【答案】 A4.如图2-2-24,在长方体ABCD-A1B1C1D1中,E,F分别是棱AA1和BB1的中点,过EF的平面EFGH分别交BC和AD于G,H,则GH与AB的位置关系是()图2-2-24A.平行B.相交C.异面D.平行或异面【解析】由长方体性质知:EF∥平面ABCD,∵EF⊂平面EFGH,平面EFGH∩平面ABCD=GH,∴EF∥GH,又∵EF∥AB,∴GH∥AB,∴选A.【答案】 A5.设平面α∥平面β,A∈α,B∈β,C是AB的中点,当点A、B分别在平面α,β内运动时,动点C()A.不共面B.当且仅当点A、B分别在两条直线上移动时才共面C.当且仅当点A、B分别在两条给定的异面直线上移动时才共面D.无论点A,B如何移动都共面【解析】无论点A、B如何移动,其中点C到α、β的距离始终相等,故点C在到α、β距离相等且与两平面都平行的平面上.【答案】 D二、填空题6.如图2-2-25,正方体ABCD-A1B1C1D1中,AB=2,点E为AD的中点,点F在CD上,若EF∥平面AB1C,则线段EF的长度等于________.图2-2-25【解析】因为EF∥平面AB1C,EF⊂平面ABCD,平面AB1C∩平面ABCD=AC,所以EF∥AC.又点E为AD的中点,点F在CD上,所以点F是CD的中点,所以EF=12AC= 2.【答案】 27.如图2-2-26所示,直线a∥平面α,A∉α,并且a和A位于平面α两侧,点B,C∈a,AB、AC分别交平面α于点E,F,若BC=4,CF=5,AF=3,则EF=________.图2-2-26【解析】EF可看成直线a与点A确定的平面与平面α的交线,∵a∥α,由线面平行的性质定理知,BC∥EF,由条件知AC=AF+CF=3+5=8.又EFBC=AFAC,∴EF=AF×BCAC=3×48=32.【答案】3 2三、解答题8.如图2-2-27所示,四边形ABCD是矩形,P∉平面ABCD,过BC作平面BCFE交AP于点E,交DP于点F,求证:四边形BCFE为梯形.图2-2-27【证明】∵四边形ABCD是矩形,∴BC∥AD.∵AD⊂平面APD,BC⊄平面APD,∴BC∥平面APD.又平面BCFE∩平面APD=EF,∴BC∥EF,∴AD∥EF.又E,F是△APD边上的点,∴EF≠AD,∴EF≠BC.∴四边形BCFE是梯形.9.如图2-2-28,S是平行四边形ABCD所在平面外一点,M,N分别是SA,BD上的点,且AMSM=DNNB,求证:MN∥平面SBC.图2-2-28【证明】在AB上取一点P,使APBP=AMSM,连接MP,NP,则MP∥SB.∵SB⊂平面SBC,MP⊄平面SBC,∴MP∥平面SBC.又AMSM=DNNB,∴APBP=DNNB,∴NP∥AD.∵AD∥BC,∴NP∥BC.又BC⊂平面SBC,NP⊄平面SBC,∴NP∥平面SBC.又MP∩NP=P,∴平面MNP∥平面SBC,而MN⊂平面MNP,∴MN∥平面SBC.[能力提升]10.对于直线m、n和平面α,下列命题中正确的是()A.如果m⊂α,n⊄α,m、n是异面直线,那么n∥αB.如果m⊂α,n⊄α,m、n是异面直线,那么n与α相交C.如果m⊂α,n∥α,m、n共面,那么m∥nD.如果m∥α,n∥α,m、n共面,那么m∥n【解析】对于A,如图(1)所示,此时n与α相交,故A不正确;对于B,如图(2)所示,此时m,n是异面直线,而n与α平行,故B不正确;对于D,如图(3)所示,m与n相交,故D不正确.故选C.图(1)图(2)图(3)【答案】 C11.如图2-2-29,三棱柱ABC-A1B1C1中,底面是边长为2的正三角形,点E,F分别是棱CC1,BB1上的点,点M是线段AC上的动点,EC=2FB=2,当点M在何位置时,BM∥平面AEF.图2-2-29【解】如图,取EC的中点P,AC的中点Q,连接PQ,PB,BQ,则PQ ∥AE.因为EC=2FB=2,所以PE=BF.所以四边形BFEP为平行四边形,所以PB ∥EF.又AE,EF⊂平面AEF,PQ,PB⊄平面AEF,所以PQ∥平面AEF,PB∥平面AEF.又PQ∩PB=P,所以平面PBQ∥平面AEF.又BQ⊂平面PBQ,所以BQ∥平面AEF.故点Q即为所求的点M,即点M为AC的中点时,BM∥平面AEF.。
平面和平面平行的性质定理
α E FG
A
课外作业:
1、已知α∥β,AB交α、β于A、B,CD交
α、β于C、D,AB∩CD=S,AS=8,BS=9,
S
CD=34,求SC。
AC
α
S
AC
α
βD
B
B
D
β
2、已知P、Q是边长为1旳正方体ABCD-A1B1C1D1
旳面AA1DD1 、面ABCD旳中心 D1 (1)求证:PQ// 平面DD1C1CA1
且 a, b, 求证:a // b 。
证明 a, b,
a ,b .
//
所以a,b没有公共点
a,b
a
a //b
b
面面平行旳其他某些性质 1、若两个平面相互平行,则其中一种平面 中旳直线必平行于另一种平面; 2、平行于同一平面旳两平面平行;
3、过平面外一点有且只有一种平面与这 个平面平行;
旳线段,且直线AB、CD为异面直线,M、P 分别 为AB、CD 旳中点,
求证: 直线MP // 平面 .
提醒:过A做CD旳平行
直线交 于E,取AE旳中点为N,
连结BE,ED,BD,MN,MP,NP
A
M
N
C
P
D
B
E
练习
1. 若∥,∥,求证: ∥ .
a'
Mb' N
Oa
b
an
bn
例2 P是长方形ABCD所在平面外旳一点,AB、 PD两点M、N满足AM:MB=ND:NP。
4、夹在两平行平面间旳平行线段相等。
5、若 // ,A、B ,C、D ,
且AC∥BD,则AC与BD旳长度关系 怎样?
αA
平面与平面平行判定定理
平面与平面平行判定定理平面与平面平行判定定理,这个听起来有点儿严肃的名字,其实在我们的生活中随处可见。
想想看,咱们每天走在街上,看到的楼房、车道,甚至是大广场,那些地面跟周围的建筑是不是都呈现出一种和谐的平行关系?要是这些平面不平行,那可就要出事儿了,想象一下,走着走着,脚下一抖,差点摔个狗吃屎,那场面可真让人哭笑不得。
好啦,咱们说说这平面与平面平行判定定理到底是个啥。
简单来说,就是如果两个平面之间的距离始终保持不变,永远不会相交,那它们就是平行的。
就好比你跟你的好朋友在同一条街上走,一左一右,始终保持着一定的距离。
再比如,老天爷给咱们安排的日出和日落,虽然一直在变,但始终不会相交,这也是一种平行。
咱们再看看数学上是怎么定义的。
一般来说,平面可以用一个点和一个法向量来描述。
这个法向量就像是平面的“身份证”,它告诉我们这个平面是怎么“站”的。
要是两个平面的法向量是成比例的,那这两个平面就是平行的。
说白了,就是这两个平面就像是一对双胞胎,长得一模一样,绝对不会跑偏。
生活中,平面与平面平行的例子比比皆是。
想想看,地铁的轨道,它们是多么完美地平行着,确保每一列车都能安全到达目的地。
再想想飞机起飞时的跑道,宽宽的,笔直笔直的,平行得让人心安。
这些都不是偶然,而是因为它们遵循了平行的法则,让我们的生活变得更有秩序。
哎呀,讲到这儿,大家可能觉得这平行的概念有点儿无趣,但我告诉你,了解这些东西可真有意思。
比如说,建筑师在设计一座大楼时,绝对得考虑到这些平行的关系。
要是设计得不够好,可能就会出现奇葩的建筑,像是“歪脖子楼”,那可就笑话了。
大家常说“千里之行,始于足下”,这平行的道理其实也能让我们在生活中走得更顺畅。
只要方向对了,努力向前,总能到达目的地。
咱们也不能忽视那些让平行的关系出错的因素。
比如说,地震来了,地面一抖,平行的轨道就可能变得不再平行。
还有些时候,天气变化也会对交通产生影响。
这就是为什么有些事情,虽然理论上是平行的,但在实际操作中却可能会出现偏差。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5、 α // β, 、 ∈α, 、 ∈β, 若 A B C D 且AC∥BD,则AC与BD的长度关系 则 与 的长度关系 如何? 如何?
α A B
βC
D
6、 α // β, ∈α, 设 A 过点A作直线 过点 作直线 l // β,则 与 的 置 系 何 l α 位 关 如 ?
α A
l
β
7、如果平面α、β都与平面γ相 如果平面α 都与平面γ 且交线平行, 交,且交线平行,则α∥β吗?
γ a α β b
8 如图 设AB、CD为夹在两个平行平面 如图,设 、 为夹在两个平行平面
α、 β之间
的线段,且直线 、 为异面直线 为异面直线, 、 的线段,且直线AB、CD为异面直线,M、P 分别 的中点, 为AB、CD 的中点, 、 求证: 直线MP // 平面 求证: 直线
提示: 提示:过A做CD的平行 做 的平行 直线交 于E, AE的中点为N, 的中点为N, E 取AE的中点为
问题讨论
β 1、若 α // β,l α, 则 l与 的位 置关系如何?该结论有何功能作用? 置关系如何?该结论有何功能作用?
α
l
判定线面平 行的依据
β
且 β γ 2、若 α // β, α ∩γ = a,则 与 的位置关系如何? 的位置关系如何?
设 ∩γ = b, β 则直线a 则直线a、b的位置 关系如何?为什么? 关系如何?为什么?
连结BE, , , 连结 ,ED,BD,MN,MP,NP , ,
α.
β
α
A
M
C
P
N
D
α
B
E
α β a
b γ
定理: 定理:两个平行平面同时和第三个 平面相交,那么它们的交线平行 平面相交,那么它们的交线平行.
简记:面面平行, 简记:面面平行,则线线平行
符号语言: 符号语言:
α Iγ = a, a // b β Iγ = b
α // β
γ
Hale Waihona Puke αβa b
β 如图, 例1 如图,已知平面 α , ,γ ,满足 α // β 求证: 且 α Iγ = a, β Iγ = b, 求证: // b 。 a
问题提出
1、什么叫两平面平行? 什么叫两平面平行? 2、两平面平行的判定定理是什么? 两平面平行的判定定理是什么? 如果一个平面内有两条相交直 线分别平行于另一个平面, 线分别平行于另一个平面,那么这 两个平面平行. 两个平面平行.
3、两平面平行的判定定理解决了 两平面平行的条件;反之, 两平面平行的条件;反之,在两平面 平行的条件下,会得到什么结论? 平行的条件下,会得到什么结论?
证明 Qα Iγ = a, β Iγ = b,
∴a α, b β.
Qα//β
所以a,b没有公共点 所以 没有公共点
γ
Qa, b γ
∴a//b
α
β
a b
面面平行的其它一些性质 1、若两个平面互相平行,则其中一个平面 、若两个平面互相平行, 中的直线必平行于另一个平面; 中的直线必平行于另一个平面; 2、平行于同一平面的两平面平行; 、平行于同一平面的两平面平行; 3、过平面外一点有且只有一个平面与这 、 个平面平行; 个平面平行; 4、夹在两平行平面间的平行线段相等。 、夹在两平行平面间的平行线段相等。