人教新版八年级数学上册经典勾股定理的应用总结(含答案)(最新整理)
新人教版八年级上勾股定理的实际应用
B时,最短距离为 AB,此时, 由勾股定理,得 AB=10,即所
用细线最短为 10cm.
聪明的葛藤 葛藤是一种刁钻的植物,
它自己腰杆不硬,为了得到 阳光的沐浴,常常会选择高 大的树木为依托,缠绕其树 干盘旋而上。如图(1)所示。
葛藤又是一种聪明的植
物,它绕树干攀升的路线, 总是沿着最短路径 ——螺旋
一种盛饮料的圆柱形杯(如图),测得
内部底面直径为5㎝,高为12㎝,吸管 放进杯里,杯口外面露出5㎝,问吸管要
做多长?
C
A
B
如图,将一根 25 ㎝长的细木棒放入长、 宽、高分别为8㎝、6㎝和10 ㎝的长方体 无盖盒子中,则细木棒露在盒外面的最 短长度是多少㎝.(保留1 位小数)
C
B
A
D
有一个圆柱,它的
研A
D
究
3.6 米
A B 1. 2米O C
D
3. 6米 3米
B
OC
挑战“试一试”:
一辆装满货物的卡
车,其外形高 2.5 米,
宽1.6 米,要开进厂门 A
B
形状如图的某工厂, 米 问这辆卡车能否通过 2.3
该工厂的厂门 ? 说明理
由。
D
2米
C
一辆装满货物的卡车,其外形高2.5 米,宽1.6 米
分析 由于厂门宽度足够,所 A
A
3
③ AB? (3+2)2 ? 12 ? 26
A1
3
B
2
1
C B
1
2
C
B 2 C
如果长方形的长、宽、高分 别是a、b、c(a>b>c),则 从顶点A到B的最短线是:
a 2 ? (b ? c)2
勾股定理的实际应用(人教版)(含答案)
勾股定理的实际应用(人教版)一、单选题(共8道,每道10分)1.如图,这是一个供滑板爱好者使用的U型池,该U型池可以看作是一个长方体去掉一个“半圆柱”而成,中间可供滑行部分的截面是半径为3的半圆,其边缘AB=CD=16,点E在CD上,CE=4,一滑板爱好者从A点滑到E点,则他滑行的最短距离为( )(π按3计算)A.15B.C. D.21答案:A解题思路:试题难度:三颗星知识点:平面展开最短路径问题2.如图,圆柱底面半径为,高为9cm,点A,B分别是圆柱两底面圆周上的点,且点A,B在同一母线上,用一根棉线从点A点顺着圆柱侧面绕3圈到B点,则这根棉线的长度最短为( )A.12cmB.C.15cmD.答案:C解题思路:试题难度:三颗星知识点:平面展开最短路径问题3.如图是一个三级台阶,它的每一级的长,宽和高分别为50寸,30寸和10寸,A和B是这个台阶的两个相对端点,A点上有一只蚂蚁想到B点去吃可口的食物,则它所走的最短路线长是( )A.13寸B.40寸C.130寸D.169寸答案:C解题思路:试题难度:三颗星知识点:平面展开最短路径问题4.如图,一只蚂蚁从长、宽都是6,高是16的长方体纸箱的A点沿纸箱爬到B点,那么它所爬行的最短路线的长为( )A.20B.22C.28D.18答案:A解题思路:试题难度:三颗星知识点:平面展开最短路径问题5.如图,一个直径为8cm的杯子,在它的正中间竖直放一根筷子,筷子露出杯子外1cm.当筷子倒向杯壁时(筷子底端不动),若筷子顶端刚好触到杯口,则筷子长度和杯子的高度分别为( )cm.A.8,7B.8.5,7.5C.9,8D.10,9答案:B解题思路:试题难度:三颗星知识点:勾股定理的应用6.如图,将一根木棒垂直或倾斜的放进长、宽、高分别为12cm,4cm,3cm的水箱中,能放入水箱内木棒的最大长度为( )cm.A.13B.12C.15D.16答案:A解题思路:试题难度:三颗星知识点:勾股定理的应用7.一辆卡车装满货物后宽3.2米,这辆卡车要通过如图所示的隧道(上方是一个半圆,下方是边长为4米的正方形),则装满货物后卡车的最大高度为( )米.A.5.2B.5.8C.7.6D.5.4答案:A解题思路:试题难度:三颗星知识点:勾股定理应用之拱桥问题8.某工厂大门形状如图所示,其上部分为半圆,工厂门口的道路为双行道(双行道中间隔离带忽略不计).要想使宽为1.5米,高为3.1米的卡车安全通过,那么此大门的宽度至少应增加( )米.A.1.7B.2C.0.3D.1答案:B解题思路:试题难度:三颗星知识点:勾股定理应用之拱桥问题二、填空题(共2道,每道10分)9.如图,一圆柱体的底面周长为24cm,高AB为16cm,BC是上底面的直径.一只昆虫从点A出发,沿着圆柱的侧面爬行到点C,则昆虫爬行的最短路程为____cm.答案:20解题思路:试题难度:知识点:平面展开最短路径问题10.如图,长方体的长、宽、高分别为4cm,2cm,5cm.若一只蚂蚁从P点开始经过4个侧面爬行一圈到达Q点,则蚂蚁爬行的最短路径长为____cm.答案:13解题思路:试题难度:知识点:平面展开最短路径问题。
八年级初二数学勾股定理知识归纳总结含答案
一、选择题1.如图,在ABC 中,,904C AC ︒∠==cm ,3BC =cm ,点D 、E 分别在AC 、BC 上,现将DCE 沿DE 翻折,使点C 落在点'C 处,连接AC ',则AC '长度的最小值 ( )A .不存在B .等于 1cmC .等于 2 cmD .等于 2.5 cm2.如图,在ABC 中,90A ∠=︒,6AB =,8AC =,ABC ∠与ACB ∠的平分线交于点O ,过点O 作⊥OD AB 于点D ,若则AD 的长为( )A .2B .2C .3D .43.在△ABC 中,∠BCA=90∘,AC=6,BC=8,D 是AB 的中点,将△ACD 沿直线CD 折叠得到△ECD ,连接BE ,则线段BE 的长等于( )A .5B .75C .145D .3654.如果直角三角形的三条边为3、4、a ,则a 的取值可以有( ) A .0个B .1个C .2个D .3个5.如图是由“赵爽弦图”变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD 、正方形EFGH 、正方形MNKT 的面积分别为S 1、S 2、S 3.若S 1+S 2+S 3=15,则S 2的值是( )A .3B .154C .5D .1526.在平面直角坐标系内的机器人接受指令“[α,A]”(α≥0,0°<A <180°)后的行动结果为:在原地顺时针旋转A 后,再向正前方沿直线行走α.若机器人的位置在原点,正前方为y 轴的负半轴,则它完成一次指令[4,30°]后位置的坐标为( ) A .(-2,23)B .(-2,-23)C .(-2,-2)D .(-2,2)7.A 、B 、C 分别表示三个村庄,AB 1700=米,800BC =米,AC 1500=米,某社区拟建一个文化活动中心,要求这三个村庄到活动中心的距离相等,则活动中心P 的位置应在( ) A .AB 的中点 B .BC 的中点C .AC 的中点D .C ∠的平分线与AB 的交点 8.已知△ABC 的三边分别是6,8,10,则△ABC 的面积是( )A .24B .30C .40D .489.小明学了在数轴上画出表示无理数的点的方法后,进行练习:首先画数轴,原点为O ,在数轴上找到表示数2的点A ,然后过点A 作AB ⊥OA ,使AB=3(如图).以O 为圆心,OB 的长为半径作弧,交数轴正半轴于点P ,则点P 所表示的数介于( )A .1和2之间B .2和3之间C .3和4之间D .4和5之间10.如图,点A 和点B 在数轴上对应的数分别是4和2,分别以点A 和点B 为圆心,线段AB 的长度为半径画弧,在数轴的上方交于点C .再以原点O 为圆心,OC 为半径画弧,与数轴的正半轴交于点M ,则点M 对应的数为( )A .3.5B .3C 13D 36二、填空题11.如图,Rt △ABC 中,∠ACB =90o ,AC =12,BC =5,D 是AB 边上的动点,E 是AC 边上的动点,则BE +ED 的最小值为 .12.如图,在△中,,∠90°,是边的中点,是边上一动点,则的最小值是__________.13.如图,点E 在DBC △边DB 上,点A 在DBC △内部,∠DAE =∠BAC =90°,AD =AE ,AB =AC ,给出下列结论,其中正确的是_____(填序号)①BD =CE ;②∠DCB =∠ABD =45°;③BD ⊥CE ;④BE 2=2(AD 2+AB 2).14.如图,在△ABC 中,OA =4,OB =3,C 点与A 点关于直线OB 对称,动点P 、Q 分别在线段AC 、AB 上(点P 不与点A 、C 重合),满足∠BPQ =∠BAO.当△PQB 为等腰三角形时,OP 的长度是_____.15.如图,这是由八个全等的直角三角形拼接而成,记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为 1S ,2S ,3S ,若123144S S S ++=,则2S 的值是__________.16.如图,在平面直角坐标系中,等腰直角三角形OAA 1的直角边OA 在x 轴上,点A 1在第一象限,且OA=1,以点A 1为直角顶点,OA 1为一直角边作等腰直角三角形OA 1A 2,再以点A 2为直角顶点,OA 2为直角边作等腰直角三角形OA 2A 3…依此规律,则点A 2018的坐标是_____.17.在ABC ∆中,90BAC ∠=︒,以BC 为斜边作等腰直角BCD ∆,连接DA ,若22AB =,42AC =,则DA 的长为______.18.在Rt ABC 中,90,30,2C A BC ∠=∠==,以ABC 的边AC 为一边的等腰三角形,它的第三个顶点在ABC 的斜边AB 上,则这个等腰三角形的腰长为_________. 19.在△ABC 中,AB =6,AC =5,BC 边上的高AD =4,则△ABC 的周长为__________. 20.如图,在Rt ABC ∆中,90ABC ∠=,DE 垂直平分AC ,垂足为F ,//AD BC ,且3AB =,4BC =,则AD 的长为______.三、解答题21.定义:如图1,平面上两条直线AB 、CD 相交于点O ,对于平面内任意一点M ,点M 到直线AB 、CD 的距离分别为p 、q ,则称有序实数对(p ,q )是点M 的“距离坐标”,根据上述定义,“距离坐标”为(0,0)的点有1个,即点O .(1)“距离坐标”为(1,0)的点有 个;(2)如图2,若点M 在过点O 且与直线AB 垂直的直线l 上时,点M 的“距离坐标”为(p ,q ),且∠BOD = 150︒,请写出p 、q 的关系式并证明;(3)如图3,点M 的“距离坐标”为(1,3),且∠DOB = 30︒,求OM 的长.22.在等腰Rt △ABC 中,AB =AC ,∠BAC =90°(1)如图1,D ,E 是等腰Rt △ABC 斜边BC 上两动点,且∠DAE =45°,将△ABE 绕点A 逆时针旋转90后,得到△AFC ,连接DF ①求证:△AED ≌△AFD ;②当BE =3,CE =7时,求DE 的长;(2)如图2,点D 是等腰Rt △ABC 斜边BC 所在直线上的一动点,连接AD ,以点A 为直角顶点作等腰Rt △ADE ,当BD =3,BC =9时,求DE 的长. 23.已知a ,b ,c 满足88a a -+-=|c ﹣17|+b 2﹣30b +225,(1)求a ,b ,c 的值;(2)试问以a ,b ,c 为边能否构成三角形?若能构成三角形,求出三角形的周长和面积;若不能构成三角形,请说明理由.24.已知ABC ∆中,如果过项点B 的一条直线把这个三角形分割成两个三角形,其中一个为等腰三角形,另一个为直角三角形,则称这条直线为ABC ∆的关于点B 的二分割线.例如:如图1,Rt ABC ∆中,90A ︒∠=,20C ︒∠=,若过顶点B 的一条直线BD 交AC 于点D ,若20DBC ︒∠=,显然直线BD 是ABC ∆的关于点B 的二分割线.(1)在图2的ABC ∆中,20C ︒∠=,110ABC ︒∠=.请在图2中画出ABC ∆关于点B 的二分割线,且DBC ∠角度是 ;(2)已知20C ︒∠=,在图3中画出不同于图1,图2的ABC ∆,所画ABC ∆同时满足:①C ∠为最小角;②存在关于点B 的二分割线.BAC ∠的度数是 ;(3)已知C α∠=,ABC ∆同时满足:①C ∠为最小角;②存在关于点B 的二分割线.请求出BAC ∠的度数(用α表示).25.在ABC ∆中,AB AC =,CD 是AB 边上的高,若10,45AB BC ==.(1)求CD 的长.(2)动点P 在边AB 上从点A 出发向点B 运动,速度为1个单位/秒;动点Q 在边AC 上从点A 出发向点C 运动,速度为v 个单位秒()v>1,设运动的时间为()0t t >,当点Q 到点C 时,两个点都停止运动.①若当2v =时,CP BQ =,求t 的值.②若在运动过程中存在某一时刻,使CP BQ =成立,求v 关于t 的函数表达式,并写出自变量t 的取值范围.26.如图,点A 是射线OE :y =x (x ≥0)上的一个动点,过点A 作x 轴的垂线,垂足为B ,过点B 作OA 的平行线交∠AOB 的平分线于点C .(1)若OA =2,求点B 的坐标;(2)如图2,过点C 作CG ⊥AB 于点G ,CH ⊥OE 于点H ,求证:CG =CH .(3)①若点A的坐标为(2,2),射线OC与AB交于点D,在射线BC上是否存在一点P 使得△ACP与△BDC全等,若存在,请求出点P的坐标;若不存在,请说明理由.②在(3)①的条件下,在平面内另有三点P1(2,2),P2(2,22),P3(2+2,2﹣2),请你判断也满足△ACP与△BDC全等的点是.(写出你认为正确的点)27.问题情境:综合实践活动课上,同学们围绕“已知三角形三边的长度,求三角形的面积”开展活动,启航小组同学想到借助正方形网格解决问题问题解决:图(1)、图(2)都是6×6的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点,操作发现,启航小组同学在图(1)中画出△ABC,其顶点A,B,C都在格点上,同时构造长方形CDEF,使它的顶点都在格点上,且它的边EF经过点A,ED经过点B.同学们借助此图求出了△ABC的面积.(1)在图(1)中,△ABC的三边长分别是AB=,BC=,AC=.△ABC 的面积是.(2)已知△PMN中,PM=17,MN=25,NP=13.请你根据启航小组的思路,在图(2)中画出△PMN,并直接写出△RMN的面积.28.(1)如图1,在Rt△ABC和Rt△ADE中,AB=AC,AD=AE,且点D在BC边上滑动(点D不与点B,C重合),连接EC,①则线段BC,DC,EC之间满足的等量关系式为;②求证:BD2+CD2=2AD2;(2)如图2,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD 的长.29.如图1,已知△ABC是等边三角形,点D,E分别在边BC,AC上,且CD=AE,AD与BE相交于点F.(1)求证:∠ABE=∠CAD;(2)如图2,以AD为边向左作等边△ADG,连接BG.ⅰ)试判断四边形AGBE的形状,并说明理由;ⅱ)若设BD=1,DC=k(0<k<1),求四边形AGBE与△ABC的周长比(用含k的代数式表示).30.(发现)小慧和小雯用一个平面去截正方体,得到一个三角形截面(截出的面),发现截面一定是锐角三角形.为什么呢?她们带着这个疑问请教许老师.(体验)(1)从特殊入手许老师用1个铆钉把长度分别为4和3的两根窄木棒的一端连在一起(如图,),保持不动,让从重合位置开始绕点转动,在转动的过程,观测的大小和的形状,并列出下表:的大小的形状…直角三角形…直角三角形…请仔细体会其中的道理,并填空:_____,_____;(2)猜想一般结论在中,设,,(),①若为直角三角形,则满足;②若为锐角三角形,则满足____________;③若为钝角三角形,则满足_____________.(探索)在许老师的启发下,小慧用小刀在一个长方体橡皮上切出一个三角形截面(如图1),设,,,请帮助小慧说明为锐角三角形的道理.(应用)在小慧的基础上,小雯又切掉一块“角”,得到一个新的三角形截面(如图2),那么的形状是()A.一定是锐角三角形B.可能是锐角三角形或直角三角形,但不可能是钝角三角形C.可能是锐角三角形或直角三角形或钝角三角形【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】当C′落在AB上,点B与E重合时,AC'长度的值最小,根据勾股定理得到AB=5cm,由折叠的性质知,BC′=BC=3cm,于是得到结论.【详解】解:当C′落在AB上,点B与E重合时,AC'长度的值最小,∵∠C=90°,AC=4cm,BC=3cm,∴AB=5cm,由折叠的性质知,BC′=BC=3cm,∴AC′=AB-BC′=2cm.故选:C.【点睛】本题考查了翻折变换(折叠问题),勾股定理,熟练掌握折叠的性质是解题的关键.2.B解析:B【分析】过点O作OE⊥BC于E,OF⊥AC于F,由角平分线的性质得到OD=OE=OF,根据勾股定理求出BC的长,易得四边形ADFO为正方形,根据线段间的转化即可得出结果.【详解】解:过点O作OE⊥BC于E,OF⊥AC于F,∵BO,CO分别为∠ABC,∠ACB的平分线,所以OD=OE=OF,又BO=BO,∴△BDO≌△BEO,∴BE=BD.同理可得,CE=CF.又四边形ADOE为矩形,∴四边形ADOE为正方形.∴AD=AF.∵在Rt△ABC中,AB=6,AC=8,∴BC=10.∴AD+BD=6①,AF+FC=8②,BE+CE=BD+CF=10③,①+②得,AD+BD+AF+FC=14,即2AD+10=14,∴AD=2.故选:B.【点睛】此题考查了角平分线的定义与性质,以及全等三角形的判定与性质,属于中考常考题型.3.C解析:C【分析】根据勾股定理及直角三角形的中线、翻折得CD=DE=BD=5,CE=AC=6,作DH ⊥BE 于H ,EG ⊥CD 于G ,证明△DHE ≌△EGD ,利用勾股定理求出75EH DG ==,即可得到BE. 【详解】∵∠BCA=90∘,AC=6,BC=8,∴22226810AB AC BC ,∵D 是AB 的中点,∴AD=BD=CD=5,由翻折得:DE=AD=5,∠EDC=∠ADC ,CE=AC=6,∴BD=DE ,作DH ⊥BE 于H ,EG ⊥CD 于G ,∴∠DHE=∠EGD=90︒,∠EDH=12∠BDE=12(180︒-2∠EDC )=90︒-∠EDC , ∴∠DEB= 90︒-∠EDH=90︒-(90︒-∠EDC)=∠EDC ,∵DE=DE ,∴△DHE ≌△EGD ,∴DH=EG ,EH=DG ,设DG=x ,则CG=5-x ,∵2EG =2222DE DG CE CG -=-,∴222256(5)x x -=--,∴75x =, ∴75EH DG ==, ∴BE=2EH=145, 故选:C.【点睛】此题考查翻折的性质,勾股定理,等腰三角形的性质,将求BE转换为求其一半的长度的想法是关键,由此作垂线,证明△DHE≌△EGD,由此求出BE的长度.4.C解析:C【解析】【分析】根据勾股定理求解即可,注意要确认a是直角边还是斜边.【详解】解:当a是直角三角形的斜边时,22a=+=;345当a为直角三角形的直角边时,22a=-=.437故选C.【点睛】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.5.C解析:C【解析】将四边形MTKN的面积设为x,将其余八个全等的三角形面积一个设为y,∵正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,S1+S2+S3=15,∴得出S1=8y+x,S2=4y+x,S3=x,∴S1+S2+S3=3x+12y=15,即3x+12y=15,x+4y=5,所以S2=x+4y=5,故答案为5.点睛:将四边形MTKN的面积设为x,将其余八个全等的三角形面积一个设为y,用x,y 表示出S1,S2,S3,再利用S1+S2+S3=15求解是解决问题的关键.6.B解析:B【解析】根据题意,如图,∠AOB=30°,OA=4,则AB=2,OB=23,所以A(-2,-23),故选B.7.A解析:A【分析】先计算AB2=2890000,BC2=640000,AC2=2250000,可得BC2+AC2=AB2,那么△ABC是直角三角形,而直角三角形斜边上的中线等于斜边的一半,从而可确定P点的位置.【详解】解:如图∵AB2=2890000,BC2=640000,AC2=2250000∴BC2+AC2=AB2,∴△ABC是直角三角形,∴活动中心P应在斜边AB的中点.故选:A.【点睛】本题考查了勾股定理的逆定理.解题的关键是证明△ABC是直角三角形.8.A解析:A【解析】已知△ABC的三边分别为6,10,8,由62+82=102,即可判定△ABC是直角三角形,两直角边是6,8,所以△ABC的面积为12×6×8=24,故选A.9.C解析:C【分析】利用勾股定理求出AB的长,再根据无理数的估算即可求得答案.【详解】由作法过程可知,OA=2,AB=3,∵∠OAB=90°,∴22222313OA AB+=+=,∴P13∵91316<∴3134<<,即点P所表示的数介于3和4之间,故选C.【点睛】本题考查了勾股定理和无理数的估算,熟练掌握勾股定理的内容以及无理数估算的方法是解题的关键.10.B解析:B【分析】如图,作CD ⊥AB 于点D ,由题意可得△ABC 是等边三角形,从而可得BD 、OD 的长,然后根据勾股定理即可求出CD 与OC 的长,进而可得OM 的长,于是可得答案.【详解】解:∵点A 和点B 在数轴上对应的数分别是4和2,∴OB=2,OA=4,如图,作CD ⊥AB 于点D ,则由题意得:CA=CB=AB=2,∴△ABC 是等边三角形,∴BD=AD=112AB =, ∴OD=OB+BD=3,223CD BC BD =-=,∴()22223323OC OD CD =+=+=,∴OM=OC=23,∴点M 对应的数为23.故选:B .【点睛】本题考查了实数与数轴、等边三角形的判定与性质以及勾股定理等知识,属于常见题型,正确理解题意、熟练掌握上述知识是解题的关键.二、填空题11.【解析】 试题分析:作点B 关于AC 的对称点B′,过B′点作B′D ⊥AB 于D ,交AC 于E ,连接AB′、BE ,则BE+ED=B′E+ED=B′D 的值最小.∵点B 关于AC 的对称点是B′,BC=5,∴B′C=5,BB′=10.∵Rt △ABC 中,∠ACB=90°,AC=12,BC=5,∴AB=22AC BC +=13,∵S △ABB′=12•AB•B′D=12•BB′•AC ,∴B′D=B 10121201313B AC AB '⋅⨯==,∴BE+ED= B′D=12013. 考点:轴对称-最短路线问题.12.【解析】如图,过点作⊥于点,延长到点,使,连接,交于点,连接,此时的值最小.连接,由对称性可知∠45°,,∴ ∠90°.根据勾股定理可得.13.①③【分析】①由已知条件证明DAB ≌EAC 即可;②由①可得∠ABD=∠ACE<45°,∠DCB>45°;③由∠ECB+∠EBC=∠ABD+∠ECB+∠ABC=∠ACE+∠ECB+∠ABC =45°+45°=90°可判断③; ④由BE 2=BC 2-EC 2=2AB 2-(CD 2﹣DE 2)=2AB 2-CD 2+2AD 2=2(AD 2+AB 2)-CD 2可判断④.【详解】解:∵∠DAE =∠BAC =90°,∴∠DAB =∠EAC ,∵AD =AE ,AB =AC ,∴∠AED=∠ADE=∠ABC=∠ACB=45°,∵在DAB 和EAC 中,AD AE DAB EAC AB AC ⎧⎪⎨⎪⎩===,∴DAB ≌EAC ,∴BD =CE ,∠ABD =∠ECA ,故①正确;由①可得∠ABD=∠ACE<45°,∠DCB>45°故②错误;∵∠ECB+∠EBC=∠ABD+∠ECB+∠ABC=∠ACE+∠ECB+∠ABC =45°+45°=90°,∴∠CEB =90°,即CE ⊥BD ,故③正确;∴BE 2=BC 2-EC 2=2AB 2-(CD 2﹣DE 2)=2AB 2-CD 2+2AD 2=2(AD 2+AB 2)-CD 2. ∴BE 2=2(AD 2+AB 2)-CD 2,故④错误.故答案为:①③.【点睛】本题主要考查全等三角形判定与性质以及勾股定理的应用,熟记全等三角形的判定与性质定理以及勾股定理公式是解题关键.14.1或78【分析】 分为三种情况:①PQ BP =,②BQ QP =,③BQ BP =,由等腰三角形的性质和勾股定理可求解.【详解】解:分为3种情况:①当PB PQ =时,4=OA ,3OB =,∴5BC AB ===, C 点与A 点关于直线OB 对称,BAO BCO ∴∠=∠,BPQ BAO ∠=∠,BPQ BCO ∴∠=∠,APB APQ BPQ BCO CBP ∠=∠+∠=∠+∠,APQ CBP ∴∠=∠,在APQ 和CBP 中,BAO BCP APQ B PQ B P C P ∠=∠⎧⎪∠=∠⎨=⎪⎩, ()APQ CBP AAS ∴△≌△,∴5AP BC ==,1OP AP OA ∴=-=;②当BQ BP =时,BPQ BQP ∠=∠,BPQ BAO ∠=∠,BAO BQP ∴∠=∠,根据三角形外角性质得:BQP BAO ∠>∠,∴这种情况不存在;③当QB QP =时,QBP BPQ BAO ∠=∠=∠,PB PA ∴=,设OP x =,则4PB PA x ==-在Rt OBP △中,222PB OP OB =+,222(4)3x x ∴-=+, 解得:78x =; ∴当PQB △为等腰三角形时,1OP =或78; 【点睛】本题考查了勾股定理,等腰三角形的性质,全等三角形的性质和判定的应用,解题的关键是熟练掌握所学的性质进行解题,注意分类讨论.15.48【分析】用a 和b 表示直角三角形的两个直角边,然后根据勾股定理列出正方形面积的式子,求出2S 的面积.【详解】解:本图是由八个全等的直角三角形拼成的,设这个直角三角形两个直角边中较长的长度为a ,较短的长度为b ,即图中的AE a =,AH b =,则()221S AB a b ==+,2222S HE a b ==+,()223S TM a b ==-, ∵123144S S S ++=,∴()()2222144a b a b a b ++++-= 22222222144a b ab a b a b ab ++++++-=2233144a b +=2248a b +=,∴248S =.故答案是:48.【点睛】本题考查勾股定理,解题的关键是要熟悉赵爽弦图中勾股定理的应用.16.(0,21009)【解析】【分析】本题点A 坐标变化规律要分别从旋转次数与点A 所在象限或坐标轴、点A 到原点的距离与旋转次数的对应关系.【详解】∵∠OAA1=90°,OA=AA1=1,以OA1为直角边作等腰Rt△OA1A2,再以OA2为直角边作等腰Rt△OA2A3,…,∴OA1=2,OA2=(2)2,…,OA2018=(2)2018,∵A1、A2、…,每8个一循环,∵2018=252×8+22=21009,∴点A2018的在y轴正半轴上,OA2018=()2018故答案为(0,21009).【点睛】本题是平面直角坐标系下的规律探究题,除了研究动点变化的相关数据规律,还应该注意象限符号.17.6或2.【分析】由于已知没有图形,当Rt△ABC固定后,根据“以BC为斜边作等腰直角△BCD”可知分两种情况讨论:①当D点在BC上方时,如图1,把△ABD绕点D逆时针旋转90°得到△DCE,证明A、C、E三点共线,在等腰Rt△ADE中,利用勾股定理可求AD长;②当D点在BC下方时,如图2,把△BAD绕点D顺时针旋转90°得到△CED,证明过程类似于①求解.【详解】解:分两种情况讨论:①当D点在BC上方时,如图1所示,把△ABD绕点D逆时针旋转90°,得到△DCE,则∠ABD=∠ECD,CE=AB=22,AD=DE,且∠ADE=90°在四边形ACDB中,∠BAC+∠BDC=90°+90°=180°,∴∠ABD+∠ACD=360°-180°=180°,∴∠ACD+∠ECD=180°,∴A、C、E三点共线.∴AE=AC+CE=42+22=62在等腰Rt△ADE中,AD2+DE2=AE2,即2AD2=(62)2,解得AD=6②当D 点在BC 下方时,如图2所示,把△BAD 绕点D 顺时针旋转90°得到△CED ,则CE=AB=22,∠BAD=∠CED ,AD=AE 且∠ADE=90°,所以∠EAD=∠AED=45°,∴∠BAD=90°+45°=135°,即∠CED=135°,∴∠CED+∠AED=180°,即A 、E 、C 三点共线.∴AE=AC-CE=42-22=22在等腰Rt △ADE 中,2AD 2=AE 2=8,解得AD=2.故答案为:6或2.【点睛】本题主要考查了旋转的性质、勾股定理,解决这类等边(或共边)的两个三角形问题,一般是通过旋转的方式作辅助线,转化线段使得已知线段于一个特殊三角形中进行求解.18.232【分析】先求出AC 的长,再分两种情况:当AC 为腰时及AC 为底时,分别求出腰长即可.【详解】在Rt ABC 中,90,30,2C A BC ∠=∠==,∴AB=2BC=4,∴22224223AC AB BC =-=-=当AC 为腰时,则该三角形的腰长为3当AC 为底时,作AC 的垂直平分线交AB 于点D ,交AC 于点E ,如图,此时△ACD 是等腰三角形,则3设DE=x ,则AD=2x ,∵222AE DE AD +=,∴222(3)(2)x x +=∴x=1(负值舍去),∴腰长AD=2x=2,故答案为:23或2 【点睛】 此题考查勾股定理的运用,结合线段的垂直平分线的性质,等腰三角形的性质,解题时注意:“AC 为一边的等腰三角形”没有明确AC 是等腰三角形的腰或底,故应分为两种情况解题,这是此题的易错之处.19.1425+或825+【分析】分两种情况考虑:如图1所示,此时△ABC 为锐角三角形,在直角三角形ABD 与直角三角形ACD 中,利用勾股定理求出BD 与DC 的长,由BD+DC 求出BC 的长,即可求出周长;如图2所示,此时△ABC 为钝角三角形,同理由BD -CD 求出BC 的长,即可求出周长.【详解】解:分两种情况考虑:如图1所示,此时△ABC 为锐角三角形,在Rt △ABD 中,根据勾股定理得:BD=22226425AB AD -=-=, 在Rt △ACD 中,根据勾股定理得:CD=2222543AC AD -=-=,∴BC=253+, ∴△ABC 的周长为:652531425+++=+;如图2所示,此时△ABC 为钝角三角形,在Rt △ABD 中,根据勾股定理得:22226425AB AD -=-= 在Rt △ACD 中,根据勾股定理得:2222543AC AD --=,∴BC=3-,∴△ABC 的周长为:6538++=+综合上述,△ABC 的周长为:14+8+故答案为:14+8+【点睛】此题考查了勾股定理,利用了分类讨论的思想,熟练掌握勾股定理是解本题的关键. 20.258【分析】先根据勾股定理求出AC 的长,再根据DE 垂直平分AC 得出FA 的长,根据相似三角形的判定定理得出△AFD ∽△CBA ,由相似三角形的对应边成比例即可得出结论.【详解】∵Rt △ABC 中,∠ABC=90°,AB=3,BC=4,∴=5;∵DE 垂直平分AC ,垂足为F ,∴FA=12AC=52,∠AFD=∠B=90°, ∵AD ∥BC ,∴∠A=∠C ,∴△AFD ∽△CBA , ∴AD AC =FA BC ,即AD 5=2.54,解得AD=258;故答案为258. 【点睛】本题考查的是勾股定理及相似三角形的判定与性质,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.三、解答题21.(1)2;(2)q p =;(3)OM =【分析】(1)根据“距离坐标”的定义结合图形判断即可;(2)过M 作MN ⊥CD 于N ,根据已知得出MN q =,OM p =,求出∠MON =60°,根据含30度直角三角形的性质和勾股定理求出2MN p ==即可解决问题;(3)分别作点M 关于AB 、CD 的对称点F 、E ,连接EF 、OE 、OF ,连接MF 、ME 分别交AB 、CD 于P 点、Q 点,首先证明OM OE OF EF ===,求出2MF =,ME =F 作FG QM ⊥,交QM 延长线于G ,根据含30度直角三角形的性质求出1FG =,MG =,再利用勾股定理求出EF 即可.【详解】解:(1)由题意可知,在直线CD 上,且在点O 的两侧各有一个,共2个,故答案为:2;(2)过M 作MN CD ⊥于N ,∵直线l AB ⊥于O ,150BOD ∠=︒,∴60MON ∠=︒,∵MN q =,OM p =, ∴1122NO MO p ==, ∴223MN MO NO p =-=, ∴3q p =; (3)分别作点M 关于AB 、CD 的对称点F 、E ,连接EF 、OE 、OF ,连接MF 、ME 分别交AB 、CD 于P 点、Q 点.∴OFP OMP △≌△,OEQ OMQ △≌△,∴FOP MOP ∠=∠,EOQ MOQ ∠=∠,OM OE OF ==,∴260EOF BOD ∠=∠=︒,∴△OEF 是等边三角形, ∴OM OE OF EF ===,∵1MP =,3MQ =∴2MF =,3ME =,∵30BOD ∠=︒,∴150PMQ ∠=︒,过F 作FG QM ⊥,交QM 延长线于G ,∴30FMG ∠=︒,在Rt FMG △中,112FG MF ==,则3MG =,在Rt EGF 中,1FG =,33EG ME MG =+=, ∴22(33)127EF =+=, ∴27OM =.【点睛】本题考查了轴对称的应用,含30度直角三角形的性质,勾股定理以及等边三角形的判定和性质等,正确理解题目中的新定义是解答本题的关键.22.(1)①见解析;②DE =297;(2)DE 的值为517 【分析】(1)①先证明∠DAE =∠DAF ,结合DA =DA ,AE =AF ,即可证明;②如图1中,设DE =x ,则CD =7﹣x .在Rt △DCF 中,由DF 2=CD 2+CF 2,CF =BE =3,可得x 2=(7﹣x )2+32,解方程即可;(2)分两种情形:①当点E 在线段BC 上时,如图2中,连接BE .由△EAD ≌△ADC ,推出∠ABE =∠C =∠ABC =45°,EB =CD =5,推出∠EBD =90°,推出DE 2=BE 2+BD 2=62+32=45,即可解决问题;②当点D 在CB 的延长线上时,如图3中,同法可得DE 2=153.【详解】(1)①如图1中,∵将△ABE 绕点A 逆时针旋转90°后,得到△AFC ,∴△BAE ≌△CAF ,∴AE =AF ,∠BAE =∠CAF ,∵∠BAC =90°,∠EAD =45°,∴∠CAD +∠BAE =∠CAD +∠CAF =45°,∴∠DAE =∠DAF ,∵DA =DA ,AE =AF ,∴△AED ≌△AFD (SAS );②如图1中,设DE =x ,则CD =7﹣x .∵AB =AC ,∠BAC =90°,∴∠B =∠ACB =45°,∵∠ABE =∠ACF =45°,∴∠DCF =90°,∵△AED ≌△AFD (SAS ),∴DE =DF =x ,∵在Rt △DCF 中, DF 2=CD 2+CF 2,CF =BE =3,∴x2=(7﹣x)2+32,∴x=297,∴DE=297;(2)∵BD=3,BC=9,∴分两种情况如下:①当点E在线段BC上时,如图2中,连接BE.∵∠BAC=∠EAD=90°,∴∠EAB=∠DAC,∵AE=AD,AB=AC,∴△EAB≌△DAC(SAS),∴∠ABE=∠C=∠ABC=45°,EB=CD=9-3=6,∴∠EBD=90°,∴DE2=BE2+BD2=62+32=45,∴DE=35;②当点D在CB的延长线上时,如图3中,连接BE.同理可证△DBE是直角三角形,EB=CD=3+9=12,DB=3,∴DE2=EB2+BD2=144+9=153,∴DE=317,综上所述,DE的值为35或317.【点睛】本题主要考查旋转变换的性质,三角形全等的判定和性质以及勾股定理,添加辅助线,构造旋转全等模型,是解题的关键.23.(1)a=8,b=15,c=17;(2)能,60【分析】(1)根据算术平方根,绝对值,平方的非负性即可求出a、b、c的值;(2)根据勾股定理的逆定理即可求出此三角形是直角三角形,由此得到面积和周长【详解】解:(1)∵a ,b ,c 满足88a a -+-=|c ﹣17|+b 2﹣30b +225,∴2881||7(15)a a c b -+-+-=﹣,∴a ﹣8=0,b ﹣15=0,c ﹣17=0,∴a =8,b =15,c =17;(2)能.∵由(1)知a =8,b =15,c =17,∴82+152=172.∴a 2+c 2=b 2,∴此三角形是直角三角形,∴三角形的周长=8+15+17=40;三角形的面积=12×8×15=60. 【点睛】此题考查算术平方根,绝对值,平方的非负性,勾股定理的逆定理判断三角形的形状.24.(1)作图见解析,20DBC ∠=︒;(2)作图见解析,35BAC ∠=︒;(3)∠A =45°或90°或90°-2α或1452α︒-,或α=45°时45°<∠BAC <90°.【分析】(1)根据二分割线的定义,只要把∠ABC 分成90°角和20°角即可;(2)可以画出∠A=35°的三角形;(3)设BD 为△ABC 的二分割线,分以下两种情况.第一种情况:△BDC 是等腰三角形,△ABD 是直角三角形;第二种情况:△BDC 是直角三角形,△ABD 是等腰三角形分别利用直角三角形的性质、等腰三角形的性质和三角形的内角和定理解答即可.【详解】解:(1)ABC ∆关于点B 的二分割线BD 如图4所示,20DBC ∠=︒;故答案为:20°;(2)如图所示:∠BAC=35°;(3)设BD 为△ABC 的二分割线,分以下两种情况.第一种情况:△BDC 是等腰三角形,△ABD 是直角三角形,易知∠C 和∠DBC 必为底角, ∴∠DBC =∠C =α.当∠A =90°时,△ABC 存在二分分割线;当∠ABD =90°时,△ABC 存在二分分割线,此时∠A =90°-2α;当∠ADB =90°时,△ABC 存在二分割线,此时α=45°且45°<∠A <90°;第二种情况:△BDC 是直角三角形,△ABD 是等腰三角形,当∠DBC =90°时,若BD =AD ,则△ABC 存在二分割线,此时1809014522A αα︒-︒-∠==︒-; 当∠BDC =90°时,若BD =AD ,则△ABC 存在二分割线,此时∠A =45°,综上,∠A =45°或90°或90°-2α或1452α︒-,或α=45°时,45°<∠BAC <90°.【点睛】本题考查的是二分割线的理解与作图,属于新定义题型,主要考查了等腰三角形的性质、直角三角形的性质和三角形的内角和定理等知识,正确理解二分割线的定义、熟练掌握等腰三角形和直角三角形的性质是解答的关键.25.(1)CD=8;(2)t=4;(3)12-=t v t (26t ≤<) 【分析】(1)作AE ⊥BC 于E ,根据等腰三角形三线合一的性质可得BE=12BC ,然后利用勾股定理求出AE ,再用等面积法可求出CD 的长;(2)①过B 作BF ⊥AC 于F ,易得BF=CD ,分别讨论Q 点在AF 和FC 之间时,根据△BQF ≌△CPD ,得到PD=QF ,建立方程即可求出t 的值;(3)同(2)建立等式关系即可得出关系式,再根据Q 在FC 之间求出t 的取值范围即可.【详解】解:(1)如图,作AE ⊥BC 于E ,∵AB=AC ,∴BE=12BC=25在Rt △ABE 中,()2222AE=AB BE=1025=45--∵△ABC的面积=11BC AE=AB CD 22⋅⋅∴BC AE4545 CD===8AB10⋅⨯(2)过B作BQ⊥AC,当Q在AF之间时,如图所示,∵△ABC的面积=11AC BF=AB CD22⋅⋅,AB=AC∴BF=CD在Rt△CPD和Rt△BQF中∵CP=BQ,CD=BF,∴Rt△CPD≌Rt△BQF(HL)∴PD=QF在Rt△ACD中,CD=8,AC=AB=10∴22AD=AC CD=6-同理可得AF=6∴PD=AD=AP=6-t,QF=AF-AQ=6-2t 由PD=QF得6-t=6-2t,解得t=0,∵t>0,∴此种情况不符合题意,舍去;当Q点在FC之间时,如图所示,此时PD=6-t,QF=2t-6由PD=QF 得6-t=2t-6,解得t=4,综上得t 的值为4.(3)同(2)可知v >1时,Q 在AF 之间不存在CP=BQ ,Q 在FC 之间存在CP=BQ ,Q 在F 点时,显然CP ≠BQ ,∵运动时间为t ,则AP=t ,AQ=vt ,∴PD=6-t ,QF=vt-6,由PD=QF 得6-t=vt-6, 整理得12-=t v t, ∵Q 在FC 之间,即AF <AQ ≤AC∴610<≤vt ,代入12-=t v t得 61210<-≤t ,解得26t ≤< 所以答案为12-=t v t (26t ≤<) 【点睛】本题考查三角形中的动点问题,熟练掌握勾股定理求出等腰三角形的高,利用全等三角形对应边相等建立方程是解题的关键.26.(1)(5,0);(2)见解析;(3)①P (4,2),②满足△ACP 与△BDC 全等的点是P 1、P 2,P 3.理由见解析【分析】(1)由题意可以假设A (a ,a )(a >0),根据AB 2+OB 2=OA 2,构建方程即可解决问题; (2)由角平分线的性质定理证明CH=CF ,CG=CF 即可解决问题;(3)①如图3中,在BC 的延长线上取点P ,使得CP=DB ,连接AP .只要证明△ACP ≌△CDB (SAS ),△ABP 是等腰直角三角形即可解决问题;②根据SAS 即可判断满足△ACP 与△BDC 全等的点是P 1、P 2,P 3;【详解】解:(1)∵点A 在射线y =x (x ≥0)上,故可以假设A (a ,a )(a >0),∵AB ⊥x 轴,∴AB =OB =a ,即△ABO 是等腰直角三角形,∴AB 2+OB 2=OA 2,∴a 2+a 2=()2,解得a =5,∴点B 坐标为(5,0).(2)如图2中,作CF ⊥x 轴于F .∵OC平分∠AOB,CH⊥OE,∴CH=CF,∵△AOB是等腰直角三角形,∴∠AOB=45°,∵BC∥OE,∴∠CBG=∠AOB=45°,得到BC平分∠ABF,∵CG⊥BA,CF⊥BF,∴CG=CF,∴CG=CH.(3)①如图3中,在BC的延长线上取点P,使得CP=DB,连接AP.由(2)可知AC平分∠DAE,∴∠DAC=12∠DAE=12(180°﹣45°)=67.5°,由OC平分∠AOB得到∠DOB=12∠AOB=22.5°,∴∠ADC=∠ODB=90°﹣22.5°=67.5°,∴∠ADC=∠DAC=67.5°,∴AC=DC,∠BDC=∠OBD+∠DOB=90°+22.5°=112.5°,∠ACD=180°﹣∠CAD﹣∠ADC=180°﹣67.5°﹣67.5°=45°,∠OCB=45°﹣22.5°=22.5°,∠ACP=180°﹣∠ACD﹣∠OCB=180°﹣45°﹣22.5°=112.5°,在△ACP 和△CDB 中,AC AD ACP DB CP DB =⎧⎪∠=∠⎨⎪=⎩,∴△ACP ≌△CDB (SAS ),∴∠CAP =∠DCB =22.5°,∴∠BAP =∠CAP +∠DAC =22.5°+67.5°=90°,∴△ABP 是等腰直角三角形,∴AP =AB =OB =2,∴P (4,2).②满足△ACP 与△BDC 全等的点是P 1、P 2,P 3.理由:如图4中,由题意:AP 1=BD ,AC =CD ,∠CAP 1=∠CDB ,根据SAS 可得△CAP 1≌△CDB ; AP 2=BD ,AC =CD ,∠CAP 2=∠CDB ,根据SAS 可得△CAP 2≌△CDB ;AC =CD ,∠ACP 3=∠BDC ,BD =CP 3根据SAS 可得△CAP 3≌△DCB ;故答案为P 1、P 2,P 3.【点睛】本题考查全等三角形的判定和性质、等腰直角三角形的判定和性质、勾股定理、角平分线的性质定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.27.(1131710,112;(2)图见解析;7. 【分析】(1)利用勾股定理求出AB ,BC ,AC ,理由分割法求出△ABC 的面积.(2)模仿(1)中方法,画出△PMN ,利用分割法求解即可.【详解】解:(1)如图1中,AB 22AE BE +2232+13BC 22BD CD +2214+17AC 22AF CF +2213+10,S△ABC=S矩形DEFC﹣S△AEB﹣S△AFC﹣S△BDC=12﹣3﹣32﹣2=112,故答案为13,17,10,11 2.(2)△PMN如图所示.S△PMN=4×4﹣2﹣3﹣4=7,故答案为7.【点睛】此题重点考查学生对勾股定理的应用,熟练掌握勾股定理是解题的关键.28.(1)①BC=DC+EC,理由见解析;②证明见解析;(2)6.【解析】【分析】(1)证明△BAD≌△CAE,根据全等三角形的性质解答;(2)根据全等三角形的性质得到BD=CE,∠ACE=∠B,得到∠DCE=90°,根据勾股定理计算即可;(3)作AE⊥AD,使AE=AD,连接CE,DE,证明△BAD≌△CAE,得到BD=CE=9,根据勾股定理计算即可.【详解】(1)①解:BC=DC+EC,理由如下:∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴BD=EC,∴BC=DC+BD=DC+EC,;故答案为:BC=DC+EC;②证明:∵Rt△ABC中,AB=AC,∴∠B=∠ACB=45°,由(1)得,△BAD≌△CAE,∴BD=CE,∠ACE=∠B=45°,。
专题1.2 勾股定理的逆定理【八大题型】(举一反三)(人教版)(解析版)
专题1.2 勾股定理的逆定理【八大题型】【北师大版】【题型1 判断三边能否构成直角三角形】 (1)【题型2 图形上与已知两点构成直角三角形的点】 (3)【题型3 在网格中判断直角三角形】 (6)【题型4 勾股数的探究】 (9)【题型5 利用勾股定理的逆定理证明】 (13)【题型6 利用勾股定理的逆定理求解】 (16)【题型7 勾股逆定理的应用】 (19)【题型8 勾股定理及其逆定理的综合】 (23)【知识点 勾股定理的逆定理】如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.【题型1 判断三边能否构成直角三角形】【例1】(2023春·黑龙江哈尔滨·八年级哈尔滨德强学校校考期中)由线段a 、b 、c 组成的三角形是直角三角形的是( )A .a =5,b =3,c =3B .a =13,b =15,c =14C .a =6,b =4,c =5D .a =7,b =24,c =25【答案】D【分析】根据勾股定理的逆定理,进行计算即可解答.【详解】解:A 、32+32=18≠52,故不能组成直角三角形,故不合题意;B +=41400≠,故不能组成直角三角形,故不合题意;C 、42+52=41≠62,故不能组成直角三角形,故不合题意;D 、72+242=625=252,故不能组成直角三角形,故不合题意;故选:D .【点睛】本题考查了勾股定理的逆定理,熟练掌握勾股定理的逆定理是解题的关键.【变式1-1】(2023春·湖北孝感·八年级统考期中)一个三角形的三边长分别为a ,b ,c ,且满足(a +b )(a−b )=c2,则这个三角形是()A.等腰三角形B.直角三角形C.锐角三角形D.不确定【答案】B【分析】将原式整理为a2=b2+c2,即可判断.【详解】解:∵(a+b)(a−b)=c2,∴a2−b2=c2,∴a2=b2+c2,∴这个三角形是直角三角形;故选:B.【点睛】本题考查了勾股定理的逆定理和平方差公式,熟练掌握勾股定理逆定理、得出a2=b2+c2是解题的关键.【变式1-2】(2023春·八年级单元测试)如图,以△ABC的两边BC、AC分别向外作正方形,它们的面积分别是S1,S2,若S1=2,S2=3,AB2=5,则△ABC的形状是________三角形.【答案】直角【分析】根据正方形的面积公式结合勾股定理的逆定理即可得出答案.【详解】解:∵S1=2,S2=3,∴BC2=2,AC2=3,∵AB2=5,∴AC2+BC2=AB2,∴△ABC是直角三角形,故答案为:直角.【点睛】本题考查了勾股定理的逆定理和正方形面积的应用,理解勾股定理的逆定理的内容是解题的关键.【变式1-3】(2023春·广东惠州·八年级校考期中)有四种说法:①三个内角之比为5:6:1;②三边形长分③三边之长为9、40、41;④三边之比为1.5∶2∶3.其中是直角三角形的有___________(填序号).【答案】①②③【分析】根据三角形内角和定理和勾股定理进行求解即可.【详解】解:∵三角形三个内角之比为5:6:1,=90°,∴三角形最大的内角为180°×6561∴该三角形为直角三角形,故①正确;∵2+=2,∴该三角形为直角三角形,故②正确;∵92+402=412,∴该三角形为直角三角形,故③正确;∵1.52+22≠32,∴该三角形不是直角三角形,故④错误;故答案为:①②③.【点睛】本题主要考查了三角形内角和定理,勾股定理得逆定理,熟知三角形内角和为180度和勾股定理的逆定理是解题的关键.【题型2图形上与已知两点构成直角三角形的点】【例2】(2023春·全国·八年级专题练习)同一平面内有A,B,C三点,A,B两点之间的距离为5cm,点C 到直线AB的距离为2cm,且△ABC为直角三角形,则满足上述条件的点C有______个.【答案】8【分析】该题存在两种情况;(1)AB为斜边,则∠C=90°;(2)AB为直角边,AC=2cm或BC=2cm;【详解】(1)当AB为斜边时,点C到直线AB的距离为2cm,即AB边上的高为2cm,符合要求的C点有4个,如图:(2)当AB为直角边时,AC=2cm或BC=2cm,符合条件的点有4个,如图;符合要求的C点有8个;故答案是8.【点睛】本题主要考查了勾股定理的应用,准确分析判断是解题的关键.【变式2-1】(2023春·八年级单元测试)在如图所示的5×5的方格图中,点A和点B均为图中格点.点C 也在格点上,满足△ABC为以AB为斜边的直角三角形.这样的点C有()A.1个B.2个C.3个D.4个【答案】D【分析】结合网格的性质和直角三角形的判定找到对应点即可.【详解】解:如图,满足条件的点C共有4个,故选D.【点睛】此题主要考查了勾股定理逆定理,正确进行讨论,把每种情况考虑全,是解决本题的关键.【变式2-2】(2023春·全国·八年级专题练习)点A(2,m),B(2,m-5)在平面直角坐标系中,点O为坐标原点.若△ABO是直角三角形,则m的值不可能是()A.4B.2C.1D.0【答案】B【分析】分∠OAB=90°,∠OBA=90°,∠AOB=90°三种情况考虑:当∠OAB=90°时,点A在x轴上,进而可得出m=0;当∠OBA=90°时,点B在x轴上,进而可得出m=5;当∠AOB=90°时,利用勾股定理可得出关于m的一元二次方程,解之即可得出m的值.综上,对照四个选项即可得出结论.【详解】解:分三种情况考虑(如图所示):当∠OAB=90°时,m=0;当∠OBA=90°时,m−5=0,解得:m=5;当∠AOB=90°时,AB2=OA2+OB2,即25=4+m2+4+m2−10m+25,解得:m1=1,m2=4.综上所述:m的值可以为0,5,1,4.故选B.【点睛】本题考查了坐标与图形性质以及勾股定理,分∠OAB=90°,∠OBA=90°,∠AOB=90°三种情况求出m的值是解题的关键.【变式2-3】(2023春·全国·八年级专题练习)如图,方格纸中的每个小正方形的边长均为1,点A,B在小正方形的顶点上,在图中画ΔABC(点C在小正方形的顶点上),使ΔABC为直角三角形,并说明理由.(要求画出两个,且两个三角形不全等)【答案】ΔABC为直角三角形,理由详见解析.【分析】根据勾股定理逆定理和勾股定理进行判断即可.【详解】解:如图所示.图1图2如图1,在ΔABC中,AC=5,BC=3,AB2=32+52=34因为AC2+BC2=52+32=34=AB2,所以∠ACB=90°,即ΔABC为直角三角形.如图2,在RtΔACD中,AC2=CD2+AD2=12+12=2.在RtΔBCE中,CB2=CE2+BE2=42+42=32.在RtΔABF中,AB2=AF2+BF2=32+52=34.所以AC2+CB2=AB2,所以∠ACB=90°,即ΔABC为直角三角形.【点睛】考核知识点:根据勾股定理逆定理画直角三角形.掌握勾股定理逆定理并会运用是关键.【题型3在网格中判断直角三角形】【例3】(2023春·北京西城·八年级校考期中)如图,在正方形网格中,每个小正方形的边长为1,△ABC 的三个顶点A,B,C都在格点上,AD是BC边上的中线,那么AD的长为()A.2.5B.3C.D【答案】A【分析】由勾股定理可得AC2=5,BC2=25,AB2=20,则AC2+AB2=BC2,即△ABC是直角三角形,然后由直角三角形斜边上的中线等于斜边的一半即可解答.【详解】解:由勾股定理可得AC2=5,BC2=25,AB2=20,∴AC2+AB2=BC2,即△ABC是直角三角形,∵AD是BC边上的中线,BC=2.5.∴AD=12故选:A.【点睛】本题主要考查了勾股定理、直角三角形斜边上中线的性质等知识点,根据勾股定理逆定理判定△ABC是直角三角形是基础,掌握斜边上的中线的性质是解题的关键.【变式3-1】(2023春·广东湛江·八年级校考阶段练习)如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为_________.【答案】45°【分析】根据勾股定理得到AB,BC,AC的长度,再判断△ABC是等腰直角三角形,进而得出结论.【详解】解:如图,连接AC,由题意,AC=,BC=AB∴AC=BC,AB2=AC2+BC2,∴△ABC是等腰直角三角形,且∠ACB=90°,∴∠ABC=∠CAB=45°.故答案为:45°.【点睛】本题主要考查了勾股定理及其逆定理,等腰直角三角形的判定与性质,判断出△ABC是等腰直角三角形是解决本题的关键.【变式3-2】(2023春·广东惠州·八年级校考阶段练习)如图,每个小正方形的边长为1.(1)求四边形ABCD的面积与周长;(2)求证:∠BCD=90°.【答案】(1)周长为:32(2)见解析【分析】(1)借助正方形的小格,根据勾股定理分别计算四边形的各边的长,从而求得四边形的周长;(2)在△ABC中,根据勾股定理的逆定理进行判定.【详解】(1)解:根据勾股定理可知AB=3BC=CD=AD=5∴四边形ABCD的周长为+面积为:8×8−12×3×3−12×5×5−12×5×3−12×3×5=32.(2)证明:连接BD,∵BC=CD=DB=∴BC2+CD2=BD2.∴△BCD是直角三角形,即∠BCD=90°.【点睛】本题主要考查了勾股定理的运用以及勾股定理逆定理的运用,掌握勾股定理是解题的关键.【变式3-3】(2023春·八年级单元测试)如图所示的是2×5的正方形网格,点A,B,P都在网格点上,则∠APB=________.【答案】135°【分析】根据勾股定理和勾股定理的逆定理可得△PCB是等腰直角三角形,可得∠BPC=45°,即可求解.【详解】解:延长AP至C,连接BC,CP=CB=BP∵2+2=2,即CP2+CB2=BP2,∴△PCB是等腰直角三角形,∴∠BPC=45°,∴∠APB=180°−45°=135°,故答案为:135°.【点睛】本题考查了勾股定理和勾股定理的逆定理,关键是得到△PCB是等腰直角三角形.【题型4勾股数的探究】【例4】(2023春·安徽阜阳·八年级统考期末)法国数学家费尔马早在17世纪就研究过形如x2+y2=z2的方程,显然,这个方程有无数组解.我们把满足该方程的正整数的解(x,y,z)叫做勾股数.如(3,4,5)就是一组勾股数.(1)请你再写出两组勾股数:(___________),(___________);(2)在研究直角三角形的勾股数时,古希腊的哲学家柏拉图曾指出:如果n表示大于1的整数,x=2n,y=n2−1,z=n2+1,那么,以x,y,z为三边的三角形为直角三角形(即x,y,z为勾股数),请你加以证明.【答案】(1)5,12,13;7,24,25(2)证明见解析【分析】(1)根据x2+y2=z2,即可得出5,12,13、7,24,25是勾股数;(2)根据勾股定理的逆定理,可得答案.【详解】(1)∵52+122=169,132=169,∴52+122=132,∴5,12,13是勾股数;∵72+242=625,252=625,∴72+242=252,∴7,24,25是勾股数;故答案为:5,12,13;7,24,25;(2)证明:∵x=2n,y=n2−1,∴x2+y2=(2n)2+(n2−1)2=4n2+n4−2n2+1=n4+2n2+1=(n2+1)2=z2,即x,y,z为勾股数.∴以x,y,z为三边的三角形为直角三角形.【点睛】此题考查勾股逆定理的证明,勾股数的规律探究,掌握勾股逆定理的证明,根据勾股定理得出勾股数是解题的关键.【变式4-1】(2023春·四川达州·八年级校考期中)以下列各组数据中的三个数,其中是勾股数的是()A.B.6,8,10C.D.2,3,4【答案】B【分析】根据勾股数的定义进行分析,从而得到答案.【详解】解:A+=7=5,7≠5,故此选项错误;B、62+82=100,102=100,且100=100,故此选项正确;C、12+=3=3,3=3D、22+32=13,42=16,13≠16,故此选项错误.故答案为:B.【点睛】此题考查了勾股数,解答此题要用到勾股定理的逆定理和勾股数的定义,满足a2+b2=c2.【变式4-2】(2023春·全国·八年级专题练习)一个直角三角形三边长都是正整数,这样的直角三角形叫做“整数直角三角形”,这三个整数叫做一组“勾股数”老师给出了下表(其中m,n为正整数,且m>n):m23344…n11212…a22+1232+1232+2242+1242+22…b4612816…c22−1232−1232−2242−1242−22…(1)探究a,b,c与m,n之间的关系并用含m,n的代数式表示:a=______,b=______,c=______.(2)以a,b,c为边长的三角形是否一定为直角三角形?请说明理由.【答案】(1)m2+n2,2mn,m2−n2(2)以a,b,c为边长的三角形一定为直角三角形,理由见解析【分析】(1)根据给出的数据总结即可;(2)分别计算出a2、b2、c2,根据勾股定理逆定理进行判断.【详解】(1)解:观察可得a=m2+n2,b=2mn,c=m2−n2,故答案为:m2+n2,2mn,m2−n2;(2)以a,b,c为边长的三角形一定为直角三角形,理由如下:a2=(m2+n2)2=m4+2m2n2+n4,b2+c2=m4−2m2n2+n4+4m2n2=m4+2m2n2+n4,∴a2=b2+c2,∴以a,b,c为边长的三角形一定为直角三角形.【点睛】本题考查了勾股数,勾股定理的逆定理,熟练掌握:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解题的关键.【变式4-3】(2023春·重庆北碚·八年级西南大学附中校考期中)勾股定理是一个基本的几何定理,早在我国西汉时期算书《周髀算经》就有“勾三股四弦五”的记载.如果一个直角三角形三边长都是正整数,这样的直角三角形叫“整数直角三角形”;这三个整数叫做一组“勾股数”,如:3,4,5;5,12,13;7,24,25;8,15,17;9,40,41等等都是勾股数.(1)小李在研究勾股数时发现,某些整数直角三角形的斜边能写成两个整数的平方和,有一条直角边能写成这两个整数的平方差.如3,4,5中,5=22+12,3=22﹣12;5,12,13中,13=32+22,5=32﹣22;请证明:m,n为正整数,且m>n,若有一个直角三角形斜边长为m2+n2,有一条直角长为m2﹣n2,则该直角三角形一定为“整数直角三角形”;(2a和b均为正整数,用含b的代数式表示a,并求出a和b的值;(3)若c1=a12+b12,c2=a22+b22,其中,a1、a2、b1、b2均为正整数.证明:存在一个整数直角三角形,其斜边长为c1•c2.【答案】(1)见解析;(2)a=9730b,a=31,b=4;(3)见解析7【分析】(1)根据勾股定理:利用(m2+n2)2﹣(m2﹣n2)2,解得另一条直角边长为2mn,因为m,n为正整数,所以2mn也为正整数,即可得证;(2)首先根据勾股定理求出a关于b的代数式,再根据被开方数需大于等于0,即可求得a、b的范围,且a、b 均为正整数,将b的可能值:1,2,3,4分别代入,即可求得符合条件的正整数a、b;(3)观察发现,当a1=b1=1,a2=b2=2时,c1•c2=5×5=25,而252=152+202,故存在.【详解】(1)证明:∵(m2+n2)2﹣(m2﹣n2)2=(m2+n2+m2﹣n2)•(m2+n2﹣m2+n2)=2m2•2n2=(2mn)2,∴(2mn)2+(m2﹣n2)2=(m2+n2)2,∵m,n为正整数,且m>n,∴2mn,m2﹣n2,m2+n2均为正整数,∴该直角三角形一定为“整数直角三角形”;(2)由勾股定理得:7a﹣7+(150﹣30b)=16×15,∴a=9730b7,由题意可知:7a﹣7>0,150﹣30b>0,∴a>1,0<b<5,∵a和b均为正整数,∴b的可能值为:1,2,3,4,当b=1时,a=97307=1277,不是正整数,故b=1不符合题意;当b=2时,a=1577,不是正整数,故b=2不符合题意;当b=3时,a=97907=1877,不是正整数,故b=3不符合题意;当b=4时,a=971207=2177=31==∵2+2=240,4=240,∴2+2=4,∴b=4符合题意,∴a=9730b7,a=31,b=4;(3)证明:观察发现,当a1=b1=1,a2=b2=2时,c1•c2=5×5=25,152+202=225+400=625,252=625,∴152+202=252.∴存在一个整数直角三角形,其斜边长为c1•c2.【点睛】本题目考查勾股定理,难度一般,也是中考的常考知识点,熟练掌握勾股定理的应用以及二次根式的相关性质是顺利解答此题的关键.【题型5利用勾股定理的逆定理证明】【例5】(2023·江苏·八年级假期作业)如图,已知CD⊥AB,垂足为D,BD=1,CD=2,AD=4.求证:∠ACB=90°.【答案】见解析【分析】根据勾股定理得出BC2,AC2,进而利用勾股定理的逆定理解答即可.【详解】证明:∵CD⊥AB,垂足为D,BD=1,CD=2,AD=4,∴BC2=BD2+CD2=12+22=5,AC2=AD2+CD2=42+22=20,∵AB=AD+BD=4+1=5,∴AB2=25=AC2+BC2=20+5,∴△ABC是直角三角形,∴∠ACB=90°.【点睛】此题考查勾股定理及其逆定理,掌握勾股定理与其逆定理的区别是解题的关键.【变式5-1】(2023·江苏·八年级假期作业)在△ABC的三边分别是a、b、c,且a=n2−1,b=2n,c=n2+1,判断△ABC的形状,证明你的结论.【答案】直角三角形,理由见解析【分析】根据勾股定理的逆定理判断即可.【详解】解:∵a=n2−1,b=2n,c=n2+1∴a2=(n2−1)2=n4−2n2+1,b2=(2n)2=4n2,c2=(n2+1)2=n4+2n2+1,∴a2+b2=c2,故△ABC是直角三角形.【点睛】本题考查了勾股定理的逆定理、完全平方公式,会利用勾股定理的逆定理判定三角形是否为直角三角形是解答的关键.【变式5-2】(2023春·八年级课时练习)如图,以△ABC的每一条边为边作三个正方形.已知这三个正方形构成的图形中,绿色部分的面积与蓝色部分的面积相等,则△ABC是直角三角形吗?请证明你的判断.【答案】△ABC是直角三角形,证明见解析【分析】设坐标绿色部分的面积和为a,右边绿色部分的面积为b,蓝色部分的面积和为c,坐标空白部分的面积为d,右边空白部分的面积为e,【详解】设坐标绿色部分的面积和为a,右边绿色部分的面积为b,蓝色部分的面积和为c,坐标空白部分的面积为d,右边空白部分的面积为e,然后根据绿色部分的面积与蓝色部分的面积相等列式得到(a+d)+(b+e)=c+d+e,然后由a+d=AC2,b+e=BC2求解即可..∵绿色部分的面积与蓝色部分的面积相等∴a+b=c∴a+b+d+e=c+d+e∴(a+d)+(b+e)=c+d+e∵a+d=AC2,b+e=BC2∴c+d+e=AB2∴AC2+BC2=AB2∴△ABC是直角三角形.【点睛】此题考查了勾股定理的逆定理的运用,解题的关键是熟练掌握勾股定理的逆定理.【变式5-3】(2023春·江苏盐城·八年级统考期中)如图,在△ABC中,AB=7,AC=25,AD是中线,点E在AD的延长线上,且AD=ED=12.(1)求证:△CDE≌△BDA;(2)证明:CE⊥AE;(3)求△ABC的面积.【答案】(1)见解析(2)见解析(3)84【分析】(1)根据SAS证明△CDE≌△BDA即可;(2)结论:△ACE是直角三角形;首先根据△CDE≌△BDA,推出CE=AB=7,最后根据勾股定理的逆定理即可证明;(3)由全等三角形的性质得出S △ABC =S △ACE ,所以计算△ACE 的面积,即可得出△ABC 的面积.【详解】(1)证明:∵AD 是边BC 上的中线,∴BD =CD ,在△BDA 和△CDE 中,AD =BD ∠ADB =∠EDC BD =CD,∴△CDE≌△BDA (SAS ),(2)结论:△ACE 是直角三角形;理由:由(1)知:△CDE≌△BDA ,∴CE =AB =7,∵AD =ED =12,∴AE =24,∵AE 2+CE 2=242+72=625,AC 2=252=625,∴AE 2+CE 2=AC 2,∴∠E =90°,∴△ACE 是直角三角形;(3)∵△CDE≌△BDA ,∴S △CDE +S △ADC =S △ADC +S △BDA ,∴S △ABC =S △ACE ,∵S △ACE =12AE·CE =12×24×7=84,∴S △ABC =84.【点睛】此题是三角形的综合题,考查三角形全等的判定与性质,勾股定理的逆定理的运用,三角形的面积计算方法,掌握三角形全等的判定方法与勾股定理逆定理是解决问题的关键.【题型6 利用勾股定理的逆定理求解】【例6】(2023春·山西吕梁·八年级统考期末)如图,在△ABC 中,AB =5,BC =4,AC =3,将三角形纸片沿AD 折叠,使点C 落在AB 边上的点E 处,则△BDE 的周长为( )A.3B.4C.5D.6【答案】D【分析】利用勾股定理的逆定理判断出∠C=90°,利用翻折不变性可得AE=AC=3,推出BE=2,即可解决问题.【详解】解:在△ABC中,∵AB=5,BC=4,AC=3,∴AB2=BC2+AC2,∴△ABC是直角三角形,且∠C=90°,由翻折的性质可知:AE=AC=3,CD=DE,∴BE=2,∴△BDE的周长=DE+BD+BE=CD+BD+BE=BC+BE=4+2=6,故选:D.【点睛】本题考查翻折变换,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.【变式6-1】(2023春·湖北襄阳·八年级统考期中)如图,在△ABC中,点D在AB上,AB=AC,BC=5,BD=3,CD=4.求AC的长.【答案】AC=256【分析】由勾股定理的逆定理判定∠BDC=90°,再在Rt△ADC中利用勾股定理列方程即可解答.【详解】解:∵BC=5,BD=3,CD=4,∴BD2+CD2=32+42=25=BC2.∴∠BDC=90°.∴∠ADC=180°−∠BDC=90°.∴AD2+CD2=AC2.设AC=x.∵AB=AC,BD=3,∴AD=x−3.∴(x−3)2+42=x2.解得x=256.∴AC=256.【点睛】本题主要考查了勾股定理及其逆定理的应用,解题的关键在于熟练掌握定理,灵活运用.【变式6-2】(2023春·河南开封·八年级统考期末)已知△ABC的三边分别为a、b、c,且满足(a+2b−11)2+|2a−b−2|=10c−25−c2,请你判断△ABC的形状,并求出其周长与面积.【答案】△ABC是直角三角形,它的周长是12,面积是6【分析】首先把原等式变形为(a+2b−11)2+|2a−b−2|+(c−5)2=0,利用非负数的性质,建立三元一次方程组,求得a、b、c的数值,利用勾股定理的逆定理判定三角形的形状,进一步求得周长和面积即可.【详解】解:由题意得(a+2b−11)2+|2a−b−2|+c2−10c+25=0,∴(a+2b−11)2+|2a−b−2|+(c−5)2=0,∴a+2b−11=02a−b−2=0c−5=0,∴a=3,b=4,c=5,∵a2+b2=c2,∴△ABC是直角三角形,它的周长是3+4+5=12,面积是12×3×4=6.【点睛】此题考查了完全平方公式,非负数的性质,解三元一次方程组,勾股定理逆定理以及三角形的周长和面积的计算方法;注意解题的思路与方法的灵活性.【变式6-3】(2023春·陕西榆林·八年级校考期末)已知在△ACB中,AC=12,BC=5,AB=13,点E为边AC 上的动点,点F为边AB上的动点,则FE+EB的最小值是_________.【答案】12013【分析】先根据勾股定理的逆定理可得∠ACB =90°,再作点B 关于AC 的对称点B ′,连接B ′E,B ′F,AB ′,然后根据两点之间线段最短、垂线段最短可得当B ′F ⊥AB 时,线段FE +EB 的值最小,最小值为B ′F ,最后利用三角形的面积公式即可得.【详解】解:∵在△ACB 中,AC =12,BC =5,AB =13,∴AC 2+BC 2=AB 2,∴△ABC 是直角三角形,且∠ACB =90°,如图,作点B 关于AC 的对称点B ′,连接B ′E,B ′F,AB ′,∴B ′C =BC =5,BB ′=2BC =10,B ′E =BE ,∴FE +EB =FE +B ′E ,由两点之间线段最短可知,当点B ′,E,F 共线时,FE +B ′E 最小,最小值为B ′F ,由垂线段最短可知,当B ′F ⊥AB 时,B ′F 的值最小,又∵S △ABB ′=12AB ⋅B ′F =12AC ⋅BB ′,∴12×13B ′F =12×12×10,解得B ′F =12013,即FE +EB 的最小值为12013,故答案为:12013.【点睛】本题考查了勾股定理的逆定理、两点之间线段最短、垂线段最短、轴对称的性质等知识点,熟练掌握轴对称的性质和勾股定理的逆定理是解题关键.【题型7 勾股逆定理的应用】【例7】(2023春·广东广州·八年级统考期中)如图,在笔直的公路AB 旁有一座山,从山另一边的C 处到公路上的停靠站A 的距离为AC =15km ,与公路上另一停靠站B 的距离为BC =20km ,停靠站A 、B 之间的距离为AB =25km ,为方便运输货物现要从公路AB 上的D 处开凿隧道修通一条公路到C 处,且CD ⊥AB .(1)请判断△ABC 的形状?(2)求修建的公路CD 的长.【答案】(1)直角三角形(2)12km【分析】(1)根据勾股定理的逆定理,由AC 2+BC 2=AB 2得到△ABC 是直角三角形.(2)利用△ABC 的面积公式可得,CD ⋅AB =AC ⋅BC ,从而求出CD 的长.【详解】(1)解:△ABC 是直角三角形.理由:∵AC =15km ,BC =20km ,AB =25km ,∴ 152+202=252,∴AC 2+BC 2=AB 2,∴∠ACB =90°,∴△ABC 是直角三角形.(2)解:∵CD ⊥AB ,∴S △ABC =12AB ⋅CD =12AC ⋅BC ,∴CD =AC⋅BC AB =15×2025=12(km).答:修建的公路CD 的长是12km .【点睛】本题考查了勾股定理,勾股定理逆定理的应用,以及三角形的面积公式等知识,熟练掌握勾股定理及其逆定理是解题的关键.【变式7-1】(2023春·广西南宁·八年级南宁市天桃实验学校校考阶段练习)森林火灾是一种常见的自然灾害,危害很大.随着中国科技、经济的不断发展,开始应用飞机洒水的方式扑灭火源.如图,△ABC 区域内是一片森林,有一台救火飞机沿东西方向AB ,由点A 飞向点B ,已知点C 为其中一个着火点,且点C 与点A ,B 的距离分别为600m 和800m ,又AB =1000m ,飞机中心周围500m 以内可以受到洒水影响.(1)求△ABC 的面积.(2)着火点C 能否受到洒水影响?为什么?【答案】(1)240000m 2(2)受影响【分析】(1)利用勾股定理的逆定理得出△ABC 是直角三角形,再利用面积公式计算即可;(2)过点C 作CD ⊥AB 于D ,利用三角形面积得出CD 的长,进而得出海港C 是否受台风影响.【详解】(1)解:∵AC =600m ,BC =800m ,AB =1000m ,∴AC 2+BC 2=AB 2,∴△ABC 是直角三角形,∴S △ABC =12×AC ×BC =240000m 2;(2)如图,过点C 作CD ⊥AB 于D ,∴S △ΔABC =12AC ⋅BC =12CD ⋅AB ,∴600×800=1000CD ,∴CD =480,∵飞机中心周围500m 以内可以受到洒水影响,∴着火点C 受洒水影响.【点睛】本题考查的是勾股定理在实际生活中的运用,解答此类题目的关键是构造出直角三角形,再利用勾股定理解答.【变式7-2】(2023春·广西桂林·八年级统考期中)一根12米的电线杆AB ,用铁丝AC 、AD 固定,现已知用去铁丝AC =15米,AD =13米,又测得地面上B 、C 两点之间距离是9米,B 、D 两点之间距离是5米,则电线杆和地面是否垂直,为什么?【答案】电线杆和地面垂直,理由见解析【分析】由勾股定理的逆定理判断△ABD是直角三角形,△ABC是直角三角形,即可解答.【详解】解:电线杆和地面垂直,理由如下:连接BD在△ABD中,∵BD2+AB2=52+122=169=132=AD2,∴△ABD是直角三角形,且∠ABD=90°,∴AB⊥BD,在△ABC中,∵BC2+AB2=92+122=225=152=AC2,∴△ABC是直角三角形,且∠ABC=90°,∴AB⊥BC,∴电线杆和地面垂直.【点睛】本题考查勾股定理的逆定理,是重要考点,掌握相关知识是解题关键.【变式7-3】(2023春·八年级课时练习)海面上有两个疑似漂浮目标.A舰艇以12海里/时的速度离开港口O,向北偏西50°方向航行;同时,B舰艇在同地以16海里/时的速度向北偏东一定角度的航向行驶,如图所示,离开港口5小时后两船相距100海里,则B舰艇的航行方向是______.【答案】北偏东40°【分析】根据勾股定理的逆定理判断△AOB是直角三角形,求出∠BOD的度数即可.【详解】由题意得,OA=12×5=60(海里),OB=16×5=80(海里),又∵AB=100海里,∵602+802=1002,即OB2+OA2=AB2∴∠AOB=90°,∵∠DOA=50°,∴∠BOD=40°,则B舰艇的航行方向是北偏东40°,故答案为:北偏东40°.【点睛】本题考查的是勾股定理的逆定理的应用和方位角的知识,根据题意判断出△AOB是直角三角形是解决问题的关键.【题型8勾股定理及其逆定理的综合】【例8】(2023春·全国·八年级期末)如图,在△ABC中,D是△ABC内一点,连接AD、BD,且AD⊥BD.已知AD=4,BD=3,AC=13,BC=12.则图中阴影部分的面积为________.【答案】24【分析】先根据勾股定理求出AB,然后根据勾股定理的逆定理,得△ABC是直角三角形,根据阴影部分的面积S等于S△ABC−S△ABD,即可.【详解】∵AD⊥BD,∴AB2=AD2+BD2,∵AD=4,BD=3,∴AB=5,∵AC=13,BC=12,∴AC2=169,BC2=144,AB2=25,∴AC2=BC2+AB2,∴△ABC是直角三角形,设阴影部分的面积S,∴S=S△ABC−S△ABD=12×AB×BC−12×AD×BD,∴S=24,∴设阴影部分的面积为:24.故答案为:24.【点睛】本题考查勾股定理的知识,解题的关键是掌握勾股定理的运用和勾股定理的逆定理.【变式8-1】(2023春·江西赣州·八年级期中)如图,已知正方形ABCD的边长为4,E为AB中点,F为AD上的一点,且AF=14AB,求证:∠FEC=90°.【答案】见解析【分析】由正方形的性质和已知求得AF=1,FD=3,由中点的性质得AE=EB=2,利用勾股定理求得EF,EC,FC,再根据勾股定理的逆定理,即可得出结论.AB,【详解】证明:∵正方形ABCD的边长为4,且AF=14∴AF=1,FD=3,DC=BC=4,∵E为AB的中点,∴AE=EB=2,在Rt△AEF中,EF=在Rt△DFC中,FC===5,在Rt△EBC中,EC==∴EC2+EF2=FC2,∴△EFC是以EC、EF为直角边的直角三角形,∴∠FEC=90°.【点睛】本题考查了勾股定理和勾股定理的逆定理及正方形的性质,利用勾股定理求出三角形三边长,再利用勾股定理逆定理解答是证明此题的关键.【变式8-2】(2023春·重庆九龙坡·八年级重庆实验外国语学校校考阶段练习)为迎接六十周年校庆,重庆外国语学校准备将一块三角形空地ABC进行新的规划,如图,点D是BC边上的一点,过点D作垂直于AC的小路DE,点E在AC边上.经测量,AB=26米,AD=24米,BD=10米,AC比DC长12米.(1)求△ABD的面积;(2)求小路DE的长.【答案】(1)120平方米(2)14.4米【分析】(1)根据勾股定理逆定理得出△ABD是直角三角形,再根据三角形面积公式求解即可;(2)设DC =x 米,利用勾股定理求解出DC =18米,AC =30米,再利用等积法求解即可.【详解】(1)∵BD 2=102=100,AD 2=242=576,AB 2=262=676,∴BD 2+AD 2=AB 2,∴△ABD 是直角三角形,∠ADB =90°,∴S △ABD =12BD ⋅AD =12×10×24=120(平方米);(2)设DC =x 米,则AC =(x +12)米,由(1)知∠ADB =90°,由勾股定理得x 2+242=(x +12)2,解得x =18,∴DC =18米,AC =30米,∵DE ⊥AC ,∴S △ACD =12AC ⋅DE =12DC ⋅AD ,∴30DE =18×24,∴DE =14.4(米).【点睛】本题考查了勾股定理和勾股定理逆定理,熟练运用勾股定理逆定理证明是解题的关键.【变式8-3】(2023春·江苏宿迁·八年级校考期末)如图,已知正方形OABC 的边长为8,边OA 在x 轴上,边OC 在y 轴上,点D 是x 轴上一点,坐标为(2,0),点E 为OC 的中点,连接BD 、BE 、ED .(1)求点B 的坐标;(2)判断△BED 的形状,并证明你的结论.【答案】(1)(8,8)(2)△BED 是直角三角形【分析】(1)根据正方形的性质可得OA=OC=8,进而求出点B的坐标;(2)求出BD、BE、ED的平方,根据勾股定理逆定理判断即可.【详解】(1)解:正方形OABC的边长为8,边OA在x轴上,边OC在y轴上,所以OA=OC=8,因此,点B的坐标为(8,8).(2)解:△BED是直角三角形;点D是x轴上一点,坐标为(2,0),点E为OC的中点,∴OD=2,OE=CE=4,DA=6,∴ED2=OD2+OE2=20,EB2=BC2+CE2=80,DB2=BA2+AD2=100,∴ED2+EB2=DB2,∴△BED是直角三角形.【点睛】本题考查了正方形的性质和勾股定理及逆定理,解题关键是根据正方形性质写出点的坐标,利用坐标求出线段的平方.。
(完整版)八年级勾股定理题型总结
《勾股定理》典型例题解析一、知识重点:1、勾股定理勾股定理:直角三角形两直角边的平方和等于斜边的平方。
也就是说:假如直角三角形的两直角边为 a、 b,斜边为 c ,那么 a 2 + b 2= c 2。
公式的变形: a2 = c 2- b 2, b 2= c 2-a 2。
2、勾股定理的逆定理假如三角形 ABC的三边长分别是a, b, c,且知足 a2 + b2= c2,那么三角形 ABC 是直角三角形。
这个定理叫做勾股定理的逆定理.该定理在应用时,同学们要注意办理好以下几个重点:①已知的条件:某三角形的三条边的长度.②知足的条件:最大边的平方=最小边的平方 +中间边的平方 .③获得的结论:这个三角形是直角三角形,而且最大边的对角是直角.④假如不知足条件,就说明这个三角形不是直角三角形。
3、勾股数知足 a2 + b2= c2的三个正整数,称为勾股数。
注意:①勾股数一定是正整数,不可以是分数或小数。
②一组勾股数扩大同样的正整数倍后,还是勾股数。
常有勾股数有:(3,4,5 ) (5 ,12, 13 ) ( 6, 8, 10 )( 7,24, 25 ) ( 8,15, 17 )(9 , 12,15 )4、最短距离问题:主要运用的依照是两点之间线段最短。
二、考点解析考点一:利用勾股定理求面积1、求暗影部分面积:(1)暗影部分是正方形;( 2)暗影部分是长方形;( 3)暗影部分是半圆.2.如图,以 Rt△ABC的三边为直径分别向外作三个半圆,尝试究三个半圆的面积之间的关系.3、以下图,分别以直角三角形的三边向外作三个正三角形,其面积分别是S1、S2、 S3,则它们之间的关系是()A. S1- S2= S3B. S1+ S2= S3C. S2+S3< S1D. S2- S3=S1S 3S 1S 24、四边形 ABCD中,∠ B=90°, AB=3,BC=4,CD=12, AD=13,求四边形 ABCD的面积。
八年级初二数学勾股定理知识归纳总结含答案
八年级初二数学勾股定理知识归纳总结含答案一、选择题1.△ABC 的三边的长a 、b 、c 满足:2(1)250a b c -+-+-=,则△ABC 的形状为( ).A .等腰三角形B .等边三角形C .钝角三角形D .直角三角形 2.如图,在△ABC 中,AC =BC ,∠ACB =90°,点D 在BC 上,BD =6,DC =2,点P 是AB 上的动点,则PC +PD 的最小值为( )A .8B .10C .12D .143.如图,已知ABC 中,10,86,AB AC BC AB ===,的垂直平分线分别交,AC AB 于,,D E 连接BD ,则CD 的长为( )A .1B .54C .74D .2544.如图,小巷左右两侧是竖直的墙壁,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米.若梯子底端位置保持不动,将梯子斜靠在右墙时,顶端距离地面1.5米,则小巷的宽度为( )A .0.8米B .2米C .2.2米D .2.7米 5.如图所示,在中,,,.分别以,,为直径作半圆(以为直径的半圆恰好经过点,则图中阴影部分的面积是( )A .4B .5C .7D .66.如图,已知AB 是线段MN 上的两点,MN =12,MA =3,MB >3,以A 为中心顺时针旋转点M ,以点B 为中心顺时针旋转点N ,使M 、N 两点重合成一点C ,构成△ABC ,当△ABC 为直角三角形时AB 的长是( )A .3B .5C .4或5D .3或517.勾股定理是“人类最伟大的十个科学发现之一”.我国对勾股定理的证明是由汉代的赵爽在注解《周髀算经》时给出的,他用来证明勾股定理的图案被称为“赵爽弦图”.2002年在北京召开的国际数学大会选它作为会徽.下列图案中是“赵爽弦图”的是( )A .B .C .D .8.已知M 、N 是线段AB 上的两点,AM =MN =2,NB =1,以点A 为圆心,AN 长为半径画弧;再以点B 为圆心,BM 长为半径画弧,两弧交于点C ,连接AC ,BC ,则△ABC 一定是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形9.在ABC ∆中,::1:1:2BC AC AB =,则△ABC 是( ) A .等腰三角形 B .钝角三角形 C .直角三角形D .等腰直角三角形 10.长度分别为9cm 、12cm 、15cm 、36cm 、39cm 五根木棍首尾连接,最多可搭成直角三角形的个数为( )A .1个B .2个C .3个D .4个二、填空题11.如图是一个三级台阶,它的每一级的长、宽和高分别为5 dm 、3 dm 和1 dm ,A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物.请你想一想,这只蚂蚁从A 点出发,沿着台阶面爬到B 点的最短路程是 dm .12.如图,∠MON =90°,△ABC 的顶点A 、B 分别在OM 、ON 上,当A 点从O 点出发沿着OM 向右运动时,同时点B 在ON 上运动,连接OC .若AC =4,BC =3,AB =5,则OC 的长度的最大值是________.13.如图,等腰梯形ABCD 中,//AD BC ,1AB DC ==,BD 平分ABC ∠,BD CD ⊥,则AD BC +等于_________.14.如图,在四边形ABCD 中,AC 平分∠BAD ,BC=CD=10,AC=17,AD=9,则AB=_____.15.如图,在Rt ABC ∆中,90ABC ∠=,DE 垂直平分AC ,垂足为F ,//AD BC ,且3AB =,4BC =,则AD 的长为______.16.如图,△ABC 中,∠ACB=90°,AB=2,BC=AC ,D 为AB 的中点,E 为BC 上一点,将△BDE 沿DE 翻折,得到△FDE ,EF 交AC 于点G ,则△ECG 的周长是___________.17.如图,在□ABCD 中,AC 与BD 交于点O ,且AB =3,BC =5.①线段OA 的取值范围是______________;②若BD -AC =1,则AC •BD = _________.18.如图,直线l上有三个正方形a,b,c,若a,c的边长分别为5和12,则b的面积为_________________.19.如图,Rt△ABC中,∠BCA=90°,AB=5,AC=2,D为斜边AB上一动点(不与点A,B重合),DE⊥AC,DF⊥BC,垂足分别为E、F,连接EF,则EF的最小值是_____.20.如图,在等腰△ABC中,AB=AC,底边BC上的高AD=6cm,腰AC上的高BE=4m,则△ABC的面积为_____cm2.三、解答题21.如图,在等腰直角三角形ABC中,∠ACB=90°,AC=BC,AD平分∠BAC,BD⊥AD于点D,E是AB的中点,连接CE交AD于点F,BD=3,求BF的长.22.如图,在矩形ABCD 中,AB=8,BC=10,E 为CD 边上一点,将△ADE 沿AE 折叠,使点D 落在BC 边上的点F 处.(1)求BF 的长;(2)求CE 的长.23.如图,在ABC 中,90BAC ∠=︒,AB AC =,点D 是BC 上一动点、连接AD ,过点A 作AE AD ⊥,并且始终保持AE AD =,连接CE ,(1)求证:ABD ACE ≅;(2)若AF 平分DAE ∠交BC 于F ,①探究线段BD ,DF ,FC 之间的数量关系,并证明;②若3BD =,4CF =,求AD 的长,24.在等腰Rt △ABC 中,AB =AC ,∠BAC =90°(1)如图1,D ,E 是等腰Rt △ABC 斜边BC 上两动点,且∠DAE =45°,将△ABE 绕点A 逆时针旋转90后,得到△AFC ,连接DF①求证:△AED ≌△AFD ;②当BE =3,CE =7时,求DE 的长;(2)如图2,点D 是等腰Rt △ABC 斜边BC 所在直线上的一动点,连接AD ,以点A 为直角顶点作等腰Rt △ADE ,当BD =3,BC =9时,求DE 的长.25.如图,ABC ∆是等边三角形,,D E 为AC 上两点,且AE CD =,延长BC 至点F ,使CF CD =,连接BD .(1)如图1,当,D E 两点重合时,求证:BD DF =;(2)延长BD 与EF 交于点G .①如图2,求证:60BGE ∠=︒;②如图3,连接,BE CG ,若30,4EBD BG ∠=︒=,则BCG ∆的面积为______________.26.已知ABC ∆中,90ACB ∠=︒,AC BC =,过顶点A 作射线AP .(1)当射线AP 在BAC ∠外部时,如图①,点D 在射线AP 上,连结CD 、BD ,已知21AD n =-,21AB n =+,2BD n =(1n >).①试证明ABD ∆是直角三角形;②求线段CD 的长.(用含n 的代数式表示)(2)当射线AP 在BAC ∠内部时,如图②,过点B 作BD AP ⊥于点D ,连结CD ,请写出线段AD 、BD 、CD 的数量关系,并说明理由.27.在ABC ∆中,90ACB ∠=︒,6AC BC ==,点D 是AC 的中点,点E 是射线DC 上一点,DF DE ⊥于点D ,且DE DF =,连接CF ,作FH CF ⊥于点F ,交直线AB 于点H .(1)如图(1),当点E 在线段DC 上时,判断CF 和FH 的数量关系,并加以证明; (2)如图(2),当点E 在线段DC 的延长线上时,问题(1)中的结论是否依然成立?如果成立,请求出当ABC △和CFH △面积相等时,点E 与点C 之间的距离;如果不成立,请说明理由.28.如图,在平面直角坐标系中,点O 是坐标原点,ABC ∆,ADE ∆,AFO ∆均为等边三角形,A 在y 轴正半轴上,点0()6,B -,点(6,0)C ,点D 在ABC ∆内部,点E 在ABC ∆的外部,32=AD ,30DOE ∠=︒,OF 与AB 交于点G ,连接DF ,DG ,DO ,OE .(1)求点A 的坐标;(2)判断DF 与OE 的数量关系,并说明理由;(3)直接写出ADG ∆的周长.29.已知,矩形ABCD 中,AB =4cm ,BC =8cm ,AC 的垂直平分线EF 分别交AD 、BC 于点E 、F ,垂足为O .(1)如图1,连接AF 、CE .求证:四边形AFCE 为菱形.(2)如图1,求AF 的长.(3)如图2,动点P 、Q 分别从A 、C 两点同时出发,沿△AFB 和△CDE 各边匀速运动一周.即点P 自A →F →B →A 停止,点Q 自C →D →E →C 停止.在运动过程中,点P 的速度为每秒1cm ,设运动时间为t 秒.①问在运动的过程中,以A 、P 、C 、Q 四点为顶点的四边形有可能是矩形吗?若有可能,请求出运动时间t 和点Q 的速度;若不可能,请说明理由.②若点Q 的速度为每秒0.8cm ,当A 、P 、C 、Q 四点为顶点的四边形是平行四边形时,求t 的值.30.如图,在△ABC 中,D 是边AB 的中点,E 是边AC 上一动点,连结DE,过点D 作DF ⊥DE 交边BC 于点F(点F 与点B 、C 不重合),延长FD 到点G,使DG=DF,连结EF 、AG.已知AB=10,BC=6,AC=8.(1)求证:△ADG ≌△BDF ;(2)请你连结EG,并求证:EF=EG ;(3)设AE=x ,CF=y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围;(4)求线段EF 长度的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】由等式可分别得到关于a 、b 、c 的等式,从而分别计算得到a 、b 、c 的值,再由222+=a b c 的关系,可推导得到△ABC 为直角三角形.【详解】 ∵2(1)250a b c --= 又∵()2102050a b c ⎧-≥-≥-≥⎪⎩∴()21=02=05a b c ⎧-⎪⎪-⎨⎪⎪⎩∴125 abc⎧=⎪=⎨⎪=⎩∴222+=a b c∴△ABC为直角三角形故选:D.【点睛】本题考察了平方、二次根式、绝对值和勾股定理逆定理的知识;求解的关键是熟练掌握二次根式、绝对值和勾股定理逆定理,从而完成求解.2.B解析:B【分析】过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB于P,连接CP,此时DP+CP=DP+PC′=DC′的值最小.由DC=2,BD=6,得到BC=8,连接BC′,由对称性可知∠C′BA=∠CBA=45°,于是得到∠CBC′=90°,然后根据勾股定理即可得到结论.【详解】解:过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB于P,连接CP.此时DP+CP=DP+PC′=DC′的值最小.∵DC=2,BD=6,∴BC=8,连接BC′,由对称性可知∠C′BA=∠CBA=45°,∴∠CBC′=90°,∴BC′⊥BC,∠BCC′=∠BC′C=45°,∴BC=BC′=8,根据勾股定理可得DC′=22228610BC BD'+=+=.故选:B.【点睛】此题考查了轴对称﹣线路最短的问题,确定动点P为何位置时 PC+PD的值最小是解题的关键.3.C解析:C【分析】先根据勾股定理的逆定理证明△ABC 是直角三角形,根据垂直平分线的性质证得AD=BD ,由此根据勾股定理求出CD.【详解】∵AB=10,AC=8,BC=6,∴2222228610AC BC AB +=+==,∴△ABC 是直角三角形,且∠C=90°,∵DE 垂直平分AB ,∴AD=BD ,在Rt △BCD 中,222BD BC CD =+ ,∴222(8)6CD CD -=+,解得CD=74, 故选:C. 【点睛】此题考查勾股定理及其逆定理,线段垂直平分线的性质,题中证得△ABC 是直角三角形,且∠C=90°是解题的关键,再利用勾股定理求解.4.D解析:D【分析】先根据勾股定理求出梯子的长,进而根据勾股定理可得出小巷的宽度.【详解】解:如图,由题意可得:AD 2=0.72+2.42=6.25,在Rt △ABC 中,∵∠ABC=90°,BC=1.5米,BC 2+AB 2=AC 2,AD=AC ,∴AB 2+1.52=6.25,∴AB=±2,∵AB >0,∴AB=2米,∴小巷的宽度为:0.7+2=2.7(米).故选:D.【点睛】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.5.D解析:D【解析】【分析】先利用勾股定理计算BC 的长度,然后阴影部分的面积=以AB 为直径的半圆面积+以BC 为直径的半圆面积+-以AC 为直径的半圆面积. 【详解】 解:在中 ∵,, ∴, ∴BC=3,∴阴影部分的面积=以AB 为直径的半圆面积+以BC 为直径的半圆面积+-以AC 为直径的半圆面积=6.故选D. 【点睛】本题考查扇形面积的计算和勾股定理.在本题中解题关键是用重叠法去表示阴影部分的面积. 6.C解析:C【分析】设AB =x ,则BC =9-x ,根据三角形两边之和大于第三边,得到x 的取值范围,再利用分类讨论思想,根据勾股定理列方程,计算解答.【详解】解:∵在△ABC 中,AC =AM =3,设AB =x ,BC =9-x ,由三角形两边之和大于第三边得:3939x x x x +-⎧⎨+-⎩>>, 解得3<x <6,①AC 为斜边,则32=x 2+(9-x )2,即x 2-9x +36=0,方程无解,即AC 为斜边不成立,②若AB 为斜边,则x 2=(9-x )2+32,解得x =5,满足3<x <6,③若BC 为斜边,则(9-x )2=32+x 2,解得x =4,满足3<x <6,∴x =5或x =4;故选C .【点睛】本题考查三角形的三边关系,勾股定理等,分类讨论和方程思想是解答的关键.7.B解析:B【分析】“赵爽弦图”是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形.【详解】“赵爽弦图”是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形,如图所示:故选B.【点睛】本题主要考查了勾股定理的证明,证明勾股定理时,用几个全等的直角三角形拼成一个规则的图形,然后利用大图形的面积等于几个小图形的面积和化简整理得到勾股定理.8.B解析:B【分析】依据作图即可得到AC=AN=4,BC=BM=3,AB=2+2+1=5,进而得到AC2+BC2=AB2,即可得出△ABC是直角三角形.【详解】如图所示,AC=AN=4,BC=BM=3,AB=2+2+1=5,∴AC2+BC2=AB2,∴△ABC是直角三角形,且∠ACB=90°,故选B.【点睛】本题主要考查了勾股定理的逆定理,如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.9.D解析:D【分析】根据题意设出三边分别为k、k2k,然后利用勾股定理的逆定理判定三角形为直角三角形,又有BC 、AC 边相等,所以三角形为等腰直角三角形.【详解】设BC 、AC 、AB 分别为k ,k ,2k ,∵k 2+k 2=(2k )2,∴BC 2+AC 2=AB 2,∴△ABC 是直角三角形,又BC=AC ,∴△ABC 是等腰直角三角形.故选D .【点睛】本题主要考查了直角三角形的判定,利用设k 法与勾股定理证明三角形是直角三角形是难点,也是解题的关键.10.B解析:B【解析】试题分析:解:∵92=81,122=144,152=225,362=1296,392=1521,∴81+144=225,225+1296=1521,即92+122=152,152+362=392,故选B .考点:勾股定理的逆定理点评:本题难度中等,主要考查了勾股定理的逆定理,解题的关键熟知勾股定理逆定理的内容.二、填空题11.【解析】试题分析:将台阶展开,如图,331312,5,AC BC =⨯+⨯==222169,AB AC BC ∴=+=13,AB ∴=即蚂蚁爬行的最短线路为13.dm考点:平面展开:最短路径问题.12.5【解析】试题分析:取AB 中点E ,连接OE 、CE ,在直角三角形AOB 中,OE=AB ,利用勾股定理的逆定理可得△ACB 是直角三角形,所以CE=AB ,利用OE+CE≥OC ,所以OC 的最大值为OE+CE ,即OC 的最大值=AB=5.考点:勾股定理的逆定理,13.3【分析】由//AD BC ,BD 平分ABC ∠,易证得ABD ∆是等腰三角形,即可求得1AD AB ==,又由四边形ABCD 是等腰梯形,易证得2C DBC ∠=∠,然后由BD CD ⊥,根据直角三角形的两锐角互余,即可求得30DBC ∠=︒,则可求得BC 的值,继而求得AD BC +的值.【详解】解:∵//AD BC ,AB DC =,∴C ABC ∠=∠,ADB DBC ∠=∠,∵BD 平分ABC ∠,∴2ABC DBC ∠=∠,ABD DBC ∠=∠,∴ABD ADB ∠=∠,∴1AD AB ==,∴2C DBC ∠=∠,∵BD CD ⊥,∴90BDC ∠=︒,∵三角形内角和为180°,∴90DBC C ∠+∠=︒,∴260C DBC ∠=∠=︒,∴2212BC CD ==⨯=,∴123AD BC +=+=.故答案为:3.【点睛】本题主要考查对勾股定理,含30度角的直角三角形,等腰三角形的性质和判定,平行线的性质,等腰梯形的性质等知识点的理解和掌握,综合运用这些性质进行推理和计算是解此题的关键.14.21【分析】在AB 上截取AE=AD ,连接CE ,过点C 作CF ⊥AB 于点F ,先证明△ADC ≌△AEC ,得出AE=AD=9,CE=CD=BC =10的长度,再设EF=BF=x ,在Rt △CFB 和Rt △CFA 中,由勾股定理求出x ,再根据AB=AE+EF+FB 求得AB 的长度.【详解】如图所示,在AB 上截取AE=AD ,连接CE ,过点C 作CF ⊥AB 于点F ,∵AC 平分∠BAD ,∴∠DAC=∠EAC .在△AEC 和△ADC 中,AE AD DAC EACAC AC ⎧⎪∠∠⎨⎪⎩===∴△ADC ≌△AEC (SAS ),∴AE=AD=9,CE=CD=BC =10,又∵CF ⊥AB ,∴EF=BF ,设EF=BF=x .∵在Rt △CFB 中,∠CFB=90°,∴CF 2=CB 2-BF 2=102-x 2,∵在Rt △CFA 中,∠CFA=90°,∴CF 2=AC 2-AF 2=172-(9+x )2,即102-x 2=172-(9+x )2,∴x=6,∴AB=AE+EF+FB=9+6+6=21,∴AB 的长为21.故答案是:21.【点睛】考查全等三角形的判定和性质、勾股定理和一元二次方程等知识,解题的关键是作辅助线,构造全等三角形,再运用用方程的思想解决问题.15.258【分析】 先根据勾股定理求出AC 的长,再根据DE 垂直平分AC 得出FA 的长,根据相似三角形的判定定理得出△AFD ∽△CBA ,由相似三角形的对应边成比例即可得出结论.【详解】∵Rt △ABC 中,∠ABC=90°,AB=3,BC=4,∴2222AB +BC =3+4=5;∵DE 垂直平分AC ,垂足为F ,∴FA=12AC=52,∠AFD=∠B=90°,∵AD∥BC,∴∠A=∠C,∴△AFD∽△CBA,∴ADAC=FABC,即AD5=2.54,解得AD=258;故答案为258.【点睛】本题考查的是勾股定理及相似三角形的判定与性质,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.16.2【分析】连接CE.根据“直角三角形斜边上的中线等于斜边的一半”、等腰三角形的性质以及折叠的性质推知EG+CG=EG+GF=EF=BE,【详解】解:(1)如图,连接CD、CF.∵Rt△ABC中,∠ACB=90°,AC=BC,D为AB边的中点,∴BD=CD=1.2 ,∵由翻折可知BD=DF,∴CD=BD=DF=1,∠DFE=∠B=∠DCA=45°,∴∠DCF=∠DFC,∴∠DCF-∠DCA=∠DFC-∠DFE,即∠GCF=∠GFC,∴GC=GF,∴EG+CG=EG+GF=EF=BE,∴△ECG的周长2,2.【点睛】本题考查了折叠的性质、勾股定理、直角三角形的性质,能将三角形的周长转移到已知线段上是解题的关键..17.①1<OA<4.②672.【解析】(1)由三角形边的性质5-3<2OA <5+3,1<OA <4.(2)过A 作AF BC ,F ⊥于过D 作DE BC ⊥于E,可知,ABF 全等DCE ,由题意知,22BD DE =+()2BC CE +=2DE +()24CE +, ()()222225AC DE BC CE DE CE ∴=+-=+-,2AC ∴+ 2BD=2DE +()()22245CE DE CE +++-=2(22)5018DE CE ++=+50=68,BD -AC =1,两边平方2AC ∴+ 2BD -2AC •BD =1, ∴AC •BD =672.18.169【解析】解:由于a 、b 、c 都是正方形,所以AC =CD ,∠ACD =90°;∵∠ACB +∠DCE =∠ACB +∠BAC =90°,即∠BAC =∠DCE ,∠ABC =∠CED =90°,AC =CD ,∴△ACB ≌△DCE ,∴AB =CE ,BC =DE ; 在Rt △ABC 中,由勾股定理得:AC 2=AB 2+BC 2=AB 2+DE 2,即S b =S a +S c =22512+=169. 故答案为:169.点睛:此题主要考查对全等三角形和勾股定理的综合运用,结合图形求解,对图形的理解能力要比较强.1925 【解析】试题分析:根据勾股定理可求出BC=1,然后根据∠BCA =90°,DE ⊥AC ,DF ⊥BC ,证得四边形CEDF 是矩形,连接CD ,则CD=EF ,当CD⊥AB 时,CD 最短,即25. 故答案为255.点睛:本题考查了勾股定理的运用,矩形的判定和性质以及垂线段最短的性质,同时也考查了学生综合运用性质进行推理和计算的能力.20.【分析】 根据三角形等面积法求出32AC BC = ,在Rt△ACD 中根据勾股定理得出AC 2=14BC 2+36,依据这两个式子求出AC 、BC 的值.【详解】 ∵AD 是BC 边上的高,BE 是AC 边上的高, ∴12AC•BE=12BC•AD, ∵AD=6,BE =4, ∴AC BC =32, ∴22AC BC =94, ∵AB=AC ,AD⊥BC,∴BD=DC =12BC , ∵AC 2﹣CD 2=AD 2,∴AC 2=14BC 2+36, ∴221364BC BC +=94, 整理得,BC 2=3648⨯, 解得:BC=∴△ABC 的面积为12×cm 2故答案为:【点睛】本题考查了三角形的等面积法以及勾股定理的应用,找出AC 与BC 的数量关系是解答此题的关键.三、解答题21.BF的长为【分析】先连接BF ,由E 为中点及AC=BC ,利用三线合一可得CE ⊥AB ,进而可证△AFE ≌△BFE ,再利用AD 为角平分线以及三角形外角定理,即可得到∠BFD 为45°,△BFD 为等腰直角三角形,利用勾股定理即可解得BF .【详解】解:连接BF .∵CA=CB ,E 为AB 中点∴AE=BE ,CE ⊥AB ,∠FEB=∠FEA=90°在Rt △FEB 与Rt △FEA 中,BE AE BEF AEF FE FE =⎧⎪∠=∠⎨⎪=⎩∴Rt △FEB ≌Rt △FEA又∵AD 平分∠BAC ,在等腰直角三角形ABC 中∠CAB=45°∴∠FBE=∠FAE=12∠CAB=22.5° 在△BFD 中,∠BFD=∠FBE+∠FAE=45°又∵BD ⊥AD ,∠D=90°∴△BFD 为等腰直角三角形,BD=FD=3 ∴222232BF BD FD BD =+==【点睛】本题主要考查等腰直角三角形的性质及判定、三角形全等的性质及判定、三角形外角、角平分线,解题关键在于熟练掌握等腰直角三角形的性质.22.(1)BF 长为6;(2)CE 长为3,详细过程见解析.【分析】(1)由矩形的性质及翻折可知,∠B=90°,AF=AD=10,且AB=8,在Rt △ABF 中,可由勾股定理求出BF 的长;(2)设CE=x ,根据翻折可知,EF=DE=8-x ,由(1)可知BF=6,则CF=4,在Rt △CEF 中,可由勾股定理求出CE 的长.【详解】解:(1)∵四边形ABCD 为矩形,∴∠B=90°,且AD=BC=10, 又∵AFE 是由ADE 沿AE 翻折得到的,∴AF=AD=10,又∵AB=8,在Rt △ABF中,由勾股定理得:,故BF 的长为6.(2)设CE=x ,∵四边形ABCD 为矩形,∴CD=AB=8,∠C=90°,DE=CD-CE=8-x ,又∵△AFE 是由△ADE 沿AE 翻折得到的,∴FE=DE=8-x ,由(1)知:BF=6,故CF=BC-BF=10-6=4,在Rt △CEF 中,由勾股定理得:222CF +CE =EF ,∴2224+x =(8-x),解得:x=3,故CE 的长为3.【点睛】本题考查了折叠的性质:折叠是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等,利用勾股定理求解是本题的关键.23.(1)见详解(2)①结论:222BD FC DF +=,证明见详解②【分析】(1)根据SAS ,只要证明BAD CAE ∠=∠即可解决问题;(2)①结论:222BD FC DF +=.连接EF ,进一步证明90ECF ∠=︒,DF EF =,再利用勾股定理即可得证;②过点A 作AG BC ⊥于点G ,在Rt ADG 中求出AG 、DG 即可求解.【详解】解:(1)∵AE AD ⊥∴90DAC CAE ∠+∠=︒∵90BAC ∠=︒∴90DAC BAD ∠+∠=︒∴BAD CAE ∠=∠∴在ABD △和ACE △中 AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩∴ABD △≌ACE △()SAS(2)①结论:222BD FC DF +=证明:连接EF ,如图:∵ABD △≌ACE △∴B ACE ∠=∠,BD CE =∴90ECF BCA ACE BCA B ∠=∠+∠=∠+∠=︒∴222FC CE EF +=∴222FC BD EF +=∵AF 平分DAE ∠∴DAF EAF ∠=∠∴在DAF △和EAF △中AD AE DAF EAF AF AF =⎧⎪∠=∠⎨⎪=⎩∴DAF △≌EAF △()SAS∴DF EF =∴222FC BD DF +=即222BD FC DF +=②过点A 作AG BC ⊥于点G ,如图:∵由①可知222223425DF BD FC =+=+=∴5DF =∴35412BC BD DF FC =++=++=∵AB AC =,AG BC ⊥ ∴1112622BG AG BC ===⨯= ∴633DG BG BD =-=-=∴在Rt ADG 中,AD ===故答案是:(1)见详解(2)①结论:222BD FC DF +=,证明见详解②【点睛】本题考查了全等三角形的判定和性质、直角三角形的判定和性质以及角平分线的性质.综合性较强,属中档题,学会灵活应用相关知识点进行推理证明.24.(1)①见解析;②DE =297;(2)DE 的值为 【分析】(1)①先证明∠DAE =∠DAF ,结合DA =DA ,AE =AF ,即可证明;②如图1中,设DE =x ,则CD =7﹣x .在Rt △DCF 中,由DF 2=CD 2+CF 2,CF =BE =3,可得x 2=(7﹣x )2+32,解方程即可;(2)分两种情形:①当点E 在线段BC 上时,如图2中,连接BE .由△EAD ≌△ADC ,推出∠ABE =∠C =∠ABC =45°,EB =CD =5,推出∠EBD =90°,推出DE 2=BE 2+BD 2=62+32=45,即可解决问题;②当点D 在CB 的延长线上时,如图3中,同法可得DE 2=153.【详解】(1)①如图1中,∵将△ABE 绕点A 逆时针旋转90°后,得到△AFC ,∴△BAE ≌△CAF ,∴AE =AF ,∠BAE =∠CAF ,∵∠BAC =90°,∠EAD =45°,∴∠CAD +∠BAE =∠CAD +∠CAF =45°,∴∠DAE =∠DAF ,∵DA =DA ,AE =AF ,∴△AED ≌△AFD (SAS );②如图1中,设DE =x ,则CD =7﹣x .∵AB =AC ,∠BAC =90°,∴∠B =∠ACB =45°,∵∠ABE =∠ACF =45°,∴∠DCF =90°,∵△AED ≌△AFD (SAS ),∴DE =DF =x ,∵在Rt △DCF 中, DF 2=CD 2+CF 2,CF =BE =3,∴x 2=(7﹣x )2+32,∴x =297,∴DE=297;(2)∵BD=3,BC=9,∴分两种情况如下:①当点E在线段BC上时,如图2中,连接BE.∵∠BAC=∠EAD=90°,∴∠EAB=∠DAC,∵AE=AD,AB=AC,∴△EAB≌△DAC(SAS),∴∠ABE=∠C=∠ABC=45°,EB=CD=9-3=6,∴∠EBD=90°,∴DE2=BE2+BD2=62+32=45,∴DE=35;②当点D在CB的延长线上时,如图3中,连接BE.同理可证△DBE是直角三角形,EB=CD=3+9=12,DB=3,∴DE2=EB2+BD2=144+9=153,∴DE=317,综上所述,DE的值为35或317.【点睛】本题主要考查旋转变换的性质,三角形全等的判定和性质以及勾股定理,添加辅助线,构造旋转全等模型,是解题的关键.25.(1)见解析;(2)①见解析;②2.【分析】(1)当D、E两点重合时,则AD=CD,然后由等边三角形的性质可得∠CBD的度数,根据等腰三角形的性质和三角形的外角性质可得∠F的度数,于是可得∠CBD与∠F的关系,进而可得结论;(2)①过点E作EH∥BC交AB于点H,连接BE,如图4,则易得△AHE是等边三角形,根据等边三角形的性质和已知条件可得EH=CF,∠BHE=∠ECF=120°,BH=EC,于是可根据SAS 证明△BHE≌△ECF,可得∠EBH=∠FEC,易证△BAE≌△BCD,可得∠ABE=∠CBD,从而有∠FEC=∠CBD,然后根据三角形的内角和定理可得∠BGE=∠BCD,进而可得结论;②易得∠BEG =90°,于是可知△BEF 是等腰直角三角形,由30°角的直角三角形的性质和等腰直角三角形的性质易求得BE 和BF 的长,过点E 作EM ⊥BF 于点F ,过点C 作CN ⊥EF 于点N ,如图5,则△BEM 、△EMF 和△CFN 都是等腰直角三角形,然后利用等腰直角三角形的性质和30°角的直角三角形的性质可依次求出BM 、MC 、CF 、FN 、CN 、GN 的长,进而可得△GCN 也是等腰直角三角形,于是有∠BCG =90°,故所求的△BCG 的面积=12BC CG ⋅,而BC 和CG 可得,问题即得解决. 【详解】 解:(1)∵△ABC 是等边三角形,∴∠ABC =∠ACB =60°,当D 、E 两点重合时,则AD=CD ,∴1302DBC ABC ∠=∠=︒, ∵CF CD =,∴∠F =∠CDF , ∵∠F +∠CDF =∠ACB =60°,∴∠F =30°,∴∠CBD =∠F ,∴BD DF =;(2)①∵△ABC 是等边三角形,∴∠ABC =∠ACB =60°,AB=AC ,过点E 作EH ∥BC 交AB 于点H ,连接BE ,如图4,则∠AHE =∠ABC =60°,∠AEH =∠ACB =60°,∴△AHE 是等边三角形,∴AH=AE=HE ,∴BH =EC ,∵AE CD =,CD=CF ,∴EH=CF ,又∵∠BHE =∠ECF =120°,∴△BHE ≌△ECF (SAS ),∴∠EBH =∠FEC ,EB=EF ,∵BA=BC ,∠A =∠ACB =60°,AE=CD ,∴△BAE ≌△BCD (SAS ),∴∠ABE =∠CBD ,∴∠FEC =∠CBD ,∵∠EDG =∠BDC ,∴∠BGE =∠BCD =60°;②∵∠BGE =60°,∠EBD =30°,∴∠BEG =90°,∵EB=EF ,∴∠F =∠EBF =45°,∵∠EBG =30°,BG =4,∴EG =2,BE 3∴BF 226BE =232GF =,过点E 作EM ⊥BF 于点F ,过点C 作CN ⊥EF 于点N ,如图5,则△BEM 、△EMF 和△CFN 都是等腰直角三角形,∴6BM ME MF ===∵∠ACB =60°,∴∠MEC =30°,∴2MC =, ∴62BC =+,266262CF =--=-, ∴()262312CN FN ==⨯-=-,∴()2323131GN GF FN CN =-=---=-=, ∴45GCN CGN ∠=∠=︒,∴∠GCF =90°=∠GCB ,∴62CG CF ==-,∴△BCG 的面积=()()116262222BC CG ⋅=+-=. 故答案为:2.【点睛】本题考查了等腰三角形与等边三角形的判定和性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、30°角的直角三角形的性质和勾股定理等知识,涉及的知识点多、难度较大,正确添加辅助线、熟练掌握全等三角形的判定与性质是解①题的关键,灵活应用等腰直角三角形的性质和30°角的直角三角形的性质解②题的关键.26.(1)①详见解析;(2)2222CD n =+-1n >);(2)2AD BD CD -=,理由详见解析.【分析】(1)①根据勾股定理的逆定理进行判断;②过点C 作CE ⊥CD 交DB 的延长线于点E ,利用同角的余角相等证明∠3=∠4,∠1=∠E ,进而证明△ACD ≌△BCE ,求出DE 的长,再利用勾股定理求解即可.(2)过点C 作CF ⊥CD 交BD 的延长线于点F ,先证∠ACD=∠BCF ,再证△ACD ≌△BCF ,得CD=CF ,AD=BF ,再利用勾股定理求解即可.【详解】(1)①∵()()()22222222212214AD BD n n n n n +=-+=-++()()22222211n n n =++=+ 又∵()2221AB n =+∴222AD BD AB +=∴△ABD 是直角三角形②如图①,过点C 作CE ⊥CD 交DB 的延长线于点E ,∵∠3+∠BCD=∠ACD=90°,∠4+∠BCD=∠DCE=90°∴∠3=∠4由①知△ABD 是直角三角形∴1290∠+∠=︒又∵290E ∠+∠=︒∴∠1=∠E在ACD ∆和BCE ∆中,A 34E AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ACD ≌△BCE∴CD CE =,AD BE =∴221DE BD BE BD AD n n =+=+=+-又∵CD CE =,90DCE ∠=︒ ∴由勾股定理得222DE CD DE CD =+=∴22CD =222222n n =+-(1n >) (2)AD 、BD 、CD 的数量关系为:2AD BD CD -=,理由如下:如图②,过点C 作CF ⊥CD 交BD 的延长线于点F ,∵∠ACD=90°+∠5,∠BCF=90°+∠5∴∠ACD=∠BCF∵BD ⊥AD∴∠ADB=90°∴∠6+∠7=90°∵∠ACB=90°∴∠9=∠8=90°又∵∠6=∠8∴∠7=∠9ACD ∆和BCF ∆中97AC BCACD BCF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ACD ≌△BCF∴CD=CF ,AD=BF又∵∠DCF=90°∴由勾股定理得DF ==又DF=BF-BD=AD-BD∴AD BD -=【点睛】本题考查的是三角形全等、勾股定理及其逆定理,掌握三角形全等的判定方法及勾股定理及其逆定理是关键.27.(1)CF FH =,证明见解析;(2)依然成立,点E 与点C之间的距离为3.理由见解析.【分析】(1)做辅助线,通过已知条件证得ADG 与DEF 是等腰直角三角形.证出CEF FGH ≌,利用全等的性质即可得到CF FH =.(2)设AH ,DF 交于点G ,可根据ASA 证明△FCE ≌△HFG ,从而得到CF FH =,当ABC △和CFH △均为等腰直角三角形当他们面积相等时,6CF AC ==.利用勾股定理可以求DE 、CE 的长,即可求出CE 的长,即可求得点E 与点C 之间的距离.【详解】(1)CF FH =证明:延长DF 交AB 于点G∵在ABC △中,90ACB ∠=︒,6AC BC ==,∴45A B ∠=∠=︒∵DF DE ⊥于点D ,且DE DF =,∴90EDF ∠=︒,ADG 与DEF 是等腰直角三角形.∴45AGD DEF ∠=∠=︒,AD DG =,90DCF CFD ∠+∠=︒,∴135CEF FGH ∠=∠=︒,∵点D 是AC 的中点,∴132CD AD AC ===,∴CD DG = ∴CE FG = ∵FH CF ⊥于点F ,∴90CFG ∠=︒,∴90GFH CFD ∠+∠=︒∴DCF GFH ∠=∠∴CEF FGH ≌∴CF FH =;(2)依然成立理由:设AH ,DF 交于点G ,由题意可得出:DF=DE ,∴∠DFE=∠DEF=45°,∵AC=BC ,∴∠A=∠CBA=45°,∵DF ∥BC ,∴∠CBA=∠FGB=45°,∴∠FGH=∠CEF=45°,∵点D 为AC 的中点,DF ∥BC ,∴DG=12BC,DC=12AC , ∴DG=DC ,∴EC=GF ,∵∠DFC=∠FCB ,∴∠GFH=∠FCE ,在△FCE 和△HFG 中 CEF FGH EC GFECF GFH ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△FCE ≌△HFG(ASA),∴HF=FC.由(1)可知ABC △和CFH △均为等腰直角三角形当他们面积相等时,6CF AC ==. ∴2233DE DF CF CD ==-=∴333CE DE DC =-=-∴点E 与点C 之间的距离为333-.【点睛】本题考查了全等三角形的判定和性质、等腰直角三角形的性质以及勾股定理,学会利用全等和等腰三角形的性质,借助勾股定理解决问题.28.(1)(0,3);(2)DF OE =;(3)93233+【分析】(1)由等边三角形的性质得出6OB =,12AB AC BC ===,由勾股定理得出2263OA AB OB =-=A 的坐标;(2)由等边三角形的性质得出AD AE =,AF AO =,60FAO DAE ∠=∠=︒,证出FAD OAE ∠=∠,由SAS 证明FAD OAE ∆≅∆,即可得出DF OE =;(3)证出90AGO ∠=︒,求出9AG =,由全等三角形的性质得出AOE AFD ∠=∠,证出6090FDO AFD AOD ∠=∠+︒+∠=︒,由等边三角形的性质得1332DG OF ==即可得出答案. 【详解】解:(1)ABC ∆是等边三角形,点0()6,B -,点(6,0)C ,6OB ∴=,12AB AC BC ===,222212663OA AB OB =-=-= ∴点A 的坐标为(0,63);(2)DF OE =;理由如下:ADE ∆,AFO ∆均为等边三角形,AD AE ∴=,AF AO =,60FAO DAE ∠=∠=︒,FAD OAE ∴∠=∠,在FAD ∆和OAE ∆中,AF AO FAD OAE AD AE =⎧⎪∠=∠⎨⎪=⎩,()FAD OAE SAS ∴∆≅∆,DF OE ∴=;(3)60AOF ∠=︒,30FOB ∴∠=︒,60ABO ∠=︒,90AGO ∴∠=︒,AFO ∆是等边三角形,AO =·sin 609AG OA ∴=︒==, FAD OAE ∆≅∆,AOE AFD ∴∠=∠,30DOE AOD AOE ∠=︒=∠+∠,30AOD AFD ∴∠+∠=︒,FDO AFD FAO AOD ∠=∠+∠+∠,60603090FDO AFD AOD ∴∠=∠+︒+∠=︒+︒=︒,AG OF ⊥,AOF ∆为等边三角形,G ∴为斜边OF 的中点,1122DG OF ∴==⨯=ADG ∴∆的周长9AG AD DG =++=+【点睛】本题是三角形综合题目,考查了等边三角形的性质、勾股定理、坐标与图形性质、全等三角形的判定与性质、三角函数等知识;本题综合性强,有一定难度,熟练掌握等边三角形的性质,证明三角形全等是解题的关键.29.(1)证明见解析;(2)AF =5cm ;(3)①有可能是矩形,P 点运动的时间是8,Q 的速度是0.5cm /s ;②t =203. 【解析】【分析】(1)证△AEO ≌△CFO ,推出OE=OF ,根据平行四边形和菱形的判定推出即可; (2)设AF=CF=a ,根据勾股定理得出关于a 的方程,求出即可;(3)①只有当P 运动到B 点,Q 运动到D 点时,以A 、P 、C 、Q 四点为顶点的四边形有可能是矩形,求出时间t ,即可求出答案;②分为三种情况,P 在AF 上,P 在BF 上,P 在AB 上,根据平行四边形的性质求出即可.【详解】(1)证明:∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠AEO =∠CFO ,∵AC 的垂直平分线EF ,∴AO=OC,AC⊥EF,在△AEO和△CFO中∵AEO CFOAOE COF AO OC∠∠⎧⎪∠∠⎨⎪⎩===,∴△AEO≌△CFO(AAS),∴OE=OF,∵OA=OC,∴四边形AECF是平行四边形,∵AC⊥EF,∴平行四边形AECF是菱形;(2)解:设AF=acm,∵四边形AECF是菱形,∴AF=CF=acm,∵BC=8cm,∴BF=(8﹣a)cm,在Rt△ABF中,由勾股定理得:42+(8﹣a)2=a2,a=5,即AF=5cm;(3)解:①在运动过程中,以A、P、C、Q四点为顶点的四边形有可能是矩形,只有当P运动到B点,Q运动到D点时,以A、P、C、Q四点为顶点的四边形有可能是矩形,P点运动的时间是:(5+3)÷1=8,Q的速度是:4÷8=0.5,即Q的速度是0.5cm/s;②分为三种情况:第一、P在AF上,∵P的速度是1cm/s,而Q的速度是0.8cm/s,∴Q只能再CD上,此时当A、P、C、Q四点为顶点的四边形不是平行四边形;第二、当P在BF上时,Q在CD或DE上,只有当Q在DE上时,当A、P、C、Q四点为顶点的四边形才有可能是平行四边形,如图,∵AQ=8﹣(0.8t﹣4),CP=5+(t﹣5),∴8﹣(0.8t﹣4)=5+(t﹣5),t=203,第三情况:当P在AB上时,Q在DE或CE上,此时当A、P、C、Q四点为顶点的四边形不是平行四边形;即t=203.【点睛】考查了矩形的性质,平行四边形的性质和判定,菱形的判定和性质,勾股定理,全等三角形的性质和判定,线段垂直平分线性质等知识点的综合运用,用了方程思想,分类讨论思想.30.(1)见解析(2) 见解析(3) 见解析(4)5【解析】【分析】(1)由D 是AB 中点知AD =BD ,结合DG =DF ,∠ADG =∠BDF 即可得证;(2)连接EG .根据垂直平分线的判定定理即可证明.(3)由△ADG ≌△BDF ,推出∠GAB =∠B ,推出∠EAG =90°,可得EF 2=(8-x )2+y 2,EG 2=x 2+(6-y )2,根据EF =EG ,可得(8-x )2+y 2=x 2+(6-y )2,由此即可解决问题. (4)由EF =22EC CF +=2247(8)()33x x -+-=225(4)259x -+知x =4时,取得最小值.【详解】解:(1)∵D 是边AB 的中点,∴AD =BD ,在△ADG 和△BDF 中, ∵AD BD ADG BDF DG DF =⎧⎪∠=∠⎨⎪=⎩,∴△ADG ≌△BDF (SAS );(2)如图,连接EG .∵DG =FD ,DF ⊥DE ,∴DE 垂直平分FG .∴EF =EG .。
八年级初二数学勾股定理知识点总结含答案
八年级初二数学勾股定理知识点总结含答案一、选择题1.如图,西安路与南京路平行,并且与八一街垂直,曙光路与环城路垂直.如果小明站在南京路与八一街的交叉口,准备去书店,按图中的街道行走,最近的路程约为( )A .600mB .500mC .400mD .300m2.如图,在△ABC 和△ADE 中,∠BAC =∠DAE =90°,AB =AC ,AD =AE ,点C ,D ,E 在同一条直线上,连接B ,D 和B ,E .下列四个结论:①BD =CE ,②BD ⊥CE ,③∠ACE +∠DBC=30°,④()2222BE AD AB =+.其中,正确的个数是( ) A .1 B .2C .3D .4 3.如图,在矩形纸片ABCD 中,AD =9,AB =3,将其折叠,使点D 与点B 重合,折痕为EF ,那么折痕EF 的长为( )A .3B 6C 10D .94.如图钢架中,∠A =15°,现焊上与AP 1等长的钢条P 1P 2,P 2P 3…来加固钢架,若最后一根钢条与射线AB 的焊接点P 到A 点的距离为3 )A .16B .15C .12D .105.如图,在等腰Rt ABC △中,908C AC ∠==°,,F 是AB 边上的中点,点D 、E 分别在AC 、BC 边上运动,且保持AD CE =.连接DE 、DF 、EF .在此运动变化的过程中,下列结论:①DFE △是等腰直角三角形;②四边形CDFE 不可能为正方形;③DE 长度的最小值为4;④四边形CDFE 的面积保持不变;⑤△CDE 面积的最大值为8.其中正确的结论是( )A .①④⑤B .③④⑤C .①③④D .①②③6.如图,A 、B 两点在直线l 的两侧,点A 到直线l 的距离AC=4,点B 到直线l 的距离BD=2,且CD=6,P 为直线CD 上的动点, 则PA PB -的最大值是( )A .62B .22C .210D .6 7.下列四组数中不能构成直角三角形的一组是( ) A .1,2,6 B .3,5,4 C .5,12,13 D .3,2,138.如图,在等腰Rt △ABC 中,∠C =90°,AC =7,∠BAC 的角平分线AD 交BC 于点D ,则点D 到AB 的距离是( )A .3B .4C .7(21)D .7(21)9.已知一个三角形的两边长分别是5和13,要使这个三角形是直角三角形,则这个三角形的第三条边可以是( )A .6B .8C .10D .1210.在四边形ABCD 中,AB ∥CD ,∠A =90°,AB =1,BD ⊥BC ,BD =BC ,CF 平分∠BCD 交BD 、AD 于E 、F ,则EDC 的面积为( )A .22﹣2B .32﹣2C .2﹣2D .2﹣1二、填空题11.如图,∠MON =90°,△ABC 的顶点A 、B 分别在OM 、ON 上,当A 点从O 点出发沿着OM 向右运动时,同时点B 在ON 上运动,连接OC .若AC =4,BC =3,AB =5,则OC 的长度的最大值是________.12.如图,现有一长方体的实心木块,有一蚂蚁从A 处出发沿长方体表面爬行到C '处,若长方体的长4cm AB =,宽2cm BC =,高1cm BB '=,则蚂蚁爬行的最短路径长是___________.13.如图,在△ABC 中,OA =4,OB =3,C 点与A 点关于直线OB 对称,动点P 、Q 分别在线段AC 、AB 上(点P 不与点A 、C 重合),满足∠BPQ =∠BAO.当△PQB 为等腰三角形时,OP 的长度是_____.14.如图,在平面直角坐标系中,等腰直角三角形OAA 1的直角边OA 在x 轴上,点A 1在第一象限,且OA=1,以点A 1为直角顶点,OA 1为一直角边作等腰直角三角形OA 1A 2,再以点A 2为直角顶点,OA 2为直角边作等腰直角三角形OA 2A 3…依此规律,则点A 2018的坐标是_____.15.如图,O 为坐标原点,四边形OABC 为矩形,()20,0A ,()0,8C ,点D 是OA 的中点,点P 在边BC 上运动,当ODP ∆是以OD 为腰的等腰三角形时,则P 点的坐标为______.16.如图,在△ABC 中,AB =AC ,∠BAC =120°,AC 的垂直平分线交 BC 于 F ,交 AC 于 E ,交 BA 的延长线于 G ,若 EG =3,则 BF 的长是______.17.如图所示,四边形ABCD 是长方形,把△ACD 沿AC 折叠到△ACD′,AD′与BC 交于点E ,若AD =4,DC =3,求BE 的长.18.如图,在Rt ABC ∆中,90ACB ∠=,2AC BC ==,D 为BC 边上一动点,作如图所示的AED ∆使得AE AD =,且45EAD ∠=,连接EC ,则EC 的最小值为__________.19.如图,在ABC 中,AB AC =,点D 在ABC 内,AD 平分BAC ∠,连结CD ,把ADC 沿CD 折叠,AC 落在CE 处,交AB 于F ,恰有CE AB ⊥.若10BC =,7AD =,则EF =__________.20.观察:①3、4、5,②5、12、13,③7、24、25,……,发现这些勾股数的“勾”都是奇数,且从3起就没断过.根据以上规律,请写出第8组勾股数:______.三、解答题21.如图,,90,8,6,,ABC B AB cm BC cm P Q ︒∆∠===是边上的两点,点P 从点A 开始沿A B →方向运动,且速度为每秒1cm ,点Q 从点B 沿B C A →→运动,且速度为每秒2cm ,它们同时出发,设出发的时间为t 秒.(1)出发2秒后,求线段PQ 的长;(2)求点Q 在BC 上运动时,出发几秒后,PQB 是等腰三角形;(3)点Q 在边CA 上运动时,求能使BCQ ∆成为等腰三角形的运动时间.22.如图,△ABC 中,∠ACB =90°,AB =5cm ,BC =3cm ,若点P 从点A 出发,以每秒2cm 的速度沿折线A ﹣C ﹣B ﹣A 运动,设运动时间为t 秒(t >0).(1)若点P 在AC 上,且满足PA =PB 时,求出此时t 的值;(2)若点P 恰好在∠BAC 的角平分线上,求t 的值;(3)在运动过程中,直接写出当t 为何值时,△BCP 为等腰三角形.23.我们规定,三角形任意两边的“广益值”等于第三边上的中线和这边一半的平方差.如图1,在ABC ∆中,AO 是BC 边上的中线,AB 与AC 的“广益值”就等于22AO BO -的值,可记为22AB AC OA BO ∇=-(1)在ABC ∆中,若90ACB ∠=︒,81AB AC ∇=,求AC 的值.(2)如图2,在ABC ∆中,12AB AC ==,120BAC ∠=︒,求AB AC ∇,BA BC ∇的值.(3)如图3,在ABC ∆中,AO 是BC 边上的中线,24ABC S ∆=,8AC =,64AB AC ∇=-,求BC 和AB 的长.24.如图,ABC ∆是等边三角形,,D E 为AC 上两点,且AE CD =,延长BC 至点F ,使CF CD =,连接BD .(1)如图1,当,D E 两点重合时,求证:BD DF =;(2)延长BD 与EF 交于点G .①如图2,求证:60BGE ∠=︒;②如图3,连接,BE CG ,若30,4EBD BG ∠=︒=,则BCG ∆的面积为______________.25.在ABC ∆中,AB AC =,CD 是AB 边上的高,若10,5AB BC ==.(1)求CD 的长.(2)动点P 在边AB 上从点A 出发向点B 运动,速度为1个单位/秒;动点Q 在边AC 上从点A 出发向点C 运动,速度为v 个单位秒()v>1,设运动的时间为()0t t >,当点Q 到点C 时,两个点都停止运动.①若当2v =时,CP BQ =,求t 的值.②若在运动过程中存在某一时刻,使CP BQ =成立,求v 关于t 的函数表达式,并写出自变量t 的取值范围.26.定义:在△ABC 中,若BC =a ,AC =b ,AB =c ,若a ,b ,c 满足ac +a 2=b 2,则称这个三角形为“类勾股三角形”,请根据以上定义解决下列问题:(1)命题“直角三角形都是类勾股三角形”是 命题(填“真”或“假”);(2)如图1,若等腰三角形ABC 是“类勾股三角形”,其中AB =BC ,AC >AB ,请求∠A 的度数;(3)如图2,在△ABC 中,∠B =2∠A ,且∠C >∠A .①当∠A =32°时,你能把这个三角形分成两个等腰三角形吗?若能,请在图2中画出分割线,并标注被分割后的两个等腰三角形的顶角的度数;若不能,请说明理由; ②请证明△ABC 为“类勾股三角形”.27.如图1, △ABC 和△CDE 均为等腰三角形,AC=BC, CD=CE, AC>CD, ∠ACB=∠DCE=a ,且点A 、D 、E 在同一直线上,连结BE.(1)求证: AD=BE.(2)如图2,若a=90°,CM⊥AE于E.若CM=7, BE=10, 试求AB的长.(3)如图3,若a=120°, CM⊥AE于E, BN⊥AE于N, BN=a, CM=b,直接写出AE的值(用a, b 的代数式表示).28.如图1,△ABC中,CD⊥AB于D,且BD : AD : CD=2 : 3 : 4,(1)试说明△ABC是等腰三角形;(2)已知S△ABC=40cm2,如图2,动点M从点B出发以每秒2cm的速度沿线段BA向点A 运动,同时动点N从点A出发以每秒1cm速度沿线段AC向点C运动,当其中一点到达终点时整个运动都停止. 设点M运动的时间为t(秒),①若△DMN的边与BC平行,求t的值;②若点E是边AC的中点,问在点M运动的过程中,△MDE能否成为等腰三角形?若能,求出t的值;若不能,请说明理由.图1 图2 备用图29.如图1,在平面直角坐标系中,直线AB经过点C(a,a),且交x轴于点A(m,0),交y轴于点B(0,n),且m,n满足6m +(n﹣12)2=0.(1)求直线AB的解析式及C点坐标;(2)过点C作CD⊥AB交x轴于点D,请在图1中画出图形,并求D点的坐标;(3)如图2,点E(0,﹣2),点P为射线AB上一点,且∠CEP=45°,求点P的坐标.30.2ABCD中,点O是对角线AC的中点,E是线段OA上一动点(不包括两个端点),连接BE.(1)如图1,过点E 作EF BE ⊥交CD 于点F ,连接BF 交AC 于点G .①求证:BE EF =;②设AE x =,CG y =,求y 与x 的函数关系式,并写出自变量x 的取值范围. (2)在如图2中,请用无刻度的直尺作出一个以BE 为边的菱形.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】由于BC ∥AD ,那么有∠DAE=∠ACB ,由题意可知∠ABC=∠DEA=90°,BA=ED ,利用AAS 可证△ABC ≌△DEA ,于是AE=BC=300,再利用勾股定理可求AC ,即可求CE ,根据图可知从B 到E 的走法有两种,分别计算比较即可.【详解】解:如右图所示,∵BC ∥AD ,∴∠DAE=∠ACB ,又∵BC ⊥AB ,DE ⊥AC ,∴∠ABC=∠DEA=90°,又∵AB=DE=400m ,∴△ABC ≌△DEA ,∴EA=BC=300m ,在Rt △ABC 中,22AB BC +=500m ,∴CE=AC-AE=200,从B 到E 有两种走法:①BA+AE=700m ;②BC+CE=500m ,∴最近的路程是500m .故选B .【点睛】本题考查了平行线的性质、全等三角形的判定和性质、勾股定理.解题的关键是证明△ABC ≌△DEA ,并能比较从B 到E 有两种走法.2.B解析:B【分析】①由AB=AC ,AD=AE ,利用等式的性质得到夹角相等,利用SAS 得出三角形ABD 与三角形ACE 全等,由全等三角形的对应边相等得到BD=CE ;②由三角形ABD 与三角形ACE 全等,得到一对角相等,再利用等腰直角三角形的性质及等量代换得到BD 垂直于CE ;③由等腰直角三角形的性质得到∠ABD+∠DBC=45°,等量代换得到∠ACE+∠DBC=45°; ④由BD 垂直于CE ,在直角三角形BDE 中,利用勾股定理列出关系式,等量代换即可作出判断.【详解】解:如图,① ∵∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠DAE+∠CAD ,即∠BAD=∠CAE ,∵在△BAD 和△CAE 中,AB AC BAD CAE AD AE ⎧⎪∠∠⎨⎪⎩===∴△BAD ≌△CAE (SAS ),∴BD=CE ,故①正确;②∵△BAD ≌△CAE ,∴∠ABD=∠ACE ,∵∠ABD+∠DBC=45°,∴∠ACE+∠DBC=45°,∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=45°+45°=90°,∴∠BDC=90°,∴BD ⊥CE ,故②正确;③∵△ABC 为等腰直角三角形,∴∠ABC=∠ACB=45°,∴∠ABD+∠DBC=45°,∵∠ABD=∠ACE∴∠ACE+∠DBC=45°,故③错误;④∵BD ⊥CE ,∴在Rt △BDE 中,利用勾股定理得BE 2=BD 2+DE 2,∵△ADE 为等腰直角三角形,∴AE=AD ,∴DE 2=2AD 2,∴BE 2=BD 2+DE 2=BD 2+2AD 2,在Rt △BDC 中,BD BC <,而BC 2=2AB 2,∴BD 2<2AB 2,∴()2222BE AD AB<+故④错误,综上,正确的个数为2个.故选:B .【点睛】此题考查了全等三角形的判定与性质,勾股定理,以及等腰直角三角形的性质,熟练掌握全等三角形的判定与性质是解本题的关键. 3.C解析:C【分析】做点F 做FH AD ⊥交AD 于点H ,因此要求出EF 的长,只要求出EH 和HF 即可;由折叠的性质可得BE=DE=9-AE ,在Rt ABE △中应用勾股定理求得AE 和BE ,同理在Rt BC F 'Rt ABE △中应用勾股定理求得BF ,在Rt EFH 中应用勾股定理即可求得EF .【详解】过点F 做FH AD ⊥交AD 于点H .∵四边形EFC B '是四边形EFCD 沿EF 折叠所得,∴ED=BE ,CF=C F ',3BC CD '==∵ED=BE ,DE=AD-AE=9-AE∴BE=9-AE∵Rt ABE △,AB=3,BE=9-AE∴()22293AE AE -=+∴AE=4∴DE=5∴9C F BC BF BF '=-=-∴Rt BC F ',3BC '=,9C F BF '=-∴()22293BF BF -+=∴BF=5,EH=1∵Rt EFH ,HF=3,EH=1 ∴22223110EF EH HF =+=+故选:C .【点睛】本题考查了翻折变换,矩形的性质,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题. 4.D解析:D【分析】根据已知利用等腰三角形的性质及三角形外角的性质,找出图中存在的规律,求出钢条的根数,然后根据最后一根钢条与射线AB 的焊接点P 到A 点的距离即AP 5为3AP 1=a ,作P 2D ⊥AB 于点D ,再用含a 的式子表示出P 1P 3,P 3P 5,从而可求出a 的值,即得出每根钢条的长度,从而可以求得所有钢条的总长.【详解】解:如图,∵AP1与各钢条的长度相等,∴∠A=∠P1P2A=15°,∴∠P2P1P3=30°,∴∠P1P3P2=30°,∴∠P3P2P4=45°,∴∠P3P4P2=45°,∴∠P4P3P5=60°,∴∠P3P5P4=60°,∴∠P5P4P6=75°,∴∠P4P6P5=75°,∴∠P6P5B=90°,此时就不能再往上焊接了,综上所述总共可焊上5根钢条.设AP1=a,作P2D⊥AB于点D,∵∠P2P1D=30°,∴P2D=12P1P2,∴P1D=32a,∵P1P2=P2P3,∴P1P3=2P1D =3a,∵∠P4P3P5=60°,P3P4=P4P5,∴△P4P3P5是等边三角形,∴P3P5=a,∵最后一根钢条与射线AB的焊接点P到A点的距离为4+23,∴AP5=a+3a+a=4+23,解得,a=2,∴所有钢条的总长为2×5=10,故选:D.【点睛】本题考查了三角形的内角和、等腰三角形的性质、三角形外角的性质、等边三角形的判定与性质以及勾股定理等知识,发现并利用规律找出钢条的根数是解答本题的关键.5.A解析:A【分析】作常规辅助线连接CF,由SAS定理可证△CFE和△ADF全等,从而可证∠DFE=90°,DF=EF.所以△DEF是等腰直角三角形;由割补法可知四边形CDFE的面积保持不变;△DEF 是等腰直角三角形DE=2DF,当DF与BC垂直,即DF最小时,DE取最小值42,△CDE最大的面积等于四边形CDEF的面积减去△DEF的最小面积.【详解】连接CF;∵△ABC是等腰直角三角形,∴∠FCB=∠A=45°,CF=AF=FB ;∵AD=CE ,∴△ADF ≌△CEF ;∴EF=DF ,∠CFE=∠AFD ;∵∠AFD+∠CFD=90°,∴∠CFE+∠CFD=∠EFD=90°,∴△EDF 是等腰直角三角形.当D. E 分别为AC 、BC 中点时,四边形CDFE 是正方形.∵△ADF ≌△CEF ,∴S △CEF =S △ADF ,∴S 四边形CEFD =S △AFC .由于△DEF 是等腰直角三角形,因此当DE 最小时,DF 也最小;即当DF ⊥AC 时,DE 最小,此时DF=12BC=4. ∴DE=2DF=42;当△CEF 面积最大时,此时△DEF 的面积最小.此时S △CEF =S 四边形CEFD −S △DEF =S △AFC −S △DEF =16−8=8,则结论正确的是①④⑤.故选A.【点睛】本题考查全等三角形的判定与性质, 等腰直角三角形性质.要证明线段或者角相等,一般证明它们所在三角形全等,如果不存在三角形可作辅助线解决问题. 6.C解析:C【解析】试题解析:作点B 关于直线l 的对称点B ',连接AB '并延长,与直线l 的交点即为使得PA PB -取最大值时对应的点.P此时.PA PB PA PB AB -=-'='过点B '作B E AC '⊥于点,E 如图,四边形B DCE '为矩形,6, 2.B E CD EC B D BD ∴=====''2.AE ∴=22210.AB AE B E ''+=PA PB -的最大值为:210. 故答案为:210.7.A解析:A【解析】A. 12+226)2,不能构成直角三角形,故此选项符合题意;B. 32+42=52,能构成直角三角形,故此选项不符合题意;C. 52+122=132,能构成直角三角形,故此选项不符合题意;D. 32+22132,能构成直角三角形,故此选项不符合题意;故选A.8.C解析:C【分析】过点D 作DE ⊥AB 于点E ,根据角平分线的性质定理,可得:DE =DC =x ,则BE =2x ,进而可得到AE =AC =7,在Rt △BDE 中,应用勾股定理即可求解.【详解】过点D 作DE ⊥AB 于点E ,则∠AED =90°,AE =AC =7,∵△ABC 是等腰直角三角形,∴BC =AC =7,AB 22AC +BC =72在Rt △AED 和Rt △ACD 中,AE =AC ,DE =DC ,∴Rt △AED ≌Rt △ACD ,∴AE =AC =7,设DE =DC =x ,则BD =7-x ,在Rt △BDE 中,222BE +DE =BD , 即:()()222277-x x +=,解得: 7(21)x =-,故选:C .【点睛】本题考查角平分线的性质定理,全等三角形的判定与性质,勾股定理等,运用方程思想是解题的关键.9.D解析:D【分析】此题要分两种情况:当5和13都是直角边时;当13是斜边长时;分别利用勾股定理计算出第三边长即可求解.【详解】当5和1322513194+当132213512-=;故这个三角形的第三条边可以是12.故选:D .【点睛】本题主要考查了勾股定理,当已知条件中没有明确哪是斜边时,要注意讨论,一些学生往往忽略这一点,造成丢解.10.C解析:C【分析】先过点E 作EG ⊥CD 于G ,再判定△BCD 、△ABD 都是等腰直角三角形,并求得其边长,最后利用等腰直角三角形,求得EG 的长,进而得到△EDC 的面积.【详解】解:过点E 作EG ⊥CD 于G ,又∵CF 平分∠BCD ,BD ⊥BC ,∴BE =GE ,在Rt △BCE 和Rt △GCE 中CE CE BE GE =⎧⎨=⎩, ∴Rt △BCE ≌Rt △GCE ,∴BC =GC ,∵BD ⊥BC ,BD =BC ,∴△BCD 是等腰直角三角形,∴∠BDC =45°,∵AB//CD ,∴∠ABD =45°,又∵∠A =90°,AB =1,∴等腰直角三角形ABD 中,BD =2211+=2=BC ,∴Rt △BDC 中,CD =()()2222+=2,∴DG =DC ﹣GC =2﹣2,∵△DEG 是等腰直角三角形,∴EG =DG =2﹣2,∴△EDC 的面积=12×DC×EG =12×2×(2﹣2)=2﹣2. 故选:C .【点睛】本题主要考查了角平分线的性质,等腰直角三角形的性质与判定,全等三角形的判定与性质,以及勾股定理等知识,解决问题的关键是作辅助线,构造直角三角形EDG 进行求解.二、填空题11.5【解析】试题分析:取AB 中点E ,连接OE 、CE ,在直角三角形AOB 中,OE=AB ,利用勾股定理的逆定理可得△ACB 是直角三角形,所以CE=AB ,利用OE+CE≥OC ,所以OC 的最大值为OE+CE ,即OC 的最大值=AB=5.考点:勾股定理的逆定理,12.5cm【分析】连接AC ',分三种情况进行讨论:画出图形,用勾股定理计算出AC '长,再比较大小即可得出结果.【详解】解:如图展开成平面图,连接AC ',分三种情况讨论:如图1,AB=4,BC '=1+2=3,∴在Rt △ABC '中,由勾股定理得AC '2243+(cm ),如图2,AC=4+2=6,CC '=1∴在Rt △ACC '中,由勾股定理得AC '2261+37(cm ),如图3,AD =2,DC '=1+4=5,∴在Rt △ADC '中,由勾股定理得AC '2225+29(cm )∵2937,∴蚂蚁爬行的最短路径长是5cm ,故答案为:5cm .【点睛】本题考查平面展开-最短路线问题和勾股定理,本题具有一定的代表性,是一道好题,注意要分类讨论.13.1或78【分析】 分为三种情况:①PQ BP =,②BQ QP =,③BQ BP =,由等腰三角形的性质和勾股定理可求解.【详解】解:分为3种情况:①当PB PQ =时,4=OA ,3OB =,∴5BC AB ===, C 点与A 点关于直线OB 对称,BAO BCO ∴∠=∠,BPQ BAO ∠=∠,BPQ BCO ∴∠=∠,APB APQ BPQ BCO CBP ∠=∠+∠=∠+∠,APQ CBP ∴∠=∠,在APQ 和CBP 中,BAO BCP APQ B PQ B P C P ∠=∠⎧⎪∠=∠⎨=⎪⎩, ()APQ CBP AAS ∴△≌△,∴5AP BC ==,1OP AP OA ∴=-=;②当BQ BP =时,BPQ BQP ∠=∠,BPQ BAO ∠=∠,BAO BQP ∴∠=∠,根据三角形外角性质得:BQP BAO ∠>∠,∴这种情况不存在;③当QB QP =时,QBP BPQ BAO ∠=∠=∠,PB PA ∴=,设OP x =,则4PB PA x ==-在Rt OBP △中,222PB OP OB =+,222(4)3x x ∴-=+, 解得:78x =; ∴当PQB △为等腰三角形时,1OP =或78; 【点睛】本题考查了勾股定理,等腰三角形的性质,全等三角形的性质和判定的应用,解题的关键是熟练掌握所学的性质进行解题,注意分类讨论.14.(0,21009)【解析】【分析】本题点A 坐标变化规律要分别从旋转次数与点A 所在象限或坐标轴、点A 到原点的距离与旋转次数的对应关系.【详解】∵∠OAA 1=90°,OA=AA 1=1,以OA 1为直角边作等腰Rt △OA 1A 2,再以OA 2为直角边作等腰Rt △OA 2A 3,…,∴OA 1=2,OA 2=(2)2,…,OA 2018=(2)2018,∵A 1、A 2、…,每8个一循环,∵2018=252×8+2∴点A 2018的在y 轴正半轴上,OA 2018=()20182=21009,故答案为(0,21009).【点睛】本题是平面直角坐标系下的规律探究题,除了研究动点变化的相关数据规律,还应该注意象限符号.15.()4,8或()6,8或()16,8【分析】当ODP ∆是以OD 为腰的等腰三角形时,分为两种情况①点O 是顶角顶点时,②D 是顶角顶点时,根据勾股定理求出CP ,PM 即可.【详解】解:OD 是等腰三角形的一条腰时:①若点O 是顶角顶点时,P 点就是以点O 为圆心,以10为半径的弧与CB 的交点, 在直角△OPC 中,CP=22221086OP OC -=-=,则P 的坐标是(6,8). ②若D 是顶角顶点时,P 点就是以点D 为圆心,以10为半径的弧与CB 的交点, 过D 作DM ⊥BC 于点M ,在直角△PDM 中,22221086PD DM -=-= ,当P 在M 的左边时,CP=10-6=4,则P 的坐标是(4,8);当P 在M 的右侧时,CP=10+6=16,则P 的坐标是(16,8).故P 的坐标为:(6,8)或(4,8)或(16,8).故答案为:(6,8)或(4,8)或(16,8).【点睛】本题主要考查等腰三角形的性质及勾股定理的运用,注意正确地进行分类,考虑到所有的可能情况是解题的关键.16.4【分析】根据线段垂直平分线得出AE=EC ,∠AEG=∠AEF=90°,求出∠B=∠C=∠G=30°,根据勾股定理和含30°角的直角三角形性质求出AE 和EF ,即可求出FG ,再求出BF=FG 即可【详解】∵AC的垂直平分线FG,∴AE=EC,∠AEG=∠AEF=90°,∵∠BAC=120°,∴∠G=∠BAC-∠AEG=120°-90°=30°,∵∠BAC=120°,AB=AC,∴∠B=∠C=12(180°-∠BAC)=30°,∴∠B=∠G,∴BF=FG,∵在Rt△AEG中,∠G=30°,EG=3,∴AG=2AE,即(2AE)2=AE2+32,∴即同理在Rt△CEF中,∠C=30°,CF=2EF,(2EF)2=EF2+2,∴EF=1(负值舍去),∴BF=GF=EF+CE=1+3=4,故答案为4.【点睛】本题考查了勾股定理,含30°角的直角三角形性质,等腰三角形的性质和判定等知识点,能综合运用定理进行推理是解此题的关键.17.7 8【解析】试题分析:根据矩形性质得AB=DC=6,BC=AD=8,AD∥BC,∠B=90°,再根据折叠性质得∠DAC=∠D′AC,而∠DAC=∠ACB,则∠D′AC=∠ACB,所以AE=EC,设BE=x,则EC=4-x,AE=4-x,然后在Rt△ABE中利用勾股定理可计算出BE的长即可.试题解析:∵四边形ABCD为矩形,∴AB=DC=3,BC=AD=4,AD∥BC,∠B=90°,∵△ACD沿AC折叠到△ACD′,AD′与BC交于点E,∴∠DAC=∠D′AC,∵AD∥BC,∴∠DAC=∠ACB,∴∠D′AC=∠ACB,∴AE=EC,设BE=x,则EC=4﹣x,AE=4﹣x,在Rt△ABE中,∵AB2+BE2=AE2,∴32+x2=(4﹣x)2,解得x=78,即BE 的长为78. 18.22-【分析】根据已知条件,添加辅助线可得△EAC ≌△DAM (SAS ),进而得出当MD ⊥BC 时,CE 的值最小,转化成求DM 的最小值,通过已知值计算即可.【详解】解:如图所示,在AB 上取AM=AC=2,∵90ACB ∠=,2AC BC ==,∴∠CAB=45°,又∵45EAD ∠=,∴∠EAC+∠CAD=∠DAB+∠CAD=45°,∴∠EAC =∠DAB ,∴在△EAC 与△DAB 中AE=AD ,∠EAF =∠DAB ,AC =AM ,∴△EAC ≌△DAM (SAS )∴CE=MD ,∴当MD ⊥BC 时,CE 的值最小,∵AC=BC=2,由勾股定理可得2222AB AC BC =+=,∴222=-BM ,∵∠B=45°,∴△BDM 为等腰直角三角形,∴DM=BD ,由勾股定理可得222+BD DM =BM∴DM=BD=22-∴CE=DM=22-故答案为:22-【点睛】本题考查了动点问题及全等三角形的构造,解题的关键是作出辅助线,得出全等三角形,找到CE 最小时的状态,化动为静.19.4913【解析】【分析】如图(见解析),延长AD ,交BC 于点G ,先根据等腰三角形的三线合一性得出AG BC ⊥,再根据折叠的性质、等腰三角形的性质(等边对等角)得出2345∠+∠=︒,从而得出CDG ∆是等腰直角三角形,然后根据勾股定理、面积公式可求出AC 、CE 、CF 的长,最后根据线段的和差即可得.【详解】如图,延长AD ,交BC 于点G AD 平分BAC ∠,,10AB AC BC ==,B ACB AG BC ∴∠=∠⊥,且AG 是BC 边上的中线1123,52B CG BC ∴∠=∠+∠+∠== 由折叠的性质得12,CE AC ∠=∠=123223B ∠=∠+∠+∠=∠+∠∴CE AB ⊥,即90BFC ∠=︒390B ∴∠+∠=︒230239+∴∠∠=∠+︒,即2345∠+∠=︒CDG ∴∆是等腰直角三角形,且5DG CG ==7512AG AD DG ∴=+=+=在Rt ACG ∆中,13AC ===13CE AB AC ==∴= 由三角形的面积公式得1122ABC S BC AG AB CF ∆=⋅=⋅ 即1110121322CF ⨯⨯=⨯⋅,解得12013CF = 12049131313EF CE CF ∴=-=-= 故答案为:4913.【点睛】本题是一道较难的综合题,考查了等腰三角形的判定与性质、勾股定理等知识点,通过作辅助线,构造一个等腰直角三角形是解题关键.20.17,144,145【分析】由题意观察题干这些勾股数,根据所给的勾股数找出三个数之间的关系即可.【详解】解:因为这些勾股数的“勾”都是奇数,且从3起就没断过,所以从3、5、7…依次推出第8组的“勾”为17,继续观察可知弦-股=1,利用勾股定理假设股为m ,则弦为m+1,所以有22217(1)m m +=+,解得144m =,1145m +=,即第8组勾股数为17,144,145.故答案为17,144,145.【点睛】本题属规律性题目,考查的是勾股数之间的关系,根据题目中所给的勾股数及勾股定理进行分析即可. 三、解答题21.(1)出发2秒后,线段PQ 的长为2132)当点Q 在边BC 上运动时,出发83秒后,△PQB 是等腰三角形;(3)当t 为5.5秒或6秒或6.6秒时,△BCQ 为等腰三角形.【分析】(1)由题意可以求出出发2秒后,BQ 和PB 的长度,再由勾股定理可以求得PQ 的长度; (2)设所求时间为t ,则可由题意得到关于t 的方程,解方程可以得到解答; (3)点Q 在边CA 上运动时,ΔBCQ 为等腰三角形有三种情况存在,对每种情况进行讨论可以得到解答.【详解】(1)BQ=2×2=4cm ,BP=AB−AP=8−2×1=6cm ,∵∠B=90°,由勾股定理得:PQ=22224652213BQ BP+=+==∴出发2秒后,线段PQ的长为213;(2)BQ=2t,BP=8−t由题意得:2t=8−t解得:t=8 3∴当点Q在边BC上运动时,出发83秒后,△PQB是等腰三角形;(3) ∵∠ABC=90°,BC=6,AB=8,∴AC=2268+=10.①当CQ=BQ时(图1),则∠C=∠CBQ,∵∠ABC=90°,∴∠CBQ+∠ABQ=90°,∠A+∠C=90°,∴∠A=∠ABQ,∴BQ=AQ,∴CQ=AQ=5,∴BC+CQ=11,∴t=11÷2=5.5秒;②当CQ=BC时(如图2),则BC+CQ=12∴t=12÷2=6秒③当BC=BQ时(如图3),过B点作BE⊥AC于点E,∴BE=6824105 AB BCAC⋅⨯==,所以22BC BE-=185=3.6,故CQ=2CE=7.2,所以BC+CQ=13.2,∴t=13.2÷2=6.6秒.由上可知,当t 为5.5秒或6秒或6.6秒时,△BCQ 为等腰三角形.【点睛】本题考查三角形的动点问题,利用分类讨论思想和方程方法、综合力学的运动知识和三角形边角的有关知识求解是解题关键.22.(1) 2516;(2)83t =或6;(3)当153,5,210t =或194时,△BCP 为等腰三角形. 【分析】(1)设存在点P ,使得PA PB =,此时2PA PB t ==,42PC t =-,根据勾股定理列方程即可得到结论;(2)当点P 在CAB ∠的平分线上时,如图1,过点P 作PE AB ⊥于点E ,此时72BP t =-,24PE PC t ==-,541BE =-=,根据勾股定理列方程即可得到结论; (3)在Rt ABC 中,根据勾股定理得到4AC cm =,根据题意得:2AP t =,当P 在AC上时,BCP 为等腰三角形,得到PC BC =,即423t -=,求得12t =,当P 在AB 上时,BCP 为等腰三角形,若CP PB =,点P 在BC 的垂直平分线上,如图2,过P 作PE BC ⊥于E ,求得194t =,若PB BC =,即2343t --=,解得5t =,PC BC =③,如图3,过C 作CF AB ⊥于F ,由射影定理得;2BC BF AB =⋅,列方程2234352t --=⨯,即可得到结论. 【详解】 解:在Rt ABC 中,5AB cm =,3BC cm =,4AC cm ∴=,(1)设存在点P ,使得PA PB =,此时2PA PB t ==,42PC t =-,在Rt PCB 中,222PC CB PB +=,即:222(42)3(2)t t -+=, 解得:2516t =, ∴当2516t =时,PA PB =;(2)当点P 在BAC ∠的平分线上时,如图1,过点P 作PE AB ⊥于点E ,此时72BP t =-,24PE PC t ==-,541BE =-=,在Rt BEP 中,222PE BE BP +=,即:222(24)1(72)t t -+=-, 解得:83t =, 当6t =时,点P 与A 重合,也符合条件,∴当83t =或6时,P 在ABC ∆的角平分线上; (3)根据题意得:2AP t =,当P 在AC 上时,BCP 为等腰三角形,PC BC ∴=,即423t -=,12t ∴=, 当P 在AB 上时,BCP 为等腰三角形,CP PB =①,点P 在BC 的垂直平分线上,如图2,过P 作PE BC ⊥于E ,1322BE BC ∴==, 12PB AB ∴=,即52342t --=,解得:194t =, PB BC =②,即2343t --=,解得:5t =,PC BC =③,如图3,过C 作CF AB ⊥于F ,12BF BP ∴=, 90ACB ∠=︒,由射影定理得;2BC BF AB =⋅,即2234352t --=⨯, 解得:5310t =, ∴当15319,5,2104t =或时,BCP 为等腰三角形. 【点睛】本题考查了等腰三角形的判定,三角形的面积,难度适中.利用分类讨论的思想是解(3)题的关键.23.(1)AC=9;(2)AB ∇AC =-72,BA ∇BC =216;(3)BC=2OC=273,AB=10.【分析】(1)在Rt AOC ∆中,根据勾股定理和新定义可得AO 2-OC 2=81=AC 2;(2)①先利用含30°的直角三角形的性质求出AO =2,OB =23,再用新定义即可得出结论; ②先构造直角三角形求出BE ,AE ,再用勾股定理求出BD ,最后用新定义即可得出结论;(3)作BD ⊥CD,构造直角三角形BCD,根据三角形面积关系求出BD,根据新定义和勾股定理逆定理得出三角形AOD 是直角三角形,根据中线性质得出OA 的长度,根据勾股定理求出OC,从而得出BC,再根据勾股定理求出CD,再求出AD,再运用勾股定理求出AB.【详解】(1)已知如图:AO 为BC 上的中线,AO 2-OC 2=AC 2因为81AB AC ∇=所以AO 2-OC 2=81所以AC 2=81所以AC=9.(2)①如图2,取BC 的中点D ,连接AO ,∵AB =AC ,∴AO ⊥BC ,在△ABC 中,AB =AC ,∠BAC =120°,∴∠ABC =30°,在Rt △AOB 中,AB =12,∠ABC =30°,∴AO =6,OB =2222126AB AO -=-=63,∴AB ∇AC =AO 2﹣BO 2=36﹣108=﹣72, ②取AC 的中点D ,连接BD ,∴AD =CD =12AC =6,过点B 作BE ⊥AC 交CA 的延长线于E ,在Rt △ABE 中,∠BAE =180°﹣∠BAC =60°,∴∠ABE =30°, ∵AB =12,∴AE =6,BE =222212663AB AE -=-=, ∴DE =AD +AE =12,在Rt △BED 中,根据勾股定理得,BD =()2222631267BE DE +=+= ∴BA ∇BC =BD 2﹣CD 2=216;(3)作BD ⊥CD,因为24ABC S ∆=,8AC =,所以BD=26ABC S AC ∆÷=,因为64AB AC ∇=-,AO 是BC 边上的中线,所以AO 2-OC 2=-64,所以OC 2-AO 2=64,由因为AC 2=82=64,所以OC 2-AO 2= AC 2所以∠OAC=90°所以OA=24228322ABC S AC ∆⨯÷=⨯÷= 所以22228373AC OA +=+所以73CD=()2222276163BC BD -=-=所以AD=CD-AC=16-8=8所以AB=22228610AD BD +=+=【点睛】考核知识点:勾股定理逆定理,含30°直角三角形性质.借助辅助线构造直角三角形,运用勾股定理等直角三角形性质解决问题是关键.24.(1)见解析;(2)①见解析;②2.【分析】(1)当D 、E 两点重合时,则AD=CD ,然后由等边三角形的性质可得∠CBD 的度数,根据等腰三角形的性质和三角形的外角性质可得∠F 的度数,于是可得∠CBD 与∠F 的关系,进而可得结论;(2)①过点E 作EH ∥BC 交AB 于点H ,连接BE ,如图4,则易得△AHE 是等边三角形,根据等边三角形的性质和已知条件可得EH=CF ,∠BHE =∠ECF =120°,BH =EC ,于是可根据SAS 证明△BHE ≌△ECF ,可得∠EBH =∠FEC ,易证△BAE ≌△BCD ,可得∠ABE =∠CBD ,从而有∠FEC =∠CBD ,然后根据三角形的内角和定理可得∠BGE =∠BCD ,进而可得结论; ②易得∠BEG =90°,于是可知△BEF 是等腰直角三角形,由30°角的直角三角形的性质和等腰直角三角形的性质易求得BE 和BF 的长,过点E 作EM ⊥BF 于点F ,过点C 作CN ⊥EF 于点N ,如图5,则△BEM 、△EMF 和△CFN 都是等腰直角三角形,然后利用等腰直角三角形的性质和30°角的直角三角形的性质可依次求出BM 、MC 、CF 、FN 、CN 、GN 的长,进而可得△GCN 也是等腰直角三角形,于是有∠BCG =90°,故所求的△BCG 的面积=12BC CG ⋅,而BC 和CG 可得,问题即得解决. 【详解】 解:(1)∵△ABC 是等边三角形,∴∠ABC =∠ACB =60°,当D 、E 两点重合时,则AD=CD ,∴1302DBC ABC ∠=∠=︒, ∵CF CD =,∴∠F =∠CDF ,∵∠F +∠CDF =∠ACB =60°,∴∠F =30°,∴∠CBD =∠F ,∴BD DF =;(2)①∵△ABC 是等边三角形,∴∠ABC =∠ACB =60°,AB=AC ,过点E 作EH ∥BC 交AB 于点H ,连接BE ,如图4,则∠AHE =∠ABC =60°,∠AEH =∠ACB =60°,∴△AHE 是等边三角形,∴AH=AE=HE ,∴BH =EC ,∵AE CD =,CD=CF ,∴EH=CF ,又∵∠BHE =∠ECF =120°,∴△BHE ≌△ECF (SAS ),∴∠EBH =∠FEC ,EB=EF ,∵BA=BC ,∠A =∠ACB =60°,AE=CD ,∴△BAE ≌△BCD (SAS ),∴∠ABE =∠CBD ,∴∠FEC =∠CBD ,∵∠EDG =∠BDC ,∴∠BGE =∠BCD =60°;②∵∠BGE =60°,∠EBD =30°,∴∠BEG =90°,∵EB=EF ,∴∠F =∠EBF =45°,∵∠EBG =30°,BG =4,∴EG =2,BE 3∴BF 226BE =232GF =,过点E 作EM ⊥BF 于点F ,过点C 作CN ⊥EF 于点N ,如图5,则△BEM 、△EMF 和△CFN 都是等腰直角三角形, ∴6BM ME MF ===∵∠ACB =60°,∴∠MEC =30°,∴2MC =, ∴62BC =266262CF ==∴262312CN FN ===, ∴)2323131GN GF FN CN =-=-==, ∴45GCN CGN ∠=∠=︒,∴∠GCF =90°=∠GCB , ∴62CG CF ==∴△BCG 的面积=116262222BC CG ⋅==. 故答案为:2.【点睛】本题考查了等腰三角形与等边三角形的判定和性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、30°角的直角三角形的性质和勾股定理等知识,涉及的知识点多、难度较大,正确添加辅助线、熟练掌握全等三角形的判定与性质是解①题的关键,灵活应用等腰直角三角形的性质和30°角的直角三角形的性质解②题的关键.25.(1)CD=8;(2)t=4;(3)12-=tvt(26t≤<)【分析】(1)作AE⊥BC于E,根据等腰三角形三线合一的性质可得BE=12BC,然后利用勾股定理求出AE,再用等面积法可求出CD的长;(2)①过B作BF⊥AC于F,易得BF=CD,分别讨论Q点在AF和FC之间时,根据△BQF≌△CPD,得到PD=QF,建立方程即可求出t的值;(3)同(2)建立等式关系即可得出关系式,再根据Q在FC之间求出t的取值范围即可.【详解】解:(1)如图,作AE⊥BC于E,∵AB=AC,∴BE=12BC=25在Rt△ABE中,()2222AE=AB BE=1025=45--∵△ABC的面积=11BC AE=AB CD 22⋅⋅∴BC AE4545 CD===8AB10⋅。
八年级上册数学第十四章勾股定理总结归纳
【 - 初中作文】篇一:《初二上数学第一章勾股定理总结》勾股定理知识总结制作人周宇峰一:勾股定理222 直角三角形两直角边a、b的平方和等于斜边c的平方。
(即:a+b=c)要点诠释:勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用:(1)已知直角三角形的两边求第三边(2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边(3)利用勾股定理可以证明线段平方关系的问题二:勾股定理的逆定理222如果三角形的三边长:a、b、c,则有关系a+b=c,那么这个三角形是直角三角形。
要点诠释:用勾股定理的逆定理判定一个三角形是否是直角三角形应注意:(1)首先确定最大边,不妨设最长边长为:c;222222(2)验证c与a+b是否具有相等关系,若c=a+b,则△ABC是以∠C为直角的直角三角形222222(若c>a+b,则△ABC是以∠C为钝角的钝角三角形;若c<a+b,则△ABC为锐角三角形)。
三:勾股定理与勾股定理逆定理的区别与联系区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理;联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。
四:互逆命题的概念如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。
如果把其中一个叫做原命题,那么另一个叫做它的逆命题。
规律方法指导1.勾股定理的证明实际采用的是图形面积与代数恒等式的关系相互转化证明的。
2.勾股定理反映的是直角三角形的三边的数量关系,可以用于解决求解直角三角形边边关系的题目。
3.勾股定理在应用时一定要注意弄清谁是斜边谁直角边,这是这个知识在应用过程中易犯的主要错误。
2224. 勾股定理的逆定理:如果三角形的三条边长a,b,c有下列关系:a+b=c,?那么这个三角形是直角三角形;该逆定理给出判定一个三角形是否是直角三角形的判定方法.5.?应用勾股定理的逆定理判定一个三角形是不是直角三角形的过程主要是进行代数运算,通过学习加深对“数形结合”的理解.篇二:《八年级上数学第十四章勾股定理》本资料来自于资源最齐全的21世纪教育网第十四章勾股定理练习一、填空题1、一个直角三角形的两边长分别为3和4,则第三边长为.2、直角三角形一直角边长为6cm,斜边长为10cm,则这个直角三角形的面积为斜边上的高为,斜边上的中线是。
八年级初二数学勾股定理知识归纳总结及答案
一、选择题1.如图,已知ABC 中,10,86,AB AC BC AB ===,的垂直平分线分别交,AC AB 于,,D E 连接BD ,则CD 的长为( )A .1B .54C .74D .2542.棱长分别为86cm cm ,的两个正方体如图放置,点A ,B ,E 在同一直线上,顶点G 在棱BC 上,点P 是棱11E F 的中点.一只蚂蚁要沿着正方体的表面从点A 爬到点P ,它爬行的最短距离是( )A .(3510)cm +B .513cmC .277cmD .(2583)cm +3.如图,正方形ABCD 的边长为2,其面积标记为S 1,以CD 为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S 2,…按照此规律继续下去,则S 2016的值为( )A .(22)2013B .(22)2014 C .(12)2013 D .(12)2014 4.如图,□ABCD 中,对角线AC 与BD 相交于点E ,∠AEB=45°,BD=2,将△ABC 沿AC 所在直线翻折180°到其原来所在的同一平面内,若点B 的落点记为B′,则DB′的长为( )A.1 B.2C.32D.35.如图,OP=1,过点P作PP1⊥OP,且PP1=1,得OP1=2;再过点P1作P1P2⊥OP1且P1P2=1,得OP2=3;又过点P2作P2P3⊥OP2且P2P3=1,得OP3=2……依此法继续作下去,得OP2018的值为( )A.2016B.2017C.2018D.20196.如图,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45 ,若AD=4,CD=2,则BD的长为()A.6 B.27C.5 D.257.在平面直角坐标系中,已知平行四边形ABCD的点A(0,﹣2)、点B(3m,4m+1)(m≠﹣1),点C(6,2),则对角线BD的最小值是()A.32B.213C.5 D.68.若△ABC中,AB=AC=25,BC=4,则△ABC的面积为()A.4 B.8 C.16 D.59.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是()A.245B.5 C.6 D.810.已知三组数据:①2,3,4;②3,4,5;③1,25为三角形的三边长,能构成直角三角形的是()A.②B.①②C.①③D.②③二、填空题11.如图,在△ABC 中,OA =4,OB =3,C 点与A 点关于直线OB 对称,动点P 、Q 分别在线段AC 、AB 上(点P 不与点A 、C 重合),满足∠BPQ =∠BAO.当△PQB 为等腰三角形时,OP 的长度是_____.12.如图,ACB △和ECD 都是等腰直角三角形,CA CB =,CE CD =,ABC 的顶点A 在ECD 的斜边上.若3AE =,7AD =,则AC 的长为_________13.如图,在矩形ABCD 中,AB =6,AD =8,矩形内一动点P 使得S △PAD =13S 矩形ABCD ,则点P 到点A 、D 的距离之和PA +PD 的最小值为_____.14.如图,四边形ABDC 中,∠ABD =120°,AB ⊥AC ,BD ⊥CD ,AB =4,CD =43,则该四边形的面积是______.15.如图,在ABC △中8,4,AB AC BC AD BC ===⊥于点D ,点P 是线段AD 上一个动点,过点P 作PE AB ⊥于点E ,连接PB ,则PB PE +的最小值为________.16.如图,△ABC 中,∠ABC =45°,∠BCA =30°,点D 在BC 上,点E 在△ABC 外,且AD =AE =CE ,AD ⊥AE ,则ABBD的值为____________.17.如图,小正方形的边长为1,连接小正方形的三个格点可得△ABC ,则AC 边上的高的长度是_____________.18.在ABC 中,12AB AC ==,30A ∠=︒,点E 是AB 中点,点D 在AC 上,32DE =,将ADE 沿着DE 翻折,点A 的对应点是点F ,直线EF 与AC 交于点G ,那么DGF △的面积=__________.19.如图,把平面内一条数轴x 绕点O 逆时针旋转角θ(0°<θ<90°)得到另一条数轴y ,x 轴和y 轴构成一个平面斜坐标系.规定:已知点P 是平面斜坐标系中任意一点,过点P 作y 轴的平行线交x 轴于点A ,过点P 作x 轴的平行线交y 轴于点B ,若点A 在x 轴上对应的实数为a ,点B 在y 轴上对应的实数为b ,则称有序实数对(a ,b )为点P 的斜坐标.在平面斜坐标系中,若θ=45°,点P 的斜坐标为(1,22),点G 的斜坐标为(7,﹣22),连接PG ,则线段PG 的长度是_____.20.四个全等的直角三角形按图示方式围成正方行ABCD ,过各较长直角边的中点作垂线,围成面积为4的小正方形EFGH,已知AM 为Rt △ABM 的较长直角边,AM 7EF ,则正方形ABCD 的面积为_______.三、解答题21.如图,在△ABC中,AB=30 cm,BC=35 cm,∠B=60°,有一动点M自A向B以1 cm/s的速度运动,动点N自B向C以2 cm/s的速度运动,若M,N同时分别从A,B出发.(1)经过多少秒,△BMN为等边三角形;(2)经过多少秒,△BMN为直角三角形.22.如图,△ABC和△ADE都是等腰三角形,其中AB=AC,AD=AE,且∠BAC=∠DAE.(1)如图①,连接BE、CD,求证:BE=CD;(2)如图②,连接BE、CD,若∠BAC=∠DAE=60°,CD⊥AE,AD=3,CD=4,求BD的长;(3)如图③,若∠BAC=∠DAE=90°,且C点恰好落在DE上,试探究CD2、CE2和BC2之间的数量关系,并加以说明.23.定义:如图1,平面上两条直线AB、CD相交于点O,对于平面内任意一点M,点M到直线AB、CD的距离分别为p、q,则称有序实数对(p,q)是点M的“距离坐标”,根据上述定义,“距离坐标”为(0,0)的点有1个,即点O.(1)“距离坐标”为(1,0)的点有个;(2)如图2,若点M在过点O且与直线AB垂直的直线l上时,点M的“距离坐标”为(p,q),且∠BOD = 150︒,请写出p、q的关系式并证明;(3)如图3,点M 的“距离坐标”为(1,3),且∠DOB = 30︒,求OM 的长.24.阅读与理解:折纸,常常能为证明一个命题提供思路和方法.例如,在ABC 中,AB AC >(如图),怎样证明C B ∠>∠呢?分析:把AC 沿A ∠的角平分线AD 翻折,因为AB AC >,所以,点C 落在AB 上的点C '处,即AC AC '=,据以上操作,易证明ACD AC D '△△≌,所以AC D C '∠=∠,又因为AC D B '∠>∠,所以C B ∠>∠.感悟与应用:(1)如图(a ),在ABC 中,90ACB ∠=︒,30B ∠=︒,CD 平分ACB ∠,试判断AC 和AD 、BC 之间的数量关系,并说明理由;(2)如图(b ),在四边形ABCD 中,AC 平分BAD ∠,16AC =,8AD =,12DC BC ==,①求证:180B D ∠+∠=︒; ②求AB 的长.25.如图,△ABC 中,∠ACB =90°,AB =5cm ,BC =3cm ,若点P 从点A 出发,以每秒2cm 的速度沿折线A ﹣C ﹣B ﹣A 运动,设运动时间为t 秒(t >0). (1)若点P 在AC 上,且满足PA =PB 时,求出此时t 的值; (2)若点P 恰好在∠BAC 的角平分线上,求t 的值;(3)在运动过程中,直接写出当t 为何值时,△BCP 为等腰三角形.26.如图,△ABC中AC=BC,点D,E在AB边上,连接CD,CE.(1)如图1,如果∠ACB=90°,把线段CD逆时针旋转90°,得到线段CF,连接BF,①求证:△ACD≌△BCF;②若∠DCE=45°,求证:DE2=AD2+BE2;(2)如图2,如果∠ACB=60°,∠DCE=30°,用等式表示AD,DE,BE三条线段的数量关系,说明理由.27.如图1,在平面直角坐标系中,直线AB经过点C(a,a),且交x轴于点A(m,0),交y轴于点B(0,n),且m,n满足6m +(n﹣12)2=0.(1)求直线AB的解析式及C点坐标;(2)过点C作CD⊥AB交x轴于点D,请在图1中画出图形,并求D点的坐标;(3)如图2,点E(0,﹣2),点P为射线AB上一点,且∠CEP=45°,求点P的坐标.28.(知识背景)据我国古代《周髀算经》记载,公元前1120年商高对周公说,将一根直尺折成一个直角,两端连接得到一个直角三角形,如果勾是3,股是4,那么弦就等于5,后人概括为“勾三、股四、弦五”.像3、4、5这样为三边长能构成直角三角形的三个正整数,称为勾股数.(应用举例)观察3,4,5;5,12,13;7,24,25;…可以发现这些勾股数的勾都是奇数,且从3起就没有间断过,并且 勾为3时,股14(91)2=-,弦15(91)2=+; 勾为5时,股112(251)2=-,弦113(251)2=+; 请仿照上面两组样例,用发现的规律填空: (1)如果勾为7,则股24= 弦25=(2)如果勾用n (3n ≥,且n 为奇数)表示时,请用含有n 的式子表示股和弦,则股= ,弦= . (解决问题)观察4,3,5;6,8,10;8,15,17;…根据应用举例获得的经验进行填空: (3)如果,,a b c 是符合同样规律的一组勾股数,2a m =(m 表示大于1的整数),则b = ,c = ,这就是古希腊的哲学家柏拉图提出的构造勾股数组的公式.(4)请你利用柏拉图公式,补全下面两组勾股数(数据从小到大排列)第一组: 、24、 :第二组: 、 、37.29.已知,矩形ABCD 中,AB =4cm ,BC =8cm ,AC 的垂直平分线EF 分别交AD 、BC 于点E 、F ,垂足为O .(1)如图1,连接AF 、CE .求证:四边形AFCE 为菱形. (2)如图1,求AF 的长.(3)如图2,动点P 、Q 分别从A 、C 两点同时出发,沿△AFB 和△CDE 各边匀速运动一周.即点P 自A →F →B →A 停止,点Q 自C →D →E →C 停止.在运动过程中,点P 的速度为每秒1cm ,设运动时间为t 秒.①问在运动的过程中,以A 、P 、C 、Q 四点为顶点的四边形有可能是矩形吗?若有可能,请求出运动时间t 和点Q 的速度;若不可能,请说明理由.②若点Q 的速度为每秒0.8cm ,当A 、P 、C 、Q 四点为顶点的四边形是平行四边形时,求t 的值.30.(发现)小慧和小雯用一个平面去截正方体,得到一个三角形截面(截出的面),发现截面一定是锐角三角形.为什么呢?她们带着这个疑问请教许老师.(体验)(1)从特殊入手 许老师用1个铆钉把长度分别为4和3的两根窄木棒的一端连在一起(如图,),保持不动,让从重合位置开始绕点转动,在转动的过程,观测的大小和的形状,并列出下表:的大小的形状…直角三角形…直角三角形…请仔细体会其中的道理,并填空:_____,_____;(2)猜想一般结论在中,设,,(),①若为直角三角形,则满足;②若为锐角三角形,则满足____________;③若为钝角三角形,则满足_____________.(探索)在许老师的启发下,小慧用小刀在一个长方体橡皮上切出一个三角形截面(如图1),设,,,请帮助小慧说明为锐角三角形的道理.(应用)在小慧的基础上,小雯又切掉一块“角”,得到一个新的三角形截面(如图2),那么的形状是( )A .一定是锐角三角形B .可能是锐角三角形或直角三角形,但不可能是钝角三角形C .可能是锐角三角形或直角三角形或钝角三角形【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】先根据勾股定理的逆定理证明△ABC 是直角三角形,根据垂直平分线的性质证得AD=BD ,由此根据勾股定理求出CD. 【详解】∵AB=10,AC=8,BC=6,∴2222228610AC BC AB +=+==, ∴△ABC 是直角三角形,且∠C=90°, ∵DE 垂直平分AB , ∴AD=BD ,在Rt △BCD 中,222BD BC CD =+ ,∴222(8)6CD CD -=+,解得CD=74, 故选:C.【点睛】此题考查勾股定理及其逆定理,线段垂直平分线的性质,题中证得△ABC 是直角三角形,且∠C=90°是解题的关键,再利用勾股定理求解.2.C解析:C【分析】当E 1F 1在直线EE 1上时,,得到AE=14,PE=9,由勾股定理求得AP 的长;当E 1F 1在直线B 2E 1上时,两直角边分别为17和6,再利用勾股定理求AP 的长,两者进行比较即可确定答案【详解】① 当展开方法如图1时,AE=8+6=14cm ,PE=6+3=9cm , 由勾股定理得2222149277AP AE PE cm =+=+=② 当展开方法如图2时,AP 1=8+6+3=17cm ,PP 1=6cm , 由勾股定理得222211176325AP AP PP cm =+=+= ∵277<325∴蚂蚁爬行的最短距离是277cm,【点睛】此题考察正方体的展开图及最短路径,注意将正方体沿着不同棱线剪开时得到不同的平面图形,路径结果是不同的3.C解析:C【分析】根据等腰直角三角形的性质可得出S 2+S 2=S 1,写出部分S n 的值,根据数的变化找出变化规律“S n =(12)n−3”,依此规律即可得出结论. 【详解】 解:在图中标上字母E ,如图所示.∵正方形ABCD 的边长为2,△CDE 为等腰直角三角形,∴DE 2+CE 2=CD 2,DE=CE ,∴S2+S2=S1.观察,发现规律:S1=22=4,S2=12S1=2,S3=12S2=1,S4=12S3=12,…,∴S n=(12)n−3.当n=2016时,S2016=(12)2016−3=(12)2013.故选:C.【点睛】本题考查了等腰直角三角形的性质、勾股定理以及规律型中数的变化规律,解题的关键是找出规律“S n=(12)n−3”.本题属于中档题,难度不大,解决该题型题目时,写出部分S n的值,根据数值的变化找出变化规律是关键.4.B解析:B【解析】【分析】如图,连接BB′.根据折叠的性质知△BB′E是等腰直角三角形,则BB′=2BE.又B′E是BD 的中垂线,则DB′=BB′.【详解】∵四边形ABCD是平行四边形,BD=2,∴BE=12BD=1.如图2,连接BB′.根据折叠的性质知,∠AEB=∠AEB′=45°,BE=B′E.∴∠BEB′=90°,∴△BB′E是等腰直角三角形,则BB′=2BE=2,又∵BE=DE,B′E⊥BD,∴DB′=BB′=2.故选B.【点睛】考查了平行四边形的性质以及等腰直角三角形性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.5.D解析:D【解析】【分析】由勾股定理求出各边,再观察结果的规律.【详解】∵OP=1,OP 1OP 2OP 3=2,∴OP 4…,OP 2018故选D【点睛】本题考查了勾股定理,读懂题目信息,理解定理并观察出被开方数比相应的序数大1是解题的关键.6.A解析:A【解析】【分析】作AD′⊥AD ,AD′=AD ,连接CD′,DD′,根据等式的性质,可得∠BAD 与∠CAD′的关系,根据SAS ,可得△BAD 与△CAD′的关系,根据全等三角形的性质,可得BD 与CD′的关系,根据勾股定理,可得答案.【详解】作AD′⊥AD ,AD′=AD ,连接CD′,DD′,则有∠AD′D=∠D′AD=45︒,∵∠BAC+∠CAD=∠DAD′+∠CAD ,即∠BAD=∠CAD′,在△BAD 与△CAD′中,''BC CA BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩, ∴△BAD ≌△CAD′(SAS ),∴BD=CD′,∠DAD′=90°,由勾股定理得,∠D′DA+∠ADC=90°,由勾股定理得,故选A.【点睛】本题考查了全等三角形的判定与性质,利用了全等三角形的判定与性质,勾股定理,添加辅助线作出全等图形是解题关键.7.D解析:D【分析】先根据B(3m,4m+1),可知B在直线y=43x+1上,所以当BD⊥直线y=43x+1时,BD最小,找一等量关系列关于m的方程,作辅助线:过B作BH⊥x轴于H,则BH=4m+1,利用三角形相似得BH2=EH•FH,列等式求m的值,得BD的长即可.【详解】解:如图,∵点B(3m,4m+1),∴令341m xm y=⎧⎨+=⎩,∴y=43x+1,∴B在直线y=43x+1上,∴当BD⊥直线y=43x+1时,BD最小,过B作BH⊥x轴于H,则BH=4m+1,∵BE在直线y=43x+1上,且点E在x轴上,∴E(−34,0),G(0,1)∵F是AC的中点∵A(0,−2),点C(6,2),∴F(3,0)在Rt△BEF中,∵BH2=EH⋅FH,∴(4m+1)2=(3m+34)(3−3m)解得:m1=−14(舍),m2=15,∴B(35,95),∴BD=2BF=2×2239(3)55⎛⎫-+ ⎪⎝⎭=6,则对角线BD的最小值是6;故选:D.【点睛】本题考查了平行四边形的性质,利用待定系数法求一次函数的解析式,三角形相似的判定,圆形与坐标特点,勾股定理等知识点.本题利用点B的坐标确定其所在的直线的解析式是关键.8.B解析:B【分析】作AD⊥BC,则D为BC的中点,即BD=DC=2,根据勾股定理可以求得AD,则根据S=12×BC×AD可以求得△ABC的面积.【详解】解:作AD⊥BC,则D为BC的中点,则BD=DC=2,∵AB=2522AB BD-,∴△ABC的面积为S=12×BC×AD=12×4×4=8,故选:B.【点睛】本题考查了勾股定理的运用,三角形面积的计算,本题中正确的运用勾股定理求AD 是解题的关键.9.A解析:A【分析】过C 作CM ⊥AB 于M ,交AD 于P ,过P 作PQ ⊥AC 于Q ,由角平分线的性质得出PQ=PM ,这时PC+PQ 有最小值,为CM 的长,然后利用勾股定理和等面积法求得CM 的长即可解答.【详解】过C 作CM ⊥AB 于M ,交AD 于P ,过P 作PQ ⊥AC 于Q ,∵AD 是∠BAC 的平分线,∴PQ=PM ,则PC+PQ=PC+PM=CM ,即PC+PQ 有最小值,为CM 的长,∵在Rt △ABC 中,∠ACB=90°,AC=6,BC=8,∴由勾股定理得:AB=10, 又1122ABC S AB CM AC BC ==△, ∴6824105CM ⨯==, ∴PC+PQ 的最小值为245, 故选:A .【点睛】本题考查了角平分线的性质、最短路径问题、勾股定理、三角形等面积法求高,解答的关键是掌握线段和最短类问题的解决方法:一般是运用轴对称变换将直线同侧的点转化为异侧的点,从而把两条线段的位置关系转换,再根据两点之间线段最短或垂线段最短,使两条线段之和转化为一条直线来解决.10.D解析:D【分析】根据三角形勾股定理的逆定理符合222a b c +=即为直角三角形 ,所以将数据分别代入,符合即为能构成直角三角形.【详解】由题意得:①2222+3=134≠ ;②2223+4=25=5 ;③2221+2=5=, 所以能构成直角三角形的是②③.故选D .【点睛】 考查直角三角形的构成,学生熟悉掌握勾股定理的逆定理是本题解题的关键,利用勾股定理的逆定理判断是否能够成直角三角形.二、填空题11.1或78【分析】 分为三种情况:①PQ BP =,②BQ QP =,③BQ BP =,由等腰三角形的性质和勾股定理可求解.【详解】解:分为3种情况:①当PB PQ =时,4=OA ,3OB =,∴5BC AB ===, C 点与A 点关于直线OB 对称,BAO BCO ∴∠=∠,BPQ BAO ∠=∠,BPQ BCO ∴∠=∠,APB APQ BPQ BCO CBP ∠=∠+∠=∠+∠,APQ CBP ∴∠=∠,在APQ 和CBP 中,BAO BCP APQ B PQ B P C P ∠=∠⎧⎪∠=∠⎨=⎪⎩, ()APQ CBP AAS ∴△≌△,∴5AP BC ==,1OP AP OA ∴=-=;②当BQ BP =时,BPQ BQP ∠=∠,BPQ BAO ∠=∠,BAO BQP ∴∠=∠,根据三角形外角性质得:BQP BAO ∠>∠,∴这种情况不存在;③当QB QP =时,QBP BPQ BAO ∠=∠=∠,PB PA ∴=,设OP x =,则4PB PA x ==-在Rt OBP △中,222PB OP OB =+,222(4)3x x ∴-=+, 解得:78x =; ∴当PQB △为等腰三角形时,1OP =或78; 【点睛】本题考查了勾股定理,等腰三角形的性质,全等三角形的性质和判定的应用,解题的关键是熟练掌握所学的性质进行解题,注意分类讨论.12.5【分析】由题意可知,AC =BC ,DC =EC ,∠DCE =∠ACB =90°,∠D =∠E =45°,求出∠ACE =∠BCD 可证△ACE ≌△BCD ,可得AE =BD =3,∠ADB =90°,由勾股定理求出AB 即可得到AC 的长.【详解】解:如图所示,连接BD ,∵△ACB 和△ECD 都是等腰直角三角形,∴AC =BC ,DC =EC ,∠DCE =∠ACB =90°,∠D =∠E =45°,且∠ACE =∠BCD =90°-∠ACD ,在ACE 和BCD 中,AC=BC ACE=BCD CE=CD ⎧⎪∠∠⎨⎪⎩∴△ACE ≌△BCD (SAS ),∴AE =BD 3E =∠BDC =45°,∴∠ADB =∠ADC+∠BDC =45°+45°=90°,∴AB 22AD +BD =7+3=10,∵AB=2BC,∴BC=2×AB=52,故答案为:5.【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质以及勾股定理等知识,添加恰当的辅助线构造全等三角形是解题的关键.13.82【分析】根据S△PAD=13S矩形ABCD,得出动点P在与AD平行且与AD的距离是4的直线l上,作A关于直线l的对称点E,连接DE,BE,则DE的长就是所求的最短距离.然后在直角三角形ADE中,由勾股定理求得DE的值,即可得到PA+PD的最小值.【详解】设△PAD中AD边上的高是h.∵S△PAD=13S矩形ABCD,∴12AD•h=13AD•AB,∴h=23AB=4,∴动点P在与AD平行且与AD的距离是4的直线l上,如图,作A关于直线l的对称点E,连接BE,DE,则DE的长就是所求的最短距离.在Rt△ADE中,∵AD=8,AE=4+4=8,DE22228882AE AD++=即PA+PD的最小值为2.故答案2.【点睛】本题主要考查了轴对称-最短路线问题,三角形的面积,矩形的性质,勾股定理,两点之间线段最短的性质.得出动点P所在的位置是解题的关键.14.163【分析】延长CA 、DB 交于点E ,则60C ∠=°,30E ∠=︒,在Rt ABE ∆中,利用含30角的直角三角形的性质求出28BE AB ==,根据勾股定理求出43AE =.同理,在Rt DEC ∆中求出283CE CD ==,2212DE CE CD =-=,然后根据CDE ABE ABDC S S S ∆∆=-四边形,计算即可求解.【详解】解:如图,延长CA 、DB 交于点E ,∵四边形ABDC 中,120ABD ∠=︒,AB AC ⊥,BD CD ⊥,∴60C ∠=°,∴30E ∠=︒,在Rt ABE ∆中,4AB =,30E ∠=︒,∴28BE AB ==,2243AE BE AB ∴=-=.在Rt DEC ∆中,30E ∠=︒,43CD =,283CE CD ∴==,2212DE CE CD ∴=-=,∴1443832ABE S ∆=⨯⨯=, 143122432CDE S ∆=⨯⨯=, 24383=163CDE ABE ABDC S S S ∆∆∴=-=-四边形.故答案为:163.【点睛】本题考查了勾股定理,含30角的直角三角形的性质,图形的面积,准确作出辅助线构造直角三角形是解题的关键.1515【分析】根据题意点B 与点C 关于AD 对称,所以过点C 作AB 的垂线,与AD 的交点即点P ,求出CE 即可得到答案【详解】∵8,AB AC AD BC ==⊥∴点B 与点C 关于AD 对称过点C 作CE ⊥AB 于一点即为点P ,此时PB PE +最小∵8,4,AB AC BC AD BC ===⊥∴BD=2在Rt △A BC 中, 222282215AD AB BD =-=-= ∵S △ABC=1122BC AD AB CE ⋅⋅=⋅⋅ ∴42158CE ⨯=得15CE = 故此题填15【点睛】 此题考察最短路径,根据题意找到对称点,作直角三角形,利用勾股定理解决问题 1662+【解析】【分析】过A 点作BC 的垂线,E 点作AC 的垂线,构造全等三角形,利用对应角相等计算得出∠DAM=15°,在AM 上截取AG=DG ,则∠DGM=30°,设DM=a,通过勾股定理可得到DG=AG=2a ,332)a ,31)a ,231)a ,代入计算即可.【详解】过A 点作AM ⊥BC 于M 点,过E 点EN ⊥AC 于N 点.∵∠BCA =30°,AE=EC∴AM=12AC ,AN=12AC ∴AM=AN又∵AD=AE∴R t∆ADM ≅ R t∆AEN (HL)∴∠DAM=∠EAN又∵∠MAC=60°,AD ⊥AE∴∠DAM=∠EAN=15°在AM 上截取AG=DG ,则∠DGM=30°设DM=a,则 DG=AG=2a ,根据勾股定理得:GM=3a, ∵∠ABC =45° ∴AM=BM=(32)a +∴BD=(31)a +,AB=2(32)a +, ∴()()62262231a AB BD a++==+ 故答案为:622+【点睛】本题主要考查等于三角形的性质、含30°角的直角三角形的性质,勾股定理等知识,关键是能根据已知条件构建全等三角形及构建等腰三角形将15°角转化为30°角,本题有较大难度.17.355【详解】 四边形DEFA 是正方形,面积是4; △ABF,△ACD 的面积相等,且都是 ×1×2=1. △BCE 的面积是:12×1×1=12. 则△ABC 的面积是:4﹣1﹣1﹣12=32. 在直角△ADC 中根据勾股定理得到:222+1=5设AC 边上的高线长是x .则125x=32, 解得:355.故答案为355. 18.639+或639-【分析】通过计算E 到AC 的距离即EH 的长度为3,所以根据DE 的长度有两种情况:①当点D 在H 点上方时,②当点D 在H 点下方时,两种情况都是过点E 作EH AC ⊥交AC 于点E ,过点G 作GQ AB ⊥交AB 于点Q ,利用含30°的直角三角形的性质和勾股定理求出AH,DH 的长度,进而可求AD 的长度,然后利用角度之间的关系证明AG GE =,再利用等腰三角形的性质求出GQ 的长度,最后利用2DGF AED AEG SS S =-即可求解.【详解】①当点D 在H 点上方时,过点E 作EH AC ⊥交AC 于点E ,过点G 作GQ AB ⊥交AB 于点Q ,12AB = ,点E 是AB 中点,162AE AB ∴== . ∵EH AC ⊥,90AHE ∴∠=︒ .30,6A AE ∠=︒=,132EH AE ∴== ,AH ∴===. 3DE =,3DH ∴=== ,DH EH ∴=,3AD AH DH =-=,45EDH ∴∠=︒,15AED EDH A ∴∠=∠-∠=︒ .由折叠的性质可知,15DEF AED ∠=∠=︒,230AEG AED ∴∠=∠=︒ ,AEG A ∴∠=∠,AG GE ∴= . 又GQ AE ⊥ ,132AQ AE ∴== . 30A ∠=︒ ,12GQ AG ∴=. 222GQ AQ AG += , 即2223(2)GQ GQ +=,GQ ∴= .2DGF AED AEG S S S =- ,1123)36922DGF S ∴=⨯⨯⨯-⨯=; ②当点D 在H 点下方时,过点E 作EH AC ⊥交AC 于点E ,过点G 作GQ AB ⊥交AB 于点Q ,12AB = ,点E 是AB 中点,162AE AB ∴== . ∵EH AC ⊥,90AHE ∴∠=︒.30,6A AE ∠=︒= ,132EH AE ∴== , 22226333AH AE EH ∴=-=-=. 32DE =,2222(32)33DH DE EH ∴=-=-= ,DH EH ∴=,333AD AH DH =+=,45DEH ∴∠=︒ ,90105AED A DEH ∴∠=︒-∠+∠=︒ .由折叠的性质可知,105DEF AED ∠=∠=︒,218030AEG AED ∴∠=∠-︒=︒ ,AEG A ∴∠=∠,AG GE ∴= . 又GQ AE ⊥ ,132AQ AE ∴== . 30A ∠=︒,12GQ AG ∴= . 222GQ AQ AG += , 即2223(2)GQ GQ +=, 3GQ ∴= .2DGF AED AEG S S S =- ,112(333)36363922DGF S ∴=⨯⨯+⨯-⨯⨯=+, 综上所述,DGF △的面积为639-或639+.故答案为:639-或639+.【点睛】本题主要考查折叠的性质,等腰三角形的判定及性质,等腰直角三角形的性质,勾股定理,含30°的直角三角形的性质,能够作出图形并分情况讨论是解题的关键. 19.25【分析】如图,作PA ∥y 轴交X 轴于A ,PH ⊥x 轴于H .GM ∥y 轴交x 轴于M ,连接PG 交x 轴于N ,先证明△ANP ≌△MNG (AAS ),再根据勾股定理求出PN 的值,即可得到线段PG 的长度.【详解】如图,作PA ∥y 轴交X 轴于A ,PH ⊥x 轴于H .GM ∥y 轴交x 轴于M ,连接PG 交x 轴于N .∵P (1,2),G (7.﹣2),∴OA =1,PA =GM =2,OM =7,AM =6,∵PA ∥GM ,∴∠PAN =∠GMN ,∵∠ANP =∠MNG ,∴△ANP ≌△MNG (AAS ),∴AN =MN =3,PN =NG ,∵∠PAH =45°,∴PH =AH =2,∴HN =1,∴PN ===∴PG =2PN =.故答案为【点睛】本题考查了全等三角形的综合问题,掌握全等三角形的性质以及判定定理、勾股定理是解题的关键.20.32【分析】由题意设AM=2a ,BM=b ,则正方形ABCD 的面积=224a b +,由题意可知EF=(2a-b)-2(a-b)=2a-b-2a +2b=b ,由此分析即可.【详解】解:设AM=2a .BM=b .则正方形ABCD 的面积=224a b +由题意可知EF=(2a-b)-2(a-b)=2a-b-2a +2b=b ,∵AM EF ,2,,a a ∴== ∵正方形EFGH 的面积为4,∴24b =,∴正方形ABCD 的面积=2224+832.a b b ==故答案为32.【点睛】本题考查正方形的性质、勾股定理以及线段的垂直平分线的定义等知识,解题的关键是灵活运用所学知识解决问题.三、解答题21.(1) 出发10s 后,△BMN 为等边三角形;(2)出发6s 或15s 后,△BMN 为直角三角形.【分析】(1)设时间为x ,表示出AM=x 、BN=2x 、BM=30-x ,根据等边三角形的判定列出方程,解之可得;(2)分两种情况:①∠BNM=90°时,即可知∠BMN=30°,依据BN=12BM 列方程求解可得;②∠BMN=90°时,知∠BNM=30°,依据BM=12BN 列方程求解可得. 【详解】解(1)设经过x秒,△BMN为等边三角形,则AM=x,BN=2x,∴BM=AB-AM=30-x,根据题意得30-x=2x,解得x=10,答:经过10秒,△BMN为等边三角形;(2)经过x秒,△BMN是直角三角形,①当∠BNM=90°时,∵∠B=60°,∴∠BMN=30°,∴BN=12BM,即2x=12(30-x),解得x=6;②当∠BMN=90°时,∵∠B=60°,∴∠BNM=30°,∴BM=12BN,即30-x=12×2x,解得x=15,答:经过6秒或15秒,△BMN是直角三角形.【点睛】本题考查勾股定理的逆定理,等边三角形的判定.22.(1)证明见解析;(2)5;(3)CD2+CE2=BC2,证明见解析.【分析】(1)先判断出∠BAE=∠CAD,进而得出△ACD≌△ABE,即可得出结论.(2)先求出∠CDA=12∠ADE=30°,进而求出∠BED=90°,最后用勾股定理即可得出结论.(3)方法1、同(2)的方法即可得出结论;方法2、先判断出CD2+CE2=2(AP2+CP2),再判断出CD2+CE2=2AC2.即可得出结论.【详解】解:∵∠BAC=∠DAE,∴∠BAC+∠CAE=∠DAE+∠CAE,即∠BAE=∠CAD.又∵AB=AC,AD=AE,∴△ACD≌△ABE(SAS),∴CD=BE.(2)如图2,连结BE,∵AD=AE,∠DAE=60°,∴△ADE是等边三角形,∴DE=AD=3,∠ADE=∠AED=60°,∵CD ⊥AE ,∴∠CDA =12∠ADE =12×60°=30°, ∵由(1)得△ACD ≌△ABE ,∴BE =CD =4,∠BEA =∠CDA =30°,∴∠BED =∠BEA +∠AED =30°+60°=90°,即BE ⊥DE ,∴BD =22BE DE +=2234+=5.(3)CD 2、CE 2、BC 2之间的数量关系为:CD 2+CE 2=BC 2,理由如下:解法一:如图3,连结BE .∵AD =AE ,∠DAE =90°,∴∠D =∠AED =45°,∵由(1)得△ACD ≌△ABE ,∴BE =CD ,∠BEA =∠CDA =45°,∴∠BEC =∠BEA +∠AED =45°+45°=90°,即BE ⊥DE ,在Rt △BEC 中,由勾股定理可知:BC 2=BE 2+CE 2.∴BC 2=CD 2+CE 2.解法二:如图4,过点A 作AP ⊥DE 于点P .∵△ADE 为等腰直角三角形,AP ⊥DE ,∴AP =EP =DP .∵CD 2=(CP +PD )2=(CP +AP )2=CP 2+2CP •AP +AP 2,CE 2=(EP ﹣CP )2=(AP ﹣CP )2=AP 2﹣2AP •CP +CP 2,∴CD 2+CE 2=2AP 2+2CP 2=2(AP 2+CP 2),∵在Rt △APC 中,由勾股定理可知:AC 2=AP 2+CP 2,∴CD 2+CE 2=2AC 2.∵△ABC 为等腰直角三角形,由勾股定理可知:∴AB 2+AC 2=BC 2,即2AC 2=BC 2,∴CD 2+CE 2=BC 2.【点睛】本题是几何变换综合题,主要考查了全等三角形的判定和性质,勾股定理,等边三角形的判定和性质,等腰直角三角形的判定和性质,解(1)的关键是判断出∠BAE=∠CAD ,解(2)(3)的关键是判断出BE ⊥DE ,是一道中等难度的中考常考题.23.(1)2;(2)3q p =;(3)27OM = 【分析】(1)根据“距离坐标”的定义结合图形判断即可;(2)过M 作MN ⊥CD 于N ,根据已知得出MN q =,OM p =,求出∠MON =60°,根据含30度直角三角形的性质和勾股定理求出2232MN MO NO p =-=即可解决问题;(3)分别作点M 关于AB 、CD 的对称点F 、E ,连接EF 、OE 、OF ,连接MF 、ME 分别交AB 、CD 于P 点、Q 点,首先证明OM OE OF EF ===,求出2MF =,23ME =,然后过F 作FG QM ⊥,交QM 延长线于G ,根据含30度直角三角形的性质求出1FG =,3MG =,再利用勾股定理求出EF 即可.【详解】解:(1)由题意可知,在直线CD 上,且在点O 的两侧各有一个,共2个, 故答案为:2;(2)过M 作MN CD ⊥于N ,∵直线l AB ⊥于O ,150BOD ∠=︒,∴60MON ∠=︒,∵MN q =,OM p =, ∴1122NO MO p ==, ∴2232MN MO NO p =-=, ∴32q p =; (3)分别作点M 关于AB 、CD 的对称点F 、E ,连接EF 、OE 、OF ,连接MF 、ME 分别交AB 、CD 于P 点、Q 点.∴OFP OMP △≌△,OEQ OMQ △≌△,∴FOP MOP ∠=∠,EOQ MOQ ∠=∠,OM OE OF ==,∴260EOF BOD ∠=∠=︒,∴△OEF 是等边三角形,∴OM OE OF EF ===,∵1MP =,3MQ =,∴2MF =,23ME =,∵30BOD ∠=︒,∴150PMQ ∠=︒,过F 作FG QM ⊥,交QM 延长线于G ,∴30FMG ∠=︒,在Rt FMG △中,112FG MF ==,则3MG =, 在Rt EGF 中,1FG =,33EG ME MG =+=,∴22(33)127EF =+=,∴27OM =.【点睛】本题考查了轴对称的应用,含30度直角三角形的性质,勾股定理以及等边三角形的判定和性质等,正确理解题目中的新定义是解答本题的关键.24.(1)BC−AC=AD;理由详见解析;(2)①详见解析;②AB=14【分析】(1)在CB上截取CE=CA,连接DE,证△ACD≌△ECD得DE=DA,∠A=∠CED=60°,据此∠CED=2∠CBA,结合∠CED=∠CBA+∠BDE得出∠CBA=∠BDE,即可得DE=BE,进而得出答案;(2)①在AB上截取AM=AD,连接CM,先证△ADC≌△AMC,得到∠D=∠AMC,CD=CM,结合CD=BC知CM=CB,据此得∠B=∠CMB,根据∠CMB+∠CMA=180°可得;②设BN=a,过点C作CN⊥AB于点N,由CB=CM知BN=MN=a,CN2=BC2−BN2=AC2−AN2,可得关于a的方程,解之可得答案.【详解】解:(1)BC−AC=AD.理由如下:如图(a),在CB上截取CE=CA,连接DE,∵CD平分∠ACB,∴∠ACD=∠ECD,又CD=CD,∴△ACD≌△ECD(SAS),∴DE=DA,∠A=∠CED=60°,∴∠CED=2∠CBA,∵∠CED=∠CBA+∠BDE,∴∠CBA=∠BDE,∴DE=BE,∴AD=BE,∵BE=BC−CE=BC−AC,∴BC−AC=AD.(2)①如图(b),在AB上截取AM=AD,连接CM,∵AC平分∠DAB,∴∠DAC=∠MAC,∵AC=AC,∴△ADC≌△AMC(SAS),∴∠D=∠AMC,CD=CM=12,∵CD=BC=12,∴CM =CB ,∴∠B =∠CMB ,∵∠CMB +∠CMA =180°,∴∠B +∠D =180°;②设BN =a ,过点C 作CN ⊥AB 于点N ,∵CB =CM =12,∴BN =MN =a ,在Rt △BCN 中,2222212CN BC BN a --==,在Rt △ACN 中,2222216(8)CN AC AN a --+==, 则22221216(8)a a --+=, 解得:a =3,即BN =MN =3,则AB =8+3+3=14,∴AB=14.【点睛】本题考查了四边形的综合题,以及全等三角形的判定与性质、勾股定理、等腰三角形的判定与性质;本题有一定难度,需要通过作辅助线证明三角形全等才能得出结果.25.(1) 2516;(2)83t =或6;(3)当153,5,210t =或194时,△BCP 为等腰三角形. 【分析】(1)设存在点P ,使得PA PB =,此时2PA PB t ==,42PC t =-,根据勾股定理列方程即可得到结论;(2)当点P 在CAB ∠的平分线上时,如图1,过点P 作PE AB ⊥于点E ,此时72BP t =-,24PE PC t ==-,541BE =-=,根据勾股定理列方程即可得到结论; (3)在Rt ABC 中,根据勾股定理得到4AC cm =,根据题意得:2AP t =,当P 在AC上时,BCP 为等腰三角形,得到PC BC =,即423t -=,求得12t =,当P 在AB 上时,BCP 为等腰三角形,若CP PB =,点P 在BC 的垂直平分线上,如图2,过P 作PE BC ⊥于E ,求得194t =,若PB BC =,即2343t --=,解得5t =,PC BC =③,如图3,过C 作CF AB ⊥于F ,由射影定理得;2BC BF AB =⋅,列方程2234352t --=⨯,即可得到结论. 【详解】 解:在Rt ABC 中,5AB cm =,3BC cm =,4AC cm ∴=,(1)设存在点P ,使得PA PB =,此时2PA PB t ==,42PC t =-, 在Rt PCB 中,222PC CB PB +=,即:222(42)3(2)t t -+=,解得:2516t =, ∴当2516t =时,PA PB =; (2)当点P 在BAC ∠的平分线上时,如图1,过点P 作PE AB ⊥于点E ,此时72BP t =-,24PE PC t ==-,541BE =-=,在Rt BEP 中,222PE BE BP +=,即:222(24)1(72)t t -+=-,解得:83t =, 当6t =时,点P 与A 重合,也符合条件,∴当83t =或6时,P 在ABC ∆的角平分线上; (3)根据题意得:2AP t =,当P 在AC 上时,BCP 为等腰三角形,PC BC ∴=,即423t -=,12t ∴=, 当P 在AB 上时,BCP 为等腰三角形,CP PB =①,点P 在BC 的垂直平分线上,如图2,过P 作PE BC ⊥于E ,1322BE BC ∴==, 12PB AB ∴=,即52342t --=,解得:194t =, PB BC =②,即2343t --=,解得:5t =,PC BC =③,如图3,过C 作CF AB ⊥于F ,12BF BP ∴=, 90ACB ∠=︒,由射影定理得;2BC BF AB =⋅,即2234352t --=⨯, 解得:5310t =, ∴当15319,5,2104t =或时,BCP 为等腰三角形. 【点睛】本题考查了等腰三角形的判定,三角形的面积,难度适中.利用分类讨论的思想是解(3)题的关键.26.(1)①详见解析;②详见解析;(2)DE 2= EB 2+AD 2+EB ·AD ,证明详见解析【分析】(1)①根据旋转的性质可得CF=CD ,∠DCF=90°,再根据已知条件即可证明△ACD ≌△BCF ;②连接EF ,根据①中全等三角形的性质可得∠EBF=90°,再证明△DCE ≌△FCE 得到EF=DE即可证明;(2)根据(1)中的思路作出辅助线,通过全等三角形的判定及性质得出相等的边,再由勾股定理得出AD,DE,BE之间的关系.【详解】解:(1)①证明:由旋转可得CF=CD,∠DCF=90°∵∠ACD=90°∴∠ACD=∠BCF又∵AC=BC∴△ACD≌△BCF②证明:连接EF,由①知△ACD≌△BCF∴∠CBF=∠CAD=∠CBA=45°,∠BCF=∠ACD,BF=AD∴∠EBF=90°∴EF2=BE2+BF2,∴EF2=BE2+AD2又∵∠ACB=∠DCF=90°,∠CDE=45°∴∠FCE=∠DCE=45°又∵CD=CF,CE=CE∴△DCE≌△FCE∴EF=DE∴DE2= AD2+BE2⑵DE2=EB2+AD2+EB·AD理由:如图2,将△ADC绕点C逆时针旋转60°,得到△CBF,过点F作FG⊥AB,交AB 的延长线于点G,连接EF,∴∠CBE=∠CAD,∠BCF=∠ACD, BF=AD∵AC=BC,∠ACB=60°∴∠CAB=∠CBA =60°∴∠ABE=120°,∠EBF=60°,∠BFG=30°∴BG=12BF,3∵∠ACB=60°,∠DCE=30°,∴∠ACD+∠BCE=30°,∴∠ECF=∠FCB+∠BCE=30°。
八上 勾股定理的应用 知识点+例题+练习 (非常好 分类全面)
ABCabc弦股勾教学内容勾股定理的应用教学目标会灵活运用勾股定理重点勾股定理的应用难点勾股定理的应用课堂精讲【知识要点】1. 勾股定理的概念:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么 a2+b2=c2. 即直角三角形两直角边的平方和等于斜边的平方。
常用关系式由三角形面积公式可得:AB·CD=AC·BC2. 勾股定理的逆定理:如果三角形的三边长a,b,c有下面关系:a2+b2=c2,那么这个三角形是直角三角形,其中c为斜边。
3. 勾股数:①满足a2+b2=c2的三个正整数叫做勾股数(注意:若a,b,c、为勾股数,那么ka,kb,kc同样也是勾股数组。
)②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25;8,15,17等4.判断直角三角形:(1)有一个角为90°的三角形是直角三角形。
(2)有两个角互余的三角形是直角三角形。
(3)如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
(4)如果三角形的三边长a、b、c满足a2+b2=c2 ,那么这个三角形是直角三角形。
(经典直角三角形:勾三、股四、弦五)实际应用:1. 梯子滑动问题:1.一架长2.5m的梯子,斜立在一竖起的墙上,梯子底端距离墙底0.7m(如图),如果梯子的顶端沿墙下滑0.4m,那么梯子底端将向左滑动米862.如图,一个长为10米的梯子,斜靠在墙面上,梯子的顶端距地面的垂直距离为8米,如果梯子的顶端下滑2米,那么,梯子底端的滑动距离米3.小明想知道学校旗杆的高度,他发现旗杆上的绳子垂到地面上还多 1 m,当他把绳子的下端拉开使绳子下端刚好触到地面,此时绳子下端距离旗杆底部是3米,试问旗杆的高度为米4.如图,一根12米高的电线杆两侧各用15米的铁丝固定,两个固定点之间的距离是。
5.如图,一个5米长的梯子AB,斜着靠在竖直的墙AO上,这时AO的距离为4米.①求梯子的底端B距墙角O多少米?②如果梯的顶端A沿墙下滑1米至C,算一算,底端滑动的距离.6.如图所示,梯子AB靠在墙上,梯子的底端A到墙根O 的距离为2m,梯子的顶端B到地面的距离为7m.现将梯子的底端A向外移动到A′,使梯子的底端A′到墙根O的距离为3m,同时梯子的顶端B下降到B′,那么BB′也等于1m吗?2. 爬行距离最短问题:1.如图,一块砖宽AN=5㎝,长ND=10㎝,CD上的点F距地面的高FD=8㎝,地面上A处的一只蚂蚁到F处吃食,要爬行的最短路线是 cm2.如图,是一个三级台阶,它的每一级的长、宽、高分别为20dm、3dm、2dm,A 和B是这个台阶两相对的端点,A点有一只昆虫想到B点去吃可口的食物,则昆虫沿着台阶爬到B点的最短路程是分米?3.一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A点沿纸箱爬到B点,那么它所爬行的最短路线的长是 .3、方向问题:1.一职工下班后以50米/分的速度骑自行车沿着东西马路向东走了5.6分,又沿南北马路向南走了19.2分到家,则他的家离公司距离为()A.100mB.500mC.1 240mD.1 000m2.一轮船在大海中航行,它先向正北方向航行8 km,接着,它又掉头向正东方向航行15千米.⑴此时轮船离开出发点多少km?⑵若轮船每航行1km,需耗油0.4升,那么在此过程中轮船共耗油多少升?3.甲、乙两船上午11时同时从港口A出发,甲船以每小时20海里的速度向东北方向航行,乙船以每小时15海里的速度向东南方向航行,求下午1时两船之间的距离.EC ′ A B CD4.折叠问题:1.如图,在长方形ABCD 中,将△ABC 沿AC 对折至△AEC 位置,CE 与AD 交于点F 。
初二数学勾股定理知识点及习题
初二数学勾股定理知识点及习题第一章勾股定理题勾股定理是指直角三角形的两直角边的平方和等于斜边的平方,即$a^2+b^2=c^2$。
常见的勾股数有:$(3,4,5)$,$(6,8,10)$,$(5,12,13)$,$(8,15,17)$,$(7,24,25)$。
这个定理一定要记在心中。
考点一:勾股定理的直接应用例1:正方形的面积是2,它的对角线长为多少?答案为$\sqrt{2}$。
例2:如图,由直角三角形ABC的三边向外作正方形,若最大正方形的边长为8cm,则正方形M与正方形N的面积之和为多少?答案为$128$。
考点二:求第三条边的长例1:若直角三角形ABC中,$\angle C=90^\circ$且$c=37,a=12$,则$b=35$。
例2:已知两线段的长为6cm和8cm,当第三条线段取时,这三条线段能组成一个直角三角形。
提示:所给的两条边长不一定都为直角边。
例3:若一个直角三角形的三边分别为$a,b,c$,且$a=144,b=25$,则$c=169$。
考点三:与高、面积有关例1:两个直角边分别是3和4的直角三角形斜边上的高是多少?答案为$3$。
例2:等腰三角形的底边为10cm,周长为36cm,则它的面积是$48$ $cm^2$。
勾股定理的逆定理是:如果三角形的三边长$a,b,c$满足$a^2+b^2=c^2$,那么这个三角形是直角三角形。
判断步骤:(1)比较$a,b,c$大小,找最长边;(2)计算两条短边的平方和,看是否与最长边的平方相等。
例1:木工师傅要做一个长方形桌面,做好后量得长为80cm,宽为60cm,对角线为100cm,则这个桌面合格。
例2:试判断:三边长分别是$a-b,a+b,2ab(a>b)$的三角形是否为直角三角形?答案为是。
一、选择题1、把直角三角形的两直角边均扩大到原来的2倍,则斜边扩大到原来的几倍?答案为2.2、等腰$\triangle ABC$的底边$BC$为16,底边上的高$AD$为6,则腰长$AB$的长为12.3、将一根24cm的筷子,置于底面直径为15cm,高8cm 的圆柱形水杯中,设筷子露在杯子外面的长度为$h$,则$h$的取值范围为$[1,17]$。
勾股定理应用(含解答)
勾股定理点击一:勾股定理勾股定理:如果直角三角形两直角边分别为a ,b ,斜边为c ,那么a 2+b 2 = c 2. 即直角三角形两直角的平方和等于斜边的平方.因此,在运用勾股定理计算三角形的边长时,要注意如下三点:(1)注意勾股定理的使用条件:只对直角三角形适用,而不适用于锐角三角形和钝角三角形;(2)注意分清斜边和直角边,避免盲目代入公式致错;(3)注意勾股定理公式的变形:在直角三角形中,已知任意两边,可求第三边长. 即c 2= a 2+b 2,a 2= c 2-b 2,b 2= c 2-a 2. 点击二:学会用拼图法验证勾股定理拼图法验证勾股定理的基本思想是:借助于图形的面积来验证,依据是对图形经过割补、拼接后面积不变的原理.如,利用四个如图1所示的直角三角形三角形,拼出如图2所示的三个图形. 请读者证明.如上图示,在图(1)中,利用图1边长为a ,b ,c 的四个直角三角形拼成的一个以c 为边长的正方形,则图2(1)中的小正方形的边长为(b -a ),面积为(b -a )2,四个直角三角形的面积为4×21ab = 2ab .(图1)(2)(3)由图(1)可知,大正方形的面积 =四个直角三角形的面积+小正方形的的面积,即c 2 =(b -a )2+2ab ,则a 2+b 2 = c 2问题得证.请同学们自己证明图(2)、(3). 点击三:在数轴上表示无理数将在数轴上表示无理数的问题转化为化长为无理数的线段长问题.第一步:利用勾股定理拆分出哪两条线段长的平方和等于所画线段(斜边)长的平方,注意一般其中一条线段的长是整数;第二步:以数轴原点为直角三角形斜边的顶点,构造直角三角形;第三步:以数轴原点圆心,以斜边长为半径画弧,即可在数轴上找到表示该无理数的点. 点击四:直角三角形边与面积的关系及应用直角三角形有许多属性,除边与边、边与角、角与角的关系外,边与面积也有内的联系.设a 、b 为直角三角形的两条直角边,c 为斜边,S ∆为面积,于是有:222()2a b a ab b +=++,222a b c +=,12442ab ab S ∆=⨯=,所以22()4a b c S ∆+=+.即221[()]4S a b c ∆=+-.也就是说,直角三角形的面积等于两直角边和的平方与斜边平方差的四分之一.利用该公式来计算直角三角形的有关面积、周长、斜边上的高等问题,显得十分简便.点击五:熟练掌握勾股定理的各种表达形式.如图2,在Rt ABC ∆中,90=∠C 0,∠A 、∠B 、∠C 的对边分别为a 、b 、c,则c 2=a 2+b 2, a 2=c 2-b 2 , b 2=c 2-a 2, 点击六:勾股定理的应用(1)已知直角三角形的两条边,求第三边; (2)已知直角三角形的一边,求另两条边的关系; (3)用于推导线段平方关系的问题等.(4)用勾股定理,在数轴上作出表示2、3、5的点,即作出长为n 的线段.类型之一:勾股定理例1:如果直角三角形的斜边与一条直角边的长分别是13cm 和5cm ,那么这个直角三角形的面积是 cm 2.解析:欲求直角三角形的面积,已知一直角三角形的斜边与一条直角边的长,则求得另一直角边的长即可. 根据勾股定理公式的变形,可求得.解:由勾股定理,得132-52=144,所以另一条直角边的长为12. 所以这个直角三角形的面积是21×12×5 = 30(cm 2). 例2: 如图3(1),一只蚂蚁沿棱长为a 的正方体表面从顶点A 爬到 顶点B,则它走过的最短路程为( )A .a 3B .a )21(+C .3aD .a 5 解析:本题显然与例2属同种类型,思路相同.但正方体的 各棱长相等,因此只有一种展开图.解:将正方体侧面展开得,如图3⑵. 由图知AC=2a,BC=a .根据勾股定理得.a 5a 5a )a 2(AB 222==+= 故选D .类型之二:在数轴上表示无理数例3:在数轴上作出表示出两直角边的长度后即可在数轴上作出.解:3和1,所以需在数轴上找出两段分别长为3和1的线段,如图所示,然后即可确定斜边长,线段即可.∙ ∙AB C图3⑵∙ AB图3⑴下面的问题是关于数学大会会标设计与勾股定理知识的综合运用例5:阅读材料,第七届国际数学教育大会的会徽.它的主题图案是由一连串如图所示的直角三角形演化而成的.设其中的第一个直角三角形OA 1A 2是等腰三角形,且OA1=A 1A 2=A 2A 3=A 3A 4=……=A 8A 9=1,请你先把图中其它8条线段的长计算出来,填在下面的表格中,然后再计算这8条线段的长的乘积.解:2;3;2;5;6;7;22;3;这8条线段的长的乘积是7072例6:2002年8月在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的较短直角边为a ,较长直角边为b ,那么()2b a +的值为( )(A )13 (B )19 (C )25 (D )169解析:由勾股定理,结合题意得a 2+b 2=13 ①. 由题意,得 (b-a)2=1 ②. 由②,得 a 2+b 2-2ab =1 ③. 把①代入③,得 13-2ab=1 ∴ 2ab=12.∴ (a+b)2= a 2+b 2+2ab =13+12=25. 因此,选C.说明:2002年8月20日~28日,我国在首都北京成功举办了第24届国际数学家大会. 这是在发展中国家举行的第一次国际数学家大会,也是多年来在我国举行的最重要的一次国际会议. 它标志着我国数学已度过了六百多年的低谷,进入了数学大国的行列,并向着新世纪成为数学强国迈开了步伐. 这次大会的会标如下图所示:它取材于我国三国时期(公元3世纪)赵爽所著的《勾股圆方图注》. 类型之四:勾股定理的应用(一)求边长例1:已知:如图,在△ABC中,∠ACB=90º,AB=5cm,BC=3cm,CD⊥AB于D,求CD的长..(二)求面积例2:(1)观察图形思考并回答问题(图中每个小方格代表一个单位面积)①观察图1-1.正方形A中含有__________个小方格,即A的面积是__________个单位面积;正方形B中含有__________个小方格,即B的面积是__________个单位面积;正方形C中含有__________个小方格,即C的面积是__________个单位面积.②在图1-2中,正方形A,B,C中各含有多少个小方格?它们的面积各是多少?③你能发现图1-1中三个正方形A,B,C的面积之间有什么关系吗?图1-2中的呢?(2)做一做:①观察图1-3、图1-4,并填写下表:②三个正方形A,B,C的面积之间有什么关系?(3)议一议:①你能用三角形的边长表示正方形的面积吗?②你能发现直角三角形三边长度之间存在什么关系吗?③分别以5厘米、12厘米为直角边作出一个直角三角形,并测量斜边的长度,②中的规律对这个三角形仍然成立吗?解析:注意到图中每个小方格代表一个单位面积,通过观察图形不能得到答案:①99 9 9 18 18;②A中含4个,B中含4个,C中含8个,面积分别为4,4,8;③A与B的面积之和等于C,图1-2中也是A与B的面积之和等于C.(2)①答案:②答案:.(3)答案:①设直角三角形三边长分别为a,b,c(如图);②,.③成立.(三)作线段例3 作长为、、的线段.解析:作法:1.作直角边长为1(单位长)的等腰直角三角形ACB(如图);2.以斜边AB为一直角边,作另一直角边长为1的直角三角形ABB1;3.顺次这样作下去,最后作到直角三角形AB2B3,这时斜边AB、AB1、AB2、AB3的长度就是、、、.证明:根据勾股定理,在Rt△ACB中,∵AB>0,∴AB=.其他同理可证.,、点评证明线段的平方差或和,常常要考虑到运用勾股定理;若无直角三角形,则可通过作垂线的方法,构成直角三角形,以便为运用勾股定理创造必要的条件.(五)实际应用例5:台风是一种自然灾害,它以台风中心为圆心在周围数十千米范围内形成气旋风暴,有极强的破坏力,如图,据气象观测,距沿海某城市A的正南方向220千米B处有一台风中心,其中心最大风力为12级,每远离台风中心20千米,风力就会减弱一级,该台风中心现正以15千米/时的速度沿北偏东30º方向往C移动,且台风中心风力不变,若城市所受风力达到或走过四级,则称为受台风影响.(1)该城市是否会受到这交台风的影响?请说明理由.(2)若会受到台风影响,那么台风影响该城市持续时间有多少?(3)该城市受到台风影响的最大风力为几级?解析 (1)由点A 作AD⊥BC 于D , 则AD 就为城市A 距台风中心的最短距离 在Rt△ABD 中,∠B=30º,AB =220,∴AD=21AB=110.由题意知,当A 点距台风(12-4)20=160(千米)时,将会受到台风影响. 故该城市会受到这次台风的影响.(2)由题意知,当A 点距台风中心不超过60千米时,将会受到台风的影响,则AE =AF =160.当台风中心从E 到F 处时, 该城市都会受到这次台风的影响.由勾股定理得∴EF=2DE =6015.因为这次台风中心以15千米/时的速度移动,所以这次台风影响该城市的持续时间为154151560 小时. (3)当台风中心位于D 处时,A 城市所受这次台风的风力最大,其最大风力为12-20110=6.5级.。
八年级初二数学 勾股定理知识归纳总结及答案
一、选择题1.如图,点A 的坐标是(2)2,,若点P 在x 轴上,且APO △是等腰三角形,则点P 的坐标不可能是( )A .(2,0)B .(4,0)C .(-22,0)D .(3,0)2.在ABC ∆中,D 是直线BC 上一点,已知15AB =,12AD =,13AC =,5CD =,则BC 的长为( ) A .4或14B .10或14C .14D .103.“勾股图”有着悠久的历史,它曾引起很多人的兴趣.1955年希腊发行了以“勾股图”为背景的邮票(如图1),欧几里得在《几何原本》中曾对该图做了深入研究.如图2,在ABC 中,90ACB ∠=︒,分别以ABC 的三条边为边向外作正方形,连结EB ,CM ,DG ,CM 分别与AB ,BE 相交于点P ,Q .若30ABE ∠=︒,则DGQM的值为( )A .3 B .5 C .45D .31-4.如图,已知ABC 中,10,86,AB AC BC AB ===,的垂直平分线分别交,AC AB 于,,D E 连接BD ,则CD 的长为( )A .1B .54C .74D .2545.在直角三角形中,自两锐角所引的两条中线长分别为5和210,则斜边长为()A.10 B.410C.13D.2136.如图,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…按照此规律继续下去,则S2016的值为()A.(2)2013B.(2)2014C.(12)2013D.(12)20147.如图所示,在中,,,.分别以,,为直径作半圆(以为直径的半圆恰好经过点,则图中阴影部分的面积是()A.4 B.5 C.7 D.68.我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若a=3,b=4,则该矩形的面积为()A.20 B.24 C.994D.5329.以下列各组数为边长,能构成直角三角形的是()A236、、B345C347D23410.如图,正方体的棱长为4cm,A是正方体的一个顶点,B是侧面正方形对角线的交点.一只蚂蚁在正方体的表面上爬行,从点A爬到点B的最短路径是()A .9B .210C .326+D .12二、填空题11.如图,在Rt ABC 中,90ACB ∠=︒,4AC =,2BC =,以AB 为边向外作等腰直角三角形ABD ,则CD 的长可以是__________.12.如图,现有一长方体的实心木块,有一蚂蚁从A 处出发沿长方体表面爬行到C '处,若长方体的长4cm AB =,宽2cm BC =,高1cm BB '=,则蚂蚁爬行的最短路径长是___________.13.如图,在四边形ABCD 中,22AD =,3CD =,45ABC ACB ADC ∠=∠=∠=︒,则BD 的长为__________.14.等腰三角形的腰长为5,一腰上的高为3,则这个等腰三角形底边的长为________ 15.如图,ACB △和ECD 都是等腰直角三角形,CA CB =,CE CD =,ABC 的顶点A 在ECD 的斜边上.若3AE =,7AD =,则AC 的长为_________16.如图是“赵爽弦图”,△ABH 、△BCG 、△CDF 和△DAE 是四个全等的直角三角形,四边形ABCD 和EFGH 都是正方形.如果AB =13,EF =7,那么AH 等于_____.17.如图,在四边形ABCD 中,∠A=60°,∠B=∠D=90°,AD=4,AB=3,则CD=_________18.在等腰Rt ABC △中,90C ∠=︒,2AC =,过点C 作直线lAB ,F 是l 上的一点,且AB AF =,则FC =__________.19.如图,长方体纸箱的长、宽、高分别为50cm 、30cm 、60cm ,一只蚂蚁从点A 处沿着纸箱的表面爬到点B 处.蚂蚁爬行的最短路程为_______cm.20.如图,Rt△ABC 中,∠BCA =90°,AB =5,AC =2,D 为斜边AB 上一动点(不与点A ,B 重合),DE ⊥AC ,DF ⊥BC ,垂足分别为E 、F ,连接EF ,则EF 的最小值是_____.三、解答题21.如图,在矩形ABCD 中,AB=8,BC=10,E 为CD 边上一点,将△ADE 沿AE 折叠,使点D 落在BC 边上的点F 处. (1)求BF 的长; (2)求CE 的长.22.如图,将一长方形纸片OABC 放在平面直角坐标系中,(0,0)O ,(6,0)A ,(0,3)C ,动点F 从点O 出发以每秒1个单位长度的速度沿OC 向终点C 运动,运动23秒时,动点E 从点A 出发以相同的速度沿AO 向终点O 运动,当点E 、F 其中一点到达终点时,另一点也停止运动.设点E 的运动时间为t :(秒)(1)OE =_________,OF =___________(用含t 的代数式表示)(2)当1t =时,将OEF ∆沿EF 翻折,点O 恰好落在CB 边上的点D 处,求点D 的坐标及直线DE 的解析式;(3)在(2)的条件下,点M 是射线DB 上的任意一点,过点M 作直线DE 的平行线,与x 轴交于N 点,设直线MN 的解析式为y kx b =+,当点M 与点B 不重合时,设MBN ∆的面积为S ,求S 与b 之间的函数关系式.23.已知:如图,在ABC ∆中,90ACB ∠=,以点B 为圆心,BC 的长为半径画弧,交线段AB 于点D ,以点A 为圆心,AD 长为半径画弧,交线段AC 与点E . (1)根据题意用尺规作图补全图形(保留作图痕迹); (2)设,BC m AC n ==①线段AD 的长度是方程2220x mx n +-=的一个根吗?并说明理由. ②若线段2AD EC =,求mn的值.24.我国古代数学家赵爽曾用图1证明了勾股定理,这个图形被称为“弦图”.2002年在北京召开的国际数学家大会(ICM 2002)的会标(图2),其图案正是由“弦图”演变而来.“弦图”是由4个全等的直角三角形与一个小正方形组成,恰好拼成一个大正方形请你根据图1解答下列问题:(1)叙述勾股定理(用文字及符号语言叙述); (2)证明勾股定理;(3)若大正方形的面积是13,小正方形的面积是1,求()2a b +的值.25.如图,点A是射线OE:y=x(x≥0)上的一个动点,过点A作x轴的垂线,垂足为B,过点B作OA的平行线交∠AOB的平分线于点C.(1)若OA=52,求点B的坐标;(2)如图2,过点C作CG⊥AB于点G,CH⊥OE于点H,求证:CG=CH.(3)①若点A的坐标为(2,2),射线OC与AB交于点D,在射线BC上是否存在一点P 使得△ACP与△BDC全等,若存在,请求出点P的坐标;若不存在,请说明理由.②在(3)①的条件下,在平面内另有三点P1(2,2),P2(2,22),P3(2+2,2﹣2),请你判断也满足△ACP与△BDC全等的点是.(写出你认为正确的点)26.定义:在△ABC中,若BC=a,AC=b,AB=c,若a,b,c满足ac+a2=b2,则称这个三角形为“类勾股三角形”,请根据以上定义解决下列问题:(1)命题“直角三角形都是类勾股三角形”是命题(填“真”或“假”);(2)如图1,若等腰三角形ABC是“类勾股三角形”,其中AB=BC,AC>AB,请求∠A的度数;(3)如图2,在△ABC中,∠B=2∠A,且∠C>∠A.①当∠A=32°时,你能把这个三角形分成两个等腰三角形吗?若能,请在图2中画出分割线,并标注被分割后的两个等腰三角形的顶角的度数;若不能,请说明理由;②请证明△ABC为“类勾股三角形”.27.已知n组正整数:第一组:3,4,5;第二组:8,6,10;第三组:15,8,17;第四组:24,10,26;第五组:35,12,37;第六组:48,14,50;…(1)是否存在一组数,既符合上述规律,且其中一个数为71?若存在,请写出这组数;若不存在,请说明理由;(2)以任意一个大于2的偶数为一条直角边的长,是否一定可以画出一个直角三角形,使得该直角三角形的另两条边的长都是正整数?若可以,请说明理由;若不可以,请举出反例.28.如图1,点E 是正方形ABCD 边CD 上任意一点,以DE 为边作正方形DEFG ,连接BF ,点M 是线段BF 中点,射线EM 与BC 交于点H ,连接CM . (1)请直接写出CM 和EM 的数量关系和位置关系.(2)把图1中的正方形DEFG 绕点D 顺时针旋转45︒,此时点F 恰好落在线段CD 上,如图2,其他条件不变,(1)中的结论是否成立,请说明理由.(3)把图1中的正方形DEFG 绕点D 顺时针旋转90︒,此时点E 、G 恰好分别落在线段AD 、CD 上,连接CE ,如图3,其他条件不变,若2DG =,6AB =,直接写出CM 的长度.29.在平面直角坐标系中,点A (0,4),B (m ,0)在坐标轴上,点C ,O 关于直线AB 对称,点D 在线段AB 上.(1)如图1,若m =8,求AB 的长;(2)如图2,若m =4,连接OD ,在y 轴上取一点E ,使OD =DE ,求证:CE =2DE ; (3)如图3,若m =43,在射线AO 上裁取AF ,使AF =BD ,当CD +CF 的值最小时,请在图中画出点D 的位置,并直接写出这个最小值.30.如图,在△ABC 中,D 是边AB 的中点,E 是边AC 上一动点,连结DE,过点D 作DF ⊥DE 交边BC 于点F(点F 与点B 、C 不重合),延长FD 到点G,使DG=DF,连结EF 、AG.已知AB=10,BC=6,AC=8. (1)求证:△ADG ≌△BDF ; (2)请你连结EG,并求证:EF=EG ;(3)设AE=x ,CF=y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围; (4)求线段EF 长度的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【详解】解:(1)当点P在x轴正半轴上,①以OA为腰时,∵A的坐标是(2,2),∴∠AOP=45°,OA=22,∴P的坐标是(4,0)或(22,0);②以OA为底边时,∵点A的坐标是(2,2),∴当点P的坐标为:(2,0)时,OP=AP;(2)当点P在x轴负半轴上,③以OA为腰时,∵A 的坐标是(2,2), ∴OA= 22, ∴OA=AP=22∴P 的坐标是(-22,0). 故选D .2.A解析:A 【分析】根据AC =13,AD =12,CD =5,可判断出△ADC 是直角三角形,在Rt △ADB 中求出BD ,继而可得出BC 的长度. 【详解】∵AC =13,AD =12,CD =5, ∴222AD CD AC +=, ∴△ABD 是直角三角形,AD ⊥BC , 由于点D 在直线BC 上,分两种情况讨论: 当点D 在线段BC 上时,如图所示,在Rt △ADB 中,229BD AB AD =-=,则14BC BD CD =+=;②当点D 在BC 延长线上时,如图所示,在Rt △ADB 中,229BD AB AD =-=,则4BC BD CD =-=.故答案为:A. 【点睛】本题考查勾股定理和逆定理,需要分类讨论,掌握勾股定理和逆定理的应用为解题关键.3.D解析:D 【分析】先用已知条件利用SAS 的三角形全等的判定定理证出△EAB ≌△CAM ,之后利用全等三角形的性质定理分别可得30EBA CMA ==︒∠∠,60BPQ APM ==︒∠∠,12PQ PB =,然后设1AP =,继而可分别求出2PM =,12PQ =,所以32QM QP PM =+=;易证Rt △ACB ≌Rt △DCG (HL),从而得DG AB ==然后代入所求数据即可得DGQM的值. 【详解】解:∵在△EAB 和△CAM 中 ,AE AC EAB CAM AB AM =⎧⎪=⎨⎪=⎩∠∠, ∴△EAB ≌△CAM (SAS ), ∴30EBA CMA ==︒∠∠, ∴60BPQ APM ==︒∠∠, ∴90BQP ∠=︒,12PQ PB =, 设1AP =,则AM =2PM =,1PB =,12PQ =,∴2QM QP PM =+=+=; ∵ 在Rt △ACB 和Rt △DCG 中,CG BCAC CD=⎧⎨=⎩, Rt △ACB ≌Rt △DCG (HL ),∴DG AB ==∴1DGGM==. 故选D .【点睛】本题主要考查了勾股定理,三角形全等的判定定理和性质定理等知识.4.C解析:C【分析】先根据勾股定理的逆定理证明△ABC 是直角三角形,根据垂直平分线的性质证得AD=BD ,由此根据勾股定理求出CD.【详解】∵AB=10,AC=8,BC=6,∴2222228610AC BC AB +=+==,∴△ABC 是直角三角形,且∠C=90°,∵DE 垂直平分AB ,∴AD=BD ,在Rt △BCD 中,222BD BC CD =+ ,∴222(8)6CD CD -=+,解得CD=74, 故选:C. 【点睛】此题考查勾股定理及其逆定理,线段垂直平分线的性质,题中证得△ABC 是直角三角形,且∠C=90°是解题的关键,再利用勾股定理求解.5.D解析:D【分析】根据已知设AC =x ,BC =y ,在Rt △ACD 和Rt △BCE 中,根据勾股定理分别列等式,从而求得AC ,BC 的长,最后根据勾股定理即可求得AB 的长.【详解】如图,在△ABC 中,∠C =90°,AD 、BE 为△ABC 的两条中线,且AD =,BE =5,求AB 的长.设AC =x ,BC =y ,根据勾股定理得:在Rt △ACD 中,x 2+(12y )2=()2, 在Rt △BCE 中,(12x )2+y 2=52, 解之得,x =6,y =4,∴在Rt △ABC 中,AB = ,故选:D .【点睛】此题考查勾股定理的运用,在直角三角形中,已知两条边长时,可利用勾股定理求第三条边的长度.6.C解析:C【分析】根据等腰直角三角形的性质可得出S2+S2=S1,写出部分S n的值,根据数的变化找出变化规律“S n=(12)n−3”,依此规律即可得出结论.【详解】解:在图中标上字母E,如图所示.∵正方形ABCD的边长为2,△CDE为等腰直角三角形,∴DE2+CE2=CD2,DE=CE,∴S2+S2=S1.观察,发现规律:S1=22=4,S2=12S1=2,S3=12S2=1,S4=12S3=12,…,∴S n=(12)n−3.当n=2016时,S2016=(12)2016−3=(12)2013.故选:C.【点睛】本题考查了等腰直角三角形的性质、勾股定理以及规律型中数的变化规律,解题的关键是找出规律“S n=(12)n−3”.本题属于中档题,难度不大,解决该题型题目时,写出部分S n的值,根据数值的变化找出变化规律是关键.7.D解析:D【解析】【分析】先利用勾股定理计算BC 的长度,然后阴影部分的面积=以AB 为直径的半圆面积+以BC 为直径的半圆面积+-以AC 为直径的半圆面积. 【详解】 解:在中 ∵,, ∴, ∴BC=3,∴阴影部分的面积=以AB 为直径的半圆面积+以BC 为直径的半圆面积+-以AC 为直径的半圆面积=6.故选D. 【点睛】本题考查扇形面积的计算和勾股定理.在本题中解题关键是用重叠法去表示阴影部分的面积. 8.B解析:B【分析】设小正方形的边长为x ,则矩形的一边长为(a+x ),另一边为(b+x ),根据矩形的面积的即等于两个三角形的面积之和,也等于长乘以宽,列出方程,化简再代入a,b 的值,得出x 2+7x=12,再根据矩形的面积公式,整体代入即可.【详解】设小正方形的边长为x ,则矩形的一边长为(a+x ),另一边为(b+x ),根据题意得 :2(ax+x 2+bx )=(a+x )(b+x ),化简得 :ax+x 2+bx-ab=0,又∵ a = 3 , b = 4 ,∴x 2+7x=12;∴该矩形的面积为=(a+x )(b+x )=(3+x )(4+x )=x 2+7x+12=24.故答案为B.【点睛】本题考查了勾股定理的证明以及运用和一元二次方程的运用,求出小正方形的边长是解题的关键.9.C解析:C【分析】利用勾股定理的逆定理依次计算各项后即可解答.【详解】选项A ,2222)3)6)+≠,不能构成直角三角形;选项B ,2223)4)5)+≠,不能构成直角三角形;选项C ,222(3)(4)(7)+=,能构成直角三角形;选项D ,222(2)(3)(4)+≠,不能构成直角三角形. 故选C .【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.10.B解析:B【分析】将正方体的左侧面与前面展开,构成一个长方形,用勾股定理求出距离即可.【详解】解:如图,AB =22(24)2210++=.故选:B .【点睛】此题求最短路径,我们将平面展开,组成一个直角三角形,利用勾股定理求出斜边就可以了.二、填空题11.21021332【分析】在ABC 中计算AB ,情况一:作AE CE ⊥于E ,计算AE ,DE ,CE ,可得CD ;情况二:作BE CE ⊥于E ,计算BE ,CE ,DE ,可得CD ;情况三:作DE CE ''⊥,计算,,DF DE CE '',可得CD .【详解】∵90ACB ︒∠=,4,2AC BC ==,∴5AB =情况一:当25AD AB ==AE CE ⊥于E∴ 1122BC AC AB AE ⋅=⋅,即45AE =,145DE =∴22855CE AC AE =-=∴22213CD CE DE =+=情况二:当25BD AB ==时,作BE CE ⊥于E ,∴1122BC AC AB BE ⋅=⋅,即45BE =,145DE = ∴22255CE BC BE =-= ∴22210CD CE DE =+=情况三:当AD BD =时,作DE CE ''⊥,作BE CE ⊥于E∴1122BC AC AB BE ⋅=⋅, ∴45BE =35CE ∴= ∵ABD △为等腰直角三角形∴152BF DF AB ===∴955DE DF E F DF BE ''=+=+=2535555CE EE CE BF CE ''=-=-=-= ∴2232CD CE E D ''=+=故答案为:210或213或32【点睛】本题考查了等腰直角三角形的探索,勾股定理的计算等,熟知以上知识是解题的关键. 12.5cm【分析】连接AC ',分三种情况进行讨论:画出图形,用勾股定理计算出AC '长,再比较大小即可得出结果.【详解】解:如图展开成平面图,连接AC ',分三种情况讨论:如图1,AB=4,BC '=1+2=3,∴在Rt △ABC '中,由勾股定理得AC '2243+(cm ),如图2,AC=4+2=6,CC '=1∴在Rt △ACC '中,由勾股定理得AC '2261+37(cm ),如图3,AD =2,DC '=1+4=5,∴在Rt △ADC '中,由勾股定理得AC '2225+29(cm )∵2937,∴蚂蚁爬行的最短路径长是5cm ,故答案为:5cm .【点睛】本题考查平面展开-最短路线问题和勾股定理,本题具有一定的代表性,是一道好题,注意要分类讨论.13.5【分析】作AD′⊥AD ,AD′=AD 构建等腰直角三角形,根据SAS 求证△BAD ≌△CAD′,证得BD=CD′,∠DAD′=90°,然后在Rt △AD′D 和Rt △CD′D 应用勾股定理即可求解.【详解】作AD′⊥AD ,AD′=AD ,连接CD′,DD′,如图:∵∠BAC+∠CAD=∠DAD′+∠CAD ,∴∠BAD=∠C AD′,在△BAD 与△CAD′中,{BA CABAD CAD AD AD =∠=∠='',∴△BAD ≌△CAD′(SAS ),∴BD=CD′,∠DAD′=90°,由勾股定理得22()4AD AD +=',∵∠D′DA+∠ADC=90°,∴由勾股定理得22(')5DC DD +=,∴BD=CD′=5故答案为5.【点睛】本题考查了全等三角形的判定与性质,勾股定理,等腰直角三角形,正确引出辅助线构造等腰直角三角形是本题的关键.14.1010【详解】分两种情况:(1)顶角是钝角时,如图1所示:在Rt△ACO中,由勾股定理,得AO2=AC2-OC2=52-32=16,∴AO=4,OB=AB+AO=5+4=9,在Rt△BCO中,由勾股定理,得BC2=OB2+OC2=92+32=90,∴BC=310;(2)顶角是锐角时,如图2所示:在Rt△ACD中,由勾股定理,得AD2=AC2-DC2=52-32=16,∴AD=4,DB=AB-AD=5-4=1.在Rt△BCD中,由勾股定理,得BC2=DB2+DC2=12+32=10,∴10;综上可知,这个等腰三角形的底的长度为1010.【点睛】本题考查了勾股定理及等腰三角形的性质,难度适中,分情况讨论是解题的关键.155【分析】由题意可知,AC=BC,DC=EC,∠DCE=∠ACB=90°,∠D=∠E=45°,求出∠ACE=∠BCD可证△ACE≌△BCD,可得AE=BD3ADB=90°,由勾股定理求出AB即可得到AC的长.【详解】解:如图所示,连接BD,∵△ACB 和△ECD 都是等腰直角三角形,∴AC =BC ,DC =EC ,∠DCE =∠ACB =90°,∠D =∠E =45°,且∠ACE =∠BCD =90°-∠ACD , 在ACE 和BCD 中,AC=BC ACE=BCD CE=CD ⎧⎪∠∠⎨⎪⎩∴△ACE ≌△BCD (SAS ),∴AE =BD 3E =∠BDC =45°,∴∠ADB =∠ADC+∠BDC =45°+45°=90°,∴AB 22AD +BD =7+3=10, ∵AB=2BC ,∴BC =2AB=525【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质以及勾股定理等知识,添加恰当的辅助线构造全等三角形是解题的关键.16.【分析】根据面积的差得出a+b 的值,再利用a-b=7,解得a ,b 的值代入即可.【详解】∵AB =13,EF =7,∴大正方形的面积是169,小正方形的面积是49,∴四个直角三角形面积和为169﹣49=120,设AE 为a ,DE 为b ,即141202ab ⨯=, ∴2ab =120,a 2+b 2=169,∴(a +b )2=a 2+b 2+2ab =169+120=289,∴a +b =17,∵a ﹣b =7,解得:a =12,b =5,∴AE =12,DE =5,∴AH =12﹣7=5.故答案为:5.【点睛】此题考查勾股定理的证明,关键是应用直角三角形中勾股定理的运用解得ab的值.17.【解析】【分析】延长BC,AD交于E点,在直角三角形ABE和直角三角形CDE中,根据30°角所对的直角边等于斜边的一半和勾股定理即可解答.【详解】如图,延长AD、BC相交于E,∵∠A=60°,∠B=∠ADC=90°,∴∠E=30°∴AE=2AB,CE=2CD∵AB=3,AD=4,∴AE=6, DE=2设CD=x,则CE=2x,DE=x即x=2x=即CD=故答案为:【点睛】本题考查了勾股定理的运用,含30°角所对的直角边是斜边的一半的性质,本题中构建直角△ABE和直角△CDE,是解题的关键.183131【解析】⊥于点D,如图,l AB,2AC=,作AD l∴1AD =, ∵222AF AB ==⋅=,且F 有2个, ∴2212213DF DF ==-=,∵1DC AD ==,∴1113CF CD DF =+=+, 2231CF DF CD =-=-.点睛:本题考查了勾股定理的运用,通过添加辅助线,可将问题转化到直角三角形中,利用勾股定理解答,考查了学生的空间想象能力.19.100【解析】蚂蚁有三种爬法,就是把正视和俯视(或正视和侧视,或俯视和侧视)二个面展平成一个长方形,然后求其对角线:第一种情况:如图1,把我们所看到的前面和上面组成一个平面,则这个长方形的长和宽分别是90cm 和50cm ,则所走的最短线段AB==10cm ;第二种情况:如图2,把我们看到的左面与上面组成一个长方形,则这个长方形的长和宽分别是110cm和30cm,所以走的最短线段AB==10cm;第三种情况:如图3,把我们所看到的前面和右面组成一个长方形,则这个长方形的长和宽分别是80cm和60cm,所以走的最短线段AB==100cm;三种情况比较而言,第三种情况最短.故答案为100cm.点睛:本题考查了立体图形中的最短路线问题;通常应把立体几何中的最短路线问题转化为平面几何中的求两点间距离的问题;注意长方体展开图形应分情况进行探讨.2025【解析】试题分析:根据勾股定理可求出BC=1,然后根据∠BCA=90°,DE⊥AC,DF⊥BC,证得四边形CEDF是矩形,连接CD,则CD=EF,当CD⊥AB时,CD最短,即EF=CD=25 5.25点睛:本题考查了勾股定理的运用,矩形的判定和性质以及垂线段最短的性质,同时也考查了学生综合运用性质进行推理和计算的能力.三、解答题21.(1)BF长为6;(2)CE长为3,详细过程见解析.【分析】(1)由矩形的性质及翻折可知,∠B=90°,AF=AD=10,且AB=8,在Rt△ABF中,可由勾股定理求出BF的长;(2)设CE=x,根据翻折可知,EF=DE=8-x,由(1)可知BF=6,则CF=4,在Rt△CEF中,可由勾股定理求出CE的长.【详解】解:(1)∵四边形ABCD为矩形,∴∠B=90°,且AD=BC=10,又∵AFE是由ADE沿AE翻折得到的,∴AF=AD=10,又∵AB=8,在Rt△ABF中,由勾股定理得:,故BF的长为6.(2)设CE=x ,∵四边形ABCD为矩形,∴CD=AB=8,∠C=90°,DE=CD-CE=8-x,又∵△AFE是由△ADE沿AE翻折得到的,∴FE=DE=8-x,由(1)知:BF=6,故CF=BC-BF=10-6=4,在Rt△CEF中,由勾股定理得:222CF+CE=EF,∴2224+x=(8-x),解得:x=3,故CE的长为3.【点睛】本题考查了折叠的性质:折叠是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等,利用勾股定理求解是本题的关键.22.(1)6-t,t+23;(2)D(1,3),y=34-x+154;(3)1515215()4215215()2b bSb b⎧-+≤<⎪⎪=⎨⎪->⎪⎩【分析】(1)根据点E,F的运动轨迹和速度,即可得到答案;(2)由题意得:DF=OF=53,DE=OE=5,过点E作EG⊥BC于点G,根据勾股定理得DG=4,进而得D(1,3),根据待定系数法,即可得到答案;(3)根据题意得直线直线MN的解析式为:34y x b=-+,从而得M(443b-,3),分2种情况:①当点M在线段DB上时,②当点M在DB的延长线上时,分别求出S与b之间的函数关系式,即可.【详解】∵(0,0)O ,(6,0)A ,(0,3)C ,∴OA=6,OC=3,∵AE=t×1= t , ∴OE =6-t ,OF =(t+23)×1=t+23, 故答案是:6-t ,t+23; (2)当1t =时,OE =6-t=5,OF =t+23=53, ∵将OEF ∆沿EF 翻折,点O 恰好落在CB 边上的点D 处,∴DF=OF=53,DE=OE=5, 过点E 作EG ⊥BC 于点G ,则EG=OC=3,CG=OE=5,∴4=,∴CD=CG-DG=5-4=1,∴D(1,3),设直线DE 的解析式为:y=kx+b ,把D(1,3),E(5,0)代入y=kx+b ,得350k b k b +=⎧⎨+=⎩ ,解得:34154k b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴直线DE 的解析式为:y=34-x+154; (3)∵MN ∥DE ,∴直线直线MN 的解析式为:34y x b =-+, 令y=3,代入34y x b =-+,解得:x=443b -, ∴M(443b -,3). ①当点M 在线段DB 上时,BM=6-(443b -)=4103b -+, ∴1143(10)223S BM AB b =⋅=⨯⨯-+=215b -+, ②当点M 在DB 的延长线上时,BM=443b --6=4103b -,∴1143(10) 223S BM AB b=⋅=⨯⨯-=215b-,综上所述:1515215()4215215()2b bSb b⎧-+≤<⎪⎪=⎨⎪->⎪⎩.【点睛】本题主要考查一次函数与几何图形的综合,掌握勾股定理与一次函数的待定系数法,是解题的关键.23.(1)详见解析;(2)①线段AD的长度是方程2220x mx n+-=的一个根,理由详见解析;②512mn=【分析】(1)根据题意,利用尺规作图画出图形即可;(2)①根据勾股定理求出AD,然后把AD的值代入方程,即可得到答案;②先得到出边长的关系,然后根据勾股定理,列出方程,解方程后得到答案.【详解】(1)解:作图,如图所示:(2)解:①线段AD的长度是方程2220x mx n+-=的一个根.理由如下:依题意得,BD BC m==,在Rt ABC中,90ACB∠=︒222BC AC AB∴=+22AB m n=+22AD AB BD m n m∴=-=+222AD m AD n∴+-)()2222222m n m m m n m n=+++-22222222m n m m n =+-+-0=;∴线段AD 的长度是方程22 20x mx n +-=的一个根②依题意得:,,AD AE BD BC AB AD BD ====2AD EC =2233AD AE AC n ∴=== 在RT ABC 中,90ACB ∠=222BC AC AB ∴+=22223m n n m ⎛⎫+=+ ⎪⎝⎭ 22224493m n n mn m +=++ 25493n mn = 512m n ∴= 【点睛】本题考查的是基本作图,勾股定理、一元二次方程的解法,掌握一元二次方程的求根公式、勾股定理是解题的关键.24.(1)见解析;(2)证明见解析;(3)25.【分析】(1)直接叙述勾股定理的内容,并用字母表明三边关系;(2)利用大正方形面积、小正方形面积和4个直角三角形的面积和之间的关系列式整理即可证明;(3)将原式利用完全平方公式展开,由勾股定理的内容可得出()2a b +为大正方形面积和4个直角三角形的面积和,根据已知条件即可求得.【详解】解:(1)勾股定理:直角三角形两直角边的平方和等于斜边的平方.在直角三角形中,两条直角边分别为 a 、b ,斜边为 c ,a 2+b 2= c 2.(2)∵ S 大正方形=c 2,S 小正方形=(b-a)2,4 S Rt △=4×12ab=2ab , ∴ c 2=2ab+(b-a)2=2ab+b 2-2ab+a 2=a 2+b 2,即 a 2+b 2= c 2.(3)∵ 4 S Rt △= S 大正方形- S 小正方形=13-1=12,∴ 2ab=12.∴ (a+b)2= a 2+b 2+2ab=c 2+2ab=13+12=25.【点睛】本题考查勾股定理的内容及勾股定理的几何验证,利用等面积法证明勾股定理及运用勾股定理是解答此题的关键.25.(1)(5,0);(2)见解析;(3)①P(4,2),②满足△ACP与△BDC全等的点是P1、P2,P3.理由见解析【分析】(1)由题意可以假设A(a,a)(a>0),根据AB2+OB2=OA2,构建方程即可解决问题;(2)由角平分线的性质定理证明CH=CF,CG=CF即可解决问题;(3)①如图3中,在BC的延长线上取点P,使得CP=DB,连接AP.只要证明△ACP≌△CDB(SAS),△ABP是等腰直角三角形即可解决问题;②根据SAS即可判断满足△ACP与△BDC全等的点是P1、P2,P3;【详解】解:(1)∵点A在射线y=x(x≥0)上,故可以假设A(a,a)(a>0),∵AB⊥x轴,∴AB=OB=a,即△ABO是等腰直角三角形,∴AB2+OB2=OA2,∴a2+a2=(52)2,解得a=5,∴点B坐标为(5,0).(2)如图2中,作CF⊥x轴于F.∵OC平分∠AOB,CH⊥OE,∴CH=CF,∵△AOB是等腰直角三角形,∴∠AOB=45°,∵BC∥OE,∴∠CBG=∠AOB=45°,得到BC平分∠ABF,∵CG⊥BA,CF⊥BF,∴CG=CF,∴CG=CH.(3)①如图3中,在BC的延长线上取点P,使得CP=DB,连接AP.由(2)可知AC平分∠DAE,∴∠DAC=12∠DAE=12(180°﹣45°)=67.5°,由OC平分∠AOB得到∠DOB=12∠AOB=22.5°,∴∠ADC=∠ODB=90°﹣22.5°=67.5°,∴∠ADC=∠DAC=67.5°,∴AC=DC,∠BDC=∠OBD+∠DOB=90°+22.5°=112.5°,∠ACD=180°﹣∠CAD﹣∠ADC=180°﹣67.5°﹣67.5°=45°,∠OCB=45°﹣22.5°=22.5°,∠ACP=180°﹣∠ACD﹣∠OCB=180°﹣45°﹣22.5°=112.5°,在△ACP和△CDB中,AC ADACP DB CP DB=⎧⎪∠=∠⎨⎪=⎩,∴△ACP≌△CDB(SAS),∴∠CAP=∠DCB=22.5°,∴∠BAP=∠CAP+∠DAC=22.5°+67.5°=90°,∴△ABP是等腰直角三角形,∴AP=AB=OB=2,∴P(4,2).②满足△ACP与△BDC全等的点是P1、P2,P3.理由:如图4中,由题意:AP1=BD,AC=CD,∠CAP1=∠CDB,根据SAS可得△CAP1≌△CDB;AP2=BD,AC=CD,∠CAP2=∠CDB,根据SAS可得△CAP2≌△CDB;AC=CD,∠ACP3=∠BDC,BD=CP3根据SAS可得△CAP3≌△DCB;故答案为P1、P2,P3.【点睛】本题考查全等三角形的判定和性质、等腰直角三角形的判定和性质、勾股定理、角平分线的性质定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.26.(1)假;(2)∠A=45°;(3)①不能,理由见解析,②见解析【分析】(1)先由直角三角形是类勾股三角形得出ab+a2=c2,再由勾股定理得a2+b2=c2,即可判断出此直角三角形是等腰直角三角形;(2)由类勾股三角形的定义判断出此三角形是等腰直角三角形,即可得出结论;(3)①分三种情况,利用等腰三角形的性质即可得出结论;②先求出CD=CB=a,AD=CD=a,DB=AB-AD=c-a,DG=BG=12(c-a),AG=12(a+c),两个直角三角形中利用勾股定理建立方程即可得出结论.【详解】解:(1)如图1,假设Rt△ABC是类勾股三角形,∴ab+a2=c2,在Rt△ABC中,∠C=90°,根据勾股定理得,a2+b2=c2,∴ab+b2=a2+b2,∴ab=a2,∴a=b,∴△ABC是等腰直角三角形,∴等腰直角三角形是类勾股三角形,即:原命题是假命题,故答案为:假;(2)∵AB=BC,AC>AB,∴a=c,b>c,∵△ABC是类勾股三角形,∴ac+a2=b2,∴c2+a2=b2,∴△ABC是等腰直角三角形,∴∠A=45°,(3)①在△ABC中,∠ABC=2∠BAC,∠BAC=32°,∴∠ABC=64°,根据三角形的内角和定理得,∠ACB=180°﹣∠BAC﹣∠ABC=84°,∵把这个三角形分成两个等腰三角形,∴(Ⅰ)、当∠BCD=∠BDC时,∵∠ABC=64°,∴∠BCD=∠BDC=58°,∴∠ACD=∠ACB﹣∠BCD=84°﹣58°=26°,∠ADC=∠ABC+∠BCD=122°∴△ACD不是等腰三角形,此种情况不成立;(Ⅱ)、当∠BCD=∠ABC=64°时,∴∠BDC=52°,∴∠ACD=20°,∠ADC=128°,∴△ACD是等腰三角形,此种情况不成立;(Ⅲ)、当∠BDC=∠ABC=64°时,∴∠BCD=52°,∴∠ACD=∠ACB﹣BCD=32°=∠BAC,∴△ACD是等腰三角形,即:分割线和顶角标注如图2所示,Ⅱ、分∠ABC,同(Ⅰ)的方法,判断此种情况不成立;Ⅲ、分∠BAC,同(Ⅱ)的方法,判断此种情况不成立;②如图3,在AB边上取点D,连接CD,使∠ACD=∠A图3作CG⊥AB于G,∴∠CDB=∠ACD+∠A=2∠A,∵∠B=2∠A,∴∠CDB=∠B,∴CD=CB=a,∵∠ACD=∠A,∴AD=CD=a,∴DB=AB﹣AD=c﹣a,∵CG⊥AB,∴DG=BG=12(c﹣a),∴AG=AD+DG=a+12(c﹣a)=12(a+c),在Rt△ACG中,CG2=AC2﹣AG2=b2﹣[12(c+a)]2,在Rt△BCG中,CG2=BC2﹣BG2=a2﹣[12(c﹣a)]2,∴b2﹣[12(a+c)]2=a2﹣[12(c﹣a)]2,∴b2=ac+a2,∴△ABC是“类勾股三角形”.【点睛】此题是三角形综合题,主要考查了等腰三角形的性质,勾股定理,新定义“类勾股三角形”,分类讨论的数学思想,解本题的关键是理解新定义.27.(1)不存在,见解析;(2)以任意一个大于2的偶数为一条直角边的长,一定可以画出一个直角三角形,使得该直角三角形的另两条边的长都是正整数,见解析.【分析】(1)根据题意可知,这n组正整数符合规律m2-1,2m,m2+1(m≥2,且m为整数).分三种情况:m2-1=71;2m=71;m2+1=71;进行讨论即可求解;(2)由于(m2-1) 2+(2m) 2=m4+2m2+1=(m2+1) 2,根据勾股定理的逆定理即可求解.【详解】(1)不存在一组数,既符合上述规律,且其中一个数为71.理由如下:根据题意可知,这n 组正整数符合规律21m -,2m ,21m +(2m ≥,且m 为整数). 若2171m -=,则272m =,此时m 不符合题意;若271m =,则35.5,m =,此时m 不符合题意;若2171m +=,则270m =,此时m 不符合题意,所以不存在一组数,既符合上述规律,且其中一个数为71.(2)以任意一个大于2的偶数为一条直角边的长,一定可以画出一个直角三角形,使得该直角三角形的另两条边的长都是正整数.理由如下:对于一组数:21m -,2m ,21m +(2m ≥,且m 为整数).因为2224222(1)(2)21(1)m m m m m -+=++=+所以若一个三角形三边长分别为21m -,2m ,21m +(2m ≥,且m 为整数),则该三角形为直角三角形.因为当2m ≥,且m 为整数时,2m 表示任意一个大于2的偶数,21m -,21m +均为正整数,所以以任意一个大于2的偶数为一条直角边的长,一定可以画出一个直角三角形,使得该直角三角形的另两条边的长都是正整数.【点睛】考查了勾股定理的逆定理:如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.注意分类思想的应用28.(1),CM ME CM EM =⊥;(2)见解析;(3)CM =【解析】【分析】(1)证明ΔFME ≌ΔAMH ,得到HM=EM ,根据等腰直角三角形的性质可得结论. (2)根据正方形的性质得到点A 、E 、C 在同一条直线上,利用直角三角形斜边上的中线等于斜边的一半可知. (3)如图3中,连接EC ,EM ,由(1)(2)可知,△CME 是等腰直角三角形,利用等腰直角三角形的性质解决问题即可.【详解】解:(1)结论:CM =ME ,CM ⊥EM .理由:∵AD ∥EF ,AD ∥BC ,∴BC ∥EF ,∴∠EFM =∠HBM ,在△FME 和△BMH 中, EFM MBH FM BMFME BMH ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△FME ≌△BMH (ASA ),。
八年级初二数学勾股定理知识归纳总结及答案
本题考查的是勾股定理的逆定理,当三角形中三边满足 关系时,则三角形为直角三角形.
10.C
解析:C
【分析】
先过点E作EG⊥CD于G,再判定△BCD、△ABD都是等腰直角三角形,并求得其边长,最后利用等腰直角三角形,求得EG的长,进而得到△EDC的面积.
【详解】
解:过点E作EG⊥CD于G,
又∵CF平分∠BCD,BD⊥BC,
22.如图1,在△ABC中,AB=AC,∠BAC=90°,D为AC边上一动点,且不与点A点C重合,连接BD并延长,在BD延长线上取一点E,使AE=AB,连接CE.
(1)若∠AED=20°,则∠DEC=度;
(2)若∠AED=a,试探索∠AED与∠AEC有怎样的数量关系?并证明你的猜想;
(3)如图2,过点A作AF⊥BE于点F,AF的延长线与EC的延长线交于点H,求证:EH2+CH2=2AE2.
①试证明 是直角三角形;
②求线段 的长.(用含 的代数式表示)
(2)当射线 在 内部时,如图②,过点 作 于点 ,连结 ,请写出线段 、 、 的数量关系,并说明理由.
25.如图,在四边形 中, , , ,点 为 边上一点,连接 , . 与 交于点 ,且 ∥ .
(1)求证: ;
(2)若 , .求 的长.
(2)如图2,以AD为边向左作等边△ADG,连接BG.
ⅰ)试判断四边形AGBE的形状,并说明理由;
ⅱ)若设BD=1,DC=k(0<k<1),求四边形AGBE与△ABC的周长比(用含k的代数式表示).
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.D
解析:D
【分析】
由等式可分别得到关于a、b、c的等式,从而分别计算得到a、b、c的值,再由 的关系,可推导得到△ABC为直角三角形.
八年级初二数学 勾股定理知识归纳总结含答案
八年级初二数学 勾股定理知识归纳总结含答案一、选择题1.如图:在△ABC 中,∠B=45°,D 是AB 边上一点,连接CD ,过A 作AF ⊥CD 交CD 于G ,交BC 于点F .已知AC=CD ,CG=3,DG=1,则下列结论正确的是( )①∠ACD=2∠FAB ②27ACD S ∆= ③272CF=- ④ AC=AF A .①②③ B .①②③④ C .②③④ D .①③④2.如图,等腰直角△ABC 中,∠C =90°,点F 是AB 边的中点,点D 、E 分别在AC 、BC 边上运动,且∠DFE =90°,连接DE 、DF 、EF ,在此运动变化过程中,下列结论:①图中全等的三角形只有两对;②△ABC 的面积是四边形CDFE 面积的2倍;③CD +CE =2FA ;④AD 2+BE 2=DE 2.其中错误结论的个数有( )A .1个B .2个C .3个D .4个3.如图,在ABC 中,90A ∠=︒,6AB =,8AC =,ABC ∠与ACB ∠的平分线交于点O ,过点O 作⊥OD AB 于点D ,若则AD 的长为( )A .2B .2C .3D .44.如图,在△ABC 中,∠C =90°,AD 是△ABC 的一条角平分线.若AC =6,AB =10,则点D 到AB 边的距离为( )A .2B .2.5C .3D .45.在ABC 中,,,A B C ∠∠∠的对边分别是a b c 、、,下列条件中,不能说明ABC 是直角三角形的是( )A .222b a c =-B .;C A B ∠=∠-∠ C .::3:4:5A B C ∠∠∠=D .::5:12:13a b c = 6.已知△ABC 的三边分别是6,8,10,则△ABC 的面积是( )A .24B .30C .40D .48 7.《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺,问折高者几何?意思是一根竹子,原高一丈(一丈=10尺)一阵风将竹子折断,某竹梢恰好抵地,抵地处离竹子底部6尺远,则折断处离地面的高度是( )A .5.3尺B .6.8尺C .4.7尺D .3.2尺8.如图,在ABC 中,13AB =,10BC =,BC 边上的中线12AD =,请试着判定ABC 的形状是( )A .直角三角形B .等边三角形C .等腰三角形D .以上都不对 9.在下列以线段a 、b 、c 的长为边,能构成直角三角形的是( ) A .a =3,b =4,c =6 B .a =5,b =6,c =7 C .a =6,b =8,c =9D .a =7,b =24,c =25 10.下列条件中,不能..判定ABC 为直角三角形的是( ) A .::5:12:13a b c =B .A BC ∠+∠=∠ C .::2:3:5A B C ∠∠∠=D .6a =,12b =,10c =二、填空题11.如图,在四边形ABCD 中,AB =AD ,BC=DC ,点E 为AD 边上一点,连接BD 、CE ,CE 与BD 交于点F ,且CE ∥AB ,若∠A =60°,AB=4,CE=3,则BC 的长为_______.12.如图,在△ABC 中,OA =4,OB =3,C 点与A 点关于直线OB 对称,动点P 、Q 分别在线段AC 、AB 上(点P 不与点A 、C 重合),满足∠BPQ =∠BAO.当△PQB 为等腰三角形时,OP 的长度是_____.13.等腰三角形的腰长为5,一腰上的高为3,则这个等腰三角形底边的长为________14.在ABC ∆中,10AB cm =,17AC cm =,BC 边上的高为8cm ,则ABC ∆的面积为______2cm .15.以直角三角形的三边为边向外作正方形P ,Q ,K ,若S P =4,S Q =9,则K S =___16.如图,在四边形ABCD 中,∠A=60°,∠B=∠D=90°,AD=4,AB=3,则CD=_________17.如图,小正方形的边长为1,连接小正方形的三个格点可得△ABC ,则AC 边上的高的长度是_____________.18.已知a 、b 、c 是△ABC 三边的长,且满足关系式2222()0c a b a b --+-=,则△ABC 的形状为___________19.我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“爽弦图”(如图1).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成,记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为1S ,2S ,3S ,若12315S S S ++=,则2S 的值是__________.20.已知:如图,等腰Rt OAB ∆的直角边OA 的长为1,以AB 边上的高1OA 为直角边,按逆时针方向作等腰11Rt OA B ∆,11A B 与OB 相交于点2A ,若再以2OA 为直角边按逆时针方向作等腰22Rt OA B ∆,22A B 与1OB 相交于点3A ,按此作法进行下去,得到33OA B ∆,44OA B ∆,…,则66OA B ∆的周长是______.三、解答题21.在等边ABC 中,点D 是线段BC 的中点,120,EDF DE ∠=︒与线段AB 相交于点,E DF 与射线AC 相交于点F .()1如图1,若DF AC ⊥,垂足为,4,F AB =求BE 的长;()2如图2,将()1中的EDF ∠绕点D 顺时针旋转一定的角度,DF 仍与线段AC 相交于点F .求证:12BE CF AB +=.()3如图3,将()2中的EDF ∠继续绕点D 顺时针旋转一定的角度,使DF 与线段AC 的延长线交于点,F 作DN AC ⊥于点N ,若,DN FN =设,BE x CF y ==,写出y 关于x 的函数关系式.22.(1)计算:1312248233⎛⎫-+÷ ⎪ ⎪⎝; (2)已知a 、b 、c 满足2|23|32(30)0a b c +-+--=.判断以a 、b 、c 为边能否构成三角形?若能构成三角形,说明此三角形是什么形状?并求出三角形的面积;若不能,请说明理由.23.如图,已知ABC ∆中,90B ∠=︒,8AB cm =,6BC cm =,P 、Q 是ABC ∆边上的两个动点,其中点P 从点A 开始沿A B →方向运动,且速度为每秒1cm ,点Q 从点B 开始沿B C →方向运动,且速度为每秒2cm ,它们同时出发,设出发的时间为t 秒.(1)当2t =秒时,求PQ 的长;(2)求出发时间为几秒时,PQB ∆是等腰三角形?(3)若Q 沿B C A →→方向运动,则当点Q 在边CA 上运动时,求能使BCQ ∆成为等腰三角形的运动时间.24.在等腰△ABC 与等腰△ADE 中,AB =AC ,AD =AE ,∠BAC =∠DAE ,且点D 、E 、C 三点在同一条直线上,连接BD .(1)如图1,求证:△ADB ≌△AEC(2)如图2,当∠BAC =∠DAE =90°时,试猜想线段AD ,BD ,CD 之间的数量关系,并写出证明过程;(3)如图3,当∠BAC =∠DAE =120°时,请直接写出线段AD ,BD ,CD 之间的数量关系式为: (不写证明过程)25.如图,在ABC 中,90BAC ∠=︒,AB AC =,点D 是BC 上一动点、连接AD ,过点A 作AE AD ⊥,并且始终保持AE AD =,连接CE ,(1)求证:ABD ACE ≅;(2)若AF 平分DAE ∠交BC 于F ,①探究线段BD ,DF ,FC 之间的数量关系,并证明;②若3BD =,4CF =,求AD 的长,26.如图1,在等腰直角三角形ABC 中,动点D 在直线AB (点A 与点B 重合除外)上时,以CD 为一腰在CD 上方作等腰直角三角形ECD ,且90ECD ∠=︒,连接AE .(1)判断AE 与BD 的数量关系和位置关系;并说明理由.(2)如图2,若4BD =,P ,Q 两点在直线AB 上且5EP EQ ==,试求PQ 的长. (3)在第(2)小题的条件下,当点D 在线段AB 的延长线(或反向延长线)上时,判断PQ 的长是否为定值.分别画出图形,若是请直接写出PQ 的长;若不是请简单说明理由.27.已知ABC ∆中,90ACB ∠=︒,AC BC =,过顶点A 作射线AP .(1)当射线AP 在BAC ∠外部时,如图①,点D 在射线AP 上,连结CD 、BD ,已知21AD n =-,21AB n =+,2BD n =(1n >).①试证明ABD ∆是直角三角形;②求线段CD 的长.(用含n 的代数式表示)(2)当射线AP 在BAC ∠内部时,如图②,过点B 作BD AP ⊥于点D ,连结CD ,请写出线段AD 、BD 、CD 的数量关系,并说明理由.28.如图,△ABC 中,90BAC ∠=︒,AB=AC ,P 是线段BC 上一点,且045BAP ︒<∠<︒.作点B 关于直线AP 的对称点D, 连结BD ,CD ,AD .(1)补全图形.(2)设∠BAP 的大小为α.求∠ADC 的大小(用含α的代数式表示).(3)延长CD 与AP 交于点E,直接用等式表示线段BD 与DE 之间的数量关系.29.定义:在△ABC 中,若BC =a ,AC =b ,AB =c ,若a ,b ,c 满足ac +a 2=b 2,则称这个三角形为“类勾股三角形”,请根据以上定义解决下列问题:(1)命题“直角三角形都是类勾股三角形”是 命题(填“真”或“假”);(2)如图1,若等腰三角形ABC 是“类勾股三角形”,其中AB =BC ,AC >AB ,请求∠A 的度数;(3)如图2,在△ABC 中,∠B =2∠A ,且∠C >∠A .①当∠A =32°时,你能把这个三角形分成两个等腰三角形吗?若能,请在图2中画出分割线,并标注被分割后的两个等腰三角形的顶角的度数;若不能,请说明理由; ②请证明△ABC 为“类勾股三角形”.30.如图1,在正方形ABCD 中,点E ,F 分别是AC ,BC 上的点,且满足DE ⊥EF ,垂足为点E ,连接DF .(1)求∠EDF= (填度数);(2)延长DE 交AB 于点G ,连接FG ,如图2,猜想AG ,GF ,FC 三者的数量关系,并给出证明;(3)①若AB=6,G 是AB 的中点,求△BFG 的面积;②设AG=a ,CF=b ,△BFG 的面积记为S ,试确定S 与a ,b 的关系,并说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】过点C 作CH AB ⊥于点H ,根据等腰三角形的性质得到1802ACD CDA ∠=︒-∠,根据AF CD ⊥得到90FAB CDA ∠=︒-∠,可以证得①是正确的,利用勾股定理求出AG 的长,算出三角形ACD 的面积证明②是正确的,再根据角度之间的关系证明AFC ACF ∠=∠,得到④是正确的,最后利用勾股定理求出CF 的长,得到③是正确的.【详解】解:如图,过点C 作CH AB ⊥于点H ,∵AC CD =,∴CAD CDA ∠=∠,1802ACD CDA ∠=︒-∠,∵AF CD ⊥,∴90AGD ∠=︒,∴90FAB CDA ∠=︒-∠,∴2ACD FAB ∠=∠,故①正确;∵3CG =,1DG =,∴314CD CG DG =+=+=,∴4AC CD ==,在Rt ACG 中,221697AG AC CG =-=-=, ∴1272ACD S AG CD =⋅=,故②正确; ∵90CHB ∠=︒,45B ∠=︒,∴45HCB ∠=︒,∵AC CD =,CH AD ⊥,∴12ACH HCD ACD ∠=∠=∠, ∵45AFC B FAB FAB ∠=∠+∠=︒+∠,45ACF ACH HCB ACH ∠=∠+∠=∠+︒,12ACH ACD FAB ∠=∠=∠, ∴AFC ACF ∠=∠,∴4AC AF ==,故④正确;∴47GF AF AG =-=-,在Rt CGF 中,()2222347272CF CG GF =+=+-=-,故③正确.故选:B .【点睛】本题考查几何的综合证明,解题的关键是掌握等腰三角形的性质和判定,勾股定理和三角形的外角和定理. 2.B解析:B【分析】结论①错误,因为图中全等的三角形有3对;结论②正确,由全等三角形的性质可以判断;结论③错误,利用全等三角形和等腰直角三角形的性质可以判断;结论④正确,利用全等三角形的性质以及直角三角形的勾股定理进行判断.【详解】连接CF ,交DE 于点P ,如下图所示结论①错误,理由如下:图中全等的三角形有3对,分别为△AFC ≌△BFC ,△AFD ≌△CFE ,△CFD ≌△BFE . 由等腰直角三角形的性质,可知FA=FC=FB ,易得△AFC ≌△BFC .∵FC ⊥AB ,FD ⊥FE ,∴∠AFD=∠CFE .∴△AFD ≌△CFE (ASA ).同理可证:△CFD ≌△BFE .结论②正确,理由如下:∵△AFD ≌△CFE ,∴S △AFD =S △CFE ,∴S 四边形CDFE =S △CFD +S △CFE =S △CFD +S △AFD =S △AFC =12S △ABC , 即△ABC 的面积等于四边形CDFE 的面积的2倍.结论③错误,理由如下:∵△AFD ≌△CFE ,∴CE=AD ,∴FA .结论④正确,理由如下:∵△AFD ≌△CFE ,∴AD=CE ;∵△CFD ≌△BFE ,∴BE=CD .在Rt △CDE 中,由勾股定理得:222CD CE DE +=,∴222AD BE DE += .故选B .【点睛】本题是几何综合题,考查了等腰直角三角形、全等三角形和勾股定理等重要几何知识点,综合性比较强.解决这个问题的关键在于利用全等三角形的性质.3.B解析:B【分析】过点O 作OE ⊥BC 于E ,OF ⊥AC 于F ,由角平分线的性质得到OD=OE=OF ,根据勾股定理求出BC 的长,易得四边形ADFO 为正方形,根据线段间的转化即可得出结果.【详解】解:过点O 作OE ⊥BC 于E ,OF ⊥AC 于F ,∵BO,CO 分别为∠ABC ,∠ACB 的平分线,所以OD=OE=OF ,又BO=BO,∴△BDO ≌△BEO,∴BE=BD.同理可得,CE=CF.又四边形ADOE 为矩形,∴四边形ADOE 为正方形.∴AD=AF.∵在Rt △ABC 中,AB=6,AC=8,∴BC=10.∴AD+BD=6①,AF+FC=8②,BE+CE=BD+CF=10③,①+②得,AD+BD+AF+FC=14,即2AD+10=14,∴AD=2.故选:B.【点睛】此题考查了角平分线的定义与性质,以及全等三角形的判定与性质,属于中考常考题型.4.C解析:C【分析】作DE⊥AB于E,由勾股定理计算出可求BC=8,再利用角平分线的性质得到DE=DC,设DE=DC=x,利用等等面积法列方程、解方程即可解答.【详解】解:作DE⊥AB于E,如图,在Rt△ABC中,BC221068,∵AD是△ABC的一条角平分线,DC⊥AC,DE⊥AB,∴DE=DC,设DE=DC=x,S△ABD=12DE•AB=12AC•BD,即10x=6(8﹣x),解得x=3,即点D到AB边的距离为3.故答案为C.【点睛】本题考查了角平分线的性质和勾股定理的相关知识,理解角的平分线上的点到角的两边的距离相等是解答本题的关键..5.C【分析】此题考查的是直角三角形的判定方法,大约有以下几种:①勾股定理的逆定理,即三角形三边符合勾股定理;②三个内角中有一个是直角,或两个内角的度数和等于第三个内角的度数;根据上面两种情况进行判断即可.【详解】解:A 、由222b a c =-得a 2=b 2+c 2,符合勾股定理的逆定理,能够判定△ABC 为直角三角形,不符合题意;B 、由C A B ∠=∠-∠得∠C +∠B=∠A ,此时∠A 是直角,能够判定△ABC 是直角三角形,不符合题意;C 、∠A :∠B :∠C=3:4:5,那么∠A=45°、∠B=60°、∠C=75°,△ABC 不是直角三角形,故此选项符合题意;D 、a :b :c=5:12:13,此时c 2=b 2+ a 2,符合勾股定理的逆定理,△ABC 是直角三角形,不符合题意;故选:C .【点睛】此题主要考查了直角三角形的判定方法,只有三角形的三边长构成勾股数或三内角中有一个是直角的情况下,才能判定三角形是直角三角形.6.A解析:A【解析】已知△ABC 的三边分别为6,10,8,由62+82=102,即可判定△ABC 是直角三角形,两直角边是6,8,所以△ABC 的面积为12×6×8=24,故选A . 7.D解析:D【分析】根据题意结合勾股定理得出折断处离地面的长度即可.【详解】解:设折断处离地面的高度OA 是x 尺,根据题意可得:x 2+62=(10-x )2,解得:x=3.2,答:折断处离地面的高度OA 是3.2尺.【点睛】此题主要考查了勾股定理的应用,根据题意正确应用勾股定理是解题关键.8.C解析:C【分析】利用勾股定理的逆定理可以推导出ABD △是直角三角形.再利用勾股定理求出A C ,可得出AB=AC ,即可判断.【详解】解:由已知可得CD=BD=5,22251213+=即222BD AD AB +=,ABD ∴是直角三角形,90ADB ∠=︒,90ADC ∴∠=︒222AD CD AC ∴+=13AC ∴=13AB AC ∴==故ABC 是等腰三角形.故选C【点睛】本题考查了勾股定理和它的逆定理,熟练掌握定理是解题关键.9.D解析:D【解析】A 选项:32+42≠62,故不符合勾股定理的逆定理,不能组成直角三角形,故错误;B 选项:52+62≠72,故不符合勾股定理的逆定理,不能组成直角三角形,故错误;C 选项:62+82≠92,故不符合勾股定理的逆定理,不能组成直角三角形,故错误;D 选项:72+242=252,故符合勾股定理的逆定理,能组成直角三角形,故正确. 故选D .10.D解析:D【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方或最大角是否是90︒即可.【详解】解:A 、22251213+=,ABC ∆∴是直角三角形,故能判定ABC ∆是直角三角形; B 、A B C ∠+∠=∠,90C ∴∠=︒,故能判定ABC ∆是直角三角形;C 、::2:3:5A B C ∠∠∠=,518090235C ∴∠=⨯︒=︒++,故能判定ABC ∆是直角三角形; D 、22261012+≠,ABC ∆∴不是直角三角形,故不能判定ABC ∆是直角三角形; 故选:D .【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,可利用勾股定理的逆定理和直角三角形的定义判断.二、填空题11.7【分析】连接AC 交BD 于点O ,由题意可证AC 垂直平分BD ,△ABD 是等边三角形,可得∠BAO =∠DAO =30°,AB =AD =BD ,BO =OD ,通过证明△EDF 是等边三角形,可得DE =EF =DF ,由勾股定理可求OC ,BC 的长.【详解】连接AC ,交BD 于点O ,∵AB =AD ,BC =DC ,∠A =60°, ∴AC 垂直平分BD ,△ABD 是等边三角形,∴∠BAO =∠DAO =30°,AB =AD =BD =4,BO =OD =2,∵CE ∥AB ,∴∠BAO =∠ACE =30°,∠CED =∠BAD =60°,∴∠DAO =∠ACE =30°,∴AE =CE =3,∴DE =AD−AE =1,∵∠CED =∠ADB =60°,∴△EDF 是等边三角形,∴DE =EF =DF =1,∴CF =CE−EF =2,OF =OD−DF =1,22OC CF OF 3∴-=∴【点睛】本题考查了等边三角形的性质和判定,勾股定理,熟练运用等边三角形的判定是本题的关键.12.1或78【分析】 分为三种情况:①PQ BP =,②BQ QP =,③BQ BP =,由等腰三角形的性质和勾股定理可求解.【详解】解:分为3种情况:①当PB PQ =时,4=OA ,3OB =,∴5BC AB ===, C 点与A 点关于直线OB 对称,BAO BCO ∴∠=∠,BPQ BAO ∠=∠,BPQ BCO ∴∠=∠,APB APQ BPQ BCO CBP ∠=∠+∠=∠+∠,APQ CBP ∴∠=∠,在APQ 和CBP 中,BAO BCP APQ B PQ B P C P ∠=∠⎧⎪∠=∠⎨=⎪⎩, ()APQ CBP AAS ∴△≌△,∴5AP BC ==,1OP AP OA ∴=-=;②当BQ BP =时,BPQ BQP ∠=∠,BPQ BAO ∠=∠,BAO BQP ∴∠=∠,根据三角形外角性质得:BQP BAO ∠>∠,∴这种情况不存在;③当QB QP =时,QBP BPQ BAO ∠=∠=∠,PB PA ∴=,设OP x =,则4PB PA x ==-在Rt OBP △中,222PB OP OB =+,222(4)3x x ∴-=+, 解得:78x =; ∴当PQB △为等腰三角形时,1OP =或78; 【点睛】本题考查了勾股定理,等腰三角形的性质,全等三角形的性质和判定的应用,解题的关键是熟练掌握所学的性质进行解题,注意分类讨论.13.310或10【详解】分两种情况:(1)顶角是钝角时,如图1所示:在Rt △ACO 中,由勾股定理,得AO 2=AC 2-OC 2=52-32=16,∴AO=4,OB=AB+AO=5+4=9,在Rt △BCO 中,由勾股定理,得BC 2=OB 2+OC 2=92+32=90,∴BC=310;(2)顶角是锐角时,如图2所示:在Rt △ACD 中,由勾股定理,得AD 2=AC 2-DC 2=52-32=16,∴AD=4,DB=AB-AD=5-4=1.在Rt △BCD 中,由勾股定理,得BC 2=DB 2+DC 2=12+32=10,∴10 ;综上可知,这个等腰三角形的底的长度为1010.【点睛】本题考查了勾股定理及等腰三角形的性质,难度适中,分情况讨论是解题的关键.14.36或84【分析】过点A作AD⊥BC于点D,利用勾股定理列式求出BD、CD,再分点D在边BC上和在CB的延长线上两种情况分别求出BC的长度,然后根据三角形的面积公式列式计算即可得解.【详解】解:过点A作AD⊥BC于点D,∵BC边上的高为8cm,∴AD=8cm,∵AC=17cm,由勾股定理得:22221086BD AB AD=-=-=cm,222217815CD AC AD=-=-=cm,如图1,点D在边BC上时,BC=BD+CD=6+15=21cm,∴△ABC的面积=12BC AD=12×21×8=84cm2,如图2,点D在CB的延长线上时,BC= CD−BD=15−6=9cm,∴△ABC的面积=12BC AD=12×9×8=36 cm2,综上所述,△ABC的面积为36 cm2或84 cm2,故答案为:36或84.【点睛】本题考查了勾股定理,作辅助线构造出直角三角形是解题的关键,难点是在于要分情况讨论.15.5或13【分析】根据已知可得题意中的图是一个勾股图,可得S P+S Q=S K为从而易求S K.【详解】解:如下图所示,若A=S P=4.B=S Q=9,C=S K,根据勾股定理,可得A+B=C,∴C=13.若A=S P=4.C=S Q=9,B=S K,根据勾股定理,可得A+B=C,∴B=9-4=5.∴S K为5或13.故答案为:5或13.【点睛】本题考查了勾股定理.此题所给的图中,以直角三角形两直角边为边所作的正方形的面积和等于以斜边为边所作的正方形的面积.16.【解析】【分析】延长BC,AD交于E点,在直角三角形ABE和直角三角形CDE中,根据30°角所对的直角边等于斜边的一半和勾股定理即可解答.【详解】如图,延长AD、BC相交于E,∵∠A=60°,∠B=∠ADC=90°,∴∠E=30°∴AE=2AB,CE=2CD∵AB=3,AD=4,∴AE=6, DE=2设CD=x,则CE=2x,DE=x即x=2x=即CD=故答案为:【点睛】 本题考查了勾股定理的运用,含30°角所对的直角边是斜边的一半的性质,本题中构建直角△ABE 和直角△CDE ,是解题的关键.17.355 【详解】 四边形DEFA 是正方形,面积是4; △ABF,△ACD 的面积相等,且都是 ×1×2=1. △BCE 的面积是:12×1×1=12. 则△ABC 的面积是:4﹣1﹣1﹣12=32. 在直角△ADC 中根据勾股定理得到:AC=222+1=5.设AC 边上的高线长是x .则12AC•x=5x=32, 解得:x=355.355. 18.等腰直角三角形【解析】根据非负数的意义,由()22220c a b a b --+-=,可知222c a b =+,a=b ,可知此三角形是等腰直角三角形.故答案为:等腰直角三角形.点睛:此题主要考查了三角形形状的确定,根据非负数的性质,可分别得到关系式,然后结合勾股定理的逆定理知是直角三角形,然后由a-b=0得到等腰直角三角形,比较容易,关键是利用非负数的性质得到关系式.19.5【分析】根据图形的特征得出四边形MNKT 的面积设为x ,将其余八个全等的三角形面积一个设为y ,从而用x ,y 表示出1S ,2S ,3S ,得出答案即可.【详解】解:将四边形MTKN 的面积设为x ,将其余八个全等的三角形面积一个设为y , 正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为1S ,2S ,3S ,12310S S S ++=,∴得出18S y x ,24S y x ,3S x =, 12331215S S S x y ,故31215x y, 154=53x y , 所以245S x y , 故答案为:5.【点睛】 此题主要考查了图形面积关系,根据已知得出用x ,y 表示出1S ,2S ,3S ,再利用12315S S S ++=求出是解决问题的关键.20.28+ 【分析】依次求出在Rt △OAB 中,OA 1=2;在Rt △OA 1B 1中,OA 2=2OA 1=(2)2;依此类推:在Rt △OA 5B 5中,OA 6=(2)6,由此可求出△OA 6B 6的周长. 【详解】∵等腰Rt OAB ∆的直角边OA 的长为1,∴在Rt △OA 1B 1中OA 1=2OA =2,在22Rt OA B ∆中OA 2=2OA 1=(2)2, …故在Rt △OA 6B 6中OA 6OA 5)6= OB 666A B OB 6故△OA 6B 6的周长是=2+2×(22)6=2+2×18=228+. 故答案为:22+. 【点睛】 本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.三、解答题21.(1)BE =1;(2)见解析;(3)()23y x =-【分析】(1)如图1,根据等边三角形的性质和四边形的内角和定理可得∠BED =90°,进而可得∠BDE =30°,然后根据30°角的直角三角形的性质即可求出结果;(2)过点D 作DM ⊥AB 于M ,作DN ⊥AC 于N ,如图2,根据AAS 易证△MBD ≌△NCD ,则有BM =CN ,DM =DN ,进而可根据ASA 证明△EMD ≌△FND ,可得EM =FN ,再根据线段的和差即可推出结论;(3)过点D 作DM ⊥AB 于M ,如图3,同(2)的方法和已知条件可得DM =DN =FN =EM ,然后根据线段的和差关系可得BE +CF =2DM ,BE ﹣CF =2BM ,在Rt △BMD 中,根据30°角的直角三角形的性质可得DM =3BM ,进而可得BE +CF =3(BE ﹣CF ),代入x 、y 后整理即得结果.【详解】解:(1)如图1,∵△ABC 是等边三角形,∴∠B =∠C =60°,BC =AC =AB =4.∵点D 是线段BC 的中点,∴BD =DC =12BC =2. ∵DF ⊥AC ,即∠AFD =90°,∴∠AED =360°﹣60°﹣90°﹣120°=90°,∴∠BED =90°,∴∠BDE =30°,∴BE =12BD =1;(2)过点D 作DM ⊥AB 于M ,作DN ⊥AC 于N ,如图2,则有∠AMD =∠BMD =∠AND =∠CND =90°.∵∠A =60°,∴∠MDN =360°﹣60°﹣90°﹣90°=120°.∵∠EDF =120°,∴∠MDE =∠NDF .在△MBD 和△NCD 中,∵∠BMD =∠CND ,∠B =∠C ,BD =CD ,∴△MBD ≌△NCD (AAS ),∴BM =CN ,DM =DN .在△EMD 和△FND 中,∵∠EMD =∠FND ,DM =DN ,∠MDE =∠NDF ,∴△EMD ≌△FND (ASA ),∴EM =FN ,∴BE +CF =BM +EM +CN -FN =BM +CN =2BM =BD =12BC =12AB ;(3)过点D 作DM ⊥AB 于M ,如图3,同(2)的方法可得:BM =CN ,DM =DN ,EM =FN .∵DN =FN ,∴DM =DN =FN =EM ,∴BE +CF =BM +EM +FN -CN =NF +EM =2DM =x +y ,BE ﹣CF =BM +EM ﹣(FN -CN )=BM +NC =2BM =x -y ,在Rt △BMD 中,∵∠BDM =30°,∴BD =2BM ,∴DM =22=3BD BM BM -,∴()3x y x y +=-,整理,得()23y x =-.本题考查了等边三角形的性质、四边形的内角和定理、全等三角形的判定与性质、30°角的直角三角形的性质以及勾股定理等知识,具有一定的综合性,正确添加辅助线、熟练掌握上述知识是解题的关键.22.(1)423;(2)以a 、b 、c 为边能构成三角形,此三角形的形状是直角三角形,【分析】(1)根据二次根式的加减法法则、除法法则和二次根式的性质求出即可;(2)先根据绝对值,偶次方、算术平方根的非负性求出a 、b 、c 的值,再根据勾股定理的逆定理得出三角形是直角三角形,再求出面积即可.【详解】解:(1)⎛÷ ⎝=÷=÷ =423; (2)以a 、b 、c 为边能构成三角形,此三角形的形状是直角三角形,理由是:∵a 、b 、c 满足2|a (c 0-=,∴a ﹣=0,﹣b =0,c 0,∴a =,b =,c∵,,∴以a 、b 、c 为边能组成三角形,∵a =,b =,c∴a 2+b 2=c 2,∴以a 、b 、c 为边能构成直角三角形,直角边是a 和b ,则此三角形的面积是12⨯. 【点睛】此题考查了计算能力,掌握二次根式的加减法法则、除法法则和二次根式的性质,绝对值,偶次方、算术平方根的非负性,勾股定理的逆定理是解题的关键.23.(1)2)83;(3)5.5秒或6秒或6.6秒(1)根据点P 、Q 的运动速度求出AP ,再求出BP 和BQ ,用勾股定理求得PQ 即可; (2)由题意得出BQ BP =,即28t t =-,解方程即可;(3)当点Q 在边CA 上运动时,能使BCQ ∆成为等腰三角形的运动时间有三种情况: ①当CQ BQ =时(图1),则C CBQ ∠=∠,可证明A ABQ ∠=∠,则BQ AQ =,则CQ AQ =,从而求得t ;②当CQ BC =时(图2),则12BC CQ +=,易求得t ;③当BC BQ =时(图3),过B 点作BE AC ⊥于点E ,则求出BE ,CE ,即可得出t .【详解】(1)解:(1)224BQ cm =⨯=,8216BP AB AP cm =-=-⨯=,90B ∠=︒, 222246213()PQ BQ BP cm =+=+=; (2)解:根据题意得:BQ BP =,即28t t =-,解得:83t =; 即出发时间为83秒时,PQB ∆是等腰三角形;(3)解:分三种情况:①当CQ BQ =时,如图1所示:则C CBQ ∠=∠,90ABC ∠=︒,90CBQ ABQ ∴∠+∠=︒,90A C ∠+∠=︒,A ABQ ∴∠=∠BQ AQ ∴=,5CQ AQ ∴==,11BC CQ ∴+=,112 5.5t ∴=÷=秒.②当CQ BC =时,如图2所示:则12BC CQ +=1226t ∴=÷=秒.③当BC BQ =时,如图3所示:过B 点作BE AC ⊥于点E , 则68 4.8()10AB BC BE cm AC ⨯=== 22 3.6CE BC BE cm ∴=-=,27.2CQ CE cm ∴==,13.2BC CQ cm ∴+=,13.22 6.6t ∴=÷=秒.由上可知,当t 为5.5秒或6秒或6.6秒时,BCQ ∆为等腰三角形.【点睛】本题考查了勾股定理、三角形的面积以及等腰三角形的判定和性质;本题有一定难度,注意分类讨论思想的应用.24.(1)见解析;(2)CD 2AD +BD ,理由见解析;(3)CD 3+BD【分析】(1)由“SAS ”可证△ADB ≌△AEC ;(2)由“SAS ”可证△ADB ≌△AEC ,可得BD =CE ,由直角三角形的性质可得DE 2AD ,可得结论;(3)由△DAB ≌△EAC ,可知BD =CE ,由勾股定理可求DH 3,由AD =AE ,AH ⊥DE ,推出DH =HE ,由CD =DE +EC =2DH +BD 3AD +BD ,即可解决问题;【详解】证明:(1)∵∠BAC =∠DAE ,∴∠BAD =∠CAE ,又∵AB =AC ,AD =AE ,∴△ADB ≌△AEC (SAS );(2)CD =2AD +BD ,理由如下:∵∠BAC =∠DAE ,∴∠BAD =∠CAE ,又∵AB =AC ,AD =AE ,∴△ADB ≌△AEC (SAS );∴BD =CE ,∵∠BAC =90°,AD =AE ,∴DE =2AD ,∵CD =DE +CE , ∴CD =2AD +BD ;(3)作AH ⊥CD 于H .∵∠BAC =∠DAE ,∴∠BAD =∠CAE ,又∵AB =AC ,AD =AE ,∴△ADB ≌△AEC (SAS );∴BD =CE ,∵∠DAE =120°,AD =AE ,∴∠ADH =30°,∴AH =12AD , ∴DH 22AD AH -32AD , ∵AD =AE ,AH ⊥DE ,∴DH =HE ,∴CD =DE +EC =2DH +BD 3+BD ,故答案为:CD 3+BD .【点睛】本题是结合了全等三角形的性质与判定,勾股定理等知识的综合问题,熟练掌握知识点,有简入难,层层推进是解答关键.25.(1)见详解(2)①结论:222BD FC DF +=,证明见详解②35【分析】(1)根据SAS ,只要证明BAD CAE ∠=∠即可解决问题;(2)①结论:222BD FC DF +=.连接EF ,进一步证明90ECF ∠=︒,DF EF =,再利用勾股定理即可得证;②过点A 作AG BC ⊥于点G ,在Rt ADG 中求出AG 、DG 即可求解.【详解】解:(1)∵AE AD ⊥∴90DAC CAE ∠+∠=︒∵90BAC ∠=︒∴90DAC BAD ∠+∠=︒∴BAD CAE ∠=∠∴在ABD △和ACE △中AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩∴ABD △≌ACE △()SAS(2)①结论:222BD FC DF +=证明:连接EF ,如图:∵ABD △≌ACE △∴B ACE ∠=∠,BD CE =∴90ECF BCA ACE BCA B ∠=∠+∠=∠+∠=︒∴222FC CE EF +=∴222FC BD EF +=∵AF 平分DAE ∠∴DAF EAF ∠=∠∴在DAF △和EAF △中AD AE DAF EAF AF AF =⎧⎪∠=∠⎨⎪=⎩∴DAF △≌EAF △()SAS∴DF EF =∴222FC BD DF +=即222BD FC DF +=②过点A 作AG BC ⊥于点G ,如图:∵由①可知222223425DF BD FC =+=+=∴5DF =∴35412BC BD DF FC =++=++=∵AB AC =,AG BC ⊥ ∴1112622BG AG BC ===⨯= ∴633DG BG BD =-=-=∴在Rt ADG 中,22223635AD DG AG =+=+=故答案是:(1)见详解(2)①结论:222BD FC DF +=,证明见详解②35【点睛】本题考查了全等三角形的判定和性质、直角三角形的判定和性质以及角平分线的性质.综合性较强,属中档题,学会灵活应用相关知识点进行推理证明.26.(1)AE=BD 且AE ⊥BD ;(2)6;(3)PQ 为定值6,图形见解析【分析】(1)由“SAS”可证△ACE ≌△BCD ,可得AE=BD ,∠EAC=∠DBC=45°,可得AE ⊥BD ; (2)由等腰三角形的性质可得PA=AQ ,由勾股定理可求PA 的长,即可求PQ 的长; (3)分两种情况讨论,由“SAS”可证△ACE ≌△BCD ,可得AE=BD ,∠EAC=∠DBC ,可得AE ⊥BD ,由等腰三角形的性质可得PA=AQ ,由勾股定理可求PA 的长,即可求PQ 的长.【详解】解:(1)AE=BD ,AE ⊥BD ,理由如下:∵△ABC ,△ECD 都是等腰直角三角形,∴AC=BC ,CE=CD ,∠ACB=∠ECD=90°,∠ABC=∠CAB=45°,∴∠ACE=∠DCB ,且AC=BC ,CE=CD ,∴△ACE ≌△BCD (SAS )∴AE=BD ,∠EAC=∠DBC=45°,∴∠EAC+∠CAB=90°,∴AE ⊥BD ;(2)∵PE=EQ ,AE ⊥BD ,∴PA=AQ ,∵EP=EQ=5,AE=BD=4,∴AQ=22=2516=3EQ AE --,∴PQ=2AQ=6;(3)如图3,若点D 在AB 的延长线上,∵△ABC ,△ECD 都是等腰直角三角形,∴AC=BC ,CE=CD ,∠ACB=∠ECD=90°,∠ABC=∠CAB=45°,∴∠ACE=∠DCB ,且AC=BC ,CE=CD ,∴△ACE ≌△BCD (SAS )∴AE=BD ,∠CBD=∠CAE=135°,且∠CAB=45°,∴∠EAB=90°,∵PE=EQ ,AE ⊥BD ,∴PA=AQ , ∵EP=EQ=5,AE=BD=4,∴AQ=22=2516=3EQ AE --,∴PQ=2AQ=6;如图4,若点D 在BA 的延长线上,∵△ABC ,△ECD 都是等腰直角三角形,∴AC=BC ,CE=CD ,∠ACB=∠ECD=90°,∠ABC=∠CAB=45°,∴∠ACE=∠DCB ,且AC=BC ,CE=CD ,∴△ACE ≌△BCD (SAS )∴AE=BD ,∠CBD=∠CAE=45°,且∠CAB=45°,∴∠EAB=90°,∵PE=EQ ,AE ⊥BD ,∴PA=AQ ,∵EP=EQ=5,AE=BD=4,∴22=2516=3EQ AE --,∴PQ=2AQ=6.【点睛】本题是三角形综合题,考查了全等三角形的判定和性质,等腰三角形的性质,勾股定理等知识,证明AE ⊥BD 是本题的关键.27.(1)①详见解析;(2)2222CD n n =+-(1n >);(2)2AD BD CD -=,理由详见解析.【分析】(1)①根据勾股定理的逆定理进行判断;②过点C 作CE ⊥CD 交DB 的延长线于点E ,利用同角的余角相等证明∠3=∠4,∠1=∠E ,进而证明△ACD ≌△BCE ,求出DE 的长,再利用勾股定理求解即可.(2)过点C 作CF ⊥CD 交BD 的延长线于点F ,先证∠ACD=∠BCF ,再证△ACD ≌△BCF ,得CD=CF ,AD=BF ,再利用勾股定理求解即可.【详解】(1)①∵()()()22222222212214AD BD n n n n n +=-+=-++()()22222211n n n =++=+ 又∵()2221AB n =+∴222AD BD AB +=∴△ABD 是直角三角形②如图①,过点C 作CE ⊥CD 交DB 的延长线于点E ,∵∠3+∠BCD=∠ACD=90°,∠4+∠BCD=∠DCE=90°∴∠3=∠4由①知△ABD 是直角三角形∴1290∠+∠=︒又∵290E ∠+∠=︒∴∠1=∠E在ACD ∆和BCE ∆中,A 34E AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ACD ≌△BCE∴CD CE =,AD BE =∴221DE BD BE BD AD n n =+=+=+-又∵CD CE =,90DCE ∠=︒ ∴由勾股定理得222DE CD DE CD =+=∴22CD =222222n n =+-(1n >) (2)AD 、BD 、CD 的数量关系为:2AD BD CD -=,理由如下:如图②,过点C 作CF ⊥CD 交BD 的延长线于点F ,∵∠ACD=90°+∠5,∠BCF=90°+∠5∴∠ACD=∠BCF∵BD ⊥AD∴∠ADB=90°∴∠6+∠7=90°∵∠ACB=90°∴∠9=∠8=90°又∵∠6=∠8∴∠7=∠9ACD ∆和BCF ∆中97AC BCACD BCF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ACD ≌△BCF∴CD=CF ,AD=BF又∵∠DCF=90° ∴由勾股定理得222DF CD CF CD =+=又DF=BF-BD=AD-BD∴2AD BD CD -=【点睛】本题考查的是三角形全等、勾股定理及其逆定理,掌握三角形全等的判定方法及勾股定理及其逆定理是关键.28.(1)见解析;(2)∠ADC=45α︒+;(3)2BD DE =【分析】(1)根据题意画出图形即可;(2)根据对称的性质,等腰三角形的性质及角与角之间的和差关系进行计算即可; (3)画出图形,结合(2)的结论证明△BED 为等腰直角三角形,从而得出结论.【详解】解:(1)如图所示;(2)∵点B 与点D 关于直线AP 对称,∠BAP=α,∴∠PAD=α,AB=AD ,∵90BAC ∠=︒,∴902DAC α∠=︒-,又∵AB=AC ,∴AD=AC ,∴∠ADC=1[180(902)]2α⨯︒-︒-=45α︒+; (3)如图,连接BE ,由(2)知:∠ADC=45α︒+,∵∠ADC=∠AED+∠EAD,且∠EAD=α,∴∠AED=45°,∵点B与点D关于直线AP对称,即AP垂直平分BD,∴∠AED=∠AEB=45°,BE=DE,∴∠BED=90°,∴△BED是等腰直角三角形,∴22222BD BE DE DE=+=,∴2BD DE=.【点睛】本题考查了轴对称的性质,等腰三角形的性质,勾股定理等知识,明确角与角之间的关系,学会添加常用辅助线构造直角三角形是解题的关键.29.(1)假;(2)∠A=45°;(3)①不能,理由见解析,②见解析【分析】(1)先由直角三角形是类勾股三角形得出ab+a2=c2,再由勾股定理得a2+b2=c2,即可判断出此直角三角形是等腰直角三角形;(2)由类勾股三角形的定义判断出此三角形是等腰直角三角形,即可得出结论;(3)①分三种情况,利用等腰三角形的性质即可得出结论;②先求出CD=CB=a,AD=CD=a,DB=AB-AD=c-a,DG=BG=12(c-a),AG=12(a+c),两个直角三角形中利用勾股定理建立方程即可得出结论.【详解】解:(1)如图1,假设Rt△ABC是类勾股三角形,。
八年级初二数学 勾股定理知识归纳总结含答案
八年级初二数学 勾股定理知识归纳总结含答案一、选择题1.如图,点A 的坐标是(2)2,,若点P 在x 轴上,且APO △是等腰三角形,则点P 的坐标不可能是( )A .(2,0)B .(4,0)C .(-22,0)D .(3,0) 2.如图,在△ABC 中,AC =BC ,∠ACB =90°,点D 在BC 上,BD =6,DC =2,点P 是AB 上的动点,则PC +PD 的最小值为( )A .8B .10C .12D .14 3.如图,在ABC ∆中,,90︒=∠=AB AC BAC ,ABC ∠的平分线BD 与边AC 相交于点D ,DE BC ⊥,垂足为E ,若CDE ∆的周长为6,则ABC ∆的面积为( ).A .36B .18C .12D .94.如图,在等腰Rt ABC △中,908C AC ∠==°,,F 是AB 边上的中点,点D 、E 分别在AC 、BC 边上运动,且保持AD CE =.连接DE 、DF 、EF .在此运动变化的过程中,下列结论:①DFE △是等腰直角三角形;②四边形CDFE 不可能为正方形;③DE 长度的最小值为4;④四边形CDFE 的面积保持不变;⑤△CDE 面积的最大值为8.其中正确的结论是( )A .①④⑤B .③④⑤C .①③④D .①②③5.将6个边长是1的正方形无缝隙铺成一个矩形,则这个矩形的对角线长等于( )A .37B .13C .37或者13D .37或者1376.一艘渔船从港口A 沿北偏东60°方向航行至C 处时突然发生故障,在C 处等待救援.有一救援艇位于港口A 正东方向20(3﹣1)海里的B 处,接到求救信号后,立即沿北偏东45°方向以30海里/小时的速度前往C 处救援.则救援艇到达C 处所用的时间为( )A .3小时B .23小时C .223 小时D .232+小时 7.将一根 24cm 的筷子,置于底面直径为 15cm ,高 8cm 的装满水的无盖圆柱形水杯中,设筷子浸没在杯子里面的长度为 hcm ,则 h 的取值范围是( )A .h≤15cmB .h≥8cmC .8cm≤h≤17cmD .7cm≤h≤16cm8.在ABC ∆中,::1:1:2BC AC AB =,则△ABC 是( ) A .等腰三角形 B .钝角三角形 C .直角三角形D .等腰直角三角形 9.如图,“赵爽弦图”是由四个全等的直角三角形和一个小正方形构成的大正方形,若直角三角形的两直角边长分别为5和3,则小正方形的面积为( )A .4B .3C .2D .1 10.下列各组数据,是三角形的三边长能构成直角三角形的是( )A .2,3,4B .4,5,6C .2223,4,5D .6,8,10 二、填空题11.如图,在四边形ABCD 中,AB =AD ,BC=DC ,点E 为AD 边上一点,连接BD 、CE ,CE 与BD 交于点F ,且CE ∥AB ,若∠A =60°,AB=4,CE=3,则BC 的长为_______.12.如图,这是由八个全等的直角三角形拼接而成,记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为 1S ,2S ,3S ,若123144S S S ++=,则2S 的值是__________.13.等腰三角形的腰长为5,一腰上的高为3,则这个等腰三角形底边的长为________14.如图,在平面直角坐标系中,等腰直角三角形OAA 1的直角边OA 在x 轴上,点A 1在第一象限,且OA=1,以点A 1为直角顶点,OA 1为一直角边作等腰直角三角形OA 1A 2,再以点A 2为直角顶点,OA 2为直角边作等腰直角三角形OA 2A 3…依此规律,则点A 2018的坐标是_____.15.如图,四边形ABDC 中,∠ABD =120°,AB ⊥AC ,BD ⊥CD ,AB =4,CD =3四边形的面积是______.16.在△ABC 中,AB =6,AC =5,BC 边上的高AD =4,则△ABC 的周长为__________.17.如图,在Rt △ABC 中,∠B=90°,以AC 为斜边向外作等腰直角三角形COA ,已知BC=8,OB=102,则另一直角边AB 的长为__________.18.如图,△ABC 中,∠ACB=90°,AB=2,BC=AC ,D 为AB 的中点,E 为BC 上一点,将△BDE 沿DE 翻折,得到△FDE ,EF 交AC 于点G ,则△ECG 的周长是___________.19.如图,在Rt ABC ∆中,90ACB ∠=,2AC BC ==,D 为BC 边上一动点,作如图所示的AED ∆使得AE AD =,且45EAD ∠=,连接EC ,则EC 的最小值为__________.20.如图的实线部分是由Rt ABC ∆经过两次折叠得到的.首先将Rt ABC ∆沿高CH 折叠,使点B 落在斜边上的点B '处,再沿CM 折叠,使点A 落在CB '的延长线上的点A '处.若图中90ACB ∠=︒,15cm BC =,20cm AC =,则MB '的长为______.三、解答题21.如图,,90,8,6,,ABC B AB cm BC cm P Q ︒∆∠===是边上的两点,点P 从点A 开始沿A B →方向运动,且速度为每秒1cm ,点Q 从点B 沿B C A →→运动,且速度为每秒2cm ,它们同时出发,设出发的时间为t 秒.(1)出发2秒后,求线段PQ 的长;(2)求点Q 在BC 上运动时,出发几秒后,PQB 是等腰三角形;(3)点Q 在边CA 上运动时,求能使BCQ ∆成为等腰三角形的运动时间.22.如图,在△ABC 中,AB =30 cm ,BC =35 cm ,∠B =60°,有一动点M 自A 向B 以1 cm/s 的速度运动,动点N 自B 向C 以2 cm/s 的速度运动,若M ,N 同时分别从A ,B 出发.(1)经过多少秒,△BMN 为等边三角形;(2)经过多少秒,△BMN 为直角三角形.23.如图,△ACB 和△ECD 都是等腰直角三角形,∠ACB =∠ECD =90°,点D 在边AB 上,点E 在边AC 的左侧,连接AE .(1)求证:AE =BD ;(2)试探究线段AD 、BD 与CD 之间的数量关系;(3)过点C 作CF ⊥DE 交AB 于点F ,若BD :AF =1:22,CD =36+,求线段AB 的长.24.如图,△ABC 中,∠ACB =90°,AB =5cm ,BC =3cm ,若点P 从点A 出发,以每秒2cm 的速度沿折线A ﹣C ﹣B ﹣A 运动,设运动时间为t 秒(t >0).(1)若点P 在AC 上,且满足PA =PB 时,求出此时t 的值;(2)若点P 恰好在∠BAC 的角平分线上,求t 的值;(3)在运动过程中,直接写出当t 为何值时,△BCP 为等腰三角形.25.如图所示,已知ABC ∆中,90B ∠=︒,16AB cm =,20AC cm =,P 、Q 是ABC ∆的边上的两个动点,其中点P 从点A 开始沿A B →方向运动,且速度为每秒1cm ,点Q 从点B 开始沿B C A →→方向运动,且速度为每秒2cm ,它们同时出发,设出发的时间为ts .(1)则BC =____________cm ;(2)当t 为何值时,点P 在边AC 的垂直平分线上?此时CQ =_________?(3)当点Q 在边CA 上运动时,直接写出使BCQ ∆成为等腰三角形的运动时间.26.如图, ABD 为边长不变的等腰直角三角形,AB AD =,90BAD ∠=︒,在 ABD 外取一点 E ,以A 为直角顶点作等腰直角AEP △,其中 P 在ABD 内部,90EAP ∠=︒,2AE AP ==E 、P 、D 三点共线时,7BP =下列结论:①E 、P 、D 共线时,点B 到直线AE 的距离为5; ②E 、P 、D 共线时, 13ADP ABP S S ∆∆+=+;=532ABD S ∆+③; ④作点 A 关于 BD 的对称点 C ,在 AEP 绕点 A 旋转的过程中,PC 的最小值为5+232-;⑤AEP △绕点A 旋转,当点E 落在AB 上,当点P 落在AD 上时,取BP 上一点N ,使得AN BN =,连接 ED ,则AN ED ⊥.其中正确结论的序号是___.27.已知:如图,在ABC ∆中,90ACB ∠=,以点B 为圆心,BC 的长为半径画弧,交线段AB 于点D ,以点A 为圆心,AD 长为半径画弧,交线段AC 与点E .(1)根据题意用尺规作图补全图形(保留作图痕迹);(2)设,BC m AC n ==①线段AD 的长度是方程2220x mx n +-=的一个根吗?并说明理由.②若线段2AD EC =,求m n的值.28.如图1, △ABC 和△CDE 均为等腰三角形,AC=BC, CD=CE, AC>CD, ∠ACB=∠DCE=a ,且点A 、D 、E 在同一直线上,连结BE.(1)求证: AD=BE.(2)如图2,若a=90°,CM ⊥AE 于E.若CM=7, BE=10, 试求AB 的长.(3)如图3,若a=120°, CM ⊥AE 于E, BN ⊥AE 于N, BN=a, CM=b,直接写出AE 的值(用a, b 的代数式表示).29.阅读下列一段文字,然后回答下列问题.已知在平面内有两点()111, P x y 、()222, P x y ,其两点间的距离()()22121212PP x x y y =-+-,同时,当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可化简为12x x -或1|y -2|y .(1)已知()2, 4A 、()3, 8B --,试求A 、B 两点间的距离______.已知M 、N 在平行于y 轴的直线上,点M 的纵坐标为4,点N 的纵坐标为-1,试求M 、N 两点的距离为______;(2)已知一个三角形各顶点坐标为()1, 6D 、()3, 3E -、()4, 2F ,你能判定此三角形的形状吗?说明理由.(3)在(2)的条件下,平面直角坐标系中,在x 轴上找一点P ,使PD PF +的长度最短,求出点P 的坐标及PD PF +的最短长度.30.如图1,点E 是正方形ABCD 边CD 上任意一点,以DE 为边作正方形DEFG ,连接BF ,点M 是线段BF 中点,射线EM 与BC 交于点H ,连接CM .(1)请直接写出CM 和EM 的数量关系和位置关系.(2)把图1中的正方形DEFG 绕点D 顺时针旋转45︒,此时点F 恰好落在线段CD 上,如图2,其他条件不变,(1)中的结论是否成立,请说明理由.(3)把图1中的正方形DEFG 绕点D 顺时针旋转90︒,此时点E 、G 恰好分别落在线段AD 、CD 上,连接CE ,如图3,其他条件不变,若2DG =,6AB =,直接写出CM 的长度.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【详解】解:(1)当点P在x轴正半轴上,①以OA为腰时,∵A的坐标是(2,2),∴∠AOP=45°,OA=22,∴P的坐标是(4,0)或(22,0);②以OA为底边时,∵点A的坐标是(2,2),∴当点P的坐标为:(2,0)时,OP=AP;(2)当点P在x轴负半轴上,③以OA为腰时,∵A的坐标是(2,2),∴OA= 22,∴OA=AP=22∴P的坐标是(-22,0).故选D.2.B解析:B【分析】过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB于P,连接CP,此时DP+CP=DP+PC′=DC′的值最小.由DC=2,BD=6,得到BC=8,连接BC′,由对称性可知∠C′BA=∠CBA=45°,于是得到∠CBC′=90°,然后根据勾股定理即可得到结论.【详解】解:过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB于P,连接CP.此时DP+CP=DP+PC′=DC′的值最小.∵DC=2,BD=6,∴BC=8,连接BC′,由对称性可知∠C′BA=∠CBA=45°,∴∠CBC′=90°,∴BC′⊥BC,∠BCC′=∠BC′C=45°,∴BC=BC′=8,根据勾股定理可得DC′=2222'+=+=.8610BC BD故选:B.【点睛】此题考查了轴对称﹣线路最短的问题,确定动点P为何位置时 PC+PD的值最小是解题的关键.3.D解析:D【分析】利用角平分定理得到DE=AD ,根据三角形内角和得到∠BDE=∠BDA ,再利用角平分线定理得到BE=AB=AC ,根据CDE ∆的周长为6求出AB=6,再根据勾股定理求出218AB =,即可求得ABC ∆的面积.【详解】∵90BAC ︒∠=,∴AB ⊥AD,∵DE BC ⊥,BD 平分ABC ∠,∴DE=AD ,∠BED=90BAC ︒∠=,∴∠BDE=∠BDA ,∴BE=AB=AC ,∵CDE ∆的周长为6,∴DE+CD+CE=AC+CE=BC=6,∵,90︒=∠=AB AC BAC∴22236AB AC BC +==,∴2236AB =, 218AB =,∴ABC ∆的面积=211922AB AC AB ⋅⋅==, 故选:D.【点睛】此题考查角平分线定理的运用,勾股定理求边长,在利用角平分线定理时必须是两个垂直一个平分同时运用,得到到角两边的距离相等的结论. 4.A解析:A【分析】作常规辅助线连接CF ,由SAS 定理可证△CFE 和△ADF 全等,从而可证∠DFE=90°,DF=EF .所以△DEF 是等腰直角三角形;由割补法可知四边形CDFE 的面积保持不变;△DEF 是等腰直角三角形DE=2DF ,当DF 与BC 垂直,即DF 最小时,DE 取最小值42,△CDE 最大的面积等于四边形CDEF 的面积减去△DEF 的最小面积.【详解】连接CF ;∵△ABC 是等腰直角三角形,∴∠FCB=∠A=45°,CF=AF=FB;∵AD=CE,∴△ADF≌△CEF;∴EF=DF,∠CFE=∠AFD;∵∠AFD+∠CFD=90°,∴∠CFE+∠CFD=∠EFD=90°,∴△EDF是等腰直角三角形.当D. E分别为AC、BC中点时,四边形CDFE是正方形.∵△ADF≌△CEF,∴S△CEF=S△ADF,∴S四边形CEFD=S△AFC.由于△DEF是等腰直角三角形,因此当DE最小时,DF也最小;即当DF⊥AC时,DE最小,此时DF=12BC=4.∴DE=2DF=42;当△CEF面积最大时,此时△DEF的面积最小.此时S△CEF=S四边形CEFD−S△DEF=S△AFC−S△DEF=16−8=8,则结论正确的是①④⑤.故选A.【点睛】本题考查全等三角形的判定与性质, 等腰直角三角形性质.要证明线段或者角相等,一般证明它们所在三角形全等,如果不存在三角形可作辅助线解决问题.5.C解析:C【分析】如图1或图2所示,分类讨论,利用勾股定理可得结论.【详解】当如图1所示时,AB=2,BC=3,∴AC=2223=13;当如图2所示时,AB=1,BC=6,∴AC=221+6=37;故选C.【点睛】本题主要考查图形的拼接,数形结合,分类讨论是解答此题的关键.6.C解析:C【解析】【分析】过点C作CD垂直AB延长线于D,根据题意得∠CDB=45°,∠CAD=30°,设BD=x则CD=BD=x,BC=2x,由∠CAD=30°可知tan∠CAD=3CDAD=即3320(31)x=-+,解方程求出BD的长,从而可知BC的长,进而求出救援艇到达C处所用的时间即可.【详解】如图:过点C作CD垂直AB延长线于D,则∠CDB=45°,∠CAD=30°,∵∠CDB=45°,CD⊥B D,∴BD=CD,设BD=x,救援艇到达C处所用的时间为t,∵tan∠CAD=33CDAD=,AD=AB+BD,∴320(31)x=-+,得x=20(海里),∴BC=2BD=202(海里),∴t=20230=223(小时),故选C.【点睛】本题考查特殊角三角函数,正确添加辅助线、熟练掌握特殊角的三角函数值是解题关键. 7.C解析:C【分析】筷子浸没在水中的最短距离为水杯高度,最长距离如下图,是筷子斜卧于杯中时,利用勾股定理可求得.【详解】当筷子笔直竖立在杯中时,筷子浸没水中距离最短,为杯高=8cmAD是筷子,AB长是杯子直径,BC是杯子高,当筷子如下图斜卧于杯中时,浸没在水中的距离最长由题意得:AB=15cm,BC=8cm,△ABC是直角三角形∴在Rt△ABC中,根据勾股定理,AC=17cm∴8cm≤h≤17c m故选:C【点睛】本题考查勾股定理在实际生活中的应用,解题关键是将题干中生活实例抽象成数学模型,然后再利用相关知识求解.8.D解析:D【分析】根据题意设出三边分别为k、k2k,然后利用勾股定理的逆定理判定三角形为直角三角形,又有BC、AC边相等,所以三角形为等腰直角三角形.【详解】设BC、AC、AB分别为k,k2k,∵k2+k2=2k)2,∴BC2+AC2=AB2,∴△ABC是直角三角形,又BC=AC,∴△ABC是等腰直角三角形.故选D.【点睛】本题主要考查了直角三角形的判定,利用设k法与勾股定理证明三角形是直角三角形是难点,也是解题的关键.9.A解析:A【分析】根据直角三角形的两直角边长分别为5和3,可计算出正方形的边长,从而得出正方形的面积.【详解】解:3和5为两条直角边长时,小正方形的边长=5-3=2,∴小正方形的面积22=4;综上所述:小正方形的面积为4;故答案选A .【点睛】本题考查了勾股定理及其应用,正确表示出直角三角形的面积是解题的关键. 10.D解析:D【分析】根据勾股定理的逆定理对各选项进行判断即可.【详解】解:A 、∵22+32=13≠42,∴不能构成直角三角形,故本选项不符合题意;B 、∵42+52=41≠62,∴不能构成直角三角形,故本选项不符合题意;C 、∵222222(3)(4)337(5)+=≠,∴不能构成直角三角形,故本选项不符合题意;D 、∵62+82=100=102,∴能构成直角三角形,故本选项符合题意.故选:D .【点睛】本题考查的是勾股定理的逆定理,熟知如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形是解答此题的关键.二、填空题11【分析】连接AC 交BD 于点O ,由题意可证AC 垂直平分BD ,△ABD 是等边三角形,可得∠BAO =∠DAO =30°,AB =AD =BD ,BO =OD ,通过证明△EDF 是等边三角形,可得DE =EF =DF ,由勾股定理可求OC ,BC 的长.【详解】连接AC ,交BD 于点O ,∵AB =AD ,BC =DC ,∠A =60°,∴AC 垂直平分BD ,△ABD 是等边三角形,∴∠BAO =∠DAO =30°,AB =AD =BD =4,BO =OD =2,∵CE ∥AB ,∴∠BAO =∠ACE =30°,∠CED =∠BAD =60°,∴∠DAO =∠ACE =30°,∴AE =CE =3,∴DE =AD−AE =1,∵∠CED =∠ADB =60°,∴△EDF 是等边三角形,∴DE =EF =DF =1,∴CF =CE−EF =2,OF =OD−DF =1,22OC CF OF 3∴-=22BC=OB +OC =7∴ 7【点睛】本题考查了等边三角形的性质和判定,勾股定理,熟练运用等边三角形的判定是本题的关键.12.48【分析】用a 和b 表示直角三角形的两个直角边,然后根据勾股定理列出正方形面积的式子,求出2S 的面积.【详解】解:本图是由八个全等的直角三角形拼成的,设这个直角三角形两个直角边中较长的长度为a ,较短的长度为b ,即图中的AE a =,AH b =,则()221S AB a b ==+,2222S HE a b ==+,()223S TM a b ==-, ∵123144S S S ++=,∴()()2222144a b a b a b ++++-= 22222222144a b ab a b a b ab ++++++-=22a b+=331442248+=,a bS=.∴248故答案是:48.【点睛】本题考查勾股定理,解题的关键是要熟悉赵爽弦图中勾股定理的应用.13.310或10【详解】分两种情况:(1)顶角是钝角时,如图1所示:在Rt△ACO中,由勾股定理,得AO2=AC2-OC2=52-32=16,∴AO=4,OB=AB+AO=5+4=9,在Rt△BCO中,由勾股定理,得BC2=OB2+OC2=92+32=90,∴BC=310;(2)顶角是锐角时,如图2所示:在Rt△ACD中,由勾股定理,得AD2=AC2-DC2=52-32=16,∴AD=4,DB=AB-AD=5-4=1.在Rt△BCD中,由勾股定理,得BC2=DB2+DC2=12+32=10,∴10;综上可知,这个等腰三角形的底的长度为1010.【点睛】本题考查了勾股定理及等腰三角形的性质,难度适中,分情况讨论是解题的关键.14.(0,21009)【解析】【分析】本题点A坐标变化规律要分别从旋转次数与点A所在象限或坐标轴、点A到原点的距离与旋转次数的对应关系.【详解】∵∠OAA 1=90°,OA=AA 1=1,以OA 1为直角边作等腰Rt △OA 1A 2,再以OA 2为直角边作等腰Rt △OA 2A 3,…,∴OA 1,OA 2=)2,…,OA 2018=)2018,∵A 1、A 2、…,每8个一循环,∵2018=252×8+2∴点A 2018的在y 轴正半轴上,OA 2018=2018=21009, 故答案为(0,21009).【点睛】本题是平面直角坐标系下的规律探究题,除了研究动点变化的相关数据规律,还应该注意象限符号.15.【分析】延长CA 、DB 交于点E ,则60C ∠=°,30E ∠=︒,在Rt ABE ∆中,利用含30角的直角三角形的性质求出28BE AB ==,根据勾股定理求出AE =.同理,在Rt DEC ∆中求出2CE CD ==12DE ==,然后根据CDE ABE ABDC S S S ∆∆=-四边形,计算即可求解.【详解】解:如图,延长CA 、DB 交于点E ,∵四边形ABDC 中,120ABD ∠=︒,AB AC ⊥,BD CD ⊥,∴60C ∠=°,∴30E ∠=︒,在Rt ABE ∆中,4AB =,30E ∠=︒,∴28BE AB ==,AE ∴=.在Rt DEC ∆中,30E ∠=︒,CD =2CE CD ∴==12DE ∴=,∴142ABE S ∆=⨯⨯= 1122CDE S ∆=⨯=CDE ABE ABDC S S S ∆∆∴=-=四边形.故答案为:【点睛】本题考查了勾股定理,含30角的直角三角形的性质,图形的面积,准确作出辅助线构造直角三角形是解题的关键.16.1425+或825+【分析】分两种情况考虑:如图1所示,此时△ABC 为锐角三角形,在直角三角形ABD 与直角三角形ACD 中,利用勾股定理求出BD 与DC 的长,由BD+DC 求出BC 的长,即可求出周长;如图2所示,此时△ABC 为钝角三角形,同理由BD -CD 求出BC 的长,即可求出周长.【详解】解:分两种情况考虑:如图1所示,此时△ABC 为锐角三角形,在Rt △ABD 中,根据勾股定理得:BD=22226425AB AD -=-=, 在Rt △ACD 中,根据勾股定理得:CD=2222543AC AD -=-=,∴BC=253+, ∴△ABC 的周长为:652531425+++=+;如图2所示,此时△ABC 为钝角三角形,在Rt △ABD 中,根据勾股定理得:22226425AB AD -=-= 在Rt △ACD 中,根据勾股定理得:2222543AC AD --=,∴BC=253-, ∴△ABC 的周长为:65253825++-=+;综合上述,△ABC 的周长为:1425+或825+;故答案为:1425+或825+.【点睛】此题考查了勾股定理,利用了分类讨论的思想,熟练掌握勾股定理是解本题的关键. 17.12【分析】延长BA 至E ,使AE=BC ,并连接OE.证∆BCO ≅∠EAO ,再证三角形BOE 是等腰直角三角形,利用勾股定理可得BE=()()222210210220BO EO +=+=,可得AB=BE-AE.【详解】如图,延长BA 至E ,使AE=BC ,并连接OE.因为三角形COA 是等腰直角三角形所以CO=AO,∠AOC=∠BOC+∠AOB=90°因为∠ABC=90°,∠AOC=90°,所以∠BAO+∠BCO=180°,又∠BAO+∠OAE=180°所以∠BCO=∠OAE所以∆BCO ≅∠EAO所以BO=EO, ∠BOC=∠EOA所以,∠BOE=∠EOA+∠AOB=90°所以三角形BOE 是等腰直角三角形所以()()222210210220BO EO +=+= 所以AB=BE-AE=20-8=12故答案为:12【点睛】考核知识点:全等三角形,勾股定理.构造全等三角形是关键.182【分析】连接CE .根据“直角三角形斜边上的中线等于斜边的一半”、等腰三角形的性质以及折叠的性质推知EG+CG=EG+GF=EF=BE ,【详解】解:(1)如图,连接CD 、CF.∵Rt △ABC 中,∠ACB=90°,AC=BC ,D 为AB 边的中点,∴BD=CD=1.2 ,∵由翻折可知BD=DF ,∴CD=BD=DF=1,∠DFE=∠B=∠DCA=45°,∴∠DCF=∠DFC ,∴∠DCF-∠DCA=∠DFC-∠DFE ,即∠GCF=∠GFC ,∴GC=GF ,∴EG+CG=EG+GF=EF=BE ,∴△ECG 的周长2, 2.【点睛】本题考查了折叠的性质、勾股定理、直角三角形的性质,能将三角形的周长转移到已知线段上是解题的关键..19.22-【分析】根据已知条件,添加辅助线可得△EAC ≌△DAM (SAS ),进而得出当MD ⊥BC 时,CE 的值最小,转化成求DM 的最小值,通过已知值计算即可.【详解】解:如图所示,在AB 上取AM=AC=2,∵90ACB ∠=,2AC BC ==,∴∠CAB=45°,又∵45EAD ∠=,∴∠EAC+∠CAD=∠DAB+∠CAD=45°,∴∠EAC =∠DAB ,∴在△EAC 与△DAB 中AE=AD ,∠EAF =∠DAB ,AC =AM ,∴△EAC ≌△DAM (SAS )∴CE=MD ,∴当MD ⊥BC 时,CE 的值最小,∵AC=BC=2, 由勾股定理可得2222AB AC BC =+=,∴222=-BM ,∵∠B=45°,∴△BDM 为等腰直角三角形,∴DM=BD ,由勾股定理可得222+BD DM =BM∴DM=BD=22-∴CE=DM=22-故答案为:22-【点睛】本题考查了动点问题及全等三角形的构造,解题的关键是作出辅助线,得出全等三角形,找到CE 最小时的状态,化动为静.20.3【分析】根据题意利用折叠后图形全等,并利用等量替换和等腰三角形的性质进行综合分析求解.【详解】解:由题意可知','ACM A CM BCH B CH ≅≅,∵15cm BC =,20cm AC =,∴'15,'20,BC B C cm AC A C cm ====''20155A B cm =-=,∵90ACB ∠=︒,∴'A M AB ⊥(等量替换),CH AB ⊥(三线合一),∴25,AB cm = 利用勾股定理假设MB '的长为m ,'257AM AM m ==-,则有222(257)5m m +-=,解得3m =,所以MB '的长为3.【点睛】本题考查几何的翻折问题,熟练掌握并综合利用等量替换和等腰三角形的性质以及勾股定理分析是解题的关键.三、解答题21.(1)出发2秒后,线段PQ 的长为213;(2)当点Q 在边BC 上运动时,出发83秒后,△PQB 是等腰三角形;(3)当t 为5.5秒或6秒或6.6秒时,△BCQ 为等腰三角形.【分析】(1)由题意可以求出出发2秒后,BQ 和PB 的长度,再由勾股定理可以求得PQ 的长度; (2)设所求时间为t ,则可由题意得到关于t 的方程,解方程可以得到解答; (3)点Q 在边CA 上运动时,ΔBCQ 为等腰三角形有三种情况存在,对每种情况进行讨论可以得到解答.【详解】(1)BQ=2×2=4cm ,BP=AB−AP=8−2×1=6cm ,∵∠B=90°,由勾股定理得:PQ=22224652213BQ BP +=+==∴出发2秒后,线段PQ 的长为213;(2)BQ=2t ,BP=8−t由题意得:2t=8−t解得:t=83∴当点Q 在边BC 上运动时,出发83秒后,△PQB 是等腰三角形; (3) ∵∠ABC=90°,BC=6,AB=8,∴AC=2268+=10.①当CQ=BQ 时(图1),则∠C=∠CBQ ,∵∠ABC=90°,∴∠CBQ+∠ABQ=90°,∠A+∠C=90°,∴∠A=∠ABQ ,∴BQ=AQ ,∴CQ=AQ=5,∴BC+CQ=11,∴t=11÷2=5.5秒;②当CQ=BC 时(如图2),则BC+CQ=12∴t=12÷2=6秒③当BC=BQ时(如图3),过B点作BE⊥AC于点E,∴BE=6824105 AB BCAC⋅⨯==,所以CE=22BC BE-=185=3.6,故CQ=2CE=7.2,所以BC+CQ=13.2,∴t=13.2÷2=6.6秒.由上可知,当t为5.5秒或6秒或6.6秒时,△BCQ为等腰三角形.【点睛】本题考查三角形的动点问题,利用分类讨论思想和方程方法、综合力学的运动知识和三角形边角的有关知识求解是解题关键.22.(1) 出发10s后,△BMN为等边三角形;(2)出发6s或15s后,△BMN为直角三角形.【分析】(1)设时间为x,表示出AM=x、BN=2x、BM=30-x,根据等边三角形的判定列出方程,解之可得;(2)分两种情况:①∠BNM=90°时,即可知∠BMN=30°,依据BN=12BM列方程求解可得;②∠BMN=90°时,知∠BNM=30°,依据BM=12BN列方程求解可得.【详解】解(1)设经过x秒,△BMN为等边三角形,则AM=x,BN=2x,∴BM=AB-AM=30-x,根据题意得30-x=2x,解得x=10,答:经过10秒,△BMN为等边三角形;(2)经过x秒,△BMN是直角三角形,①当∠BNM=90°时,∵∠B=60°,∴∠BMN=30°,∴BN=12BM,即2x=12(30-x),解得x=6;②当∠BMN=90°时,∵∠B=60°,∴∠BNM=30°,∴BM=12BN,即30-x=12×2x,解得x=15,答:经过6秒或15秒,△BMN是直角三角形.【点睛】本题考查勾股定理的逆定理,等边三角形的判定.23.(1)见解析;(2)BD2+AD2=2CD2;(3)AB=+4.【分析】(1)根据等腰直角三角形的性质证明△ACE≌△BCD即可得到结论;(2)利用全等三角形的性质及勾股定理即可证得结论;(3)连接EF,设BD=x,利用(1)、(2)求出EF=3x,再利用勾股定理求出x,即可得到答案.【详解】(1)证明:∵△ACB和△ECD都是等腰直角三角形∴AC=BC,EC=DC,∠ACB=∠ECD=90°∴∠ACB﹣∠ACD=∠ECD﹣∠ACD∴∠ACE=∠BCD,∴△ACE≌△BCD(SAS),∴AE=BD.(2)解:由(1)得△ACE≌△BCD,∴∠CAE=∠CBD,又∵△ABC是等腰直角三角形,∴∠CAB=∠CBA=∠CAE=45°,∴∠EAD=90°,在Rt△ADE中,AE2+AD2=ED2,且AE=BD,∴BD2+AD2=ED2,∵ED =2CD ,∴BD 2+AD 2=2CD 2,(3)解:连接EF ,设BD =x ,∵BD :AF =1:2AF =2x ,∵△ECD 都是等腰直角三角形,CF ⊥DE ,∴DF =EF ,由 (1)、(2)可得,在Rt △FAE 中,EF 22AF AE +22(22)x x +3x , ∵AE 2+AD 2=2CD 2,∴222(223)2(36)x x x ++=,解得x =1,∴AB =2+4.【点睛】此题考查三角形全等的判定及性质,等腰直角三角形的性质,勾股定理.24.(1)2516;(2)83t =或6;(3)当153,5,210t =或194时,△BCP 为等腰三角形. 【分析】(1)设存在点P ,使得PA PB =,此时2PA PB t ==,42PC t =-,根据勾股定理列方程即可得到结论;(2)当点P 在CAB ∠的平分线上时,如图1,过点P 作PE AB ⊥于点E ,此时72BP t =-,24PE PC t ==-,541BE =-=,根据勾股定理列方程即可得到结论; (3)在Rt ABC 中,根据勾股定理得到4AC cm =,根据题意得:2AP t =,当P 在AC 上时,BCP 为等腰三角形,得到PC BC =,即423t -=,求得12t =,当P 在AB 上时,BCP 为等腰三角形,若CP PB =,点P 在BC 的垂直平分线上,如图2,过P 作PE BC ⊥于E ,求得194t =,若PB BC =,即2343t --=,解得5t =,PC BC =③,如图3,过C 作CF AB ⊥于F ,由射影定理得;2BC BF AB =⋅,列方程2234352t --=⨯,即可得到结论. 【详解】解:在Rt ABC 中,5AB cm =,3BC cm =,4AC cm ∴=,(1)设存在点P ,使得PA PB =,此时2PA PB t ==,42PC t =-,在Rt PCB 中,222PC CB PB +=,即:222(42)3(2)t t -+=, 解得:2516t =, ∴当2516t =时,PA PB =; (2)当点P 在BAC ∠的平分线上时,如图1,过点P 作PE AB ⊥于点E ,此时72BP t =-,24PE PC t ==-,541BE =-=,在Rt BEP 中,222PE BE BP +=, 即:222(24)1(72)t t -+=-,解得:83t =, 当6t =时,点P 与A 重合,也符合条件,∴当83t =或6时,P 在ABC ∆的角平分线上; (3)根据题意得:2AP t =,当P 在AC 上时,BCP 为等腰三角形,PC BC ∴=,即423t -=,12t ∴=, 当P 在AB 上时,BCP 为等腰三角形,CP PB =①,点P 在BC 的垂直平分线上,如图2,过P 作PE BC ⊥于E ,1322BE BC ∴==, 12PB AB ∴=,即52342t --=,解得:194t =, PB BC =②,即2343t --=,解得:5t =,PC BC =③,如图3,过C 作CF AB ⊥于F ,12BF BP ∴=, 90ACB ∠=︒,由射影定理得;2BC BF AB =⋅,即2234352t --=⨯, 解得:5310t =, ∴当15319,5,2104t =或时,BCP 为等腰三角形. 【点睛】本题考查了等腰三角形的判定,三角形的面积,难度适中.利用分类讨论的思想是解(3)题的关键.25.(1)12;(2)t=12.5s 时,13 cm ;(3)11s 或12s 或13.2s【分析】(1)由勾股定理即可得出结论;(2)由线段垂直平分线的性质得到PC = PA =t ,则PB =16-t .在Rt △BPC 中,由勾股定理可求得t 的值,判断出此时,点Q 在边AC 上,根据CQ =2t -BC 计算即可;(3)用t 分别表示出BQ 和CQ ,利用等腰三角形的性质可分BQ =BC 、CQ =BC 和BQ =CQ 三种情况,分别得到关于t 的方程,可求得t 的值.【详解】(1)在Rt △ABC 中,BC 2222212016AC AB =-=-=(cm ).故答案为:12;(2)如图,点P 在边AC 的垂直平分线上时,连接PC ,∴PC = PA =t ,PB =16-t . 在Rt △BPC 中,222BC BP CP +=,即2221216)t t +-=(, 解得:t =252. ∵Q 从B 到C 所需的时间为12÷2=6(s ),252>6, ∴此时,点Q 在边AC 上,CQ =25212132⨯-=(cm );(3)分三种情况讨论:①当CQ =BQ 时,如图1所示,则∠C =∠CBQ .∵∠ABC =90°,∴∠CBQ +∠ABQ =90°,∠A +∠C =90°,∴∠A =∠ABQ ,∴BQ =AQ ,∴CQ =AQ =10,∴BC +CQ =22,∴t =22÷2=11(s ).②当CQ =BC 时,如图2所示,则BC +CQ =24,∴t =24÷2=12(s ).③当BC =BQ 时,如图3所示,过B 点作BE ⊥AC 于点E ,则BE 121648205AB BC AC ⋅⨯===, ∴CE 2222483612()55BC BE =-=-==7.2. ∵BC =BQ ,BE ⊥CQ ,∴CQ =2CE =14.4,∴BC +CQ =26.4,∴t =26.4÷2=13.2(s ).综上所述:当t 为11s 或12s 或13.2s 时,△BCQ 为等腰三角形.【点睛】本题考查了勾股定理、等腰三角形的性质、方程思想及分类讨论思想等知识.用时间t 表示出相应线段的长,化“动”为“静”是解决这类问题的一般思路,注意方程思想的应用.26.②③⑤【分析】①先证得ABE ADP ≅,利用邻补角和等腰直角三角形的性质求得90PEB ∠=︒,利用勾股定理求出BE ,即可求得点B 到直线AE 的距离;②根据①的结论,利用APD ABP ABE APB S S S S ∆∆∆+=+AEP BEP S S ∆∆=+即可求得结论; ③在Rt AHB 中,利用勾股定理求得2AB ,再利用三角形面积公式即可求得ABD S ∆; ④当A P C 、、共线时,PC 最小,利用对称的性质,AB BC =的长,再求得AC 的长,即可求得结论;⑤先证得ABP ADE ≅,得到ABP ADE ∠=∠,根据条件得到ABP NAB ∠=∠,利用互余的关系即可证得结论.【详解】①∵ABD 与AEP 都是等腰直角三角形,∴90BAD ∠=︒,90EAP ∠=︒,AB AD =,AE AP =,45APE AEP ∠=∠=︒, ∴EAB PAD ∠=∠,∴()ABE ADP SAS ≅,∴180********AEB APD APE ∠=∠=︒-∠=︒-︒=︒,∴1354590PEB AEB AEP ∠=∠-∠=︒-︒=︒,∴222PE BE PB +=,∵2AE AP ==,90EAP ∠=︒, ∴22PE AE ==, ∴()22227BE +=, 解得:3BE =,作BH ⊥AE 交AE 的延长线于点H ,∵45AEP ∠=︒,90PEB ∠=︒, ∴180180904545HEB PEB AEP ∠=︒-∠-∠=︒-︒-︒=︒,∴26sin 453HB BE =︒==, ∴点B 到直线AE 6,故①错误; ②由①知:ABE ADP ≅,2EP =,3BE =∴APD ABP ABE APB S S S S ∆∆∆∆+=+AEP BEP S S ∆∆=+1122AE AP PE EB =⨯⨯+⨯⨯ 11222322=⨯ 13=,故②正确;③在Rt AHB 中,由①知:6EH HB ==∴62AH AE EH =+=,22222256623AB AH BH ⎛⎫⎛⎫=+=++=+ ⎪ ⎪ ⎪ ⎪⎭⎝⎭,21153222ABD S AB AD AB ∆=⋅==+,故③正确; ④因为AC 是定值,所以当A P C 、、共线时,PC 最小,如图,连接BC ,∵A C 、关于 BD 的对称,∴523AB BC ==+ ∴225231043AC BC ==+=+∴ min PC AC AP =-,10432=+⑤∵ABD 与AEP 都是等腰直角三角形,∴90BAD ∠=︒,90EAP ∠=︒,AB AD =,AE AP =, 在ABP 和ADE 中,AB AD BAP DAE AP AE =⎧⎪∠=∠⎨⎪=⎩,∴()ABP ADE SAS ≅,∴ABP ADE ∠=∠,∵AN BN =,∴ABP NAB ∠=∠,∴EAN ADE ∠=∠,∵90EAN DAN ∠+∠=︒,∴90ADE DAN ∠+∠=︒,∴AN DE ⊥,故⑤正确;综上,②③⑤正确,故答案为:②③⑤.【点睛】本题是三角形的综合题,主要考查了等腰直角三角形的性质,全等三角形的判定和性质,勾股定理的应用,三角形的面积公式,综合性强,全等三角形的判定和性质的灵活运用是解题的关键.27.(1)详见解析;(2)①线段AD 的长度是方程2220x mx n +-=的一个根,理由详见解析;②512m n = 【分析】(1)根据题意,利用尺规作图画出图形即可;(2)①根据勾股定理求出AD ,然后把AD 的值代入方程,即可得到答案;②先得到出边长的关系,然后根据勾股定理,列出方程,解方程后得到答案.【详解】(1)解:作图,如图所示:(2)解:①线段AD 的长度是方程2220x mx n +-=的一个根.理由如下:依题意得, BD BC m ==,在Rt ABC 中,90ACB ∠=︒222BC AC AB ∴=+22AB m n =+22AD AB BD m n m ∴=-=+222AD m AD n ∴+-)()2222222m n m m m n m n =+++- 222222222222m n m m n m m m n m n =+-+++-0=;∴线段AD 的长度是方程22 20x mx n +-=的一个根②依题意得:,,AD AE BD BC AB AD BD ====2AD EC =2233AD AE AC n ∴=== 在RT ABC 中,90ACB ∠=222BC AC AB ∴+=22223m n n m ⎛⎫+=+ ⎪⎝⎭ 22224493m n n mn m +=++ 25493n mn = 512m n ∴= 【点睛】本题考查的是基本作图,勾股定理、一元二次方程的解法,掌握一元二次方程的求根公式、勾股定理是解题的关键.28.(1)见解析;(2)26;(3)3a+ 【分析】(1)由∠ACB=∠DCE 可得出∠ACD=∠BCE ,再利用SAS 判定△ACD ≌△BCE ,即可得到AD=BE ;(2)由等腰直角三角形的性质可得CM=12DE ,同(1)可证△ACD ≌△BCE ,得到AD=BE ,然后可求AE 的长,再判断∠AEB=90°,即可用勾股定理求出AB 的长;(3)由等腰三角形的性质易得∠CAB=∠CBA=∠CDE=∠CED=30°,根据30度所对的直角边是斜边的一半可求出,然后利用三角形外角性质推出∠BEN=60°,在Rt △BEN 中即可求出BE ,由于BE=AD ,所以利用AE=AD+DE 即可得出答案.【详解】证明:(1)∵∠ACB=∠DCE∴∠ACB-∠BCD=∠DCE-∠BCD ,即∠ACD=∠BCE在△ACD 和△BCE 中,AC=BC ACD=BCE CD=CE ⎧⎪∠∠⎨⎪⎩∴△ACD ≌△BCE (SAS )∴AD=BE。
八年级初二数学 勾股定理知识归纳总结及答案
八年级初二数学 勾股定理知识归纳总结及答案一、选择题1.如图,点A 的坐标是(2)2,,若点P 在x 轴上,且APO △是等腰三角形,则点P 的坐标不可能是( )A .(2,0)B .(4,0)C .(-22,0)D .(3,0)2.如图,在四边形ABCD 中,∠DAB =30°,点E 为AB 的中点,DE ⊥AB ,交AB 于点E ,DE =3,BC =1,CD =13,则CE 的长是( )A .14B .17C .15D .13 3.在Rt △ABC 中,∠C=90°,∠A=30°,BD 是∠ABC 的平分线,交AC 于点D ,若CD=1,则AB 的长是( )A .2B . 23C . 43D .4 4.如图,有一张直角三角形纸片,两直角边AC=6cm ,BC=8cm ,D 为BC 边上的一点,现将直角边AC 沿直线AD 折叠,使AC 落在斜边AB 上,且与AE 重合,则CD 的长为( )A .2cmB .2.5cmC .3cmD .4cm5.若△ABC 中,AB=AC=25BC=4,则△ABC 的面积为( )A .4B .8C .16D 5 6.A 、B 、C 分别表示三个村庄,AB 1700=米,800BC =米,AC 1500=米,某社区拟建一个文化活动中心,要求这三个村庄到活动中心的距离相等,则活动中心P 的位置应在( )A .AB 的中点B .BC 的中点 C .AC 的中点D .C ∠的平分线与AB 的交点7.下列长度的三条线段能组成直角三角形的是( )A .9,7,12B .2,3,4C .1,2,3D .5,11,128.有一个直角三角形的两边长分别为3和4,则第三边的长为( )A .5B .7C .5D .5或7 9.以下列各组数为边长,不能构成直角三角形的是( ) A .3,4,5 B .1,1,2C .8,12,13D .2、3、5 10.为了庆祝国庆,八年级(1)班的同学做了许多拉花装饰教室,小玲抬来一架2.5米长的梯子,准备将梯子架到2.4米高的墙上,则梯脚与墙角的距离是( )A .0.6米B .0.7米C .0.8米D .0.9米二、填空题11.如图,AB =12,AB ⊥BC 于点B , AB ⊥AD 于点A ,AD =5,BC =10,E 是CD 的中点,则AE 的长是____ ___.12.将一副三角板按如图所示摆放成四边形ABCD ,发现只要知道其中一边的长就可以求出其它各边的长,若已知AD =32,则AB 的长为__________.13.如图,RT ABC ,90ACB ∠=︒,6AC =,8BC =,将边AC 沿CE 翻折,使点A 落在AB 上的点D 处;再将边BC 沿CF 翻折,使点B 落在CD 的延长线上的点B '处,两条折痕与斜边AB 分别交于点E 、F ,则B FC '△的面积为______.14.如图,在四边形ABCD 中,AB =AD ,BC=DC ,点E 为AD 边上一点,连接BD 、CE ,CE 与BD 交于点F ,且CE ∥AB ,若∠A =60°,AB=4,CE=3,则BC 的长为_______.15.如图,在△ABC中,OA=4,OB=3,C点与A点关于直线OB对称,动点P、Q分别在线段AC、AB上(点P不与点A、C重合),满足∠BPQ=∠BAO.当△PQB为等腰三角形时,OP的长度是_____.16.如图,四边形ABDC中,∠ABD=120°,AB⊥AC,BD⊥CD,AB=4,CD=43,则该四边形的面积是______.17.如图,△ABC中,∠ACB=90°,AB=2,BC=AC,D为AB的中点,E为BC上一点,将△BDE沿DE翻折,得到△FDE,EF交AC于点G,则△ECG的周长是___________.18.已知x,y为一个直角三角形的两边的长,且(x﹣6)2=9,y=3,则该三角形的第三边长为_____.的角平分线,E是AD上的动点,F 19.如图,△ABC中,AB=AC=13,BC=10,AD是BAC是AB边上的动点,则BE+EF的最小值为_____.20.已知a 、b 、c 是△ABC 三边的长,且满足关系式2222()0c a b a b --+-=,则△ABC 的形状为___________三、解答题21.如图,已知ABC ∆中,90B ∠=︒,8AB cm =,6BC cm =,P 、Q 是ABC ∆边上的两个动点,其中点P 从点A 开始沿A B →方向运动,且速度为每秒1cm ,点Q 从点B 开始沿B C →方向运动,且速度为每秒2cm ,它们同时出发,设出发的时间为t 秒.(1)当2t =秒时,求PQ 的长;(2)求出发时间为几秒时,PQB ∆是等腰三角形?(3)若Q 沿B C A →→方向运动,则当点Q 在边CA 上运动时,求能使BCQ ∆成为等腰三角形的运动时间.22.如图,在ABC 中,90BAC ∠=︒,AB AC =,点D 是BC 上一动点、连接AD ,过点A 作AE AD ⊥,并且始终保持AE AD =,连接CE ,(1)求证:ABD ACE ≅;(2)若AF 平分DAE ∠交BC 于F ,①探究线段BD ,DF ,FC 之间的数量关系,并证明;②若3BD =,4CF =,求AD 的长,23.如图,△ACB 和△ECD 都是等腰直角三角形,∠ACB =∠ECD =90°,点D 在边AB 上,点E 在边AC 的左侧,连接AE .(1)求证:AE =BD ;(2)试探究线段AD 、BD 与CD 之间的数量关系;(3)过点C 作CF ⊥DE 交AB 于点F ,若BD :AF =1:22,CD =36+,求线段AB 的长.24.Rt ABC ∆中,90CAB ∠=,4AC =,8AB =,M N 、分别是边AB 和CB 上的动点,在图中画出AN MN +值最小时的图形,并直接写出AN MN +的最小值为 .25.如图1, △ABC 和△CDE 均为等腰三角形,AC=BC, CD=CE, AC>CD, ∠ACB=∠DCE=a ,且点A 、D 、E 在同一直线上,连结BE.(1)求证: AD=BE.(2)如图2,若a=90°,CM ⊥AE 于E.若CM=7, BE=10, 试求AB 的长.(3)如图3,若a=120°, CM ⊥AE 于E, BN ⊥AE 于N, BN=a, CM=b,直接写出AE 的值(用a, b 的代数式表示).26.如图1,在平面直角坐标系中,直线AB 经过点C (a ,a ),且交x 轴于点A (m ,0),交y 轴于点B (0,n ),且m ,n 6m -n ﹣12)2=0.(1)求直线AB 的解析式及C 点坐标;(2)过点C 作CD ⊥AB 交x 轴于点D ,请在图1中画出图形,并求D 点的坐标;(3)如图2,点E (0,﹣2),点P 为射线AB 上一点,且∠CEP =45°,求点P 的坐标.27.如图,在平面直角坐标系中,点O 是坐标原点,ABC ∆,ADE ∆,AFO ∆均为等边三角形,A 在y 轴正半轴上,点0()6,B -,点(6,0)C ,点D 在ABC ∆内部,点E 在ABC ∆的外部,32=AD ,30DOE ∠=︒,OF 与AB 交于点G ,连接DF ,DG ,DO ,OE .(1)求点A 的坐标;(2)判断DF 与OE 的数量关系,并说明理由;(3)直接写出ADG ∆的周长.28.如图1,点E 是正方形ABCD 边CD 上任意一点,以DE 为边作正方形DEFG ,连接BF ,点M 是线段BF 中点,射线EM 与BC 交于点H ,连接CM .(1)请直接写出CM 和EM 的数量关系和位置关系.(2)把图1中的正方形DEFG 绕点D 顺时针旋转45︒,此时点F 恰好落在线段CD 上,如图2,其他条件不变,(1)中的结论是否成立,请说明理由.(3)把图1中的正方形DEFG 绕点D 顺时针旋转90︒,此时点E 、G 恰好分别落在线段AD 、CD 上,连接CE ,如图3,其他条件不变,若2DG =,6AB =,直接写出CM 的长度.29.菱形ABCD 中,∠BAD =60°,BD 是对角线,点E 、F 分别是边AB 、AD 上两个点,且满足AE =DF ,连接BF 与DE 相交于点G .(1)如图1,求∠BGD 的度数;(2)如图2,作CH⊥BG于H点,求证:2GH=GB+DG;(3)在满足(2)的条件下,且点H在菱形内部,若GB=6,CH=43,求菱形ABCD的面积.30.如图,在△ABC中,D是边AB的中点,E是边AC上一动点,连结DE,过点D作DF⊥DE交边BC于点F(点F与点B、C不重合),延长FD到点G,使DG=DF,连结EF、AG.已知AB=10,BC=6,AC=8.(1)求证:△ADG≌△BDF;(2)请你连结EG,并求证:EF=EG;(3)设AE=x,CF=y,求y关于x的函数关系式,并写出自变量x的取值范围;(4)求线段EF长度的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【详解】解:(1)当点P在x轴正半轴上,①以OA为腰时,∵A的坐标是(2,2),∴∠AOP=45°,OA=22,∴P的坐标是(4,0)或(22,0);②以OA为底边时,∵点A的坐标是(2,2),∴当点P的坐标为:(2,0)时,OP=AP;(2)当点P在x轴负半轴上,③以OA为腰时,∵A的坐标是(2,2),∴OA= 22∴OA=AP=2∴P的坐标是(-220).故选D.2.D解析:D【解析】【分析】连接BD,作CF⊥AB于F,由线段垂直平分线的性质得出BD=AD,AE=BE,得出∠DBE=∠DAB=30°,由直角三角形的性质得出BD=AD=2DE=233DE=3,证出△BCD是直角三角形,∠CBD=90°,得出∠BCF=30°,得出BF=12BC=12,33求出EF=BE+BF=72,在Rt△CEF中,由勾股定理即可得出结果.【详解】解:连接BD,作CF⊥AB于F,如图所示:则∠BFC=90°,∵点E为AB的中点,DE⊥AB,∴BD=AD,AE=BE,∵∠DAB=30°,∴∠DBE=∠DAB=30°,BD=AD=2DE=233,∵BC2+BD2=12+(32=13=CD2,∴△BCD是直角三角形,∠CBD=90°,∴∠CBF=180°-30°-90°=60°,∴∠BCF=30°,∠BFC=90°,∴∠BCF=30°,∴BF=12BC=12,33∴EF=BE+BF=72,在Rt△CEF中,由勾股定理得:227313 22⎛⎫⎛⎫+=⎪⎪ ⎪⎝⎭⎝⎭故选D.【点睛】本题考查了勾股定理、勾股定理的逆定理、线段垂直平分线的性质、等腰三角形的性质;熟练掌握勾股定理和逆定理是解题的关键.3.B解析:B【分析】根据30°直角三角形的性质,求出∠ABC的度数,然后根据角平分线的性质求出∠CBD=30°,再根据30°角所对的直角三角形性质,30°角所对的直角边等于斜边的一半,求解即可.【详解】如图∵∠C=90°,∠A=30°,∴∠ABC=90°-30°=60°,∵BD平分∠ABC,∴∠ABD=12∠ABC=12×60°=30°,∵CD=1,∠CDB=30°∴BD=2根据勾股定理可得BC=2222--BD CD=21=3∵∠A=30°∴AB=23故选B.【点睛】此题主要考查了30°角直角三角形的性质的应用,关键是根据题意画出图形,再利用30°角所对直角边等于斜边的一半求解.4.C解析:C【分析】-,在首先由勾股定理求得AB=10,然后由翻折的性质求得BE=4,设DC=x,则BD=8x△BDE中,利用勾股定理列方程求解即可.【详解】在Rt△ABC中,由勾股定理可知:2222AC BC+=+=,6810由折叠的性质可知:DC=DE,AC=AE=6,∠DEA=∠C=90°,∴BE=AB-AE=10-6=4,∠DEB=90°,设DC=x,则BD=8-x,DE=x,在Rt△BED中,由勾股定理得:BE2+DE2=BD2,即42+x2=(8-x)2,解得:x=3,∴CD=3.故选:C.【点睛】本题主要考查了勾股定理与折叠问题,熟练掌握翻折的性质和勾股定理是解决问题的关键.5.B解析:B【分析】作AD⊥BC,则D为BC的中点,即BD=DC=2,根据勾股定理可以求得AD,则根据S=12×BC×AD可以求得△ABC的面积.【详解】解:作AD⊥BC,则D为BC的中点,则BD=DC=2,∵AB=25,且AD=22AB BD=4,∴△ABC的面积为S=12×BC×AD=12×4×4=8,故选:B.【点睛】本题考查了勾股定理的运用,三角形面积的计算,本题中正确的运用勾股定理求AD是解题的关键.6.A解析:A【分析】先计算AB2=2890000,BC2=640000,AC2=2250000,可得BC2+AC2=AB2,那么△ABC是直角三角形,而直角三角形斜边上的中线等于斜边的一半,从而可确定P点的位置.【详解】解:如图∵AB2=2890000,BC2=640000,AC2=2250000∴BC2+AC2=AB2,∴△ABC是直角三角形,∴活动中心P应在斜边AB的中点.故选:A.【点睛】本题考查了勾股定理的逆定理.解题的关键是证明△ABC是直角三角形.7.C解析:C【分析】利用勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.最长边所对的角为直角.由此判定即可.【详解】解:A、因为92+72≠122,所以三条线段不能组成直角三角形;B、因为22+32≠42,所以三条线段不能组成直角三角形;C、因为12= 22,所以三条线段能组成直角三角形;D、因为52+112≠122,所以三条线段不能组成直角三角形.故选C.【点睛】此题考查勾股定理逆定理的运用,注意数据的计算.8.D解析:D【分析】分4是直角边、4是斜边,根据勾股定理计算即可.【详解】当4是直角边时,斜边,当4是斜边时,另一条直角边=,故选:D.【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.9.C解析:C【分析】根据勾股定理的逆定理,只要验证两小边的平方和是否等于最长边的平方即可作出判断.【详解】A. 32+42=52,能构成直角三角形,故不符合题意;B. 12+12=)2,能构成直角三角形,故不符合题意;C. 82+122≠132,不能构成直角三角形,故符合题意;D.)2+2=2,能构成直角三角形,故不符合题意,故选C.【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.10.B解析:B【解析】试题解析:依题意得:梯子、地面、墙刚好形成一直角三角形,梯高为斜边,利用勾股定理得:梯脚与墙角距离:222.5 2.4-=0.7(米).故选B .二、填空题11.5【详解】解:如图,延长AE 交BC 于点F ,∵点E 是CD 的中点,∴DE=CE ,,∵AB ⊥BC ,AB ⊥AD,∴AD ∥BC,∴∠ADE=∠BCE 且DE=CE ,∠AED=∠CEF,∴△AED ≌△FEC (ASA ), ∴AD=FC=5,AE=EF,∴BF=BC-FC=5,∴在Rt △ABF 中,2213AF AB BF =+=,6.52AF AE == 故答案为:6.5. 12.3【分析】利用勾股定理求出AC=6,在Rt △ABC 中,∠BAC=30°,得到12BC AB =,再利用勾股定理得到222AC BC AB +=,即可求出AB .【详解】在Rt △ACD 中,CD=AD=32∴226AD CD +=,在Rt △ABC 中,∠BAC=30°, ∴12BC AB =,∵222AC BC AB +=, ∴22216()2AB AB +=,解得AB=故答案为:【点睛】此题考查勾股定理,直角三角形30度角所对的直角边等于斜边的一半,正确理解勾股定理的三边的数量关系是解题的关键. 13.9625【分析】将△B´CF 的面积转化为求△BCF 的面积,由折叠的性质可得CD =AC =6,∠ACE =∠DCE ,∠BCF =∠B´CF ,CE ⊥AB ,可证得△ECF 是等腰直角三角形,EF =CE ,∠EFC =45°,由等面积法可求CE 的长,由勾股定理可求AE 的长,进而求得BF 的长,即可求解.【详解】根据折叠的性质可知,CD =AC =6,∠ACE =∠DCE ,∠BCF =∠B´CF ,CE ⊥AB , ∴∠DCE +∠B´CF =∠ACE +∠BCF , ∵∠ACB =90°,∴∠ECF =45°,且CE ⊥AB ,∴△ECF 是等腰直角三角形,∴EF =CE ,∠EFC =45°,∵S △ABC =12AC•BC =12AB•CE , ∴AC•BC =AB•CE ,∵根据勾股定理求得AB =10,∴CE =245, ∴EF =245,∵AE 185, ∴BF =AB−AE−EF =10-185-245=85, ∴S △CBF =12×BF ×CE =12×85×245=9625, ∴S △CB´F =9625,故填:96 25.【点睛】此题主要考查了翻折变换,等腰三角形的判定和性质,勾股定理的应用等知识,根据折叠的性质求得相等的角是解决本题的关键.14.7【分析】连接AC交BD于点O,由题意可证AC垂直平分BD,△ABD是等边三角形,可得∠BAO=∠DAO=30°,AB=AD=BD,BO=OD,通过证明△EDF是等边三角形,可得DE=EF=DF,由勾股定理可求OC,BC的长.【详解】连接AC,交BD于点O,∵AB=AD,BC=DC,∠A=60°,∴AC垂直平分BD,△ABD是等边三角形,∴∠BAO=∠DAO=30°,AB=AD=BD=4,BO=OD=2,∵CE∥AB,∴∠BAO=∠ACE=30°,∠CED=∠BAD=60°,∴∠DAO=∠ACE=30°,∴AE=CE=3,∴DE=AD−AE=1,∵∠CED=∠ADB=60°,∴△EDF是等边三角形,∴DE=EF=DF=1,∴CF=CE−EF=2,OF=OD−DF=1,22OC CF OF3∴-=22BC=OB+OC=7∴7【点睛】本题考查了等边三角形的性质和判定,勾股定理,熟练运用等边三角形的判定是本题的关键.15.1或78【分析】 分为三种情况:①PQ BP =,②BQ QP =,③BQ BP =,由等腰三角形的性质和勾股定理可求解.【详解】解:分为3种情况:①当PB PQ =时,4=OA ,3OB =,∴5BC AB ===, C 点与A 点关于直线OB 对称,BAO BCO ∴∠=∠,BPQ BAO ∠=∠,BPQ BCO ∴∠=∠,APB APQ BPQ BCO CBP ∠=∠+∠=∠+∠,APQ CBP ∴∠=∠,在APQ 和CBP 中,BAO BCP APQ B PQ B P C P ∠=∠⎧⎪∠=∠⎨=⎪⎩, ()APQ CBP AAS ∴△≌△,∴5AP BC ==,1OP AP OA ∴=-=;②当BQ BP =时,BPQ BQP ∠=∠,BPQ BAO ∠=∠,BAO BQP ∴∠=∠,根据三角形外角性质得:BQP BAO ∠>∠,∴这种情况不存在;③当QB QP =时,QBP BPQ BAO ∠=∠=∠,PB PA ∴=,设OP x =,则4PB PA x ==-在Rt OBP △中,222PB OP OB =+,222(4)3x x ∴-=+, 解得:78x =;∴当PQB △为等腰三角形时,1OP =或78; 【点睛】 本题考查了勾股定理,等腰三角形的性质,全等三角形的性质和判定的应用,解题的关键是熟练掌握所学的性质进行解题,注意分类讨论. 16.163.【分析】延长CA 、DB 交于点E ,则60C ∠=°,30E ∠=︒,在Rt ABE ∆中,利用含30角的直角三角形的性质求出28BE AB ==,根据勾股定理求出43AE =.同理,在Rt DEC ∆中求出283CE CD ==,2212DE CE CD =-=,然后根据CDE ABE ABDC S S S ∆∆=-四边形,计算即可求解.【详解】解:如图,延长CA 、DB 交于点E ,∵四边形ABDC 中,120ABD ∠=︒,AB AC ⊥,BD CD ⊥,∴60C ∠=°,∴30E ∠=︒,在Rt ABE ∆中,4AB =,30E ∠=︒,∴28BE AB ==,2243AE BE AB ∴=-=.在Rt DEC ∆中,30E ∠=︒,43CD =,283CE CD ∴==,2212DE CE CD ∴=-=,∴1443832ABE S ∆=⨯⨯=, 143122432CDE S ∆=⨯⨯=, 24383=163CDE ABE ABDC S S S ∆∆∴=-=-四边形.故答案为:163.【点睛】本题考查了勾股定理,含30角的直角三角形的性质,图形的面积,准确作出辅助线构造直角三角形是解题的关键.17.2【分析】连接CE.根据“直角三角形斜边上的中线等于斜边的一半”、等腰三角形的性质以及折叠的性质推知EG+CG=EG+GF=EF=BE,【详解】解:(1)如图,连接CD、CF.∵Rt△ABC中,∠ACB=90°,AC=BC,D为AB边的中点,∴BD=CD=1.2 ,∵由翻折可知BD=DF,∴CD=BD=DF=1,∠DFE=∠B=∠DCA=45°,∴∠DCF=∠DFC,∴∠DCF-∠DCA=∠DFC-∠DFE,即∠GCF=∠GFC,∴GC=GF,∴EG+CG=EG+GF=EF=BE,∴△ECG的周长2,2.【点睛】本题考查了折叠的性质、勾股定理、直角三角形的性质,能将三角形的周长转移到已知线段上是解题的关键..18.106232【解析】【详解】∵(x-6)2=9,∴x-6=±3,解得:x1=9,x2=3,∵x,y为一个直角三角形的两边的长,y=3,∴当x=3时,x、y22+=;3332当x=9时,x 、y 都为直角三角形的直角边,则斜边为2293310+= ;当x=9时,x 为斜边、y 为直角边,则第三边为263922=-. 故答案为:310,62或32.【点睛】本题主要考查了勾股定理的应用,正确分类讨论是解决问题的关键,解题时注意一定不要漏解.19.12013【解析】 ∵AB=AC ,AD 是角平分线,∴AD ⊥BC ,BD=CD ,∴B 点,C 点关于AD 对称,如图,过C 作CF ⊥AB 于F ,交AD 于E ,则CF=BE+FF 的最小值,根据勾股定理得,AD=12,利用等面积法得:AB ⋅CF=BC ⋅AD ,∴CF=BC AD AB ⋅=101213⨯=12013故答案为12013. 点睛:本题主要考查的是翻折的性质、垂线段最短、勾股定理的应用及三角形面积的等积法.明确当CF ⊥AB 时,CF 有最小值是解题的关键.20.等腰直角三角形【解析】根据非负数的意义,由()22220c a b a b --+-=,可知222c a b =+,a=b ,可知此三角形是等腰直角三角形.故答案为:等腰直角三角形.点睛:此题主要考查了三角形形状的确定,根据非负数的性质,可分别得到关系式,然后结合勾股定理的逆定理知是直角三角形,然后由a-b=0得到等腰直角三角形,比较容易,关键是利用非负数的性质得到关系式. 三、解答题21.(1)213;(2)83;(3)5.5秒或6秒或6.6秒【分析】(1)根据点P 、Q 的运动速度求出AP ,再求出BP 和BQ ,用勾股定理求得PQ 即可; (2)由题意得出BQ BP =,即28t t =-,解方程即可;(3)当点Q 在边CA 上运动时,能使BCQ ∆成为等腰三角形的运动时间有三种情况: ①当CQ BQ =时(图1),则C CBQ ∠=∠,可证明A ABQ ∠=∠,则BQ AQ =,则CQ AQ =,从而求得t ;②当CQ BC =时(图2),则12BC CQ +=,易求得t ;③当BC BQ =时(图3),过B 点作BE AC ⊥于点E ,则求出BE ,CE ,即可得出t .【详解】(1)解:(1)224BQ cm =⨯=,8216BP AB AP cm =-=-⨯=,90B ∠=︒,222246213()PQ BQ BP cm =+=+=;(2)解:根据题意得:BQ BP =,即28t t =-,解得:83t =; 即出发时间为83秒时,PQB ∆是等腰三角形;(3)解:分三种情况:①当CQ BQ =时,如图1所示:则C CBQ ∠=∠,90ABC ∠=︒,90CBQ ABQ ∴∠+∠=︒,90A C ∠+∠=︒,A ABQ ∴∠=∠BQ AQ ∴=,5CQ AQ ∴==,11BC CQ ∴+=,112 5.5t ∴=÷=秒.②当CQ BC =时,如图2所示:则12BC CQ +=1226t ∴=÷=秒.③当BC BQ =时,如图3所示:过B 点作BE AC ⊥于点E , 则68 4.8()10AB BC BE cm AC ⨯=== 22 3.6CE BC BE cm ∴=-=,27.2CQ CE cm ∴==,13.2BC CQ cm ∴+=,13.22 6.6t ∴=÷=秒.由上可知,当t 为5.5秒或6秒或6.6秒时,BCQ ∆为等腰三角形.【点睛】本题考查了勾股定理、三角形的面积以及等腰三角形的判定和性质;本题有一定难度,注意分类讨论思想的应用.22.(1)见详解(2)①结论:222BD FC DF +=,证明见详解②35【分析】(1)根据SAS ,只要证明BAD CAE ∠=∠即可解决问题;(2)①结论:222BD FC DF +=.连接EF ,进一步证明90ECF ∠=︒,DF EF =,再利用勾股定理即可得证;②过点A 作AG BC ⊥于点G ,在Rt ADG 中求出AG 、DG 即可求解.【详解】解:(1)∵AE AD ⊥∴90DAC CAE ∠+∠=︒∵90BAC ∠=︒∴90DAC BAD ∠+∠=︒∴BAD CAE ∠=∠∴在ABD △和ACE △中AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩∴ABD △≌ACE △()SAS(2)①结论:222BD FC DF +=证明:连接EF ,如图:∵ABD △≌ACE △∴B ACE ∠=∠,BD CE =∴90ECF BCA ACE BCA B ∠=∠+∠=∠+∠=︒∴222FC CE EF +=∴222FC BD EF +=∵AF 平分DAE ∠∴DAF EAF ∠=∠∴在DAF △和EAF △中AD AE DAF EAF AF AF =⎧⎪∠=∠⎨⎪=⎩∴DAF △≌EAF △()SAS∴DF EF =∴222FC BD DF +=即222BD FC DF +=②过点A 作AG BC ⊥于点G ,如图:∵由①可知222223425DF BD FC =+=+=∴5DF =∴35412BC BD DF FC =++=++=∵AB AC =,AG BC ⊥ ∴1112622BG AG BC ===⨯= ∴633DG BG BD =-=-=∴在Rt ADG 中,22223635AD DG AG =+=+=故答案是:(1)见详解(2)①结论:222BD FC DF +=,证明见详解②35【点睛】本题考查了全等三角形的判定和性质、直角三角形的判定和性质以及角平分线的性质.综合性较强,属中档题,学会灵活应用相关知识点进行推理证明.23.(1)见解析;(2)BD 2+AD 2=2CD 2;(3)AB =2+4.【分析】(1)根据等腰直角三角形的性质证明△ACE ≌△BCD 即可得到结论;(2)利用全等三角形的性质及勾股定理即可证得结论;(3)连接EF ,设BD =x ,利用(1)、(2)求出EF=3x ,再利用勾股定理求出x ,即可得到答案.【详解】(1)证明:∵△ACB 和△ECD 都是等腰直角三角形∴AC =BC ,EC =DC ,∠ACB =∠ECD =90°∴∠ACB ﹣∠ACD =∠ECD ﹣∠ACD∴∠ACE =∠BCD ,∴△ACE ≌△BCD (SAS ),∴AE =BD .(2)解:由(1)得△ACE ≌△BCD ,∴∠CAE =∠CBD ,又∵△ABC 是等腰直角三角形,∴∠CAB =∠CBA =∠CAE =45°,∴∠EAD =90°,在Rt △ADE 中,AE 2+AD 2=ED 2,且AE =BD ,∴BD 2+AD 2=ED 2,∵ED =2CD , ∴BD 2+AD 2=2CD 2,(3)解:连接EF ,设BD =x ,∵BD :AF =1:22,则AF =22x ,∵△ECD 都是等腰直角三角形,CF ⊥DE ,∴DF =EF ,由 (1)、(2)可得,在Rt △FAE 中,EF =22AF AE +=22(22)x x +=3x ,∵AE 2+AD 2=2CD 2,∴222(223)2(36)x x x ++=+,解得x =1,∴AB =22+4.【点睛】此题考查三角形全等的判定及性质,等腰直角三角形的性质,勾股定理.24.作图见解析,325【分析】作A 点关于BC 的对称点A',A'A 与BC 交于点H ,再作A'M ⊥AB 于点M ,与BC 交于点N ,此时AN+MN 最小,连接AN ,首先用等积法求出AH 的长,易证△ACH ≌△A'NH ,可得A'N=AC=4,然后设NM=x ,利用勾股定理建立方程求出NM 的长,A'M 的长即为AN+MN 的最小值.【详解】如图,作A 点关于BC 的对称点A',A'A 与BC 交于点H ,再作A'M ⊥AB 于点M ,与BC 交于点N ,此时AN+MN 最小,最小值为A'M 的长.连接AN ,在Rt △ABC 中,AC=4,AB=8,∴∵11AB AC=BC AH 22⋅⋅∴∵CA ⊥AB ,A 'M ⊥AB ,∴CA ∥A 'M∴∠C=∠A 'NH ,由对称的性质可得AH=A 'H ,∠AHC=∠A'HN=90°,AN=A'N在△ACH 和△A'NH 中,∵∠C=∠A 'NH ,∠AHC=∠A'HN ,AH=A 'H ,∴△ACH ≌△A'NH (AAS )∴A'N=AC=4=AN ,设NM=x ,在Rt △AMN 中,AM 2=AN 2-NM 2=222416-=-x x在Rt △AA'M 中,,A 'M=A 'N+NM=4+x∴AM 2=AA '2-A 'M 2=()224-+⎝⎭x∴()2224=16-+-⎝⎭x x 解得125x = 此时AN MN +的最小值=A'M=A'N+NM=4+125=325 【点睛】本题考查了最短路径问题,正确作出辅助线,利用勾股定理解直角三角形是解题的关键.25.(1)见解析;(2)26;(3)3a + 【分析】(1)由∠ACB=∠DCE 可得出∠ACD=∠BCE ,再利用SAS 判定△ACD ≌△BCE ,即可得到AD=BE ;(2)由等腰直角三角形的性质可得CM=12DE ,同(1)可证△ACD ≌△BCE ,得到AD=BE ,然后可求AE 的长,再判断∠AEB=90°,即可用勾股定理求出AB 的长;(3)由等腰三角形的性质易得∠CAB=∠CBA=∠CDE=∠CED=30°,根据30度所对的直角边是斜边的一半可求出,然后利用三角形外角性质推出∠BEN=60°,在Rt △BEN中即可求出BE ,由于BE=AD ,所以利用AE=AD+DE 即可得出答案.【详解】证明:(1)∵∠ACB=∠DCE∴∠ACB-∠BCD=∠DCE-∠BCD ,即∠ACD=∠BCE在△ACD 和△BCE 中,AC=BC ACD=BCE CD=CE ⎧⎪∠∠⎨⎪⎩∴△ACD ≌△BCE (SAS )∴AD=BE(2)∵∠DCE=90°,CD=CE ,∴△DCE 为等腰直角三角形,∵CM ⊥DE ,∴CM 平分DE ,即M 为DE 的中点∴CM=12DE , ∴DE=2CM=14,∵∠ACB=∠DCE∴∠ACB-∠BCD=∠DCE-∠BCD ,即∠ACD=∠BCE在△ACD 和△BCE 中,AC=BC ACD=BCE CD=CE ⎧⎪∠∠⎨⎪⎩∴△ACD ≌△BCE (SAS )∴AD=BE=10,∠CAD=∠CBE∴AE=AD+DE=24如图,设AE ,BC 交于点H ,在△ACH 和△BEH 中,∠CAH+∠ACH=∠EBH+∠BEH ,而∠CAH=∠EBH ,∴∠BEH=∠ACH=90°,∴△ABE 为直角三角形由勾股定理得2222AB=AE BE =2410=26++(3)由(1)(2)可得△ACD ≌△BCE ,∴∠DAC=∠EBC,∵△ACB,△DCE都是等腰三角形,∠ACB=∠DCE=120°∴∠CAB=∠CBA=∠CDE=∠CED=30°,∵CM⊥DE,∴∠CMD=90°,DM=EM,∴CD=CE=2CM,CM∴∵∠BEN=∠BAE+∠ABE=∠BAE+∠EBC+∠CBA=∠BAE+∠DAC+∠CBA=30°+30°=60°,∴∠NBE=30°,∴BE=2EN,EN∵BN=a∴=AD∴+【点睛】本题考查全等三角形的旋转模型,掌握此模型的特点得到全等三角形是关键,其中还需要用到等腰三角形三线合一与30度所对的直角边的性质,熟练掌握这些基本知识点是关键. 26.(1)y=-2x+12,点C坐标(4,4);(2)画图形见解析,点D坐标(-4,0);(3)点P的坐标(143-,643)【分析】(1)由已知的等式可求得m、n的值,于是可得直线AB的函数解析式,把点C的坐标代入可求得a的值,由此即得答案;(2)画出图象,由CD⊥AB知1AB CDk k=-可设出直线CD的解析式,再把点C代入可得CD的解析式,进一步可求D点坐标;(3)如图2,取点F(-2,8),易证明CE⊥CF且CE=CF,于是得∠PEC=45°,进一步求出直线EF的解析式,再与直线AB联立求两直线的交点坐标,即为点P.【详解】解:(1n﹣12)2=0,∴m=6,n=12,∴A(6,0),B(0,12),设直线AB解析式为y=kx+b,则有1260bk b=⎧⎨+=⎩,解得212kb=-⎧⎨=⎩,∴直线AB解析式为y=-2x+12,∵直线AB过点C(a,a),∴a=-2a+12,∴a=4,∴点C坐标(4,4).(2)过点C作CD⊥AB交x轴于点D,如图1所示,设直线CD解析式为y=12x+b′,把点C(4,4)代入得到b′=2,∴直线CD解析式为y=12x+2,∴点D坐标(-4,0).(3)如图2中,取点F(-2,8),作直线EF交直线AB于P,图2∵直线EC解析式为y=32x-2,直线CF解析式为y=-23x+203,∵32×(-23)=-1,∴直线CE⊥CF,∵EC=13CF=13∴EC=CF,∴△FCE是等腰直角三角形,∴∠FEC=45°,∵直线FE解析式为y=-5x-2,由21252y x y x =-+⎧⎨=--⎩解得143643x y ⎧=-⎪⎪⎨⎪=⎪⎩, ∴点P 的坐标为(1464,33-). 【点睛】本题是一次函数的综合题,综合考查了坐标系中两直线的垂直问题、两条直线的交点问题和求特殊角度下的直线解析式,并综合了勾股定理和等腰直角三角形的判定和性质,解题的关键是熟知坐标系中两直线垂直满足121k k =-,一次函数的交点与对应方程组的解的关系.其中,第(3)小题是本题的难点,寻找到点F (-2,8)是解题的突破口.27.(1)(0,;(2)DF OE =;(3)9+【分析】(1)由等边三角形的性质得出6OB =,12AB AC BC ===,由勾股定理得出OA ==A 的坐标;(2)由等边三角形的性质得出AD AE =,AF AO =,60FAO DAE ∠=∠=︒,证出FAD OAE ∠=∠,由SAS 证明FAD OAE ∆≅∆,即可得出DF OE =;(3)证出90AGO ∠=︒,求出9AG =,由全等三角形的性质得出AOE AFD ∠=∠,证出6090FDO AFD AOD ∠=∠+︒+∠=︒,由等边三角形的性质得12DG OF ==即可得出答案.【详解】解:(1)ABC ∆是等边三角形,点0()6,B -,点(6,0)C ,6OB ∴=,12AB AC BC ===,OA === ∴点A 的坐标为(0,;(2)DF OE =;理由如下:ADE ∆,AFO ∆均为等边三角形,AD AE ∴=,AF AO =,60FAO DAE ∠=∠=︒,FAD OAE ∴∠=∠,在FAD ∆和OAE ∆中,AF AO FAD OAE AD AE =⎧⎪∠=∠⎨⎪=⎩,()FAD OAE SAS ∴∆≅∆,DF OE ∴=;(3)60AOF ∠=︒,30FOB ∴∠=︒,60ABO ∠=︒,90AGO ∴∠=︒,AFO ∆是等边三角形,AO =·sin 609AG OA ∴=︒==, FAD OAE ∆≅∆,AOE AFD ∴∠=∠,30DOE AOD AOE ∠=︒=∠+∠,30AOD AFD ∴∠+∠=︒,FDO AFD FAO AOD ∠=∠+∠+∠,60603090FDO AFD AOD ∴∠=∠+︒+∠=︒+︒=︒,AG OF ⊥,AOF ∆为等边三角形,G ∴为斜边OF 的中点,1122DG OF ∴==⨯= ADG ∴∆的周长9AG AD DG =++=+【点睛】本题是三角形综合题目,考查了等边三角形的性质、勾股定理、坐标与图形性质、全等三角形的判定与性质、三角函数等知识;本题综合性强,有一定难度,熟练掌握等边三角形的性质,证明三角形全等是解题的关键.28.(1),CM ME CM EM =⊥;(2)见解析;(3)CM =【解析】【分析】(1)证明ΔFME ≌ΔAMH ,得到HM=EM ,根据等腰直角三角形的性质可得结论. (2)根据正方形的性质得到点A 、E 、C 在同一条直线上,利用直角三角形斜边上的中线等于斜边的一半可知. (3)如图3中,连接EC ,EM ,由(1)(2)可知,△CME 是等腰直角三角形,利用等腰直角三角形的性质解决问题即可.【详解】解:(1)结论:CM =ME ,CM ⊥EM .理由:∵AD ∥EF ,AD ∥BC ,∴BC ∥EF ,∴∠EFM =∠HBM ,在△FME 和△BMH 中,EFM MBH FM BMFME BMH ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△FME ≌△BMH (ASA ),∴HM =EM ,EF =BH ,∵CD =BC ,∴CE =CH ,∵∠HCE =90°,HM =EM ,∴CM =ME ,CM ⊥EM .(2)如图2,连接BD ,∵四边形ABCD 和四边形EDGF 是正方形,∴45,45FDE CBD ︒︒∠=∠=∴点B E D 、、在同一条直线上,∵90,90BCF BEF ︒︒∠=∠=,M 为BF 的中点, ∴12CM BF =,12EM BF =,∴CM ME =, ∵45EFD ∠=︒,∴135EFC ∠=︒,∵CM FM ME ==,∴,MCF MFC MFE MEF ∠=∠∠=∠∴135MCF MEF ∠+∠=︒,∴36013513590CME ∠=︒-︒-︒=︒,∴CM ME ⊥.(3)如图3中,连接EC ,EM .由(1)(2)可知,△CME 是等腰直角三角形,∵22EC 26210+=∴CM =EM =25【点睛】本题考查的是正方形的性质、全等三角形的判定定理和性质定理以及直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.29.(1)∠BGD =120°;(2)见解析;(3)S 四边形ABCD =3【解析】【分析】(1)只要证明△DAE ≌△BDF ,推出∠ADE=∠DBF ,由∠EGB=∠GDB+∠GBD=∠GDB+∠ADE=60°,推出∠BGD=180°-∠BGE=120°;(2)如图3中,延长GE 到M ,使得GM=GB ,连接BD 、CG .由△MBD ≌△GBC ,推出DM=GC ,∠M=∠CGB=60°,由CH ⊥BG ,推出∠GCH=30°,推出CG=2GH ,由CG=DM=DG+GM=DG+GB ,即可证明2GH=DG+GB ;(3)解直角三角形求出BC 即可解决问题;【详解】(1)解:如图1﹣1中,∵四边形ABCD 是菱形,∴AD =AB ,∵∠A =60°,∴△ABD 是等边三角形,∴AB =DB ,∠A =∠FDB =60°,在△DAE 和△BDF 中,AD BD A BDF AE DF =⎧⎪∠=∠⎨⎪=⎩,∴△DAE ≌△BDF ,∴∠ADE =∠DBF ,∵∠EGB =∠GDB+∠GBD =∠GDB+∠ADE =60°,∴∠BGD =180°﹣∠BGE =120°.(2)证明:如图1﹣2中,延长GE 到M ,使得GM =GB ,连接CG .∵∠MGB =60°,GM =GB ,∴△GMB 是等边三角形,∴∠MBG =∠DBC =60°,∴∠MBD =∠GBC ,MB GB MBD GBC BD BC =⎧⎪∠=∠⎨⎪=⎩,∴△MBD ≌△GBC ,∴DM =GC ,∠M =∠CGB =60°,∵CH ⊥BG ,∴∠GCH =30°,∴CG =2GH ,∵CG =DM =DG+GM =DG+GB ,∴2GH =DG+GB .(3)如图1﹣2中,由(2)可知,在Rt △CGH 中,CH =GCH =30°,∴tan30°=GH CH, ∴GH =4,∵BG =6,∴BH =2, 在Rt △BCH 中,BC=∵△ABD ,△BDC 都是等边三角形,∴S 四边形ABCD =2•S △BCD =2×4×(2=. 【点睛】本题考查菱形的性质、等边三角形的判定和性质、全等三角形的判定和性质,直角三角形30度角性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.30.(1)见解析(2) 见解析(3) 见解析(4)5【解析】【分析】(1)由D 是AB 中点知AD =BD ,结合DG =DF ,∠ADG =∠BDF 即可得证;(2)连接EG .根据垂直平分线的判定定理即可证明.(3)由△ADG ≌△BDF ,推出∠GAB =∠B ,推出∠EAG =90°,可得EF 2=(8-x )2+y 2,EG 2=x 2+(6-y )2,根据EF =EG ,可得(8-x )2+y 2=x 2+(6-y )2,由此即可解决问题. (4)由EF知x =4时,取得最小值.【详解】解:(1)∵D 是边AB 的中点,∴AD =BD ,∵AD BD ADG BDF DG DF =⎧⎪∠=∠⎨⎪=⎩,∴△ADG ≌△BDF (SAS );(2)如图,连接EG .∵DG =FD ,DF ⊥DE ,∴DE 垂直平分FG .∴EF =EG .(3)∵D 是AB 中点,∴AD =DB ,∵△ADG ≌△BDF ,∴∠GAB =∠B∵AB =10,BC =6,AC =8.∴2AB = 2BC + 2AC∴∠ACB =90°,∴∠CAB +∠B =90°,∠CAB +∠GAB =90°,∴∠EAG =90°,∵AE =x ,AC =8,∴EC =8-x ,∵∠ACB =90°,∴EF 2=(8-x )2+y 2,∵△ADG ≌△BDF ,∴AG =BF ,∵CF =y ,BC =6,∴AG =BF =6-y ,∵∠EAG =90°,∴EG 2=x 2+(6-y )2,∵EF =EG ,∴(8-x )2+y 2=x 2+(6-y )2,∴y =473x -,(74<x <254).(4)∵EC =8-x ,CF =y =43x -73,∴EF=== ∵(x -4)2≥0, ∴225(4)259x -+≥25, ∴当x =4时,EF 取得最小值,最小值为5.故线段EF 的最小值为5.【点睛】本题是三角形综合题,主要考查勾股定理以及逆定理、全等三角形的判定和性质等知识,解题的关键学会添加常用辅助线,构造直角三角形解决问题,学会用方程的思想思考问题,属于中考压轴题.。
八年级初二数学勾股定理知识归纳总结含答案
八年级初二数学勾股定理知识归纳总结含答案一、选择题1.如图所示,在中,,,.分别以,,为直径作半圆(以为直径的半圆恰好经过点,则图中阴影部分的面积是( )A .4B .5C .7D .6 2.以线段a 、b 、c 的长为边长能构成直角三角形的是( ) A .a =3,b=4,c=6B .a =1,b=2,c=3C .a =5,b=6,c=8D .a =3,b=2,c=53.ABC 三边长为a 、b 、c ,则下列条件能判断ABC 是直角三角形的是( ) A .a =7,b =8,c =10B .a =41,b =4,c =5C .a =3,b =2,c =5D .a =3,b =4,c =6 4.下列结论中,矩形具有而菱形不一定具有的性质是( ) A .内角和为360°B .对角线互相平分C .对角线相等D .对角线互相垂直 5.已知△ABC 的三边分别是6,8,10,则△ABC 的面积是( )A .24B .30C .40D .48 6.如图,在等腰Rt △ABC 中,∠C =90°,AC =7,∠BAC 的角平分线AD 交BC 于点D ,则点D 到AB 的距离是( )A .3B .4C .7(21)D .7(21)7.如图, 在ABC 中,CE 平分ACB ∠,CF 平分ABC 的外角ACD ∠,且EF //BC 交AC 于M ,若CM 4=,则22CE CF +的值为( )A.8 B.16 C.32 D.648.《九章算术》是我国古代第一部数学专著,它的出现标志中国古代数学形成了完整的体系.“折竹抵地”问题源自《九章算术》中:“今有竹高一丈,末折抵地,去本四尺,问折者高几何?”意思是:一根竹子,原高一丈,一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部4尺远(如图),则折断后的竹子高度为多少尺?(1丈=10尺)()A.3 B.5 C.4.2 D.49.已知三组数据:①2,3,4;②3,4,5;③1,2,5,分别以每组数据中的三个数为三角形的三边长,能构成直角三角形的是()A.②B.①②C.①③D.②③10.如图,点A和点B在数轴上对应的数分别是4和2,分别以点A和点B为圆心,线段AB的长度为半径画弧,在数轴的上方交于点C.再以原点O为圆心,OC为半径画弧,与数轴的正半轴交于点M,则点M对应的数为()36A.3.5 B.23C.13D.二、填空题11.将一副三角板按如图所示摆放成四边形ABCD,发现只要知道其中一边的长就可以求出其它各边的长,若已知AD=32,则AB的长为__________.12.如图,在矩形ABCD 中,AB =6,AD =8,矩形内一动点P 使得S △PAD =13S 矩形ABCD ,则点P 到点A 、D 的距离之和PA +PD 的最小值为_____.13.如图,四边形ABDC 中,∠ABD =120°,AB ⊥AC ,BD ⊥CD ,AB =4,CD =43,则该四边形的面积是______.14.若ABC ∆为直角三角形,90B ∠=︒,6AB =,8BC =,点D 在斜边AC 上,且2AC BD =,则AD 的长为__________.15.如图,在Rt △ABC 中,∠B=90°,以AC 为斜边向外作等腰直角三角形COA ,已知BC=8,OB=102,则另一直角边AB 的长为__________.16.以直角三角形的三边为边向外作正方形P ,Q ,K ,若S P =4,S Q =9,则K S =___17.已知,在△ABC 中,∠C=90°,AC=BC=7,D 是AB 的中点,点E 在AC 上,点F 在BC 上,DE=DF ,若BF=4,则EF=_______18.在Rt △ABC 中,直角边的长分别为a ,b ,斜边长c ,且a +b 5c =5,则ab 的值为______.19.如图,在△ABC 中,∠C =90°,∠ABC =45°,D 是BC 边上的一点,BD =2,将△ACD 沿直线AD 翻折,点C 刚好落在AB 边上的点E 处.若P 是直线AD 上的动点,则△PEB 的周长的最小值是________.20.如图,在Rt ABC ∆中,90ACB ∠=,2AC BC ==,D 为BC 边上一动点,作如图所示的AED ∆使得AE AD =,且45EAD ∠=,连接EC ,则EC 的最小值为__________.三、解答题21.如图,△ABC 中AC =BC ,点D ,E 在AB 边上,连接CD ,CE .(1)如图1,如果∠ACB =90°,把线段CD 逆时针旋转90°,得到线段CF ,连接BF , ①求证:△ACD ≌△BCF ;②若∠DCE =45°, 求证:DE 2=AD 2+BE 2;(2)如图2,如果∠ACB =60°,∠DCE =30°,用等式表示AD ,DE ,BE 三条线段的数量关系,说明理由.22.如图所示,已知ABC ∆中,90B ∠=︒,16AB cm =,20AC cm =,P 、Q 是ABC ∆的边上的两个动点,其中点P 从点A 开始沿A B →方向运动,且速度为每秒1cm ,点Q 从点B 开始沿B C A →→方向运动,且速度为每秒2cm ,它们同时出发,设出发的时间为ts .(1)则BC =____________cm ;(2)当t 为何值时,点P 在边AC 的垂直平分线上?此时CQ =_________?(3)当点Q 在边CA 上运动时,直接写出使BCQ ∆成为等腰三角形的运动时间.23.Rt ABC ∆中,90CAB ∠=,4AC =,8AB =,M N 、分别是边AB 和CB 上的动点,在图中画出AN MN +值最小时的图形,并直接写出AN MN +的最小值为 .24.已知:如图,在ABC ∆中,90ACB ∠=,以点B 为圆心,BC 的长为半径画弧,交线段AB 于点D ,以点A 为圆心,AD 长为半径画弧,交线段AC 与点E .(1)根据题意用尺规作图补全图形(保留作图痕迹);(2)设,BC m AC n ==①线段AD 的长度是方程2220x mx n +-=的一个根吗?并说明理由.②若线段2AD EC =,求m n的值.25.如图,己知Rt ABC ∆,90ACB ∠=︒,30BAC ∠=︒,斜边4AB =,ED 为AB 垂直平分线,且23DE =,连接DB ,DA .(1)直接写出BC =__________,AC =__________;(2)求证:ABD ∆是等边三角形;(3)如图,连接CD ,作BF CD ⊥,垂足为点F ,直接写出BF 的长;(4)P 是直线AC 上的一点,且13CP AC =,连接PE ,直接写出PE 的长. 26.在ABC ∆中,AB AC =,CD 是AB 边上的高,若10,45AB BC ==.(1)求CD 的长.(2)动点P 在边AB 上从点A 出发向点B 运动,速度为1个单位/秒;动点Q 在边AC 上从点A 出发向点C 运动,速度为v 个单位秒()v>1,设运动的时间为()0t t >,当点Q 到点C 时,两个点都停止运动.①若当2v =时,CP BQ =,求t 的值.②若在运动过程中存在某一时刻,使CP BQ =成立,求v 关于t 的函数表达式,并写出自变量t 的取值范围.27.如图1, △ABC 和△CDE 均为等腰三角形,AC=BC, CD=CE, AC>CD, ∠ACB=∠DCE=a ,且点A、D、E在同一直线上,连结BE.(1)求证: AD=BE.(2)如图2,若a=90°,CM⊥AE于E.若CM=7, BE=10, 试求AB的长.(3)如图3,若a=120°, CM⊥AE于E, BN⊥AE于N, BN=a, CM=b,直接写出AE的值(用a, b 的代数式表示).28.如图1,△ABC中,CD⊥AB于D,且BD : AD : CD=2 : 3 : 4,(1)试说明△ABC是等腰三角形;(2)已知S△ABC=40cm2,如图2,动点M从点B出发以每秒2cm的速度沿线段BA向点A 运动,同时动点N从点A出发以每秒1cm速度沿线段AC向点C运动,当其中一点到达终点时整个运动都停止. 设点M运动的时间为t(秒),①若△DMN的边与BC平行,求t的值;②若点E是边AC的中点,问在点M运动的过程中,△MDE能否成为等腰三角形?若能,求出t的值;若不能,请说明理由.图1 图2 备用图29.如图1,在平面直角坐标系中,直线AB经过点C(a,a),且交x轴于点A(m,0),交y轴于点B(0,n),且m,n6m n﹣12)2=0.(1)求直线AB的解析式及C点坐标;(2)过点C作CD⊥AB交x轴于点D,请在图1中画出图形,并求D点的坐标;(3)如图2,点E(0,﹣2),点P为射线AB上一点,且∠CEP=45°,求点P的坐标.30.(1)如图1,在Rt△ABC和Rt△ADE中,AB=AC,AD=AE,且点D在BC边上滑动(点D不与点B,C重合),连接EC,①则线段BC,DC,EC之间满足的等量关系式为;②求证:BD2+CD2=2AD2;(2)如图2,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】先利用勾股定理计算BC的长度,然后阴影部分的面积=以AB为直径的半圆面积+以BC为直径的半圆面积+-以AC为直径的半圆面积.【详解】解:在中∵,,∴,∴BC=3,∴阴影部分的面积=以AB为直径的半圆面积+以BC为直径的半圆面积+-以AC为直径的半圆面积=6.故选D.【点睛】本题考查扇形面积的计算和勾股定理.在本题中解题关键是用重叠法去表示阴影部分的面积. 2.B解析:B【分析】根据勾股定理的逆定理对四个选项进行逐一分析即可.【详解】A 、222346+≠,C 、222568+≠,D 、2222+≠,故错误;B 、22213+==,能构成直角三角形,本选项正确. 故选B .【点睛】本题考查了勾股定理的知识点,解题的关键是熟练的掌握勾股定理的定理与运算.3.B解析:B【分析】根据勾股定理逆定理对每个选项一一判断即可.【详解】A 、∵72+82≠102,∴△ABC 不是直角三角形;B 、∵52+42=)2,∴△ABC 是直角三角形;C 、∵2222,∴△ABC 不是直角三角形;D 、∵32+42≠62,∴△ABC 不是直角三角形;故选:B .【点睛】本题主要考查勾股定理逆定理,熟记定理是解题关键.4.C解析:C【分析】矩形与菱形相比,菱形的四条边相等、对角线互相垂直;矩形四个角是直角,对角线相等,由此结合选项即可得出答案.【详解】A 、菱形、矩形的内角和都为360°,故本选项错误;B 、对角互相平分,菱形、矩形都具有,故本选项错误;C 、对角线相等菱形不具有,而矩形具有,故本选项正确D 、对角线互相垂直,菱形具有而矩形不具有,故本选项错误,故选C .【点睛】本题考查了菱形的性质及矩形的性质,熟练掌握矩形的性质与菱形的性质是解题的关键.5.A解析:A【解析】已知△ABC 的三边分别为6,10,8,由62+82=102,即可判定△ABC 是直角三角形,两直角边是6,8,所以△ABC 的面积为12×6×8=24,故选A . 6.C解析:C【分析】过点D 作DE ⊥AB 于点E ,根据角平分线的性质定理,可得:DE =DC =x ,则BE =72-x ,进而可得到AE =AC =7,在Rt △BDE 中,应用勾股定理即可求解.【详解】过点D 作DE ⊥AB 于点E ,则∠AED =90°,AE =AC =7,∵△ABC 是等腰直角三角形,∴BC =AC =7,AB =22AC +BC =72,在Rt △AED 和Rt △ACD 中,AE =AC ,DE =DC ,∴Rt △AED ≌Rt △ACD ,∴AE =AC =7,设DE =DC =x ,则BD =7-x ,在Rt △BDE 中,222BE +DE =BD ,即:()()22272-77-x x +=, 解得: 7(21)x =-,故选:C .【点睛】本题考查角平分线的性质定理,全等三角形的判定与性质,勾股定理等,运用方程思想是解题的关键.7.D解析:D【分析】根据角平分线的定义推出△ECF 为直角三角形,然后根据勾股定理求得CE 2+CF 2=EF 2.【详解】∵CE 平分∠ACB ,CF 平分∠ACD ,∴∠ACE=12∠ACB ,∠ACF=12∠ACD ,即∠ECF=12(∠ACB+∠ACD )=90°, 又∵EF ∥BC ,CE 平分∠ACB ,CF 平分∠ACD ,∴∠ECB=∠MEC=∠ECM ,∠DCF=∠CFM=∠MCF ,∴CM=EM=MF=4,EF=8,由勾股定理可知CE 2+CF 2=EF 2=64.故选:D .【点睛】此题考查角平分线的定义,直角三角形的判定,勾股定理的运用,解题关键在于掌握各性质定义.8.C解析:C【分析】根据题意可设折断处离地面的高度OA 是x 尺,折断处离竹梢AB 是(10-x )尺,结合勾股定理即可得出折断处离地面的高度.【详解】设折断处离地面的高度OA 是x 尺,则折断处离竹梢AB 是(10-x )尺,由勾股定理可得:222=OA OB AB +即:()2224=10x x +-,解得:x =4.2故折断处离地面的高度OA 是4.2尺.故答案选:C .【点睛】本题主要考查直角三角形勾股定理的应用,解题的关键是熟练运用勾股定理.9.D解析:D【分析】根据三角形勾股定理的逆定理符合222a b c +=即为直角三角形 ,所以将数据分别代入,符合即为能构成直角三角形.【详解】由题意得:①2222+3=134≠ ;②2223+4=25=5 ;③()2221+2=5=5 , 所以能构成直角三角形的是②③.故选D .【点睛】 考查直角三角形的构成,学生熟悉掌握勾股定理的逆定理是本题解题的关键,利用勾股定理的逆定理判断是否能够成直角三角形.10.B解析:B【分析】如图,作CD ⊥AB 于点D ,由题意可得△ABC 是等边三角形,从而可得BD 、OD 的长,然后根据勾股定理即可求出CD 与OC 的长,进而可得OM 的长,于是可得答案.【详解】解:∵点A 和点B 在数轴上对应的数分别是4和2,∴OB=2,OA=4,如图,作CD ⊥AB 于点D ,则由题意得:CA=CB=AB=2,∴△ABC 是等边三角形,∴BD=AD=112AB =, ∴OD=OB+BD=3,223CD BC BD =-=,∴()22223323OC OD CD =+=+=,∴OM=OC=23,∴点M 对应的数为23.故选:B .【点睛】本题考查了实数与数轴、等边三角形的判定与性质以及勾股定理等知识,属于常见题型,正确理解题意、熟练掌握上述知识是解题的关键.二、填空题11.3【分析】利用勾股定理求出AC=6,在Rt △ABC 中,∠BAC=30°,得到12BC AB =,再利用勾股定理得到222AC BC AB +=,即可求出AB .【详解】在Rt △ACD 中,CD=AD=∴6=,在Rt △ABC 中,∠BAC=30°, ∴12BC AB =, ∵222AC BC AB +=, ∴22216()2AB AB +=,解得AB=故答案为:【点睛】此题考查勾股定理,直角三角形30度角所对的直角边等于斜边的一半,正确理解勾股定理的三边的数量关系是解题的关键.12.【分析】根据S △PAD =13S 矩形ABCD ,得出动点P 在与AD 平行且与AD 的距离是4的直线l 上,作A 关于直线l 的对称点E ,连接DE ,BE ,则DE 的长就是所求的最短距离.然后在直角三角形ADE 中,由勾股定理求得DE 的值,即可得到PA+PD 的最小值.【详解】设△PAD 中AD 边上的高是h .∵S △PAD =13S 矩形ABCD , ∴12 AD •h =13AD •AB , ∴h =23AB =4, ∴动点P 在与AD 平行且与AD 的距离是4的直线l 上,如图,作A 关于直线l 的对称点E ,连接BE ,DE ,则DE 的长就是所求的最短距离.在Rt △ADE 中,∵AD =8,AE =4+4=8,DE 22228882AE AD ++=即PA +PD 的最小值为2 .故答案2.【点睛】本题主要考查了轴对称-最短路线问题,三角形的面积,矩形的性质,勾股定理,两点之间线段最短的性质.得出动点P 所在的位置是解题的关键.13.163【分析】延长CA 、DB 交于点E ,则60C ∠=°,30E ∠=︒,在Rt ABE ∆中,利用含30角的直角三角形的性质求出28BE AB ==,根据勾股定理求出43AE =.同理,在Rt DEC ∆中求出283CE CD ==2212DE CE CD =-=,然后根据CDE ABE ABDC S S S ∆∆=-四边形,计算即可求解.【详解】解:如图,延长CA 、DB 交于点E ,∵四边形ABDC 中,120ABD ∠=︒,AB AC ⊥,BD CD ⊥,∴60C ∠=°,∴30E ∠=︒,在Rt ABE ∆中,4AB =,30E ∠=︒,∴28BE AB ==,2243AE BE AB ∴-=.在Rt DEC ∆中,30E ∠=︒,43CD =283CE CD ∴==2212DE CE CD ∴=-, ∴1443832ABE S ∆=⨯⨯= 143122432CDE S ∆=⨯= 24383=163CDE ABE ABDC S S S ∆∆∴=-=四边形. 故答案为:3【点睛】本题考查了勾股定理,含30角的直角三角形的性质,图形的面积,准确作出辅助线构造直角三角形是解题的关键.14.5【分析】在直角ABC 中,依据勾股定理求出AC 的长度,再算出BD ,过点B 作BE AC ⊥于点E ,通过等面积法求出BE ,得到两个直角三角形,分别运用勾股定理算出AE ED 、,两者相加即为AD 的长.【详解】解:如图,过点B 作BE AC ⊥于点E ,则90BEA ∠=︒,90BED ∠=︒,∵直角ABC 中,90B ∠=︒,6AB =,8BC =, ∴22=10AC AB BC +=,又∵2ABC S AB BC AC BE =⋅=⋅,2AC BD =∴6810BE ⨯=,5BD =,∴=4.8BE ,∵90BEA ∠=︒,90BED ∠=︒ ∴22= 3.6AE AB BE -=,22= 1.4ED BD BE -=,∴5AD AE ED =+=.故答案为:5.【点睛】本题考查了勾股定理,通过作直角三角形斜边上的高,既构造了两个直角三角形求位置线段,又通过等面积法求出了一条直角边的长度,为运用勾股定理求线段创造了条件;故在求线段长时,可以考虑构造直角三角形.15.12【分析】延长BA 至E ,使AE=BC ,并连接OE.证∆BCO ≅∠EAO ,再证三角形BOE 是等腰直角三角形,利用勾股定理可得BE=()()222210210220BO EO +=+=,可得AB=BE-AE.【详解】如图,延长BA 至E ,使AE=BC ,并连接OE.因为三角形COA 是等腰直角三角形所以CO=AO,∠AOC=∠BOC+∠AOB=90°因为∠ABC=90°,∠AOC=90°,所以∠BAO+∠BCO=180°,又∠BAO+∠OAE=180°所以∠BCO=∠OAE所以∆BCO ≅∠EAO所以BO=EO, ∠BOC=∠EOA所以,∠BOE=∠EOA+∠AOB=90°所以三角形BOE 是等腰直角三角形所以BE=()()222210210220BO EO +=+=所以AB=BE-AE=20-8=12故答案为:12【点睛】考核知识点:全等三角形,勾股定理.构造全等三角形是关键.16.5或13【分析】根据已知可得题意中的图是一个勾股图,可得S P +S Q =S K 为从而易求S K .【详解】解:如下图所示,若A=S P=4.B=S Q=9,C=S K,根据勾股定理,可得A+B=C,∴C=13.若A=S P=4.C=S Q=9,B=S K,根据勾股定理,可得A+B=C,∴B=9-4=5.∴S K为5或13.故答案为:5或13.【点睛】本题考查了勾股定理.此题所给的图中,以直角三角形两直角边为边所作的正方形的面积和等于以斜边为边所作的正方形的面积.17.322或11或5或109 5【分析】分别就E,F在AC,BC上和延长线上,分别画出图形,过D作DG⊥AC,DH⊥BC,垂足为G,H,通过构造全等三角形和运用勾股定理作答即可.【详解】解:①过D作DG⊥AC,DH⊥BC,垂足为G,H∴DG∥BC,∠CDG=∠CDH=45°又∵D是AB的中点,∴DG=12 BC同理:DH=12 AC又∵BC=AC∴DG=DH在Rt△DGE和Rt△DHF中DG=DH,DE=DF∴Rt△DGE≌Rt△DHF(HL)∴GE=HF又∵DG=DH,DC=DC∴△GDC≌△FHC∴CG=HC∴CE=GC -GE=CH-HF=CF=AB-BF=3 ∴EF=223332+=②过D 作DG⊥AC,DH⊥BC,垂足为G ,H∴DG∥BC,∠CDG=∠CDH=45°又∵D 是AB 的中点,∴DG=12BC 同理:DH=12AC 又∵BC=AC∴DG=DH在Rt△DGE 和Rt△DHF 中DG=DH,DE=DF ∴Rt△DGE≌Rt△DHF(HL )∴GE=HF又∵DG=DH,DC=DC∴△GDC≌△FHC∴CG=HC∴CE=CF=AC+AE=AB+BF=7+4=11221111112+=③如图,以点D 为圆心,以DF 长为半径画圆交AC 边分别为E 、E ',过点D 作DH⊥AC 于点H ,可知DF DE DE '==,可证△EHD≌△E HD ',CE D CFD '≌,△DHC 为等腰直角三角形,∴∠1+∠2=45° ∴∠EDF=2(∠1+∠2)=90°∴△EDF 为等腰直角三角形 可证AED CFD △△≌∴AE=CF=3,CE=BF=4∴2222435EF CE CF =+=+=④有第③知,EF=5,且△EDF 为等腰直角三角形,∴ED=DF=522,可证△E CF E DE ''∆∽,2223y x +=5252x =+综上可得:422x =∴2222E F DE DF DE '''''=+=1095E F ''= 【点睛】本题考查了全等三角形和勾股定理方面的知识,做出辅助线、运用数形结合思想是解答本题的关键.18.10【分析】先根据勾股定理得出a 2+b 2=c 2,利用完全平方公式得到(a +b )2﹣2ab =c 2,再将a +b =5c =5代入即可求出ab 的值.【详解】解:∵在Rt △ABC 中,直角边的长分别为a ,b ,斜边长c ,∴a 2+b 2=c 2,∴(a+b)2﹣2ab=c2,∵a+b=35,c=5,∴(35)2﹣2ab=52,∴ab=10.故答案为10.【点睛】本题考查勾股定理以及完全平方公式,灵活运用完全平方公式是解题关键.19.222【分析】连接CE,交AD于M,根据折叠和等腰三角形性质得出当P和D重合时,PE+BP的值最小,此时△BPE的周长最小,最小值是BE+PE+PB=BE+CD+DB=BC+BE,先求出BC和BE长,代入求出即可.【详解】如图,连接CE,交AD于M,∵沿AD折叠C和E重合,∴∠ACD=∠AED=90°,AC=AE,∠CAD=∠EAD,∴AD垂直平分CE,即C和E关于AD对称,BD=2,∴2,∴当P和D重合时,PE+BP的值最小,即此时△BPE的周长最小,最小值是BE+PE+PB=BE+CD+DB=BC+BE,∵∠DEA=90°,∴∠DEB=90°,∵∠ABC=45°,∴∠B=45°,∵2,∴2即2,∴△PEB的周长的最小值是222.故答案为2+22. 【点睛】 本题考查了折叠性质,等腰三角形性质,轴对称-最短路线问题,勾股定理,含30度角的直角三角形性质的应用,关键是求出P 点的位置.20.22-【分析】根据已知条件,添加辅助线可得△EAC ≌△DAM (SAS ),进而得出当MD ⊥BC 时,CE 的值最小,转化成求DM 的最小值,通过已知值计算即可.【详解】解:如图所示,在AB 上取AM=AC=2,∵90ACB ∠=,2AC BC ==,∴∠CAB=45°,又∵45EAD ∠=,∴∠EAC+∠CAD=∠DAB+∠CAD=45°,∴∠EAC =∠DAB ,∴在△EAC 与△DAB 中AE=AD ,∠EAF =∠DAB ,AC =AM ,∴△EAC ≌△DAM (SAS )∴CE=MD ,∴当MD ⊥BC 时,CE 的值最小,∵AC=BC=2,由勾股定理可得2222AB AC BC =+=,∴222=-BM ,∵∠B=45°,∴△BDM 为等腰直角三角形,∴DM=BD ,由勾股定理可得222+BD DM =BM∴DM=BD=22-∴CE=DM=22-故答案为:22-【点睛】本题考查了动点问题及全等三角形的构造,解题的关键是作出辅助线,得出全等三角形,找到CE最小时的状态,化动为静.三、解答题21.(1)①详见解析;②详见解析;(2)DE2=EB2+AD2+EB·AD,证明详见解析【分析】(1)①根据旋转的性质可得CF=CD,∠DCF=90°,再根据已知条件即可证明△ACD≌△BCF;②连接EF,根据①中全等三角形的性质可得∠EBF=90°,再证明△DCE≌△FCE得到EF=DE 即可证明;(2)根据(1)中的思路作出辅助线,通过全等三角形的判定及性质得出相等的边,再由勾股定理得出AD,DE,BE之间的关系.【详解】解:(1)①证明:由旋转可得CF=CD,∠DCF=90°∵∠ACD=90°∴∠ACD=∠BCF又∵AC=BC∴△ACD≌△BCF②证明:连接EF,由①知△ACD≌△BCF∴∠CBF=∠CAD=∠CBA=45°,∠BCF=∠ACD,BF=AD∴∠EBF=90°∴EF2=BE2+BF2,∴EF2=BE2+AD2又∵∠ACB=∠DCF=90°,∠CDE=45°∴∠FCE=∠DCE=45°又∵CD=CF,CE=CE∴△DCE≌△FCE∴EF=DE∴DE2= AD2+BE2⑵DE2=EB2+AD2+EB·AD理由:如图2,将△ADC绕点C逆时针旋转60°,得到△CBF,过点F作FG⊥AB,交AB 的延长线于点G,连接EF,∴∠CBE=∠CAD,∠BCF=∠ACD, BF=AD∵AC=BC,∠ACB=60°∴∠CAB=∠CBA =60°∴∠ABE=120°,∠EBF=60°,∠BFG=30°∴BG=12BF,FG=32BF∵∠ACB=60°,∠DCE=30°,∴∠ACD+∠BCE=30°,∴∠ECF=∠FCB+∠BCE=30°∵CD=CF,CE=CE∴△ECF≌△ECD∴EF=ED在Rt△EFG中,EF2=FG2+EG2又∵EG=EB+BG∴EG=EB+12 BF,∴EF2=(EB+12BF)2+(3BF)2∴DE2=(EB+12AD)2+(3AD)2∴DE2=EB2+AD2+EB·AD【点睛】本题考查了全等三角形的性质与旋转模型,解题的关键是找出全等三角形,转换线段,并通过勾股定理的计算得出线段之间的关系.22.(1)12;(2)t=12.5s时,13 cm;(3)11s或12s或13.2s【分析】(1)由勾股定理即可得出结论;(2)由线段垂直平分线的性质得到PC= PA=t,则PB=16-t.在Rt△BPC中,由勾股定理可求得t的值,判断出此时,点Q在边AC上,根据CQ=2t-BC计算即可;(3)用t分别表示出BQ和CQ,利用等腰三角形的性质可分BQ=BC、CQ=BC和BQ=CQ三种情况,分别得到关于t的方程,可求得t的值.【详解】(1)在Rt △ABC 中,BC 2222212016AC AB =-=-=(cm ).故答案为:12; (2)如图,点P 在边AC 的垂直平分线上时,连接PC ,∴PC = PA =t ,PB =16-t .在Rt △BPC 中,222BC BP CP +=,即2221216)t t +-=(, 解得:t =252. ∵Q 从B 到C 所需的时间为12÷2=6(s ),252>6, ∴此时,点Q 在边AC 上,CQ =25212132⨯-=(cm );(3)分三种情况讨论:①当CQ =BQ 时,如图1所示,则∠C =∠CBQ .∵∠ABC =90°,∴∠CBQ +∠ABQ =90°,∠A +∠C =90°,∴∠A =∠ABQ ,∴BQ =AQ ,∴CQ =AQ =10,∴BC +CQ =22,∴t =22÷2=11(s ).②当CQ =BC 时,如图2所示,则BC +CQ =24,∴t =24÷2=12(s ).③当BC =BQ 时,如图3所示,过B 点作BE ⊥AC 于点E ,则BE 121648205AB BC AC ⋅⨯===, ∴CE 2222483612()55BC BE =-=-==7.2. ∵BC =BQ ,BE ⊥CQ ,∴CQ =2CE =14.4,∴BC +CQ =26.4,∴t =26.4÷2=13.2(s ).综上所述:当t 为11s 或12s 或13.2s 时,△BCQ 为等腰三角形.【点睛】本题考查了勾股定理、等腰三角形的性质、方程思想及分类讨论思想等知识.用时间t 表示出相应线段的长,化“动”为“静”是解决这类问题的一般思路,注意方程思想的应用.23.作图见解析,325【分析】作A 点关于BC 的对称点A',A'A 与BC 交于点H ,再作A'M ⊥AB 于点M ,与BC 交于点N ,此时AN+MN 最小,连接AN ,首先用等积法求出AH 的长,易证△ACH ≌△A'NH ,可得A'N=AC=4,然后设NM=x ,利用勾股定理建立方程求出NM 的长,A'M 的长即为AN+MN 的最小值.【详解】如图,作A 点关于BC 的对称点A',A'A 与BC 交于点H ,再作A'M ⊥AB 于点M ,与BC 交于点N ,此时AN+MN 最小,最小值为A'M 的长.连接AN ,在Rt △ABC 中,AC=4,AB=8,∴∵11AB AC=BC AH 22⋅⋅∴∵CA ⊥AB ,A 'M ⊥AB ,∴CA ∥A 'M∴∠C=∠A 'NH ,由对称的性质可得AH=A 'H ,∠AHC=∠A'HN=90°,AN=A'N在△ACH 和△A'NH 中,∵∠C=∠A 'NH ,∠AHC=∠A'HN ,AH=A 'H ,∴△ACH ≌△A'NH (AAS )∴A'N=AC=4=AN ,设NM=x ,在Rt △AMN 中,AM 2=AN 2-NM 2=222416-=-x x在Rt △AA'M 中,,A 'M=A 'N+NM=4+x∴AM 2=AA '2-A 'M 2=()224-+⎝⎭x∴()2224=16-+-⎝⎭x x 解得125x = 此时AN MN +的最小值=A'M=A'N+NM=4+125=325 【点睛】本题考查了最短路径问题,正确作出辅助线,利用勾股定理解直角三角形是解题的关键.24.(1)详见解析;(2)①线段AD 的长度是方程2220x mx n +-=的一个根,理由详见解析;②512m n = 【分析】(1)根据题意,利用尺规作图画出图形即可;(2)①根据勾股定理求出AD ,然后把AD 的值代入方程,即可得到答案;②先得到出边长的关系,然后根据勾股定理,列出方程,解方程后得到答案.【详解】(1)解:作图,如图所示:(2)解:①线段AD 的长度是方程2220x mx n +-=的一个根.理由如下:依题意得, BD BC m ==,在Rt ABC 中,90ACB ∠=︒222BC AC AB ∴=+22AB m n =+22AD AB BD m n m ∴=-=+222AD m AD n ∴+-)()2222222m n m m m n m n =+++- 222222222222m n m m n m m m n m n =+-+++-0=;∴线段AD 的长度是方程22 20x mx n +-=的一个根②依题意得:,,AD AE BD BC AB AD BD ==== 2AD EC =2233AD AE AC n ∴=== 在RT ABC 中,90ACB ∠=222BC AC AB ∴+=22223m n n m ⎛⎫+=+ ⎪⎝⎭ 22224493m n n mn m +=++ 25493n mn = 512m n ∴= 【点睛】本题考查的是基本作图,勾股定理、一元二次方程的解法,掌握一元二次方程的求根公式、勾股定理是解题的关键. 25.(1)2,232)证明见解析(3)2217(4)233221【分析】(1)根据含有30°角的直角三角形的性质可得BC=2,再由勾股定理即可求出AC 的长;(2)由ED 为AB 垂直平分线可得DB=DA ,在Rt △BDE 中,由勾股定理可得BD=4,可得BD=2BE ,故∠BDE 为60°,即可证明ABD ∆是等边三角形; (3)由(1)(2)可知,=23AC ,AD=4,进而可求得CD 的长,再由等积法可得BCD ACD ACBD S S S =+四边形,代入求解即可;(4)分点P 在线段AC 上和AC 的延长线上两种情况,过点E 作AC 的垂线交AC 于点Q ,构造Rt △PQE ,再根据勾股定理即可求解.【详解】(1)∵Rt ABC ∆,90ACB ∠=︒,30BAC ∠=︒,斜边4AB =,∴122BC AB ==,∴22=23AC AB BC =-; (2)∵ED 为AB 垂直平分线,∴ADB=DA ,在Rt △BDE 中,∵122BE AE AB ===,23DE =, ∴22=4BD BE DE =+,∴BD=2BE ,∴∠BDE 为60°,∴ABD ∆为等边三角形;(3))由(1)(2)可知,=23AC ,AD=4,∴22=27CD AC AD =+,∵BCD ACD ACBD S SS =+四边形, ∴111()222BC AD AC AC AD BF CD +⨯=⨯+⨯, ∴221BF =; (4)分点P 在线段AC 上和AC 的延长线上两种情况,如图,过点E 作AC 的垂线交AC 于点Q ,∵AE=2,∠BAC=30°,∴EQ=1,∵=23AC ,∴=3CQ QA =,①若点P在线段AC上,则23=333PQ CQ CP=--=,∴2223 =3PE PQ EQ=+;②若点P在线段AC的延长线上,则253=333PQ CQ CP=++=,∴22221 =3PE PQ EQ=+;综上,PE的长为233或221.【点睛】本题考查勾股定理及其应用、含30°的直角三角形的性质等,解题的关键一是能用等积法表示并求出BF的长,二是对点P的位置要分情况进行讨论.26.(1)CD=8;(2)t=4;(3)12-=tvt(26t≤<)【分析】(1)作AE⊥BC于E,根据等腰三角形三线合一的性质可得BE=12BC,然后利用勾股定理求出AE,再用等面积法可求出CD的长;(2)①过B作BF⊥AC于F,易得BF=CD,分别讨论Q点在AF和FC之间时,根据△BQF≌△CPD,得到PD=QF,建立方程即可求出t的值;(3)同(2)建立等式关系即可得出关系式,再根据Q在FC之间求出t的取值范围即可.【详解】解:(1)如图,作AE⊥BC于E,∵AB=AC,∴BE=12BC=25在Rt△ABE中,()2222AE=AB BE=1025=45--∵△ABC的面积=11BC AE=AB CD 22⋅⋅∴BC AE4545 CD===8AB10⋅⨯(2)过B作BQ⊥AC,当Q在AF之间时,如图所示,∵△ABC的面积=11AC BF=AB CD22⋅⋅,AB=AC∴BF=CD在Rt△CPD和Rt△BQF中∵CP=BQ,CD=BF,∴Rt△CPD≌Rt△BQF(HL)∴PD=QF在Rt△ACD中,CD=8,AC=AB=10∴22AD=AC CD=6-同理可得AF=6∴PD=AD=AP=6-t,QF=AF-AQ=6-2t 由PD=QF得6-t=6-2t,解得t=0,∵t>0,∴此种情况不符合题意,舍去;当Q点在FC之间时,如图所示,此时PD=6-t,QF=2t-6由PD=QF得6-t=2t-6,解得t=4,综上得t 的值为4.(3)同(2)可知v >1时,Q 在AF 之间不存在CP=BQ ,Q 在FC 之间存在CP=BQ ,Q 在F 点时,显然CP ≠BQ ,∵运动时间为t ,则AP=t ,AQ=vt ,∴PD=6-t ,QF=vt-6,由PD=QF 得6-t=vt-6, 整理得12-=t v t, ∵Q 在FC 之间,即AF <AQ ≤AC∴610<≤vt ,代入12-=t v t得 61210<-≤t ,解得26t ≤< 所以答案为12-=t v t (26t ≤<) 【点睛】本题考查三角形中的动点问题,熟练掌握勾股定理求出等腰三角形的高,利用全等三角形对应边相等建立方程是解题的关键.27.(1)见解析;(2)26;(3)3a+ 【分析】(1)由∠ACB=∠DCE 可得出∠ACD=∠BCE ,再利用SAS 判定△ACD ≌△BCE ,即可得到AD=BE ;(2)由等腰直角三角形的性质可得CM=12DE ,同(1)可证△ACD ≌△BCE ,得到AD=BE ,然后可求AE 的长,再判断∠AEB=90°,即可用勾股定理求出AB 的长;(3)由等腰三角形的性质易得∠CAB=∠CBA=∠CDE=∠CED=30°,根据30度所对的直角边是斜边的一半可求出,然后利用三角形外角性质推出∠BEN=60°,在Rt △BEN 中即可求出BE ,由于BE=AD ,所以利用AE=AD+DE 即可得出答案.【详解】证明:(1)∵∠ACB=∠DCE∴∠ACB-∠BCD=∠DCE-∠BCD ,即∠ACD=∠BCE在△ACD 和△BCE 中,AC=BC ACD=BCE CD=CE ⎧⎪∠∠⎨⎪⎩∴△ACD ≌△BCE (SAS )∴AD=BE(2)∵∠DCE=90°,CD=CE ,∴△DCE 为等腰直角三角形,∵CM ⊥DE ,∴CM 平分DE ,即M 为DE 的中点∴CM=12DE , ∴DE=2CM=14,∵∠ACB=∠DCE∴∠ACB-∠BCD=∠DCE-∠BCD ,即∠ACD=∠BCE在△ACD 和△BCE 中,AC=BC ACD=BCE CD=CE ⎧⎪∠∠⎨⎪⎩∴△ACD ≌△BCE (SAS )∴AD=BE=10,∠CAD=∠CBE∴AE=AD+DE=24如图,设AE ,BC 交于点H ,在△ACH 和△BEH 中,∠CAH+∠ACH=∠EBH+∠BEH ,而∠CAH=∠EBH ,∴∠BEH=∠ACH=90°,∴△ABE 为直角三角形 由勾股定理得2222AB=AE BE =2410=26++(3)由(1)(2)可得△ACD ≌△BCE ,∴∠DAC=∠EBC ,∵△ACB ,△DCE 都是等腰三角形,∠ACB=∠DCE=120°∴∠CAB=∠CBA=∠CDE=∠CED=30°,∵CM ⊥DE ,∴∠CMD=90°,DM=EM ,∴CD=CE=2CM ,3CM∴33∵∠BEN=∠BAE+∠ABE=∠BAE+∠EBC+∠CBA=∠BAE+∠DAC+∠CBA=30°+30°=60°, ∴∠NBE=30°,∴BE=2EN ,3EN∵BN=a∴BE=2EN=3a=AD∴+【点睛】本题考查全等三角形的旋转模型,掌握此模型的特点得到全等三角形是关键,其中还需要用到等腰三角形三线合一与30度所对的直角边的性质,熟练掌握这些基本知识点是关键.28.(1)见详解;(2)①t值为:103s或6s;②t值为:4.5或5或4912.【分析】(1)设BD=2x,AD=3x,CD=4x,则AB=5x,由勾股定理求出AC,即可得出结论;(2)由△ABC的面积求出BD、AD、CD、AC;①当MN∥BC时,AM=AN;当DN∥BC时,AD=AN;得出方程,解方程即可;②根据题意得出当点M在DA上,即2<t≤5时,△MDE为等腰三角形,有3种可能:如果DE=DM;如果ED=EM;如果MD=ME=2t-4;分别得出方程,解方程即可.【详解】解:(1)证明:设BD=2x,AD=3x,CD=4x,则AB=5x,在Rt△ACD中,AC=5x,∴AB=AC,∴△ABC是等腰三角形;(2)解:由(1)知,AB=5x,CD=4x,∴S△ABC=12×5x×4x=40cm2,而x>0,∴x=2cm,则BD=4cm,AD=6cm,CD=8cm,AB=AC=10cm.由运动知,AM=10-2t,AN=t,①当MN∥BC时,AM=AN,即10-2t=t,∴103t=;当DN∥BC时,AD=AN,∴6=t,得:t=6;∴若△DMN的边与BC平行时,t值为103s或6s.②存在,理由:Ⅰ、当点M在BD上,即0≤t<2时,△MDE为钝角三角形,但DM≠DE;Ⅱ、当t=2时,点M运动到点D,不构成三角形Ⅲ、当点M在DA上,即2<t≤5时,△MDE为等腰三角形,有3种可能.∵点E是边AC的中点,∴DE=12AC=5当DE=DM,则2t-4=5,∴t=4.5s;当ED=EM,则点M运动到点A,∴t=5s;当MD=ME=2t-4,如图,过点E作EF垂直AB于F,∵ED=EA,∴DF=AF=12AD=3,在Rt△AEF中,EF=4;∵BM=2t,BF=BD+DF=4+3=7,∴FM=2t-7在Rt△EFM中,(2t-4)2-(2t-7)2=42,∴t=49 12.综上所述,符合要求的t值为4.5或5或49 12.【点睛】本题主要考查了等腰三角形的性质,平行线的性质,三角形的面积公式,勾股定理,解本题的关键是分情况讨论.29.(1)y=-2x+12,点C坐标(4,4);(2)画图形见解析,点D坐标(-4,0);(3)点P的坐标(143-,643)【分析】(1)由已知的等式可求得m、n的值,于是可得直线AB的函数解析式,把点C的坐标代入可求得a的值,由此即得答案;(2)画出图象,由CD⊥AB知1AB CDk k=-可设出直线CD的解析式,再把点C代入可得CD的解析式,进一步可求D点坐标;(3)如图2,取点F(-2,8),易证明CE⊥CF且CE=CF,于是得∠PEC=45°,进一步求出直线EF的解析式,再与直线AB联立求两直线的交点坐标,即为点P.【详解】解:(1)∵6m-+(n﹣12)2=0,∴m=6,n=12,∴A(6,0),B(0,12),设直线AB解析式为y=kx+b,则有1260bk b=⎧⎨+=⎩,解得212kb=-⎧⎨=⎩,∴直线AB解析式为y=-2x+12,∵直线AB过点C(a,a),∴a=-2a+12,∴a=4,∴点C坐标(4,4).(2)过点C作CD⊥AB交x轴于点D,如图1所示,设直线CD解析式为y=12x+b′,把点C(4,4)代入得到b′=2,∴直线CD解析式为y=12x+2,∴点D坐标(-4,0).(3)如图2中,取点F(-2,8),作直线EF交直线AB于P,图2∵直线EC解析式为y=32x-2,直线CF解析式为y=-23x+203,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
应用1:勾股定理的直接用法
//在Rt△ABC中,∠C=90°
(1)已知a=6, c=10,求b, (2)已知a=40,b=9,求c; (3)已知c=25,b=15,求a.
思路点拨:写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。
解析:(1) 在△ABC中,∠C=90°,a=6,c=10,b=
(2) 在△ABC中,∠C=90°,a=40,b=9,c=
(3) 在△ABC中,∠C=90°,c=25,b=15,a=
应用2:勾股定理的构造应用
例、如图,已知:在中,,,. 求:BC的长.
解析:作于D,则因,
∴(的两个锐角互余)
∴(在中,如果一个锐角等于,
那么它所对的直角边等于斜边的一半).
根据勾股定理,在中,
.
根据勾股定理,在中,
.
∴.
例、已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。
求:四边形ABCD的面积。
解析:延长AD、BC交于E。
∵∠A=∠60°,∠B=90°,∴∠E=30°。
∴AE=2AB=8,CE=2CD=4,
∴BE2=AE2-AB2=82-42=48,BE==。
∵DE2= CE2-CD2=42-22=12,∴DE==。
∴S四边形ABCD=S△ABE-S△CDE=AB·BE-CD·DE=
应用3:勾股定理的实际应用
例、如图所示,在一次夏令营活动中,小明从营地A点出发,沿北偏东60°方向走了到达B点,然后再沿北偏西30°方向走了500m到达目的地C点。
(1)求A、C两点之间的距离。
(2)确定目的地C在营地A的什么方向。
解析:(1)过B点作BE//AD
∴∠DAB=∠ABE=60°
∵30°+∠CBA+∠ABE=180°
∴∠CBA=90°
即△ABC为直角三角形
由已知可得:BC=500m,AB=
由勾股定理可得:
所以
(2)在Rt△ABC中,
∵BC=500m,AC=1000m
∴∠CAB=30°
∵∠DAB=60°
∴∠DAC=30°
即点C在点A的北偏东30°的方向
应用4:用勾股定理求最短问题
例、如图,一圆柱体的底面周长为20cm,高AB为4cm,BC是上底面的直径.一只蚂蚁从点A出发,沿着圆柱的侧面爬行到点C,试求出爬行的最短路程.
解:
如图,在Rt△ABC中,BC=底面周长的一半=10cm,根据勾股定理得
(提问:勾股定理)
∴ AC===≈10.77(cm)(勾股定理).
答:最短路程约为10.77cm.
应用5:利用勾股定理作长为的线段
例、在数轴上作出的点。
作法:如图所示在数轴上找到A点,使OA=3,作AC⊥OA且截取AC=1,以OC为半径,
以O为圆心做弧,弧与数轴的交点B即为。
应用6:勾股定理与方程
如图所示,折叠矩形的一边AD,使点D落在BC边的点F处,已知AB=8cm,
BC=10cm,求EF的长。
解:因为△ADE与△AFE关于AE对称,所以AD=AF,DE=EF。
因为四边形ABCD是矩形,所以∠B=∠C=90°,
在Rt△ABF中, AF=AD=BC=10cm,AB=8cm,
所以。
所以。
设,则。
在Rt△ECF中,,即,解得。
即EF的长为5cm。
“”
“”
At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。