高考数列基础练习及总结

合集下载

高考数学第二轮专题复习教案数列的综合

高考数学第二轮专题复习教案数列的综合

第26课时 数列的综合一、基础练习1、已知等差数列{a n }中,a 2=6,a 5=15,若b n =a 2n ,则数列{b n }的前5项和等于______2、f(n)=1+2+3+…+n ,则f(n 2)=______3、等差数列{a n }中,a 4=10,且a 3,a 6,a 10成等比数列,则{a n }前20项的和S 20=_____4、数列{a n }中,a 1=1,a n 、a n+1是方程x 2-(2n+1)x+1nb =0的两个根,数列{b n }的前n 项和S n =______5、某人从2003年起,每年1月1日到银行存入a 元(一年定期),若年利率为r 保持不变,且每年到期存款均自动转为新的一年定期,到2009年1月1日将所有存款及利息全部取回,他可取回的钱数为________二、例题例1:1993年,某内河可供船只航行的河段长1000km ,但由于水资源的过度使用,促使河水断流,从1994年起,该内河每年船只可行驶的河段长度仅为上一年的三分之二,试求:(1)到2002年,该内河可行驶的河段长度为多少公里?(2)若有一条船每年在该内河上行驶一个来回,问从1993年到2002年这条船航行的总路程为多少公里?例2:已知函数y=f(x)的图象是自原点出发的一条折线,当n ≤y ≤n+1(n=0,1,2,…)时,该图象是斜率为b n 的线段(其中正常数b ≠1),设数列{x n }由f(x n )=n(n=1,2,…)定义。

(1)求x 1,x 2和x n 的表达式。

(2)求f(x)的表达式,并写出其定义域。

例3: 已知函数y=f(x)对任意的实数x 、y 都有f(x+y)=f(x)f(y),且f(1)≠0。

(1)设a n =f(n),(n ∈N*),S n =1n i n a =∑,设b n =21n nS a +,且{b n }为等比数列,求a 1的值。

(2)在(1)的条件下,设c n =2()72n n n a b n n++-,问:是否存在最大的整数m ,使得对于任意n ∈N*,均有c n >3m ?若存在,求出m 的值;若不存在,请说明理由。

数列基础知识训练巩固练习

数列基础知识训练巩固练习

数列基础知识训练巩固练习知识覆盖全面,题型全面,难度中等偏易,注重基础.1.数列{a n }中,若223n S n =+,则该数列通项n a =2.等比数列{a n }中,4a 1 , 2a 2 ,a 3成等差数列,若a 1=1,则S 4=3. 设数列 ,14,11,22,5,2,则24是这个数列的第 项.4.数列{}11322-+-n n 中数值最大的项是第 项.5.已知n m ≠,且n a a a m ,,,,321和n b b b b m ,,,,,4321都是等差数列,则=--2313b b a a 6. 已知n S 为等差数列{}n a 的前n 项和,63,6,994=-==n S a a ,则n =7.已知n S 为等差数列{}n a 的前n 项和,1006=a ,则=11S ;8. 已知n S 为等差数列{}n a 的前n 项和,)(,m n n S m S m n ≠==,则=+n m S .9. 共12+n 项的等差数列其奇数项的和与偶数项的和之比为10.数列{}n a 中,492-=n a n ,当数列{}n a 的前n 项和n S 取得最小值时,=n .11.等差数列{}n a 共10项,其奇数项之和为10,偶数项之和为30,则其公差是 .12. 若实数数列4,,,,1321a a a 是等比数列,则=2a .13.已知{}n a 为等比数列,162,262==a a ,则=10a14.n S 为等比数列{}n a 前n 项和,93=n S ,48=n a ,公比2=q ,则项数=n .15.等比数列 ,8,4,2,1中从第5项到第10项的和为 16.{}n a 为等比数列,6,3876321=++=++a a a a a a ,则131211a a a ++= .17.等比数列{}n a 中,36)2(,04624=++>a a a a a n ,则=+53a a .18.等比数列{}n a 的前三项依次为1a -,1a +,4a +,则n a =19.数列{}n a 中,)2(12,211≥-+==-n n a a a n n ,数列{}n a 的通项公式为20.数列{}n a 中,32,111+==+n n a a a ,数列{}n a 的通项公式为21.数列{}n a 中,111,33nn n a a a +==+,数列{}n a 的通项公式为 22.等比数列{}n a 中,公比7,299==S q ,则=++++99963a a a a .23.等差数列{}n a 中,公差 21=d ,若6099531=++++a a a a ,则=++++100321a a a a .24.数列1111,,,...,,...1212312...n++++++的前n 项和=n S 25.数列{}n a 中,)1(1+=n n a n ,若{}n a 的前n 项和为20102009,则项数n = 26.某工厂去年的产值为P ,计划在5年内每年比上一年产值增长10%,则从今年起5年内该工厂的总产值为27.数列{}n a 中,n n n a 3)12(⋅-=,则其前n 项和n S =________.28.等比数列{a n }中,a 1=512,公比q =-12,用Πn 表示它的前n 项之积:Πn =a 1·a 2·…·a n , 则n 为 时Πn 最大29.已知数列{a n }满足a n +1a n =n +2n(n ∈N *),且a 1=1,则a n =________.30.如图,则第10行的第2个数是________.二、解答题31.等差数列{}n a 中,410a =且3610a a a ,,成等比数列,求数列{}n a 前20项的和20S .32.已知n S 为等差数列{}n a 的前n 项和,212n n S n -=. ⑴求321a a a ++; ⑵求10321a a a a ++++ ;⑶求n a a a a ++++ 321.33.已知等差数列{}n a 中,21920,28a a a =-+=-. ⑴求数列{}n a 的通项公式; ⑵若数列{}n b 满足2log n n a b =,设12n n T bb b = ,且1n T =,求n 的值.34.已知数列{}n a 的前n 项和为n S ,()1(1)3n n S a n N *=-∈; ⑴求1a ,2a 的值; ⑵证明数列{}n a 是等比数列,并求n S .35.已知n S 为数列{}n a 的前n 项和,11=a ,142n n S a +=+. ⑴设数列{}n b 中,n n n a a b 21-=+,求证:{}n b 是等比数列;⑵设数列{}n c 中,n nn a c 2=,求证:{}n c 是等差数列; ⑶求数列{}n a 的通项公式及前n 项和.。

数列基础练习题简单

数列基础练习题简单

等差数列一、填空题1. 等差数列8,5,2,…的第20项为___________.2. 在等差数列中已知a 1=12, a 6=27,则d=___________3. 在等差数列中已知13d =-,a 7=8,则a 1=_______________ 4. 2()a b +与2()a b -的等差中项是_______________ 5. 等差数列-10,-6,-2,2,…前___项的和是54 6. 正整数前n 个数的和是___________7. 数列{}n a 的前n 项和23n S n n -=,则n a =___________8. 已知数列{}n a 的通项公式a n =3n -50,则当n=___时,S n 的值最小,S n 的最小值是_______。

二、选择题1. 一架飞机起飞时,第一秒滑跑2.3米,以后每秒比前一秒多滑跑4.6米,离地的前一秒滑跑66.7米,则滑跑的时间一共是()A. 15秒B.16秒C.17秒D.18秒 2. 在等差数列{}n a 中31140a a +=,则45678910a a a a a a a -+++-+的值为( )A.84B.72C.60D.48 3. 在等差数列{}n a 中,前15项的和1590S = ,8a 为( )A.6B.3C.12D.44. 等差数列{}n a 中, 12318192024,78a a a a a a ++=-++=,则此数列前20项的和等于( )A.160B.180C.200D.2205. 在等差数列{}n a 中,若34567450a a a a a ++++=,则28a a +的值等于( )A.45B.75C.180D.300 6. 若lg 2,lg(21),lg(23)x x-+成等差数列,则x 的值等于( ) A.0 B. 2log 5 C. 32 D.0或327. 设n S 是数列{}n a 的前n 项的和,且2n S n =,则{}n a 是( )A.等比数列,但不是等差数列B.等差数列,但不是等比数列C.等差数列,且是等比数列D.既不是等差数列也不是等比数列 8. 数列3,7,13,21,31,…的通项公式是( )A. 41n a n =-B. 322n a n n n =-++C. 21n a n n =++ D.不存在三、计算题1. 根据下列各题中的条件,求相应的等差数列{}n a 的有关未知数: (1)151,,5,66n a d S ==-=-求n 及n a ; (2)12,15,10,n n d n a a S ===-求及2. 设等差数列{}n a 的前n 项和公式是253n S n n =+,求它的前3项,并求它的通项公式3. 如果等差数列{}n a 的前4项的和是2,前9项的和是-6,求其前n 项和的公式。

高中数学《等比数列性质》复习基础知识与练习题(含答案解析)

高中数学《等比数列性质》复习基础知识与练习题(含答案解析)

高中数学《等比数列性质》复习基础知识与练习题(含答案解析)一、基础知识1、定义:数列{}n a 从第二项开始,后项与前一项的比值为同一个常数()0q q ≠,则称{}n a 为等比数列,这个常数q 称为数列的公比注:非零常数列既可视为等差数列,也可视为1q =的等比数列,而常数列0,0,0,只是等差数列2、等比数列通项公式:11n n a a q−=⋅,也可以为:n mn m a a q−=⋅3、等比中项:若,,a b c 成等比数列,则b 称为,a c 的等比中项 (1)若b 为,a c 的等比中项,则有2a bb ac b c=⇒= (2)若{}n a 为等比数列,则n N *∀∈,1n a +均为2,n n a a +的等比中项 (3)若{}n a 为等比数列,则有m n p q m n p q a a a a +=+⇔= 4、等比数列前n 项和公式:设数列{}n a 的前n 项和为n S 当1q =时,则{}n a 为常数列,所以1n S na = 当1q ≠时,则()111n n a q S q−=−可变形为:()1111111n n n a q a aS q qq q −==−−−−,设11a k q =−,可得:n n S k q k =⋅−5、由等比数列生成的新等比数列(1)在等比数列{}n a 中,等间距的抽取一些项组成的新数列仍为等比数列 (2)已知等比数列{}{},n n a b ,则有 ① 数列{}n ka (k 为常数)为等比数列 ② 数列{}na λ(λ为常数)为等比数列,特别的,当1λ=−时,即1n a ⎧⎫⎨⎬⎩⎭为等比数列③ 数列{}n n a b 为等比数列④ 数列{}n a 为等比数列6、相邻k 项和的比值与公比q 相关: 设1212,m m m k n n n k S a a a T a a a ++++++=+++=+++,则有:()()212212k m n m m m m k mk n n n k nn a q q q S a a a a q T a a a a a q q q −++++++++++++====++++++ 特别的:若121222,,k k k k k k k a a a S a a a S S +++++=+++=−2122332,k k k k k a a a S S +++++=−,则232,,,k k k k k S S S S S −−成等比数列7、等比数列的判定:(假设{}n a 不是常数列) (1)定义法(递推公式):()1n na q n N a *+=∈ (2)通项公式:nn a k q =⋅(指数类函数) (3)前n 项和公式:nn S kq k =−注:若()n n S kq m m k =−≠,则{}n a 是从第二项开始成等比关系 (4)等比中项:对于n N *∀∈,均有212n n n a a a ++=8、非常数等比数列{}n a 的前n 项和n S 与1n a ⎧⎫⎨⎬⎩⎭前n 项和n T 的关系()111n n a q S q−=−,因为1n a ⎧⎫⎨⎬⎩⎭是首项为11a ,公比为1q 的等比数列,所以有()1111111111111nn n nn n q a q q q T q a q q a qq−⎡⎤⎛⎫−−⎢⎥ ⎪⎝⎭⎢⎥−⎣⎦===−−−⋅ ()()1112111111n n n nn n a q a q q S a q T q q−−−−=⋅=−− 例1:已知等比数列{}n a 的公比为正数,且223951,2a a a a ==,则10a =________思路:因为2396a a a =,代入条件可得:22652a a =,因为0q >,所以65a =,q =所以810216a a q == 答案:16例2:已知{}n a 为等比数列,且374,16a a =−=−,则5a =( ) A. 64 B. 64− C. 8 D. 8− 思路一:由37,a a 可求出公比:4734a q a ==,可得22q =,所以253428a a q ==−⋅=− 思路二:可联想到等比中项性质,可得253764a a a ==,则58a =±,由等比数列特征可得奇数项的符号相同,所以58a =− 答案:D小炼有话说:思路二的解法尽管简单,但是要注意双解时要验证项是否符合等比数列特征。

数列基础练习题及答案

数列基础练习题及答案

A .a7,A .数列专题数列1,3,7,15, 的通项公式a n等于(2n B . 2n1各项不为零的等差数列则 b6bε=(2已知等差数列{ a n },44.2n-1 D亠 2 a n}中,2a3—a7.2nj+ 2an = 0,数列{b n}是等比数列,且 b7=a^2 ,则此数列的前.33.22.1611项的和S H.11等差数列Ia nf的公差d = 0 , a^20 ,且a3,a7 ,a9成等比数列.S n为;、a/的前n项和,贝U S w的值为()-110 90.-90 .110已知等比数列{a n}满足& ∙a2 =3, a2 = 6 ,则aγ64 B . 81 C . 128 D已知⅛n是等比数列,a1=4, a4.2431,则公比q =( 2A 、、一2已知数列⅛n 是公差不为O的等差数列,a1=2 ,且a2 ,a3, a4 1成等比数列.(1)求数列的通项公式;(2)设b n =2晁R,求数列Z的前n项和S n.8.设数列{a n}是首项为1 ,公差为d的等差数列,且a1,a2 - 1忌-1是等比数列{g}的前三项•(1)求{a n}的通项公式;(2)求数列{b n}的前n项和T n •9 .已知等差数列{a n}满足a3=5, a s - 2a2=3,又等比数列{b ∏}中,b=3且公比q=3.(1)求数列{a n}, {b n}的通项公式;2) 若 G=a n+b n,求数列{c n}的前n项和S n.10 .设等比数列⅛n[的前n项和为S n,已知a2 =6, 6a1 a^ 30 ,求a n和S n。

11.已知{a n}是公差不为零的等差数列,a1= 1,且a1, a3, a o成等比数列.(I)求数列{a n}的通项;(∏)求数列{2an}的前n项和S n.12 •已知等差数列∙⅛n “n ∙N )的前n项和为S n ,且a3 = 5,S3 = 9 •(I) 求数列<a n的通项公式;(II) 设等比数列Ib n Xn ∙N J ,若b2 = a2,b3 = a5 ,求数列 Z 的前n项和T n.13•已知{a n}是首项为19 ,公差为-2的等差数列,S n为{ a n}的前n项和。

数列练习题(含答案)以及基础知识点训练篇-2

数列练习题(含答案)以及基础知识点训练篇-2

数列基础知识点总结及训练A 、1.概念与公式:①等差数列:1°.定义:若数列}{),(}{1n n n n a d a a a 则常数满足=-+称等差数列;2°.通项公式:;)()1(1d k n a d n a a k n -+=-+= 3°.前n 项和公式:公式:.2)1(2)(11d n n na a a n S n n -+=+=②等比数列:1°.定义若数列q a a a nn n =+1}{满足(常数),则}{n a 称等比数列;2°.通项公式:;11kn k n n qa qa a --==3°.前n 项和公式:),1(1)1(111≠--=--=q qq a q q a a S n n n 当q=1时.1na S n =2.简单性质:①首尾项性质:设数列,,,,,:}{321n n a a a a a Λ1°.若}{n a 是等差数列,则;23121Λ=+=+=+--n n n a a a a a a 2°.若}{n a 是等比数列,则.23121Λ=⋅=⋅=⋅--n n n a a a a a a ②中项及性质:1°.设a ,A ,b 成等差数列,则A 称a 、b 的等差中项,且;2ba A +=2°.设a ,G,b 成等比数列,则G 称a 、b 的等比中项,且.ab G ±= ③设p 、q 、r 、s 为正整数,且,s r q p +=+1°. 若}{n a 是等差数列,则;s r q p a a a a +=+ 2°. 若}{n a 是等比数列,则;s r q p a a a a ⋅=⋅ ④顺次n 项和性质:1°.若}{n a 是公差为d 的等差数列,∑∑∑=+=+=nk n n k nn k kkk aa a 121312,,则组成公差为n 2d 的等差数列;2°. 若}{n a 是公差为q 的等比数列,∑∑∑=+=+=n k nn k n n k kkk aa a 121312,,则组成公差为q n 的等比数列.(注意:当q =-1,n 为偶数时这个结论不成立) ⑤若}{n a 是等比数列,则顺次n 项的乘积:n n n n n n n a a a a a a a a a 3221222121,,ΛΛΛ++++组成公比这2n q 的等比数列. ⑥若}{n a 是公差为d 的等差数列,1°.若n 为奇数,则,,:(21+==-=n n a a a a S S na S 中中中偶奇中即指中项注且而S 奇、S 偶指所有奇数项、所有偶数项的和);2°.若n 为偶数,则.2ndS S =-奇偶 (二)学习要点:1.学习等差、等比数列,首先要正确理解与运用基本公式,注意①公差d ≠0的等差数列的通项公式是项n 的一次函数a n =an +b ;②公差d ≠0的等差数列的前n 项和公式项数n 的没有常数项的二次函数S n =an 2+bn ;③公比q ≠1的等比数列的前n 项公式可以写成“S n =a (1-q n )的形式;诸如上述这些理解对学习是很有帮助的.2.解决等差、等比数列问题要灵活运用一些简单性质,但所用的性质必须简单、明确,绝对不能用课外的需要证明的性质解题.3.巧设“公差、公比”是解决问题的一种重要方法,例如:①三数成等差数列,可设三数为“a,a+m,a+2m (或a-m,a,a+m )”②三数成等比数列,可设三数为“a,aq,aq 2(或qa,a,aq )”③四数成等差数列,可设四数为“);3,,,3(3,2,,m a m a m a m a m a m a m a a ++--+++或”④四数成等比数列,可设四数为“),,,,(,,,3332aq aq q a qa aq aq aq a ±±或”等等;类似的经验还很多,应在学习中总结经验. 由递推公式求通项公式的方法一、1()n n a a f n +=+型数列,(其中()f n 不是常值函数)此类数列解决的办法是累加法,具体做法是将通项变形为1()n n a a f n +-=,从而就有21321(1),(2),,(1).n n a a f a a f a a f n --=-=-=-K将上述1n -个式子累加,变成1(1)(2)(1)n a a f f f n -=+++-K ,进而求解。

等差数列性质基础练习题

等差数列性质基础练习题

等差数列性质基础练习题一、填空题1. 等差数列的通项公式为:an = a1 + (n 1)d,其中a1是首项,d是公差,n是项数。

若等差数列的首项为3,公差为2,则第五项的值为______。

2. 在等差数列{an}中,已知a3 = 7,a7 = 19,则公差d为______。

3. 已知等差数列的前三项分别为2,5,8,则第10项的值为______。

4. 等差数列的前n项和公式为:Sn = n(a1 + an)/2,若等差数列的前5项和为35,公差为3,则首项a1的值为______。

5. 在等差数列{an}中,若a4 = 16,a10 = 44,则第8项的值为______。

二、选择题A. an = a1 + (n 1)dB. an = a1 (n 1)dC. an = a1 / (n 1)dD. an = a1 (n 1)dA. 公差为4B. 公差为8C. 公差为12D. 公差为163. 在等差数列{an}中,若a1 = 3,d = 2,则第6项的值为()。

A. 9B. 11C. 13D. 15A. 首项为3B. 首项为5C. 首项为7D. 首项为95. 在等差数列{an}中,若a3 = 6,a7 = 18,则第5项的值为()。

A. 10B. 12C. 14D. 16三、解答题1. 已知等差数列的前4项分别为2,5,8,11,求第10项的值。

2. 在等差数列{an}中,已知a5 = 15,a10 = 35,求首项a1和公差d。

3. 已知等差数列的前7项和为49,公差为3,求第4项的值。

4. 在等差数列{an}中,若a1 = 4,d = 5,求前8项的和。

5. 已知等差数列的前5项和为55,公差为7,求第6项的值。

四、判断题1. 等差数列的任意两项之间的差都是相同的。

()2. 等差数列的通项公式中,n表示项数,而不是项的位置。

()3. 在等差数列中,如果首项为负数,公差为正数,那么数列中的项会逐渐减小。

数列综合基础练习2

数列综合基础练习2

数列综合基础练习21.数列{a n }前n 项和是S n ,如果S n =3+2a n (n ∈N *),则这个数列是 ( )A.等比数列B.等差数列C.除去第一项是等比D.除去最后一项为等差2. 已知数列 {n a }的前n 项和n s 满足:n s +m s =n m s +,且1a =1,那么10a =( A.1 B.9 C.10 D.55 3.等差数列{a n }的前n 项和为S n ,S 5=15,S 9=18,在等比数列{b n }中,b 3=a 3,b 5=a 5,则b 7的值为( )A.23B.43 C .2 D .3 4. 在等比数列{}n a 中,若3a ,9a 是方程091132=+-x x 的两根,则6a 的值是 ( )A .3B .±3C .3±D .以上答案都不对5.已知方程(x 2-2x +m )(x 2-2x +n )=0的四个根组成一个首项为41的等差数列,则 |m -n |等于( ).A .1B .43 C .21 D .836.(2009辽宁理)设等比数列{ n a }的前n 项和为n S ,若 63S S =3 ,则96S S = ( )(A )2 (B )73(C )83(D )37、数列{a n }是各项均为正数的等比数列,{b n }是等差数列,且a 6=b 7,则有( )(A)a 3+a 9≤b 4+b 10 (B)a 3+a 9≥b 4+b 10 (C)a 3+a 9≠b 4+b 10 (D)a 3+a 9与b 4+b 10的大小不确定 8、等差数列{a n }的通项公式为a n =2n +1,其前n 项的和为S n ,则数列{}n S n的前10项的和为( )(A)120 (B)70(C)75 (D)1009、若一个凸多边形的内角度数成等差数列,最小角为100°,最大角为140°,这个凸多边形的边数为A .6B .8C .10D .12 10、数列()=+n 1a n n 1,其前n 项之和为910,则在平面直角坐标系中,直线(n+1)x+y+n=0在y 轴上的截距为( )(A)-10 (B)-9 (C)10 (D)911、已知{a n }为等差数列,{b n }为等比数列,其公比q ≠1,且b i >0(i=1,2,…,n),若a 1=b 1,a 11=b 11,则( (A)a 6>b 6 (B)a 6=b 6 (C)a 6<b 6 (D)a 6>b 6或a 6<b 612.在等差数列}{n a 中,24)(3)(2119741=++++a a a a a ,则此数列前13项的和=13S ( ) A .13 B .26 C .52 D .15613.设f (n )=2+24+27+210+…+23n +10(n ∈N ),则f (n )=( ) A.27(8n -1) B.27(8n +1-1) C.27(8n +3-1) D.27(8n +4-1) 14.在等差数列{a n }中,前n 项和为S n =n m ,前m 项和S m =mn,其中m ≠n ,则S m +n 的值( )A .大于4B .等于4C .小于4D .大于2且小于4 15、已知两个等差数列{}n a 和{}n b 的前n 项和分别为n A 和n B ,且7453n nA nB n +=+,则使得n na b 为整数的正整数n 的个数是( )A.2B.3C.4D.516.在等差数列{a n }中,满足3a 4=7a 7且a 1>0,S n 是数列{a n }前n 项的和,若S n 取得最大值,则n =_______. 17.(2009全国卷Ⅱ理)设等差数列{}n a 的前n 项和为n S ,若535a a =则95S S =18.已知等比数列{a n }的各项均为正数,数列{b n }满足b n =ln a n ,b 3=18,b 6=12,则数列{b n }前n 项和的最大值等于 . 19、.若互不相等的实数a ,b ,c 成等差数列,c ,a ,b 成等比数列,且a +3b +c =10,则a 的值为 .20.一种计算装置,有一数据入口A 和一个运算出口B ,执行某种运算程序:(1)当从A 口输入自然数1时,从B 口得到实数13,记为f (1)=13;(2)当从A 口输入自然数n (n ≥2)时,在B 口得到的结果f (n )是前一结果f (n -1)的2(n -1)-12(n -1)+3倍.当从A 口输入3时,从B 口得到________;要想从B 口得到12303,则应从A 口输入自然数________.21. 已知数列{}n a 是递减数列,且对于任意*n N ∈都有22n a n n λ=-+成立,则实数λ的取值范围是________________.若数列2(4)()3n n n ⎧⎫+⎨⎬⎩⎭中的最大项是第k 项,则k =_______________.22.一条信息,若一人得知后,一小时内将信息传给两人,这两人又在一小时内各传给未知信息的另外两人.如此下去,要传遍55人的班级所需时间大约为_______小时. 每次用相同体积的清水洗一件衣物,且每次能洗去污垢的34,若洗n 次后,存在的污垢在1%以下,则n 的最小值为_________.23、已知数列{a n }为等差数列,且a 1=1,{b n }为等比数列,数列{a n +b n }的前三项依次为3,7,13.求 (1)数列{a n },{b n }的通项公式;(2)数列{a n +b n }的前n 项和S n .24、已知数列{a n }的前n 项和为S n ,且a 1=1,na n +1=(n +2)S n (n ∈N *).(1)求证:数列⎭⎬⎫⎩⎨⎧n S n 为等比数列;(2)求数列{a n }的通项公式及前n 项和S n ;(3)若数列{b n }满足:b 1=21,11++n b n =nS b nn +(n ∈N *),求数列{b n }的通项公式.25、在等比数列{a n }中,a n >0(n ∈N *),公比q ∈(0,1),且a 1a 5+2a 3a 5+a 2a 8=25,又a 3与a 5的等比中项为2. (1)求数列{a n }的通项公式;(2)设b n =log 2a n ,求数列{b n }的前n 项和S n ;(3)是否存在k ∈N *,使得S 11+S 22+…+S nn <k 对任意n ∈N *恒成立,若存在,求出k 的最小值,若不存在,请说明理由.26.设数列{}n a 的前n 项和为n S ,11=a ,且对任意正整数n ,点()n n S a ,1+在直线022=-+y x 上. (Ⅰ) 求数列{}n a 的通项公式;(Ⅱ)是否存在实数λ,使得数列⎭⎬⎫⎩⎨⎧+⋅+nn n S 2λλ为等差数列?若存在,求出λ的值;若不存在,则说明理由.。

数列基础知识练习题

数列基础知识练习题

数列基础知识练习题数列是数学中的重要概念,它由一系列按特定规律排列的数字组成。

在数学中,数列的研究具有重要的意义,它不仅在数论、代数、几何等领域有广泛的应用,也有助于培养学生的逻辑思维和问题解决能力。

下面我们来练习一些关于数列的基础知识题目,帮助大家巩固相关概念。

1.下列数列中,哪些是等差数列?a) 1, 4, 7, 10, 13b) 2, 4, 8, 16, 32c) 3, 6, 11, 18, 27解答:等差数列是指数列中相邻两项之差保持不变。

根据这个定义,我们可以观察每个数列的相邻项之间的差是否相等。

只有数列a)和c)的差是恒定的,所以它们是等差数列。

2.求下列等差数列的公差和通项公式:a) 2, 5, 8, 11, 14b) -3, 1, 5, 9, 13解答:公差是指等差数列中相邻两项之差的值。

我们观察每个数列的相邻项,可以得到:a) 公差为3。

通项公式可以表示为an = 2 + 3(n-1),其中n代表项数。

b) 公差为4。

通项公式可以表示为an = -3 + 4(n-1)。

3.下列数列中,哪些是等比数列?a) 2, 4, 8, 16, 32b) 3, 6, 12, 24, 48c) 1, 4, 9, 16, 25解答:等比数列是指数列中相邻两项之比保持不变。

根据这个定义,我们可以观察每个数列的相邻项之间的比值是否相等。

只有数列a)和b)的比值是恒定的,所以它们是等比数列。

4.求下列等比数列的公比和通项公式:a) 3, 9, 27, 81, 243b) -2, 4, -8, 16, -32解答:公比是指等比数列中相邻两项之比的值。

我们观察每个数列的相邻项,可以得到:a) 公比为3。

通项公式可以表示为an = 3^(n-1),其中n代表项数。

b) 公比为-2。

通项公式可以表示为an = (-2)^n,其中n代表项数。

5.求下列数列的前n项和:a) 1, 2, 3, 4, 5, ...b) 2, 4, 6, 8, 10, ...解答:前n项和是指数列前n项的和。

数列练习题及解析

数列练习题及解析

数列练习题及解析题目1:求以下数列的第n项。

1, 4, 7, 10, 13, ...解析1:这是一个等差数列,公差为3。

数列的通项公式可以表示为:an = a1 + (n-1)d,其中an表示第n项,a1表示首项,d表示公差。

所以,an = 1 + (n-1)3 = 3n - 2。

题目2:求以下数列的前n项和。

2, 4, 6, 8, 10, ...解析2:这是一个公差为2的等差数列。

数列的前n项和可以表示为:Sn = (a1 + an) * n / 2,其中Sn表示前n项和。

首项a1为2,第n项an为2n,代入公式得到:Sn = (2 + 2n) * n / 2 = n(n+1)。

题目3:已知数列的通项公式an = 2^n,求第6项及前6项和。

解析3:根据通项公式an = 2^n,可得到第6项为a6 = 2^6 = 64。

前6项和可以表示为:S6 = a1 + a2 + a3 + a4 + a5 + a6 = 2^1 + 2^2 + 2^3 + 2^4 + 2^5 + 2^6。

利用等比数列求和公式,S6 = (a1 * (1 - q^n)) / (1 - q),其中a1为首项,q为公比。

代入公式得到:S6 = (2 * (1 - 2^6)) / (1 - 2) = 127。

题目4:已知等差数列的首项为3,公差为-2,求满足an < 0的最小n值。

解析4:根据等差数列的通项公式an = a1 + (n-1)d,代入已知条件得到:3 + (n-1)(-2) < 0。

化简不等式得到:-2n + 5 < 0。

解得:n > 5/2,即n的最小取值为3。

题目5:已知等差数列的前4项和为20,首项为a1,公差为d,求a1与d的值。

解析5:根据等差数列的前n项和公式Sn = (n/2)(2a1 + (n-1)d),代入已知条件得到:20 = (4/2)(2a1 + 3d)。

化简得到:10 = 2a1 + 3d。

(完整版)数列题型及解题方法归纳总结

(完整版)数列题型及解题方法归纳总结

1知识框架111111(2)(2)(1)(1)()22()n n n n n n m p q n n n n a q n a a a qa a d n a a n d n n n S a a na d a a a a m n p q --=≥=⎧⎪←⎨⎪⎩-=≥⎧⎪=+-⎪⎪-⎨=+=+⎪⎪+=++=+⎪⎩两个基等比数列的定义本数列等比数列的通项公式等比数列数列数列的分类数列数列的通项公式函数角度理解的概念数列的递推关系等差数列的定义等差数列的通项公式等差数列等差数列的求和公式等差数列的性质1111(1)(1)11(1)()n n n n m p q a a q a q q q q S na q a a a a m n p q ---=≠--===+=+⎧⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎨⎪⎨⎪⎪⎨⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎩⎩⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩⎧⎨⎩⎩等比数列的求和公式等比数列的性质公式法分组求和错位相减求和数列裂项求和求和倒序相加求和累加累积归纳猜想证明分期付款数列的应用其他⎪⎪⎪⎪⎪⎪⎪⎪⎪掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。

一、典型题的技巧解法 1、求通项公式 (1)观察法。

(2)由递推公式求通项。

对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。

(1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常数) 例1、 已知{a n }满足a n+1=a n +2,而且a 1=1。

求a n 。

例1、解 ∵a n+1-a n =2为常数 ∴{a n }是首项为1,公差为2的等差数列∴a n =1+2(n-1) 即a n =2n-1 例2、已知{}n a 满足112n n a a +=,而12a =,求n a =?(2)递推式为a n+1=a n +f (n )例3、已知{}n a 中112a =,12141n n a a n +=+-,求n a . 解: 由已知可知)12)(12(11-+=-+n n a a n n )121121(21+--=n n令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1)22434)1211(211--=--+=n n n a a n ★ 说明 只要和f (1)+f (2)+…+f (n-1)是可求的,就可以由a n+1=a n +f (n )以n=1,2,…,(n-1)代入,可得n-1个等式累加而求a n 。

高三数学数列知识点归纳总结

高三数学数列知识点归纳总结

高三数学数列知识点归纳总结数列是数学中常见且重要的概念,它在高三数学中扮演着非常重要的角色。

为了帮助大家更好地掌握数列的知识点,下面对高三数学数列知识进行归纳总结。

一、等差数列等差数列是指数列中相邻两项之差相等的数列。

常见的等差数列公式可以表示为An = a1 + (n - 1)d,其中a1为首项,d为公差,n为项数。

1. 等差数列求和公式等差数列求和公式是等差数列中一个非常重要且常用的公式,可以帮助我们快速计算等差数列的和。

等差数列前n项和公式为Sn = n/2 * (a1 + an),其中Sn表示前n项和,a1为首项,an为第n项。

2. 等差中项公式等差中项公式是指通过等差数列的首项、末项和项数来计算等差数列的中项。

根据等差数列的性质,中项可以通过求首项与末项的平均值来得到。

等差中项公式为An = (a1 + an)/2,其中An表示中项,a1表示首项,an表示末项。

3. 等差数列的性质(1)任意项等于前一项加上公差,即An = An-1 + d。

(2)任意项等于首项加上与该项的差数乘以公差,即An = a1 + (n- 1)d。

(3)等差数列中,相等距离的两个项之和等于首项与末项之和。

二、等比数列等比数列是指数列中相邻两项之比相等的数列。

常见的等比数列公式可以表示为An = a1 * q^(n-1),其中a1为首项,q为公比,n为项数。

1. 等比数列求和公式等比数列求和公式是等比数列中一个非常重要且常用的公式,可以帮助我们快速计算等比数列的和。

等比数列前n项和公式为Sn = a1 * (q^n - 1) / (q - 1),其中Sn表示前n项和,a1为首项,q为公比。

2. 等比中项公式等比中项公式是指通过等比数列的首项、末项和项数来计算等比数列的中项。

根据等比数列的性质,中项可以通过将首项与末项的平方根相乘来得到。

等比中项公式为An = sqrt(a1 * an),其中An表示中项,a1表示首项,an表示末项。

数列基础练习(含答案)—题型全覆盖

数列基础练习(含答案)—题型全覆盖

数列一、选择题(本大题共18小题,共90.0分)1. 已知等差数列{a n }满足a 1+a 5=10,a 8=3a 3,则数列{a n }的前10项的和等于( )A. 10B. 11C. 100D. 1102. 已知等差数列{a n }和等差数列{b n }的前n 项和分别为S n ,T n 且(n +1)S n =(7n +23)T n ,则使a nb n 为整数的正整数n 的个数是( )A. 2B. 3C. 4D. 53. 数列0,0,0,…,0,…是( )A. 是等差数列但不是等比数列B. 是等比数列但不是等差数列C. 既是等差数列又是等比数列D. 既不是等差数列也不是等比数列4. 设等比数列{a n }中,每项均是正数,且a 5a 6=81,则A. 20B. −20C. −4D. −55. 数列112,314,518,7116,…,(2n −1)+12n ,…的前n 项和S n 的值等于( )A. n 2+1−12n B. 2n 2−n +1−12n C. n 2+1−12n−1D. n 2−n +1−12n6. 已知数列{a n }的前n 项和为S n ,a 1=1,S n =2a n+1,则S n =A. 2n−1B. (32)n−1C. (23)n−1D. 12n−17.( )A. 32−1nB. 2−3n+1C. 1−1n+1D. 32+1n8. 两数√2+1与√2−1的等比中项是( )。

A. −1或1B. −1C. 1D. 129. 在等差数列{a n }中,已知a 5>0,a 4+a 7<0,则{a n }的前n 项和S n 的最大值为( )A. S 4B. S 5C. S 6D. S 710. 数列1,11+2,11+2+3,…,11+2+3+⋯+n 的前n 项和为95,则正整数n 的值为( )A. 6B. 8C. 9D. 10A. 12B. 1C. −1D. 212.已知数列{a n}中,a1=1,前n项和为S n,且点P(a n,a n+1)(n∈N∗)在直线x−y+1=0上,则1S1+1S2+1S3+...+1S n=()A. n(n+1)2B. 2n(n+1)C. 2nn+1D. n2(n+1)13.在数列{a n}中,a1=2,a n+1n+1=a nn+ln(1+1n),则a n=()A. 2+nlnnB. 2n+(n−1)lnnC. 2n+nlnnD. 1+n+nlnn14.在数列{a n}中,a2=3,a3=5,且a n+2=2a n+1−a n,则a6=()A. 9B. 11C. 13D. 1515.若数列{a n}的通项公式是a n=(−1)n(3n−2),则a1+a2+⋯+a2018=()A. 1009B. 3027C. 5217D. 610616.等比数列{a n}的各项均为正数,且a5a6+a4a7=18,则log3a1+log3a2+⋯+log3a10=()A. 12B. 10C. 8D. 2+log3517.数列{a n}的通项公式a n=√n+√n+1,若前n项的和为10,则项数为()A. 11B. 99C. 120D. 12118.等差数列{a n}的前n项和为S n,S100>0,S101<0,则满足a n a n+1<0的n=()A. 50B. 51C. 100D. 101二、填空题(本大题共9小题,共45.0分)19.设数列{a n}的前n项和为S n,且a1=−1,a n+1=S n S n+1,则S n=.20.设S n为等比数列{a n}的前n项和,已知S4=14,S8=56,则S16=____________.21.已知{a n}是递增数列,且对于任意的n∈N∗,a n=n2+λn恒成立,则实数λ的取值范围是_________.22.已知数列{a n}的前n项和为S n,且,则{a n}的通项为______.23.已知数列{a n}的前n项和S n=2n−3,则数列{a n}的通项公式为_________.24.若数列{a n}满足a1=12,a1+2a2+3a3+⋅⋅⋅+na n=n2a n,则a2019=______.25.设数列{a n}的前n项和为S n,且满足a1+2a2+⋯+2n−1a n=n,则S5=________.26.若f(x)+f(1−x)=4,a n=f(0)+f(1n )+⋯+f(n−1n)+f(1)(n∈N+),则数列{a n}的通项公式为______.三、解答题(本大题共8小题,共96.0分)28. 已知数列{a n }的前n 项和为S n ,且满足3S n =2a n +1.(1)求数列{a n }的通项公式;(2)设数列{b n }满足b n =(n +1)a n ,求数列{b n }的前n 项和T n .29. 已知等差数列{a n }中,a 3=3,a 2+2,a 4,a 6−2顺次成等比数列.(1)求数列{a n }的通项公式; (2)记b n =(−1)n a 2n+1a n a n+1,{b n }的前n 项和S n ,求S 2n .30. 已知数列{a n }满足a 1=1,a n+1=2a na n +2,(n ∈N ∗),b n =1a n. (1)证明数列{b n }为等差数列; (2)求数列{a n }的通项公式.31.设等差数列{a n}的前n项和为S n,若S9=81,a3+a5=14.(1)求数列{a n}的通项公式;(2)设b n=1a n a n+1,若{b n}的前n项和为T n,证明:T n<12.32.设数列{a n}的前n项和为S n.已知a n>0,a n2+2a n=4S n+3.(1)求{a n}的通项公式.(2)设b n=1a n⋅a n+1,求数列{b n}的前n项和.33.已知等比数列{a n}满足a n+1=a n+2n.(Ⅰ)求数列{a n}的通项公式:(Ⅱ)若b n=log2a na n+1,求数列{b n}的前n项和S n.34.在数列{a n}中,已知a1=35,a n=2−1a n−1(n≥2,n∈N∗),数列{b n}满足b n=1a n−1(n∈N∗).(1)求证:数列{b n}是等差数列;(2)求{a n}的通项公式a n.35.已知数列{a n}满足,且a1=8.(1)证明:数列为等比数列;(2)设,记数列{b n}的前n项和为T n,若对任意n∈N∗,m≥T n恒成立,求m的取值范围.2.答案和解析1.【答案】C解:设等差数列{a n }的公差为d , ∵a 1+a 5=10,a 8=3a 3,∴2a 1+4d =10,a 1+7d =3(a 1+2d), 解得a 1=1,d =2. ∴S 10=10a 1+10×92d =10+90=100.2.【答案】C解:由题意,可得S nT n=7n+23n+1,则a n b n=2a n2b n=n(a 1+a 2n−1)2n(b 1+b 2n−1)2=S2n−1T 2n−1=14n+162n =7n+8n=7+8n ,经验证,知当n =1,2,4,8时,a nb n 为整数, 即使a nb n 为整数的正整数n 的个数是4.3.【答案】A解:数列0,0,0,…,0,…是无穷数列,从第二项开始起,每一项与它前一项的差都等于常数0,符合等差数列的定义,所以,数列0,0,0,…,0,…是等差数列,根据等比数列的定义可知,等比数列中不含有为0的项,所以,数列0,0,0,…,0,…不是等比数列. 故选A .4.【答案】B解:∵等比数列{a n }中,每项均是正数,a 5a 6=81, ∴a 5a 6=a 4a 7=a 3a 8=a 2a 9=a 1a 10=81, ∴log 13a 1+log 13a 2+⋯+log 13a 10.,=log 13(a 5a 6)5,=5log 1381,=−20.解:该数列的通项公式为a n =(2n −1)+12n ,∴S n =[1+3+5+⋯+(2n −1)]+(12+122+123+⋯+12n )=n [1+(2n −1)]2+12(1−12n )1−12=n 2+1−12n.6.【答案】B解:由S n =2a n+1可得当n >1时,S n−1=2a n ,,两式相减可得: 当n >1时,s n −s n−1=a n =2a n+1−2a n , 所以a n+1=32a n ; 因为a 1=1,所以a n =(32)n−1.故选B .7.【答案】A解:∵a n+1−a n =1n (n+1)=1n −1n+1,∴a 2−a 1=1−12,a 3−a 2=12−13,...,a n −a n−1=1n−1−1n , 以上n −1式相加,得a n −a 1=1−1n , ∵a 1=12,∴a n =32−1n . 故选A .8.【答案】A解:设√2+1与√2−1的等比中项是x ,则满足x 2=(√2+1)(√2−1)=(√2)2−1=2−1,则x =1或x =−1,9.【答案】B 10.【答案】C解:设a n =11+2+3+⋯+n =2(n+1)n =2(1n −1n+1),∴该数列的前n 项和为S n =2(1−12+12−13+⋯+1n −1n+1)=2nn+1, 令2nn+1=95,解得n =9.解:∵在数列{a n }中,a 1=12,a n =1−1a n−1(n ≥2,n ∈N +),∴a 2=1−1a 1=1−2=−1,a 3=1−1−1=2, a 4=1−12=12,∴{a n }是周期为3的周期数列, ∴2020=3×673+1, ∴a 2020=a 1=12.12.【答案】C解:∵点P(a n ,a n+1)(n ∈N ∗)在直线x −y +1=0上∴a n −a n+1+1=0∴数列{a n }是以1为首项,以1为公差的等差数列.∴a n =n∴s n =n(n +1)2∴1s n =2n(n +1)=2(1n −1n +1) 1S 1+1S 2+1S 3+⋯+1S n =2(1−12+12−13+⋯+1n −1n +1)=2n n +113.【答案】C解:由an+1n+1=a n n+ln(1+1n ),设ann =b n ,b 1=a 11=2,则a n+1n+1=b n+1,可得b n+1−b n =ln(n+1n)那么:b n −b n−1=ln(nn−1),n ≥2,…b 2−b 1=ln 21,累加可得:b n −b 1=ln(21×32×……×nn−1)=lnn . ∴b n =b 1+lnn =2+lnn ,当n =1也满足. 则a n =n(2+lnn)14.【答案】B因为a2=3,a3=5,所以a1=1,d=2,所以a6=a1+5d=11.15.【答案】B解:a n=(−1)n(3n−2),则a1+a2+⋯+a2018=(−1+4)+(−7+10)+(−13+16)+⋯+(−6049+6052)=3+3+⋯+3=3×1009=3027.16.【答案】B解:∵a5a6=a4a7,∴a5a6+a4a7=2a5a6=18,∴a5a6=9,∴log3a1+log3a2+⋅⋅⋅+log3a10=log3(a5a6)5=5log39=10.17.【答案】C解:∵数列{a n}的通项公式是a n=√n+√n+1=√n+1−√n,∴其前n项的和为S n=(√2−1)+(√3−√2)+⋯+√n+1−√n=√n+1−1,即√n+1−1=10,则n+1=121,即n=120,18.【答案】A解:根据题意,等差数列{a n}中,S100>0,S101<0,则有S100=(a1+a100)×1002=50(a1+a100)=50(a50+a51)>0,则有a50+a51>0;又由S101=(a1+a101)×1012=101a51<0,则有a51<0;则有a50>0,若a n a n+1<0,必有n=50;19.【答案】−1n解:∵a n+1=S n S n+1,∴a n+1=S n+1−S n=S n S n+1,∴S n+1−S nS n+1S n =1S n−1S n+1=1,即1S n+1−1S n=−1,又a1=−1,即1S1=1a1=−1,∴数列{1S n }是以首项和公差均为−1的等差数列,∴1S n=−1−1(n−1)=−n,∴S n=−1n,解:设等比数列{a n }的公比为q , 因为S 4=a 1(1−q 4)1−q =14,S 8=a 1(1−q 8)1−q=56,所以1−q 41−q 8=14,所以1+q 4=4,所以q 4=3, 又因为a 1(1−q 4)1−q=14,所以a 11−q =−7,所以S 16=a 1(1−q 16)1−q=a 11−q[1−(q 4)4]=560.故答案为560.21.【答案】(−3,+∞)解:解法一(定义法)因为{a n }是递增数列,所以对任意的n ∈N ∗,都有a n+1>a n ,即(n +1)2+λ(n +1)>n 2+λn ,整理得2n +1+λ>0,即λ>−(2n +1) (∗). 因为n ≥1,所以−(2n +1)≤−3,要使不等式(∗)恒成立,只需λ>−3.解法二(函数法)设f (n )=a n =n 2+λn ,其图象的对称轴为直线n =−λ2,要使数列{a n }为递增数列,只需使定义在正整数集上的函数f (n )为增函数,故只需满足f (1)<f (2),即λ>−3.22.【答案】a n ={3,n =12n +2 ,n ≥2,n ∈Z解:∵数列{a n }的前n 项和为S n ,且S n =n 2+3n −1, ∴a 1=S 1=3,当n ≥2时,a n =S n −S n−1=n 2+3n −1−[(n −1)2+3(n −1)−1]=2n +2,则{a n }的通项公式为a n ={3,n =12n +2 ,n ≥2,n ∈Z,23.【答案】a n ={−1,n =1,2n−1,n ≥2解:当n ≥2时,a n =S n −S n−1=2n−1,当n =1时,a 1=S 1=−1,所以a n ={−1,n =1,2n−1,n ≥2.24.【答案】4673解:因为a 1+2a 2+3a 3+⋯+na n =n 2a n ,所以当n ≥2时,a 1+2a 2+3a 3+⋯+(n −1)a n−1=(n −1)2a n−1,所以na n =(n −1)a n−1=⋯=2a 2=a 1,由a 1=12可知a n =a 1n=12n,所以a 2019=122019=4673, 故答案为4673.25.【答案】3116解:a 1+2a 2+⋯+2n−2a n−1+2n−1a n =n ,➀ 当n ≥2时,a 1+2a 2+⋯+2n−2a n−1=n −1,➀ ➀−➀,得2n−1a n =1,即a n =12n−1, ➀ 当n =1时,a 1=1,满足➀式,∴{a n }是以a 1=1为首项,q =12为公比的等比数列,通项公式为a n =12, ∴S 5=1×[1−(12)5]1−12=2−(12)4=3116.26.【答案】a n =2(n +1)解:由f(x)+f(1−x)=4,可得自变量的和为1,则函数值的和为4, 由a n =f(0)+f(1n )+f(2n )+⋯+f(n−1n )+f(1),a n =f(1)+f(n−1n )+f(n−2n)+⋯+f(1n )+f(0),相加可得2a n =[f(0)+f(1)]+[f(1n )+f(n−1n)]+⋯+[f(1)+f(0)]=4+4+⋯+4=4(n +1), 解得a n =2(n +1). 故答案为a n =2(n +1).27.【答案】3027解:∵f (x )+f (1−x )=3x−22x−1+3(1−x )−22(1−x )−1=3x−22x−1+1−3x1−2x =6x−32x−1=3, 设S =f(12019)+f(22019)+f(32019)+⋯+f(20182019)………①, 则S =f(20182019)+f(20172019)+f(20162019)+⋯+f(12019) ………②, ①+②得:2S =2018[f(12019)+f(20182019)]=2018×3, S =1009×3=3027,28.解:(1)当n =1时,3S 1=2a 1+1,可得a 1=1,当n ≥2时,由{3S n =2a n +13S n−1=2a n−1+1得3(S n −S n−1)=2a n −2a n−1,整理得a n =−2a n−1, 所以数列{a n }是公比为−2,首项为1的等比数列 从而a n =(−2)n−1.(2)由b n =(n +1)a n ,得b n =(n +1)×(−2)n−1,则:T n =2×(−2)0+3×(−2)1+4×(−2)2+⋯+(n +1)×(−2)n−1,……① 那么:−2T n =2×(−2)1+3×(−2)2+⋯+n ×(−2)n−1+(n +1)×(−2)n ,……② 由①−②得:3T n =2×(−2)0+(−2)1+(−2)2+⋯+(−2)n−1−(n +1)×(−2)n =1+1−(−2)n 1−(−2)−(n +1)×(−2)n =43−(n +43)×(−2)n ,从而:T n =49−3n+49×(−2)n .29.解:(1)设等差数列{a n }的公差为d ,因为a 3=3,a 2+2,a 4,a 6−2顺次成等比数列,所以a 42=(a 2+2)(a 6−2),所以(3+d)2=(5−d)(1+3d),化简得d 2−2d +1=0,解得d =1.所以a 1=a 3−2d =1,所以a n =a 1+(n −1)d =1+(n −1)×1=n . (2)由(1)得b n =(−1)n a 2n+1a n a n+1=(−1)n 2n+1n(n+1)=(−1)n (1n +1n+1),所以S 2n =b 1+b 2+b 3+⋯+b 2n =−(1+12)+(12+13)−(13+14)+⋯+(12n +12n+1)=−1+12n+1=−2n2n+1.30.(1)证明:∵a 1≠0,且有a n+1=2ana n +2,(n ∈N ∗), ∴ a n ≠0,又∵b n =1a n,∴b n+1=1an+1=a n +22a n=1a n+12=b n +12,即b n+1−b n =12,且b 1=1a 1=1,∴ 数列{b n }是首项为1,公差为12的等差数列. (2)解:由(1)知b n =1+n−12=n+12,即1a n=n+12⇒a n =2n+1.31.解:(1)设等差数列{a n }的公差为d ,由S 9=9a 5=81,得a 5=9, 又由a 3+a 5=14,得a 3=5, 由上可得等差数列{a n }的公差d =2, ∴a n =a 3+(n −3)d =2n −1;(2)证明:由题意得,b n=1a n a n+1=1(2n−1)(2n+1)=12(12n−1−12n+1).所以T n=12(1−13+13−15+⋯+12n−1−12n+1)=12(1−12n+1)<12.32.解:(1)由a n2+2a n=4S n+3,可知a n+12+2a n+1=4S n+1+3,两式相减得a n+12−a n2+2(a n+1−a n)=4a n+1,即2(a n+1+a n)=a n+12−a n2=(a n+1+a n)(a n+1−a n),∵a n>0,∴a n+1−a n=2,∵a12+2a1=4a1+3,∴a1=−1(舍)或a1=3,则{a n}是首项为3,公差d=2的等差数列,∴{a n}的通项公式a n=3+2(n−1)=2n+1;(2)∵a n=2n+1,∴b n=1a n a n+1=1 (2n+1)(2n+3)=12(1 2n+1−12n+3),∴数列{b n}的前n项和T n=12(13−15+15−17+⋯+12n+1−12n+3)=12(13−12n+3)=n3(2n+3).33.解:(Ⅰ)当n=1时,a2=a1+2,当n=2时,a3=a2+4=a1+6,∵数列{a n}是等比数列,∴a22=a1a3,即(a1+2)2=a1(a1+6),解得a1=2.∴q=a2a1=42=2,∴a n=a1q n−1=2×2n−1=2n;(Ⅱ)∵b n=log2a na n+1=n2n+1,∴S n=122+223+324+⋯+n2n+1①,∴12S n=12+22+32+⋯+n2②,由①−②得12S n=122+123+124+⋯+12n+1−n2n+2=122(1−12n )1−12−n 2n+2 =12−12n+1−n 2n+2 ∴S n =1−n+22n+1.34.(1)证明:当n ≥2时,b n −b n−1=1a n −1−1a n−1−1=12−1a n−1−1−1an−1−1=a n−1−1a n−1−1=1, 所以数列{b n }为等差数列, 且首项为1a1−1=−52,公差为1;(2)解:由(1)知,所以1an−1=n −72=2n−72,故a n =1+22n−7=2n−52n−7.35.解:(1)证明:因为数列{a n }满足,所以a n+1=2a n −2,整理得a n+1−2=2(a n −2), 因为a 1−2=6≠0且a n+1−2a n −2=2为常数,所以数列是以6为首项,2为公比的等比数列;(2)解:由(1)知a n −2=6·2n−1,即a n =3·2n +2, 所以b n =(−1)n a n(2n +1)(2n+1+1)=(−1)n (12n +1+12n+1+1)当n 为偶数时,;当n 为奇数时,;当n 为偶数时,是递减的,此时当时,T n 取最大值29,则m ⩾−29;当n 为奇数时,是递增的,由上式易得到T n <−13,则m ⩾−13. 综上,m 的取值范围是[−29,+∞).。

数列知识点公式归纳总结

数列知识点公式归纳总结

数列知识点公式归纳总结数列是数学中常见的概念,它可以通过一定的规律来表示一系列的数值。

在数学学科中,数列的研究与应用非常广泛,无论是在纯数学中的数论、代数,还是在应用数学中的物理、经济学等领域都有数列的应用。

因此,熟练掌握数列的知识点和公式对于提高数学水平以及解决实际问题都具有重要意义。

本文将针对数列的知识点进行归纳总结,旨在帮助读者更好地理解和应用数列的概念。

在总结中,将包括一些常见的数列类型、特殊数列的性质以及数列求和公式等内容,以供读者参考和学习。

一、等差数列等差数列是指数列中的相邻项之间的差等于一个常数。

在等差数列中,我们可以总结出以下几个重要的知识点和公式:1. 第n项公式:对于等差数列an,其第n项的公式可以表示为an = a1 + (n-1)d,其中a1是首项,d是公差。

2. 前n项和公式:对于等差数列an,其前n项和的公式可以表示为Sn = (n/2)(a1 + an) = (n/2)(2a1 + (n-1)d),其中Sn表示前n项和。

3. 通项公式:对于等差数列an,我们可以通过观察数列中相邻项之间的关系,进而得出其通项公式。

通项公式为an = a1 + (n-1)d,其中a1是首项,d是公差。

二、等比数列等比数列是指数列中的相邻项之间的比等于一个常数。

在等比数列中,我们可以总结出以下几个重要的知识点和公式:1. 第n项公式:对于等比数列an,其第n项的公式可以表示为an = a1 * r^(n-1),其中a1是首项,r是公比。

2. 前n项和公式:对于等比数列an,其前n项和的公式可以表示为Sn = a1 * (1 - r^n) / (1 - r),其中Sn表示前n项和。

3. 通项公式:对于等比数列an,我们可以通过观察数列中相邻项之间的关系,进而得出其通项公式。

通项公式为an = a1 * r^(n-1),其中a1是首项,r是公比。

三、斐波那契数列斐波那契数列是一个特殊的数列,其前两项为1,之后每一项都是前两项的和。

数列的概念基础练习题

数列的概念基础练习题

一、数列的概念选择题1.已知数列{}n a 中,11a =,122nn n a a a +=+,则5a 等于( ) A .25B .13 C .23D .122.在数列{}n a 中,10a =,1n a +,则2020a =( ) A .0B .1C.D3.已知数列{}n a 满足1n n n a a +-=,则20201a a -=( ) A .20201010⨯B .20191010⨯C .20202020⨯D .20192019⨯4.已知数列{}n a 的前n 项和为()*22nn S n =+∈N ,则3a=( )A .10B .8C .6D .45.在数列{}n a 中,11a =,对于任意自然数n ,都有12nn n a a n +=+⋅,则15a =( )A .151422⋅+B .141322⋅+C .151423⋅+D .151323⋅+6.数列{}n a 中,11a =,12n n a a n +=+,则n a =( ) A .2n n 1-+ B .21n +C .2(1)1n -+D .2n7.已知数列,21,n -21是这个数列的( )A .第10项B .第11项C .第12项D .第21项8.数列23451,,,,,3579的一个通项公式n a 是( ) A .21nn + B .23nn + C .23nn - D .21nn - 9.在数列{}n a 中,11a =,11n na a n +=++,设数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,若n S m <对一切正整数n 恒成立,则实数m 的取值范围为( )A .()3,+∞B .[)3,+∞C .()2,+∞D .[)2,+∞10.数列{}n a 满足 112a =,111n na a +=-,则2018a 等于( )A .12B .-1C .2D .311.在数列{}n a 中,11a =,()*122,21n n a n n N a -=≥∈-,则3a =( )A .6B .2C .23D .21112.已知数列{}n a 的通项公式为()()211nn a n=--,则6a =( )A .35B .11-C .35-D .1113.已知数列{a n }满足112,0,2121, 1.2n n n n n a a a a a +⎧≤<⎪⎪=⎨⎪-≤<⎪⎩若a 1=35,则a 2019 = ( )A .15B .25C .35D .4514.设数列{},{}n n a b 满足*172700,,105n n n n n a b a a b n N ++==+∈若6400=a ,则( ) A .43a a >B .43<b bC .33>a bD .44<a b15.已知数列{}n a 的前n 项和为n S ,若*1n S n N n =∈,,则2a =( ) A .12-B .16-C .16D .1216.已知数列{}n a 满足2122111,16,2n n n a a a a a ++===则数列{}n a 的最大项为( ) A .92B .102C .8182D .11217.已知数列{}n a 满足1N a *∈,1,2+3,nn n n n a a a a a +⎧⎪=⎨⎪⎩为偶数为奇数,若{}n a 为周期数列,则1a 的可能取到的数值有( ) A .4个B .5个C .6个D .无数个18.数列{}:1,1,2,3,5,8,13,21,34,...,n F 成为斐波那契数列,是由十三世纪意大利数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”,该数列从第三项开始,每项等于其前两相邻两项之和,记该数{}n F 的前n 项和为n S ,则下列结论正确的是( )A .201920212S F =+B .201920211S F =-C .201920202S F =+D .201920201S F =-19.意大利数学家斐波那契以兔子繁殖为例,引入“兔子数列”:1,1,2,3,5,8,13,21,34,55,…即()()121F F ==,()()()12F n F n F n =-+- (3n ≥,n *∈N ),此数列在现代物理、化学等方面都有着广泛的应用,若此数列的每一项被2除后的余数构成一个新数列{}n a ,则数列{}n a 的前2020项的和为( ) A .1348B .1358C .1347D .135720.在数列{}n a 中,已知11a =,25a =,()*21n n n a a a n N ++=-∈,则5a 等于( )A .4-B .5-C .4D .5二、多选题21.意大利人斐波那契于1202年从兔子繁殖问题中发现了这样的一列数:1,1,2,3,5,8,13,….即从第三项开始,每一项都是它前两项的和.后人为了纪念他,就把这列数称为斐波那契数列.下面关于斐波那契数列{}n a 说法正确的是( ) A .1055a = B .2020a 是偶数C .2020201820223a a a =+D .123a a a +++…20202022a a +=22.若不等式1(1)(1)2n na n+--<+对于任意正整数n 恒成立,则实数a 的可能取值为( ) A .2- B .1- C .1 D .223.著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{}n a 称为“斐波那契数列”,记S n 为数列{}n a 的前n 项和,则下列结论正确的是( ) A .68a = B .733S =C .135********a a a a a ++++=D .22212201920202019a a a a a +++= 24.(多选题)已知数列{}n a 中,前n 项和为n S ,且23n n n S a +=,则1n n a a -的值不可能为( ) A .2B .5C .3D .425.已知数列{}n a 满足112a =-,111n n a a +=-,则下列各数是{}n a 的项的有( )A .2-B .23C .32D .326.已知等差数列{}n a 的公差0d ≠,前n 项和为n S ,若612S S =,则下列结论中正确的有( ) A .1:17:2a d =-B .180S =C .当0d >时,6140a a +>D .当0d <时,614a a >27.等差数列{}n a 的前n 项和为n S ,1385a a S +=,则下列结论一定正确的是( ) A .100a = B .911a a = C .当9n =或10时,n S 取得最大值D .613S S =28.在等差数列{}n a 中,公差0d ≠,前n 项和为n S ,则( ) A .4619a a a a >B .130S >,140S <,则78a a >C .若915S S =,则n S 中的最大值是12SD .若2n S n n a =-+,则0a =29.已知正项数列{}n a 的前n 项和为n S ,若对于任意的m ,*n N ∈,都有m n m n a a a +=+,则下列结论正确的是( )A .11285a a a a +=+B .56110a a a a <C .若该数列的前三项依次为x ,1x -,3x ,则10103a = D .数列n S n ⎧⎫⎨⎬⎩⎭为递减的等差数列 30.等差数列{}n a 的前n 项和记为n S ,若10a >,717S S =,则( ) A .0d < B .120a > C .13n S S ≤D .当且仅当0nS <时,26n ≥31.(多选题)在数列{}n a 中,若221n n a a p --=,(2n ≥,*n N ∈,p 为常数),则称{}n a 为“等方差数列”.下列对“等方差数列”的判断正确的是( )A .若{}n a 是等差数列,则{}2n a 是等方差数列B .(){}1n-是等方差数列C .若{}n a 是等方差数列,则{}kn a (*k N ∈,k 为常数)也是等方差数列D .若{}n a 既是等方差数列,又是等差数列,则该数列为常数列32.{} n a 是等差数列,公差为d ,前项和为n S ,若56S S <,678S S S =>,则下列结论正确的是( ) A .0d <B .70a =C .95S S >D .170S <33.已知数列{}n a 的前n 项和为n S ,前n 项积为n T ,且3201911111a a e e +≤++,则( ) A .当数列{}n a 为等差数列时,20210S ≥ B .当数列{}n a 为等差数列时,20210S ≤ C .当数列{}n a 为等比数列时,20210T > D .当数列{}n a 为等比数列时,20210T <34.记n S 为等差数列{}n a 的前n 项和.已知535S =,411a =,则( )A .45n a n =-B .23n a n =+C .223n S n n =-D .24n S n n =+35.公差为d 的等差数列{}n a ,其前n 项和为n S ,110S >,120S <,下列说法正确的有( ) A .0d <B .70a >C .{}n S 中5S 最大D .49a a <【参考答案】***试卷处理标记,请不要删除一、数列的概念选择题 1.B 解析:B 【分析】根据数列{}n a 的递推公式逐项可计算出5a 的值. 【详解】在数列{}n a 中,11a =,122n n n a a a +=+,则12122122123a a a ⨯===++,2322221322223a a a ⨯===++, 3431222212522a a a ⨯===++,4542221522325a a a ⨯===++. 故选:B. 【点睛】本题考查利用递推公式写出数列中的项,考查计算能力,属于基础题.2.A解析:A 【分析】写出数列的前几项,找寻规律,求出数列的周期,问题即可解. 【详解】10a =,1n a +1n =时,2a 2n =时,3a 3n =时,4a ; ∴ 数列{}n a 的周期是320206733110a a a ⨯+∴===故选:A. 【点睛】本题考查周期数列. 求解数列的周期问题时,周期数列的解题方法:根据给出的关系式求出数列的若干项,通过观察归纳出数列的周期,进而求有关项的值或者前n 项的和.3.B解析:B 【分析】由题意可得211a a -=,322a a -=,433a a -=,……202020192019a a -=,再将这2019个式子相加得到结论. 【详解】由题意可知211a a -=,322a a -=,433a a -=,……202020192019a a -=, 这2019个式子相加可得()20201201912019123 (2019201910102)a a +-=++++==⨯.故选:B. 【点睛】本题考查累加法,重点考查计算能力,属于基础题型.4.D解析:D 【分析】根据332a S S =-,代入即可得结果. 【详解】()()3233222224a S S =-=+-+=.故选:D. 【点睛】本题主要考查了由数列的前n 项和求数列中的项,属于基础题.5.D解析:D 【分析】在数列的递推公式中依次取1,2,3,1n n =- ,得1n -个等式,累加后再利用错位相减法求15a .12n n n a a n +=+⋅, 12n n n a a n +-=⋅,12112a a ∴-=⋅, 23222a a -=⋅, 34332a a -=⋅11(1)2n n n a a n ---=-⋅,以上1n -个等式,累加得12311122232(1)2n n a a n --=⋅+⋅+⋅++-⋅①又2341122122232(2)2(1)2n n n a a n n --=⋅+⋅+⋅++-⋅+-⋅②①- ②得23112222(1)2n n n a a n --=++++--⋅12(12)(1)2(2)2212n n n n n --=--⋅=-⋅--,(2)23n n a n ∴=-⋅+ ,151515(152)231323a ∴=-⋅+=⋅+,故选:D 【点睛】本题主要考查了累加法求数列通项,乘公比错位相减法求数列的和,由通项公式求数列中的项,属于中档题.6.A解析:A 【分析】由题意,根据累加法,即可求出结果. 【详解】因为12n n a a n +=+,所以12n n a a n +-=,因此212a a -=,324a a -=,436a a -=,…,()121n n a a n --=-, 以上各式相加得:()()()21246.1221..212n n n a a n n n ⎡⎤-+-⎣⎦-=+++==+--,又11a =,所以21n a n n =-+.故选:A. 【点睛】本题主要考查累加法求数列的通项,属于基础题型.7.B解析:B根据题中所给的通项公式,令2121n -=,求得n =11,得到结果. 【详解】令2121n -=,解得n =11是这个数列的第11项. 故选:B. 【点睛】该题考查的是有关数列的问题,涉及到的知识点有判断数列的项,属于基础题目.8.D解析:D 【分析】根据数列分子分母的规律求得通项公式. 【详解】由于数列的分母是奇数列,分子是自然数列,故通项公式为21n na n =-. 故选:D 【点睛】本小题主要考查根据数列的规律求通项公式,属于基础题.9.D解析:D 【分析】利用累加法求出数列{}n a 的通项公式,并利用裂项相消法求出n S ,求出n S 的取值范围,进而可得出实数m 的取值范围. 【详解】11n n a a n +=++,11n n a a n +∴-=+且11a =,由累加法可得()()()()12132111232n n n n n a a a a a a a a n -+=+-+-++-=++++=,()122211n a n n n n ∴==-++,22222222222311n S n n n ⎛⎫⎛⎫⎛⎫∴=-+-++-=-< ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭, 由于n S m <对一切正整数n 恒成立,2m ∴≥,因此,实数m 的取值范围是[)2,+∞.故选:D. 【点睛】本题考查数列不等式恒成立问题的求解,同时也考查了累加法求通项以及裂项求和法,考查计算能力,属于中等题.10.B【分析】先通过列举找到数列的周期,再求2018a . 【详解】n=1时,234511121,1(1)2,1,121,22a a a a =-=-=--==-==-=- 所以数列的周期是3,所以2018(36722)21a a a ⨯+===-. 故选:B 【点睛】本题主要考查数列的递推公式和数列的周期,意在考查学生对这些知识的掌握水平和分析推理能力.11.C解析:C 【分析】利用数列的递推公式逐项计算可得3a 的值. 【详解】()*122,21n n a n n N a -=≥∈-,11a =,212221a a ∴==-,3222213a a ==-. 故选:C. 【点睛】本题考查利用数列的递推公式写出数列中的项,考查计算能力,属于基础题.12.A解析:A 【分析】直接将6n =代入通项公式可得结果. 【详解】 因为()()211nn a n=--,所以626(1)(61)35a =--=.故选:A 【点睛】本题考查了根据通项公式求数列的项,属于基础题.13.B解析:B 【分析】根据数列的递推公式,得到数列的取值具备周期性,即可得到结论. 【详解】∵112,02121,12n n n n n a a a a a +⎧≤<⎪⎪=⎨⎪-≤<⎪⎩,又∵a 135=,∴a 2=2a 1﹣1=235⨯-115=,a 3=2a 225=, a 4=2a 3=22455⨯=, a 5=2a 4﹣1=245⨯-135=, 故数列的取值具备周期性,周期数是4, 则2019a =50443a ⨯+=325a =, 故选B . 【点睛】本题主要考查数列项的计算,根据数列的递推关系是解决本题的关键.根据递推关系求出数列的取值具备周期性是解决本题的突破口.14.C解析:C 【分析】 由题意有1328010n n a a +=+且6400=a ,即可求34,a a ,进而可得34,b b ,即可比较它们的大小. 【详解】 由题意知:1328010n n a a +=+,6400=a , ∴345400a a a ===,而700n n a b +=, ∴34300b b ==, 故选:C 【点睛】本题考查了根据数列间的递推关系比较项的大小,属于简单题.15.A解析:A 【分析】令1n =得11a =,令2n =得21212S a a =+=可解得2a . 【详解】 因为1n S n =,所以11111a S ===,因为21212S a a =+=,所以211122a =-=-. 故选:A16.B解析:B 【分析】本题先根据递推公式进行转化得到21112n n n n a a a a +++=.然后令1n n na b a +=,可得出数列{}n b 是等比数列.即11322nn n a a +⎛⎫= ⎪⎝⎭.然后用累乘法可求出数列{}n a 的通项公式,根据通项公式及二次函数的知识可得数列{}n a 的最大项. 【详解】解:由题意,可知: 21112n n n na a a a +++=. 令1n n n ab a +=,则112n n b b +=. 21116a b a ==, ∴数列{}n b 是以16为首项,12为公比的等比数列. 111163222n nn b -⎛⎫⎛⎫∴== ⎪⎪⎝⎭⎝⎭.∴11322nn n a a +⎛⎫= ⎪⎝⎭. ∴1211322aa ⎛⎫= ⎪⎝⎭, 2321322a a ⎛⎫= ⎪⎝⎭,111322n n n a a --⎛⎫= ⎪⎝⎭.各项相乘,可得: 12111111(32)222n n n a a --⎛⎫⎛⎫⎛⎫=⋯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(1)2511()22n n n --⎛⎫= ⎪⎝⎭2115(1)221122n n n---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭211552212n n n --+⎛⎫= ⎪⎝⎭21(1110)212n n -+⎛⎫= ⎪⎝⎭.令2()1110f n n n =-+,则,根据二次函数的知识,可知:当5n =或6n =时,()f n 取得最小值. ()2551151020f =-⨯+=-,()2661161020f =-⨯+=-,()f n ∴的最小值为20-. ∴211(1110)(20)1022101112222n n -+⨯--⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.∴数列{}n a 的最大项为102.故选:B . 【点睛】本题主要考查根据递推公式得出通项公式,构造新数列的方法,累乘法通项公式的应用,以及利用二次函数思想求最值;17.B解析:B 【分析】讨论出当1a 分别取1、2、3、4、6时,数列{}n a 为周期数列,然后说明当19a ≥时,分1a 为正奇数和正偶数两种情况分析出数列{}n a 不是周期数列,即可得解. 【详解】已知数列{}n a 满足1N a *∈,1,2+3,nn n n n a a a a a +⎧⎪=⎨⎪⎩为偶数为奇数. ①若11a =,则24a =,32a =,41a =,54a =,,以此类推,可知对任意的n *∈N ,3n n a a +=,此时,{}n a 为周期数列;②若12a =,则21a =,34a =,42a =,51a =,,以此类推,可知对任意的n *∈N ,3n n a a +=,此时,{}n a 为周期数列;③若13a =,则26a =,33a =,46a =,,以此类推,可知对任意的n *∈N ,2n n a a +=,此时,{}n a 为周期数列;④若14a =,则22a =,31a =,44a =,52a =,,以此类推,可知对任意的n *∈N ,3n n a a +=,此时,{}n a 为周期数列;⑤若15a =,则28a =,34a =,42a =,51a =,64a =,,以此类推,可知对任意的2n ≥且n *∈N ,1n a a <,此时,{}n a 不是周期数列; ⑥若16a =,则23a =,36a =,43a =,,以此类推,可知对任意的n *∈N ,2n n a a +=,此时,{}n a 为周期数列;⑦若17a =,则210a =,35a =,48a =,54a =,,以此类推,可知对任意的2n ≥且n *∈N ,1n a a <,此时,{}n a 不是周期数列; ⑧若18a =,则24a =,32a =,41a =,54a =,,以此类推,可知对任意的2n ≥且n *∈N ,1n a a <,此时,{}n a 不是周期数列.下面说明,当19a ≥且1N a *∈时,数列{}n a 不是周期数列.(1)当(3412,2a ⎤∈⎦且1N a *∈时,由列举法可知,数列{}n a 不是周期数列;(2)假设当(()112,23,k k a k k N +*⎤∈≥∈⎦且1N a *∈时,数列{}n a 不是周期数列,那么当(()1212,23,k k a k k N ++*⎤∈≥∈⎦时. 若1a 为正偶数,则(1122,22k k a a +⎤=∈⎦,则数列{}n a 从第二项开始不是周期数列,从而可知,数列{}n a 不是周期数列; 若1a 为正奇数,则((121321323,232,2k k k k a a ++++⎤⎤=+∈++⊆⎦⎦且2a 为偶数,由上可知,数列{}n a 从第二项开始不是周期数列,进而可知数列{}n a 不是周期数列.综上所述,当19a ≥且1N a *∈时,数列{}n a 不是周期数列.因此,若{}n a 为周期数列,则1a 的取值集合为{}1,2,3,4,6. 故选:B. 【点睛】本题解题的关键是抓住“数列{}n a 为周期数列”进行推导,对于1a 的取值采取列举法以及数学归纳法进行论证,对于这类问题,我们首先应弄清问题的本质,然后根据数列的基本性质以及解决数列问题时常用的方法即可解决.18.B解析:B 【分析】利用迭代法可得21123211n n n n n n n F F F F F F F F F ++---=+=+++++++,可得21n n F S +=+,代入2019n =即可求解.【详解】由题意可得该数列从第三项开始,每项等于其前两相邻两项之和, 则211112n n n n n n n n n n F F F F F F F F F F ++----=+=++=+++1211232n n n n n n n n n F F F F F F F F F -------=+++=++++=123211n n n n F F F F F F ---=+++++++,所以21n n F S +=+,令2019n =,可得201920211S F =-,故选:B 【点睛】关键点点睛:本题的关键点是理解数列新定义的含义得出21n n n F F F ++=+,利用迭代法得出21123211n n n n n n n F F F F F F F F F ++---=+=+++++++,进而得出21n n F S +=+.19.C解析:C 【分析】由题意可知,得数列{}n a 是周期为3的周期数列,前3项和为1102++=,又202067331=⨯+,由此可得答案 【详解】解:由数列1,1,2,3,5,8,13,21,34,55,…,各项除以2的余数,可得数列{}n a 为1,1,0,1,1,0,1,1,0,⋅⋅⋅,所以数列{}n a 是周期为3的周期数列,前3项和为1102++=, 因为202067331=⨯+,所以数列{}n a 的前2020项的和为673211347⨯+= 故选:C20.B解析:B 【分析】根据已知递推条件()*21n n n a a a n N ++=-∈即可求得5a【详解】由()*21n n n a a a n N++=-∈知:3214a a a 4321a a a 5435a a a故选:B本题考查了利用数列的递推关系求项,属于简单题二、多选题 21.AC 【分析】由该数列的性质,逐项判断即可得解. 【详解】对于A ,,,,故A 正确;对于B ,由该数列的性质可得只有3的倍数项是偶数,故B 错误; 对于C ,,故C 正确; 对于D ,,,, , 各式相加解析:AC 【分析】由该数列的性质,逐项判断即可得解. 【详解】对于A ,821a =,9211334a =+=,10213455a =+=,故A 正确; 对于B ,由该数列的性质可得只有3的倍数项是偶数,故B 错误;对于C ,20182022201820212020201820192020202020203a a a a a a a a a a +=++=+++=,故C 正确; 对于D ,202220212020a a a =+,202120202019a a a =+,202020192018a a a =+,32121,a a a a a ⋅⋅⋅=+=,各式相加得()2022202120202021202020192012182a a a a a a a a a ++⋅⋅⋅+=+++⋅⋅⋅++, 所以202220202019201811a a a a a a =++⋅⋅⋅+++,故D 错误. 故选:AC. 【点睛】关键点点睛:解决本题的关键是合理利用该数列的性质去证明选项.22.ABC 【分析】根据不等式对于任意正整数n 恒成立,即当n 为奇数时有恒成立,当n 为偶数时有恒成立,分别计算,即可得解. 【详解】根据不等式对于任意正整数n 恒成立, 当n 为奇数时有:恒成立,解析:ABC 【分析】根据不等式1(1)(1)2n na n +--<+对于任意正整数n 恒成立,即当n 为奇数时有12+a n-<恒成立,当n 为偶数时有12a n<-恒成立,分别计算,即可得解. 【详解】根据不等式1(1)(1)2n na n +--<+对于任意正整数n 恒成立, 当n 为奇数时有:12+a n-<恒成立,由12+n 递减,且1223n <+≤,所以2a -≤,即2a ≥-,当n 为偶数时有:12a n<-恒成立, 由12n -第增,且31222n ≤-<, 所以32a <, 综上可得:322a -≤<, 故选:ABC . 【点睛】本题考查了不等式的恒成立问题,考查了分类讨论思想,有一定的计算量,属于中当题.23.ABD 【分析】根据,,,计算可知正确;根据,,,,,,累加可知不正确;根据,,,,,,累加可知正确. 【详解】依题意可知,,,, ,,,,故正确; ,所以,故正确; 由,,,,,, 可得,故不解析:ABD 【分析】根据11a =,21a =,21n n n a a a ++=+,计算可知,A B 正确;根据12a a =,342a a a =-,564a a a =-,786a a a =-,,201920202018a a a =-,累加可知C 不正确;根据2121a a a =,222312312()a a a a a a a a =-=-,233423423()a a a a a a a a =-=-,244534534()a a a a a a a a =-=-,,220192019202020182019202020182019()a a a a a a a a =-=-,累加可知D 正确. 【详解】依题意可知,11a =,21a =,21n n n a a a ++=+,312112a a a =+=+=,423123a a a =+=+=,534235a a a =+=+=,645358a a a =+=+=,故A 正确; 7565813a a a =+=+=,所以712345671123581333S a a a a a a a =++++++=++++++=,故B 正确;由12a a =,342a a a =-,564a a a =-,786a a a =-,,201920202018a a a =-,可得13572019a a a a a +++++=242648620202018a a a a a a a a a +-+-+-++-2020a =,故C 不正确;2121a a a =,222312312()a a a a a a a a =-=-,233423423()a a a a a a a a =-=-,244534534()a a a a a a a a =-=-,,220192019202020182019202020182019()a a a a a a a a =-=-,所以2222212342019a a a a a +++++122312342345342019202020182019a a a a a a a a a a a a a a a a a a =+-+-+-+- 20192020a a =,所以22212201920202019a a a a a +++=,故D 正确. 故选:ABD. 【点睛】本题考查了数列的递推公式,考查了累加法,属于中档题.24.BD 【分析】利用递推关系可得,再利用数列的单调性即可得出答案. 【详解】 解:∵, ∴时,, 化为:,由于数列单调递减,可得:时,取得最大值2. ∴的最大值为3. 故选:BD . 【点睛】 本解析:BD 【分析】 利用递推关系可得1211n n a a n -=+-,再利用数列的单调性即可得出答案. 【详解】 解:∵23n n n S a +=, ∴2n ≥时,112133n n n n n n n a S S a a --++=-=-, 化为:112111n n a n a n n -+==+--, 由于数列21n ⎧⎫⎨⎬-⎩⎭单调递减, 可得:2n =时,21n -取得最大值2. ∴1nn a a -的最大值为3. 故选:BD . 【点睛】本题考查了数列递推关系、数列的单调性,考查了推理能力与计算能力,属于中档题.25.BD 【分析】根据递推关系式找出规律,可得数列是周期为3的周期数列,从而可求解结论. 【详解】 因为数列满足,, ; ; ;数列是周期为3的数列,且前3项为,,3; 故选:. 【点睛】本题主要解析:BD 【分析】根据递推关系式找出规律,可得数列是周期为3的周期数列,从而可求解结论. 【详解】因为数列{}n a 满足112a =-,111n na a +=-,212131()2a ∴==--;32131a a ==-; 4131112a a a ==-=-; ∴数列{}n a 是周期为3的数列,且前3项为12-,23,3; 故选:BD . 【点睛】本题主要考查数列递推关系式的应用,考查数列的周期性,解题的关键在于求出数列的规律,属于基础题.26.ABC 【分析】因为是等差数列,由可得,利用通项转化为和即可判断选项A ;利用前项和公式以及等差数列的性质即可判断选项B ;利用等差数列的性质即可判断选项C ;由可得且,即可判断选项D ,进而得出正确选项解析:ABC 【分析】因为{}n a 是等差数列,由612S S =可得9100a a +=,利用通项转化为1a 和d 即可判断选项A ;利用前n 项和公式以及等差数列的性质即可判断选项B ;利用等差数列的性质961014a d a a d a =++=+即可判断选项C ;由0d <可得6140a a d +=<且60a >,140a <即可判断选项D ,进而得出正确选项.【详解】因为{}n a 是等差数列,前n 项和为n S ,由612S S =得:1267891011120S S a a a a a a -=+++++=,即()91030a a +=,即9100a a +=,对于选项A :由9100a a +=得12170a d +=,可得1:17:2a d =-,故选项A 正确; 对于选项B :()()118910181818022a a a a S ++===,故选项B 正确;对于选项C :911691014a a a a a a d d =+=++=+,若0d >,则6140a a d +=>,故选项C 正确;对于选项D :当0d <时,6140a a d +=<,则614a a <-,因为0d <,所以60a >,140a <,所以614a a <,故选项D 不正确, 故选:ABC 【点睛】关键点点睛:本题的关键点是由612S S =得出9100a a +=,熟记等差数列的前n 项和公式和通项公式,灵活运用等差数列的性质即可.27.ABD 【分析】由题意利用等差数列的通项公式、求和公式可得,结合等差数列的性质,逐一判断即可得出结论. 【详解】∵等差数列的前项和为,, ∴,解得, 故,故A 正确; ∵,,故有,故B 正确; 该数解析:ABD 【分析】由题意利用等差数列的通项公式、求和公式可得19a d =-,结合等差数列的性质,逐一判断即可得出结论. 【详解】∵等差数列{}n a 的前n 项和为n S ,1385a a S +=, ∴()111875282a a d a d ⨯++=+,解得19a d =-, 故10190a a d =+=,故A 正确;∵918a a d d d =+=-=,11110a a d d =+=,故有911a a =,故B 正确; 该数列的前n 项和()21119222n n n n S na d d d n -=+=-⋅ ,它的最值,还跟d 的值有关,故C 错误; 由于61656392S a d d ⨯=+=-,131131213392S a d d ⨯=+=-,故613S S =,故D 正确, 故选:ABD.【点睛】思路点睛:利用等差数列的通项公式以及前n 项和公式进行化简,直接根据性质判断结果.28.AD 【分析】对于,作差后利用等差数列的通项公式运算可得答案;对于,根据等差数列的前项和公式得到和, 进而可得,由此可知,故不正确; 对于,由得到,,然后分类讨论的符号可得答案; 对于,由求出及解析:AD 【分析】对于A ,作差后利用等差数列的通项公式运算可得答案;对于B ,根据等差数列的前n 项和公式得到70a >和780a a +<, 进而可得80a <,由此可知78||||a a <,故B 不正确;对于C ,由915S S =得到,12130a a +=,然后分类讨论d 的符号可得答案; 对于D ,由n S 求出n a 及1a ,根据数列{}n a 为等差数列可求得0a =. 【详解】对于A ,因为46191111(3)(5)(8)a a a a a d a d a a d -=++-+215d =,且0d ≠,所以24619150a a a a d -=>,所以4619a a a a >,故A 正确;对于B ,因为130S >,140S <,所以77713()1302a a a +=>,即70a >,787814()7()02a a a a +=+<,即780a a +<,因为70a >,所以80a <,所以7878||||0a a a a -=+<,即78||||a a <,故B 不正确;对于C ,因为915S S =,所以101114150a a a a ++++=,所以12133()0a a +=,即12130a a +=,当0d >时,等差数列{}n a 递增,则12130,0a a <>,所以n S 中的最小值是12S ,无最大值;当0d <时,等差数列{}n a 递减,则12130,0a a ><,所以n S 中的最大值是12S ,无最小值,故C 不正确;对于D ,若2n S n n a =-+,则11a S a ==,2n ≥时,221(1)(1)n n n a S S n n a n n a -=-=-+--+--22n =-,因为数列{}n a 为等差数列,所以12120a a =⨯-==,故D 正确. 故选:AD 【点睛】关键点点睛:熟练掌握等差数列的通项公式、前n 项和公式是解题关键.29.AC 【分析】令,则,根据,可判定A 正确;由,可判定B 错误;根据等差数列的性质,可判定C 正确;,根据,可判定D 错误. 【详解】令,则,因为,所以为等差数列且公差,故A 正确; 由,所以,故B 错误;解析:AC 【分析】令1m =,则11n n a a a +-=,根据10a >,可判定A 正确;由256110200a a a a d -=>,可判定B 错误;根据等差数列的性质,可判定C 正确;122n d d n a n S ⎛⎫=+- ⎪⎝⎭,根据02>d ,可判定D 错误. 【详解】令1m =,则11n n a a a +-=,因为10a >,所以{}n a 为等差数列且公差0d >,故A 正确;由()()22225611011119209200a a a a a a d daa d d -=++-+=>,所以56110a a a a >,故B错误;根据等差数列的性质,可得()213x x x -=+,所以13x =,213x -=, 故1011109333a =+⨯=,故C 正确; 由()111222nn n na dS d d n a nn -+⎛⎫==+- ⎪⎝⎭,因为02>d ,所以n S n ⎧⎫⎨⎬⎩⎭是递增的等差数列,故D 错误. 故选:AC . 【点睛】解决数列的单调性问题的三种方法;1、作差比较法:根据1n n a a +-的符号,判断数列{}n a 是递增数列、递减数列或是常数列;2、作商比较法:根据1(0n n na a a +>或0)n a <与1的大小关系,进行判定; 3、数形结合法:结合相应的函数的图象直观判断.30.AB 【分析】根据等差数列的性质及可分析出结果. 【详解】 因为等差数列中, 所以,又, 所以,所以,,故AB 正确,C 错误; 因为,故D 错误, 故选:AB 【点睛】关键点睛:本题突破口在于由解析:AB 【分析】根据等差数列的性质及717S S =可分析出结果. 【详解】因为等差数列中717S S =, 所以89161712135()0a a a a a a ++++=+=,又10a >,所以12130,0a a ><,所以0d <,12n S S ≤,故AB 正确,C 错误; 因为125251325()2502a a S a +==<,故D 错误, 故选:AB 【点睛】关键点睛:本题突破口在于由717S S =得到12130a a +=,结合10a >,进而得到12130,0a a ><,考查学生逻辑推理能力.31.BCD 【分析】根据定义以及举特殊数列来判断各选项中结论的正误. 【详解】对于A 选项,取,则不是常数,则不是等方差数列,A 选项中的结论错误; 对于B 选项,为常数,则是等方差数列,B 选项中的结论正解析:BCD 【分析】根据定义以及举特殊数列来判断各选项中结论的正误. 【详解】对于A 选项,取n a n =,则()()()422444221111n n a a n n n n n n +⎡⎤⎡⎤-=+-=+-⋅++⎣⎦⎣⎦()()221221n n n =+++不是常数,则{}2n a 不是等方差数列,A 选项中的结论错误;对于B 选项,()()22111110n n+⎡⎤⎡⎤---=-=⎣⎦⎣⎦为常数,则(){}1n-是等方差数列,B 选项中的结论正确;对于C 选项,若{}n a 是等方差数列,则存在常数p R ∈,使得221n n a a p +-=,则数列{}2na 为等差数列,所以()221kn k n a a kp +-=,则数列{}kn a (*k N ∈,k 为常数)也是等方差数列,C 选项中的结论正确;对于D 选项,若数列{}n a 为等差数列,设其公差为d ,则存在m R ∈,使得n a dn m =+,则()()()()2221112222n n n n n n a a a a a a d dn m d d n m d d +++-=-+=++=++,由于数列{}n a 也为等方差数列,所以,存在实数p ,使得221n n a a p +-=,则()222d n m d d p ++=对任意的n *∈N 恒成立,则()2202d m d d p ⎧=⎪⎨+=⎪⎩,得0p d ==,此时,数列{}n a 为常数列,D 选项正确.故选BCD. 【点睛】本题考查数列中的新定义,解题时要充分利用题中的定义进行判断,也可以结合特殊数列来判断命题不成立,考查逻辑推理能力,属于中等题.32.ABD 【分析】结合等差数列的性质、前项和公式,及题中的条件,可选出答案. 【详解】由,可得,故B 正确; 由,可得, 由,可得,所以,故等差数列是递减数列,即,故A 正确; 又,所以,故C 不正确解析:ABD 【分析】结合等差数列的性质、前n 项和公式,及题中的条件,可选出答案. 【详解】由67S S =,可得7670S S a -==,故B 正确; 由56S S <,可得6560S S a -=>, 由78S S >,可得8780S S a -=<,所以876a a a <<,故等差数列{}n a 是递减数列,即0d <,故A 正确; 又()9567897820S S a a a a a a -=+++=+<,所以95S S <,故C 不正确;又因为等差数列{}n a 是单调递减数列,且80a <,所以90a <, 所以()117179171702a a S a +==<,故D 正确.故选:ABD. 【点睛】关键点点睛:本题考查等差数列性质的应用,解题的关键是熟练掌握等差数列的增减性及前n 项和的性质,本题要从题中条件入手,结合公式()12n n n a S S n --≥=,及()12n n n a a S +=,对选项逐个分析,可判断选项是否正确.考查学生的运算求解能力与逻辑推理能力,属于中档题. 33.AC 【分析】将变形为,构造函数,利用函数单调性可得,再结合等差数列与等比数列性质即可判断正确选项 【详解】 由,可得,令, ,所以是奇函数,且在上单调递减,所以, 所以当数列为等差数列时,;解析:AC 【分析】 将3201911111a a e e +≤++变形为32019111101212a a e e -+-≤++,构造函数()1112xf x e =-+,利用函数单调性可得320190a a +≥,再结合等差数列与等比数列性质即可判断正确选项 【详解】 由3201911111a a e e +≤++,可得32019111101212a a e e -+-≤++,令()1112x f x e =-+, ()()1111101111x x x x x e f x f x e e e e --+=+-=+-=++++,所以()1112x f x e =-+是奇函数,且在R 上单调递减,所以320190a a +≥, 所以当数列{}n a 为等差数列时,()320192*********a a S +=≥;当数列{}n a 为等比数列时,且3a ,1011a ,2019a 同号,所以3a ,1011a ,2019a 均大于零, 故()2021202110110T a =>.故选:AC 【点睛】本题考查等差数列与等比数列,考查逻辑推理能力,转化与化归的数学思想,属于中档题34.AC 【分析】由求出,再由可得公差为,从而可求得其通项公式和前项和公式 【详解】由题可知,,即,所以等差数列的公差, 所以,. 故选:AC. 【点睛】本题考查等差数列,考查运算求解能力.解析:AC 【分析】由535S =求出37a =,再由411a =可得公差为434d a a =-=,从而可求得其通项公式和前n 项和公式 【详解】由题可知,53535S a ==,即37a =,所以等差数列{}n a 的公差434d a a =-=, 所以()4445n a a n d n =+-=-,()2451232n n n S n n --==-.故选:AC. 【点睛】本题考查等差数列,考查运算求解能力.35.AD 【分析】先根据题意得,,再结合等差数列的性质得,,,中最大,,即:.进而得答案. 【详解】解:根据等差数列前项和公式得:, 所以,, 由于,, 所以,, 所以,中最大, 由于, 所以,即:解析:AD 【分析】先根据题意得1110a a +>,1120a a +<,再结合等差数列的性质得60a >,70a <,0d <,{}n S 中6S 最大,49a a <-,即:49a a <.进而得答案.【详解】解:根据等差数列前n 项和公式得:()111111102a a S +=>,()112121202a a S +=< 所以1110a a +>,1120a a +<, 由于11162a a a +=,11267a a a a +=+, 所以60a >,760a a <-<, 所以0d <,{}n S 中6S 最大, 由于11267490a a a a a a +=+=+<, 所以49a a <-,即:49a a <. 故AD 正确,BC 错误. 故选:AD. 【点睛】本题考查等差数列的前n 项和公式与等差数列的性质,是中档题.。

高三第一轮复习数列基础练习题

高三第一轮复习数列基础练习题
/ 8 (1)对于任意的正整数n,均有121aaaann (2)对于任意的正整数srqp,,,,如果srqp,则srqpaaaa (3)对于任意的正整数rqp,,,如果rpq2,则2qrpaaa (4)对于任意的正整数n>1,有112nnnaaa (5)对于任意的非零实数b,}{nba也是等比数列 (6)已知}{nb是等比数列,则}{nnba也是等比数列 (7)如果0na,则}{lognaa是等差数列 (8)数列}{lognaa是等差数列,则}{na是等比数列 (9)}{},{},{},{},{23133122nnnnnaaaaa等都是等比数列 (10)nS是等比数列na的前n项和, ①当q=-1且k为偶数时,kkkkkSSSSS232,,不是等比数列. ②当q≠-1或k为奇数时,kkkkkSSSSS232,, 仍成等比数列、数列前n项和 (1)重要公式: 2)1(321nnn;6)12)(1(3212222nnnn;2333)]1(21[21nnn (2)等差数列中,mndSSSnmnm (3)等比数列中,nmmmnnnmSqSSqSS (4)裂项求和:111)1(1nnnn;(!)!1(!nnnn) 一、填空选择题 1、在数列1,1,2,3,5,8,13,x,34,55,…中,x的值是 ( ) A、19 B、 20 C、 21 D 、22 2、4. 在数列{}na中,12nnnaaa,122,5aa,则6a的值是 ( ) A.3 B.11 C.5 D.19 3、 已知数列{}na的通项公式为22log(3)2nan,那么2log3是这个数列的 ( ) A.第3项 B.第4项 C.第5项 D.第6项
/ 8 高三第一轮复习数列基础练习题 敕章知识点小结 等差数列 1相关公式: (1) 定义:),1(1为常数dndaann(2)通项公式:dnaan)1(1 (3)前n项和公式:dnnnaaanSnn2)1(2)(11(4)通项公式推广:dmnaamn)( 2.等差数列}{na的一些性质 (1)对于任意正整数n,都有121aaaann (2)}{na的通项公式)2()(2112aanaaan (3)对于任意的整数srqp,,,,如果srqp,那么srqpaaaa (4)对于任意的正整数rqp,,,如果qrp2,则qrpaaa2 (5)对于任意的正整数n>1,有112nnnaaa (6)对于任意的非零实数b,数列}{nba是等差数列,则}{na是等差数列 (7)已知}{nb是等差数列,则}{nnba也是等差数列 (8)}{},{},{},{},{23133122nnnnnaaaaa等都是等差数列 (9)nS是等差数列na的前n项和,则kkkkkSSSSS232,, 仍成等差数列,即)(323mmmSSS (10)若)(nmSSnm,则0nnS(11)若pSqSqp,,则)(qpSqp (12)bnanSn2,反之也成立 、等比数列 1相关公式: (1)定义:)0,1(1qnqaann (2)通项公式:11nnqaa (3)前n项和公式:1q 1)1(1q 11qqanaSnn (4)通项公式推广:mnmnqaa 2.等比数列}{na的一些性质

高中数学数列基础练习及参考答案

高中数学数列基础练习及参考答案

高中数学数列基础练习及参考答案一、填空题1. 已知等差数列的首项为5,公差为3,求第10项。

解:首项 a1 = 5,公差 d = 3,要求第10项 an,可以使用等差数列通项公式 an = a1 + (n-1)d。

将已知的数值代入:an = 5 + (10-1)3 = 5 + 9 × 3 = 5 + 27 = 32。

2. 某等差数列的前四项依次是4, 7, 10, 13,求公差。

解:已知数列的前四项分别为4, 7, 10, 13,设公差为d。

根据等差数列的性质,第2项减去第1项等于公差,第3项减去第2项仍然等于公差,以此类推。

则可得到以下方程组:7 - 4 = d10 - 7 = d13 - 10 = d解以上方程组可得公差 d = 3。

3. 某等差数列的前四项和为30,公差为2,求首项。

解:已知数列的前四项和为30,公差为2,设首项为a1。

根据等差数列的性质,可得到以下方程:(1/2)[2a1 + 3(2a1+2)] = 30化简得:[2an + 3an + 6] = 60整理得:5an = 54则 an = 10.8因为 a1 = 10.8 - 3(2) = 4.8,所以首项为4.8。

二、选择题1. 若等差数列的首项为3,公差为2,求第6项的值。

A. 8B. 11C. 13D. 15解:根据等差数列通项公式,第6项 an = a1 + (n-1)d = 3 + (6-1)2 =3 + 5 × 2 = 3 + 10 = 13。

所以选项 C. 13 正确。

2. 若等差数列的公差为-4,前五项的和为10,求该等差数列的首项。

A. -5B. -4C. -2D. 1解:设等差数列的首项为 a1,则根据等差数列和的公式,前五项和为:S5 = (5/2)[2a1 + 4d] = 10化简得:a1 + 2d = 2代入公差d为-4,得到 a1 - 8 = 2整理得:a1 = 10所以选项 D. 1 正确。

天津高考数列知识点总结

天津高考数列知识点总结

天津高考数列知识点总结一、数列的定义和常见记号数列是按照一定规律排列的一系列数,可以表示为{a₁, a₂, a₃, ...},其中a₁表示第一项,a₂表示第二项,以此类推。

我们可以使用An表示数列的第n项,Un表示数列的通项公式。

二、等差数列等差数列是指数列中相邻两项之差都相等的数列。

常见的记法是{a, a+d, a+2d, ...},其中a为首项,d为公差。

1. 求等差数列的通项公式:An = a + (n-1)d,其中An表示第n项,a表示首项,d为公差。

2. 求等差数列的前n项和:Sn = n/2 * (a + L),其中Sn表示前n项和,a表示首项,L表示末项。

三、等比数列等比数列是指数列中相邻两项之比都相等的数列。

常见的记法是{a, ar, ar², ...},其中a为首项,r为公比。

1. 求等比数列的通项公式:An = ar^(n-1),其中An表示第n项,a表示首项,r为公比。

2. 求等比数列的前n项和(若r≠1):Sn = a(1 - r^n) / (1 - r),其中Sn表示前n项和,a表示首项,r为公比。

四、递推数列递推数列是指数列中每一项都由前一项经过特定运算得出的数列。

1. 斐波那契数列:{1, 1, 2, 3, 5, 8, ...},其中每一项等于前两项的和。

2. 阶乘数列:{1, 1, 2, 6, 24, ...},其中每一项等于前一项乘以当前项的值。

3. 平方数列:{1, 4, 9, 16, 25, ...},其中每一项等于当前项的平方。

五、数列的性质及应用1. 数列的有界性:数列是有界的当且仅当它的项的绝对值在一个范围内。

2. 单调性:数列单调递增,表示数列中的项随着n的增大而增大;数列单调递减,表示数列中的项随着n的增大而减小。

3. 数列的极限:数列的极限表示数列中所有项的值当n趋向于无穷大时的趋势。

4. 数列在高等数学和物理学中的应用:数列可用于描述物理问题中的运动过程、递归算法的时间复杂度等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

等差数列1.等差数列的定义:d a a n n =--1(d 为常数)(2≥n );2.等差数列通项公式:*11(1)()n a a n d dn a d n N =+-=+-∈ , 首项:1a ,公差:d ,末项:n a 推广: d m n a a m n )(-+=. 从而mn a a d m n --=;3.等差中项(1)如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即:2b a A +=或b a A +=2(2)等差中项:数列{}n a 是等差数列)2(211-≥+=⇔+n a a a n n n 212+++=⇔n n n a a a4.等差数列的前n 项和公式:1()2n n n a a S +=1(1)2n n na d -=+211()22d n a d n =+-2An Bn =+(其中A 、B 是常数,所以当d ≠0时,S n 是关于n 的二次式且常数项为0) 特别地,当项数为奇数21n +时,1n a +是项数为2n+1的等差数列的中间项 ()()()12121121212n n n n a a S n a +++++==+(项数为奇数的等差数列的各项和等于项数 乘以中间项)5.等差数列的判定方法(1) 定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )⇔ {}n a 是等差数列. (2) 等差中项:数列{}n a 是等差数列)2(211-≥+=⇔+n a a a n n n 212+++=⇔n n n a a a . (3) 数列{}n a 是等差数列⇔b kn a n +=(其中b k ,是常数)。

(4) 数列{}n a 是等差数列⇔2n S An Bn =+,(其中A 、B 是常数)。

6.等差数列的证明方法定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )⇔ {}n a 是等差数列.7.等差数列的性质:(1)当公差0d ≠时,等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的一次函 数,且斜率为公差d ;前n 和211(1)()222n n n d d S na d n a n -=+=+-是关于n 的二次函数且常数项为0.(2)若公差0d >,则为递增等差数列,若公差0d <,则为递减等差数列,若公差0d =,则为常数列。

(3)当m n p q +=+时,则有q p n m a a a a +=+,特别地,当2m n p +=时,则有2m n p a a a +=. (4)若{}n a 、{}n b 为等差数列,则{}{}12n n n a b a b λλλ++,都为等差数列(5) 若{n a }是等差数列,则232,,n n n n n S S S S S -- ,…也成等差数列(6)数列{}n a 为等差数列,每隔k(k ∈*N )项取出一项(23,,,,m m k m k m k a a a a +++⋅⋅⋅)仍为等差数 列(7)设数列{}n a 是等差数列,d 为公差,奇S 是奇数项的和,偶S 是偶数项项的和,n S 是前n 项的和1.当项数为偶数n 2时, ()121135212n n n n a a S a a a a na --+=+++⋅⋅⋅+==奇()22246212n n n n a a S a a a a na ++=+++⋅⋅⋅+==偶()11=n n n n S S na na n a a nd ++-=-=-偶奇11n n n n S na a S na a ++==奇偶2、当项数为奇数12+n 时,则21(21)(1)1n S S S n a S n a S n S S a S na S n +⎧=+=+=+⎧+⎪⎪⇒⇒=⎨⎨-==⎪⎪⎩⎩n+1n+1奇偶奇奇n+1n+1奇偶偶偶 (其中a n+1是项数为2n+1的等差数列的中间项).(8)等差数列{}n a 的前n 项和m S n =,前m 项和n S m =,则前m+n 项和()m n S m n +=-+(9)求n S 的最值法一:因等差数列前n 项和是关于n 的二次函数,故可转化为求二次函数的最值,但要 注意数列的特殊性*n N ∈。

法二:(1)“首正”的递减等差数列中,前n 项和的最大值是所有非负项之和即当,,001<>d a 由⎩⎨⎧≤≥+01n n a a 可得n S 达到最大值时的n 值.(2) “首负”的递增等差数列中,前n 项和的最小值是所有非正项之和。

即 当,,001><d a 由⎩⎨⎧≥≤+001n n a a 可得n S 达到最小值时的n 值.或求{}n a 中正负分界项法三:直接利用二次函数的对称性:由于等差数列前n 项和的图像是过原点的二次函数,故n 取离二次函数对称轴最近的整数时,n S 取最大值(或最小值)。

若S p = S q 则其对称轴为2p q n +=等比数列1. 等比数列的定义:()()*12,n n a q q n n Na -=≠≥∈0且,q 称为公比2. 通项公式:()11110,0n n nn a a a qq A Ba q A B q-===⋅⋅≠⋅≠, 首项:1a ;公比:q推广:n m n m a a q -=, 从而得n mn ma qa -=或n n mma q a -=3. 等比中项(1)如果,,a A b 成等比数列,那么A 叫做a 与b 的等差中项.即:2A ab =或A ab =±注意:同号的两个数才有等比中项,并且它们的等比中项有两个(两个等比中项互为相反数)(2)数列{}n a 是等比数列⇔211n n n a a a -+=⋅4. 等比数列的前n 项和n S 公式: (1) 当1q =时, 1n S na = (2) 当1q ≠时,()11111nn n a q a a q S qq--==--5. 等比数列的判定方法(1)用定义:对任意的n,都有11(0)n n n n na a qa q q a a ++==≠或为常数,⇔{}n a 为等比数列(2) 等比中项:211n n n a a a +-=(11n n a a +-≠0)⇔{}n a 为等比数列 (3) 通项公式:()0nn a A BA B =⋅⋅≠⇔{}n a 为等比数列(4) 前n 项和公式:()'',,','nnn n S A A B S A B A A B A B =-⋅=-或为常数⇔{}n a 为 等比数列6. 等比数列的证明方法 依据定义:若()()*12,n n a q q n n Na -=≠≥∈0且或1n n aqa +=⇔{}n a 为等比数列7. 等比数列的性质 (1) 当1q ≠时①等比数列通项公式()1110n nnn a a a q q A BA B q-===⋅⋅≠是关于n 的带有系数的类指数函数,底数为公比q②前n 项和()111111''1111nnn n nn a q a a q a a S q A A B A B A qqqq--==-=-⋅=-----,系数和常数项是互为相反数的类指数函数,底数为公比q(2) 对任何m,n ∈*N ,在等比数列{}n a 中,有n m n m a a q -=,特别的,当m=1时,便得到等比数列的通项公式.因此,此公式比等比数列的通项公式更具有一般性。

(3) 若m+n=s+t (m, n, s, t ∈*N ),则n m s t a a a a ⋅=⋅.特别的,当n+m=2k 时,得2n m k a a a ⋅= 注:12132n n n a a a a a a --⋅=⋅=⋅⋅⋅ (4) 列{}n a ,{}n b 为等比数列,则数列{}nk a ,{}n k a ⋅,{}kn a ,{}n n k a b ⋅⋅{}n na b (k 为非零常数) 均为等比数列.(5) 数列{}n a 为等比数列,每隔k(k ∈*N )项取出一项(23,,,,m m k m k m k a a a a +++⋅⋅⋅)仍为等比数列 (6) 如果{}n a 是各项均为正数的等比数列,则数列{log }a n a 是等差数列 (7) 若{}n a 为等比数列,则数列n S ,2n n S S -,32,n n S S -⋅⋅⋅,成等比数列(8) 若{}n a 为等比数列,则数列12n a a a ⋅⋅⋅⋅⋅⋅, 122n n n a a a ++⋅⋅⋅⋅⋅⋅, 21223n n n a a a ++⋅⋅⋅⋅⋅⋅⋅成等比数列(9) ①当1q >时, ②当1q <0<时,110{}0{}{n na a a a ><,则为递增数列,则为递减数列, 110{}0{}{n na a a a ><,则为递减数列,则为递增数列③当q=1时,该数列为常数列(此时数列也为等差数列); ④当q<0时,该数列为摆动数列.(10)在等比数列{}n a 中, 当项数为2n (n ∈*N )时,1S S q=奇偶,.(11)若{}n a 是公比为q 的等比数列,则n n m n m S S q S +=+⋅1.已知等比数列}{n a 的公比为正数,且3a ·9a =225a ,2a =1,则1a = A.21 B.22 C. 2 D.22.已知为等差数列,,则等于A. -1B. 1C. 3D.73.公差不为零的等差数列{}n a 的前n 项和为n S .若4a 是37a a 与的等比中项, 832S =,则10S 等于A. 18B. 24C. 60D. 90 . 4设n S 是等差数列{}n a 的前n 项和,已知23a =,611a =,则7S 等于【 】A .13B .35C .49D . 63 5.等差数列{n a }的公差不为零,首项1a =1,2a 是1a 和5a 的等比中项,则数列的前10项之和是A. 90B. 100C. 145D. 190 6.设,R x ∈记不超过x 的最大整数为[x ],令{x }=x -[x ],则{215+},[215+],215+A.是等差数列但不是等比数列B.是等比数列但不是等差数列C.既是等差数列又是等比数列D.既不是等差数列也不是等比数列 7.古希腊人常用小石子在沙滩上摆成各种性状来研究数,例如:. 他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16…这样的数成为正方形数。

相关文档
最新文档