2010-2011学年九年级碑林区上数学期中统考试题答案
九年级第一学期期中考试数学试卷(含参考答案)
九年级第一学期期中考试数学试卷(含参考答案)学校:___________班级:___________姓名:___________考号:___________一、选择题:本大题共10小题,每小题3分,共30分.1.在下列方程中是一元二次方程的是()A.x2-2x y+y2=0B. x2-2x=3C. x(x +3)= x2-1D. x + =02.将二次函数y= x2的图象向右平移2个单位,再向上平移1个单位,所得图象的表达式是()A.y=(x- 2)2+1B.y= (x +2)2+1C. (x- 2)2-1D.y= (x +2)2- 13.一元二次方程x2-2x +5=0的根的情况是()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.无法判断4.对于二次函数y= - (x- 2)2-3,下列说法正确的是()B A.当x >0时,y随x的增大而增大 B.当x =2时,y有最大值- 3C.图象的顶点坐标为(-2,-7)D.图象与x轴有两个交点5.用配方法解方程x2- 6x- 3=0时,原方程应变形为()A. (x +3)2=3B. (x +3)2=12C. (x- 3)2=3D. (x- 3)2=126.已知函数y=(x- 1)2+2,当函数值y随x的增大而减小时,x的取值范围是()A x <1 B. x >1 C. x >-2 D. - 2< x <47.若x1,x2是一元二次方程2x2- 9x +4=0的两根,则x1+ x2的值是()A. - 2B.2C.D. - 28.二次函数y=ax2+b x+c(a≠0)的图像如图所示,则函数值y>0时,x的取值范围是()A. x <-1B. x >3C. -1< x <3D. x <-1 或x >3第8题图第10题图9.某经济开发区,今年一月份工业产值达50亿元,第一季度总产值为175 亿元,二月、三月平均增长率是多少?若设平均每月的增长率为x,根据题意,可列方程为()A.50(1+x)2=175B.50+50(1+x)+50(1+x)2=175C.50 (1+x) +50(1+x)2= 175D.50+50(1+x)2=17510.已知二次函数y=ax2+b x+c(a≠0)的图像如图所示,对称轴为直线x=2.则下列结论中正确的是()A a bc>0 B.4a-b=0 C.9a+3b+c<0 D.5a+c>0二、填空题:本大题共5小题,每小题3分,共15分.11.方程x2= x的解是____________12.当k______时,y=( k +3)x2- k x+2是关于x的二次函数.13.抛物线y=2(x +1)2-3,的顶点坐标为________,对称轴为直线______14.已知x=1是方程x2+ax-b=0的一个根,则a-b+2023=_____15如图,一段抛物线:y=-x(x -2)(0≤x≤2),记为C1,它与x轴交于点O,A1;将C绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;…如此进行下去,直至得C6,若P(11,m)在第6段抛物线C6上,则m的值为=____三、解答题(一):本大题共3小题,第16 题10分,第17、18题7分,共24分.16.计算:用适当方法解方程:(1)(x +1)2=5x+5 (2)x2- 4x- 5=017.某次聚会上,同学们互相送照片,每人给每个同学一张照片,一共送出90张照片,问一共有多少位同学参加了聚会?18.已知抛物线y= x2- 2x- 3.(1)求抛物线与两坐标轴的交点坐标(2)求它的顶点坐标。
江苏省苏州市2010~2011学年度九年级数学第一学期期中考试
word2010~2011学年度第一学期期中考试九年级数学 试 题(考试时间:150分钟满分150分) 成绩一、选择题(每题3分,共24分,请将答案填入相应的表格内)题号 1 2 3 4 5 6 7 8 答案1.若二次根式x -1有意义,则x 的取值X 围为 A .x≠1B.x ≥1C .x <lD .全体实数 2.化简33(13)--的结果是A .3B .-3C .3D .3-3.关于x 的一元二次方程2210x a ++-=(a-1)x 的一个根是0,则a 的值为( ) A . 1 B .-1 C .1或-1 D .04.如右图,在菱形ABCD 中,对角线AC=4,∠BAD=120°, 则菱形ABCD 的周长为A .20B .18C .16D .155.下列语句中,正确的是 ( ) A 、同一平面上三点确定一个圆;B 、三角形的外心是三角形三边中垂线的交点;C 、三角形的外心到三角形三边的距离相等;D 、菱形的四个顶点在同一个圆上.6.如图,AB 是⊙O 的直径,点C 、D 在⊙O 上,OD ∥AC , 第 6 题 下列结论错误的是( )A .∠BOD =∠BACB .∠BOD =∠CODC .∠BAD =∠CAD D .∠C =∠D7.如图,AB 是⊙O 的直径,∠ACD=150,则∠BAD 的度数为 ( ) A. 750B.720C . 70008.某班体育委员记录了第一小组七位同学定点投篮(每人投10个)的情况,投进篮框的个数为6,10,5,3,4,8,4,这组数据的中位数和极差分别是 A .4,7B .7,5C .5,7D .3,7学校 班级 某某 考试号 座位号………………………………………… 密 ………………………………封 …………………………… 线 …………………………………B ODCA第7题二、填空题(每题3分,共30分)9.计算:=-⨯263_______________.左下图,已知Rt △ABC 中,∠C =90°∠A=36°,以C 为圆心,CB 为半径的圆交AB 于P ,则弧BP 的度数是_________°.11. 如右下图,△ABC 内接于⊙0,∠B=∠OAC, OA=4cm,则AC=cm.12.甲、乙两人5次射击命中的环数如下:甲: 7 9 8 6 10乙: 7 8 9 8 8则这两人5次射击命中的环数的平均数==8x x 乙甲,方差2s 甲2s 乙。
2010~2011年(上)九年级数学期中数学试卷最新)
2010~2011年(上)九年级数学期中数学试卷一.选择题(本大题共8小题,下列各题都给出代号为A 、B 、C 、D 的四个答案,其中有且只有一个是正确的,每小题2分,共16分.) 1.下列计算中,正确的是 ( )A 、562432=+B 、3327=÷C 、632333=⨯D 、3)3(2-=-.2.去年我国发现的首例甲型H1N1流感确诊病例曾在成都某医院隔离观察,要掌握他在一周内的体温是否稳定,则医生需要了解这位病人7天体温的 ( ) A 、中位数 B 、平均数 C 、方差 D 、众数3.用配方法解方程 x 2 -2x -5=0时,原方程应变形为 ( ) A 、(x -1)2 =6 B 、(x + 1)2 =6 C 、(x + 1)2 =9 D 、(x -2)2 =9 4.下列说法中错误..的是 ( ) A 、一组对边平行且一组对角相等的四边形是平行四边形 B 、对角线互相垂直的平行四边形是正方形C 、四个角相等的四边形是矩形 D 、每组邻边都相等的四边形是菱形52x =-,则x 的取值范围是 ( )A .2x >-B .2x ≥C .2≤x 且0x ≠D .2≤x6.有一个数值转换器,原理如下:当输入的x 为64时,输出的y 是 ( )A 、8B 、22C 、32D 、237.如图,在△ABC 中,BC =8cm ,AB 的垂直平分线交AB 于点D ,交边AC 于点E ,△BCE 的周长等于18cm ,则AC 的长等于 ( ) A .12cm B .10cm C . 8cm D . 6cm8.如图,梯形ABCD 中,∠ABC 和∠DCB 的平分线相交于梯形中位线EF 上的一点P ,若EF =3,则梯形ABCD 的周长为 ( )A .9B .10.5C .12D .15 二.填空题(每题2分,共16分)9.=-2)4( ;38=_____ __ . 10.当x________. 11.方程x x 22=的解为 .12.已知一个样本1,2,3,x ,5,它的平均数是3,则这个样本的极差是_________. 131的值在连续整数 和 之间.14.如图,折叠直角梯形纸片的上底AD ,点D 落在底边BC 上点F 处,已知DC=8㎝,FC = 4㎝,则EC 长 ㎝.15.如图,直线L 过正方形ABCD 的顶点B ,点A 、C 到直线L 的距离分别是1和2, 则正方形的边长是 .16.观察下列各式:32-1=2×4,42-1=3×5,52-1=4× 6 ……将你猜想到的规律用n 的一个等式来表示: . 三.计算题:(每题4分,共12分) 17. (2)、⎛ ⎝(3)化简:)323(235abb a ab b ÷-⋅四.解方程:(每题4分,共12分)18.(1)223x x =+ (2)2(1)3(1)x x +=+DECBA 第7题图AB CDE FP第8题图(3) 01522=--x x (用配方法解)五.解答题:(本题共44分,其中19--20题每题6分,21、22、23、24题每题8分) 19.已知关于x 的一元二次方程x 2-6x +k =0有两个实数根. (1)求k 的取值范围;(2)如果k 取符合条件的最大整数,且一元二次方程x 2-6x +k =0与x 2+mx -1=0有一个相同的根,求常数m 的值.20.已知一元二次方程a x 2+b x +c =0(a ≠0)的两根分别为x 1、x 2,则有x 1+x 2=ab -;x 1x 2=ac .请应用以上结论解答下列问题:已知方程x 2-4x -1=0有两个实数根x 1,x 2, 要求不解方程, 求值:(1)(x 1+1)(x 2+1) (2)2112x x x x +21.如图,在平行四边形ABCD 中,∠ABC 、∠BCD 的平分线相交于点O ,BO 延长线交CD 延长线于点E ,求证:OB=OE22. 如图,DB ∥AC ,且DB=12AC ,E 是AC 的中点, (1)求证:BC=DE ;(2)连结AD 、BE ,若要使四边形DBEA 是矩形,则给△ABC 添加一个什么条件,为什么?(3)在(2)的条件下,若要使四边形DBEA 是正方形,则∠C= 0.E23.如图1,在直角梯形ABCD中,AD∥BC,∠B=∠A=90°,AD=a,BC=b,AB=c,操作示例:我们可以取直角梯形ABCD的非直角腰CD的中点P,过点P作PE∥AB,裁掉△PEC,并将△PEC绕点P逆时针旋转180°拼接到△PFD的位置,构成新的图形(如图2).思考发现:判断图2中四边形ABEF的形状:;四边形ABEF的面积是。
2010学年第一学期六校联考期中考试九年级参考答案
2010学年第一学期六校联考期中试卷九年级数学参考答案一、选择题(每小题4分,共40分)解:(1)原式=22-1+1 ………3分=22………………….1分(2) 解:由①得 5333x x ->-………………1分解得 0x > ………………1分由②得 1424x x +-<……………1分解得 1.5x < ………………………1分 ∴原不等式组的解是0 1.5x <<…………1分18.(本题7分) (1)a =0.350;b =5:c =40;频数分布直方图略…………4分 (2)32 ……………1分 (3)20~30………………2分 19. (本题8分) 解:(1)y 1=-x+2………..(3分) y 2=x8-…………(3分) (2)-2<x <0和x ﹥4;…………..(2分) 20.(本题10分)解:(1) 证明:∵AB 是⊙O 的直径,∴∠ACB ﹦90° 又∵CE ⊥AB , ∴∠CEB ﹦90°∴∠2﹦90°-∠A BC ﹦∠A 2分 又∵C 是弧BD 的中点,∴∠1﹦∠A 2分 ∴∠1﹦∠2, ∴ CF ﹦BF ﹒ 2分 (2) ⊙O 的半径为5 , CE 的长是524( 每空格2分 ) 21.(1)买(1,11)(2,9)(3,7)(4,5)(5,3)(6,1)共六种 (每个1分共6分) (2)概率是六分之一。
(2分) 22.(本题10分)答,每画对一个得2分,共10分(1)略 (2)有两种,分别为①1×1+1×2+1×3+1×4+1×5 ② 1×1+1×2+1×3+2×2+1×5 23.(本题12分)B解 :(1)y= -50x+800 (x ﹥0) …..………………4分 (2)由题意得:(-50x+800)(x-8)=600解得:x 1=10 x 2=14 ……………………..….4分 (3)设每天水果的利润w 元,则 W=(-50x+800)(x-8)=-50x 2+1200x-6400∴当8<x ≤12时,W 随x 的增大而增大,………………….2分 又∵水果每天的销售量均不低于225kg,. ∴-50x+800≥225 ∴x ≤11.5∴当x=11.5时,W 最大=787.5(元)……………….2分24.(本题14分) 解:(1)A (-1,0),B (3,0),C (0,3). ····································································· 3分抛物线的对称轴是:x =1. ························································································ 4分(2)①设直线BC 的函数关系式为:y=kx+b .把B (3,0),C (0,3)分别代入得:303k b b +=⎧⎨=⎩,解得:k = -1,b =3. 所以直线BC 的函数关系式为:3y x =-+. 当x =1时,y = -1+3=2,∴E (1,2). 当x m =时,3y m =-+,∴P (m ,-m +3). ································································································· 6分 在223y x x =-++中,当1x =时,4y =. ∴()14D ,.当x m =时,223y m m =-++,∴()223F m m m -++,. ·································· 7分∴线段DE =4-2=2,线段()222333PF m m m m m =-++--+=-+.·············· 8分 ∵PF DE ∥,∴当PF ED =时,四边形PEDF 为平行四边形.由232m m -+=,解得:1221m m ==,(不合题意,舍去).因此,当2m =时,四边形PEDF 为平行四边形. ··········································· 10分 ②设直线PF 与x 轴交于点M ,由()()3000B O ,,,,可得:3OB OM MB =+=. ∵BPF CPF S S S =+△△. ··························································································· 12分即1111()2222S PF BM PF OM PF BM OM PF OB =+=+=. ∴()()221393303222S m m m m m =⨯-+=-+≤≤.····································· 14分 说明:第(2)问,S 与m 的函数关系式未写出m 的取值范围不扣分.。
苏教版20102011学年九年级上数学期中试卷及答案
2010∕2011学年度第一学期期中考试九年级数学试卷命题人、复核人:刘平娥 满分150分 考试时间120分钟一、选一选(每题3分,共24分,请把答案填写在表格内)题号 1 2 3 4 5 6 7 8 选项1.要使根式3-x 有意义,则字母x 的取值范围是( ▲ ) A 、x ≥3 B 、x >3 C 、x ≤3 D 、x ≠32.对甲、乙两同学100米短跑进行5次测试,他们的成绩通过计算得;x 甲=x 乙,220.0250.026ss ==乙甲,,下列说法正确的是( ▲ )A 、甲短跑成绩比乙好B 、乙短跑成绩比甲好C 、甲比乙短跑成绩稳定D 、乙比甲短跑成绩稳定 3.下列二次根式中与2是同类二次根式的是( ▲ )A 、12B 、23C 、32D 、184.下列一元二次方程中,常数项为0的是( ▲ )A 、21x x +=B 、22120x x --=C 、22(1)3(1)x x -=-D 、22(1)2x x +=+ 5.下列说法:①直径是弦 ②弦是直径 ③半圆是弧,但弧不一定是半圆④长度相等的两条弧是等弧⑤完全重合的两条弧是等弧。
正确的命题有( ▲ )A 、1个B 、2个C 、3个D 、4个6.某商品原价是400元,连续两次降价后的价格为289元,则平均每次降价的百分率为( ▲ )A 、 20%B 、 15%C 、 115%D 、 17% 7.下列说法不正确的是( ▲ )A 、有一个角是直角的平行四边形是正方形B 、对角线相等的菱形是正方形C 、对角线互相垂直的矩形是正方形D 、一组邻边相等的矩形是正方形班级 姓名 准考证号 考场号8.古希腊人常用小石子在沙滩上摆成各种形状来研究数,例如:他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16,…,这样的数为正方形数.下列数中既是三角形数又是正方形数的是( ▲ ) A 、15 B 、25 C 、55 D 、1225二、填一填(每题3分,共30分)9.4的算术平方根是10.数据:1、3、4、7、2的极差是 。
2010—2011学年九年级上学期数学期中试题
2010—2011学年上学期九年级期中考试数 学 试 卷(满分:150分;考试时间:120分钟)班级 座号 姓名 成绩一、选择题(本大题共10小题,每小题4分,共计40分,请将唯一正确答案填入下表中) 1( )A 、6BC 、2D2.如图所示,其中是中心对称图形的是 ( )3.下列各组二次根式化简后,被开方数相同的一组是 ( ) A 、93和 B 、313和C 、318和D 、2412和 4.如果一个正多边形内角和是1080°,那么它是 ( )A 、正方形B 、正五边形C 、正六边形D 、正八边形5.某商品原价200元,连续两次降价a %后售价为148元,下列所列方程正确的是( ) A 、200(1+a%)2=148 B 、200(1-a%)2=148 C 、200(1-2a%)=148 D 、200(1-a 2%)=148 6.下列命题是假命题的是 ( )A 、三点确定一个圆B 、三角形的内心到三角形各边的距离都相等C 、在同一个圆中,同弧或等弧所对的圆周角相等D 、垂直于弦的直径平分弦7.如图(7),圆与圆之间不同的位置关系有 ( )A 、2种B 、3种C 、4种D 、5种 8.如图(8),A 、D 是⊙O 上的两个点,BC 是直径,若∠D = 35°, 则∠OAC 的度数是( )A 、35°B 、55°C 、65°D 、70° 9. 如果某正多边形的一个外角是30°,那么它是( )A 、正三角形B 、正六边形C 、正十边形D 、正十二边形 (9) 10.如图9,一个圆形花坛分成三个区,四小圆以外的部分是外围区来种草,四小圆两两相交的部分是中心区来种花,这两区的面积比是( )A 、1:1B 、2:1C 、3:1D 、不能确定(7)(8)x二、填空题(每小题3分,共计24分)11.有意义的条件是 ;12.已知1O ⊙和2O ⊙的半径分别是一元二次方程()()120x x --=的两根, 且122OO =,则1O ⊙和2O ⊙的位置关系是 13.已知方程230x x k -+=有两个不相等的实数根,则k。
2010-2011学年度第一学期九年级数学期中试卷
2010-2011学年度第一学期九年级数学期中试卷 10.28 一.填空题(每空1分,共27分.请将答案直接写在相应位置上)1.一元二次方程ax2+bx+c=0(a≠0),当b2-4ac>0时,方程有根; 当b2-4ac=0时,方程有根; 当b2-4ac<0时,方程根. 2.将一元二次方程x(x-1)=2 化成一般形式是:,其中二次项是,一次项系数是;常数项是.3.四边形ABCD是平行四边形,使它成为矩形的条件可以是.(只要填一个即可)4.一组数据:2,3,x的平均数为3,那么x= ,这组数据的极差是,方差是5.已知菱形ABCD,对角线AC=6, BD=8,则该菱形的的面积是,边长是12;(2) 2 =_______;(3)))=________ 6.化简:(1)7.如图,AB为⊙O的弦,⊙O的半径为5,OC⊥AB于点D,交⊙O于点C,且CD=l,则OD= ,弦AB的长是.(第7题图)(第12题图)8. 等腰三角形一边长为8,一边长为4,则它的周长为;若等腰三角形有一个角为100°,则另外两个角的度数是9. 在实数范围内定义一种运算规定: a●b=a2-b2, 则3●2= ,方程 (x+2)●5=0 的解为10. ⊙O的半径为10cm,A、B、C三点到圆心O的距离分别为8cm、10cm、12cm,则点A、B、C与⊙O的位置关系是:点A在;点B在;点C在11. 已知关于x的一元二次方程(m-3)x2+4x+m2-9=0有一个根为0,则m=_________.12. 如图,在直线l上依次摆放着七个正方形.已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S1、S2、S3、S4,则S1+S2+S3+S4=.13. x 的取值范围为 ( )A.1x ≠B.0>xC.1>xD.1x ≥14.样本方差的计算公式S 2 =120[(x 1-30)2+(x 2-30)]2+…+(x n -30)2]中,数字20和30分别表示样本中的 ( )A .众数、中位数 B.方差、标准差C .数据的个数、平均数 D.数据的个数、中位数15.顺次连结等腰梯形ABCD 各边中点,所得到的四边形一定是 ( )A .等腰梯形B .菱形C .矩形D .正方形16 ( )A.3B.3-C.3±D.917.用两个完全相同的直角三角形拼下列图形:①平行四边形(不包含菱形、矩形、正方形); ②矩形; ③菱形; ④正方形; ⑤等腰三角形; ⑥等边三角形.其中一定能拼成的图形是 ( )A.①④⑤B.①②⑤C.①②③D. ②⑤⑥18.下列图形中,既是轴对称图形,又是中心对称图形的是 ( )A .等腰梯形B .平行四边形C .正三角形D .矩形19. 下列命题:(1)两条对角线相等的四边形是矩形 (2)圆心角相等则所对的弦也相等。
九数期中考试2010.12
2010—2011学年度第一学期期中考试九年级数学试题(本卷满分:120分 考试时间:100分钟 )一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是正确的,请把正确选项的字母代..........号填在下表中相应的题号下............) 1.在△ABC 中,AB =AC ,∠A =100°,则∠B 的度数是A .︒40B .︒50C .︒80D .︒1002.九年级(1)、(2)两个班参加数学质量测试,每班各50人,两班的平均成绩相同,但要进一步比较哪个班稍整齐,则需要知道这两个班期末数学成绩的 A .平均数 B .众数 C .中位数 D .方差 3.如图,等腰梯形ABCD 中,AD ∥BC ,AE ∥DC ,∠AEB =60°, AB = AD = 2cm ,则梯形ABCD 的周长为A.6cm B .8cm C .10cm D .12cm4.下列二次根式中, 第3题图A .B .24CD . 5.下列说法中, 错误的...是 A .当2x <时2x =- B .x -一定是负数C .当0x <时, 在实数范围内有意义D 11 6.一个同学解方程0542=-+x x 的过程是:0542=-+x x ⇒542=+x x ,9442=++⇒x x ⇒9)2(2=+x ,⇒32±=+x ,∴5,121-==x x .这种解法叫做A .因式分解法B .公式法C .配方法D .直接开平方法2132x 2--7.在四边形ABCD 中,点E 、F 是对角线BD 上的两点,且BE =DF . 则下列结论中,错误..的是 A .若四边形AECF 是平行四边形,则ABCD 也是平行四边形 B .若四边形AECF 是菱形,则四边形ABCD 也是菱形 C .若四边形AECF 是正方形,则四边形ABCD 一定是菱形D .若四边形AECF 是矩形,则四边形ABCD 也是矩形 第7题图 8.在一幅长为80cm ,宽为50cm 的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为x cm ,那么x 满足的方程是 A .213014000x x +-=B .2653500x x +-=C .213014000x x --=D .2653500x x --= 第8题图二、填空题(本大题共8小题,每小题3分,共24分)9.等腰三角形的两边长分别是4和9,则此等腰三角形的底边长为 . 10.若0102=+++b a ,则化简的结果是 .11.函数 的自变量的取值范围是 .12.我们把依次连接任意一个四边形各边中点所得的四边形叫做中点四边形.若一个四边形ABCD 的中点四边形是一个矩形,则四边形ABCD 可以是 . 13. 若已知代数式y 2+4y -2的值是3,则2y 2+8y -9的值是 . 14.写出一个两实数根互为相反数的一元二次方程:__________________. 15.已知样本x 1,x 2,x 3,…,x n 的方差是2,那么样本2x 1+3,2x 2+3,2x 3+3,…,2x n +3的标准差是 .16.如图,六边形ABCDEF 中,AB 平行且等于ED , AF 平行且等于CD , BC 平行且等于EF ,对角线FD ⊥BD . 已知FD =3,BD =4,则六边形ABCDEF 的面积是 .第16题图21-=x y b a答题卷一、选择题(本大题共8小题,每小题3分,共24分.9.__________________.10__________________.11__________________. 12__________________.13__________________.14__________________. 15__________________.16__________________. 三、解答题 (本大题共3小题,每小题8分,共24分) 17.计算:(1)45202712+--(2)abb a ab b 3)23(235÷-⋅18.解方程: (1)(3)(1)3x x x -+=- (2) 1)1(2=+x x19.如图,菱形ABCD 的周长为24 cm ,∠BCD = 120°,求对角线AC 的长及此菱形的面积.CBAD四、解答题(本大题共3小题,每小题9分,共27分) 20.已知关于x 的方程x 2—2m x+m 2—(m +2)=0. (1)当m 为何值时,方程有两个实数根?(2)为m 选取一个合适的整数,使方程有两个不相等...的实数根,并求出这两个根.21.已知: a +b =-5,ab =2, 求下面各式的值:(1)a 2+b 2 (2)22.为了比较市场上甲、乙两种电子表每日走时误差的情况,从这两种电子表中,(1)计算甲、乙两种电子表走时误差的平均数; (2)计算甲、乙两种电子表走时误差的方差;(3)根据经验,走时稳定性较好的电子表质量更优.若两种类型的电子表价格相同,请问:你买哪种电子表?为什么?ab b a五、解答题(本大题共2小题,23题10分、24题11分,共21分)23.已知,如图(1)点P是正方形ABCD的边BC上一动点,AP交对角线BD于点E,过点B作BQ⊥AP于点G,交对角线AC于点F,交边CD于点Q.(1)小丽在研究图形时发现图中除等腰直角三角形外,还有几对三角形全等,请你写出其中三对全等三角形(特别说明:写出三对得3分,以后每多写一对加1分,但试卷总分不超过120分),并选择其中一对给予证明;(2)小明在研究过程中,连结PF,提出问题:在点P运动的过程中,是否存在∠APB=∠CPF?请你思考并回答:若存在,点P应满足什么条件?并说明理由;若不存在,为什么?24.如图,在等腰梯形ABCD中,AD∥BC,AD=12 cm,BC=22 cm,点P从点A 出发沿边AD以1 cm /s的速度向点D移动,同时点Q从点C出发沿边CB以3 cm /s的速度向点B移动,若PQ中有一点到达终点时,另一点也随之停止运动.设运动时间为t s.(1)当t= s时,P、Q两点停止运动;(2)在P、Q两点运动的过程中,若PQ=CD,求t的值并确定此时四边形PQCD 的形状;(3)若∠C=60°,当BQ=AB时,求t的值;(4)在P、Q两点运动的过程中,直接写出....(不需给出演算步骤)PQ最长和最短时t的值.。
2010-2011学年九年级数学上学期期中考试
2010-2011学年上学期期中考试九年级数学试卷(全卷满分120分;考试时间120分钟)(每题3分;共24分)、化简:22)(-=( ).2- B .2 C .4- D .4、如果一个正多边形绕着它的中心旋转60°才和原来的图形重合,那么这个多 )A .正多边形B .正方形C .正五边形D .正六边形、根据电视台天气预报:某市明天降雨的概率为80%,对此信息,下列几种说 ).该市明天一定会下雨 B .该市明天有80%地区会降雨 .该市明天有80%的时间会降雨 D .该市明天下雨的可能性很大 、若m 是方程020072=-+x x 的一个根,则代数式)1(+m m 的值是( ) .0 B .1003 C .2007 D .2008、两圆的半径R 、r 分别是方程0232=+-x x 的两个根,且圆心距3=d ,则两圆的位置关系为( )A .外切B .内切C .外离D .相交、如图,把△ABC 绕点C 顺时针旋转某个角度''∠1=70°,则旋转角θ等于( ) .30° B .50° C .70° D .100、20102010223223)()(+⨯-的值是( ).1- B .1 C .0 D .20101)(-、甲、乙两人投掷两个普通的正方体骰子, 规定掷出“和为7”算甲赢,掷出“和为8算乙赢,这个游戏是否公平?( )A . 公平B .对甲有利C .对乙公平D (每题3分,共24分) 、若式子xx-1有意义,则x 的取值范围是 ; 、中心角为45°的正多边形的边数是 ;、任意写一个一元二次方程,使得这个方程有两个不相等的实数根,你举出的方程是 ; 、方程)12(2)12(3+=+x x x 的根为 ;、如图,在“扫雷”游戏中,“3”相邻的空格中隐含有3个“雷”,那么随机点击其中一个空格,恰好点到“雷”的概率是14、如图,一条公路是转弯处是一段圆弧(图中的AB 弧), 点O 是这段弧的圆心,AB=120m ,C 是AB 弧上一点, OC ⊥AB 于D ,CD=20m 。
20102011学年度第一学期期中考试初三年级数学试卷.doc
2010-2011学年度第一学期期中考试初三年级数学试卷题号 一 二 三 四 总分 总分人复核人 得分一、选择题(本题共10小题,每小题3分,共30分。
每小题给出的A 、B 、C 、D 四个结论中有且只有一个是正确的,选出答案后,请将答案填在答题卷的表格中,否则得0分) 1. Rt △ABC 中,∠C=90º,tanA=33,则∠B=( ) A .30º B .60º C .45º D .30º或60º 2.当∠A 为锐角,且cosA 的值大于22 时,∠A ( ) A .小于45° B .小于30° C .大于45° D .大于60° 3.若反比例函数2m 2x )1m 2(y --=的图像在第二、四象限,则m 的值是( )A .-1或1B .小于21的任意实数 C . -1 D .不能确定 4. 在同一坐标系中,函数xky =和3+=kx y 的图像大致是A B C D5.如图,A 为反比例函数xky =图象上一点,AB 垂直x 轴于B 点,若 S △AOB =3,则k 的值为( ) A .6B .3C .23 D .不能确定6.二次函数y= -2(x -3)2+5的图象的开口方向、对称轴和顶点坐标分别为( ) A .开口向下,对称轴x=-3,顶点坐标为(-3, 5) B .开口向下,对称轴x =3,顶点坐标为(3, 5) C .开口向上,对称轴x=-3,顶点坐标为(-3, 5) D .开口向上,对称轴x=-3,顶点坐标为(-3,-5)7. 二次函数c bx ax y ++=2的图象如图所示,则下列关系式不正确的是( )A .a <0B.abc >0C.c b a ++>0D.ac b 42->0ABO xy8. 把抛物线2y x =-向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为( )A .2(1)3y x =---B .2(1)3y x =-+-C .2(1)3y x =--+ D .2(1)3y x =-++9.在同一直角坐标系中,一次函数y =ax +c 和二次函数y =ax 2+c 的图象大致为( )10.如图,在Rt △ABC 中,∠C=90º,AC=4cm ,BC=6cm ,动点P 从点C 沿CA ,以1cm/s 的速度向点A 运动,同时动点Q 从点C 沿CB ,以2cm/s 的速度向点B 运动,其中一个动点到达终点时,另一个动点也停止运动.则运动过程中所构成的△CPQ 的面积y (cm 2)与运动时间x (s )之间的函数图象大致是( )二、填空题(本题共10小题,每小题3分,共30分。
2011---2012学年度第一学期九年级期中试卷参考答案
2011---2012学年度第一学期九年级数学期中试卷答案一、选择题(16分)1. D2. B3. A4. C5. B6. B7.__C___8.___B_二、填空题(20分)9. 4 ,2 ; 10. 5; 11.矩形; 12. 2+ 3 ; 13. 2:1(或2)14. 直角; 15. 4,-1; 16. (-3,0)或(5,0)或(-5,4)全对给分.三、化简与计算(16分)17. (1)(4分) 52直接写答案,不分步给分。
(2)(4分) 206 -10去括号2分,化简2分。
或先化简2分,去括号,合并2分。
18. (4分)22 化简成 1x-1 得2分,结果22得2分。
19. (4分) 0-a-1+b+1+a-b 每个去绝对号各得1分,合并得1分。
四、解方程(每题4分,共16分)20. (每题4分,共16分)(1)解:x+1=±2.............2分 (2)解:x 2-52x=-1 ∴x 1=2-1................1分 x 2-52 x+(54 )2=-1+(54)2.。
1分x 2=-2-1...............1分 (x-54 )2=916x-54 = ± 34..........................1分 ∴x 1=2................1分x 2=12............1分 (3)解:△= ......= 0....................2分x 1=x 2=3...............2分(4)解:(x+3)(1-x)=0.......2分∴x 1=-3............1分x 2=1..............1分五、解答题(7分)21.(1)△= .....=(2k-3)2≥0. ∴...........3分(2)①若a=1是腰,则1是方程的解,∴1-2k-1+4k-2=0k=1∴ 原方程为x 2-3x+2=0∴x 1=1, x 2=2以1,1,2为边的三角形不存在...........2分② 若a=1为底,则b=c∴△=........=0k=32∴ 原方程为x 2-4x+4=0∴x 1= x 2=2∴三角形周长为5............2分六、阅读理解(22题8分,23题8分,共16分)22.解:x 1+x 2=32..................1分 x 1x 2=-12...................1 分① x 1+x 1x 2+x 2=32 -12=1.....................2分②1x 1 +1x 2=2121x x x x + =-3.........................2分③3x 12-3x 1+x 22=2x 12-3x 1+x 12+x 22=1+(x 1+x 2)2-2x 1x 2=174.....................2分23.(1)4×154=1544+.....................................2分(2)n 12-n n =12-+n n n ...........................2分 验证:n 12-n n =123-n n =1)122-+-n n n n (=12-+n n n .................4分 七、图形与证明(24题9分、25题8分、26题12分24.每个图3分,全等只按一个得分。
九年级上学期数学期中考试卷及答案精选全文
可编辑修改精选全文完整版第一学期期中考试九年级数学试题1. 计算()23-的结果是()A.3B.3- C.3±2. 若P(x;-3)与点Q(4;y)关于原点对称;则x+y=()A、7B、-7C、1D、-13. 下列二次根式是最简二次根式的是()4. 一元二次方程22350xx++=的根的情况是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 无法判断5. 用配方法解方程0142=++xx;则配方正确的是()A、3)2(2=+x B、5)2(2-=+xC、3)2(2-=+x D、3)4(2=+x6. 如图;AB、AC都是圆O的弦;OM⊥AB;ON⊥AC;垂足分别为M、N;如果MN=3;那么BC=(). A. 4 B.5 C. 6 D.7二、填空题(共8小题;每小题3分;满分24分)7. 2-x在实数范围内有意义;则x的取值范围是.8. 221x-=的二次项系数是 ;一次项系数是 ;常数项是 .9. 一只蚂蚁沿图中所示的折线由A点爬到了C点;则蚂蚁一共爬行了______cm.(图中小方格边长代表1cm)NMOCBA10. 关于x 的一元二次方程04)2(22=-+-+m mx x m 有一根为0;则m= . 11. 对于任意不相等的两个数a;b;定义一种运算*如下:ba b a b a -+=*;如523232*3=-+=;那么)5(*3-= .12. 有4个命题:①直径相等的两个圆是等圆;②长度相等的两条弧是等弧;③圆中最大的弦是通过圆心的弦;④在同圆或等圆中;相等的两条弦所对的弧是等弧;其中真命题是_________。
13. 有两个完全重合的矩形;将其中一个始终保持不动;另一个矩形绕其对称中心O 按逆时针方向进行旋转;每次均旋转22.5︒;第.2.次.旋转后得到图①;第.4.次.旋转后得到图②…;则第20次旋转后得到的图形与图①~图④中相同的是____. (填写序号)14. 等腰三角形两边的长分别为方程02092=+-x x 的两根;则三角形的周长是 .三、解答题(共4小题;每小题6分;共24分) 15. 解方程:x(x-2)+x-2=016. 计算:0)15(282218-+--图① 图② 图③ 图④ OOOO17. 下面两个网格图均是4×4正方形网格;请分别在两个网格图中选取两个白色的单位正方形并涂黑;使整个网格图满足下列要求. 18. 如图;大正方形的边长515+;小正为方形的边长为515-;求图中的阴影部分的面积.四、(本大题共2小题;每小题8分;共16分)19. 数学课上;小军把一个菱形通过旋转且每次旋转120°后得到甲的图案。
九年级数学上册期中考试试卷及答案
专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是偶数?A. 3B. 4C. 5D. 62. 如果 a = 3,b = 4,那么a² + b² 等于多少?A. 25B. 30C. 35D. 403. 下列哪个数是质数?A. 12B. 17C. 20D. 214. 如果一个三角形的两边分别是3和4,那么第三边的长度可能是多少?A. 1B. 4C. 6D. 75. 下列哪个数是无理数?A. √4B. √9C. √16D. √18二、判断题(每题1分,共5分)1. 任何偶数乘以偶数都是偶数。
()2. 任何奇数乘以奇数都是奇数。
()3. 0是一个自然数。
()4. 任何一个整数都可以分解为几个质数的乘积。
()5. 任何一个正整数都有因数1和它本身。
()三、填空题(每题1分,共5分)1. 一个等差数列的前三项分别是2,5,8,那么第四项是______。
2. 如果一个三角形的两边分别是5和12,那么第三边的长度不可能是______。
3. 下列哪个数是合数?______4. 下列哪个数是立方数?______5. 下列哪个数是平方数?______四、简答题(每题2分,共10分)1. 解释什么是等差数列。
2. 解释什么是等比数列。
3. 解释什么是质数。
4. 解释什么是合数。
5. 解释什么是无理数。
五、应用题(每题2分,共10分)1. 一个等差数列的前三项分别是3,7,11,求这个数列的公差。
2. 如果一个三角形的两边分别是6和8,那么第三边的长度可能是多少?3. 如果 a = 2,b = 3,那么a² + b² 等于多少?4. 如果一个数是12的倍数,那么这个数也一定是3的倍数吗?为什么?5. 如果一个数是9的倍数,那么这个数也一定是3的倍数吗?为什么?六、分析题(每题5分,共10分)1. 分析为什么0既不是正数也不是负数。
2. 分析为什么1既不是质数也不是合数。
九年级(上)期中数学试卷(答案解析)
九年级(上)期中数学试卷一、选择题:每小题4分,共40分.1.下列方程中,是关于x的一元二次方程的是()A.ax2+bx+c=0 B.C.3(x+1)2=2(x+1)D.2x2+3x=2x2﹣22.用配方法解方程x2+8x+9=0,变形后的结果正确的是()A.(x+4)2=﹣7 B.(x+4)2=﹣9 C.(x+4)2=7 D.(x+4)2=253.若关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,则m的取值范围是()A.m<1 B.m<﹣1 C.m>1 D.m>﹣14.一元二次方程x2﹣x﹣2=0的解是()A.x1=1,x2=2 B.x1=1,x2=﹣2 C.x1=﹣1,x2=﹣2 D.x1=﹣1,x2=25.下列标志中,可以看作是轴对称图形的是()A.B.C.D.6.如图,在Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转90°后得到的△AB′C′(点B 的对应点是点B′,点C的对应点是点C′),连接CC′.若∠CC′B′=32°,则∠B的大小是()A.32°B.64°C.77°D.87°7.抛物线y=ax2+bx+c的顶点为D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论:①b2﹣4ac<0;②a+b+c<0;③c﹣a=2;④方程ax2+bx+c﹣2=0有两个相等的实数根.其中正确结论的个数为()A.1个B.2个C.3个D.4个8.如图,已知⊙O的半径为13,弦AB长为24,则点O到AB的距离是()A.6 B.5 C.4 D.39.如图,已知AB是△ABC外接圆的直径,∠A=35°,则∠B的度数是()A.35°B.45°C.55°D.65°10.在同一坐标系中,一次函数y=﹣mx+n2与二次函数y=x2+m的图象可能是()A. B.C.D.二、填空题:每小题3分,共18分.11.已知方程x2+mx+3=0的一个根是1,则它的另一个根是.12.若实数a、b满足(4a+4b)(4a+4b﹣2)﹣8=0,则a+b=.13.把二次函数y=2x2的图象向左平移1个单位长度,再向下平移2个单位长度,平移后抛物线的解析式为.14.如图,在平面直角坐标系中,将线段AB绕点A按逆时针方向旋转90°后,得到线段AB′,则点B′的坐标为.15.如图,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,点Q为对角线AC上的动点,则△BEQ周长的最小值为.16.观察下列图形规律:当n=时,图形“●”的个数和“△”的个数相等.三、解答题:8题,共92分.17.计算:﹣(2015+π)0.18.解方程:2x2﹣7x+6=0.19.已知方程x2+3x﹣1=0的两个实数根为α、β,不解方程求下列程式的值.(1)α2+β2(2).20.在平面直角坐标系xOy中,A点的坐标为(3,4),将OA绕原点O顺时针旋转90°得到OA′,求点A′的坐标.21.如图,AB,DE是⊙O的直径,C是⊙O上的一点,且=.(1)求证:BE=CE;(2)若∠B=50°,求∠AOC的度数.22.如图,点P是正方形ABCD内一点,点P到点A、B和D的距离分别为1,2,,△ADP 沿点A旋转至△ABP′,连结PP′,并延长AP与BC相交于点Q.(1)求证:△APP′是等腰直角三角形;(2)求∠BPQ的大小.23.为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建设力度.2013年市政府共投资3亿元人民币建设了廉租房12万平方米,2015年投资6.75亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.(1)求每年市政府投资的增长率;(2)若这两年内的建设成本不变,问2015年建设了多少万平方米廉租房?24.已知关于x的一元二次方程:x2﹣(m﹣3)x﹣m=0.(1)试判断原方程根的情况;(2)若抛物线y=x2﹣(m﹣3)x﹣m与x轴交于A(x1,0),B(x2,0)两点,则A,B两点间的距离是否存在最大或最小值?若存在,求出这个值;若不存在,请说明理由.(友情提示:AB=|x2﹣x1|)25.已知抛物线y=﹣x2﹣2x+a(a≠0)与y轴相交于A点,顶点为M,直线y=分别与x轴、y轴相交于B、C两点,并且与直线MA相交于N点.(1)若直线BC和抛物线有两个不同交点,求a的取值范围,并用a表示交点M、A的坐标.(2)将△NAC沿着y轴翻转,若点N的对称点P恰好落在抛物线上,AP与抛物线的对称轴相交于点D,连接CD,求a的值及△PCD的面积.参考答案与试题解析一、选择题:每小题4分,共40分.1.下列方程中,是关于x的一元二次方程的是()A.ax2+bx+c=0 B.C.3(x+1)2=2(x+1)D.2x2+3x=2x2﹣2【考点】一元二次方程的定义.【分析】根据一元二次方程的定义:未知数的最高次数是2;二次项系数不为0;是整式方程;含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【解答】解:A、a=0,ax2+bx+c=0是一元一次方程,故A错误;B、()2+﹣2=0是分式方程,故B错误;C、3(x+1)2=2(x+1)是一元二次方程,故C正确;D、2x2+3x=2x2﹣2是一元一次方程,故D错误;故选:C.【点评】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.2.用配方法解方程x2+8x+9=0,变形后的结果正确的是()A.(x+4)2=﹣7 B.(x+4)2=﹣9 C.(x+4)2=7 D.(x+4)2=25【考点】解一元二次方程-配方法.【专题】计算题.【分析】方程移项后,利用完全平方公式配方即可得到结果.【解答】解:方程x2+8x+9=0,整理得:x2+8x=﹣9,配方得:x2+8x+16=7,即(x+4)2=7,故选C【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.3.若关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,则m的取值范围是()A.m<1 B.m<﹣1 C.m>1 D.m>﹣1【考点】根的判别式.【专题】计算题.【分析】根据根的判别式,令△>0即可求出根的判别式.【解答】解:∵关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,∴△=(﹣2)2﹣4×m>0,∴4﹣4m>0,解得m<1.故选A.【点评】本题考查了一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.4.一元二次方程x2﹣x﹣2=0的解是()A.x1=1,x2=2 B.x1=1,x2=﹣2 C.x1=﹣1,x2=﹣2 D.x1=﹣1,x2=2【考点】解一元二次方程-因式分解法.【专题】因式分解.【分析】直接利用十字相乘法分解因式,进而得出方程的根【解答】解:x2﹣x﹣2=0(x﹣2)(x+1)=0,解得:x1=﹣1,x2=2.故选:D.【点评】此题主要考查了十字相乘法分解因式解方程,正确分解因式是解题关键.5.下列标志中,可以看作是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,不符合题意;B、不是轴对称图形,是中心对称图形,不符合题意;C、不是轴对称图形,是中心对称图形,不符合题意;D、是轴对称图形,符合题意.故选:D.【点评】此题主要考查了中心对称图形和轴对称图形的定义,掌握中心对称图形与轴对称图形的概念,解答时要注意:判断轴对称图形的关键是寻找对称轴,图形两部沿对称轴叠后可重合;判断中心对称图形是要寻找对称中心,图形旋转180度后与原图重合.6.如图,在Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转90°后得到的△AB′C′(点B 的对应点是点B′,点C的对应点是点C′),连接CC′.若∠CC′B′=32°,则∠B的大小是()A.32°B.64°C.77°D.87°【考点】旋转的性质.【分析】旋转中心为点A,C、C′为对应点,可知AC=AC′,又因为∠CAC′=90°,根据三角形外角的性质求出∠C′B′A的度数,进而求出∠B的度数.【解答】解:由旋转的性质可知,AC=AC′,∵∠CAC′=90°,可知△CAC′为等腰直角三角形,则∠CC′A=45°.∵∠CC′B′=32°,∴∠C′B′A=∠C′CA+∠CC′B′=45°+32°=77°,∵∠B=∠C′B′A,∴∠B=77°,故选C.【点评】本题考查了旋转的性质:旋转前后两图形全等,即对应角相等,对应线段相等.也考查了等腰直角三角形的性质.7.抛物线y=ax2+bx+c的顶点为D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论:①b2﹣4ac<0;②a+b+c<0;③c﹣a=2;④方程ax2+bx+c﹣2=0有两个相等的实数根.其中正确结论的个数为()A.1个B.2个C.3个D.4个【考点】二次函数图象与系数的关系;抛物线与x轴的交点.【专题】数形结合.【分析】由抛物线与x轴有两个交点得到b2﹣4ac>0;有抛物线顶点坐标得到抛物线的对称轴为直线x=﹣1,则根据抛物线的对称性得抛物线与x轴的另一个交点在点(0,0)和(1,0)之间,所以当x=1时,y<0,则a+b+c<0;由抛物线的顶点为D(﹣1,2)得a﹣b+c=2,由抛物线的对称轴为直线x=﹣=﹣1得b=2a,所以c﹣a=2;根据二次函数的最大值问题,当x=﹣1时,二次函数有最大值为2,即只有x=﹣1时,ax2+bx+c=2,所以说方程ax2+bx+c﹣2=0有两个相等的实数根.【解答】解:∵抛物线与x轴有两个交点,∴b2﹣4ac>0,所以①错误;∵顶点为D(﹣1,2),∴抛物线的对称轴为直线x=﹣1,∵抛物线与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,∴抛物线与x轴的另一个交点在点(0,0)和(1,0)之间,∴当x=1时,y<0,∴a+b+c<0,所以②正确;∵抛物线的顶点为D(﹣1,2),∴a﹣b+c=2,∵抛物线的对称轴为直线x=﹣=﹣1,∴b=2a,∴a﹣2a+c=2,即c﹣a=2,所以③正确;∵当x=﹣1时,二次函数有最大值为2,即只有x=﹣1时,ax2+bx+c=2,∴方程ax2+bx+c﹣2=0有两个相等的实数根,所以④正确.故选:C.【点评】本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=﹣;抛物线与y轴的交点坐标为(0,c);当b2﹣4ac>0,抛物线与x轴有两个交点;当b2﹣4ac=0,抛物线与x轴有一个交点;当b2﹣4ac<0,抛物线与x轴没有交点.8.如图,已知⊙O的半径为13,弦AB长为24,则点O到AB的距离是()A.6 B.5 C.4 D.3【考点】垂径定理;勾股定理.【分析】过O作OC⊥AB于C,根据垂径定理求出AC,根据勾股定理求出OC即可.【解答】解:过O作OC⊥AB于C,∵OC过O,∴AC=BC=AB=12,在Rt△AOC中,由勾股定理得:OC==5.故选:B.【点评】本题考查了垂径定理和勾股定理的应用,关键是求出OC的长.9.如图,已知AB是△ABC外接圆的直径,∠A=35°,则∠B的度数是()A.35°B.45°C.55°D.65°【考点】圆周角定理.【专题】几何图形问题.【分析】由AB是△ABC外接圆的直径,根据直径所对的圆周角是直角,可求得∠ACB=90°,又由∠A=35°,即可求得∠B的度数.【解答】解:∵AB是△ABC外接圆的直径,∴∠C=90°,∵∠A=35°,∴∠B=90°﹣∠A=55°.故选:C.【点评】此题考查了圆周角定理.此题比较简单,注意掌握数形结合思想的应用.10.在同一坐标系中,一次函数y=﹣mx+n2与二次函数y=x2+m的图象可能是()A. B.C.D.【考点】二次函数的图象;一次函数的图象.【分析】本题可先由一次函数y=﹣mx+n2图象得到字母系数的正负,再与二次函数y=x2+m的图象相比较看是否一致.【解答】解:A、由直线与y轴的交点在y轴的负半轴上可知,n2<0,错误;B、由抛物线与y轴的交点在y轴的正半轴上可知,m>0,由直线可知,﹣m<0,错误;C、由抛物线y轴的交点在y轴的负半轴上可知,m<0,由直线可知,﹣m<0,错误;D、由抛物线y轴的交点在y轴的负半轴上可知,m<0,由直线可知,﹣m>0,正确,故选D.【点评】本题考查抛物线和直线的性质,用假设法来搞定这种数形结合题是一种很好的方法,难度适中.二、填空题:每小题3分,共18分.11.已知方程x2+mx+3=0的一个根是1,则它的另一个根是3.【考点】根与系数的关系.【分析】利用一元二次方程的根与系数的关系,两个根的积是3,即可求解.【解答】解:设方程的另一个解是a,则1×a=3,解得:a=3.故答案是:3.【点评】本题考查了一元二次方程的根与系数的关系,正确理解根与系数的关系是关键.12.若实数a、b满足(4a+4b)(4a+4b﹣2)﹣8=0,则a+b=﹣或1.【考点】换元法解一元二次方程.【分析】设a+b=x,则原方程转化为关于x的一元二次方程,通过解该一元二次方程来求x即(a+b)的值.【解答】解:设a+b=x,则由原方程,得4x(4x﹣2)﹣8=0,整理,得16x2﹣8x﹣8=0,即2x2﹣x﹣1=0,分解得:(2x+1)(x﹣1)=0,解得:x1=﹣,x2=1.则a+b的值是﹣或1.故答案是:﹣或1.【点评】本题主要考查了换元法,即把某个式子看作一个整体,用一个字母去代替它,实行等量替换.13.把二次函数y=2x2的图象向左平移1个单位长度,再向下平移2个单位长度,平移后抛物线的解析式为y=2(x+1)2﹣2.【考点】二次函数图象与几何变换.【分析】直接根据“上加下减,左加右减”的原则进行解答.【解答】解:由“左加右减”的原则可知,将二次函数y=2x2的图象向左平移1个单位长度所得抛物线的解析式为:y=2(x+1)2,即y=2(x+1)2;由“上加下减”的原则可知,将抛物线y=2(x+1)2向下平移2个单位长度所得抛物线的解析式为:y=2(x+1)2﹣2,即y=2(x+1)2﹣2.故答案为:y=2(x+1)2﹣2.【点评】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.14.如图,在平面直角坐标系中,将线段AB绕点A按逆时针方向旋转90°后,得到线段AB′,则点B′的坐标为(4,2).【考点】坐标与图形变化-旋转.【专题】几何变换.【分析】画出旋转后的图形位置,根据图形求解.【解答】解:AB旋转后位置如图所示.B′(4,2).【点评】本题涉及图形旋转,体现了新课标的精神,抓住旋转的三要素:旋转中心A,旋转方向逆时针,旋转角度90°,通过画图得B′坐标.15.如图,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,点Q为对角线AC上的动点,则△BEQ周长的最小值为6.【考点】轴对称-最短路线问题;正方形的性质.【专题】计算题.【分析】连接BD,DE,根据正方形的性质可知点B与点D关于直线AC对称,故DE的长即为BQ+QE 的最小值,进而可得出结论.【解答】解:连接BD,DE,∵四边形ABCD是正方形,∴点B与点D关于直线AC对称,∴DE的长即为BQ+QE的最小值,∵DE=BQ+QE===5,∴△BEQ周长的最小值=DE+BE=5+1=6.故答案为:6.【点评】本题考查的是轴对称﹣最短路线问题,熟知轴对称的性质是解答此题的关键.16.观察下列图形规律:当n=5时,图形“●”的个数和“△”的个数相等.【考点】规律型:图形的变化类.【专题】规律型.【分析】首先根据n=1、2、3、4时,“●”的个数分别是3、6、9、12,判断出第n个图形中“●”的个数是3n;然后根据n=1、2、3、4,“△”的个数分别是1、3、6、10,判断出第n个“△”的个数是;最后根据图形“●”的个数和“△”的个数相等,求出n的值是多少即可.【解答】解:∵n=1时,“●”的个数是3=3×1;n=2时,“●”的个数是6=3×2;n=3时,“●”的个数是9=3×3;n=4时,“●”的个数是12=3×4;∴第n个图形中“●”的个数是3n;又∵n=1时,“△”的个数是1=;n=2时,“△”的个数是3=;n=3时,“△”的个数是6=;n=4时,“△”的个数是10=;∴第n个“△”的个数是;由3n=,可得n2﹣5n=0,解得n=5或n=0(舍去),∴当n=5时,图形“●”的个数和“△”的个数相等.故答案为:5.【点评】此题主要考查了规律型:图形的变化类问题,要熟练掌握,解答此类问题的关键是:首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.三、解答题:8题,共92分.17.计算:﹣(2015+π)0.【考点】实数的运算;零指数幂;负整数指数幂.【分析】本题涉及零指数幂、绝对值、特殊角的三角函数值、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:﹣(2015+π)0=2+3﹣2﹣3﹣1=﹣1.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18.解方程:2x2﹣7x+6=0.【考点】解一元二次方程-因式分解法.【分析】利用十字相乘法因式分解得到(2x﹣3)(x﹣2)=0,推出2x﹣3=0,x﹣2=0,求出方程的解即可.【解答】解:2x2﹣7x+6=0,(2x﹣3)(x﹣2)=0,∴2x﹣3=0,x﹣2=0,x1=,x2=2,【点评】此题主要考查了解一元二次方程,因式分解等知识点的理解和掌握,能把一元二次方程转换成一元一次方程是解此题的关键.19.已知方程x2+3x﹣1=0的两个实数根为α、β,不解方程求下列程式的值.(1)α2+β2(2).【考点】根与系数的关系.【分析】(1)根据根与系数的关系得出α+β和αβ,再把α2+β2变形(α+β)2﹣2αβ,代入计算即可;(2)把化为,再代入计算即可.【解答】解:(1)∵方程x2+3x﹣1=0的两个实数根为α、β,∴α+β=﹣3,αβ=﹣1,∴α2+β2=(α+β)2﹣2αβ=9+2=11;(2)∵α+β=﹣3,αβ=﹣1,∴===﹣11.【点评】本题考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.20.在平面直角坐标系xOy中,A点的坐标为(3,4),将OA绕原点O顺时针旋转90°得到OA′,求点A′的坐标.【考点】坐标与图形变化-旋转.【专题】数形结合.【分析】根据A点坐标得到OB=4,AB=3,OA绕原点O顺时针旋转90°得到OA′可看作是Rt△OAB 绕原点O顺时针旋转90°得到RtOA′C,根据旋转的性质得到A′C=AB=3,OC=OB=4,再写出A′点的坐标.【解答】解:AB⊥y轴于B,A′C⊥x轴于C,如图,OB=4,AB=3,OA绕原点O顺时针旋转90°得到OA′可看作是Rt△OAB绕原点O顺时针旋转90°得到RtOA′C,则A′C=AB=3,OC=OB=4,所以点A′的坐标为(4,﹣3).【点评】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.21.如图,AB,DE是⊙O的直径,C是⊙O上的一点,且=.(1)求证:BE=CE;(2)若∠B=50°,求∠AOC的度数.【考点】圆心角、弧、弦的关系;圆周角定理.【分析】(1)根据∠AOD=∠BOE可知=,再由=即可得出结论;(2)先根据等腰三角形的性质求出∠BOE的度数,再由BE=CE可得出∠BOE=∠COE,根据补角的定义即可得出结论.【解答】(1)证明:∵∠AOD=∠BOE,∴=.∵=,∴=,∴BE=CE;(2)解:∵∠B=50°,OB=OE,∴∠BOE=180°﹣50°﹣50°=80°.∵由(1)知,BE=CE,∴∠COE=∠BOE=80°,∴∠AOC=180°﹣80°﹣80°=20°.【点评】本题考查的是圆心角、弧、弦的关系,熟知在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等是解答此题的关键.22.如图,点P是正方形ABCD内一点,点P到点A、B和D的距离分别为1,2,,△ADP 沿点A旋转至△ABP′,连结PP′,并延长AP与BC相交于点Q.(1)求证:△APP′是等腰直角三角形;(2)求∠BPQ的大小.【考点】旋转的性质;等腰直角三角形;正方形的性质.【专题】证明题.【分析】(1)根据正方形的性质得AB=AD,∠BAD=90°,再利用旋转的性质得AP=AP′,∠PAP′=∠DAB=90°,于是可判断△APP′是等腰直角三角形;(2)根据等腰直角三角形的性质得PP′=PA=,∠APP′=45°,再利用旋转的性质得PD=P′B=,接着根据勾股定理的逆定理可证明△PP′B为直角三角形,∠P′PB=90°,然后利用平角定义计算∠BPQ 的度数.【解答】(1)证明:∵四边形ABCD为正方形,∴AB=AD,∠BAD=90°,∵△ADP沿点A旋转至△ABP′,∴AP=AP′,∠PAP′=∠DAB=90°,∴△APP′是等腰直角三角形;(2)解:∵△APP′是等腰直角三角形,∴PP′=PA=,∠APP′=45°,∵△ADP沿点A旋转至△ABP′,∴PD=P′B=,在△PP′B中,PP′=,PB=2,P′B=,∵()2+(2)2=()2,∴PP′2+PB2=P′B2,∴△PP′B为直角三角形,∠P′PB=90°,∴∠BPQ=180°﹣∠APP′﹣∠P′PB=180°﹣45°﹣90°=45°.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质和勾股定理的逆定理.23.为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建设力度.2013年市政府共投资3亿元人民币建设了廉租房12万平方米,2015年投资6.75亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.(1)求每年市政府投资的增长率;(2)若这两年内的建设成本不变,问2015年建设了多少万平方米廉租房?【考点】一元二次方程的应用.【专题】增长率问题.【分析】(1)设每年市政府投资的增长率为x,由3(1+x)2=2015年的投资,列出方程,解方程即可;(2)2015年的廉租房=12(1+50%)2,即可得出结果.【解答】解:(1)设每年市政府投资的增长率为x,根据题意得:3(1+x)2=6.75,解得:x=0.5,或x=﹣2.5(不合题意,舍去),∴x=0.5=50%,即每年市政府投资的增长率为50%;(2)∵12(1+50%)2=27,∴2015年建设了27万平方米廉租房.【点评】本题考查了一元一次方程的应用;熟练掌握列一元一次方程解应用题的方法,根据题意找出等量关系列出方程是解决问题的关键.24.已知关于x的一元二次方程:x2﹣(m﹣3)x﹣m=0.(1)试判断原方程根的情况;(2)若抛物线y=x2﹣(m﹣3)x﹣m与x轴交于A(x1,0),B(x2,0)两点,则A,B两点间的距离是否存在最大或最小值?若存在,求出这个值;若不存在,请说明理由.(友情提示:AB=|x2﹣x1|)【考点】抛物线与x轴的交点;根的判别式.【分析】(1)根据根的判别式,可得答案;(2)根据根与系数的关系,可得A、B间的距离,根据二次函数的性质,可得答案.【解答】解:(1)△=[﹣(m﹣3)]2﹣4(﹣m)=m2﹣2m+9=(m﹣1)2+8,∵(m﹣1)2≥0,∴△=(m﹣1)2+8>0,∴原方程有两个不等实数根;(2)存在,由题意知x1,x2是原方程的两根,∴x1+x2=m﹣3,x1•x2=﹣m.∵AB=|x1﹣x2|,∴A B2=(x1﹣x2)2=(x1+x2)2﹣4x1x2=(m﹣3)2﹣4(﹣m)=(m﹣1)2+8,∴当m=1时,AB2有最小值8,∴AB有最小值,即AB==2【点评】本题考查了抛物线与x轴的交点,利用了根的判别式,根据根与系数的关系,利用完全平方公式得出二次函数是解题关键,又利用了二次函数的性质.25.已知抛物线y=﹣x2﹣2x+a(a≠0)与y轴相交于A点,顶点为M,直线y=分别与x轴、y轴相交于B、C两点,并且与直线MA相交于N点.(1)若直线BC和抛物线有两个不同交点,求a的取值范围,并用a表示交点M、A的坐标.(2)将△NAC沿着y轴翻转,若点N的对称点P恰好落在抛物线上,AP与抛物线的对称轴相交于点D,连接CD,求a的值及△PCD的面积.【考点】二次函数综合题.【分析】(1)根据题意联立抛物线和直线的解析式,化为一元二次方程,运用△>0即可求出a的取值范围和交点的坐标;(2)根据轴对称性质表示出点P的坐标并代入抛物线,求出a的值,用△ACP的面积减去△ADC 的面积即可求出△PCD的面积.【解答】解:(1)由题意联立,整理得:2x2+5x﹣4a=0,由△=25+32a>0,解得:,∵a≠0,∴且a≠0,当x=0时,y=a,∴A(0,a),∵y=﹣x2﹣2x+a=﹣(x+1)2+a+1,∴M(﹣1,a+1).(2)设直线MA为:y=kx+b,代入A(0,a),M(﹣1,a+1)得,,解得:,所以直线MA为y=﹣x+a,联立,解得,所以:N(,),∵点P是N关于y轴的对称点,∴P(﹣,),代入y=﹣x2﹣2x+a,得,解得:a=,或a=0(舍去),∴抛物线为y=﹣x2﹣2x+,直线BC为y=﹣,当x=0时,y=﹣,∴C(0,﹣),A(0,),M(﹣1,),∴|AC|=,∴S△PCD=S△PAC﹣S△DAC=|AC|×|x p|﹣|AC|×|x D|=××3﹣××1=.【点评】此题主要考查二次函数的综合问题,会运用待定系数法求函数解析式,会求函数图象的交点和三角形的面积是解题的关键.。
九年级上学期数学期中考试试卷及答案解析
九年级上学期数学期中考试试卷及答案解析一、选择题(每题4分,共40分)1. 有下列四个数:-1, 0, 1, √2,其中无理数是()A. -1B. 0C. 1D. √2答案:D解析:无理数是指不能表示为两个整数比的数,√2无法表示为两个整数的比,故选D。
2. 下列各数中,与-3的平方相等的是()A. 3B. -3C. 9D. -9答案:C解析:-3的平方为9,故选C。
3. 已知a = 2,b = -3,则a² - 2ab + b²的值为()A. 25B. -25C. 1D. -1答案:A解析:将a和b的值代入a² - 2ab + b²,得(2)² -22(-3) + (-3)² = 4 + 12 + 9 = 25,故选A。
4. 下列等式中,正确的是()A. (a²)³ = a⁶B. (a³)² = a⁶C. (a²)³ = a⁹D. (a³)² = a⁹答案:B解析:幂的乘方规则,(a³)² = a³² = a⁶,故选B。
5. 已知|a| = 5,且a < 0,则a的值为()A. 5B. -5C. 10D. -10答案:B解析:绝对值表示一个数的非负值,|a| = 5表示a的绝对值为5,由于a < 0,所以a = -5,故选B。
6. 下列函数中,奇函数是()A. y = x²B. y = x³C. y = |x|D. y = x² + 1答案:B解析:奇函数的定义是f(-x) = -f(x),y = x³满足这个条件,故选B。
7. 下列关于x的不等式中,有解的是()A. x² < 0B. x² ≤ 0C. x² > 0D. x² ≥ 0答案:D解析:任何数的平方都是非负数,所以x² ≥ 0对所有的x都有解,故选D。
九年级上期中数学试卷含答案解析
九年级上册期中数学试卷(解析版)一、选择题1、下列各点,不在二次函数y=x2的图象上的是()A、(1,﹣1)B、(1,1)C、(﹣2,4)D、(3,9)2、如图图案中,可以看做是中心对称图形的有()A、1个B、2个C、3个D、4个3、平行四边形ABCD的四个顶点都在圆O上,那么四边形ABCD一定是()A、正方形B、矩形C、菱形D、以上都不对4、如图,四边形ABCD内接于圆O,若∠BOD=138°,则它的一个外角∠DCE的度数为()A、138°B、69°C、52°D、42°5、在下列4个不同的情境中,两个变量所满足的函数关系属于二次函数关系的有()①设正方形的边长为x面积为y,则y与x有函数关系;②x个球队参加比赛,每两个队之间比赛一场,则比赛的场次数y与x之间有函数关系;③设正方体的棱长为x,表面积为y,则y与x有函数关系;④若一辆汽车以120km/h的速度匀速行驶,那么汽车行驶的里程y(km)与行驶时间x(h)有函数关系.A、1个B、2个C、3个D、4个6、下列二次函数的图象中,开口最大的是()A、y=x2B、y=2x2C、y= x2D、y=﹣x27、抛物线y=x2﹣8x的顶点坐标为()A、(4,16)B、(﹣4,16)C、(4,﹣16)D、(﹣4,﹣16)8、以原点为中心,把点P(1,3)顺时针旋转90°,得到的点P′的坐标为()A、(3,﹣1)B、(﹣3,1)C、(1,﹣3)D、(﹣1,﹣3)9、用60m长的篱笆围成矩形场地,矩形的面积S随着矩形的一边长L的变化而变化,要使矩形的面积最大,L的长度应为()A、6 mB、15mC、20mD、10 m10、二次函数y=ax2+bx+c(a≠0)和正比例函数y= x的图象如图所示,则方程ax2+(b﹣)x+c=0(a≠0)的根的情况()A、两根都大于0B、两根都等于0C、两根都小于0D、一根大于0,一根小于011、如图,将边长为2的等边三角形ABC绕点C旋转120°,得到△DCE,连接BD,则BD的长为()A、2B、2.5C、3D、212、若抛物线y=x2﹣2x+3不动,将平面直角坐标系xOy先沿水平方向向右平移一个单位,再沿铅直方向向上平移三个单位,则原抛物线图象的解析式应变为()A、y=(x﹣2)2+3B、y=(x﹣2)2+5C、y=x2﹣1D、y=x2+4二、填空题13、等边三角形绕它的中心至少旋转________度,才能和原图形重合.14、二次函数y=x(x﹣6)的图象的对称轴是________.15、如图,AB是圆O的直径,弧=弧=弧,∠COD=48°,则∠AOE的度数为________.16、如图,弦CD垂直于⊙O的直径AB,垂足为H,且CD=2 ,BD= ,则AB的长为________.17、如图,等腰直角△ABC中,AC=BC,∠ACB=90°,点O分斜边AB为BO:OA=1:,将△BOC绕C点顺时针方向旋转到△AQC的位置,则∠AQC=________.18、已知三条互相平行的直线a、b、c,请问能否作出一个等边△ABC,使其三个顶点A、B、C分别在直线a、b、c上?(用“能”或“不能”填空).若能,请说明作图方法;若不能,请简要说明理由.三、解答题19、按要求画出图形:如图,△AOB是等腰直角三角形,∠AOB=90°,OA=OB,请你在图中画出以点O为中心,将△AOE逆时针旋转90°之后的图形.(不写傲法.写出结论)20、如图,在⊙O中,弦AB的长为8cm,圆心O到AB的距离为3cm,求⊙O的半径.21、综合题。
九年级上期中数学试卷9附答案解析
九年级(上)期中数学试卷一、选择题:1.一元二次方程x2+px﹣2=0的一个根为2,则p的值为()A.1 B.2 C.﹣1 D.﹣22.关于x的一元二次方程x2+k=0有实数根,则()A.k<0 B.k>0 C.k≥0 D.k≤03.若两个相似多边形的面积之比为1:4,则它们的周长之比为()A.1:4 B.1:2 C.2:1 D.1:164.为了改善居民住房条件,我市计划用未来两年的时间,将城镇居民的住房面积由现在的人均约为10m2提高到12.1m2.若每年的年增长率相同,则年增长率为()A.9% B.10% C.11% D.12%5.已知0≤x≤1,那么函数y=﹣2x2+8x﹣6的最大值是()A.﹣6 B.0 C.2 D.46.将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是()A.y=(x﹣1)2+2 B.y=(x+1)2+2 C.y=(x﹣1)2﹣2 D.y=(x+1)2﹣2 7.如图,已知△ABC和△ADE均为等边三角形,D在BC上,DE与AC相交于点F,AB=9,BD=3,则CF等于()A.1 B.2 C.3 D.48.如图,将△ABC绕着点C顺时针旋转50°后得到△DEC.若∠A=40°,∠E=110°,则∠BCD的度数是()A.110°B.80°C.40°D.30°9.如图,在平行四边形ABCD中,E在DC边上,若DE:EC=1:2,则△CEF与△ABF的面积比为()A.1:4 B.2:3 C.4:9 D.1:910.设x1,x2是方程x2+3x﹣3=0的两个实数根,则x12+x22的值为()A.3 B.9 C.﹣3 D.1511.某种电脑病毒传播的非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染,若病毒得不到有效控制,三轮感染后,被感染的电脑有()台.A.81 B.648 C.700 D.72912.如图,点A、B、C在圆O上,∠ABO=50°,则∠ACB的大小为()A.40°B.30°C.45°D.50°13.如图,AB是圆O的直径,点M是圆O上一点,若AM=8cm,AB=10cm,ON ⊥BM于点N,则BN的长为()A.cm B.3cm C.5cm D.6cm14.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论①a+b+c<0②a﹣b+c<0③b+2a<0④abc>0(5)b2<4ac,其中正确的个数是()A.1个 B.2个 C.3个 D.4个15.直线y=ax+b和抛物线y=ax2+bx+c在同一坐标系中的图象可能是()A.B.C.D.二、解答题(本题共9个小题,计75分)16.解方程:x2﹣4x﹣2=0.17.如图,半径为5的⊙P与x轴交于点M(4,0),N(10,0),求点P的坐标.18.小左同学想利用影长测量学校旗杆的高度,如图,她在某一时刻立一长度为1米的标杆,测得其影长为0.8米,同时旗杆投影的一部分在地上,另一部分在某一建筑物的墙上,测得旗杆与建筑物的距离为10米,旗杆在墙上的影高为2米,请帮小左同学算出学校旗杆的高度.19.如图,正方形网格中,△ABC的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题:(1)以原点O为对称中心,画出△ABC的中心对称图形△DEF.(2)以原点O为位似中心,在原点的另一侧画出△ABC的位似三角形△HMN,△ABC与△HMN的位似比为;(3)△HMN的面积=.20.某公司投资新建了一商场,共有商铺30间.据预测,当每间的年租金定为10万元时,可全部租出.每间的年租金每增加5000元,少租出商铺1间.该公司要为租出的商铺每间每年交各种费用1万元,未租出的商铺每间每年交各种费用5000元.(1)当每间商铺的年租金定为13万元时,能租出商铺间.(2)在10万元的基础上,若每间商铺的年租金上涨x万元,该公司的年收益为y万元,写出y与x之间的关系式.(3)为了使该公司的年收益不少于275万元,应如何控制每间商铺的年租金?(收益=租金﹣各种费用)21.宜昌四中男子篮球队在2016全区篮球比赛中蝉联冠军,让全校师生倍受鼓舞.在一次与第25中学的比赛中,运动员小涛在距篮下4米处跳起投篮,如图所示,球运行的路线是抛物线,当球运行的水平距离为2.5米时,达到最大高度3.5米,然后准确落入篮圈.已知篮圈中心到地面的距离为3.05米.(1)建立如图所示的直角坐标系,求抛物线的表达式;(2)运动员小涛的身高是1.8米,在这次跳投中,球在头顶上方0.25米处出手,问:球出手时,小涛跳离地面的高度是多少?22.2016年某园林绿化公司购回一批香樟树,全部售出后利润率为20%.(1)求2016年每棵香樟树的售价与成本的比值.(2)2017年,该公司购入香樟树数量增加的百分数与每棵香樟树成本降低的百分数均为a,经测算,若每棵香樟树售价不变,则总成本将比2016年的总成本减少8 万元;若每棵香樟树售价提高百分数也为a,则销售这批香樟树的利润率将达到4a.求a的值及相应的2017年购买香樟树的总成本.23.在矩形ABCD中,BC=6,点E是AD边上一点,连接BE,∠ABE=30°,BE=DE,连接BD.点P在线段ED运动,过点P作PQ∥BD交BE于点Q.(1)如图1,设PD=x,以P、Q、D三点为顶点所构成的三角形面积为y,求y 与x的函数关系式(不要求写出自变量x的取值范围);(2)如图2,当点P运动到线段ED的中点时,连接QC,过点P作PF⊥QC,垂足为F,PF交对角线BD于点G,求线段PG的长.24.如图,直线y=﹣x+2与x轴、x轴分别交于点A、B,两动点D、E分别从A、B同时出发向点O运动(运动到O点停止),运动速度分别是1个单位长度/秒和个单位长度/秒,设运动时间为t秒,以点A为顶点的抛物线经过点E,过点E作x轴的平行线,与抛物线的另一个交点为G点,与AB相交于点F.(1)写出点A、B的坐标.(2)用含t的代数式分别表示EF和AF的长.(3)当四边形ADEF为菱形时,试判断△AFG与△AGB是否相似,并说明理由.(4)是否存在t值,使△ADF为直角三角形?若存在,求出此时抛物线的解析式;若不存在,请说明理由.2016-2017学年湖北省宜昌九年级(上)期中数学试卷参考答案与试题解析一、选择题:1.一元二次方程x2+px﹣2=0的一个根为2,则p的值为()A.1 B.2 C.﹣1 D.﹣2【考点】A3:一元二次方程的解.【分析】把x=2代入已知方程,列出关于p的一元一次方程,通过解该方程来求p的值.【解答】解:∵一元二次方程x2+px﹣2=0的一个根为2,∴22+2p﹣2=0,解得p=﹣1.故选:C.2.关于x的一元二次方程x2+k=0有实数根,则()A.k<0 B.k>0 C.k≥0 D.k≤0【考点】AA:根的判别式.【分析】由一元二次方程有实数根得出△=02﹣4×1×k≥0,解不等式即可.【解答】解:∵关于x的一元二次方程x2+k=0有实数根,∴△=02﹣4×1×k≥0,解得:k≤0;故选:D.3.若两个相似多边形的面积之比为1:4,则它们的周长之比为()A.1:4 B.1:2 C.2:1 D.1:16【考点】S6:相似多边形的性质.【分析】根据相似多边形的面积之比等于相似比的平方,周长之比等于相似比,就可求解.【解答】解:∵两个相似多边形面积比为1:4,∴周长之比为=1:2.故选:B.4.为了改善居民住房条件,我市计划用未来两年的时间,将城镇居民的住房面积由现在的人均约为10m2提高到12.1m2.若每年的年增长率相同,则年增长率为()A.9% B.10% C.11% D.12%【考点】AD:一元二次方程的应用.【分析】如果设每年的增长率为x,则可以根据“住房面积由现在的人均约为10m2提高到12.1m2”作为相等关系得到方程10(1+x)2=12.1,解方程即可求解.【解答】解:设每年的增长率为x,根据题意得10(1+x)2=12.1解得x=0.1或x=﹣(舍去)故选B.5.已知0≤x≤1,那么函数y=﹣2x2+8x﹣6的最大值是()A.﹣6 B.0 C.2 D.4【考点】H7:二次函数的最值.【分析】把二次函数的解析式整理成顶点式形式,然后确定出最大值.【解答】解:∵y=﹣2x2+8x﹣6=﹣2(x﹣2)2+2.∴该抛物线的对称轴是x=2,且在x<2上y随x的增大而增大.又∵0≤x≤1,2(1﹣2)2+2=0.∴当x=1时,y取最大值,y最大=﹣故选:B.6.将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是()A.y=(x﹣1)2+2 B.y=(x+1)2+2 C.y=(x﹣1)2﹣2 D.y=(x+1)2﹣2【考点】H6:二次函数图象与几何变换.【分析】根据函数图象右移减、左移加,上移加、下移减,可得答案.【解答】解:将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是y=(x﹣1)2+2,故选:A.7.如图,已知△ABC和△ADE均为等边三角形,D在BC上,DE与AC相交于点F,AB=9,BD=3,则CF等于()A.1 B.2 C.3 D.4【考点】S9:相似三角形的判定与性质;KK:等边三角形的性质.【分析】利用两对相似三角形,线段成比例:AB:BD=AE:EF,CD:CF=AE:EF,可得CF=2.【解答】解:如图,∵△ABC和△ADE均为等边三角形,∴∠B=∠BAC=60°,∠E=∠EAD=60°,∴∠B=∠E,∠BAD=∠EAF,∴△ABD∽△AEF,∴AB:BD=AE:EF.同理:△CDF∽△EAF,∴CD:CF=AE:EF,∴AB:BD=CD:CF,即9:3=(9﹣3):CF,∴CF=2.故选:B.8.如图,将△ABC绕着点C顺时针旋转50°后得到△DEC.若∠A=40°,∠E=110°,则∠BCD的度数是()A.110°B.80°C.40°D.30°【考点】R2:旋转的性质.【分析】首先根据旋转的性质求出教B的度数,进而求出∠ACB的度数,然后求出∠BCD的度数.【解答】解:∵△ABC绕着点C顺时针旋转50°后得到△DEC,∴∠B=∠E,∠A=∠D,∵∠A=40°,∠E=110°,∴∠B=∠E=110°,∠A=∠D=40°,∴∠ACB=180°﹣40°﹣110°=30°,∴∠BCD=∠ACB+∠ACD=30°+50°=80°,故选B.9.如图,在平行四边形ABCD中,E在DC边上,若DE:EC=1:2,则△CEF与△ABF的面积比为()A.1:4 B.2:3 C.4:9 D.1:9【考点】S9:相似三角形的判定与性质;L5:平行四边形的性质.【分析】根据已知可得到相似三角形,从而可得到其相似比,再根据相似三角形的面积比等于相似比的平方就可得到答案.【解答】解:∵四边形ABCD是平行四边形,∴DC∥AB,CD=AB.∴△DFE∽△BFA,∵DE:EC=1:2,∴EC:DC=CE:AB=2:3,∴△CEF与△ABF的面积比=,故选C.10.设x1,x2是方程x2+3x﹣3=0的两个实数根,则x12+x22的值为()A.3 B.9 C.﹣3 D.15【考点】AB:根与系数的关系.【分析】根据根与系数的关系得到x1+x2=﹣3,x1•x2=﹣3,则x12+x22=(x1+x2)2﹣2x1•x2.【解答】解:∵x1,x2是方程x2+3x﹣3=0的两个实数根,∴x1+x2=﹣3,x1•x2=﹣3,∴x12+x22=(x1+x2)2﹣2x1•x2=(﹣3)2﹣2×(﹣3)=15.故选:D.11.某种电脑病毒传播的非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染,若病毒得不到有效控制,三轮感染后,被感染的电脑有()台.A.81 B.648 C.700 D.729【考点】AD:一元二次方程的应用.【分析】首先设每轮感染中平均一台电脑会感染x台电脑.则经过一轮感染,1台电脑感染给了x台电脑,这(x+1)台电脑又感染给了x(1+x)台电脑.利用等量关系:经过两轮感染后就会有81台电脑被感染得出即可求得每轮感染会感染多少台,求得三轮后的台数即可.【解答】解:设每轮感染中平均一台电脑会感染x台电脑.根据题意,得:1+x+x(1+x)=81,整理得:(1+x)2=81,解得:x1=8,x2=﹣10(不合题意,应舍去).81×8=648台,故选B.12.如图,点A、B、C在圆O上,∠ABO=50°,则∠ACB的大小为()A.40°B.30°C.45°D.50°【考点】M5:圆周角定理.【分析】根据等边对等角及圆周角定理求角即可.【解答】解:∵OA=OB∴∠OAB=∠OBA=50°∴∠AOB=80°∴∠ACB=40°.故选A.13.如图,AB是圆O的直径,点M是圆O上一点,若AM=8cm,AB=10cm,ON ⊥BM于点N,则BN的长为()A.cm B.3cm C.5cm D.6cm【考点】M2:垂径定理;KQ:勾股定理.【分析】根据圆周角定理得到∠M=90°,根据勾股定理求出BM,根据垂径定理计算即可.【解答】解:∵AB是圆O的直径,∴∠M=90°,∴BM==6,∵ON⊥BM,∴BN=BM=3cm,故选:B.14.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论①a+b+c<0②a﹣b+c<0③b+2a<0④abc>0(5)b2<4ac,其中正确的个数是()A.1个 B.2个 C.3个 D.4个【考点】H4:二次函数图象与系数的关系.【分析】根据抛物线开口方向,对称轴的位置,与x轴交点个数,以及x=﹣1,x=1对应y值的正负判断即可.【解答】解:∵把x=1代入y=ax2+bx+c得:y=a+b+c>0,∴①错误;∵把x=﹣1代入y=ax2+bx+c得:y=a﹣b+c<0,∴②正确;∵从图象可知:﹣<1,即2a+b>0,∴③错误;∵从图象可知:a<0,c>0,﹣>0,∴b>0,∴abc<0,∴④错误;∵图象和x轴有两个交点,∴b2﹣4ac>0,∴b2>4ac,∴⑤错误;故选A.15.直线y=ax+b和抛物线y=ax2+bx+c在同一坐标系中的图象可能是()A.B.C.D.【考点】H2:二次函数的图象;F3:一次函数的图象.【分析】本题可先由二次函数图象得到字母系数的正负,再与一次函数和反比例函数的图象相比较看是否一致.逐一排除.【解答】解:A、由一次函数的图象,得a>0,二次函数的图象应开口向上,故A错误;B、由一次函数的图象,得a>0,b>0,二次函数的图象的对称轴应在y轴的左侧,故B错误;C、由一次函数的图象,得a>0,b,0,二次函数的图象的对称轴应在y轴的左侧,故C正确;D、由一次函数的图象,得a>0,b<0,二次函数的图象的对称轴应在y轴的,右侧,故D错误;故选:C.二、解答题(本题共9个小题,计75分)16.解方程:x2﹣4x﹣2=0.【考点】A7:解一元二次方程﹣公式法.【分析】先计算出△=(﹣4)2﹣4×1×(﹣2)=4×6,然后代入一元二次方程的求根公式进行求解.【解答】解:∵a=1,b=﹣4,c=﹣2,∴△=(﹣4)2﹣4×1×(﹣2)=4×6,∴x===2±,∴x1=2+,x2=2﹣.17.如图,半径为5的⊙P与x轴交于点M(4,0),N(10,0),求点P的坐标.【考点】M2:垂径定理;D5:坐标与图形性质.【分析】直接利用垂径定理结合勾股定理得出PA的长,进而得出答案.【解答】解:过点P作PA⊥MN,于点A,∵M(4,0),N(10,0),∴MN=6,∵半径为5,PA⊥MN,∴MA=3,则PA==4,AO=7,∴P点坐标为:(7,4).18.小左同学想利用影长测量学校旗杆的高度,如图,她在某一时刻立一长度为1米的标杆,测得其影长为0.8米,同时旗杆投影的一部分在地上,另一部分在某一建筑物的墙上,测得旗杆与建筑物的距离为10米,旗杆在墙上的影高为2米,请帮小左同学算出学校旗杆的高度.【考点】SA:相似三角形的应用;U5:平行投影.【分析】先求出墙上的影高落在地面上时的长度,再设旗杆的高度h米,根据同一时刻物高与影长成正比列出关系式求出h的值即可.【解答】解:设墙上的影高2米落在地面上时的长度为x米,旗杆的高度为h米,∵某一时刻测得长为1米的竹竿影长为0.8米,墙上的影高为2米,∴=,解得x=1.6(米),∴树的影长为:1.6+10=11.6(米),∴=,解得h=14.5(米).答:学校旗杆的高度14.5米.19.如图,正方形网格中,△ABC的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题:(1)以原点O为对称中心,画出△ABC的中心对称图形△DEF.(2)以原点O为位似中心,在原点的另一侧画出△ABC的位似三角形△HMN,△ABC与△HMN的位似比为;(3)△HMN的面积=10.【考点】SD:作图﹣位似变换;P7:作图﹣轴对称变换;R8:作图﹣旋转变换.【分析】(1)利用关于原点对称的点的坐标特征,写出点D、E、F的坐标,然后描点即可;(2)延长AO到H使OH=2AO,则点H为点A的对应点,同样方法作出点B的对应点M、点C的对应点N,从而得到△HMN;(3)利用矩形的面积分别减去三个三角形的面积可计算△HMN的面积.【解答】解:(1)如图,△DEF为所作;(2)如图,△HMN为所作;(3)△HMN的面积=6×4﹣×6×2﹣×4×2﹣×4×2=10.故答案为10.20.某公司投资新建了一商场,共有商铺30间.据预测,当每间的年租金定为10万元时,可全部租出.每间的年租金每增加5000元,少租出商铺1间.该公司要为租出的商铺每间每年交各种费用1万元,未租出的商铺每间每年交各种费用5000元.(1)当每间商铺的年租金定为13万元时,能租出商铺24间.(2)在10万元的基础上,若每间商铺的年租金上涨x万元,该公司的年收益为y万元,写出y与x之间的关系式.(3)为了使该公司的年收益不少于275万元,应如何控制每间商铺的年租金?(收益=租金﹣各种费用)【考点】HE:二次函数的应用;AD:一元二次方程的应用.【分析】(1)根据租出间数=30﹣增加了多少个5000元,计算即可;(2)根据年收益=租出去的商铺的收益﹣未租出的商铺的费用计算即可;(3)把(2)得到的关系式中的函数值等于275计算即可.【解答】解:(1)租出间数为:30﹣÷5000=30﹣6=24间;故答案为:24(2)y=(x﹣1)×[30﹣(x﹣10)÷0.5]﹣[(x﹣10)÷0.5]×0.5,=﹣2x2+51x﹣40;(3)275=﹣2x2+51x﹣40,解得x1=10.5,x2=15答:每间商铺的年租金定为10.5万元或15万元.21.宜昌四中男子篮球队在2016全区篮球比赛中蝉联冠军,让全校师生倍受鼓舞.在一次与第25中学的比赛中,运动员小涛在距篮下4米处跳起投篮,如图所示,球运行的路线是抛物线,当球运行的水平距离为2.5米时,达到最大高度3.5米,然后准确落入篮圈.已知篮圈中心到地面的距离为3.05米.(1)建立如图所示的直角坐标系,求抛物线的表达式;(2)运动员小涛的身高是1.8米,在这次跳投中,球在头顶上方0.25米处出手,问:球出手时,小涛跳离地面的高度是多少?【考点】HE:二次函数的应用.【分析】(1)设抛物线的表达式为y=ax2+3.5,利用待定系数法,可得a的值.(2)设球出手时,他跳离地面的高度为hm,则可得h+2.05=﹣0.2×(﹣2.5)2+3.5.【解答】解:(1)∵当球运行的水平距离为2.5米时,达到最大高度3.5米,∴抛物线的顶点坐标为(0,3.5),∴设抛物线的表达式为y=ax2+3.5.由图知图象过以下点:(1.5,3.05).∴2.25a+3.5=3.05,解得:a=﹣0.2,∴抛物线的表达式为y=﹣0.2x2+3.5.(2)设球出手时,他跳离地面的高度为hm,因为(1)中求得y=﹣0.2x2+3.5,则球出手时,球的高度为h+1.8+0.25=(h+2.05)m,∴h+2.05=﹣0.2×(﹣2.5)2+3.5,∴h=0.2(m).答:球出手时,他跳离地面的高度为0.2m.22.2016年某园林绿化公司购回一批香樟树,全部售出后利润率为20%.(1)求2016年每棵香樟树的售价与成本的比值.(2)2017年,该公司购入香樟树数量增加的百分数与每棵香樟树成本降低的百分数均为a,经测算,若每棵香樟树售价不变,则总成本将比2016年的总成本减少8 万元;若每棵香樟树售价提高百分数也为a,则销售这批香樟树的利润率将达到4a.求a的值及相应的2017年购买香樟树的总成本.【考点】AD:一元二次方程的应用.【分析】(1)设2016年每棵树的投入成本为x万元,则每棵树的售价=x(1+20%)万元,每棵树的售价与投入成本的比值=1.2;(2)设2016年购入桂花树数量的数量为m棵,每棵树投入成本为x万元,则每棵树的售价=x(1+20%)万元,总成本为mx万元;2017年购入桂花树数量的数量为m(1+a)棵,每棵树投入成本为x(1﹣a)万元,每棵树的售价=x(1+20%)万元,总成本为mx(1+a)(1﹣a)万元,进而利用2017年总成本将比2016年的总成本减少8万元得出等式求出即可.【解答】解:(1)设2016年每棵树的投入成本为x万元,则每棵树的售价=x(1+20%)万元,每棵树的售价与投入成本的比值=1.2x:x=1.2.或者,∵=20%,∴﹣1=0.2,∴=1.2;(2)设2016年购入桂花树数量的数量为m棵,每棵树投入成本为x万元,则每棵树的售价=x(1+20%)万元,总成本为mx万元;2017年购入桂花树数量的数量为m(1+a)棵,每棵树投入成本为x(1﹣a)万元,每棵树的售价=x(1+20%)万元,总成本为mx(1+a)(1﹣a)万元.依题意,mx﹣mx(1+a)(1﹣a)=8 ①,x(1+20%)(1+a)=x(1﹣a)(1+4a)②,整理①式得,mxa2=8,整理②式得,20a2﹣9a+1=0,解得a=或a=.将a的值分别代入mxa2=8,当a=时,mx=128;2017年总投入成本=mx﹣8=128﹣8=120(万元),当a=时,mx=200;2017年总投入成本=mx﹣8=200﹣8=192(万元).23.在矩形ABCD中,BC=6,点E是AD边上一点,连接BE,∠ABE=30°,BE=DE,连接BD.点P在线段ED运动,过点P作PQ∥BD交BE于点Q.(1)如图1,设PD=x,以P、Q、D三点为顶点所构成的三角形面积为y,求y 与x的函数关系式(不要求写出自变量x的取值范围);(2)如图2,当点P运动到线段ED的中点时,连接QC,过点P作PF⊥QC,垂足为F,PF交对角线BD于点G,求线段PG的长.【考点】LO:四边形综合题.【分析】(1)先过过点E作EM⊥QP垂足为M;在Rt△EQP中,易得∠EBD=∠EDB=30°;进而可得PE=PQ,且BE=DE.即可得出BE=PD+PQ,再面积公式可得y与x的关系;(2)连接PC交BD于点N,可得∠QPC=90°,进而可得△PNG∽△QPC;可得;解可得PG的长.【解答】解:∵∠A=90°∠ABE=30°,∴∠AEB=60°.∵EB=ED,∴∠EBD=∠EDB=30°.∵PQ∥BD,∴∠EQP=∠EBD.∠EPQ=∠EDB.∴∠EPQ=∠EQP=30°,∴EQ=EP.过点E作EM⊥QP垂足为M.则PQ=2PM.∵∠EPM=30°,∴PM=PE,PE=PQ.∵BE=DE=PD+PE,∴BE=PD+PQ.由题意知AE=BE,∴DE=BE=2AE.∵AD=BC=6,∴2AE=DE=BE=4.∵当点P在线段ED上,过点Q做QH⊥AD于点H,则QH=PQ=x.由(1)得PD=BE﹣x,PD=4﹣x.∴y=PD•QH=﹣x2+x.(3)解:连接PC交BD于点N(如图3).∵点P是线段ED中点,∴EP=PD=2,PQ=2.∵DC=AB=AE•tan60°=2,∴PC==4.∴cos∠DPC==.∴∠DPC=60°.∴∠QPC=180°﹣∠EPQ﹣∠DPC=90°.∵PQ∥BD,∴∠PND=∠QPC=90°.∴PN=PD=1.QC==2.∵∠PGN=90°﹣∠FPC,∠PCF=90°﹣∠FPC,∴∠PGN=∠PCF.∵∠PNG=∠QPC=90°,∴△PNG∽△QPC,∴,∴PG=×=.24.如图,直线y=﹣x+2与x轴、x轴分别交于点A、B,两动点D、E分别从A、B同时出发向点O运动(运动到O点停止),运动速度分别是1个单位长度/秒和个单位长度/秒,设运动时间为t秒,以点A为顶点的抛物线经过点E,过点E作x轴的平行线,与抛物线的另一个交点为G点,与AB相交于点F.(1)写出点A、B的坐标.(2)用含t的代数式分别表示EF和AF的长.(3)当四边形ADEF为菱形时,试判断△AFG与△AGB是否相似,并说明理由.(4)是否存在t值,使△ADF为直角三角形?若存在,求出此时抛物线的解析式;若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)在直线y=﹣x+2中,分别令y=0和x=0,容易求得A、B两点坐标;(2)由OA、OB的长可求得∠ABO=30°,用t可表示出BE,EF,和BF的长,由勾股定理可求得AB的长,从而可用t表示出AF的长;(3)利用菱形的性质可求得t的值,则可求得AF=AG的长,可得到,可判定△AFG与△AGB相似;(4)先得出∠DAF=60°,再分两种情况用∠DAF的正切值建立方程求解即可得出结论.【解答】解:(1)在直线y=﹣x+2中,令y=0,可得0=﹣x+2,解得x=2,令x=0,可得y=2,∴A为(2,0),B为(0,2);(2)由(1)可知OA=2,OB=2,∴tan∠ABO==,∴∠ABO=30°,∵运动时间为t秒,∴BE=t,∵EF∥x轴,∴在Rt△BEF中,EF=BE•tan∠ABO=BE=t,BF=2EF=2t,在Rt△ABO中,OA=2,OB=2,∴AB=4,∴AF=4﹣2t;(3)相似.理由如下:当四边形ADEF为菱形时,则有EF=AF,即t=4﹣2t,解得t=,∴AF=4﹣2t=4﹣=,OE=OB﹣BE=2﹣×=,如图,过G作GH⊥x轴,交x轴于点H,则四边形OEGH为矩形,∴GH=OE=,又EG∥x轴,抛物线的顶点为A,∴OA=AH=2,在Rt△AGH中,由勾股定理可得AG2=GH2+AH2==,又AF•AB=×4=,∴AF•AB=AG2,即,且∠FAG=∠GAB,∴△AFG∽△AGB.(4)存在,理由:∵A(2,0),∴设抛物线的解析式为y=a(x﹣2)2,由运动知,BE=t,AD=t,OE=2﹣t,∴F(t,2﹣t),D(2﹣t,0),E(0,t)∵A(2,0),∴DF==,AF==在Rt△AOB中,tan∠OAB==,∴∠DAF=60°,∵△ADF为直角三角形,∴①当∠ADF=90°时,在Rt△ADF中,tan∠DAF====,∴t=1,∴E(0,),将此点E的坐标代入抛物线的解析式为y=a(x﹣2)2,得,=4a,∴a=,∴抛物线的解析式为y=(x﹣2)2,②当∠AFD=90°时,在Rt△ADF中,tan∠DAF===,∴t=或t=4(舍),∴E(0,),将此点E的坐标代入抛物线的解析式为y=a(x﹣2)2,得,=4a,∴a=,∴抛物线的解析式为y=(x﹣2)2,即:满足条件的抛物线解析式为y=(x﹣2)2,或y=(x﹣2)2.2017年5月19日。
西安市碑林区九年级上期中数学试卷含答案解析
2022-2023陕西省西安市碑林区九年级(上)期中数学试卷一、选择题1.比﹣1大1的数是()A.2 B.1 C.0 D.﹣22.下列几何体是由4个相同的小正方体搭成的,其中主视图和左视图相同的是()A.B.C.D.3.下列运算正确的是()A.2a2+a=3a3B.(﹣a)2÷a=a C.(﹣a)3•a2=﹣a6 D.(2a2)3=6a64.如图,在△ABC中,D、E分别是AB、AC上的点,且DE∥BC,若AD:DB=3:2,则AE:AC等于()A.3:2 B.3:1 C.2:3 D.3:55.如图,过反比例函数y=(x>0)的图象上一点A作AB⊥x轴于点B,连接AO,若S△AOB=2,则k的值为()A.2 B.3 C.4 D.56.如图,菱形ABCD的周长为8cm,高AE长为cm,则对角线AC长和BD长之比为()A.1:2 B.1:3 C.1:D.1:7.如图,在平面直角坐标系xOy中,直线y=x经过点A,作AB⊥x轴于点B,将△ABO绕点B逆时针旋转60°得到△CBD.若点B的坐标为(2,0),则点C的坐标为()A.(﹣1,) B.(﹣2,) C.(﹣,1) D.(﹣,2)8.如图,CD是Rt△ABC斜边上的高.若AB=5,AC=3,则tan∠BCD为()A.B.C.D.9.如图,四边形ABCD和四边形BEFD都是矩形,且点C恰好在EF上.若AB=1,AD=2,则S△BCE为()A.1 B.C.D.10.如图,在矩形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC上的动点,将△EBF沿EF所在直线折叠得到△EB′F,连接B′D,则B′D的最小值是()A.2﹣2 B.6 C.2﹣2 D.4二、填空题11.一元二次方程x2﹣3x=0的根是.12.请从以下两个小题中任选一个作答,若多选,则按所选的第一题计分.A.在平面直角坐标系中,线段AB的两个端点的坐标分别为A(﹣2,1)、B(1,3),将线段AB经过平移后得到线段A'B'.若点A的对应点为A'(﹣3,2),则点B的对应点B'的坐标是.B.比较8cos31°.(填“>”、“=”或“<”)13.如图,平行四边形ABCD中,A(﹣1,0),B(0,﹣2),顶点C、D在双曲线y=(x>0)上,边AD交y轴于点E,若点E恰好是AD的中点,则k=.14.如图,在四边形ABCD中,AD∥BC,对角线AC⊥BD,若AD=6,BC=14,则四边形ABCD面积的最大值是.三、解答题15.计算:(1)sin260°+cos260°﹣tan45°;(2)|﹣|+﹣4cos45°+2sin30°.16.解方程:.17.如图,已知△ABC,∠BAC=90°,请用尺规过点A作一条直线,使其将△ABC 分成两个相似的三角形(保留作图痕迹,不写作法)18.某校为了了解学生家长对孩子使用手机的态度情况,随机抽取部分学生家长进行问卷调查,发出问卷140份,每位学生家长1份,每份问卷仅表明一种态度,将回收的问卷进行整理(假设回收的问卷都有效),并绘制了如图两幅不完整的统计图.根据以上信息解答下列问题:(1)回收的问卷数为份,“严加干涉”部分对应扇形的圆心角度数为.(2)把条形统计图补充完整(3)若将“稍加询问”和“从来不管”视为“管理不严”,已知全校共1500名学生,请估计该校对孩子使用手机“管理不严”的家长大约有多少人?19.如图,在平行四边形ABCD中,∠ABC的平分线BF分别与AC、AD交于点E、F.(1)求证:AB=AF;(2)当AB=6,BC=10时,求的值.20.如图,某中学九年级数学兴趣小组测量校内旗杆AB的高度,在C点测得旗杆顶端A的仰角∠BCA=30°,向前走了20米到达D点,在D点测得旗杆顶端A 的仰角∠BDA=60°,求旗杆AB的高度.(结果保留根号)21.如图,一次函数y=﹣x+4的图象与反比例y=(k为常数,且k≠0)的图象交于A(1,a),B(b,1)两点,(1)求反比例函数的表达式及点A,B的坐标(2)在x轴上找一点,使PA+PB的值最小,求满足条件的点P的坐标.22.四张小卡片上分别写有数字1、2、3、4,它们除数字外没有任何区别,现将它们放在盒子里搅匀.(1)随机地从盒子里抽取一张,求抽到数字3的概率;(2)随机地从盒子里抽取一张,将数字记为x,不放回再抽取第二张,将数字记为y,请你用画树状图或列表的方法表示所有等可能的结果,并求出点(x,y)在函数y=图象上的概率.23.如图,平面直角坐标系中,在四边形OABC中,BC∥OA,OC=AB,OA=7,AB=4,∠COA=60°,点P是x轴上一个动点,点P不与点O、A重合,连接CP,点D是边AB上一点,连接PD.(1)求点B的坐标;(2)若△OCP是等腰三角形,求此时点P的坐标;(3)当点P在边OA上,∠CPD=∠OAB,且=时,求此时点P的坐标.24.提出问题在一个图形上画一条直线,若这条直线既平分该图形的面积,又平分该图形的周长,我们称这条直线为这个图形的“等分积周线”.探究问题(1)如图①,在Rt△ABC中,∠ACB=90°,∠ABC=45°,AB=4,请你过点C画出△ABC的一条“等分积周线”,与AB交于点D,并求出CD的长;(2)如图②,在△ABC中,AB=BC,且BC≠AC,过点C画一条直线CE,其中点E为AB上一点,你觉得CE可能是△ABC的“等分积周线”吗?请说明理由;解决问题(3)西安市区的环境越来越美,随处可见的街心花园成为人们休闲的好去处.在某地的街心花园中有一块如图③所示的空地ABCD,其中∠A=∠B=90°,AB=4,BC=6,CD=5,现要在这块空地上修建一条笔直的水渠(渠宽不计),使这条水渠所在的直线既平分四边形ABCD的周长,又平分四边形ABCD的面积,且要求这条水渠必须经过BC边.请你画出所有满足条件的水渠,说明理由,并求出该水渠与BC边的交点到点B的距离.2022-2023陕西省西安市碑林区九年级(上)期中数学试卷参考答案与试题解析一、选择题1.比﹣1大1的数是()A.2 B.1 C.0 D.﹣2【考点】有理数的加法.【分析】根据有理数的加法,可得答案.【解答】解:(﹣1)+1=0,故比﹣1大1的数是0,故选:C.2.下列几何体是由4个相同的小正方体搭成的,其中主视图和左视图相同的是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从正面看得到的图形是主视图,从左边看得到的图形是左视图,可得答案.【解答】解:A、主视图是第一层三个小正方形,第二层中间一个小正方形,左视图是第一层一个小正方形,第二层一个小正方形,故A错误;B、主视图是第一层两个小正方形,第二层中间一个小正方形,第三层中间一个小正方形,左视图是第一层一个小正方形,第二层一个小正方形,第三层一个小正方形,故B错误;C、主视图是第一层两个小正方形,第二层左边一个小正方形,左视图是第一层两个小正方形,第二层左边一个小正方形,故C正确;D、主视图是第一层两个小正方形,第二层右边一个小正方形,左视图是第一层一个小正方形,第二层左边一个小正方形,故D错误;故选:C.3.下列运算正确的是()A.2a2+a=3a3B.(﹣a)2÷a=a C.(﹣a)3•a2=﹣a6 D.(2a2)3=6a6【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】A、原式不能合并;B、原式先计算乘方运算,再计算除法运算即可得到结果;C、原式利用幂的乘方及积的乘方运算法则计算得到结果,即可做出判断;D、原式利用幂的乘方及积的乘方运算法则计算得到结果,即可做出判断.【解答】解:A、原式不能合并,故A错误;B、原式=a2÷a=a,故B正确;C、原式=﹣a3•a2=﹣a5,故C错误;D、原式=8a6,故D错误.故选:B.4.如图,在△ABC中,D、E分别是AB、AC上的点,且DE∥BC,若AD:DB=3:2,则AE:AC等于()A.3:2 B.3:1 C.2:3 D.3:5【考点】平行线分线段成比例.【分析】由DE∥CB,根据平行线分线段成比例定理,可求得AE、AC的比例关系.【解答】解:∵DE∥BC,AD:DB=3:2,∴AE:EC=3:2,∴AE:AC=3:5.故选:D.5.如图,过反比例函数y=(x>0)的图象上一点A作AB⊥x轴于点B,连接AO,若S△AOB=2,则k的值为()A.2 B.3 C.4 D.5【考点】反比例函数系数k的几何意义;反比例函数的性质.【分析】根据点A在反比例函数图象上结合反比例函数系数k的几何意义,即可得出关于k的含绝对值符号的一元一次方程,解方程求出k值,再结合反比例函数在第一象限内有图象即可确定k值.【解答】解:∵点A是反比例函数y=图象上一点,且AB⊥x轴于点B,=|k|=2,∴S△AOB解得:k=±4.∵反比例函数在第一象限有图象,∴k=4.故选C.6.如图,菱形ABCD的周长为8cm,高AE长为cm,则对角线AC长和BD长之比为()A.1:2 B.1:3 C.1:D.1:【考点】菱形的性质.【分析】首先设设AC,BD相较于点O,由菱形ABCD的周长为8cm,可求得AB=BC=2cm,又由高AE长为cm,利用勾股定理即可求得BE的长,继而可得AE是BC的垂直平分线,则可求得AC的长,继而求得BD的长,则可求得答案.【解答】解:如图,设AC,BD相较于点O,∵菱形ABCD的周长为8cm,∴AB=BC=2cm,∵高AE长为cm,∴BE==1(cm),∴CE=BE=1cm,∴AC=AB=2cm,∵OA=1cm,AC⊥BD,∴OB==(cm),∴BD=2OB=2cm,∴AC:BD=1:.故选D.7.如图,在平面直角坐标系xOy中,直线y=x经过点A,作AB⊥x轴于点B,将△ABO绕点B逆时针旋转60°得到△CBD.若点B的坐标为(2,0),则点C的坐标为()A.(﹣1,) B.(﹣2,) C.(﹣,1) D.(﹣,2)【考点】坐标与图形变化﹣旋转;一次函数图象上点的坐标特征.【分析】作CH⊥x轴于H,如图,先根据一次函数图象上点的坐标特征确定A(2,2),再利用旋转的性质得BC=BA=2,∠ABC=60°,则∠CBH=30°,然后在Rt △CBH中,利用含30度的直角三角形三边的关系可计算出CH=BC=,BH=CH=3,所以OH=BH﹣OB=3﹣2=1,于是可写出C点坐标.【解答】解:作CH⊥x轴于H,如图,∵点B的坐标为(2,0),AB⊥x轴于点B,∴A点横坐标为2,当x=2时,y=x=2,∴A(2,2),∵△ABO绕点B逆时针旋转60°得到△CBD,∴BC=BA=2,∠ABC=60°,∴∠CBH=30°,在Rt△CBH中,CH=BC=,BH=CH=3,OH=BH﹣OB=3﹣2=1,∴C(﹣1,).故选:A.8.如图,CD是Rt△ABC斜边上的高.若AB=5,AC=3,则tan∠BCD为()A.B.C.D.【考点】锐角三角函数的定义;勾股定理.【分析】易证∠BCD=∠A,则求cos∠BCD的值就可以转化为求∠A的三角函数值.从而转化为求△ABC的边长的比.【解答】解:由勾股定理得,BC==4,由同角的余角相等知,∠BCD=∠A,∴tan∠BCD=tan∠A==,故选A.9.如图,四边形ABCD和四边形BEFD都是矩形,且点C恰好在EF上.若AB=1,AD=2,则S△BCE为()A.1 B.C.D.【考点】矩形的性质.【分析】根据题意可得出△BCD的面积占矩形BDFE的一半,再根据CD:BC=AB:AD=1:2可得出△BCE和△DCF的面积比,从而可求出S△BCE.【解答】解:由题意得:△BCD的面积占矩形BDFE的一半,∴S△BCD=1,∴S△BCE +S△CDF=1,又∵CD:BC=AB:AD=1:2,∴S△BCE :S△CDF=4:1,故可得S△BCE=.故选D.10.如图,在矩形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC上的动点,将△EBF沿EF所在直线折叠得到△EB′F,连接B′D,则B′D的最小值是()A.2﹣2 B.6 C.2﹣2 D.4【考点】翻折变换(折叠问题).【分析】当∠BFE=∠B'FE,点B′在DE上时,此时B′D的值最小,根据勾股定理求出DE,根据折叠的性质可知B′E=BE=2,DE﹣B′E即为所求.【解答】解:如图,当∠BFE=∠B'FE,点B′在DE上时,此时B′D的值最小,根据折叠的性质,△EBF≌△EB′F,∴EB′⊥B′F,∴EB′=EB,∵E是AB边的中点,AB=4,∴AE=EB′=2,∵AD=6,∴DE==2,∴DB′=2﹣2.故选:A.二、填空题11.一元二次方程x2﹣3x=0的根是x1=0,x2=3.【考点】解一元二次方程﹣因式分解法.【分析】首先利用提取公因式法分解因式,由此即可求出方程的解.【解答】解:x2﹣3x=0,x(x﹣3)=0,∴x1=0,x2=3.故答案为:x1=0,x2=3.12.请从以下两个小题中任选一个作答,若多选,则按所选的第一题计分.A.在平面直角坐标系中,线段AB的两个端点的坐标分别为A(﹣2,1)、B(1,3),将线段AB经过平移后得到线段A'B'.若点A的对应点为A'(﹣3,2),则点B的对应点B'的坐标是(0,4).B.比较8cos31°>.(填“>”、“=”或“<”)【考点】解直角三角形;实数大小比较;坐标与图形变化﹣平移.【分析】A、根据A点的坐标及对应点的坐标可得线段AB向左平移6个单位,向下平移了1个单位,然后可得B′点的坐标;B、分别求出8cos31°与的近似值,再比较即可.【解答】解:A、∵A(﹣2,1)平移后得到点A′的坐标为(﹣3,2),∴向左平移1个单位,向上平移了1个单位,∴B(1,3)的对应点坐标为(1﹣1,3+1),即B'(0,4);B、解:∵8cos31°≈8×0.8572=6.8576,≈5.9161,∴8cos31°>的.故答案为:(0,4),>.13.如图,平行四边形ABCD中,A(﹣1,0),B(0,﹣2),顶点C、D在双曲线y=(x>0)上,边AD交y轴于点E,若点E恰好是AD的中点,则k=4.【考点】反比例函数图象上点的坐标特征;平行四边形的性质.【分析】设点D 的坐标为(m ,n ),根据平行四边形的性质结合点A 、B 、D 的坐标即可得出点C 的坐标为(m +1,n ﹣2),由点E 为线段AD 的中点可得出m=﹣1,再根据反比例函数图象上点的坐标特征即可得出k=n=2(n ﹣2),解之即可得出k 值.【解答】解:设点D 的坐标为(m ,n ),则点C 的坐标为(m +1,n ﹣2), ∵边AD 交y 轴于点E ,点E 恰好是AD 的中点,∴m=1.∵k=mn=(m +1)(n ﹣2),即k=n=2(n ﹣2),解得:n=k=4.故答案为:4.14.如图,在四边形ABCD 中,AD ∥BC ,对角线AC ⊥BD ,若AD=6,BC=14,则四边形ABCD 面积的最大值是 100 .【考点】平行四边形的判定与性质;等腰三角形的性质.【分析】先判断出四边形ABCD 的面积等于三角形BDE 的面积,再求出BE ,最后判断出三角形BDE 是等腰直角三角形时,面积最大,用三角形的面积公式求出即可.【解答】解:如图,过D 作DE ∥AC ,交BC 延长线于E .∴四边形ACED 为平行四边形,由等底同高的两三角形面积相等,得出S △ABD =S △DCE ,∴S 四边形ABCD =S △BDE ,∵AC ⊥BD ,∴△BDE 为直角三角形,∵AD=6,BC=14,∴BE=20.∵S 四边形ABCD =S △BDE ,∴当△BDE 为等腰直角三角形时,面积最大, ∴,故答案为100.三、解答题15.计算:(1)sin 260°+cos 260°﹣tan45°;(2)|﹣|+﹣4cos45°+2sin30°. 【考点】实数的运算;特殊角的三角函数值.【分析】(1)原式利用特殊角的三角函数值计算即可得到结果;(2)原式利用绝对值的代数意义,二次根式性质,以及特殊角的三角函数值计算即可得到结果.【解答】解:(1)原式=+﹣1=1﹣1=0;(2)原式=+2﹣2+1=.16.解方程:. 【考点】解分式方程.【分析】由x 2﹣4=(x +2)(x ﹣2),故本题的最简公分母是(x +2)(x ﹣2),方程两边都乘最简公分母,可把分式方程转换为整式方程求解.【解答】解:方程两边都乘(x +2)(x ﹣2),得:(x ﹣2)2﹣(x 2﹣4)=3,解得:x=.检验:当x=时,(x+2)(x﹣2)≠0.∴x=是原方程的解.17.如图,已知△ABC,∠BAC=90°,请用尺规过点A作一条直线,使其将△ABC 分成两个相似的三角形(保留作图痕迹,不写作法)【考点】作图—相似变换.【分析】过点A作AD⊥BC于D,利用等角的余角相等可得到∠BAD=∠C,则可判断△ABD与△CAD相似.【解答】解:如图,AD为所作.18.某校为了了解学生家长对孩子使用手机的态度情况,随机抽取部分学生家长进行问卷调查,发出问卷140份,每位学生家长1份,每份问卷仅表明一种态度,将回收的问卷进行整理(假设回收的问卷都有效),并绘制了如图两幅不完整的统计图.根据以上信息解答下列问题:(1)回收的问卷数为120份,“严加干涉”部分对应扇形的圆心角度数为30°.(2)把条形统计图补充完整(3)若将“稍加询问”和“从来不管”视为“管理不严”,已知全校共1500名学生,请估计该校对孩子使用手机“管理不严”的家长大约有多少人?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)用“从来不管”的问卷数除以其所占百分比求出回收的问卷总数;用“严加干涉”部分的问卷数除以问卷总数得出百分比,再乘以360°即可;(2)用问卷总数减去其他两个部分的问卷数,得到“稍加询问”的问卷数,进而补全条形统计图;(3)用“稍加询问”和“从来不管”两部分所占的百分比的和乘以1500即可得到结果.【解答】解:(1)回收的问卷数为:30÷25%=120(份),“严加干涉”部分对应扇形的圆心角度数为:×360°=30°.故答案为:120,30°;(2)“稍加询问”的问卷数为:120﹣(30+10)=80(份),补全条形统计图,如图所示:(3)根据题意得:1500×=1375(人),则估计该校对孩子使用手机“管理不严”的家长大约有1375人.19.如图,在平行四边形ABCD中,∠ABC的平分线BF分别与AC、AD交于点E、F.(1)求证:AB=AF;(2)当AB=6,BC=10时,求的值.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】(1)由在▱ABCD中,AD∥BC,利用平行线的性质,可求得∠FBC=∠AFB,又由BF是∠ABC的平分线,易证得∠ABF=∠AFB,利用等角对等边的知识,即可证得AB=AF;(2)易证得△AEF∽△CEB,利用相似三角形的对应边成比例,即可求得的值.【解答】(1)证明:∵BF平分∠ABC,∴∠CBF=∠AFB,∴∠ABF=∠CBF,∴∠ABF=∠AFB,∵平行四边形ABCD,∴AB=AF,∴∠ABF=∠CBF,∴∠ABF=∠AFB,∵平行四边形ABCD,∴AB=AF,(2)解:∵AB=6,∴AF=6,∵AF∥BC,∴△AEF∽△CEB,∴===,∴.20.如图,某中学九年级数学兴趣小组测量校内旗杆AB的高度,在C点测得旗杆顶端A的仰角∠BCA=30°,向前走了20米到达D点,在D点测得旗杆顶端A 的仰角∠BDA=60°,求旗杆AB的高度.(结果保留根号)【考点】解直角三角形的应用﹣仰角俯角问题.【分析】根据题意得∠C=30°,∠ADB=60°,从而得到∠DAC=30°,进而判定AD=CD,得到CD=20米,在Rt△ADB中利用sin∠ADB求得AB的长即可.【解答】解:∵∠C=30°,∠ADB=60°,∴∠DAC=30°,∴AD=CD,∵CD=20米,∴AD=20米,在Rt△ADB中,=sin∠ADB,∴AB=AD×sin60°=20×=10米.21.如图,一次函数y=﹣x+4的图象与反比例y=(k为常数,且k≠0)的图象交于A(1,a),B(b,1)两点,(1)求反比例函数的表达式及点A,B的坐标(2)在x轴上找一点,使PA+PB的值最小,求满足条件的点P的坐标.【考点】反比例函数与一次函数的交点问题;轴对称﹣最短路线问题.【分析】(1)把点A(1,a),B(b,1)代入一次函数y=﹣x+4,即可得出a,b,再把点A坐标代入反比例函数y=,即可得出结论;(2)作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时PA+PB的值最小,求出直线AD的解析式,令y=0,即可得出点P坐标.【解答】解:(1)把点A(1,a),B(b,1)代入一次函数y=﹣x+4,得a=﹣1+4,1=﹣b+4,解得a=3,b=3,∴A(1,3),B(3,1);点A(1,3)代入反比例函数y=得k=3,∴反比例函数的表达式y=;(2)作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时PA+PB的值最小,∴D(3,﹣1),设直线AD的解析式为y=mx+n,把A,D两点代入得,,解得m=﹣2,n=5,∴直线AD的解析式为y=﹣2x+5,令y=0,得x=,∴点P坐标(,0).22.四张小卡片上分别写有数字1、2、3、4,它们除数字外没有任何区别,现将它们放在盒子里搅匀.(1)随机地从盒子里抽取一张,求抽到数字3的概率;(2)随机地从盒子里抽取一张,将数字记为x,不放回再抽取第二张,将数字记为y,请你用画树状图或列表的方法表示所有等可能的结果,并求出点(x,y)在函数y=图象上的概率.【考点】列表法与树状图法;反比例函数图象上点的坐标特征;概率公式.【分析】(1)求出四张卡片中抽出一张为3的概率即可;(2)列表得出所有等可能的情况数,得出点的坐标,判断在反比例图象上的情况数,即可求出所求的概率.【解答】解:(1)根据题意得:随机地从盒子里抽取一张,抽到数字3的概率为;(2)列表如下:12341﹣﹣﹣(2,1)(3,1)(4,1)2(1,2)﹣﹣﹣(3,2)(4,2)3(1,3)(2,3)﹣﹣﹣(4,3)4(1,4)(2,4)(3,4)﹣﹣﹣所有等可能的情况数有12种,其中在反比例图象上的点有2种,则P==.23.如图,平面直角坐标系中,在四边形OABC中,BC∥OA,OC=AB,OA=7,AB=4,∠COA=60°,点P是x轴上一个动点,点P不与点O、A重合,连接CP,点D是边AB上一点,连接PD.(1)求点B的坐标;(2)若△OCP是等腰三角形,求此时点P的坐标;(3)当点P在边OA上,∠CPD=∠OAB,且=时,求此时点P的坐标.【考点】相似形综合题.【分析】(1)过B作BF⊥OA,判断出∠BAO=60°,进而求出AF=AB=2,BF=AF=2即可得出点B坐标,(2)分三种情况利用等边三角形的性质即可求出点P的坐标;(3)先判断出∠OCP=∠APB,进而得出△OPC∽△ADP,即,另为求出AD,最后用得出的比例式建立方程求出OP即可得出结论.【解答】(1)如图1,过B作BF⊥OA,∵∠COA=60°,OC=AB,∴∠BAO=60°,∵AB=4,∴AF=AB=2,BF=AF=2,∵AO=7,∴OF=5,∴,(2)①当OC=OP=4时,∴P(4,0),(﹣4,0)②当OC=CP=4时,∵∠COP=60°,∴△OCP是等边三角形,∴P(4,0),③当CP=OP时,∴∠OCP=∠COP=60°,∴△COP是等边三角形,∴∠P(4,0),即:满足条件的点P的坐标为(4,0),(﹣4,0);(3)∵∠CPD=∠OAB=60°,∴∠COA=∠CPD=∠OAB,∵∠AOC+∠OCP=∠APD+∠DPC,∴∠OCP=∠APD,∴△OPC∽△ADP,∴,∴OP•AP=AD•OC,∵,∴,∴,∴OP•(7﹣OP)=6,∴OP2﹣7OP+6=0,∴OP1=1,OP2=6,∴P(1,0)P(6,0).24.提出问题在一个图形上画一条直线,若这条直线既平分该图形的面积,又平分该图形的周长,我们称这条直线为这个图形的“等分积周线”.探究问题(1)如图①,在Rt△ABC中,∠ACB=90°,∠ABC=45°,AB=4,请你过点C画出△ABC的一条“等分积周线”,与AB交于点D,并求出CD的长;(2)如图②,在△ABC中,AB=BC,且BC≠AC,过点C画一条直线CE,其中点E为AB上一点,你觉得CE可能是△ABC的“等分积周线”吗?请说明理由;解决问题(3)西安市区的环境越来越美,随处可见的街心花园成为人们休闲的好去处.在某地的街心花园中有一块如图③所示的空地ABCD,其中∠A=∠B=90°,AB=4,BC=6,CD=5,现要在这块空地上修建一条笔直的水渠(渠宽不计),使这条水渠所在的直线既平分四边形ABCD的周长,又平分四边形ABCD的面积,且要求这条水渠必须经过BC边.请你画出所有满足条件的水渠,说明理由,并求出该水渠与BC边的交点到点B的距离.【考点】三角形综合题.【分析】(1)如图1中,过C作CD⊥AB.线段CD即为△ABC的“等分积周线”.根据直角三角形斜边中线的性质即可求出CD的长.(2)不能.当E为AB中点时,S△BCE=S△ACE,由BE=AE,AC≠BC,可知C△BCE≠C △ACE,所以CE不可能是△ABC的“等分积周线”.(3)如图3中,过D作DE⊥BC,则AB=DE=4,首先求出四边形ABCD的面积、周长,分三种情形讨论即可解决问题.【解答】解:(1)如图1中,过C作CD⊥AB.线段CD即为△ABC的“等分积周线”.∵∠ACB=90°,∠ABC=45°∴∠A=∠B=45°,∴CA=CB,∵CD⊥AB,∴AD=DB,∴CD=AB=2;(2)不能.理由:如图2中,当E为AB中点时,S△BCE =S△ACE,∵BE=AE,AC≠BC,∴C△BCE ≠C△ACE∴所以CE不可能是△ABC的“等分积周线”.(3)如图3中,过D作DE⊥BC,则AB=DE=4,∵CD=5, ∴CE=3, ∵BC=6, ∴BE=AD=3,∴S 四边形ABCD =18,C 四边形ABCD =18.①如图4中,当直线l 交AD 、BC 于M 、N .设BN=x ,则AE=9﹣4﹣x=5﹣x ,S 四边形ABNM =(5﹣x +x )•4=10≠9,不成立②如图5中,当直线l 交AB 、BC 于M 、N .设BF=x ,BE=9﹣x , 则S △BMM =•x (9﹣x )=9,解得x=6或3(舍弃,此时BM >4), ∴BF=6.③如图,当直线l交CD、BC于M、N.设CN=x,CM=9﹣x,作MH⊥BC于H,易知MH=(9﹣x),=•x•(9﹣x)=9,∴S△CMN∴2x2﹣18x+45=0,△=﹣36<0,此种情形不存在.综上所述,水渠的位置如图7所示,此时水渠与BC边的交点到点B的距离是6.5月17日。
第三中学2010-2011九年级上学期期中数学--(附解析答案)
南京市第三中学2010-2011学年度第一学期九年级期中试卷一、选择题 (本大题共8个小题,每小题2分,共计16分.)1、 我国发现的首例甲型H 1N 1流感确诊病例在成都某医院隔离观察,要掌握他在一周内的体温是否稳定,则医生需了解这位病人7天体温的( )A .众数B .方差C .平均数D .频数 2、方程022=-x x 的根是( )A. 2,021==x xB. 2,021-==x xC. 0=xD. 2=x 3、 菱形ABCD 中,AC =10cm ,BD =24cm .则菱形的面积为( ) A .302cm B .602cm C .1202cm D .2402cm 4、下列根式中与18是同类二次根式的是( )A.132B.27C.6D.35、顺次连接梯形各边中点所得四边形是( )A.平行四边形B. 矩形 C .菱形 D. 正方形6、化简:x x1-的结果是( ) .A x .B x - .C x - .D x --7、某种商品原价是120元,经两次降价后的价格是100元,求平均每次降价的百分率.设平均每次降价的百分率为x ,可列方程为 ( ) A. 120(1-x )2=100 B. 100(1-x )2=120 C. 100(1+x )2=120 D. 120(1+x )2=100 8、在ABCD 中,AB =5,AD =8,∠BAD 、∠ADC 的平分线分别交BC于E、F,则EF的长为()A. 1B. 2C. 3D. 4二、填空题(本大题共10个小题,每小题2分,共计20分)9、当x________时,二次根式x+1 有意义.10、方程(x–1)(2x+1)=2化成一般形式是,它的二次项系数是 .一次项是 .11、关于x的一元二次方程01)1(22=-++-axxa的一个根是0,则a的值为 .12、一组数据为1,2,0,-1,-3,1,则这组数据的极差是_____,方差是_______.13、小张和小李去练习射击,第一轮10发子弹打完后,两人的成绩如图所示.根据图中的信息,小张和小李两人中成绩较稳定的是.14、用“>”或“<”符号连接:15、若=7-x,则x的取值范围是______________.16、(3-22)2009·(3+22)2010=______________.17、若直角三角形中两边的长分别是3cm和5cm,则斜边上的中线长是18、如图,在等腰梯形ABCD中,AB∥CD,AD=BC=acm,∠A=60°,BD平分∠ABC,则这个梯形的周长是三、解答题:(本大题共64分,其中19-24每题5分.下列各题解答时必须给出必要的演算过程和推理步骤.)2(7)x-A BCD19、2430x x--=20、x2+2x-3=0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学校: 班级:
姓名:
考号: 装
订
线
2010—2011西安市九年级数学 第一学期期中统考试题答案 时间:100分钟 总分:100分 一、选择题(要你算的少,需你想的多,选准一个别放过,相信自己一定能。
每题3分,共30分) 题号 1 2 3 4 5 6 7 8 9 10 答案 C C C B D C A D C B 二、填空题:(仔细填,用心想,相信自己一定行。
每题2分,共20分) 11、 在角的内部,到角的两边距离相等的点在角的平分线上. 12、在一个三角形中,没有一个角不大于60°或三个角都小于60 13、一个三角形;一条线段 14、答案不唯一,例如x ²=1 15、2.4 16、1 17、5 18、2 19、3 20、3 三、解答、证明题:(想得清楚,说得明白,写的干净,相信自己一定棒。
共50分) 21、按指定的方法解方程(每题3分,共12分) (1)1x =-1+2,2x =-1-2 (2). 1x =4,2x = -2 (3)、1x =2x =-32(4). 1x =1+62,2x = 1-62 22、 (1)证明:∵MN 是AC 的垂直平分线 ∴OA =OC ∠AOD =∠EOC =90° ∵CE ∥AB ∴∠DAO =∠ECO ∴△ADO ≌△CEO
D A
E N
M O
学校: 班级:
姓名:
考号: 装
订
线
∴
AD =CE
(2)证明:
∵CE ∥AB ,AD =CE ∴四边形ADCE 是平行四边形
∵MN 垂直平分AC ∴AD=DC ∴平行四边形ADCE 是菱形
23、解:设家庭轿车拥有量的年平均增长率为x ,则: ()2641100x += 解得:11254x ==%,294x =-(不合题意,舍去) ()100125%125∴+=. 答:该小区到2010年底家庭轿车将达到125辆. 24、 解:在□ABCD 中, ∵ AB ∥CD , ∴ ∠ABC +∠BCD =180°. ∵ ∠ABE =∠EBC ,∠BCE =∠ECD , ∴ ∠EBC +∠BCE =21(∠ABC +∠BCD )=90°. ∴ ∠BEC =90°. ∴ BC 2=BE 2+CE 2=122+52=132. ∴ BC =13. ∵ AD ∥BC ,
∴ ∠AEB =∠EBC .
学校: 班级: 姓名: 考号: 装
订
线
∴ ∠AEB =∠ABE . ∴ AB =AE . 同理 CD =ED . ∵ AB =CD , ∴ AB =AE =CD =ED =21BC =6.5. 答:AB =6.5cm . 25、 (1)证明:∵ABC △是正三角形, ∴60A ABC AB BC ∠=∠==°,, 在ABN △和BCM △中, AB BC A ABC AN BM =⎧⎪∠=∠⎨⎪=⎩ ∴ABN BCM △≌△ ∴ABN BCM ∠=∠. 又∵60ABN OBC ∠+∠=°, ∴60BCM OBC ∠+∠=°, ∴60NOC ∠=°. 注:学生可以有其它正确的等价证明. (2)在正方形中,90AN DM DON =∠=,°. (3)在正五边形中,108AN EM EON =∠=,°. (4)以上所求的角恰好等于正n 边形的内角(2)180n n - °. 注:学生的表述只要合理或有其它等价且正确的结论,均给分.本题结论着重强调角和角的度数.
A A A
B B B
C C C
D D O O O M M M N N N
E 图1 图2 图3。