有理数的除法(1)(导学案)
人教版数学七年级上册1.4《有理数的除法》(第1课时)教学设计
人教版数学七年级上册1.4《有理数的除法》(第1课时)教学设计一. 教材分析人教版数学七年级上册1.4《有理数的除法》(第1课时)是学生在学习了有理数加减乘运算的基础上,进一步深化对有理数运算的理解和掌握。
本节内容主要介绍了有理数的除法运算,包括同号有理数的除法、异号有理数的除法以及除以0的情况。
通过本节课的学习,学生能够掌握有理数除法的基本运算方法,并能够正确进行计算。
二. 学情分析学生在进入七年级之前,已经初步掌握了有理数的基本概念和加减乘运算。
但是,对于除法运算,学生可能还存在一些困惑和误解。
因此,在教学过程中,教师需要针对学生的实际情况进行引导和讲解,帮助学生理解和掌握有理数的除法运算。
三. 教学目标1.知识与技能目标:学生能够理解有理数除法的基本概念,掌握同号有理数、异号有理数以及除以0的除法运算方法,并能够正确进行计算。
2.过程与方法目标:通过小组合作、讨论交流等方法,培养学生解决问题的能力和团队合作精神。
3.情感态度与价值观目标:激发学生对数学学习的兴趣,培养学生的耐心和细心,使学生能够积极主动地参与数学学习。
四. 教学重难点1.教学重点:学生能够掌握有理数除法的基本运算方法,并能够正确进行计算。
2.教学难点:学生能够理解和掌握同号有理数、异号有理数以及除以0的除法运算方法。
五. 教学方法1.引导法:教师通过提问、引导,激发学生的思考,帮助学生理解和掌握有理数除法的基本概念和运算方法。
2.实例讲解法:教师通过具体的例子,解释和说明有理数除法的运算规则,让学生能够直观地理解和掌握。
3.小组合作法:学生分组进行讨论和交流,共同解决问题,培养团队合作精神和解决问题的能力。
六. 教学准备1.教学PPT:教师准备相关的教学PPT,包括有理数除法的运算规则、例题等,以便进行直观的教学展示。
2.练习题:教师准备一些练习题,用于学生在课堂上进行操练和巩固所学知识。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾之前学过的有理数加减乘运算,激发学生的学习兴趣,为新课的学习做好铺垫。
人教版七年级数学上册- 有理数的除法法则精品导学案
第一章 有理数1.4 有理数的乘除法1.4.2 有理数的除法第1课时 有理数的除法法则学习目标:1.会将有理数的除法转化成乘法2.会进行有理数的乘除混合运算3.会求有理数的倒数4.认识有理数的除法,经历除法的运算过程.5.理解除法法则,体验除法与乘法的转化关系.6.掌握有理数的除法及乘除混合运算.教学重点:正确进行有理数除法的运算,正确求一个有理数的倒数 教学难点:如何进行有理数除法的运算,求一个负数的倒数一、情境导入1.计算:(1)25×0.2=________;(2)12×(-3)=________;(3)(-1.2)×(-2)=________; (4)(-125)×0=________.2.由(-3)×4=________,再由除法是乘法的逆运算,可得(-12)÷(-3)=4,(-12)÷4=______.同理,(-3)×(-4)=________,12÷(-4)=________,12÷(-3)=________. 观察上面的算式及计算结果,你有什么发现?换一些算式再试一试. 一、知识链接 1.填一填:2.有理数的乘法法则:两数相乘,同号________,异号_______,并把_________相乘. 一个数同0相乘,仍得________. 3.进行有理数乘法运算的步骤: (1)确定_____________;(2)计算____________. 二、新知预习1.根据除法是乘法的逆运算填空(+2)×(+3)=+6(+6)÷(+2)=_________,(-2)×(-3)=+6(+6)÷(-2)=_________,2.【自主归纳】 3.(1(2(3)0除以任何一个不等于0【自主归纳】 两数相除,同号得任何不等于0的数都得______. 三、自学自测 计算:(1) (-8)÷(-4);(3) 213532⎛⎫⎛⎫-÷ ⎪ ⎪⎝⎭⎝⎭;四、我的疑惑一、要点探究探究点1问题1:(-4)×6×(-6)=-36 -36÷6= (-3/5)×(4/5)= -12/25 -12/25 ÷(-3/5)= -8÷9=-72 -72÷9= 8÷(-4)= 8×(-1/4)= -36÷ 6= –36 ×(1/6)= -12/25 ÷ (-3/5)= (-12/25)×(-5/3)= -72 ÷9= -72×(1/9)=问题2:上面各组数计算结果有什么关系?由此你能得到有理数的除法法则吗?有理数除法法则(一):除以一个不等于0的数,等于乘这个数的 . 用字母表示为a ÷b =a ×b1(b ≠0)问题3:利用上面的除法法则计算下列各题: (1)-54 ÷(-9);(2)-27 ÷ 3; (3)0 ÷(-7); (4)-24÷(-6).思考:从上面我们能发现商的符号有什么规律?有理数除法法则(二):两数相除,同号得 ,异号得 ,并把绝对值 . 0除以任何一个不等于0的数,都得 . 思考:到现在为止我们有了两个除法法则,那么两个法则是不是都可以用于解决两数相除呢?归纳:两个法则都可以用来求两个有理数相除.如果两数相除,能够整除的就选择法则二,不能够整除的就选择用法则一.例1 计算(1)(-36)÷ 9; (2)(-2512)÷(-53).例2 化简下列各式: (1)312-;(2)1245--探究点2:有理数的乘除混合运算 例3 计算 (1)(-12575)÷(-5);(2)-2.5÷85×(-41).方法归纳:(1)有理数除法化为有理数乘法以后,可以利用有理数乘法的运算律简化运算;(2)乘除混合运算往往先将除法化为乘法,然后确定积的符号,最后求出结果(乘除混合运算按从左到右的顺序进行计算).1.(1)(-24)÷4; (2) (-18)÷(-9); (3) 10÷(-5).2.计算:(1)(-24)÷[(-32)×49];(2)(-81)÷214×49÷(-16).二、课堂小结 一、有理数除法法则: 1.a ÷b =a ×b1(b ≠0)板书设计有理数除法法则:1.任何数除以一个不为0的数,等于乘以这个数的倒数,即a ÷b =a ×1b(b ≠0).2.(1)两个数相除,同号为正,异号得负,并把绝对值相除. (2)0除以任何一个不为0的数,都得0.让学生深刻理解除法是乘法的逆运算,对学好本节内容有比较好的作用.教学设计是可以采用课本的引例做为探究除法法则的导入.让学生自己探索并总结除法法则,同时也让学生对比乘法法则和除法法则,加深印象.教学时应该使学生掌握除法的两种运算方法:1.在除式的项和数字不复杂的情况下直接运用除法法则求解;2.在多个有理数进行除法运算或者是乘、除混合运算时应该把除法转化为乘法,然后统一用乘法的运算律解决问题.。
《有理数的除法》教案(精选9篇)
《有理数的除法》教案《有理数的除法》教案(精选9篇)教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书。
下面是小编整理的《有理数的除法》教案,欢迎大家分享。
《有理数的除法》教案篇1学习目标1. 理解除法的意义,理解除法是乘法的逆运算,理解倒数的意义,掌握有理数的除法法则.2. 熟练地进行有理数的除法运算;3. 借助有理数乘法知识,通过归纳、类比等方法获得有理数的除法法则.重点有理数的除法法则难点理解商的符号及其绝对值与被除数和除数的关系教学过程一、自主学习(一)、自学课文(二)、导学练习1. 小明从家里到学校,每分钟走50米,共走了20分钟,问小明家离学校有多远?放学时,小明仍然以每分钟50米的速度回家,应该走多少分钟?从上面这个例子你可以发现,有理数除法与有理数乘法之间满足怎样的关系?2.请找出下列有理数的倒数-4 3 -8 - -1 -3.53.比较大小:8(-4)_______8 (-15)3_______(-15)(-1 )(-2) (-1 )(- )计算:(1)(-15)(-3)= (2)(-12)(- )=(3)(-8)(- )= (4)0(- )=通过比较、计算,你能归纳出有理数的除法法则吗?有理数的除法法则:(或换一种表达方法为):用字母表示除法法则:4.课本第35页练习题(三)自学疑难摘要:组长检查等级:组长签名:二、合作探究例1 计算:(1)(-18)6 (2) (- )(3) (4)-3.5 (- )注意:乘除混合运算该怎么做呢?例2化简下列分数:(1) (2)请思考:商的符号及绝对值同被除数和除数有什么关系?三、展示提升1、每个同学自主完成二中的练习后先在小组内交流讨论。
2、每个组根据分配的任务把自己组的结论板书到黑板上准备展示。
3、每个组在展示的过程中其他组的同学认真听作好补充和提问。
《有理数的除法》优秀教案
(2)在活动(1)的基础,请同学们想一想,通过观察以上算式,看看商的符号及商的绝对值与被除数和除数的符号及绝对值之间有何关系?从中归纳猜想出一般规律,并用自己的语言叙述规律
两个有理数相除,同号得正,异号得负,并把绝对值相除。
0除以任何非0的数都得0注意:0不能作除数。
七年级上数学导学案
杨士岗九年一贯制学校 主备人:王振波审核人:汪宜颖2021年 月 日
课题
28有理数的除法
课型
新授课
课时
第一课时
学习目标
知识与
技能
会进行有理数的除法运算;会求有理数的倒数;
过程与
方法
理解有理数除法的法则,体会除法与乘法的关系。
情感态度价值观
有意识地引导学生积极参与到数学活动过程中,培养与他人合作交流的能力。
(2)回忆小学里乘法与除法互为逆运算,并提问:被除数、除数、商之间的关系:
学生回答:被除数=除数×商
所以我们只需找到-12=(-3)×?就能找到商是多少。学生很容易猜想到:-12=(-3)×4
活动内容:(1)以提问的形式,让学生“猜想”出以下除法的运算结果:①(-18)÷6=;②5÷(-1/5)=;
活动内容:(1)用投影片展示教科书本节中的
例1:计算:⑴(-15)÷(-3); (2)12÷(- );
⑶(-075)÷025 ; ⑷(-12)÷(- )÷(-100)
活动内容:(1)做一做(用投影片展示)
计算: ⑴1÷(- ) 与 1×(- );
⑵08÷(- ) 与 08×(- );
⑶(- )÷(- )与 (- )×(-60)
这节数学课你学的开心吗?你有什么收获?有什么问题吗?(学生小结质疑解疑交流)
有理数除法导学案
有理数的除法导学案一. 学习目标:1.领会有理数除法的意义,能将除法转化为乘法。
2.理解有理数除法的符号法则,正确进行有理数的除法运算。
二、学习重点、难点:重点:正确应用法则进行有理数的除法运算难点:商的符号的确定三、学习过程:(一)、相关知识回顾:1. 小学里学过的除法的意义是什么,它与乘法互为运算。
2. 举例:和互为倒数,是的倒数,没有倒数。
(二).探究新知(自学课本P57-P59,并完成以下题目)1.做一做(1) 8÷(-2)=8⨯( )(2)6÷(-3)=6⨯( )(3)- 6÷( )=-6⨯31(4)- 6÷( )=-6⨯53归纳:___与 ____,___与 ____,___与 ____,____与 ____互为倒数思考:(1)倒数:乘积是的两个数倒数。
(2) 除以一个数等于乘以这个数的,零作除数。
2. 有理数除法法则:两数相除,得正,异号得,并把相除。
零除以任何一个的数,都得例1、计算:(1)—42÷(—6);();)41-(12)(-2÷(3)25.1)1212(÷-()()100)121-(12)(-4-÷÷例2:做一做,比较下列各组数的计算结果:()⎪⎭⎫ ⎝⎛÷52-1 1 与 ⎪⎭⎫ ⎝⎛-⨯251 ()⎪⎭⎫ ⎝⎛-÷1038.02与⎪⎭⎫ ⎝⎛-⨯3108.0()⎪⎭⎫⎝⎛-÷⎪⎭⎫⎝⎛-601413与()6041-⨯⎪⎭⎫⎝⎛-(三)、尝试应用:1.写出下列各数的倒数:(1) –15; (2) 0.25; (3)313; (4) 525-2.计算:(1)(-42) ÷ 12;(2)5.141÷-(3)8325.0÷-(4)1211713÷⎪⎭⎫ ⎝⎛-(5) ()67624-÷⎪⎭⎫⎝⎛-3.计算: (1) ⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-41221143; (2) ()241125.06⨯-÷-(3) ()5.0312132-÷÷⨯⎪⎭⎫ ⎝⎛- (4)(—0.1)÷10;(5)(—271)÷(—145) ()⎪⎭⎫ ⎝⎛-÷÷41) 52- (3) (- 6 ()()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-÷-415237(四)、巩固提高:1. —4的倒数是 ,0.2的倒数是 . —394的倒数是 。
《有理数的加减乘除混合运算》优秀导学案
1.4.2 有理数的加减乘除混合运算学习目标:1.能够熟练掌握有理数加减乘除的四则混合运算.2.能解决有理数加减乘除混合运算应用题3.提高分析问题和解决问题的能力.学习重点:正确进行有理数的加、减、乘、除混合运算.学习难点:如何按有理数的加减乘除混合运算顺序正确而合理地进行计算. 学习过程:一、复习引入:1、口算速算.2、填表.(求各数的倒数)二、范例学习例1 (1)982-+÷-() (2)438020-⨯--÷-()()() (3)()282÷--针对练习:1.有理数的加减乘除混合运算,应先算 ,再算 ,同级运算按从 到 的顺序计算,如果有括号则先算 里的.2.下列计算正确的是( ). A.1-34-43⨯÷= B.91-32-65-32-=⨯)()( C.41-515-=÷)( D.2-31-212=÷)( 3.计算:(1))()(5-75125-÷; (2))(41-85.52-⨯÷例2某公司去年1~3月平均每月盈利1.3万元,4~6月平均每月亏损3万元,7~10月平均每月盈利3.6万元,11~12月平均每月亏损2.7万元.这个公司去年总的盈亏情况如何?针对练习:4.某公式去年1~3月平均每月2.5万元,4~6月平均每月盈利-1万元,7~10月平均每月盈利4.5万元,11~12月平均每月盈利-1.5万元,那么这家公司去年平均每月盈利多少万元?五、课堂小结六、拓展提升思考:1、边长为a 的正方形的面积是多少?棱长为a 的正方体的体积是多少?2、观察(3)(3)(3)(3)-⨯-⨯-⨯-,22222()()()()()33333-⨯-⨯-⨯-⨯-,a a a a a ⨯⨯⨯⨯这些式子,你能发现他们有什么共同点吗?分别可以记作什么?七、布置作业1、必做题:课本37页习题1.4 1~7题2、选做题:课本38页习题1.4 8、9题。
12有理数除法1
鸡西市第四中学2011—2012下学期初一级数学导学案第六章第四节有理数的除法1编制人:庞莉复核人:使用时间: 2012 年 3 月 23日编号:12 【学习目标】:1、理解除法是乘法的逆运算;2、理解倒数概念,会求有理数的倒数;3、掌握除法法则,会进行有理数的除法运算;(重、难点)【思维导航】:运用小学里学习的乘除方法进行类比与对比学习有理数除法.【导学指导】一、知识链接1)、小红从家里到学校,每分钟走50米,共走了20分钟。
问小红家离学校有米,列出的算式为。
2)放学时,小红仍然以每分钟50米的速度回家,应该走分钟。
列出的算式为从上面这个例子你可以发现,有理数除法与乘法之间的关系是3)写出下列各数的倒数-4 的倒数,3的倒数,-2的倒数;二、合作交流、探究新知1、小组合作完成比较大小:8÷(-4)8×(一14);(-15)÷3 (-15)×13;(一114)÷(一2)(-114)×(一12);再相互交流、并与小学里学习的乘除方法进行类比与对比,归纳有理数的除法法则:1)、除以一个不等于0的数,等于;2)、两数相除,同号得,异号得,并把绝对值相,0除以任何一个不等于0的数,都得;1.自学P34例5、例62.师生共同完成例7【课堂练习】1.计算:(1)(-18)÷6 (2)(-63)÷(-7)(3)1÷(-9)(4)0÷(-8)2、化简: (1)972- (2)4530-- (3)75- 3.计算: (1)9)11936(÷- (2))511()4()12(-÷-÷- (3)()25.05832-÷⎪⎭⎫⎝⎛-⨯⎪⎭⎫ ⎝⎛-【要点归纳】有理数的除法法则:三、展示环节 课堂练习四、检测环节:1、计算 (1) 213532⎛⎫⎛⎫-÷ ⎪ ⎪⎝⎭⎝⎭;(2) 0÷(-1000);(3) 375÷2332⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭; (4)-0.25÷83【课后反思】:鸡西市第四中学2011—2012年度六年级(下)6.4.2有理数的除法2数学导学指南编写人:庞莉审核人:冯国梁校对人:满忠斌【学习目标】1、学会用计算器进行有理数的除法运算;2、掌握有理数的混合运算顺序;(重难点).【思维导航】类比小学加减乘除混合运算,学习有理数加减乘除混合运算的运算顺序。
有理数的除法(1)(导学案)
计算有理数的乘除混合运算时,先将( 然后( 最后(
) ) )
(2) -600 ÷15; (4)(-6.5)÷(0.013) ;
1 ⑤.(-12)÷(-4)÷(-1 ) 5 5. 两个不为零的有理数的和等于 0,那么它们的商是( ) A. 正数 B.-1 C.0 D. 1 6. 两个不为 0 的数相除, 如果交换它们的位置, 商不变, ( 那么 A.两数相等 B.两数互为相反数 C.两数互为倒数 D.两数相等或互为相反数
2.小学里学过的除法与乘法有何关系?你能总结总结出一句话吗? (除以一个数等于乘以这个数的倒数) 3.5÷0=?,0÷0=?呢?(这些式子无意义)也就是说 0 是没有倒数的。 4. 我们知道除法是乘法的逆运算, 这套法则运用到有理数的范围内同样适用。 例如,8÷4=8×(1/4)=2;8÷(-4)=8×(-1/4)。即:a÷b=a•1b 5.计算: ①.(-36)÷9
陡沟镇中心学校 七年级数学 导学案
课 时 题: 间 1.4.1 有理数的除法(1) 年级 七 主备人 代廷辉 编 号 008 数学组
1.求下列各数的倒数,为本节知识做好铺垫。 4,2.5,-9,-37,-1,-214
审核人
1.经历根据除法是乘法的逆运算,归纳出有理数的除法法则的过程 2.掌握有理数除法法则,理解零不能做除数。 体验矛盾着的对立双方在一定的条件下互相转化的辨 学习目标: 3.理解除法转化为乘法, 证唯物主义思想 4.会运用除法法则求两个有理数的商,会进行简单的混合运算
⑥0÷ ①.(-12557)÷(-5) 。0 除以任 ②.-2.5÷58×(-14)
由此可得:两数相除,
何 的数仍得 0。
1
1. 分数可以看做是哪一种运算?化简下列分数: ①. -123 ②. -45-12 ③. - 36-27
5.2有理数的除法(一)一等奖创新教案
5.2有理数的除法(一)一等奖创新教案课题:有理数的除法(1)教学目标:1、了解有理数除法的意义,理解有理数的除法法则,会进行有理数的除法运算,会求有理数的倒数。
2、通过实例,探究出有理数除法法则。
会把有理数除法转化为有理民数乘法,培养学生的化归思想。
重点:有理数除法法则的运用及倒数的概念难点:怎样根据不同的情况来选取适当的方法求商,0不能作除数以及0没有倒数的理解。
教学过程:一、温故知新有理数乘法法则:异号两数相乘得负数,并且把绝对值相乘.同号两数相乘得正数,并且把绝对值相乘.任何数与0相乘,都得0.二、合作交流,解读探究思考:×4=8 所以8÷4=___×4=-8 所以(-8)÷4=___×4=0 所以0÷4=___×(-4)=8 所以8÷(-4)=___×(-4)=-8 所以(-8)÷(-4)=___×(-4)=0 所以0÷(-4)=___类比有理数的乘法法则,从符号和绝对值两方面归纳有理数的除法法则.教师:引导学生根据乘法法则推出除法法则学生:思考讨论后引出除法法则。
除法法则:同号两数相除得正数,异号两数相除得负数,并且把它们的绝对值相除。
0除以任何一个不等于0的数都得0三、应用迁移,巩固提高例1 计算(1)(-24)÷4 (2)(-18)÷(-9)(3)10÷(-5)_____引导学生按照有理数除法法则进行计算,既先确定商的符号,再计算绝对值。
请四位同学到黑板做,完成后,师生共同订正。
(2)比一比看谁算得既快又准确!课本36页练习:第1题四、合作交流,解读探究1、看看用刚才的方法能算出下列的除式吗?(引出倒数及另一种除法法则)2、我们已经知道10÷(-5)= -2 ,又10×(-)=-2所以就有:10 ÷(-5)=10×(-)这里(-5)×(- )=1,我们把- 叫作-5的倒数。
2.2.2 有理数的除法(第1课时)人教版数学七年级上册教案
第一章有理数2.2有理数的乘除法2.2.2 有理数的除法第1课时有理数的除法一、教学目标【知识与技能】掌握有理数除法法则,会进行有理数的除法运算以及分数的化简.【过程与方法】通过学习有理数除法法则,体会转化思想,会将乘除混合运算统一为乘法运算.【情感态度与价值观】培养学生勇于探索积极思考的良好学习习惯.二、课型新授课三、课时第1课时四、教学重难点【教学重点】正确应用法则进行有理数的除法运算.【教学难点】灵活运用有理数除法的两种法则.五、课前准备教师:课件、直尺、倒数图片等。
学生:三角尺、练习本、铅笔、圆珠笔或钢笔。
六、教学过程(一)导入新课根据实验测定,高度每增加1km,气温大概下降6℃.某登山运动员攀登某高峰的途中发回信息,报告他所在高度的温度是-15℃,当时地面气温为3℃.请问你能确定登山运动员所在的位置高度吗?(出示课件2)(二)探索新知1.师生互动,探究有理数的除法法则教师问1:小明从家里到学校,每分钟走50米,共走了20分钟,问小明家离学校有多远?学生回答:50×20=100.教师问2:放学时,小明仍然以每分钟50米的速度回家,应该走多少分钟?学生回答:100 ÷50=20.教师问3:从上面这个例子你可以发现,有理数除法与有理数乘法之间满足怎样的关系?学生回答:有理数除法与有理数乘法互为逆运算.教师问4:引入负数后,如何计算有理数的除法呢?例如8÷(-4).师生共同讨论后解答如下:根据除法意义,这就是要求一个数,使它与-4相乘得8.因为(-2)×(-4)=8所以 8÷(-4)=-2 ①另外,我们知道,8×(-)=-2 ②由①、②得 8÷(-4)=8×(-)③③式表明,一个数除以-4可以转化为乘以-来进行,即一个数除以-4, 等于乘以-4的倒数-.教师问5:对于其他的数是不是也可以呢?请完成下面的题目:(出示课件6)学生回答:中间组由上到下答案依次为:-2,-6,4,-8;右边组由上到下5答案依次为:-2,-6,4,-8;5教师问6:上面各组数计算结果有什么关系?由此你能得到有理数的除法法则了吗?学生回答:上面各组数计算结果相等,有理数的除法可以转化为乘法进行计算.教师问7:观察下列两组式子,你能找到它们的共同点吗?(出示课件7)学生回答:除以一个数等于乘以它的倒数.教师问8:除数能为0吗?学生回答:不能为0.教师问9:换其他数的除法进行类似讨论,是否仍有除以a(a≠0)可以转化为乘以呢?[例如(-10)÷(-0.4)]学生做题后回答:仍然可以.总结点拨:从而得出有理数除法法则:(出示课件8)除以一个不等于0的数,等于乘以这个数的倒数.这个法则也可以表示成:a÷b=a·(b≠0),其中a、b表示任意有理数(b≠0)例如:教师问10:利用上面的除法法则计算下列各题.(出示课件9)(1)(–54)÷ (–9);(2)(–27) ÷3;(3)0 ÷ (–7);(4)(–24) ÷(–6).学生回答:(1)6;(2)-9;(3)0;(4)4教师问11:从上面我们能发现商的符号有什么规律?学生回答:同号得正,异号得负.总结点拨:(出示课件10)两数相除,同号得正,异号得负,并把绝对值相除.零除以任何一个不等于零的数,都得零.教师问12:到现在为止我们有了两个除法法则,那么两个法则是不是都可以用于解决两数相除呢?(出示课件11)师生共同解答如下:1. 两个法则都可以用来求两个有理数相除.2. 如果两数相除,能够整除的就选择法则二,不能够整除的就选择用法则一.例1:计算:(出示课件12)(1)(–36) ÷ 9;(2)(-1225)÷(-35) .师生共同解答如下:解:(1)(–36) ÷ 9= –(36×19 )= –4;(2)例2:化简下列各式:(出示课件14)(1) ―123 ;(2)―45―12 .师生共同解答如下:解:(1)(2)例3:计算:(出示课件)(1) (2)师生共同解答如下:解:(1)原式=====点拨:如果有带分数,可以将带分数写成整数部分和分数部分的和,利用分配律进行运算,更加简便.(2)原式== 1点拨:将小数化为分数.总结点拨:1. 有理数除法化为有理数乘法以后,可以利用有理数乘法的运算律简化运算.2. 乘除混合运算往往先将除法化为乘法,然后确定积的符号,最后求出结果(乘除混合运算按从左到右的顺序进行计算).(三)课堂练习(出示课件19-22)1. (–21) ÷7的结果是( )A.3B.–3 C.13D. –132. 计算:(–12) ÷ 3=_______.3. 填空:(1)若a,b互为相反数,且a ≠ b,则ab=________;(2)当a < 0时,|a|a=_______;(3)若a>b,ab<0,则a,b的符号分别是__________.(4)若–3x=12,则x =_____.4.若|2x+6|+|3―y|=0,则xy=_________.5. (1)计算;(2). 计算;(3)计算参考答案:1.B2.-43.(1)-1;(2)-1;(3)a>0,b<0;(4)-44.-1 解析:由题意得,|2x+6|+|3―y|=0,解得x=-3,y=3,所以xy =―33=-1.5.解:(1)原式==(2)原式==(3)原式==(四)课堂小结今天我们学了哪些内容:除以一个不等于0的数,等于乘以这个数的倒数.两数相除,同号得正,异号得负,并把绝对值相除.零除以任何一个不等于零的数,都得零.(五)课前预习预习下节课(1.4.2)36页到37页的相关内容。
有理数除法教学设计(1)
课题:《有理数的除法》
科目
数学
教学对象
初一学生
课时
1
提供者
牛丽平
单位
泽州县犁川镇初级中学
一、教学目标
1.掌握有理数除法的符号法则,能熟练进行除法运算。
2.通过学习有理数除法法则,体会转化思想,会将乘除法混合运算转换为乘法运算。
3.培养学生观察、归纳、概括及运算能力,体会在解决问题的过程中与他人合作的重要性。
2.从商与被除数、除数的符号与绝对值来观察(1)(2)、(3)(4)、(5)的特点,有什么发现?(小组合作讨论)
四个人一个小组对问题2进行讨论
针对每组式子进行讨论,让学生对比乘法法则得出类似的符号法则
总结有理数除法的符号法则:同号得正,异号得负,并把绝对值相除;0除以任何数都得0
自己先用文字语言描述讨论的结果
锻炼学生的观察、归纳、概括的能力
概念应用和举例:
例题:1.(-125)÷25;
3.乘除法混合运算的例子
应用除法符号法则计算
学生通过运算总结乘除混合运算步骤
对新知识的应用和巩固
锻炼学生的总结概括能力
五、延伸拓展
计算:
八、板书设计
有理数除法
一.回顾旧知四.应用举例
(1)有理数倒数的概念
(2)有理数除法的第一个法则五.延伸拓展
二、教学内容分析
本节内容是在学习了有理数的倒数和有理数除法可以转换为乘法运算法则的基础上来进一步学习有理数除法的第二个法则(符号法则)。教学过程中,引导学生自己思索、判断,自己得出结论,从而达到培养学生观察、归纳、概括能力的目的,不是简单地告诉学生结论和方法。
三、教学重点及难点
重点:正确应用符号法则进行有理数除法运算,会将除法混合运算转化为乘法运算。
人教版七年级数学上册优质课导学案《有理数的除法》
有理数的除法一,预习目标1 理解有理数除法法则,会进行有理数除非运算。
2 会求有理数的倒数。
重点、难点:重点:有理数除法的法则和倒数的概念,难点:有理数除法法则的理解二,自主学习1,我们知道12÷3可以理解为12=3×(),因为3×4=12,所以,12÷3=4,因此求(-3.6)÷4也可以按照除法和乘法是互为逆运算来考虑,你试试看。
解:因为:4×()=-3.6,所以(-3.6)÷4=____.再试试看:计算:(-6)÷3, 6÷(-3),(-6)÷(-3),0÷(-6)解:因为3×()=-6,所以,(-6)÷3=____,因为(-3)×()=6,所以,6÷(-3)=___因为:(-3)×()=(-6),所以(-6)÷(-3)=____,因为(-6)×()=0,所以,,0÷(-6)=___.2 做一做计算:(1)(-24)÷4;(2)(-18)÷(-9)(3) 50÷(-5)(4) 0÷(-8.8)3,同号两数相除得___,异号两数相除得___,并把它们的绝对值___,互为倒数的概念(1)在非负数的范围内,你知道什么叫互为倒数吗?举例说明。
(如果两个数的乘积等于__,那么这两个数叫_____.如5×15=__,所以5与15____.又如__×__=1,所以,_与__互为倒数)(2)类似的,(-5)(-15)=___,所以(-5)与-15也是互为倒数,现在你知道什么叫互为倒数了吗?一般地,两个数的乘积等于__,那么其中一个数叫另一个数的___,也称他们________.(3)填空:-10的倒数是___,-1.5的倒数是___,223的倒数是_____; ___是-23的倒数。
湘教版数学七年级上册_《有理数的除法(第1课时)》优质教案
1.5 有理数的乘法和除法1.5.2 有理数的除法第1课时 有理数的除法教学目标:1、知识与技能了解有理数除法的意义,理解有理数的除法法则,会进行有理数的除法运算,会求有理数的倒数。
2、过程与方法通过实例,探究出有理数除法法则。
会把有理数除法转化为有理数乘法,培养学生的化归思想。
重点、难点:1、重点:有理数除法法则的运用及倒数的概念2、难点:怎样根据不同的情况来选取适当的方法求商,0不能作除数以及0没有倒数的理解。
教学过程:一、创设情景,导入新课1、小学里学过有关倒数的概念是什么?怎么求一个数的倒数?(用1除以这个数) 4和2+3的倒数是多少?0有倒数吗?为什么没有? 2、小学里学过的除法与乘法有何关系?例如10÷0.5=10×2;0÷5=0×51,你能总结总结出一句话吗?(除以一个数等于乘以这个数的倒数)3、5÷0=?,0÷0=?呢?(这些式子无意义)也就是说0是没有倒数的。
二、合作交流,解读探究1、(1)6个同样大小的苹果平均分给3个小孩,每个小孩分到几个苹果?(2)怎样计算下列各式?(-6)÷3 6÷(-3) (-6)÷(-3)学生:独立思考后,再将结果与同桌交流。
教师:引导学生回顾小学知识,根据除法是乘法的逆运算完成上例,要求6÷3即要求3×?=6,由3×2=6可知6÷3=2。
同理(-6)÷3=-2,6÷(-3)=-2,(-6)÷(-3)=2。
根据以上运算,你能发现什么规律?对于两个有理数a,b ,其中b ≠0,如果有一个有理数c 使得c ×b=a ,那么我们规定a ÷b=c ,称c 叫做a 除以b 的商。
2、从有理数的除法是通过乘法来规定,引导学生对比乘法法则,自己总结有理数除法法则,经讨论后,板书有理数除法法则。
1.4.2有理数的除法(1)
七年级数学 编号:SX-14-07-016《1.4.2有理数的除法(1)》导学案 编写人:许结华 审核人: 编写时间: 2014.9 班级 组别 组名 姓名 完成等级 更正等级 【学习目标】:1、理解除法是乘法的逆运算; 2、掌握除法法则,会进行有理数的除法运算;3、经历利用已有知识解决新问题的探索过程.【学习重点】:有理数的除法法则 【学习难点】:理解商的符号及其绝对值与被除数和除数的关系 【学法指导】:自学课本第34页,根据问题提示归纳,类比得到有理数的除法法则,并规范的书写过程。
【知识链接】:1、小明从家里到学校,每分钟走50米,共走了20分钟.小明家离学校有 米,列出的算式为 .放学时,小明仍然以每分钟50米的速度回家,应该走 分钟.列出的算式为 2、从上面这个例子可以发现,除法与乘法之间的关系是 【探究新知】 探究一: 1、请你试着填空: ①因为8×9= 所以72÷9=_______ , ②因为(-4) ×(-3)= 所以12÷(-4)=____ __,12÷(-3)=____ __; ③因为2×(-3)= 所以(-6) ÷2=__ ____,(-6)÷(-3)= ; ④因为(-5)×2= 所以(-10) ÷2=__ __,(-10)÷(-5)= ; ⑤因为0 ×(-6)= 所以0 ÷(-6)=______。
思考:观察上面除法运算的结果,它的符号和绝对值与被除数和除数有什么关系?你发现了什么? 2、计算:① 72×91 = ; ② 12×(-41)= ;③(-10)×⎪⎭⎫⎝⎛51-= ;④(-6)×21= ; ⑤ 0×(-61)= 综合1、2的,观察计算结果,你发现了什么?探究二、 、计算:①(-15)÷(-3); ②(-12)÷(一16); ③(-8)÷(一14)探究三、你能总结有理数的除法法则吗?有理数除法运算的步骤是什么?探究四、完成下列计算①(-63)÷7 ② 1÷(-9) ③(-6.5)÷0.13 ④ (-56)÷(-52)【课堂小结】你有什么收获? 【当堂检测】 一.填空题:1、2的倒数是 ;-0.2的倒数是 ,负倒数是 。
最新人教版《有理数的除法》教学设计教案(第1课时)
第一章有理数1.4 有理数的乘除法1.4.2 有理数的除法第1课时一、教学目标【知识与技能】掌握有理数除法法则,会进行有理数的除法运算以及分数的化简.【过程与方法】通过学习有理数除法法则,体会转化思想,会将乘除混合运算统一为乘法运算.【情感态度与价值观】培养学生勇于探索积极思考的良好学习习惯.二、课型新授课三、课时第1课时,共2课时。
四、教学重难点【教学重点】正确应用法则进行有理数的除法运算.【教学难点】灵活运用有理数除法的两种法则.五、课前准备教师:课件、直尺、倒数图片等。
学生:三角尺、练习本、铅笔、圆珠笔或钢笔。
六、教学过程(一)导入新课根据实验测定,高度每增加1km,气温大概下降6℃. 某登山运动员攀登某高峰的途中发回信息,报告他所在高度的温度是-15℃,当时地面气温为3℃. 请问你能确定登山运动员所在的位置高度吗?(出示课件2)(二)探索新知1.师生互动,探究有理数的除法法则(出示课件4)教师问1:小明从家里到学校,每分钟走50米,共走了20分钟,问小明家离学校有多远?学生回答:50×20=100.教师问2:放学时,小明仍然以每分钟50米的速度回家,应该走多少分钟?学生回答:100 ÷50=20.教师问3:从上面这个例子你可以发现,有理数除法与有理数乘法之间满足怎样的关系?学生回答:有理数除法与有理数乘法互为逆运算.教师问4:引入负数后,如何计算有理数的除法呢?以8÷(-4)为例.(出示课件5)师生共同讨论后解答如下:根据除法意义,这就是要求一个数,使它与-4相乘得8.因为(-2)×(-4)=8所以8÷(-4)=-2 ①另外,我们知道,8×(-14)=-2 ②由①、②得8÷(-4)=8×(-14)③③式表明,一个数除以-4可以转化为乘以-14来进行,即一个数除以-4,℃等于乘以-4的倒数-14.教师问5:对于其他的数是不是也可以呢?请完成下面的题目:(出示课件6)学生回答:中间组由上到下答案依次为:-2,-6,45,-8;右边组由上到下答案依次为:-2,-6,45,-8;教师问6:上面各组数计算结果有什么关系?由此你能得到有理数的除法法则了吗?学生回答:上面各组数计算结果相等,有理数的除法可以转化为乘法进行计算.教师问7:观察下列两组式子,你能找到它们的共同点吗?(出示课件7)学生回答:除以一个数等于乘以它的倒数.教师问8:除数能为0吗?学生回答:不能为0.教师问9:换其他数的除法进行类似讨论,是否仍有除以a(a≠0)可以转化为乘以1a呢?[例如(-10)÷(-0.4)]学生做题后回答:仍然可以.总结点拨: 从而得出有理数除法法则:(出示课件8)除以一个不等于0的数,等于乘以这个数的倒数.这个法则也可以表示成:a÷b=a·1b(b≠0), 其中a 、b 表示任意有理数(b≠0)教师问10:利用上面的除法法则计算下列各题.(出示课件9)(1)(–54)÷ (–9); (2)(–27) ÷3;(3)0 ÷ (–7); (4)(–24) ÷(–6).学生回答:(1)6;(2)-9;(3)0;(4)4教师问11:从上面我们能发现商的符号有什么规律?学生回答:同号得正,异号得负.总结点拨:(出示课件10)两数相除,同号得正,异号得负,并把绝对值相除.零除以任何一个不等于零的数,都得零.教师问12:到现在为止我们有了两个除法法则,那么两个法则是不是都可以用于解决两数相除呢?(出示课件11)师生共同解答如下:1. 两个法则都可以用来求两个有理数相除.2. 如果两数相除,能够整除的就选择法则二,不能够整除的就选择用法则一.例1:计算:(出示课件12)(1)(–36) ÷ 9;(2)(-1225)÷(-35) .师生共同解答如下:解:(1)(–36) ÷ 9= –(36×19 )= –4;(2)例2:化简下列各式:(出示课件14)(1) −123 ;(2)−45−12 . 师生共同解答如下:解:(1)(2)例3:计算:(出示课件)(1) (2) 师生共同解答如下:解:(1)原式=12557 ÷5=(125+57)×15=125×15+57×15=25+17=2517点拨:如果有带分数,可以将带分数写成整数部分和分数部分的和,利用分配律进行运算,更加简便.(2)原式=52×85×14= 1点拨:将小数化为分数.总结点拨:1. 有理数除法化为有理数乘法以后,可以利用有理数乘法的运算律简化运算.2. 乘除混合运算往往先将除法化为乘法,然后确定积的符号,最后求出结果(乘除混合运算按从左到右的顺序进行计算).(三)课堂练习(出示课件19-22)1. (–21) ÷7的结果是( )A .3B .–3C .13 D. –132. 计算:(–12) ÷ 3=_______.3. 填空:(1)若a ,b 互为相反数,且a ≠ b ,则a b =________;(2)当a < 0时,|a |a =_______;(3)若 a>b ,a b <0,则a ,b 的符号分别是__________. (4)若–3x=12,则x =_____.4.若|2x +6|+|3−y |=0,则x y =_________.5. (1)计算(- 45)÷(- 2) ;(2)计算-0.5÷78×(- 54);(3)计算(-7)÷(- 32)÷(- 75)参考答案:1.B2.-43.(1)-1;(2)-1;(3)a>0,b<0;(4)-44.-1 解析:由题意得,|2x +6|+|3−y |=0,解得x=-3,y=3,所以x y =−33=-1.5.解:(1)原式=45×12=25(2)原式=12×87×54=57(3)原式=-7×23×57=-103(四)课堂小结今天我们学了哪些内容:除以一个不等于0的数,等于乘以这个数的倒数.两数相除,同号得正,异号得负,并把绝对值相除.零除以任何一个不等于零的数,都得零.(五)课前预习预习下节课(1.4.2)36页到37页的相关内容。
【导学案】8 有理数的除法
1.下列说法正确的是( )
A.任何有理数都有倒数 B.一个数的倒数小与它本身
C.0除以任何数都得0 D.两个数的商为0,只有被除数为0
2.已知有两个有理数的商为负数,那么( )
A.它们的和为负数 B.它们的差为负数 C.它们的积为负数 D.它们的积为正数
3.如果 ( 的商是负数,那么( )
A. 异号 B. 同为正数 C. 同为负数 D. 同号
实践练习:(1) (2)
注意:(1)除法的混合运算,要按从左往右的顺序进行;(2)除法转化为乘法,再确定积的符号,最后求出结果。(3)切记看起运算,不要混淆了乘除运算。
尝试应用
1.m、n为相反数,则下列结论中错误的是()
A.2m+2n=0B.mn=-m2C.a+b=0,cd>0,那么这四个数中负因数的个数至少有()
A.4个B.3个C.2个D.1个
3.下列说法错误的是()
A.正数的倒数是正数B.负数的倒数是负数
C.任何一个有理数a的倒数等于 D.乘积为-1的两个有理数互为负倒数
4.6.当x=____时,代数式 没有意义。4)一个数的 是- ,这个数是____.
5.若a、b互为倒数,c、d互为相反数,求2c+2d-3ab的值
2.分数除法法则:除以一个数,等于乘以这个数的______._______不能为0。
新课学习
请同学们阅读教材,预习过程中请注意:⑴不懂的地方要用红笔标记符号;⑵完成你力所能及的习题和课后作业。
1.有理数除法规则(一)
计算:64÷8=_____,(—27)÷(—9)=_____,(—18)÷6=____,0÷(—2)=_____
计算 =____.
8. 计算:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.计算:
(1)(-15)÷(-3);(2)12÷(-4)
(3)(- 15)×(- );(4)12×(- );
得出计算结果后,与例1每一小题的结果进行比较,有规律吗?
三
学生展示
教师激励
(1) ÷(- );(2)(-1)÷(-1.5);
(3)(-3)÷(- )÷(- );(4)(-3)÷[(- )÷(- )]
四
当堂测试
1.若 , ,则()
A. , B. ,
C.a、b中一正一负,且正的绝对值较大
D.a、b中一正一负,且负的绝对值较大
2.计算:
(1)(-84)÷(-14);(2) ;
⑶. ⑷. -
3.被除数是 ,除数比被除数大 ,商是多少?
4.计算
(1)(-27)÷9(2)(-12)÷(-6)
(3) ÷ (4) ÷
(5) ÷ (6) ÷
课后反思
学习难点:
有理数除法法则的应用
教学方法:
讨论法
学习过程
环节
学案
备注栏
一
自主学习
教师导学
1.上节课我们学习了有理数的乘法,能运用乘法法则进行计算,谁能叙述有理数的乘法法则呢?
2.根据法则能口答下列各题吗?
(1)(-3)×4;(2)3×(- );(3)(-9)×(-3);
(4)8×(-9);(5)0×(-2);(6)(-8)×(-6)
4.练习:计算
(1)27÷(-9)=_____ (2)(-72)÷(-9)=___Βιβλιοθήκη _ (3)0÷(-2)=_____
(4)48÷(-6)_____ (5)(-18)÷6=_____ (6)15÷(-3)=_____
(7)(-27)÷(-9)=_____ (8)54÷6=_____ (9)8÷(-4)=_____
3.提问:已知两个因数的积和其中一个因数,要求另一个因数,那么我们用什么运算来计算呢?
二
合作探究
教师引领
1.除法是已知两个因数的积及其中一个因数,求另一个因数的运算,那么10÷5是什么意思,商为几?0÷5呢?
2.(-12)÷(-3)是什么意思呢?商为多少?
3.我们在小学学过:除以一个数等于乘以这个数的倒数,那么计算(-12)÷(-3)时,也可以这么做呢?
青岗岭中学七年级数学导学案
课题
有理数的除法(第一课时)
年级:七年级
编制人:邬晶
审核人
学习目标:
1.经历根据除法是乘法的逆运算,归纳出有理数的除法法则的过程;
2.掌握有理数除法法则,理解零不能做除数;
3.理解除法转化为乘法,体验转化的思想;
4.会运用除法法则求两个有理数的商。
学习重点:
掌握有理数的除法运算,求一个负数的倒数