矩阵分析期末考试

合集下载

矩阵分析复习(最终版)

矩阵分析复习(最终版)

3 1 1 2.求 A 0 4 0 的最小多项式,并写出 A 的 Jordan 形. 1 1 5 0 4 0 1 A J 二、 设 A 1 4 0 . (1) 求 e A (2) 求可逆矩阵 Q 和若当型 J A , 使Q e Q e 0 0 2
《矩阵分析》复习题目及参考答案
made by 寒烟
提示:参考答案为个人所做,仅供参考.
1 3 1 一、1. 设 A 4 1 5
1 3 2 4 3 5
1 3 1 . (1)求 || A ||1 和 || A || 4 1 5
(2)证明 A 的谱半径 ( A) || A ||
i
可求的 A 的特征值为 1 2 1 ,从而谱半径 考虑到端点处的收敛性,可以判定 f ( A) 是收敛的. 进一步有,
当 1 ,有 rank ( A E ) 1 ,且 可逆矩阵P,使得P AP J A ,
1
其中
- 1 1 JA= . -1
k k 1
从而,幂级数 f ( x) 的收敛半径 R 1 ,且收敛区间为 [1,1] .
再考虑矩阵幂级数 f ( A)
k
k 1

1
2
2 1 Ak ,其中 A 1 0
令 | E A |
2 1 ( 1)2 0 1
( A) max i 1 R
故最小多项式为 mA ( ) ( 4) 初等因子组为 4、 ( 4)2
2
4 4 1 从而 Jordan 标准形为 4
二、
4 0 1 0 2 (1) E A 1 4 2 0 0 2 ( 2)

矩阵分析试卷

矩阵分析试卷

2007《矩阵分析》试题(A 卷)一、 计算题 (每题10分,共40分)1. 设函数矩阵⎪⎪⎪⎭⎫⎝⎛=001t e -sint t e cost A(t)t2t 试求 )t A(t d d ; )t A(lim 0t →.2. 设矩阵⎪⎪⎭⎫ ⎝⎛=441-0A 试求 Ae . 3. 将下面矩阵作QR 分解:⎪⎪⎪⎭⎫⎝⎛110011-111.4. 求下面矩阵的若当(Jordan)标准形⎪⎪⎪⎭⎫⎝⎛1-1-2-020021。

二、证明题(每题10分,共30分)1. 设321,,ααα是三维V 线性空间V 的一组基, 试求由向量2133212321183232-ααβαααβαααβ+=++=+=. 生成的子空间),,(U 321βββ=的一个基.2. 设V 1 , V 2 是内积空间V 的两个子空间, 证明: ()⊥⊥⊥+=⋂2121V V V V .3. 设T 是线性空间V 的线性变换, V ∈α, 且)(T ,),(T ),T(,1-k 2αααα 均为不为零的向量, 而0)(T k=α, 证明)(T ,),(T ),T(,1-k 2αααα 线性无关.三、简单论述题(每题15分, 共30分)1. 试述: 将一个矩阵简化(化为对角矩阵或若当矩阵)的方法有几种? 那种方法一定可以将一个矩阵化为对角矩阵? 那些方法一定可以将一个什么样的矩阵化为对角矩阵? 此外,将一个矩阵简化的数学理论基础是什么? 实现这种矩阵简化的具体方式是怎么作的?2. 实空间的角度是如何引入的? 复空间中的角度又是怎样定义的? 试给出主要的过程.2007《矩阵分析》试题(B 卷)一、 计算题 (每题10分,共40分)5. 设函数矩阵⎪⎪⎪⎭⎝=003t 02e eA(t)t 2t-试求 t d )t A(1⎰.6. 设矩阵⎪⎪⎭⎫⎝⎛=12-10A 试求 Ae . 7. 将下面矩阵作QR 分解:⎪⎪⎪⎭⎫⎝⎛011-1-3241-1.8. 求下面矩阵的若当(Jordan)标准形⎪⎪⎪⎪⎪⎭⎫⎝⎛1213214321.二、证明题(每题10分,共30分)4. 设321,,ααα是三维V 线性空间V 的一组基, 试求由向量2133212321113423232-ααβαααβαααβ+=++=+=. 生成的子空间),,(U 321βββ=的一个基.5. 设V 1 , V 2 是内积空间V 的两个子空间, 证明: ()⊥⊥⊥⋂=+2121V V V V .6. 设T 是线性空间V 的线性变换, V ∈α, 且)(T ,),(T ),T(,1-k 2αααα 均为不为零的向量, 而0)(T k=α, 证明)(T ,),(T ),T(,1-k 2αααα 线性无关.三、简单论述题(每题15分, 共30分)3. 试述: 将一个矩阵简化(化为对角矩阵或若当矩阵)的方法有几种? 那种方法一定可以将一个矩阵化为对角矩阵? 那些方法一定可以将一个什么样的矩阵化为对角矩阵? 此外,将一个矩阵简化的数学理论基础是什么? 实现这种矩阵简化的具体方式是怎么作的?4. 实空间的角度是如何引入的? 复空间中的角度又是怎样定义的? 给出主要的过程.2008硕士研究生《矩阵分析》试题(A 卷)一、 计算题 (每题10分,共40分)9. 设函数矩阵⎪⎪⎪⎭⎝=001t e -sint A(t)t试求 t )d t A(1⎰; )t A(lim 0t →.10. 设矩阵⎪⎪⎭⎫⎝⎛=441-0A 试求 sinA . 11. 将下面矩阵作QR 分解:⎪⎪⎪⎭⎫⎝⎛11002-1-011.12. 求下面矩阵的若当(Jordan)标准形⎪⎪⎪⎭⎫⎝⎛1-1-2-010012。

矩阵期末试题及答案

矩阵期末试题及答案

矩阵期末试题及答案一、选择题1. 矩阵的主对角线元素是指:A. 矩阵的第一行元素B. 矩阵的第一列元素C. 矩阵的第一行和第一列元素D. 矩阵从左上角到右下角的元素答案:D2. 已知矩阵A = [1 2 3; 4 5 6; 7 8 9],则矩阵A的转置矩阵为:A. [1 2 3; 4 5 6; 7 8 9]B. [1 4 7; 2 5 8; 3 6 9]C. [1 2 3; 7 8 9; 4 5 6]D. [9 8 7; 6 5 4; 3 2 1]答案:B3. 若矩阵A是m×n矩阵,矩阵B是n×p矩阵,则矩阵A乘以矩阵B得到的矩阵维度为:A. m×pB. n×pD. n×n答案:A4. 若矩阵A = [2 4; 6 8; 10 12],则矩阵A的行数和列数分别为:A. 3,2B. 2,3C. 3,3D. 2,2答案:A5. 矩阵的逆矩阵存在的条件是:A. 矩阵可逆B. 矩阵为零矩阵C. 矩阵是方阵D. 矩阵不存在逆矩阵答案:C二、填空题1. 一个3×4矩阵由36个元素构成,其中每个元素都是实数。

则该矩阵共有________个元素。

2. 若矩阵A = [1 0; 0 -1],则矩阵A的特征值为________。

答案:1,-13. 以矩阵A = [1 2; 3 4; 5 6]为被乘矩阵,矩阵B = [7 8; 9 10]为乘矩阵,两矩阵相乘的结果为矩阵C = ________。

答案:[25 28; 57 64; 89 100]4. 若矩阵A = [1 2; 3 4],则矩阵A的转置矩阵为矩阵______。

答案:[1 3; 2 4]5. 设矩阵A = [2 4; 6 8],矩阵B = [1 2; 3 4],则矩阵A与矩阵B的乘积为矩阵______。

答案:[14 20; 30 44]三、计算题1. 计算矩阵A = [2 1; -3 4; 5 6]的转置矩阵。

矩阵分析期末试题及答案

矩阵分析期末试题及答案

矩阵分析期末试题及答案矩阵分析是一门重要的数学课程,在科学、工程和经济等领域都有广泛的应用。

期末试题的设置既考查学生对于矩阵分析理论的理解,也测试其应用能力和解决问题的能力。

本文将为您提供一套矩阵分析的期末试题,并附有答案解析。

1. 简答题(每小题2分,共20分)(1) 请简述矩阵的定义和基本术语。

答案:矩阵是由数个数排成m行n列的一个数表。

行数和列数分别称作矩阵的行数和列数。

矩阵的元素用a[i, j]表示,其中i表示所在的行数,j表示所在的列数。

(2) 请解释什么是方阵和对角矩阵。

答案:方阵是行数和列数相等的矩阵。

对角矩阵是除了主对角线上的元素外,其他元素都为零的矩阵。

(3) 请解释矩阵的转置和逆矩阵。

答案:矩阵的转置是指将矩阵的行和列进行互换得到的新矩阵。

逆矩阵是满足A * A^(-1) = I的矩阵A的逆矩阵,其中I是单位矩阵。

(4) 请简述特征值和特征向量的定义。

答案:特征值是方阵A满足方程A * X = λ * X的标量λ,其中X是非零的列向量。

特征向量是对应特征值的零空间上的非零向量。

(5) 请解释矩阵的秩和行列式。

答案:矩阵的秩是指矩阵中线性无关的行或列的最大个数。

行列式是将矩阵的元素按照一定规则相乘并相加得到的一个标量。

(6) 请解释正交矩阵和幂等矩阵。

答案:正交矩阵是满足A * A^T = I的矩阵A。

幂等矩阵是满足A *A = A的矩阵A。

(7) 请解释矩阵的特征分解和奇异值分解。

答案:矩阵的特征分解是将一个矩阵表示为特征向量矩阵、特征值矩阵和其逆的乘积。

奇异值分解是将一个矩阵表示为三个矩阵相乘的形式,其中一个是正交矩阵,一个是对角矩阵。

(8) 请解释矩阵的迹和范数。

答案:矩阵的迹是指矩阵对角线上元素的和。

范数是用来衡量矩阵与向量的差异程度的指标。

(9) 请解释矩阵的稀疏性和块状矩阵。

答案:矩阵的稀疏性是指矩阵中大部分元素为零的特性。

块状矩阵是由多个子矩阵组成的一个矩阵。

(10) 请解释矩阵的正定性和对称性。

矩阵理论期末复习题

矩阵理论期末复习题

1、非齐次微分方程组()()⎪⎩⎪⎨⎧=+=T x t F AX dt dx1,0)0(的解:其中⎪⎪⎭⎫⎝⎛-=3553A ()⎪⎪⎭⎫ ⎝⎛=-0t e t F2、设nn CA ⨯∈,则对任何矩阵范数∙,都有A A ≤)(ρ。

3、设⎪⎪⎪⎭⎫ ⎝⎛=010100012A ,求Ate 。

4、设nn CA ⨯∈,且1)(<A ρ,求级数∑∞=0m mA的和。

5、求矩阵⎪⎪⎪⎭⎫⎝⎛---=502613803A 的约当标准形。

6、求⎪⎪⎪⎭⎫ ⎝⎛----=031251233A 的最小多项式)(λm 。

7、讨论kk kk⎥⎦⎤⎢⎣⎡--∑∞=128160的敛散性。

8、线性变换的秩与零度的定义,秩与零度之间的关系 9、已知m nm R b R A ∈∈⨯,,对于矛盾线性方程组b Ax =,使得22)(b Ax x f -=为最小的向量)0(x 称为最小二乘解,试导出最小二乘解所满足的方程组。

1.设实数域上的多项式空间3[]P t 中的多项式230123()f t a a t a t a t =+++在线性变换T 下的像为2301122330()()()()()Tf t a a a a t a a t a a t =-+-+-+-,求线性变换T 的值域和核空间的基与维数。

2.设⎪⎪⎪⎭⎫⎝⎛=032100010A ,⎪⎪⎭⎫ ⎝⎛-=2010A ,求A e 。

3.求矩阵1141⎛⎫= ⎪⎝⎭A 的谱分解。

4.求微分方程组112212313214221tdx x x dt dx x x dt dx x x e dt ⎧=-++⎪⎪⎪=-++⎨⎪⎪=++-⎪⎩和1132123313383625dx x x dt dxx x x dt dx x x dt ⎧=+⎪⎪⎪=-+⎨⎪⎪=--⎪⎩满足初始条件123(0)1,(0)1,(0)1x x x ===-的解。

5.证明矩阵nn CA ⨯∈的幂序列}{)(m A 收敛于0的充分必要条件是()1A ρ<。

矩阵试题及答案

矩阵试题及答案

矩阵试题及答案一、选择题(每题4分,共20分)1. 矩阵的秩是指:A. 矩阵中非零元素的个数B. 矩阵中最大的线性无关行(列)向量组的个数C. 矩阵的行数D. 矩阵的列数答案:B2. 若矩阵A与矩阵B相等,则下列说法正确的是:A. A和B的行列式相等B. A和B的迹相等C. A和B的行列式和迹都相等D. A和B的行列式和迹都不相等答案:C3. 矩阵的转置是指:A. 将矩阵的行变成列B. 将矩阵的列变成行C. 将矩阵的行和列互换D. 将矩阵的元素取相反数答案:C4. 对于任意矩阵A,下列说法正确的是:A. A的行列式等于A的转置的行列式B. A的行列式等于A的逆矩阵的行列式C. A的行列式等于A的逆矩阵的转置的行列式D. 以上说法都不正确答案:A5. 若矩阵A是可逆矩阵,则下列说法正确的是:A. A的行列式不为0B. A的行列式为1C. A的行列式为-1D. A的行列式可以是任意非零值答案:A二、填空题(每题5分,共20分)1. 若矩阵A的行列式为-2,则矩阵A的逆矩阵的行列式为____。

答案:1/22. 设矩阵A为2x2矩阵,且A的行列式为3,则矩阵A的转置的行列式为____。

答案:33. 若矩阵A的秩为2,则矩阵A的行向量组的____。

答案:线性无关4. 设矩阵A为3x3矩阵,且A的行列式为0,则矩阵A是____。

答案:奇异矩阵三、解答题(每题10分,共30分)1. 已知矩阵A=\[\begin{bmatrix}1 & 2\\3 & 4\end{bmatrix}\],求矩阵A的行列式。

答案:\(\begin{vmatrix}1 & 2\\3 & 4\end{vmatrix} = (1)(4) - (2)(3) = 4 - 6 = -2\)2. 设矩阵B=\[\begin{bmatrix}2 & 0\\0 & 2\end{bmatrix}\],求矩阵B的逆矩阵。

2011年G工大研究生矩阵分析期末考试题

2011年G工大研究生矩阵分析期末考试题

矩阵分析期末考试题(2011)一.(18分)填空:设.1111,0910⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=B A 1. A -B 的Jordan 标准形为J =2. 是否可将A 看作线性空间V 2中某两个基之间的过渡矩阵( )。

3. 是否可将B 看作欧式空间V 2中某个基的度量矩阵。

( )4.()pvec B =( ),其中+∞<≤p 1。

5 .若常数k 使得kA 为收敛矩阵,则k 应满足的条件是( )。

6. A ⊗B 的全体特征值是( )。

7. =⊗2BA ( )。

8. B 的两个不同秩的{1}-逆为⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛=)1()1(,B B。

二.(10分)设n m C A ⨯∈,对于矩阵的2-范数2A 和F -范数F A ,定义实数222FAAA +=,(任意n m C A ⨯∈)验证A 是n m C ⨯中的矩阵范数,且与向量的2-范数相容。

三.(15分)已知⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛--=011)0(,0)(,11120211133x e e t b A tt。

1. 求At e ;2. 用矩阵函数方法求微分方程)()()(t b t Ax t x dtd +=满足初始条件x (0) 的解。

四.(10分)用Householder 变换求矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=4021030143010021A 的QR 分解。

五.(10分)用Gerschgorin 定理隔离矩阵⎪⎪⎪⎭⎫⎝⎛=i A 116864120的特征值。

(要求画图表示)六. (15分)已知⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=3131,1212010121211010b A 。

1. 求A 的满秩分解; 2. 求A +;3. 用广义逆矩阵方法判断线性方程组 Ax =b 是否有解;4. 求线性方程组Ax =b 的极小范数解,或者极小范数最小二乘解x 0。

(要求指出所求的是哪种解) 七.(15分)已知欧式空间R2⨯2的子空间,0032414321⎭⎬⎫⎩⎨⎧=-=-⎪⎪⎭⎫ ⎝⎛==x x x x x xx x X V R2⨯2中的内积为,,),(222112112121⎪⎪⎭⎫⎝⎛==∑∑==a aa a Ab a B A ij i j ij ,22211211⎪⎪⎭⎫ ⎝⎛=b bb b B V 中的线性变换为T (X )=XP +XT , 任意X ∈V ,.0110⎪⎭⎫⎝⎛=P 1. 给出子空间V 的一个标准正交基; 2. 验证T 是V 中的对称变换;3. 求V 的一个标准正交基,使T 在该基下的矩阵为对角矩阵.八. (7分) 设线性空间V n 的线性变换T 在基n x x x ,,,21 下的矩阵为A ,T e 表示V n 的单位变换,证明:存在x 0≠0,使得T (x 0)=(T e -T )(x 0)的充要条件是21=λ为A 的特征值.矩阵论试题(07,12)一.(18分)填空:1. 矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=2101120100102201A 的Jordan 标准形为J = 2. 设,4321,1001021001201001⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=x A 则⎪⎩⎪⎨⎧===∞Ax A A F 2 3. 若A 是正交矩阵,则cos(πA )=4. 设n m C A ⨯∈,A +是A 的Moore -Penrose 逆,则(-2A , A )+=5. 设⎪⎪⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛--=30220111,4221B A ,则A ⊗B +I 2⊗I 3的全体特征值是( )。

矩阵论期末试题及答案

矩阵论期末试题及答案

矩阵论期末试题及答案1. 选择题题目1:矩阵的秩是指矩阵中非零行(列)线性无关的最大个数,下面关于矩阵秩的说法中,错误的是:A. 若矩阵A的秩为r,则只能确定 A 中有r个行(列)线性无关。

B. 若矩阵A的秩为r,则只能确定 A 中有r个坐标线性无关。

C. 设A,B为n×m矩阵,若A的秩为r,B的秩为s,则AB的秩至少为max{r,s}。

D. 同一矩阵的行秩与列秩相等。

题目2:对于阶梯形矩阵,以下说法正确的是:A. 阶梯形矩阵的行秩与列秩相等。

B. 阶梯形矩阵的行秩等于主元的个数。

C. 阶梯形矩阵的列秩等于主元的个数。

D. 阶梯形矩阵的行秩与列秩之和等于矩阵的阶数。

题目3:设A为n阶矩阵,下列说法正确的是:A. 若A为可逆矩阵,则A的行秩和列秩都为n。

B. 若A的行秩和列秩都为n,则A为可逆矩阵。

C. 若对于非零向量 x,都有Ax=0,则称矩阵A为零矩阵。

D. 若A为可逆矩阵,则方程Ax=b存在唯一解。

题目4:对于实对称矩阵A,以下说法正确的是:A. A一定有n个线性无关的特征向量。

B. A的所有特征值都是实数。

C. 若A的特征向量构成的特征子空间的维数为n,则称A为满秩矩阵。

D. A一定可以对角化。

2. 计算题题目1:已知矩阵A = [1, 2; 3, 4],求矩阵A的转置矩阵。

解答:转置矩阵的行与列互换,故矩阵A的转置矩阵为:A^T = [1, 3; 2, 4]题目2:已知矩阵B = [2, 1; -1, 3],求矩阵B的逆矩阵。

解答:逆矩阵满足BB^(-1) = I,其中I为单位矩阵。

对于矩阵B,可以使用伴随矩阵法求解:B^(-1) = (1/(ad-bc)) * [d, -b; -c, a]其中a、b、c、d分别为矩阵B的元素:B^(-1) = (1/(2*3-(-1)*1)) * [3, -1; 1, 2] = [3/7, -1/7; 1/7, 2/7]题目3:已知矩阵C = [1, 2, 3; 4, 5, 6],求矩阵C的行列式的值。

上海交通大学《矩阵分析》试卷及答案

上海交通大学《矩阵分析》试卷及答案

上海交通大学《矩阵分析》试卷(A)一、单项选择题(每题3分,共15分)AAABC1. 设F 是数域,(,)m nHom F F σ∈,则A.dim(Im )dim(ker )m σσ+=B.dim(Im )dim(ker )n σσ+=C.dim(Im )dim(ker )m σσ⊥⊥+=D.dim(Im )dim(ker )n σσ⊥+=2. 设M 是n 阶实数矩阵,若M 的n 个盖尔圆彼此分离,则M A. 可以对角化 B. 不能对角化 C. 幂收敛 D. 幂发散3. 设2222221212134400033t t t tt t Attt tte e e te e e ee e e e ⎛⎫-+-+ ⎪= ⎪ ⎪-+⎝⎭,则A =A.214020031⎛⎫⎪ ⎪ ⎪⎝⎭B. 114010061⎛⎫ ⎪⎪ ⎪⎝⎭C. 224020031⎛⎫ ⎪ ⎪ ⎪⎝⎭D.204020061⎛⎫⎪ ⎪ ⎪⎝⎭4. 设1()(1)kkk A f A k ∞==-∑收敛,则A 可以取为 A. 0091⎛⎫⎪--⎝⎭ B.0091⎛⎫ ⎪-⎝⎭ C. 1011⎛⎫ ⎪-⎝⎭ D. 1021⎛⎫⎪⎝⎭5. 设3阶矩阵A 满足242(4)(3)A E A E O --=, 且其最小多项式m (x )满足条件2(1)(2)(3)1,m m m a a =+为某实数,则A 可以相似于A. 200130002M ⎛⎫ ⎪= ⎪ ⎪-⎝⎭B. 20012092M ⎛⎫⎪= ⎪ ⎪⎝⎭C. 2001202M ⎛⎫-⎪=- ⎪ ⎪-⎝⎭D. 200030013M -⎛⎫ ⎪= ⎪ ⎪⎝⎭二、填空题(每题3分,共15分)6. 设5阶复数矩阵A 的最小多项式为22()(1)(2)f λλλλ=-+,则*dim ()N A =[ 1 ];dim ()R A ⊥= [ 1 ].(其中*A 表示共轭转置)7. 设220A A -=,则cos2A = [ E +2(cos1-1)A ]。

《矩阵分析》考试题1 2010解答 (1)

《矩阵分析》考试题1    2010解答 (1)
H
D 0 ,这里 0 0
D diag d1 , d2 ,
, dr ,且 d1 d2
dr 0 。 di i 1, 2,
, r 称为 A 的奇异值,而
D 0 H (P84) A P Q 称为矩阵 A 的奇异值分解式。 0 0
2
0 0 3、 ( 1) 2
1
4、下列命题不正确的是 。 (A)有相同特征多项式的两个矩阵一定相似; (B)有相同不变因子的两个矩阵一定相似; (C)有相同初级因子的两个矩阵一定相似; (D)有相同行列式因子的两个矩阵一定相似。 【分析】A。由 C 或 D 都能得到 B,而不变因子唯一确定矩阵的约当形。若矩阵的约当形相同, 则矩阵相似。A 的反例是显然的: M1
3
1
3

d1 1, d2 1 1 , d3 1 1
2
2


Smith
标 准
型 为
1
1 1
。 2 2 1 1
4、 lim A 0 的充要条件是: 其特征值的模的最大值(谱半径) A 1 。换言之, A 的所
3
0 1 1 2 0 0 1 2 阵 P 0 2 1 , 约 当 标 准 形 J 0 1 1 ( 或 取 P3 0 , 则 P2 4 , 此 时 1 1 0 0 0 1 1 2 0 2 P 0 4 1 2 1 ) 。都有 P 1 AP J 。 0 1

2

1 1, 1 1 , 1 1
2
x,1 1 x 0 x 1dx 1 x 1 , 2 , 1 2 x 2 2 2 1 2 12 1,1 1 1 dx

矩阵分析习题附答案

矩阵分析习题附答案

一、空题(每小题5分,共30分)1、若矩阵A =0110101002103202211010352234⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦的满秩分解为A =BC ,则 B =⎡⎢⎢⎢⎢⎣⎤⎥⎥⎥⎥⎦,C =⎡⎢⎢⎢⎣⎤⎥⎥⎥⎦。

解:由初等行变换A =0110101002103202211010352234⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦→01101011300112200011010000⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎣⎦→1310100222133001022200011010000000⎡⎤--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎣⎦, 知:B =110021221352⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦,C =13101002221330010222110001⎡⎤⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥-⎢⎥⎢⎥⎣⎦。

2、矩阵A =101010403-⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦的最小多项式为()ϕλ= 。

解:由于[]()()()21011011000100100140300314001I A λλλλλλλλλλ⎡⎤+---⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=-→-→-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--++⎣⎦-⎣⎦⎢⎥⎣⎦ 知A 的初等因子为(λ—1),(λ—1)2,故A 的最小多项式为()ϕλ=(λ—1)2。

3、设1010221202A ⎡⎤=⎢⎥⎣⎦,则N (A )的一个标准正交基为。

解:由于1213531235452101020222212020x x x x x Ax x x x x x x x ⎡⎤⎢⎥⎢⎥++⎡⎤⎡⎤⎡⎤⎢⎥===⎢⎥⎢⎥⎢⎥+++⎢⎥⎣⎦⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦等价于 135252020x x x x x ++⎡⎤⎡⎤=⎢⎥⎢⎥-⎣⎦⎣⎦,而其解空间的一个基为 α1=(-1,0,1,0,0)T ,α2=(0,0,0,1,0)T ,α3=(-2,2,0,0,1)T对其作标准正交化即得其一个标准正交基为(0,0,0)T ,(0,0,0,1,0)T ,(0,T 4、设12121121,;,2013e e e e ⎡⎤⎡⎤⎡⎤⎡⎤''====⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦为2R 的两个基,T 为2R 的线性变换,且1213(),()21T e T e ⎡⎤⎡⎤''==⎢⎥⎢⎥⎣⎦⎣⎦, 则T 在基12,e e 下的矩阵为A =⎡⎤⎢⎥⎣⎦。

2016-2017-1西科研究生矩阵分析期末考试参考答案及评分细则(A)

2016-2017-1西科研究生矩阵分析期末考试参考答案及评分细则(A)

西南科技大学2016-2017-1学期《线性代数与矩阵分析》研究生期末考试试卷(A 卷)参考答案及评分细则一、单项选择题(每小题5分,共15分) 1、C ;2、B ;3、A 。

二、填空题(每小题5分,共15分)1、()22100010001λλ⎛⎫ ⎪ ⎪ ⎪ ⎪-⎝⎭;2、2;3、1000101012⎛⎫ ⎪- ⎪- ⎪ ⎪-- ⎪⎝⎭。

三、解答题(每小题10分,共70分) 1、解:4max||||311==∑=i ijjaA ;7max ||||31==∑=∞j ij ia A ;1322,1||||()F ij i j A a ===∑5||||22===A A A T A λλ;3})(max{)(==A A λρ。

2、解:(1)因为OA AO =,所以φ≠V ;假设V Y X ∈,,那么Y AY X AX λλ==,,于是)()(Y X Y X AY AX Y X A +=+=+=+λλλ,所以V Y X ∈+;假设R k V X ∈∈,,那么X AX λ=,所以)()()()(kX X k AX k kX A λλ===,所以V kX ∈。

所以V 是nn R⨯的一个线性子空间。

(2)当1≠λ并且2≠λ时,则}{o V=。

没有基,0dim =V 。

当1=λ时,方程组0)(=-X E A 的解为032==X X ,所以一个基为⎪⎪⎪⎭⎫ ⎝⎛001,1dim =V 。

当2=λ时,方程组0)(=-X E A 的解为01=X ,所以一个基为⎪⎪⎪⎭⎫ ⎝⎛010、⎪⎪⎪⎭⎫ ⎝⎛100,2dim =V 。

3、解:(1)3R x ∈∀,因为A 为3阶矩阵,所以3R Ax ∈,所以33:R R T →。

3,R y x ∈∀,Ty Tx Ay Ax y x A y x T +=+=+=+)()(; R k R x ∈∀∈∀,3,kTx Ax k kx A kx T ===)()()(。

所以T 是3R 上的线性变换。

中科院矩阵论期末试题真题

中科院矩阵论期末试题真题

一、填空
1、矩阵的LDU 分解,很简单
2、已知2A A =,求A I e

3、求非零奇异值
二、 三、证明2
22||||||||||||F A A A +=为矩阵范数,且与|| 2||相容。

四、线性子空间的证明题,和08年基本相同,有小的变化,但只要把线性空间的基本概念和计算掌握就行了
五、计算题:
(1)求Hermite 标准型,FG ,A +
(2)Ax = b,求x
以下内容不在期末考试范围内:
第一章:矩阵相似于Jordan标准型的计算;
第二章:近似逆矩阵的误差-----逆矩阵的摄动;
第三章: 3.5节矩阵函数的一些应用;
第四章:§4.2中的“三、矩阵与Hessenberg 矩阵的正交相似问题”
第五章:§5.1中从定理5.11(Ostrongski theorem 1)起至本节末的内容;§5.3中“二、广义特征值的极大极小原理”的所有内容;
第六章:§6.2中“三、Moore-Penrose逆的等价定义”,§6.3中“三、四、五、六和七”
的内容;从§6.5到本章末。

2016北京邮电大学《矩阵分析与应用》期末试题_共7页

2016北京邮电大学《矩阵分析与应用》期末试题_共7页

北京邮电大学《矩阵分析与应用》期末考试试题(A 卷)2015/2016学年第一学期(2016年1月17日)注意:每题十分,按中间过程给分,只有最终结果无过程的不给分。

一、已知的两组基:22R ⨯,,,;111000E ⎡⎤=⎢⎥⎣⎦120100E ⎡⎤=⎢⎥⎣⎦210010E ⎡⎤=⎢⎥⎣⎦220001E ⎡⎤=⎢⎥⎣⎦,,,。

111000F ⎡⎤=⎢⎥⎣⎦121100F ⎡⎤=⎢⎥⎣⎦211110F ⎡⎤=⎢⎥⎣⎦221111F ⎡⎤=⎢⎥⎣⎦求由基到的过渡矩阵,并求矩阵11122122,,,E E E E 11122122,,,F F F F 在基下的坐标。

3542A -⎡⎤=⎢⎥⎣⎦11122122,,,F F F F 二、假定是的一组基,试求由,123x x x ,,3R 112323y x x x =-+,;生成的子空间2123232y x x x =++312413y x x =+的基。

()123,,L y y y 三、求下列矩阵的Jordan 标准型(1) (2)1000210013202311A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦3100-4-1007121-7-6-10B ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦四、设是的任意两个向量,矩阵()()123123,,,,,x y ξξξηηη==3R ,定义 210=120001A ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦(),T x y xAy =(1) 证明在该定义下构成欧氏空间;n R (2) 求中由基向量的度量矩阵;3R ()()()1231,0,0,1,1,0,1,1,1x x x ===五、设是欧氏空间中的单位向量,,定义变换y V x V ∈2(,)Tx x y x y=-证明:是正交变换。

T六、求矩阵和的。

[]=132A -1=203j B j -⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦12,,∞g g g 七、求证:若A 为实反对称矩阵( A T = - A) , 则eA 为正交矩阵。

矩阵分析 2018年期末试题

矩阵分析 2018年期末试题

一、填空题1、4[]R x 表示实数域R 上所有次数小于或等于3的多项式构成的向量空间,则微分算子 D 在4[]R x 的基 321234(),(),(),()1p x x p x x p x x p x ====下的矩阵表示______________。

2、λ-矩阵 322(1)()(1)A λλλλλλ⎛⎫- ⎪=- ⎪ ⎪⎝⎭的初等因子组为______________________ _______________, Smith 标准形是___________________________3、已知矩阵210024120A -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则 1____,A =____,A ∞= _____F A = 其中1,∞⋅⋅分别是由向量的1-范数和∞-范数诱导出来的矩阵范数(也称算子范数),F ⋅是矩阵的Frobenius 范数。

4. 已知函数矩阵222()2x A x x⎛⎫= ⎪⎝⎭,则22()d A x dx =___________, 5、已知n 阶单位矩阵I , 则 sin_______,2I π= 2______,i I e π=cos _______.I π=6、设()m J a 表示主对角元均为 a 的m 阶Jordan 块。

则 ()k mJ a 的Jordan 标准形为________ _______, ()k m J a 的最小多项式为___________,这里0,a ≠ ,m k 是整数且 1,1m k >≥.二、 已知 220260114A -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦, (1)求矩阵的Jordan 标准形和最小多项式;(2)求矩阵函数 sin ,.t A A e30(())_______.t A x dx '=⎰三、矩阵 ,n n A B C ⨯∈. A 是正定Hermite 矩阵,B 是Hermite 矩阵,证明矩阵AB 的所有特征值是实数。

四、求矩阵101202A -⎡⎤=⎢⎥-⎣⎦的奇异值分解。

其他学院——矩阵分析试题

其他学院——矩阵分析试题
试证明 R 构成数域 R 上的线性空间,并分析该空间的基和维数。
3 (满分 12 分)设 x 与 x 是 C n 上的两种范数,试证明 x max x , x 成 C n 上的范数。


也构
4 (满分 12 分)设 x1 , x2 , , xm 是酉空间 V 的一组向量,令
试求: (1) V1 V2 的一组基与维数。 (2) V1 V2 的一组基与维数。
2 (满分 14 分) 设 R 表示所有正实数集合,在 R 中定义加法 和数乘 分别为:
a b ab, a, b R k a a k , a R , k R
广东工业学考试试卷
课程名称: 矩阵分析 试卷满分 100 分
1 ( 满 分 12 分 ) 设 向 量 1 (1, 0, 2,1)T , 2 (2, 0, 1,1)T , 3 (1, 0,1,1)T ,
1 (1,1, 0, 1)T , 2 (3,1, 2,1)T ,令 V1 span1, 2 , 3 , V2 span1, 2 ,
广东工业大学试卷用纸,共
页,第

x1 5 (满分 12 分) 设 x x 2 R 3 , T 是 R 3 上的线性变换,定义如下: x 3 x1 2 x2 2 x3 Tx 2 x1 x2 2 x3 2 x 2 x 3x 2 3 1
2 1 0 i 2 3 T 8 (满分 14 分)已知 A 0 2 3 , B , x 1 i 2i , 1 0 i 1 2 0
试求 A F , A 2 , B 1 , B , Ax 1 , x 2 , Bx

矩阵分析试卷1

矩阵分析试卷1

第一套试题一(10分)、设σ是数域F 上的线性空间V 的线性变换,1x ,2x ,3x 分别为σ的三个互不相同的特征值1λ,2λ,3λ的特征向量。

(1)证明:1x ,2x ,3x 是线性无关的;(2)证明:1x +2x +3x 不是σ的特征向量。

二(10分)、求λ-矩阵2(2)()(2)A λλλλλ⎡⎤-⎢⎥=⎢⎥⎢⎥-⎣⎦的Smith 标准形。

三(10分)、求矩阵111201634A ---⎛⎫ ⎪=-- ⎪ ⎪⎝⎭的Jordan 标准形.四(12分)、设有正规矩阵10001i A i i i -⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦,试求酉矩阵U ,使H U AU 为对角阵。

五(10分)、设0100100i A i ⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦。

验证:()()(1);HN A R A ⊥ ()()()32.H N A R A C +=六(12分)、验证矩阵1302202031022i A i ⎛⎫ ⎪ ⎪= ⎪ ⎪- ⎪⎝⎭为正规矩阵,并求A 的谱分解。

七(14分)、设⎪⎪⎭⎫⎝⎛+-=i i A 1231。

计算 (1)A 的谱半径;(2)1A ,2A ,A ∞;(3)设n n A C ⨯∈,证明:()A A ρ≤,其中A 是A 的任何一种范数。

八(12分)、讨论下列矩阵幂级数的敛散性。

(1)∑∞=⎪⎪⎭⎫ ⎝⎛--1231711k k k , (2)∑∞=⎪⎪⎭⎫ ⎝⎛--112816k k k k 九(10分)、在以下题目中任选一个。

(1) 设有Hermite 矩阵.A 试证:A 是正定的充要条件,是存在可逆矩阵Q 使.H A Q Q =(2) 试证:矩阵100200m A m m ⎛⎫ ⎪= ⎪ ⎪⎝⎭相似于矩阵0000m B n m n m ⎛⎫ ⎪= ⎪ ⎪⎝⎭,其中n 为非零常数, m 为任意常数. (3) 设A 为一个n 阶矩阵且满足2560A A E -+=,证明:A 相似于一个对角矩阵。

矩阵期末练习题及答案

矩阵期末练习题及答案

矩阵期末练习题及答案例1若A 是对称矩阵,则A T -A=______。

答案:0例2若矩阵A 可逆,则(A T )-1=____.答案:(A -1)T例3设A ,B 均为方阵,若AB =I ,则A -1=_____,B -1=______.答案:B ,A例2 矩阵A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-100020100,则A -1=( )。

答案:⎢⎢⎢⎣⎡001 0210 ⎥⎥⎥⎦⎤-100 例3、 设A 、B 均为方阵,则下列结论正确的是( )。

A .(AB )T =A T B TB .AA T =A T AC .若A T =A ,则(A 2)T =A 2D .若A T =A ,B T =B ,则(AB )T =AB 。

答案:(C )。

例4、 设A 是三角形矩阵,若主对角线上元素( ),则A 可逆。

A .全部为0B .可以有零元素C .不全为0D .全不为0答案:(D )例5、设A=⎢⎢⎢⎣⎡-342 ⎥⎥⎥⎦⎤-101,B=⎢⎣⎡-87 ⎥⎦⎤-109,求A.B 。

解:A.B=⎢⎢⎢⎣⎡-342 ⎥⎥⎥⎦⎤-101⎢⎣⎡-87 ⎥⎦⎤-109=⎢⎢⎢⎣⎡-132822 ⎥⎥⎥⎦⎤--173628例6、设A=⎢⎢⎢⎣⎡321 422 ⎥⎥⎥⎦⎤313,求A -1。

解:(AE )=⎢⎢⎢⎣⎡321 422 313 001 010 ⎥⎥⎥⎦⎤100→⎢⎢⎢⎣⎡001 222-- 653-- 321-- 010 ⎥⎥⎥⎦⎤100→⎢⎢⎢⎣⎡001 022- 153-- 121-- 110- ⎥⎥⎥⎦⎤100→⎢⎢⎢⎣⎡001 022 153 121 110-⎥⎥⎥⎦⎤-100→⎢⎢⎢⎣⎡001 022 100 132-- 163-- ⎥⎥⎥⎦⎤-153→⎢⎢⎢⎣⎡001 020 100 131- 163- ⎥⎥⎥⎦⎤--152→⎢⎢⎢⎣⎡001 010 100 1231- 133- ⎥⎥⎥⎥⎦⎤--1252 ∴A -1=⎢⎢⎢⎣⎡1231- 133- ⎥⎥⎥⎥⎦⎤--1252例7.设矩阵 ⎥⎦⎤⎢⎣⎡-=021201A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=200010212B ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=242216C ,计算C BA -T . 解 C BA -T =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡200010212⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-022011⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+242216 =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-042006⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+242216 =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡200210例8.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=321221211A ,求1-A . .解 因为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1010110011010001211100321010221001211)(I A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→110100011010001211⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→110100*********011⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→110100*********001 所以,矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=-1100112121A . 例9.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=143102010A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100010001I ,求1)(-+A I . 解 因为 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=+243112011A I ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-103210012110001011100243010112001011 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→115100012110001011⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→115100127010001011 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→115100127010126001所以 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=+-115127126)(1A I 例10、解矩阵方程⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡--214332X . 解 因为⎥⎦⎤⎢⎣⎡--10430132⎥⎦⎤⎢⎣⎡→10431111 ⎥⎦⎤⎢⎣⎡--→23101111⎥⎦⎤⎢⎣⎡--→23103401 即 ⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡---233443321 所以,X =⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡--212334=⎥⎦⎤⎢⎣⎡-12例8、证明:若A 2=I ,且AA T =I ,则A 为对称矩阵。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

错误!
2012-2013学年第一学期硕士研究生矩阵分析考试试卷(A)
一、(共30分,每小题6分)完成下列各题:
(1)设4R 空间中的向量⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=23121α,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=32232α,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=78013α,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=43234α,⎥⎥⎥⎥


⎢⎢⎢⎢⎣⎡--=30475α
Span V =1{}321,,ααα,Span V =2
{}54,αα,分别求21V V +和21V V 的维数.
解:=A {}54321,,,,ααααα⎥

⎥⎥⎦

⎢⎢⎢
⎢⎣⎡--→000004100030110
202
01 21V V +和21V V 的维数为3和1
(2) 设()T
i i 11-=α,()T
i i 11-=β是酉空间中两向量,求内积()βα,
及它们的长度(i =). (0, 2, 2);
(3)求矩阵⎥⎥
⎥⎦⎤
⎢⎢⎢⎣⎡----=137723521111A 的满秩分解. 解:⎥⎥
⎥⎦

⎢⎢⎢⎣⎡----=137723521111A ⎥⎥⎥⎥⎥⎥⎦

⎢⎢⎢
⎢⎢⎢⎣⎡
--
--→0000747510737201
⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=137723521111A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=775211⎥⎥⎥⎥⎥⎥⎦

⎢⎢
⎢⎢⎢
⎢⎣⎡
----747
510737201* (4)设-λ矩阵⎪⎪⎪

⎫ ⎝⎛++=2)1(0000
00
)1()(λλλλλA ,求)(λA 的Sm ith 标准形及其行列式因子.
解:⎪⎪⎪⎭⎫ ⎝⎛++=2)1(000000)1()(λλλλλA ()()⎪⎪⎪

⎫ ⎝⎛++→2111λλλλ
(5)设*A 是矩阵范数,给定一个非零向量α,定义 *
H
x x α=,验证x 是向量
范数.
二、(10分)设3R 中的线性变换T 在基321,,εεε下的矩阵表示为⎥⎥
⎥⎦

⎢⎢⎢⎣⎡-=021110111A , (1)(5分)求T 的值域)(T R 的维数及一组基; (2)(5分)求T 的核)(T N 的维数及一组基.
解:(1)由题意知 T [ε1,ε2,ε3]=[]⎥⎥
⎥⎦

⎢⎢⎢⎣⎡-021110111,,321εεε 线性变换T的值域为T(V)= {}321312,span εεεεε+++ 所以A (V)的维数为2, 基为{}321312,εεεεε+++
(2)矩阵A的核为AX=0的解空间。

不难求得AX=0的基础解系是[2, -1, 1]T , 因此)(A N 的维数为1, 基为3212εεε+-.
三、(8分)求矩阵⎥⎥⎥

⎤⎢⎢⎢

⎡=66
0606
066A 的正交三角分解UR A =,其中U 是酉矩阵,R 是正线上三角矩阵.
解: ⎥⎥⎥⎦⎤⎢⎢⎢

⎡=66
0606
066
A =⎪⎪⎪⎪⎭
⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎪



⎛-
-
2213
3332*316
20
316
121316121
四、(8分)设⎪⎪⎭

⎝⎛--=0111021i i A ,求矩阵范数1A ,∞A ,2A ,F A .(这里12-=i ).
解:{}1max 2,3,1,13A ==,(2分)
{}max 3,44A ∞== ,
(2分) 1
2
42
211F
A ij j i a ===⎛⎫∑∑ ⎪⎝⎭
()12
1141113=+++++= (2分)
1120110H
i i A
⎛⎫ ⎪-
⎪= ⎪- ⎪⎝⎭
, 6113H
AA
-⎛⎫
= ⎪-⎝⎭
(2分) 2
6
1
9171
3
H
E AA λλλλλ-=
=-+--
1,2λ=
=
2
A

=
(2分)
五、(共24分,每小题8分)证明题:
(1)设A 是正定H er mite 矩阵,B 是反Hermit e矩阵,证明B A +是可逆矩阵. (2)设A 是n 阶正规矩阵,证明A 是Hermite 矩阵的充要条件是A 的特征值为实
数.
(3)若1A <,证明A E +为非奇异矩阵,且A
A E -≤
+-11
)(1,这里A 是诱导范数.
六、(共20分,每小题5分)设⎪⎪⎪


⎝⎛---=213111213A ,
(1) 求A E -λ的Smit h标准形(写出具体步骤); (2) 求A 的初等因子、最小多项式及Jordan 标准形J ; (3) 求相似变换矩阵P 及其逆矩阵阵1-P ; (4) 求)sin(At . 解
A E -λ()⎪⎪⎪

⎫ ⎝⎛-→2111λλ,
初等因子λ,()21-λ;最小多项式()2
1-λλ; Jor dan标准⎪⎪⎪⎭

⎝⎛1110
⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=112101111P ,⎥⎥
⎥⎦⎤⎢⎢⎢⎣⎡---=-11101110
11P )sin(At ⎥⎥
⎥⎦

⎢⎢⎢⎣⎡--+---+=t t t t
t t t t t t t t t t t
t t t t cos sin cos cos sin 2sin sin sin cos sin cos cos sin 2。

相关文档
最新文档