2012年西城一模理科高中数学第19题
北京市各区2012年高考数学一模试题分类解析(2) 函数 理
二、函数7.(2012年海淀一模理7)已知函数2,1,()1,1,x ax x f x ax x ⎧-+≤=⎨->⎩ 若1212,,x x x x ∃∈≠R ,使得12()()f x f x =成立,则实数a 的取值范围是( A )A .2a <B .2a >C .22a -<<D .2a >或2a <-6.(2012年西城一模理6)若2log 3a =,3log 2b =,4log 6c =,则下列结论正确的是( D )A .b a c <<B .a b c <<C .c b a <<D .b c a <<13.(2012年西城一模理13)已知函数12,0,(),20,x x c f x x x x ⎧≤≤⎪=⎨+-≤<⎪⎩ 其中0c >.那么()f x 的零点是_____;若()f x 的值域是1[,2]4-,则c 的取值范围是_____. 答案:1-和0;(0,4]。
6.(2012年房山一模理6)已知函数⎪⎩⎪⎨⎧≥-+<--=0,120,12)(22x x x x x x x f ,则对任意R ∈21,x x ,若120x x <<,下列不等式成立的是( D ) A.12()()0f x f x +< B.12()()0f x f x +> C.12()()0f x f x ->D.12()()0f x f x -<8.(2012年东城一模理8)已知函数21,0,()(1),0.x x f x f x x -⎧-≤=⎨->⎩若方程()f x x a =+有且只有两个不相等的实数根,则实数a 的取值范围是( A )A .(),1-∞B .(],1-∞C .()0,1D .[)0,+∞8.(2012年丰台一模理8)已知定义在R 上的函数y=f(x)满足f(x+2)= f(x),当-1<x ≤1 时,f(x)=x 3.若函数()()log a g x f x x =-恰有6个零点,则( D ) A.a= 5或a=15 B.1(0,)[5,)5a ∈+∞ C.11[,][5,7]75a ∈ D.11[,)[5,7)75a ∈ 6.(2012年朝阳一模理6)已知函数()f x 是定义在R 上的偶函数,且对任意的x ∈R ,都有(2)()f x f x +=.当01x ≤≤时,2()f x x =.若直线y x a =+与函数()y f x =的图象在[0,2]内恰有两个不同的公共点,则实数a 的值是( D )A.0B. 0或12-C. 14-或12-D. 0或14-13.(2012年朝阳一模理13)已知函数213(),2,()24log ,0 2.x x f x x x ⎧+≥⎪=⎨⎪<<⎩若函数 ()()g x f x k =-有两个不同的零点,则实数k 的取值范围是 . 答案:3(,1)412.(2012年石景山一模理12)设函数21,,2()1log ,2x a x f x x x ⎧-+<⎪⎪=⎨⎪≥⎪⎩的最小值为1-,则实数a 的取值范围是 . 答案:21-≥a 。
北京市西城区2012年高三二模试卷-理数-含答案
北京市西城区2012年高三二模试卷数 学(理科) 2012.5一、选择题共8小题,每小题5分,共40分. 在每小题列出的四个选项中,选出符合题目要求的一项. 1.已知集合2{|log 1}A x x =<,{|0B x x c =<<,其中0}c >.若A B B =,则c 的取值范围是( ) (A )(0,1](B )[1,)+∞(C )(0,2](D )[2,)+∞2.执行如图所示的程序框图,若输入如下四个函数: ①()e xf x =; ②()e xf x =-; ③1()f x x x -=+; ④1()f x x x -=-. 则输出函数的序号为( )(A )① (B )② (C )③ (D )④3.椭圆 3cos 5sin x y ϕϕ=⎧⎨=⎩(ϕ是参数)的离心率是( )(A )35 (B )45(C )925(D )16254.已知向量(,1)x =a ,(,4)x =-b ,其中x ∈R .则“2x =”是“⊥a b ”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件(D )既不充分又不必要条件5.右图是1,2两组各7名同学体重(单位:kg ) 数据的茎叶图.设1,2两组数据的平均数依次 为1x 和2x ,标准差依次为1s 和2s ,那么( )(注:标准差s x 为12,,,n x x x 的平均数)(A )12x x >,12s s > (B )12x x >,12s s < (C )12x x <,12s s <(D )12x x <,12s s >6.已知函数()1f x kx =+,其中实数k 随机选自区间[2,1]-.对[0,1]x ∀∈,()0f x ≥的概率是( ) (A )13(B )12(C )23(D )347.某大楼共有12层,有11人在第1层上了电梯,他们分别要去第2至第12层,每层1人.因特殊原因,电梯只允许停1次,只可使1人如愿到达,其余10人都要步行到达所去的楼层.假设这10位乘客的初始“不满意度”均为0,乘客每向下步行1层的“不满意度”增量为1,每向上步行1层的“不满意度”增量为2,10人的“不满意度”之和记为S ,则S 的最小值是( ) (A )42(B )41(C )40 (D )398.对数列{}n a ,如果*k ∃∈N 及12,,,k λλλ∈R ,使1122n k n k n k k n a a a a λλλ++-+-=+++成立,其中*n ∈N ,则称{}n a 为k 阶递归数列.给出下列三个结论: ① 若{}n a 是等比数列,则{}n a 为1阶递归数列; ② 若{}n a 是等差数列,则{}n a 为2阶递归数列;③ 若数列{}n a 的通项公式为2n a n =,则{}n a 为3阶递归数列.其中,正确结论的个数是( ) (A )0(B )1(C )2(D )3二、填空题共6小题,每小题5分,共30分.9.在△ABC 中,BC =,AC =,π3A =,则B = _____. 10.已知复数z 满足(1i)1z -⋅=,则z =_____.11.如图,△ABC 是⊙O 的内接三角形,PA 是⊙O 的切线,PB 交AC 于点E ,交⊙O 于点D .若PA PE =,60ABC ︒∠=,1PD =,9PB =,则PA =_____;EC =_____.12.已知函数2()1f x x bx =++是R 上的偶函数,则实数b =_____;不等式(1)||f x x -< 的解集为_____.13.一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,该几何体的体积是_____;若该几何体的所有顶点在同一球面上,则球的表面积是_____. 14.曲线C 是平面内到定点(0,1)F 和定直线:1l y =-的距离之和等于4的点的轨迹,给出下列三个结论:① 曲线C 关于y 轴对称;② 若点(,)P x y 在曲线C 上,则||2y ≤; ③ 若点P 在曲线C 上,则1||4PF ≤≤. 其中,所有正确结论的序号是____________.三、解答题共6小题,共80分. 解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)已知函数22π()cos ()sin 6f x x x =--. (Ⅰ)求π()12f 的值; (Ⅱ)若对于任意的π[0,]2x ∈,都有()f x c ≤,求实数c 的取值范围.C16.(本小题满分14分)如图,直角梯形A B C D 与等腰直角三角形ABE 所在的平面互相垂直.AB ∥CD ,BC AB ⊥,BC CD AB 22==,EA EB ⊥.(Ⅰ)求证:AB DE ⊥;(Ⅱ)求直线EC 与平面ABE 所成角的正弦值;(Ⅲ)线段EA 上是否存在点F ,使EC // 平面FBD ?若存在,求出EFEA;若不存在,说明理由.17.(本小题满分13分)甲、乙两人参加某种选拔测试.在备选的10道题中,甲答对其中每道题的概率都是53,乙能答对其中的5道题.规定每次考试都从备选的10道题中随机抽出3道题进行测试,答对一题加10分,答错一题(不答视为答错)减5分,至少得15分才能入选.(Ⅰ)求乙得分的分布列和数学期望;(Ⅱ)求甲、乙两人中至少有一人入选的概率. 18.(本小题满分13分)已知抛物线24y x =的焦点为F ,过点F 的直线交抛物线于A ,B 两点. (Ⅰ)若2AF FB =,求直线AB 的斜率;(Ⅱ)设点M 在线段AB 上运动,原点O 关于点M 的对称点为C ,求四边形OACB 面积的最小值. 19.(本小题满分14分)已知函数2221()1ax a f x x +-=+,其中a ∈R .(Ⅰ)当1a =时,求曲线()y f x =在原点处的切线方程; (Ⅱ)求)(x f 的单调区间;(Ⅲ)若)(x f 在[0,)+∞上存在最大值和最小值,求a 的取值范围. 20.(本小题满分13分) 若12(0n n i A a a a a ==或1,1,2,,)i n =,则称n A 为0和1的一个n 位排列.对于n A ,将排列121n n a a a a -记为1()n R A ;将排列112n n n a a a a --记为2()n R A ;依此类推,直至()n n n R A A =.对于排列n A 和()in R A (1,2,,1)i n =-,它们对应位置数字相同的个数减去对应位置数字不同的个数,叫做n A 和()i n R A 的相关值,记作(,())i n n t A R A .例如3110A =,则13()011R A =, 133(,())1t A R A =-.若(,())1(1,2,,1)in n t A R A i n =-=-,则称n A 为最佳排列.(Ⅰ)写出所有的最佳排列3A ; (Ⅱ)证明:不存在最佳排列5A ;(Ⅲ)若某个21(k A k +是正整数)为最佳排列,求排列21k A +中1的个数.一、选择题:本大题共8小题,每小题5分,共40分.1.D ; 2.D ; 3.B ; 4.A ; 5.C ; 6.C ; 7.C ; 8.D . 二、填空题:本大题共6小题,每小题5分,共30分. 9.π4; 10.1i22+; 11.3,4; 12.0,{|12}x x << 13.13,3π; 14.① ② ③.注:11、12、13第一问2分,第二问3分;14题少填不给分. 三、解答题:本大题共6小题,共80分. 15.(本小题满分13分)(Ⅰ)解:22ππππ()cos ()sin cos 1212126f =--==. ………………5分 (Ⅱ)解: 1π1()[1cos(2)](1cos 2)232f x x x =+--- ………………7分1π13[cos(2)cos 2]2cos 2)2322x x x x =-+=+ ………………8分π)23x =+. ………………9分 因为 π[0,]2x ∈,所以 ππ4π2[,]333x +∈, ………………10分所以当 ππ232x +=,即 π12x =时,()f x 取得最大值2. ………………11分所以 π[0,]2x ∀∈,()f x c ≤ 等价于c ≤.故当 π[0,]2x ∀∈,()f x c ≤时,c 的取值范围是)+∞. ………………13分 16.(本小题满分14分)(Ⅰ)证明:取AB 中点O ,连结EO ,DO .因为EA EB =,所以AB EO ⊥. ………………1分因为四边形ABCD 为直角梯形,BC CD AB 22==,BC AB ⊥, 所以四边形OBCD 为正方形,所以OD AB ⊥. ……………2分 所以⊥AB 平面EOD . ………………3分 所以 ED AB ⊥. ………………4分 (Ⅱ)解:因为平面⊥ABE 平面ABCD ,且 AB EO ⊥,所以⊥EO 平面ABCD ,所以OD EO ⊥.由OE OD OB ,,两两垂直,建立如图所示的空间直角坐标系xyz O -. …………5分因为三角形EAB 为等腰直角三角形,所以OE OD OB OA ===,设1=OB ,所以(0,0,0),(1,0,0),(1,0,0),(1(0,0,1)O A B C D E -. 所以 )1,1,1(-=,平面ABE 的一个法向量为(0,1,0)OD =. ………………7分 设直线EC 与平面ABE 所成的角为θ, 所以 ||3sin |cos ,|3||||EC OD EC OD EC OD θ⋅=〈〉==, 即直线EC 与平面ABE 所成角的正弦值为3. ………………9分 (Ⅲ)解:存在点F ,且13EF EA =时,有EC // 平面FBD . ………………10分 证明如下:由 )31,0,31(31--==,)32,0,31(-F ,所以)32,0,34(-=.设平面FBD 的法向量为v ),,(c b a =,则有0,0.BD FB ⎧⋅=⎪⎨⋅=⎪⎩v v所以 0,420.33a b a z -+=⎧⎪⎨-=⎪⎩ 取1=a ,得)2,1,1(=v . ………………12分 因为 ⋅EC v 0)2,1,1()1,1,1(=⋅-=,且⊄EC 平面FBD ,所以 EC // 平面FBD . 即点F 满足13EF EA =时,有EC // 平面FBD . ………………14分 17.(本小题满分13分)(Ⅰ)解:设乙答题所得分数为X ,则X 的可能取值为15,0,15,30-.………………1分35310C 1(15)C 12P X =-==; 2155310C C 5(0)C 12P X ===; 1255310C C 5(15)C 12P X ===; 35310C 1(30)C 12P X ===. ………………5分乙得分的分布列如下:6分155115(15)01530121212122EX =⨯-+⨯+⨯+⨯=. ………………7分 (Ⅱ)由已知甲、乙至少答对2题才能入选,记甲入选为事件A ,乙入选为事件B .则 223332381()C ()()()555125P A =+=, ………………10分 511()12122P B =+=. ………………11分 故甲乙两人至少有一人入选的概率4411031()11252125P P A B =-⋅=-⨯=. ……13分 18.(本小题满分13分)(Ⅰ)解:依题意(1,0)F ,设直线AB 方程为1x my =+. ………………1分将直线AB 的方程与抛物线的方程联立,消去x 得2440y my --=. …………3分 设11(,)A x y ,22(,)B x y ,所以 124y ym +=,124y y =-. ① ………………4分 因为 2AF FB =,所以 122y y =-. ② ………………5分联立①和②,消去12,y y ,得4m =±. ………6分所以直线AB的斜率是±………………7分(Ⅱ)解:由点C 与原点O 关于点M 对称,得M 是线段OC 的中点,从而点O 与点C 到直线AB 的距离相等,所以四边形OACB 的面积等于2AOB S ∆. ……………… 9分 因为 12122||||2AOB S OF y y ∆=⨯⋅⋅- ………………10分== ………………12分所以 0m =时,四边形OACB 的面积最小,最小值是4. ………………13分 19.(本小题满分14分) (Ⅰ)解:当1a =时,22()1xf x x=+,22(1)(1)()2(1)x x f x x +-'=-+. ………………2分由 (0)2f '=, 得曲线()y f x =在原点处的切线方程是20x y -=.…………3分(Ⅱ)解:2()(1)()21x a ax f x x +-'=-+. ………………4分 ① 当0a =时,22()1xf x x '=+.所以()f x 在(0,)+∞单调递增,在(,0)-∞单调递减. ………………5分当0a ≠,21()()()21x a x a f x a x +-'=-+.② 当0a >时,令()0f x '=,得1x a =-,21x=,()f x 与()f x '的情况如下:故)(x f 的单调减区间是(,)a -∞-,1(,)a +∞;单调增区间是1(,)a a-. ………7分 ③ 当0a <时,()f x 与()f x '的情况如下:所以()f x 的单调增区间是1(,)a -∞;单调减区间是1(,)a a--,(,)a -+∞. ………………9分(Ⅲ)解:由(Ⅱ)得, 0a =时不合题意.………………10分当0a >时,由(Ⅱ)得,)(x f 在1(0,)a 单调递增,在1(,)a+∞单调递减,所以)(x f 在(0,)+∞上存在最大值21()0f a a=>. 设0x 为)(x f 的零点,易知2012a x a -=,且01x a<.从而0x x >时,()0f x >;0x x <时,()0f x <.若)(x f 在[0,)+∞上存在最小值,必有(0)0f ≤,解得11a -≤≤.所以0a >时,若)(x f 在[0,)+∞上存在最大值和最小值,a 的取值范围是(0,1]. ………………12分当0a <时,由(Ⅱ)得,)(x f 在(0,)a -单调递减,在(,)a -+∞单调递增,所以)(x f 在(0,)+∞上存在最小值()1f a -=-.若)(x f 在[0,)+∞上存在最大值,必有(0)0f ≥,解得1a ≥,或1a ≤-.所以0a <时,若)(x f 在[0,)+∞上存在最大值和最小值,a 的取值范围是(,1]-∞-. 综上,a 的取值范围是(,1](0,1]-∞-. ………………14分20.(本小题满分13分)(Ⅰ)解:最佳排列3A 为110,101,100,011,010,001. ………………3分 (Ⅱ)证明:设512345A a a a a a =,则1551234()R A a a a a a =,因为 155(,())1t A R A =-,所以15||a a -,21||a a -,32||a a -,43||a a -,54||a a -之中有2个0,3个1.按512345a a a a a a →→→→→的顺序研究数码变化,由上述分析可知有2次数码不发生改变,有3次数码发生了改变.但是5a 经过奇数次数码改变不能回到自身,所以不存在5A ,使得155(,())1t A R A =-,从而不存在最佳排列5A . ………………7分 (Ⅲ)解:由211221(0k k i A a a a a ++==或1,1,2,,21)i k =+,得12121122()k k k R A a a a a ++=, 2212211221()k k k k R A a a a a a ++-=,……2121342112()k k k R A a a a a a -++=, 22123211()k k k R A a a a a ++=.因为 2121(,())1(1,2,,2)ik k t A R A i k ++=-=,所以 21k A +与每个21()ik R A +有k 个对应位置数码相同,有1k +个对应位置数码不同,因此有12121221212||||||||1k k k k k a a a a a a a a k +-+-+-++-+-=+, 122212222121||||||||1k k k k k k a a a a a a a a k +-+--+-++-+-=+,……,132421212||||||||1k k a a a a a a a a k +-+-++-+-=+,1223221211||||||||1k k k a a a a a a a a k ++-+-++-+-=+.以上各式求和得, (1)2S k k =+⨯. ………………10分 另一方面,S 还可以这样求和:设12221,,...,,k k a a a a +中有x 个0,y 个1,则2S xy =. ………………11分 所以21,22(1).x y k xy k k +=+⎧⎨=+⎩ 解得,1,x k y k =⎧⎨=+⎩或1,.x k y k =+⎧⎨=⎩所以排列21k A +中1的个数是k 或1k +. ………………13分。
北京市西城区2012届高三第一次模拟考试理科数学试题
北京市西城区2012年高三一模试卷数 学(理科) 2012.4第Ⅰ卷(选择题 共40分)一、选择题共8小题,每小题5分,共40分. 在每小题列出的四个选项中,选出符合题目要求的一项. 1.已知全集U =R ,集合1{|1}A x x=≥,则U A =ð( ) (A )(0,1) (B )(0,1](C )(,0](1,)-∞+∞ (D )(,0)[1,)-∞+∞2.执行如图所示的程序框图,若输入2x =,则输出y 的 值为( ) (A )2 (B )5 (C )11 (D )233.若实数x ,y 满足条件0,30,03,x y x y x +≥⎧⎪-+≥⎨⎪≤≤⎩则2x y -的最大值为( )(A )9 (B )3 (C )0 (D )3-4.已知正六棱柱的底面边长和侧棱长相等,体积为3. 其三视图中的俯视图如图所示,则其左视图的面积是( ) (A)2 (B)2 (C )28cm(D )24cm5.已知函数44()sin cos f x x x ωω=-的最小正周期是π,那么正数ω=( )(A )2(B )1(C )12(D )146.若2log 3a =,3log 2b =,4log 6c =,则下列结论正确的是( ) (A )b a c << (B )a b c << (C )c b a << (D )b c a <<7.设等比数列{}n a 的各项均为正数,公比为q ,前n 项和为n S .若对*n ∀∈N ,有23n n S S <,则q 的取值范围是( ) (A )(0,1] (B )(0,2)(C )[1,2)(D)8.已知集合230123{|333}A x x a a a a ==+⨯+⨯+⨯,其中{0,1,2}(0,1,2,3)k a k ∈=,且30a ≠.则A 中所有元素之和等于( ) (A )3240(B )3120(C )2997(D )2889第Ⅱ卷(非选择题 共110分)二、填空题共6小题,每小题5分,共30分.9. 某年级120名学生在一次百米测试中,成绩全部介于13秒与18秒之间.将测试结果分成5组:[1314),,[1415),, [1516),,[1617),,[1718],,得到如图所示的频率分布直方图.如果从左到右的5个小矩形的面积之比为1:3:7:6:3,那么成绩在[16,18]的学生人数是_____.10.6(2)x -的展开式中,3x 的系数是_____.(用数字作答)11. 如图,AC 为⊙O 的直径,OB AC ⊥,弦BN 交AC于点M.若OC =1OM =,则MN =_____.12. 在极坐标系中,极点到直线:l πsin()4ρθ+=_____.ABCOMN13. 已知函数12,0,(),20,x x c f x x x x ⎧≤≤⎪=⎨+-≤<⎪⎩ 其中0c >.那么()f x 的零点是_____;若()f x 的值域是1[,2]4-,则c 的取值范围是_____.14. 在直角坐标系xOy 中,动点A ,B分别在射线(0)y x x =≥和(0)y x =≥上运动,且△OAB 的面积为1.则点A ,B 的横坐标之积为_____;△OAB 周长的最小值是_____.三、解答题共6小题,共80分. 解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)在△ABC 中,已知sin()sin sin()A B B A B +=+-. (Ⅰ)求角A ;(Ⅱ)若||7BC =,20=⋅,求||AB AC +.16.(本小题满分13分)乒乓球单打比赛在甲、乙两名运动员间进行,比赛采用7局4胜制(即先胜4局者获胜,比赛结束),假设两人在每一局比赛中获胜的可能性相同.(Ⅰ)求甲以4比1获胜的概率;(Ⅱ)求乙获胜且比赛局数多于5局的概率; (Ⅲ)求比赛局数的分布列.17.(本小题满分14分)如图,四边形ABCD 与BDEF 均为菱形, ︒=∠=∠60DBF DAB ,且FA FC =. (Ⅰ)求证:AC ⊥平面BDEF ;(Ⅱ)求证:FC ∥平面EAD ; (Ⅲ)求二面角B FC A --的余弦值.18.(本小题满分13分)已知函数()e (1)axaf x a x=⋅++,其中1-≥a .(Ⅰ)当1a =时,求曲线()y f x =在点(1,(1))f 处的切线方程; (Ⅱ)求)(x f 的单调区间. 19.(本小题满分14分)已知椭圆:C 22221(0)x y a b a b +=>>的离心率为3,定点(2,0)M ,椭圆短轴的端点是1B ,2B ,且12MB MB ⊥.(Ⅰ)求椭圆C 的方程;(Ⅱ)设过点M 且斜率不为0的直线交椭圆C 于A ,B 两点.试问x 轴上是否存在定点P ,使PM 平分APB ∠?若存在,求出点P 的坐标;若不存在,说明理由. 20.(本小题满分13分)对于数列12:,,,(,1,2,,)n n i A a a a a i n ∈=N ,定义“T 变换”:T 将数列n A 变换成数 列12:,,,n n B b b b ,其中1||(1,2,,1)i i i b a a i n +=-=-,且1||n n b a a =-,这种“T 变换”记作()n n B T A =.继续对数列n B 进行“T 变换”,得到数列n C ,…,依此类推,当得到的数列各项均为0时变换结束.(Ⅰ)试问3:4,2,8A 和4:1,4,2,9A 经过不断的“T 变换”能否结束?若能,请依次写出经过“T 变换”得到的各数列;若不能,说明理由;(Ⅱ)求3123:,,A a a a 经过有限次“T 变换”后能够结束的充要条件; (Ⅲ)证明:41234:,,,A a a a a 一定能经过有限次“T 变换”后结束.北京市西城区2012年高三一模试卷数学(理科)参考答案及评分标准2012.4一、选择题:本大题共8小题,每小题5分,共40分.1.C;2. D;3. A;4.A;5. B;6. D;7. A;8. D .二、填空题:本大题共6小题,每小题5分,共30分.;11.1;9.54;10.16012 13.1-和0,(0,4]; 14.2,2(1. 注:13题、14题第一问2分,第二问3分.三、解答题:本大题共6小题,共80分.15.(本小题满分13分)(Ⅰ)解:原式可化为 B A B A B A B sin cos 2)sin()sin(sin =--+=. ………………3分因为(0,π)B ∈, 所以 0sin >B , 所以 21cos =A . ………………5分因为(0,π)A ∈, 所以 π3A =. ………………6分(Ⅱ)解:由余弦定理,得 222||||||2||||cos BC AB AC AB AC A =+-⋅.………………8分因为 ||7BC =,||||cos 20AB AC AB AC A ⋅=⋅=,所以 22||||89AB AC +=. ………………10分因为 222||||||2129AB AC AB AC AB AC +=++⋅=, ………………12分所以 ||129AB AC += ………………13分16.(本小题满分13分)(Ⅰ)解:由已知,甲、乙两名运动员在每一局比赛中获胜的概率都是21. ………………1分记“甲以4比1获胜”为事件A , 则334341111()C ()()2228P A -==. ………………4分(Ⅱ)解:记“乙获胜且比赛局数多于5局”为事件B . 因为,乙以4比2获胜的概率为3353151115C ()()22232P -==, ………………6分乙以4比3获胜的概率为3363261115C ()()22232P -==, ………………7分所以 125()16P B P P =+=. ………………8分(Ⅲ)解:设比赛的局数为X ,则X 的可能取值为4,5,6,7.44411(4)2C ()28P X ===, ………………9分334341111(5)2C ()()2224P X -===, ………………10分335251115(6)2C ()()22216P X -==⋅=, ………………11分336361115(7)2C ()()22216P X -==⋅=. ………………12分比赛局数的分布列为:X 4 5 6 7 P18 14 516 516………………13分17.(本小题满分14分)(Ⅰ)证明:设AC 与BD 相交于点O ,连结FO .因为 四边形ABCD 为菱形,所以BD AC ⊥, 且O 为AC 中点. ………………1分又 FC FA =,所以 AC FO ⊥. ………3分 因为 O BD FO = ,所以 ⊥AC 平面BDEF . ………………4分 (Ⅱ)证明:因为四边形ABCD 与BDEF 均为菱形,所以AD //BC ,DE //BF ,所以平面FBC//平面EAD . ………………7分又⊂FC 平面FBC , 所以FC// 平面EAD . ………………8分(Ⅲ)解:因为四边形BDEF 为菱形,且︒=∠60DBF ,所以△DBF 为等边三角形.因为O 为BD 中点,所以BD FO ⊥,故FO ⊥平面ABCD .由OF OB OA ,,两两垂直,建立如图所示的空间直角坐标系xyz O -. ………………9分设2=AB .因为四边形ABCD 为菱形,︒=∠60DAB ,则2=BD ,所以1OB =,OA OF ==所以 )3,0,0(),0,0,3(),0,1,0(),0,0,3(),0,0,0(F C B A O -.所以(3,0,CF =,(3,1,0)CB =.设平面BFC 的法向量为=()x,y,z n ,则有0,0.CF CB ⎧⋅=⎪⎨⋅=⎪⎩n n所以 ⎩⎨⎧=+=+.03,033y x z x 取1=x ,得)1,3,1(--=n . ………………12分易知平面AFC 的法向量为(0,1,0)=v . ………………13分由二面角B FC A --是锐角,得cos ,⋅〈〉==n v n v n v. 所以二面角B FC A --的余弦值为515. ………………14分18.(本小题满分13分)(Ⅰ)解:当1a =时,1()e (2)x f x x =⋅+,211()e (2)xf x x x '=⋅+-. ………………2分由于(1)3e f =,(1)2e f '=,所以曲线()y f x =在点(1,(1))f 处的切线方程是2e e 0x y -+=. ………………4分(Ⅱ)解:2(1)[(1)1]()e axx a x f x a x++-'=,0x ≠. ………………6分① 当1-=a 时,令()0f x '=,解得 1x =-.)(x f 的单调递减区间为(,1)-∞-;单调递增区间为(1,0)-,(0,)+∞. (8)分当1a ≠-时,令()0f x '=,解得 1x =-,或11x a =+. ② 当01<<-a 时,)(x f 的单调递减区间为(,1)-∞-,1(,)1a +∞+;单调递增区间为(-,1(0,)1a +. ………………10分 ③ 当0=a 时,()f x 为常值函数,不存在单调区间. ………………11分④ 当0a >时,)(x f 的单调递减区间为(1,0)-,1(0,)1a +;单调递增区间为(,1)-∞-,1(,)1a +∞+. ………………13分19.(本小题满分14分)(Ⅰ)解:由 222222519a b b e a a-===-, 得 23b a =. ………………2分依题意△12MB B 是等腰直角三角形,从而2b =,故3a =. ………………4分所以椭圆C的方程是22194x y +=. ………………5分 (Ⅱ)解:设11(,)A x y ,22(,)B x y ,直线AB 的方程为2x my =+.将直线AB 的方程与椭圆C 的方程联立, 消去x得22(49)16200m y my ++-=. ………………7分所以 1221649m y y m -+=+,1222049y y m -=+. ………………8分若PF 平分APB ∠,则直线PA ,PB 的倾斜角互补, 所以0=+PB PA k k . ………………9分设(,0)P a ,则有12120y yx a x a+=--. 将 112x my =+,222x my =+代入上式, 整理得1212122(2)()0(2)(2)my y a y y my a my a +-+=+-+-,所以 12122(2)()0my y a y y +-+=. ………………12分将 1221649m y y m -+=+,1222049y y m -=+代入上式, 整理得 (29)0a m -+⋅=. ………………13分由于上式对任意实数m 都成立,所以 92a =. 综上,存在定点9(,0)2P ,使PM 平分APB ∠. ………………14分20.(本小题满分13分)(Ⅰ)解:数列3:4,2,8A 不能结束,各数列依次为2,6,4;4,2,2;2,0,2;2,2,0;0,2,2;2,0,2;….从而以下重复出现,不会出现所有项均为0的情形. ………………2分数列4:1,4,2,9A 能结束,各数列依次为3,2,7,8;1,5,1,5;4,4,4,4;0,0,0,0. ………………3分(Ⅱ)解:3A 经过有限次“T 变换”后能够结束的充要条件是123a a a ==.………………4分若123a a a ==,则经过一次“T 变换”就得到数列0,0,0,从而结束. ……………5分当数列3A 经过有限次“T 变换”后能够结束时,先证命题“若数列3()T A 为常数列,则3A 为常数列”.当123a a a ≥≥时,数列3122313():,,T A a a a a a a ---.由数列3()T A 为常数列得122313a a a a a a -=-=-,解得123a a a ==,从而数列3A 也为常数列.其它情形同理,得证.在数列3A 经过有限次“T 变换”后结束时,得到数列0,0,0(常数列),由以上命题,它变换之前的数列也为常数列,可知数列3A 也为常数列. ………………8分所以,数列3A 经过有限次“T 变换”后能够结束的充要条件是123a a a ==. (Ⅲ)证明:先证明引理:“数列()n T A 的最大项一定不大于数列n A 的最大项,其中3n ≥”.证明:记数列n A 中最大项为max()n A ,则0max()i n a A ≤≤.令()n n B T A =,i p q b a a =-,其中p q a a ≥.因为0q a ≥, 所以max()i p n b a A ≤≤,故max()max()n n B A ≤,证毕. ………………9分现将数列4A 分为两类.第一类是没有为0的项,或者为0的项与最大项不相邻(规定首项与末项相邻),此时由引理可知,44max()max()1B A ≤-.第二类是含有为0的项,且与最大项相邻,此时44max()max()B A =. 下面证明第二类数列4A 经过有限次“T 变换”,一定可以得到第一类数列. 不妨令数列4A 的第一项为0,第二项a 最大(0a >).(其它情形同理) ① 当数列4A 中只有一项为0时,若4:0,,,A a b c (,,0a b a c bc >>≠),则4():,,||,T A a a b b c c--,此数列各项均不为0或含有0项但与最大项不相邻,为第一类数列;若4:0,,,(,0)A a a b a b b >≠,则4():,0,T A a a b b -;4(()):,,|2|,T T A a a b a b a b ---此数列各项均不为0或含有0项但与最大项不相邻,为第一类数列;若4:0,,,A a b a (,0a b b >≠),则4():,,,T A a a b a b b--,此数列各项均不为0,为第一类数列;若4:0,,,A a a a ,则4():,0,0,T A a a ;4(()):,0,,0T T A a a ;4((())):,,,T T T A a a a a , 此数列各项均不为0,为第一类数列.② 当数列4A 中有两项为0时,若4:0,,0,A a b (0a b ≥>),则4():,,,T A a a b b ,此数列各项均不为0,为第一类数列;若4:0,,,0A a b (0a b ≥>),则():,,,0T A a a b b -,(()):,|2|,,T T A b a b b a -,此数列各项均不为0或含有0项但与最大项不相邻,为第一类数列.③ 当数列4A 中有三项为0时,只能是4:0,,0,0A a ,则():,,0,0T A a a , (()):0,,0,T T A a a ,((())):,,,T T T A a a a a ,此数列各项均不为0,为第一类数列.总之,第二类数列4A 至多经过3次“T 变换”,就会得到第一类数列,即至多连续经历3次“T 变换”,数列的最大项又开始减少.又因为各数列的最大项是非负整数,故经过有限次“T变换”后,数列的最大项一定会为0,此时数列的各项均为0,从而结束.………………13分薄雾浓云愁永昼,瑞脑消金兽。
2012西城数学一模答案
北京市西城区2012年初三一模试卷数学答案及评分标准 2012. 5一、选择题(本题共32分,每小题4分) 题号 1 2 3 4 5 6 7 8 答案ACBCBDBC二、填空题(本题共16分,每小题4分)9101112x ≥-2()223b a -13 13+-或(各2分)4,4(各2分)三、解答题(本题共30分,每小题5分) 13.解:原式=32133321++⨯- …………………………………………………………4分=323+.…………………………………………………………………… 5分14.解:由①得2->x .……………………………………………………………………1分由②得x ≤37. ……………………………………………………………………3分∴ 原不等式组的解集是-2< x ≤37.………………………………………………4分∴ 它的非负整数解为0,1,2.………………………………………………… 5分 15.(1)证明:如图1.∵ ∠ABC=90º,D 为AB 延长线上一点,∴ ∠A BE=∠CBD=90º . …………………………………………………1分 在△ABE 和△CBD 中,⎪⎩⎪⎨⎧=∠=∠=,,,BD BE CBD ABE CB AB∴ △ABE ≌△CBD. …………………… 2分(2)解:∵ AB=CB ,∠ABC=90º,∴ ∠CAB =45°. …….…………………… 3分 又∵ ∠CAE=30º,∴ ∠BAE =15°. ……………………………………………………………4分∵ △ABE ≌△CBD ,∴ ∠BCD =∠BAE =15°. ……………………………………………………5分16. 解:原式=()()()()2a ab a b a b ba ab ++-⋅- =()22b b a +. ..….….….….….……………………3分①② 图1⎪⎩⎪⎨⎧-+<-2115)1(3x x x ,≥2x -4,∵ 2a +b =0,∴ a b 2-=. ……………………………………………………………………… 4分 ∴ 原式=22224)2()(aaa a =--.∵ a 不为0,∴ 原式=41. (5)分17. 解:(1)∵ 反比例函数 的图象经过点),2(m A ,[来源:] ∴ 2m k =,且m >0.∵ AB ⊥x 轴于点B ,△AOB 的面积为1,∴ 1212m ⋅⋅=.解得 1=m . ........................................................................ 1分 ∴ 点A 的坐标为)1,2(. (2)分∴ 22km ==. (3)分(2)点C 的坐标为(0,3)或(0,-1). (5)分18.解:设甲工厂每天能加工x 件新产品,则乙工厂每天能加工1.5x 件新产品. 依题意得 105.112001200+=xx. ……………………………………………………2分解得40=x . …………………………………………………………………… 3分 经检验,40=x 是原方程的解,并且符合题意. …………………………… 4分[来源:学科网ZXXK]∴ 605.1=x .答: 甲工厂每天能加工40件新产品, 乙工厂每天能加工60件新产品. ……………5分四、解答题(本题共20分,每小题5分)19.解:(1)2,50;…………………………………2分 (2)5040%20⨯=,C 组的户数为20. … 3分补图见图2. …………………………4分 (3)∵ 500(28%8%)180⨯+=,∴ 根据以上信息估计,全社区捐款不少于300元的户数是180.[来源:学科网] ……………………………… 5分20.解:(1)∵ 梯形ABCD 中,AD ∥BC ,90A ∠=︒,60C ∠=︒,∴ 90ABC ∠=︒,180120AD C C ∠=︒-∠=︒. 在Rt △ABD 中,∵90A ∠=︒,15ABD ∠=︒,)0(>=k xk y 图2捐款户数分组统计图1∴ 75AD B ∠=︒.∴ 45BD C AD C AD B ∠=∠-∠=︒.…… 2分 (2)作BE C D ⊥于点E ,D F BC ⊥于点F .(如图3)在Rt △BCE 中,∵ BC=2,60C ∠=︒,∴ sin 3BE BC C =⋅=,cos 1C E BC C =⋅=. ∵ 45BD C ∠=︒, ∴ 3DE BE ==.∴ 31CD DE CE =+=+. …………………………………………… 3分 ∵ BC D F C D BE ⋅=⋅, ∴ (31)33322C D B E D F B C⋅+⋅+===. …………………………… 4分∵ AD ∥BC ,90A ∠=︒,D F BC ⊥,∴ 332AB D F +==. …………………………………………………… 5分21.解:(1)作O F BD ⊥于点F ,连结OD .(如图4) ∵ ∠BAD=60°,∴ ∠BOD=2∠BAD =120°.……………1分 又∵OB =OD ,∴ 30O BD∠=︒.……………………… 2分∵ AC 为⊙O 的直径,AC=4, ∴ OB= OD= 2.在Rt △BOF 中,∵∠OFB =90°, OB=2,︒=∠30OBF , ∴ 130sin 2sin =︒=∠⋅=OBF OB OF ,即点O 到BD 的距离等于1. ………………………………………… 3分(2)∵ OB= OD ,O F BD ⊥于点F ,∴ BF=DF .由DE=2BE ,设BE=2x ,则DE=4x ,BD=6x ,EF=x ,BF=3x . ∵ cos 303BF OB =⋅︒=,∴ 33x =, EF=33.在Rt △OEF 中,90O FE ∠=︒, ∵ tan 3O F O ED EF∠==,∴ 60O ED ∠=︒,1cos 2O ED ∠=. …………………………………… 4分∴ 30BO E O ED O BD ∠=∠-∠=︒. ∴ 90D O C D O B BO E ∠=∠-∠=︒. ∴ 45C ∠=︒.∴ 222CD OC ==. ………………………………………………… 5分22.解:(1)135°;………………………………………………………………………… 2分图3FEA DBC图4FE DAOCB(2)120°;………………………………………………………………………… 3分27 . ……………………………………………………………………… 5分五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.解:(1)∵ 关于x 的一元二次方程2 10x px q +++=的一个实数根为 2,∴ 22 210p q +++=.…………………………………………………… 1分 整理,得 25q p =--. …………………………………………………… 2分 (2)∵ 222244(25)820(4)4p q p p p p p ∆=-=++=++=++, 无论p 取任何实数,都有2(4)p +≥0,∴ 无论p 取任何实数,都有 2(4)40p ++>.∴ 0∆>. ………………………………………………………………… 3分∴ 抛物线2y x px q =++与x 轴有两个交点.………………………… 4分(3)∵ 抛物线21y x px q =++与抛物线221y x px q =+++的对称轴相同,都为直线2p x =-,且开口大小相同,抛物线221y x px q =+++可由抛物线21y x px q =++沿y 轴方向向上平移一个单位得到,(如图5所示,省略了x 轴、y 轴) ∴ EF ∥MN ,EF =MN =1.∴ 四边形FEMN 是平行四边形. ………………5分 由题意得 22FEMN p S EF =⨯-=四边形.解得4p =±.………………………………………7分24.证明:(1)如图6.∵ 点B 关于直线CH 的对称点为D ,CH ⊥AB 于点H ,直线DE 交直线CH 于点F , ∴ BF=DF ,DH=BH .…………………1分 ∴ ∠1=∠2.又∵ ∠EDA =∠A ,∠EDA =∠1, ∴ ∠A =∠2.∴ BF ∥AC .……………………………………………………………… 2分 (2)取FD 的中点N ,连结HM 、HN . ∵ H 是BD 的中点,N 是FD 的中点,∴ HN ∥BF . 由(1)得BF ∥AC , ∴ HN ∥AC ,即HN ∥EM . ∵ 在Rt △ACH 中,∠AHC =90°,AC 边的中点为M ,图6图5y 2y 1FE N M∴ 12H MAC AM==.∴ ∠A =∠3. ∴ ∠EDA =∠3. ∴ NE ∥HM .∴ 四边形ENHM 是平行四边形.……………………………………… 3分 ∴ HN=EM .∵ 在Rt △DFH 中,∠DHF =90°,DF 的中点为N , ∴ 12H ND F=,即2D F H N =.∴ 2DF EM =. ………………………………………………………… 4分 (3)当AB =BC 时,在未添加辅助线和其它字母的条件下,原题图2中所有与BE相等的线段是EF 和CE . (只猜想结论不给分) 证明:连结CD .(如图8)∵ 点B 关于直线CH 的对称点为D ,CH ⊥AB 于点H ,∴ BC=CD ,∠ABC =∠5. ∵ AB =BC ,∴ 1802ABC A ∠=︒-∠,AB =CD .①∵ ∠EDA =∠A ,∴ 61802A ∠=︒-∠,AE =DE .② ∴ ∠ABC =∠6=∠5. ∵ ∠BDE 是△ADE 的外角, ∴ 6BD E A ∠=∠+∠. ∵ 45BD E ∠=∠+∠, ∴ ∠A =∠4.③由①,②,③得 △ABE ≌△DCE .………………………………………5分 ∴ BE = CE . ……………………………………………………………… 6分由(1)中BF=DF 得 ∠CFE=∠BFC .由(1)中所得BF ∥AC 可得 ∠BFC=∠ECF . ∴ ∠CFE=∠ECF . ∴ EF=CE .∴ BE=EF . ……………………………………………………………… 7分 ∴ BE =EF =CE .(阅卷说明:在第3问中,若仅证出BE =EF 或BE =CE 只得2分)图825.解:(1)∵ 2244(2)y ax ax a c a x c =-++=-+,∴ 抛物线的对称轴为直线2x =.∵ 抛物线244y ax ax a c =-++与x 轴交于 点A 、点B ,点A 的坐标为(1,0),∴ 点B 的坐标为(3,0),OB =3.…………… 1分 可得该抛物线的解析式为(1)(3)y a x x =--. ∵ OB =OC ,抛物线与y 轴的正半轴交于点C , ∴ OC =3,点C 的坐标为(0,3).将点C 的坐标代入该解析式,解得a =1.……2分∴ 此抛物线的解析式为243y x x =-+.(如图9)…………………… 3分(2)作△ABC 的外接圆☉E ,设抛物线的对称轴与x 轴的交点为点F ,设☉E 与抛物线的对称轴位于x 轴上方的部分的交点为点1P ,点1P 关于x 轴的对称点为点2P ,点1P 、点2P 均为所求点.(如图10)可知圆心E 必在AB 边的垂直平分线即抛物线的对称轴直线2x =上.∵ 1AP B ∠、A C B ∠都是弧AB 所对的圆周角,∴ ACB B AP ∠=∠1,且射线FE 上的其它点P 都不满足ACB APB ∠=∠. 由(1)可知 ∠OBC=45°,AB=2,OF=2.可得圆心E 也在BC 边的垂直平分线即直线y x =上.∴ 点E 的坐标为(2,2)E .………………………………………………… 4分∴ 由勾股定理得 5EA =.∴ 15EP EA ==.∴ 点1P 的坐标为1(2,25)P +.…………………………………………… 5分 由对称性得点2P 的坐标为2(2,25)P --. ……………………………… 6分 ∴符合题意的点P 的坐标为1(2,25)P +、2(2,25)P --. (3)∵ 点B 、D 的坐标分别为(3,0)B 、(2,1)D -,可得直线BD 的解析式为3y x =-,直线BD 与x 轴所夹的锐角为45°.[来源:学科网]∵ 点A 关于∠AQB 的平分线的对称点为A ',(如图11) 若设A A '与∠AQB 的平分线的交点为M ,则有 QA QA '=,AM A M '=,AA QM '⊥,Q ,B ,A '三点在一条直线上. ∵ 2Q A Q B -=,∴ .2''=-=-=QB QA QB QA BA作A N '⊥x 轴于点N .∵ 点Q 在线段BD 上, Q ,B ,A '三点在一条直线上, ∴ sin 451A N B A ''=⋅︒=,cos 451B N B A '=⋅︒=. ∴ 点A '的坐标为(4,1)A '. ∵ 点Q 在线段BD 上,图9xyO 1DCBA∴ 设点Q 的坐标为(,3)Q x x -,其中23x <<. ∵ QA QA '=,∴ 由勾股定理得 2222(1)(3)(4)(31)x x x x -+-=-+--. 解得114x =.经检验,114x =在23x <<的范围内.∴ 点Q 的坐标为111(,)44Q -. …………………………………………… 7分 此时1115()2(1)2244Q AA A AB Q AB A Q S S S AB y y '''∆∆∆=+=⋅⋅+=⨯⨯+=.… 8分图10xy O 1FP 2EP 1DCBA图11xyO QMA'DB AN。
北京市各区2012年高考数学一模试题分类解析(6) 数列 理
六、数列2.(2012年海淀一模理2)在等比数列{}n a 中,14358a a a a ==,,则7a =( B )A .116B .18 C .14 D .127.(2012年西城一模理7)设等比数列{}n a 的各项均为正数,公比为q ,前n 项和为n S .若对*n ∀∈N ,有23n n S S <,则q 的取值范围是( A )A .(0,1]B .(0,2)C .[1,2) D.6.(2012年东城一模理6)已知x ,y ,z ∈R ,若1-,x ,y ,z ,3-成等比数列,则xyz 的值为( C )A .3-B .3±C.-.±10.(2012年丰台一模理10)已知等比数列}{n a 的首项为1,若14a ,22a ,3a 成等差数 列,则数列1{}na 的前5项和为______. 答案:3116. 2.(2012年门头沟一模理2)在等差数列{}n a 中,13a =,32a =,则此数列的前10项之和10S 等于( B ) A.55.5B.7.5C.75D.15-3.(2012年朝阳一模理3)已知数列{}n a 的前n 项和为n S ,且21()n n S a n N *=-∈,则5a =( B )A. 16-B. 16C. 31D. 3210.(2012年石景山一模理10)等差数列{}n a 前9项的和等于前4项的和.若40k a a +=,则k =________. 答案:10。
2.(2012年密云一模理2)设n S 为等比数列{}n a 的前n 项和,2580a a +=,则52S S =( D )A .11B .5C .8-D .11-20.(2012年丰台一模理20)已知函数2()f x x x =+,'()f x 为函数()f x 的导函数.(Ⅰ)若数列{}n a 满足1'()n n a f a +=,且11a =,求数列{}n a 的通项公式;(Ⅱ)若数列{}n b 满足1b b =,1()n n b f b +=.(ⅰ)是否存在实数b ,使得数列{}n b 是等差数列?若存在,求出b 的值;若不存在,请说明理由;(ⅱ)若b>0,求证:111ni i i b b b =+<∑. 解:(Ⅰ)因为 2()f x x x =+, 所以 '()21f x x =+.所以 121n n a a +=+, 所以 112(1)n n a a ++=+,且11112a +=+=, 所以数列{1}n a +是首项为2,公比为2的等比数列. 所以 11222n n n a -+=⋅=, 即21n n a =-. ……4分(Ⅱ)(ⅰ)假设存在实数b ,使数列{}n b 为等差数列,则必有2132b b b =+,且1b b =,221()b f b b b ==+,22232()()()b f b b b b b ==+++. 所以 22222()()()b b b b b b b +=++++, 解得 0b =或2b =-.当0b =时,10b =,1()0n n b f b +==,所以数列{}n b 为等差数列; 当2b =-时,12b =-,22b =,36b =,442b =,显然不是等差数列. 所以,当0b =时,数列{}n b 为等差数列. ……9分 (ⅱ)10b b =>,1()n n b f b +=,则21()n n n n b f b b b +==+; 所以 21n n n b b b +=-;所以 211111111n n n n n n n n n n n n n n n b b b b b b b b b b b b b b b ++++++⋅-====-⋅⋅⋅. 因为 210n n n b b b +=->,所以 1110n n n b b b b b +->>>>=> ;所以11122311*********()()()ni i i n n n b b b b b b b b b b b =+++=-+-++-=-<∑ .20.(2012年东城11校联考理20)直线2121:)21,0(1:21+=±≠≠-+=x y l k k k kx y l 与相交于点P .直线1l 与x 轴交于点1P ,过点1P 作x 轴的垂线交直线2l 于点1Q ,过点1Q 作y 轴的垂线交直线1l 于点2P ,过点2P 作x 轴的垂线交直线2l 于点2Q ,…,这样一直作下去,可得到一系列1122,,,P Q P Q ,…,点n P (1,2,)n = 的横坐标构成数列{}.n x (1)当2=k 时,求点123,,P P P 的坐标并猜出点n P 的坐标;(2)证明数列{}1-n x 是等比数列,并求出数列{}n x 的通项公式;(3)比较5||4||22122+PP k PP n 与的大小.解:(1)⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛1615,3231,43,87,0,21321P P P ,可猜得⎪⎪⎭⎫ ⎝⎛------22221212212,212n n n n n P .……4分(2)设点n P 的坐标是),(n n y x ,由已知条件得点1,n n Q P +的坐标分别是:).2121,(),2121,(1+++n n n n x x x x 由1n P +在直线1l 上,得 .121211k kx x n n -+=++所以 ),1()1(211-=-+n n x k x 即 111(1),2n n x x n k*+-=-∈N 所以数列 }1{-n x 是首项为,11-x 公比为k21的等比数列.由题设知 ,011,1111≠-=--=kx k x从而 11111(),12(),.22n n n n x x n k k k -*-=-⨯=-⨯∈N 即 ……9分(3)由⎪⎩⎪⎨⎧+=-+=,2121,1x y k kx y 得点P 的坐标为(1,1).所以 ,)21(2)21(8)11(2)1(2||2222222-+⨯=--++-=n n n n n kk k kx x PP .945])10()111[(45||42222212+=+-+--=+k kk PP k (i )当2121,21||>-<>k k k 或即时,5||4212+PP k 1910>+=,而此时 .5||4||2.10218||2,1|21|021222+<=+⨯<<<PP k PP PP kn n 故所以 (ii )当)21,0()0,21(,21||0 -∈<<k k 即时,5||4212+PP k 1910<+=. 而此时 .5||4||2.10218||2,1|21|21222+>=+⨯>>PP k PP PP k n n 故所以14分20.(2012年房山一模20)在直角坐标平面上有一点列),(,),(),,(222111n n n y x P y x P y x P ,对一切正整数n ,点n P 位于函数4133+=x y 的图象上,且n P 的横坐标构成以25-为首项,1-为公差的等差数列{}n x .(I )求点n P 的坐标;(II )设抛物线列 ,,,,,321n c c c c ,中的每一条的对称轴都垂直于x 轴,第n 条抛物线n c 的顶点为n P ,且过点)1,0(2+n D n ,记与抛物线n c 相切于n D 的直线的斜率为n k ,求:nn k k k k k k 13221111-+++ ;(III )设{}{}**N N ∈==∈==n y y y T n x x x S n n ,4|,,2|,等差数列{}n a 的任一项n a S T ∈ ,其中1a 是S T 中的最大数,12526510-<<-a ,求{}n a 的通项公式.解:(I )23)1()1(25--=-⨯-+-=n n x n ………2分 1353533,(,3)4424n n n y x n P n n ∴=⋅+=--∴---- ………3分(II )n c 的对称轴垂直于x 轴,且顶点为n P .∴设n c 的方程为:,4512)232(2+-++=n n x a y ……5分把)1,0(2+n D n 代入上式,得1=a ,n c ∴的方程为:1)32(22++++=n x n x y . ……7分 322++='n x y当0=x 时,32+=n k n)321121(21)32)(12(111+-+=++=∴-n n n n k k n n n n k k k k k k 13221111-+++∴ )]321121()9171()7151[(21+-+++-+-=n n =641101)32151(21+-=+-n n ……9分(III )}1,),32(|{≥∈+-==n N n n x x S ,}1,),512(|{≥∈+-==n N n n y y T }1,,3)16(2|{≥∈-+-==n N n n y y ,S T T ∴= T 中最大数171-=a . ……10分 设}{n a 公差为d ,则)125,265(91710--∈+-=d a ,由此得 ).(247,24),(12,129248**N n n a d N m m d T a d n n ∈-=∴-=∴∈-=∴∈-<<- 又20.(2012年门头沟一模理20)数列{}n a 满足21121,(1,2,)31n n n n a a a n a a +===-+ .(Ⅰ)求2a ,3a ;(Ⅱ) 求证:n a a a +++ 2111121n n a a ++=--;(Ⅲ)求证: n n n a a a 2212312131211-<+++<-- . 解:(Ⅰ)217a =,3143a =………2分 证明:(Ⅱ)由1221+-=+n n n n a a a a 知 111121+-=+n n n a a a ,)11(1111-=-+nn n a a a . (1) 所以 211,111n n n n n n na a aa a a a ++==----即 1111n n n n n a aa a a ++=---. ……5分 从而 n a a a +++ 211133222211111111++---++---+---=n n n n a a a a a a a aa a a a 11111112111++++--=---=n n n n a a a a a a . …7分 (Ⅲ) 证明n n n a a a 2212312131211-<+++<-- 等价于 证明n n n n a a 2112312112131211-<--<-++-, 即 n n n n a a 21123131<-<++- . (2) …8分 当1n =时 ,2216a a -=,11122363<<- , 即1n =时,(2)成立.设)1(≥=k k n 时,(2)成立,即 kk k k a a 21123131<-<++-.当1+=k n 时,由(1)知k k k k k k k k a a a a a a a 2211111223)1()1(11>->-=-+++++++; ……11分 又由(1)及311=a 知 )1(1≥-n a a nn 均为整数, 从而由k k k a a 21131<-++ 有 131211-≤-++k k k a a 即k k a 2131≤+ ,所以122211122333111+<⋅<-⋅=-+++++k k k k k k k k a a a a a ,即(2)对1+=k n 也成立. 所以(2)对1≥n 的正整数都成立, 即n n n a a a 2212312131211-<+++<-- 对1≥n 的正整数都成立.…13分。
2012北京高考模拟数学试题汇总-解析几何(理)
x y 1 0, 2 2 则 x y 的最小值是 x 0,
二、极坐标、参数方程
【 2012 西城一模理】 12. _____. 2 【2012 东城一模理】 (10)在极坐标系中,圆 2 的圆心到直线 cos sin 2 的 距离为 . 2
让你成为下一个状元! 010-67535551
C. (0, 2)
)
A. (0, 2)
B. (2, 0)
D. (2, 0)
x 1 t, 【2012 丰台一模理】11.在平面直角坐标系 xOy 中,直线 l 的参数方程是 2 (t 为 y 1 t 2
3
参数) 。以 O 为极点, x 轴正方向为极轴的极坐标系中,圆 C 的极坐标方程是
1 的圆在△ ABC 内, 沿着△ ABC 的边滚动一周回到原位. 在滚动过程中, 圆M 至 4 少与△ ABC 的一边相切,则点 M 到△ ABC 顶点的最短距离是 ,点 M 的运
半径为 动轨迹的周长是 .
2 9 4 ,
让你成为下一个状元! 010-67535551
峰炜佳奇·状元教育
在极坐标系中,极点到直线 l : sin( )
π 4
2 的距离是
峰炜佳奇·状元教育
【2012 海淀一模理】 (3)在极坐标系中,过点 (2, (A) sin
3 ) 且平行于极轴的直线的极坐标方程是 2
(C) sin
2 (B) cos
【2012 朝阳二模理】12.如图, AB 是圆 O 的直径,CD AB 于 D ,且 AD 2BD , E 为 AD 的中点,连接 CE 并延长交圆 O 于 F . 若 CD EF _________. 则 AB _______, 2, C
北京市各区2012年高考数学一模试题分类解析(18) 空间几何体 理
俯视图正视图十八、空间几何体 第一部分 三视图4.(2012年西城一模理4)已知正六棱柱的底面边长和侧棱长相等,体积为3. 其三视图中的俯视图如图所示,则其左视图的面积是( A ) A .2 B .2 C .28cm D .24cm5.(2012年丰台一模理5)若正四棱锥的正视图和俯视图如右图所示,则该几何体的表面积是( B )A.4B.4+4+10.(2012年朝阳一模理10) 已知某几何体的三视图如图所示,则该几何体的体积为 . 答案:32正视图侧视图6.(2012年东城11校联考理6)一个几何体的三视图如图所示,则此几何体的体积是( B ) A .112 B.80 C.72 D.647.(2012年石景山一模理7)某几何体的三视图如图所示,则它的体积是( A )A.83+B.83+C.83+D.323俯视图 侧视图10.(2012年房山一模10)一个几何体的三视图如图所示,则这个几何体的体积为 . 答案:32。
11.(2012年密云一模理11)已知某几何体的三视图如右图所示,则该几何体的体积 为 . 答案:32。
第第11题图 第12题图C3.(2012年门头沟一模理3)己知某几何体的三视图如右图所示,则其体积为( B ) A.8 B.4 C.主视图 左视图俯视图第二部分 立体几何4.(2012年朝阳一模理4)已知平面α,直线,,a b l ,且,a b αα⊂⊂,则“l a ⊥且l b ⊥”是“l α⊥”的( B )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件3.(2012年东城11校联考理3)已知直线m ,n 与平面α,β,下列命题正确的是 ( D )A .βα//,//n m 且βα//,则n m //B .βα//,n m ⊥且β⊥α,则n m ⊥C .,βm n m =⊥α且βα⊥,则α⊥n D .βα⊥⊥n m ,且βα⊥,则n m ⊥4.(2012年石景山一模理4)设n m ,是两条不同的直线,γβα,,是三个不同的平面,下列命题正确的是( D )A.αα//,//,//n m n m 则若B.βαγβγα//,,则若⊥⊥C.n m n m //,//,//则若ααD.n m n m ⊥⊥则若,//,αα4.(2012年东城11校联考理4)甲从正四面体的四个顶点中任意选择两个顶点连成直线, 乙从该正四面体四个顶点中任意选择两个顶点连成直线,则所得的两条直线相互垂直的概率是( A ) A.61 B. 92 C. 185 D. 318.(2012年海淀一模理8)在正方体''''ABCD A B C D -中,若点P (异于点B )是棱上一点,则满足BP 与'AC 所成的角为45°的点P 的个数为( B )A .0B .3C .4D .616.(2012年海淀一模理16)在四棱锥P ABCD -中,AB //CD ,AB AD ^,4,2AB AD CD ===,PA ^平面ABCD ,4PA =. (Ⅰ)设平面PAB平面PCD m =,求证:CD //m ; (Ⅱ)求证:BD ⊥平面PAC ;(Ⅲ)设点Q 为线段PB 上一点,且直线QC 与平面PAC所成角的正弦值为3,求PQPB的值.A'B'C'D'ABCDPDCBA证明:(Ⅰ) 因为AB //CD ,CD ⊄平面PAB ,AB ⊂平面PAB ,所以CD //平面PAB . 因为CD ⊂平面PCD ,平面PAB平面PCD m =,所以CD //m .(Ⅱ):因为AP ^平面ABCD ,AB AD ^,所以以A 为坐标原点,,,AB AD AP 所在的直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,则(4,0,0)B ,(0,0,4)P,(0,D,(2,C . 所以(4,BD =-,(2,AC =,(0,0,4)AP =,所以(4)2000BD AC ⋅=-⨯+⨯=,(4)00040BD AP ⋅=-⨯++⨯=.所以 BD AC ⊥,BD AP ⊥.因为 AP AC A =,AC ⊂平面PAC ,PA ⊂平面PAC ,所以 BD ⊥平面PAC .(Ⅲ)解:设PQPBλ=(其中01λ#),(,,)Qxyz ,直线QC 与平面PAC 所成角为θ. 所以 PQ PB λ=.所以 (,,4)(4,0,4)x y z λ-=-.所以 4,0,44,x y z λλì=ïïï=íïï=-+ïïî即(4,0,44)Q λλ-+.所以(42,44)CQ λλ=---+.由(Ⅱ)知平面PAC的一个法向量为(4,BD =-.因为 sin cos ,CQ BD CQ BD CQ BDθ×=<>=×,所以3=. 解得 7[0,1]12λ=∈. 所以 712PQ PB =.17.(2012年西城一模理17)如图,四边形ABCD 与BDEF 均为菱形, ︒=∠=∠60DBF DAB ,且F A F C =.(Ⅰ)求证:AC ⊥平面BDEF ;(Ⅱ)求证:FC ∥平面EAD ;(Ⅲ)求二面角B FC A --的余弦值.证明:(Ⅰ)设AC 与BD 相交于点O ,连结FO .因为 四边形ABCD 为菱形,所以BD AC ⊥, 且O 为AC 中点.又 FC FA =,所以 AC FO ⊥. 因为 O BD FO = ,所以 ⊥AC 平面BDEF . (Ⅱ)因为四边形ABCD 与BDEF 均为菱形,所以AD //BC ,DE //BF ,所以 平面FBC //平面EAD . 又⊂FC 平面FBC ,所以FC // 平面EAD . 解:(Ⅲ)因为四边形BDEF 为菱形,且︒=∠60DBF ,所以△DBF 为等边三角形.因为O 为BD 中点,所以BD FO ⊥,故FO ⊥平面ABCD .由OF OB OA ,,两两垂直,建立如图所示的空间直角坐标系xyz O -. 设2=AB .因为四边形ABCD 为菱形,︒=∠60DAB ,则2=BD ,所以1OB =,OA OF ==所以 )3,0,0(),0,0,3(),0,1,0(),0,0,3(),0,0,0(F C B A O-. 所以 (3,0,CF =,(3,1,0)CB =.设平面BFC 的法向量为=()x,y,z n ,则有0,0.CF CB ⎧⋅=⎪⎨⋅=⎪⎩n n所以 ⎩⎨⎧=+=+.03,033y x z x 取1=x ,得)1,3,1(--=n .易知平面AFC 的法向量为(0,1,0)=v .由二面角B FC A --是锐角,得cos ,⋅〈〉==n v n v n v. 所以二面角B FC A --的余弦值为515. 17.(2012年东城一模理17)如图1,在边长为3的正三角形ABC 中,E ,F ,P 分别为AB ,AC ,BC 上的点,且满足1AE FC CP ===.将△AEF 沿EF 折起到△1A EF 的位置,使二面角1A EF B --成直二面角,连结1A B ,1A P .(如图2) (Ⅰ)求证:E A 1⊥平面BEP ;(Ⅱ)求直线E A 1与平面BP A 1所成角的大小.图1 图2证明:(Ⅰ)取BE 中点D ,连结DF .因为1AE CF ==,1DE =,所以2AF AD ==,而60A ∠=,即△ADF 是正三角形. 又因为1AE ED ==, 所以EF AD ⊥. 所以在图2中有1A E EF ⊥,BE EF ⊥. 所以1A EB ∠为二面角1A EF B --的平面角. 又二面角1A EF B --为直二面角, 所以1A E BE ⊥. 又因为BEEF E =,所以1A E ⊥平面BEF ,即1A E ⊥平面BEP .解:(Ⅱ)由(Ⅰ)可知1A E ⊥平面BEP ,BE EF ⊥,如图,以E 为原点,建立空间直角坐标系E xyz -,则(0,0,0)E ,1(0,0,1)A ,(2,0,0)B ,,0)F 在图1中,连结DP . 因为12CF CP FA PB ==,所以PF∥BE,且12PF BE DE==.所以四边形EFPD为平行四边形.所以EF∥DP,且EF DP=.故点P的坐标为(10). 图2所以1(2,0,1)A B=-,(BP=-,1(0,0,1)EA=.不妨设平面1A BP的法向量(,,)x y z=n,则10,0.A BBP⎧⋅=⎪⎨⋅=⎪⎩nn即20,0.x zx-=⎧⎪⎨-=⎪⎩令y=(3,6)=n.所以111cos,||||14EAEAEA⋅<>===⨯nnn故直线1A E与平面1A BP所成角的大小为3π.16. (2012年丰台一模理16)四棱锥P—ABCD中,底面ABCD是边长为2的菱形,侧面PAD⊥底面ABCD,∠B CD=60º,,E是BC中点,点Q在侧棱PC上.(Ⅰ)求证:AD⊥PB;(Ⅱ)若Q是PC中点,求二面角E-DQ-C的余弦值;(Ⅲ)若PQPCλ=,当PA // 平面DEQ时,求λ的值.证明:(Ⅰ)取AD中点O,连结OP,OB,BD.因为 PA=PD,所以 PO⊥AD.…………1分ED CBAQPPQ因为 菱形ABCD 中,∠B CD =60º, 所以 AB=BD ,所以 BO ⊥AD . …………2分 因为 BO ∩PO=O , …………3分 所以 AD ⊥平面POB .………4分 所以 AD ⊥PB . …………5分 解:(Ⅱ)由(Ⅰ)知BO ⊥AD ,PO ⊥AD .因为 侧面PAD ⊥底面ABCD , 且平面PAD ∩底面ABCD=AD ,所以PO ⊥底面ABCD . ………6分以O 为坐标原点,如图建立空间直角坐标系O-……7分则(1,0,0)D -,(E -,(0,0,1)P , (C -,因为Q 为PC 中点, 所以1()2Q -. ……8分 所以 DE =,1(0,)2DQ =, 所以平面DEQ 的法向量为1(1,0,0)n =. 因为 (DC =-,1(0,)2DQ =, 设平面DQC 的法向量为2(,,)n x y z =, 则220,DC n DQ n ⎧⋅=⎪⇔⎨⋅=⎪⎩0,10.22x y z ⎧-=+=⎪⎩ 令x =1y =,z =2(3,1,n =. …9分12121221cos ,7||||n n n n n n ⋅<>==.由图可知,二面角E-DQ-C 为锐角,所以余弦值为7. …10分 (Ⅲ)因为PQPCλ=,所以 PQ PC λ=, 由(Ⅱ)知(1)PC =--,(1,0,1)PA =-,C若设(,,)Q x y z ,则(,,1)PQ x y z =-,由 PQ PC λ=,得21x y z λλ=-⎧⎪=⎨⎪=-+⎩,在平面DEQ中,DE =,(1,,)(12,1)DQ x y z λλ=+=--,所以平面DEQ 法向量为1(1,0,21)n λλ=--, …12分 又因为 PA // 平面DEQ , 所以 10PA n ⋅=, ……13分 即(1)(1)(21)0λλ-+--=,得23λ=. 所以,当23λ=时,PA // 平面DEQ . …14分17.(2012年朝阳一模理17)在如图所示的几何体中,四边形ABCD 为平行四边形,=90ABD ∠︒,EB ⊥平面ABCD ,EF//AB ,=2AB,==1EB EF,=BC M 是BD 的中点.(Ⅰ)求证:EM//平面ADF ;(Ⅱ)求二面角D-AF-B 的大小;(Ⅲ)在线段EB 上是否存在一点P ,使得CP 与AF 所成的角为30︒?若存在,求出BP 的长度;若不存在,请说明理由.证明:(Ⅰ)取AD 的中点N ,连接MN,NF .在△DAB 中,M 是BD 的中点,N 是AD 的中点,所以1=2MN//AB,MN AB , 又因为1=2EF//AB,EF AB ,所以MN//EF 且MN =EF .所以四边形MNFE 为平行四边形, 所以EM//FN .又因为FN ⊂平面ADF ,⊄EM 平面ADF ,CA F EBMD NCA F EBMD故EM//平面ADF. … 4分解法二:因为EB⊥平面ABD,AB BD⊥,故以B为原点,建立如图所示的空间直角坐标系-B xyz. ……1分由已知可得(0,0,0),(0,2,0),(3,0,0),B A D3(3,-2,0),(,0,0)2C E F M(Ⅰ)3=(,0,-3)(3,-2,0)2EM,AD=,设平面ADF的一个法向量是()x,y,zn=.由0,0,ADAFnn⎧⋅=⎪⎨⋅=⎪⎩得32x-y=0,=0.⎧⎪⎨⎪⎩令y=3,则n=. …3分又因为3(=3+0-3=02EM n⋅=⋅,所以EM n⊥,又EM⊄平面ADF,所以//EM平面ADF. ……4分(Ⅱ)由(Ⅰ)可知平面ADF的一个法向量是n=.因为EB⊥平面ABD,所以EB BD⊥.又因为AB BD⊥,所以BD⊥平面EBAF.故(3,0,0)BD=是平面EBAF的一个法向量.所以1cos<=2BDBD,BDnnn⋅>=⋅,又二面角D-AF-B为锐角,故二面角D-AF-B的大小为60︒. …10分(Ⅲ)假设在线段EB上存在一点P,使得CP与AF所成的角为30︒.不妨设(0,0,t)P(0t≤≤,则=(3,-2,-),=PC AFt.所以2cos<2PC AFPC,AFPC AF⋅>==⋅,=,化简得35-=,解得0t=<.所以在线段EB上不存在点P,使得CP与AF所成的角为30︒.……14分17.(2012年东城11校联考理17)如图,四棱锥P ABCD -中,底面ABCD 是直角梯形,90DAB ∠=,//AD BC ,AD ⊥侧面PAB ,△PAB 是等边三角形,2==AB DA ,12BC AD =,E 是线段AB 的中点.(1)求证:CD PE ⊥;(2)求四棱锥P ABCD -的体积;(3)试问线段PB 上是否存在点F ,使二面角C DE F --的余弦值为41?若存在,确定点F 的位置;若不存在,说明理由.证明:(1)因为AD ⊥侧面PAB ,PE ⊂平面PAB , 所以AD PE ⊥.又因为△PAB 是等边三角形,E 是线段AB 的中点,所以PE AB ⊥. 因为ADAB A =,所以PE ⊥平面ABCD .而CD ⊂平面ABCD ,所以PE CD ⊥. ……4分解:(2)由(1)知PE ⊥平面ABCD ,所以PE 是四棱锥P ABCD -的高.由2==AB DA ,12BC AD =,可得1=BC . 因为△PAB 是等边三角形,可求得3=PE .所以332)21(213131=⨯⨯+⨯=⋅=-PE S V ABCD ABCD P .……8分(3)以E 为原点,建立如图所示的空间直角坐标系E xyz -.(0,1,0),(0,0,0)(01,0),(11,0),(2,1,0),(0,0A E B C D P --则有,,,设000(,,),F x y z PF PB=λ,则)3,1,0()3,,(--=-λzyx(0,)F-λ所以.设(,,x y z=)n为平面DEF的法向量,(2,1,0),(0,),ED EF==-λ0,0,EDEF⎧⋅=⎪⎨⋅=⎪⎩nn200.x yy z+=⎧⎪⎨-λ+=⎪⎩,即)x1y2z⎧⎪=⎪⎪=-⎨⎪⎪=⎪⎩,所以,(1,=-所以n.设平面CDE的法向量为(0,0,1=)m.1cos,4m n==所以.化简得01232=-+λλ.解得311=-=λλ(舍)或.所以存在点F,且PBPF31= .………13分17.(2012年石景山一模理17)如图,三棱柱111CBAABC-中,1AA⊥面ABC,2,==⊥ACBCACBC,13AA=,D为AC的中点.(Ⅰ)求证:11//BDCAB面;(Ⅱ)求二面角CBDC--1的余弦值;(Ⅲ)在侧棱1AA上是否存在点P,使得1BDCCP面⊥?请证明你的结论.B1 B证明:(I )连接B 1C ,与BC 1相交于O ,连接OD . …1分 ∵BCC 1B 1是矩形,∴O 是B 1C 的中点. 又D 是AC 的中点,∴OD//AB 1.∵AB 1⊄面BDC 1,OD ⊂面BDC 1,∴AB 1//面BDC 1. 解:(II )如图,建立空间直角坐标系, 则C 1(0,0,0),B (0,3,2), C (0,3,0),A (2,3,0), D (1,3,0),1(0,3,2)C B =,1(1,3,0)C D =,……5分设111(,,)n x y z =是面BDC 1的一个法向量,则110,0n C B n C D ⎧=⎪⎨=⎪⎩即1111320,30y z x y +=⎧⎨+=⎩,取11(1,,)32n =-.…7分 易知1(0,3,0)C C =是面ABC 的一个法向量. ……8分1112cos ,7n C C n C C n C C==-⨯.∴二面角C 1—BD —C 的余弦值为27. ……9分 (III )假设侧棱AA 1上存在一点P 使得CP ⊥面BDC 1.设P (2,y ,0)(0≤y ≤3),则 (2,3,0)CP y =-, …10分则110,0CP C B CP C D ⎧=⎪⎨=⎪⎩,即3(3)0,23(3)0y y -=⎧⎨+-=⎩. …12分解之3,73y y =⎧⎪⎨=⎪⎩∴方程组无解. ……13分∴侧棱AA 1上不存在点P ,使CP ⊥面BDC 1. …14分17.(2012年房山一模17)在直三棱柱111ABC A B C -中,1BC CC AB ===2 ,BC AB ⊥.点N M ,分别是1CC ,C B 1的中点,G 是棱AB 上的动点.(I )求证:⊥C B 1平面BNG ;(II)若CG //平面M AB 1,试确定G 点的位置,并给出证明;(III)求二面角1M AB B --的余弦值.证明:(I)∵在直三棱柱111ABC A B C -中,1CC BC =,点N 是C B 1的中点,∴C B BN 1⊥ …………1分BC AB ⊥,1BB AB ⊥,B BC BB = 1∴AB ⊥平面11BCC B …………2分⊂C B 1平面11BCC B∴AB C B ⊥1,即GB C B ⊥1 ……………3分 又B BG BN =∴⊥C B 1平面BNG …………4分(II )当G 是棱AB 的中点时,CG //平面M AB 1.……………5分 证明如下:连结1AB ,取1AB 的中点H ,连接GC HM HG ,,, 则HG 为B AB 1∆的中位线 ∴GH ∥1BB ,121BB GH =………6分 ∵由已知条件,11BCC B 为正方形 ∴1CC ∥1BB ,11BB CC = ∵M 为1CC 的中点,∴121CC CM =……7分 ∴MC ∥GH ,且GH MC = ∴四边形HGCM 为平行四边形 ∴GC ∥HM又 ∵M AB HM M AB GC 11,平面平面⊄⊂ ……8分 ∴CG //平面M AB 1 ………9分 解:(III) ∵ 直三棱柱111ABC A B C -且BC AB ⊥依题意,如图:以1B 为原点建立空间直角坐标系1B xyz -,…10分∴1(0,0,0)B ,(0,2,0)B ,)0,1,2(M ,(0,2,2)A ,1(2,0,0)C则1(0,2,2)B A =,)0,1,2(1=B 设平面1B AM 的法向量(,,)n x y z =,则1100n B A n B M ⋅=⋅⎧⎪=⎨⎪⎩,即00222x y z y ⎧⎨+=+=⎩,令1=x ,有)2,2,1(-=n ………12分 又平面1B AB 的法向量为11(2,0,0)BC =,∴11cos ,BC n <>=1111B C n B C n⋅⋅=31, ……13分设二面角1M AB B --的平面角为θ,且θ为锐角∴111cos cos ,3B C n θ=-=. ……14分16.(2012年密云一模理16)如图,已知E ,F 分别是正方形ABCD 边BC 、CD 的中点,EF 与AC 交于点O ,PA 、NC 都垂直于平面ABCD ,且4PA AB ==,2NC =,M 是线段PA 上一动点.(Ⅰ)求证:平面PAC ⊥平面NEF ;(Ⅱ)若//PC 平面MEF ,试求:PM MA 的值;(Ⅲ)当M 是PA 中点时,求二面角M EF N --的余弦值.证明:(Ⅰ)连结BD ,∵PA ⊥平面ABCD ,BD ⊂平面ABCD ,∴PA BD ⊥, 又∵BD AC ⊥,AC PA A =,∴BD ⊥平面PAC ,又∵E ,F 分别是BC 、CD 的中点,∴//EF BD , ∴EF ⊥平面PAC ,又EF ⊂平面NEF , ∴平面PAC ⊥平面NEF ; ……4分 解:(Ⅱ)建立如图所示的直角坐标系,则(0,0,4)P ,(4,4,0)C ,(4,2,0)E ,(2,4,0)F ,∴(4,4,4)PC =-,(2,2,0)EF =-,设点M 的坐标为(0,0,)m ,平面MEF 的法向量为(,,)n x y z =,则(4,2,)ME m =-,所以00n ME n EF ⎧⋅=⎪⎨⋅=⎪⎩,即420220x y mz x y +-=⎧⎨-+=⎩,令1x =,则1y =,6z m =,故6(1,1,)n m=,第16题图第16题图用心 爱心 专心∵//PC 平面MEF ,∴0PC n ⋅=,即24440m+-=,解得3m =, 故3AM =,即点M 为线段PA 上靠近P 的四等分点;故:1:3PM MA = ----8分(Ⅲ)(4,4,2)N ,则(0,2,2)EN =,设平面NEF 的法向量为(,,)m x y z =,则00m EN m EF ⎧⋅=⎪⎨⋅=⎪⎩,即220220y z x y +=⎧⎨-+=⎩,令1x =,则1y =,1z =-,即(1,1,1)m =-, 当M 是PA 中点时,2m =,则(1,1,3)n =,∴cos ,m n <>== ∴二面角M EF N --的余弦值为.----14分16.(2012年门头沟一模理16)如图,在多面体ABCD EF -中,四边形ABCD 为正方形,//EF AB ,EF EA ⊥,2AB EF =,090AED ∠=,AE ED =,H 为AD 的中点.(Ⅰ)求证://EH 平面FAC ;(Ⅱ)求证:EH ⊥平面ABCD ;(Ⅲ)求二面角A FC B --的大小.证明:(Ⅰ)ACBD O =,连结HO ,FO因为ABCD 为正方形,所以O 是AC 中点,EDABCFH用心 爱心 专心 22又H 是AD 中点, 所以1//,2OH CD OH CD =,1//,2EF AB EF AB =, 所以//EF OH 且EF OH =, 所以四边形EHOF 为平行四边形, 所以//EH FO ,又因为FO ⊂平面FAC ,EH ⊄平面FAC . 所以//EH 平面FAC .……………4分 证明:(Ⅱ)因为AE ED =,H 是AD 的中点, 所以EH AD ⊥……………6分又因为//AB EF ,EF EA ⊥,所以AB EA ⊥ 又因为AB AD ⊥ 所以AB ⊥平面AED , 因为EH ⊂平面AED , 所以AB EH ⊥,……………8分 所以EH ⊥平面ABCD .……………9分解:(Ⅲ)AC ,BD ,OF 两两垂直,建立如图所示的坐标系,设1EF =, 则2AB =,B,(C ,(0,0,1)F …………10分设平面BCF 的法向量为1(,,)n x y z =, (2,2,0),(2,0,1)BC CF =--=,110,0n BC n CF ⋅=⋅=所以 1(1,1n =- …………11分 平面AFC 的法向量为2(0,1,0)n = ………12分1212121cos ,2n n n n n n ⋅<>==⋅. ………13分二面角A FC B --为锐角,所以二面角A FC B --等于3π.……………14分。
2012年北京市西城区高考数学一模试卷(理科)(附答案解析)
2012年北京市西城区高考数学一模试卷(理科)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1. 已知全集U=R,集合A={x|1x≥1},则∁U A()A.(0, 1)B.(0, 1]C.(−∞, 0]∪(1, +∞)D.(−∞, 0)∪[1, +∞)2. 执行如图所示的程序框图,若输入x=2,则输出y的值为()A.2B.5C.11D.233. 若实数x,y满足条件{x+y≥0x−y+3≥00≤x≤3,则z=2x−y的最大值为()A.9B.3C.0D.−34. 已知正六棱柱的底面边长和侧棱长均为2cm,其三视图中的俯视图如图所示,则其左视图的面积是()A.4√3cm2B.2√3cm2C.8cm2D.4cm25. 已知函数f(x)=sin4ωx−cos4ωx的最小正周期是π,那么正数ω=()A.2B.1C.12D.146. 若a=log23,b=log32,c=log46,则下列结论正确的是()A.b<a<cB.a<b<cC.c<b<aD.b<c<a 7. 设等比数列{a n}的各项均为正数,公比为q,前n项和为S n.若对∀n∈N∗,有S2n<3S n,则q的取值范围是()A.(0, 1]B.(0, 2)C.[1, 2)D.(0,√2)8. 已知集合A={x|x=a0+a1×3+a2×32+a3×33},其中a k∈{0, 1, 2}(k=0, 1, 2, 3),且a3≠0.则A中所有元素之和等于()A.3240B.3120C.2997D.2889二、填空题共6小题,每小题5分,共30分.某年级120名学生在一次百米测试中,成绩全部介于13秒与18秒之间.将测试结果分成5组:[13, 14),[14, 15),[15, 16),[16, 17),[17, 18],得到如图所示的频率分布直方图.如果从左到右的5个小矩形的面积之比为1:3:7:6:3,那么成绩在[16, 18]的学生人数是________.(x−2)6的展开式中x3的系数是________.(用数字作答)如图,AC为⊙O的直径,OB⊥AC,弦BN交AC于点M.若OC=√3,OM=1,则MN=________.在极坐标系中,极点到直线l:ρsin(θ+π4)=√2的距离是________.已知函数f(x)={x12,0≤x≤cx2+x,−2≤x<0其中c>0.那么f(x)的零点是________;若f(x)的值域是[−14,2],则c的取值范围是________.在直角坐标系xOy 中,动点A ,B 分别在射线y =√33x(x ≥0)和y =−√3x(x ≥0)上运动,且△OAB 的面积为1.则点A ,B 的横坐标之积为________;△OAB 周长的最小值是________. 三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.在△ABC 中,已知sin (A +B)=sin B +sin (A −B). (1)求角A ;(2)若|BC →|=7,AB →⋅AC →=20,求|AB →+AC →|.乒乓球单打比赛在甲、乙两名运动员间进行,比赛采用7局4胜制(即先胜4局者获胜,比赛结束),假设两人在每一局比赛中获胜的可能性相同. (1)求甲以4比1获胜的概率;(2)求乙获胜且比赛局数多于5局的概率;(3)求比赛局数的分布列.如图,四边形ABCD 与BDEF 均为菱形,∠DAB =∠DBF =60∘,且FA =FC .(1)求证:AC ⊥平面BDEF ;(2)求证:FC // 平面EAD ;(3)求二面角A −FC −B 的余弦值.已知函数f(x)=e ax ⋅(ax +a +1),其中a ≥−1.(1)当a =1时,求曲线y =f(x)在点(1, f(1))处的切线方程;(2)求f(x)的单调区间.已知椭圆C:x 2a2+y 2b 2=1(a >b >0)的离心率为√53,定点M(2, 0),椭圆短轴的端点是B 1,B 2,且MB 1⊥MB 2.(1)求椭圆C 的方程;(2)设过点M 且斜率不为0的直线交椭圆C 于A ,B 两点.试问x 轴上是否存在定点P ,使PM 平分∠APB ?若存在,求出点P 的坐标;若不存在,说明理由.对于数列A n :a 1,a 2,…,a n (a i ∈N, i =1, 2,…,n),定义“T 变换”:T 将数列A n 变换成数列B n :b 1,b 2,…,b n ,其中b i =|a i −a i+1|(i =1, 2,…,n −1),且b n =|a n −a 1|,这种“T 变换”记作B n =T(A n ).继续对数列B n 进行“T 变换”,得到数列C n ,…,依此类推,当得到的数列各项均为0时变换结束.(1)试问A 3:4,2,8和A 4:1,4,2,9经过不断的“T 变换”能否结束?若能,请依次写出经过“T 变换”得到的各数列;若不能,说明理由;(2)求A 3:a 1,a 2,a 3经过有限次“T 变换”后能够结束的充要条件;(3)证明:A 4:a 1,a 2,a 3,a 4一定能经过有限次“T 变换”后结束.参考答案与试题解析2012年北京市西城区高考数学一模试卷(理科)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.【答案】C【考点】补集及其运算【解析】求出集合A的不等式的解集,然后求出集合A在R上的补集即可.【解答】解:∵全集U=R.集合A={x|1x≥1}={x|0<x≤1},∴∁U A={x|x≤0, 或x>1}.故选C.2.【答案】D【考点】循环结构的应用【解析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环计算并输出变量y的值,模拟程序的运行,用表格对程序运行过程中各变量的值进行分析,不难得到输出结果.【解答】解:程序在运行过程中各变量的值如下表示:x y是否继续循环循环前25是第一圈511是第二圈1123否故输出y的值为23.故选D.3.【答案】A【考点】简单线性规划【解析】画出不等式表示的平面区域,z=2x−y的几何意义是直线y=2x−z的纵截距的相反数,根据图形可得结论.【解答】解:画出不等式表示的平面区域z=2x−y的几何意义是直线y=2x−z的纵截距的相反数,由{x=3x+y=0可得交点坐标为(3, −3),根据图形可知在点(3, −3)处,z=2x−y取得最大值,最大值为9故选A.4.【答案】A【考点】简单空间图形的三视图【解析】正六棱柱的底面边长和侧棱长均为2cm,故左视图是长方形,长为2√3,宽为2,由此能求出左视图的面积.【解答】解:∵正六棱柱的底面边长和侧棱长均为2cm,∴左视图是长方形,长为√4+4−2×4×cos120∘=2√3,宽为2,∴左视图的面积是2√3×2=4√3(cm2),故选A.5.【答案】B【考点】二倍角的三角函数【解析】利用平方差公式化简函数y=sin4ωx−cos4ωx,再利用二倍角公式化为一个角的一个三角函数的形式,根据周期求出ω.【解答】y=sin4ωx−cos4ωx=sin2ωx−cos2ωx=−cos2ωx因为T=π,所以ω=16.【答案】D【考点】不等式比较两数大小【解析】根据a=lg3lg2>1,b=lg2lg3<1,c=lg6lg4=lg3+lg22lg2<lg3+lg32lg2=a,从而得出结论.【解答】解:∵a=log23=lg3lg2>1,b=log32=lg2lg3<1,c=log46=lg6lg4=lg3+lg22lg2<lg3+lg32lg2=lg3lg2,故有b<c<a,故选D.7.【答案】A【考点】数列的求和【解析】当q=1时,S2n<3S n成立容易检验,当q≠1时,由S2n<3S n恒成立可得a1(1−q2n)1−q <3a1(1−q n)1−q,讨论整理可求q的范围.【解答】解:当q=1时,S2n<3S n成立当q≠1时,由S2n<3S n恒成立∴a1(1−q2n)1−q <3a1(1−q n)1−q∵q>1,显然不恒成立,则q2n−3q n+2<0,解得q n<1(q n>2舍去),∵等比数列{a n}的各项均为正数,∴q>0,∴0<q<1综上可得0<q≤1故选A8.【答案】D【考点】集合的确定性、互异性、无序性数列的求和【解析】由题意可知a0,a1,a2各有3种取法(均可取0,1,2),a3有2种取法,利用数列求和即可求得A中所有元素之和.【解答】由题意可知,a0,a1,a2各有3种取法(均可取0,1,2),a3有2种取法,由分步计数原理可得共有3×3×3×2种方法,∴当a0取0,1,2时,a1,a2各有3种取法,a3有2种取法,共有3×3×2=18种方法,即集合A中含有a0项的所有数的和为(0+1+2)×18;同理可得集合A中含有a1项的所有数的和为(3×0+3×1+3×2)×18;集合A中含有a2项的所有数的和为(32×0+32×1+32×2)×18;集合A中含有a3项的所有数的和为(33×1+33×2)×27;由分类计数原理得集合A中所有元素之和:S=(0+1+2)×18+(3×0+3×1+3×2)×18+(32×0+32×1+32×2)×18+(33×1+33×2)×27=18(3+9+27)+81×27=702+2187=2889.二、填空题共6小题,每小题5分,共30分.【答案】54【考点】分布和频率分布表频率分布直方图【解析】根据从左到右的5个小矩形的面积之比为1:3:7:6:3及它们的面积之和为1,做出成绩在[16, 18]的频率,从而得出成绩在[16, 18]的学生人数.【解答】因从左到右的5个小矩形的面积之比为1:3:7:6:3,且它们的面积之和为1,∴最后两个小矩形的面积和为6+320×1=920,即成绩在[16, 18]的频率为920,由频率分布直方图知,成绩在[16, 18]的人数为120×920=54(人)【答案】−160【考点】二项式定理及相关概念【解析】根据题意,由二项式定理可得(x−2)6的展开式的通项,令x的系数为3,可得r=3,将r=3代入通项,计算可得T4=−160x3,即可得答案.【解答】根据题意,(x−2)6的展开式的通项为T r+1=C6r x6−r(−2)r=(−1)r⋅2r⋅C6r x6−r,令6−r=3可得r=3,此时T4=(−1)3⋅23⋅C63x3=−160x3,即x3的系数是−160;【答案】1【考点】与圆有关的比例线段【解析】根据题设条件,先由勾股定理求出BM,再由相交弦定理求MN.【解答】解:∵AC为⊙O的直径,OB⊥AC,弦BN交AC于点M.OC=√3,OM=1,∴OB=√3,BM=√3+1=2,设MN=x,∵CM⋅AM=BM⋅MN,∴(√3+1)(√3−1)=2x,∴x=1,即MN=1.故答案为:1.【答案】√2【考点】圆的极坐标方程【解析】利用公式x=ρcosθ,y=ρsinθ,得出直线直角坐标方程,再利用点到直线的距离公式求解即可.【解答】解:直线方程ρsin(θ+π4)=√2,即为ρ(√22cosθ+√22sinθ)=√2,化为普通方程为x+y−2=0,极点的直角坐标为(0, 0),根据点到直线的距离公式求得d=√2=√2故答案为:√2;【答案】−1和0,0<c≤4【考点】函数的值域及其求法函数的零点【解析】分x为正数和负数两种情况讨论,分别解方程即可得到么f(x)的零点.根据二次函数的图象与性质,求出当x∈[−2, 0)时,函数f(x)的值域恰好是[−14,2],所以当0≤x≤c时,f(x)=x12的最大值不超过2,由此建立不等式,可解出实数c的取值范围.【解答】当x≥0时,令x 12=0,得x=0;当x<0时,令x2+x=0,得x=−1(舍零)∴f(x)的零点是−1和0∵函数y=x2+x在区间[−2, −12)上是减函数,在区间(−12, 0)上是增函数∴当x∈[−2, 0)时,函数f(x)最小值为f(−12)=−14,最大值是f(−2)=2∵当0≤x≤c时,f(x)=x12是增函数且值域为[0, √c]∴当f(x)的值域是[−14,2],√c≤2,即0<c≤4【答案】√32,2(1+√2)【考点】基本不等式在最值问题中的应用直线的点斜式方程【解析】根据题意,OA、OB的斜率之积为−1,得OA⊥OB.设A(x1, √33x1),B(x2, −√3x2),算出|OA|=2√33x1,|OB|=2x2,结合三角形面积为1列式,化简即得x1x2=√32.再由基本不等式算出△OAB周长|OA|+|OB|+|AB|≥2+2√2,当且仅当2√33x1=2x2=√2时,△OAB周长取最小值2(1+√2).【解答】解:∵y =√33x的斜率k1=√33,y=−√3x的斜率k2=−√3∴k1⋅k2=−1,可得OA⊥OB设A(x1, √33x 1),B(x2, −√3x2)∴|OA|=√x12+13x12=2√33x1,|OB|=√x22+3x22=2x2,可得△OAB的面积为S=12|OA|×|OB|=12×2√33x1×2x2=1解之,得x1x2=√32∵|AB|2=|OA|2+|OB|2=43x12+4x22∴|AB|=√(43x12+4x22)≥×2√33x12=√8√33x12=√8√33×√32=2又∵|OA|+|OB|=2√33x1+2x2≥2√2√33x1×2x2=2√4√33x1x2=2√4√33×√32=2√2∴△OAB周长|OA|+|OB|+|AB|≥2+2√2=2(1+√2)当且仅当2√33x1=2x2=√2,即x1=√62,x2=√22时,△OAB周长取最小值2(1+√2)故答案为:√32,2(1+√2)三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.【答案】解:(1)原式可化为:sin B=sin(A+B)−sin(A−B)=sin A cos B+cos A sin B−sin A cos B+cos A sin B=2cos A sin B,…∵ B ∈(0, π),∴ sin B >0, ∴ cos A =12,…又A ∈(0, π),∴ A =π3;…(2)由余弦定理,得|BC →|2=|AB →|2+|AC →|2−2|AB →|⋅|AC →|⋅cos A ,… ∵ |BC →|=7,AB →⋅AC →=|AB →|⋅|AC →|⋅cos A =20, ∴ |AB →|2+|AC →|2=89,…∵ |AB →+AC →|2=|AB →|2+|AC →|2+2AB →⋅AC →=89+40=129,…∴ |AB →+AC →|=√129.… 【考点】求两角和与差的正弦 向量的模平面向量数量积的性质及其运算律【解析】(1)将已知等式移项变形并利用两角和与差的正弦函数公式化简,整理后根据sin B 不为0,得出cos A 的值,由A 为三角形的内角,利用特殊角的三角函数值即可求出A 的度数;(2)利用余弦定理列出关系式|BC →|2=|AB →|2+|AC →|2−2|AB →|⋅|AC →|⋅cos A ,将已知条件利用平面向量的数量积运算法则化简后代入求出|AB →|2+|AC →|2的值,把所求式子平方并利用完全平方公式展开,将各自的值代入开方即可求出值.【解答】 解:(1)原式可化为:sin B =sin (A +B)−sin (A −B)=sin A cos B +cos A sin B −sin A cos B +cos A sin B =2cos A sin B ,… ∵ B ∈(0, π),∴ sin B >0, ∴ cos A =12,…又A ∈(0, π),∴ A =π3;…(2)由余弦定理,得|BC →|2=|AB →|2+|AC →|2−2|AB →|⋅|AC →|⋅cos A ,… ∵ |BC →|=7,AB →⋅AC →=|AB →|⋅|AC →|⋅cos A =20, ∴ |AB →|2+|AC →|2=89,…∵ |AB →+AC →|2=|AB →|2+|AC →|2+2AB →⋅AC →=89+40=129,…∴ |AB →+AC →|=√129.… 【答案】解:(1)由已知,甲、乙两名运动员在每一局比赛中获胜的概率都是12. … 记“甲以4比1获胜”为事件A ,则P(A)=C 43(12)3(12)4−312=18. …(2)记“乙获胜且比赛局数多于5局”为事件B .因为,乙以4比2获胜的概率为P 1=C 53(12)3(12)5−312=532,…乙以4比3获胜的概率为P 2=C 63(12)3(12)6−312=532,…所以 P(B)=P 1+P 2=516. …(3)设比赛的局数为X ,则X 的可能取值为4,5,6,7.P(X =4)=2C 44(12)4=18,… P(X =5)=2C 43(12)3(12)4−312=14,…P(X =6)=2C 53(12)3⋅(12)5−3⋅12=516,…P(X =7)=2C 63(12)3(12)6−3⋅12=516. …比赛局数的分布列为:【考点】离散型随机变量及其分布列 互斥事件的概率加法公式 相互独立事件的概率乘法公式【解析】(1)先由已知,甲、乙两名运动员在每一局比赛中获胜的概率,甲以4比1获胜,根据独立重复试验公式公式,列出算式,得到结果.(2)记“乙获胜且比赛局数多于5局”为事件B .B 包括乙以4:2获胜和乙以4:3获胜,根据独立重复试验公式列出算式,得到结果.(3)比赛结束时比赛的局数为X ,则X 的可能取值为4,5,6,7,根据独立重复试验公式计算出各自的概率即可得到分布列. 【解答】解:(1)由已知,甲、乙两名运动员在每一局比赛中获胜的概率都是12. … 记“甲以4比1获胜”为事件A ,则P(A)=C 43(12)3(12)4−312=18. …(2)记“乙获胜且比赛局数多于5局”为事件B .因为,乙以4比2获胜的概率为P 1=C 53(12)3(12)5−312=532,… 乙以4比3获胜的概率为P 2=C 63(12)3(12)6−312=532,…所以 P(B)=P 1+P 2=516. …(3)设比赛的局数为X ,则X 的可能取值为4,5,6,7.P(X =4)=2C 44(12)4=18,…P(X =5)=2C 43(12)3(12)4−312=14,…P(X =6)=2C 53(12)3⋅(12)5−3⋅12=516,…P(X =7)=2C 63(12)3(12)6−3⋅12=516. …比赛局数的分布列为:(1)证明:设AC 与BD 相交于点O ,连接FO .因为四边形ABCD 为菱形,所以AC ⊥BD ,且O 为AC 中点. 又 FA =FC ,所以 AC ⊥FO .因为 FO ∩BD =O ,BD ⊂平面BDEF , 所以 AC ⊥平面BDEF .(2)证明:因为四边形ABCD 与BDEF 均为菱形, 所以AD // BC ,DE // BF , 因为AD ∩DE =D ,BC ∩BF =B , 所以 平面FBC // 平面EAD . 又FC ⊂平面FBC , 所以FC // 平面EAD ;(3)解:因为四边形BDEF 为菱形,且∠DBF =60∘, 所以△DBF 为等边三角形. 因为O 为BD 中点,所以FO ⊥BD ,故FO ⊥平面ABCD .由OA ,OB ,OF 两两垂直,建立如图所示的空间直角坐标系O −xyz .设AB =2.因为四边形ABCD 为菱形,∠DAB =60∘, 则BD =2,所以OB =1,OA =OF =√3.所以 O(0,0,0),A(√3,0,0),B(0,1,0),C(−√3,0,0),F(0,0,√3). 所以 CF →=(√3,0,√3),CB →=(√3,1,0).设平面BFC 的法向量为n →=(x, y, z), 则有{√3x +√3z =0√3x +y =0,取x =1,得n →=(1,−√3,−1).∵ 平面AFC 的法向量为v →=(0, 1, 0). 由二面角A −FC −B 是锐角,得 |cos <n →,v →>|=|n →⋅v→|n →||v →||=√155. 所以二面角A −FC −B 的余弦值为√155. 【考点】直线与平面垂直的判定 直线与平面平行的判定 用空间向量求平面间的夹角【解析】(1)设AC 与BD 相交于点O ,连接FO .因为四边形ABCD 为菱形,所以AC ⊥BD ,且O 为AC 中点.由FA =FC ,知AC ⊥FO .由此能够证明AC ⊥平面BDEF .(2)因为四边形ABCD 与BDEF 均为菱形,所以AD // BC ,DE // BF ,平面FBC // 平面EAD .由此能够证明FC // 平面EAD .(3)因为四边形BDEF 为菱形,且∠DBF =60∘,所以△DBF 为等边三角形.因为O 为BD 中点,所以FO ⊥BD ,故FO ⊥平面ABCD .由OA ,OB ,OF 两两垂直,建立空间直角坐标系O −xyz .设AB =2.因为四边形ABCD 为菱形,∠DAB =60∘,则BD =2,所以 CF →=(√3,0,√3),CB →=(√3,1,0).求得平面BFC 的法向量为n →=(1,−√3,−1),平面AFC 的法向量为v →=(0, 1, 0).由此能求出二面角A −FC −B 的余弦值. 【解答】(1)证明:设AC 与BD 相交于点O ,连接FO .因为四边形ABCD 为菱形,所以AC ⊥BD ,且O 为AC 中点. 又 FA =FC ,所以 AC ⊥FO .因为 FO ∩BD =O ,BD ⊂平面BDEF , 所以 AC ⊥平面BDEF .(2)证明:因为四边形ABCD 与BDEF 均为菱形, 所以AD // BC ,DE // BF , 因为AD ∩DE =D ,BC ∩BF =B , 所以 平面FBC // 平面EAD . 又FC ⊂平面FBC , 所以FC // 平面EAD ;(3)解:因为四边形BDEF 为菱形,且∠DBF =60∘, 所以△DBF 为等边三角形. 因为O 为BD 中点, 所以FO ⊥BD , 故FO ⊥平面ABCD .由OA ,OB ,OF 两两垂直,建立如图所示的空间直角坐标系O −xyz .设AB =2.因为四边形ABCD 为菱形,∠DAB =60∘, 则BD =2,所以OB =1,OA =OF =√3.所以O(0,0,0),A(√3,0,0),B(0,1,0),C(−√3,0,0),F(0,0,√3). 所以 CF →=(√3,0,√3),CB →=(√3,1,0). 设平面BFC 的法向量为n →=(x, y, z), 则有{√3x +√3z =0√3x +y =0,取x =1,得n →=(1,−√3,−1).∵ 平面AFC 的法向量为v →=(0, 1, 0).由二面角A −FC −B 是锐角,得 |cos <n →,v →>|=|n →⋅v→|n →||v →||=√155. 所以二面角A −FC −B 的余弦值为√155. 【答案】解:(1)当a =1时,f(x)=e x ⋅(1x+2),f ′(x)=e x ⋅(1x +2−1x 2).由于f(1)=3e ,f ′(1)=2e ,所以曲线y =f(x)在点(1, f(1))处的切线方程是2ex −y +e =0. (2)f ′(x)=ae ax(x+1)[(a+1)x−1]x 2,x ≠0.①当a =−1时,令f ′(x)=0,解得x =−1,所以f(x)的单调递减区间为(−∞, −1),单调递增区间为(−1, 0),(0, +∞); 当a ≠−1时,令f ′(x)=0,解得x =−1或x =1a+1.②当−1<a <0时,f(x)的单调递减区间为(−∞, −1),(1a+1,+∞), 单调递增区间为(−1, 0),(0,1a+1);③当a =0时,f(x)为常值函数,不存在单调区间; ④当a >0时,f(x)的单调递减区间为(−1, 0),(0,1a+1), 单调递增区间为(−∞, −1),(1a+1,+∞). 【考点】利用导数研究曲线上某点切线方程 利用导数研究函数的单调性【解析】(1)先求导数f ′(x),欲求出切线方程,只须求出其斜率即可,故先利用导数求出在x =0处的导函数值,再结合导数的几何意义即可求出切线的斜率,从而问题解决.(2)对字母a 进行分类讨论,再令f ′(x)大于0,解不等式,可得函数的单调增区间,令导数小于0,可得函数的单调减区间. 【解答】解:(1)当a =1时,f(x)=e x ⋅(1x +2), f ′(x)=e x ⋅(1x +2−1x 2).由于f(1)=3e ,f ′(1)=2e ,所以曲线y =f(x)在点(1, f(1))处的切线方程是2ex −y +e =0. (2)f ′(x)=ae ax(x+1)[(a+1)x−1]x 2,x ≠0.①当a =−1时,令f ′(x)=0,解得x =−1,所以f(x)的单调递减区间为(−∞, −1),单调递增区间为(−1, 0),(0, +∞); 当a ≠−1时,令f ′(x)=0,解得x =−1或x =1a+1.②当−1<a <0时,f(x)的单调递减区间为(−∞, −1),(1a+1,+∞), 单调递增区间为(−1, 0),(0,1a+1);③当a =0时,f(x)为常值函数,不存在单调区间; ④当a >0时,f(x)的单调递减区间为(−1, 0),(0,1a+1), 单调递增区间为(−∞, −1),(1a+1,+∞). 【答案】解:(1)由 59=e 2=a 2−b 2a 2=1−b 2a 2,得 ba =23.…依题意△MB 1B 2是等腰直角三角形,从而b =2,故a =3.… 所以椭圆C 的方程是x 29+y 24=1.…(2)设A(x 1, y 1),B(x 2, y 2),直线AB 的方程为x =my +2.将直线AB 的方程与椭圆C 的方程联立,消去x 得 (4m 2+9)y 2+16my −20=0.… 所以 y 1+y 2=−16m 4m +9,y 1y 2=−204m +9.…若PM 平分∠APB ,则直线PA ,PB 的倾斜角互补,所以k PA +k PB =0.… 设P(a, 0),则有 y 1x1−a+y 2x 2−a=0.将 x 1=my 1+2,x 2=my 2+2代入上式,整理得 2my 1y 2+(2−a)(y 1+y 2)(my 1+2−a)(my2+2−a)=0,所以 2my 1y 2+(2−a)(y 1+y 2)=0.…将 y 1+y 2=−16m4m 2+9,y 1y 2=−204m 2+9代入上式,整理得 (−2a +9)⋅m =0.… 由于上式对任意实数m 都成立,所以 a =92.综上,存在定点P(92,0),使PM 平分∠APB .…【考点】直线与椭圆结合的最值问题 椭圆的标准方程 【解析】(1)利用离心率为√53,可得b a=23,由椭圆短轴的端点是B 1,B 2,且MB 1⊥MB 2,可得△MB 1B 2是等腰直角三角形,由此可求椭圆C 的方程;(2)设线AB 的方程与椭圆C 的方程联立,利用韦达定理,结合PM 平分∠APB ,则直线PA ,PB 的倾斜角互补,建立方程,即可求得结论.【解答】解:(1)由 59=e 2=a 2−b 2a 2=1−b 2a 2,得b a =23.…依题意△MB 1B 2是等腰直角三角形,从而b =2,故a =3.… 所以椭圆C 的方程是x 29+y 24=1.…(2)设A(x 1, y 1),B(x 2, y 2),直线AB 的方程为x =my +2.将直线AB 的方程与椭圆C 的方程联立,消去x 得 (4m 2+9)y 2+16my −20=0.…所以 y 1+y 2=−16m 4m 2+9,y 1y 2=−204m 2+9.…若PM 平分∠APB ,则直线PA ,PB 的倾斜角互补,所以k PA +k PB =0.… 设P(a, 0),则有 y 1x1−a+y 2x2−a=0.将 x 1=my 1+2,x 2=my 2+2代入上式,整理得2my 1y 2+(2−a)(y 1+y 2)(my 1+2−a)(my 2+2−a)=0,所以 2my 1y 2+(2−a)(y 1+y 2)=0.…将 y 1+y 2=−16m4m +9,y 1y 2=−204m +9代入上式,整理得 (−2a +9)⋅m =0.… 由于上式对任意实数m 都成立,所以 a =92. 综上,存在定点P(92,0),使PM 平分∠APB .…【答案】(1)解:数列A 3:4,2,8不能结束,各数列依次为2,6,4;4,2,2;2,0,2;2,2,0;0,2,2;2,0,2;….从而以下重复出现,不会出现所有项均为0的情形. …数列A 4:1,4,2,9能结束,各数列依次为3,2,7,8;1,5,1,5;4,4,4,4;0,0,0,0.… (2)解:A 3经过有限次“T 变换”后能够结束的充要条件是a 1=a 2=a 3.… 若a 1=a 2=a 3,则经过一次“T 变换”就得到数列0,0,0,从而结束. …当数列A 3经过有限次“T 变换”后能够结束时,先证命题“若数列T(A 3)为常数列,则A 3为常数列”. 当a 1≥a 2≥a 3时,数列T(A 3):a 1−a 2,a 2−a 3,a 1−a 3.由数列T(A 3)为常数列得a 1−a 2=a 2−a 3=a 1−a 3,解得a 1=a 2=a 3,从而数列A 3也为常数列. 其它情形同理,得证.在数列A 3经过有限次“T 变换”后结束时,得到数列0,0,0(常数列),由以上命题,它变换之前的数列也为常数列,可知数列A 3也为常数列. …所以,数列A 3经过有限次“T 变换”后能够结束的充要条件是a 1=a 2=a 3.(3)证明:先证明引理:“数列T(A n )的最大项一定不大于数列A n 的最大项,其中n ≥3”. 证明:记数列A n 中最大项为max (A n ),则0≤a i ≤max (A n ). 令B n =T(A n ),b i =a p −a q ,其中a p ≥a q . 因为a q ≥0,所以b i ≤a p ≤max (A n ),故max (B n )≤max (A n ),证毕. … 现将数列A 4分为两类.第一类是没有为0的项,或者为0的项与最大项不相邻(规定首项与末项相邻),此时由引理可知,max (B 4)≤max (A 4)−1.第二类是含有为0的项,且与最大项相邻,此时max (B 4)=max (A 4). 下面证明第二类数列A 4经过有限次“T 变换”,一定可以得到第一类数列.不妨令数列A4的第一项为0,第二项a最大(a>0).(其它情形同理)①当数列A4中只有一项为0时,若A4:0,a,b,c(a>b, a>c, bc≠0),则T(A4):a,a−b,|b−c|,c,此数列各项均不为0或含有0项但与最大项不相邻,为第一类数列;若A4:0,a,a,b(a>b, b≠0),则T(A4):a,0,a−b,b;T(T(A4)):a,a−b,|a−2b|,a−b此数列各项均不为0或含有0项但与最大项不相邻,为第一类数列;若A4:0,a,b,a(a>b, b≠0),则T(A4):a,a−b,a−b,b,此数列各项均不为0,为第一类数列;若A4:0,a,a,a,则T(A4):a,0,0,a;T(T(A4)):a,0,a,0;T(T(T(A4))):a,a,a,a,此数列各项均不为0,为第一类数列.②当数列A4中有两项为0时,若A4:0,a,0,b(a≥b>0),则T(A4):a,a,b,b,此数列各项均不为0,为第一类数列;若A4:0,a,b,0(a≥b>0),则T(A):a,a−b,b,0,T(T(A)):b,|a−2b|,b,a,此数列各项均不为0或含有0项但与最大项不相邻,为第一类数列.③当数列A4中有三项为0时,只能是A4:0,a,0,0,则T(A):a,a,0,0,T(T(A)):0,a,0,a,T(T(T(A))):a,a,a,a,此数列各项均不为0,为第一类数列.总之,第二类数列A4至多经过3次“T变换”,就会得到第一类数列,即至多连续经历3次“T变换”,数列的最大项又开始减少.又因为各数列的最大项是非负整数,故经过有限次“T变换”后,数列的最大项一定会为0,此时数列的各项均为0,从而结束.…【考点】数列的应用【解析】(1)根据新定义,可得数列A3:4,2,8不能结束,数列A4:1,4,2,9能结束,并可写出各数列;(2)A3经过有限次“T变换”后能够结束的充要条件是a1=a2=a3,先证明a1=a2=a3,则经过一次“T变换”就得到数列0,0,0,从而结束,再证明命题“若数列T(A3)为常数列,则A3为常数列”,即可得解;(3)先证明引理:“数列T(A n)的最大项一定不大于数列A n的最大项,其中n≥3”,再分类讨论:第一类是没有为0的项,或者为0的项与最大项不相邻(规定首项与末项相邻),此时由引理可知,max(B4)≤max(A4)−1.第二类是含有为0的项,且与最大项相邻,此时max(B4)=max(A4).证明第二类数列A4经过有限次“T变换”,一定可以得到第一类数列.【解答】(1)解:数列A3:4,2,8不能结束,各数列依次为2,6,4;4,2,2;2,0,2;2,2,0;0,2,2;2,0,2;….从而以下重复出现,不会出现所有项均为0的情形.…数列A4:1,4,2,9能结束,各数列依次为3,2,7,8;1,5,1,5;4,4,4,4;0,0,0,0.…(2)解:A3经过有限次“T变换”后能够结束的充要条件是a1=a2=a3.…若a1=a2=a3,则经过一次“T变换”就得到数列0,0,0,从而结束.…当数列A3经过有限次“T变换”后能够结束时,先证命题“若数列T(A3)为常数列,则A3为常数列”.当a1≥a2≥a3时,数列T(A3):a1−a2,a2−a3,a1−a3.由数列T(A3)为常数列得a1−a2=a2−a3=a1−a3,解得a1=a2=a3,从而数列A3也为常数列.其它情形同理,得证.在数列A3经过有限次“T变换”后结束时,得到数列0,0,0(常数列),由以上命题,它变换之前的数列也为常数列,可知数列A3也为常数列.…所以,数列A3经过有限次“T变换”后能够结束的充要条件是a1=a2=a3.(3)证明:先证明引理:“数列T(A n)的最大项一定不大于数列A n的最大项,其中n≥3”.证明:记数列A n中最大项为max(A n),则0≤a i≤max(A n).令B n=T(A n),b i=a p−a q,其中a p≥a q.因为a q≥0,所以b i≤a p≤max(A n),故max(B n)≤max(A n),证毕.…现将数列A4分为两类.第一类是没有为0的项,或者为0的项与最大项不相邻(规定首项与末项相邻),此时由引理可知,max(B4)≤max(A4)−1.第二类是含有为0的项,且与最大项相邻,此时max(B4)=max(A4).下面证明第二类数列A4经过有限次“T变换”,一定可以得到第一类数列.不妨令数列A4的第一项为0,第二项a最大(a>0).(其它情形同理)①当数列A4中只有一项为0时,若A4:0,a,b,c(a>b, a>c, bc≠0),则T(A4):a,a−b,|b−c|,c,此数列各项均不为0或含有0项但与最大项不相邻,为第一类数列;若A4:0,a,a,b(a>b, b≠0),则T(A4):a,0,a−b,b;T(T(A4)):a,a−b,|a−2b|,a−b此数列各项均不为0或含有0项但与最大项不相邻,为第一类数列;若A4:0,a,b,a(a>b, b≠0),则T(A4):a,a−b,a−b,b,此数列各项均不为0,为第一类数列;若A4:0,a,a,a,则T(A4):a,0,0,a;T(T(A4)):a,0,a,0;T(T(T(A4))):a,a,a,a,此数列各项均不为0,为第一类数列.②当数列A4中有两项为0时,若A4:0,a,0,b(a≥b>0),则T(A4):a,a,b,b,此数列各项均不为0,为第一类数列;若A4:0,a,b,0(a≥b>0),则T(A):a,a−b,b,0,T(T(A)):b,|a−2b|,b,a,此数列各项均不为0或含有0项但与最大项不相邻,为第一类数列.③当数列A4中有三项为0时,只能是A4:0,a,0,0,则T(A):a,a,0,0,T(T(A)):0,a,0,a,T (T(T(A))):a,a,a,a,此数列各项均不为0,为第一类数列.总之,第二类数列A4至多经过3次“T变换”,就会得到第一类数列,即至多连续经历3次“T变换”,数列的最大项又开始减少.又因为各数列的最大项是非负整数,故经过有限次“T变换”后,数列的最大项一定会为0,此时数列的各项均为0,从而结束.…。
2012年西城区第一次模拟考试之数学篇含答案可编辑
2012年北京市西城区初三一模试卷数学命题人:郑荣国2012.4考生须知1.本试卷共5页,共五道大题,25道小题,满分120分.考试时间120分钟. 2.在试卷和答题纸上认真填写学校名称、班级和姓名. 3.试题答案一律填涂或书写在答题纸上,在试卷上作答无效. 4.在答题纸上,作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答. 5.考试结束,请将本试卷、答题纸和草稿纸一并交回.一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.计算:29-=( )A .-1B .-3C .3D .52.我市深入实施环境污染整治,某经济开发区的40家化工企业中已关停、整改32家,每年排放的污水减少了167000吨.将167000用科学记数法表示为( )A .316710⨯B .416.710⨯C .51.6710⨯D .60.16710⨯3.已知,如图,AD 与BC 相交于点O ,AB ∥CD ,如果∠B =20°,∠D =40°,那么∠BOD 为( )A .40°B .50°C .60°D .70°4.因式分解()219x --的结果是( )A .()()24x x +-B .()()81x x ++C .()()24x x -+D .()()108x x -+5.如图,是由一些相同的小正方体搭成的几何体的三视图,搭成这个几何体的小正方体的个数有( )A .2个B .3个C .4个D .6个6.已知抛一枚均匀硬币正面朝上的概率为12,下列说法正确的是( ) A .连续抛一枚均匀硬币2次必有1次正面朝上 B .连续抛一枚均匀硬币10次都可能正面朝上C .大量反复抛一枚均匀硬币,平均每100次出现下面朝上50次D .通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的7.如图,AB 是⊙O 的直径,AB =4,AC 是弦,AC =23,∠AOC 为( ) A .120°B .130°C .140°D .150°A BCDO8.如图,在△ABC 中,∠ACB =90°,AC =BC =2.E 、F 分别是射线AC 、CB 上的动点,且AE =BF ,EF与AB 交于点G ,EH ⊥AB 于点H ,设AE =x ,GH =y ,下面能够反映y 与x 之间函数关系的图象是( )GHF A CBE yxxyyxyxDCBAOOOO二、填空题(本题共16分,每小题4分)9.函数3y x =-自变量的取值范围是__________. 10.如图,点P 在双曲线(0)ky k x=≠上,点(12)P ',与点P 关于y 轴对称,则此双曲线的解析式为.11.如图,在平面直角坐标系中,等边三角形ABC 的顶点B ,C 的坐标分别为(1,0),(3,0),过坐标原点O 的一条直线分别与边AB ,AC 交于点M ,N ,若OM =MN ,则点M 的坐标为______________.12.如图,点A 1,A 2,A 3,A 4,…,A n 在射线OA 上,点B 1,B 2,B 3,…,B n ―1在射线OB 上,且A 1B 1∥A 2B 2∥A 3B 3∥…∥A n ―1B n ―1,A 2B 1∥A 3B 2∥A 4B 3∥…∥A n B n ―1,△A 1A 2B 1,△A 2A 3B 2,…,△A n ―1A n B n ―1为阴影三角形,若△A 2B 1B 2,△A 3B 2B 3的面积分别为1、4,则△A 1A 2B 1的面积为__________;面积小于2011的阴影三角形共有__________个.xyOABCMN O1 2yx(12)P ',P ACBO三、解答题(本题共30分,每小题5分) 13.计算:102124sin60(3)-+-︒--.14.(1)解不等式:112x x >+;(2)解方程组20328x y x y -=⎧⎨+=⎩15.已知:如图,A 点坐标为302⎛⎫- ⎪⎝⎭,,B 点坐标为()03,. (1)求过A B ,两点的直线解析式; (2)过B 点作直线BP 与x 轴交于点P ,且使2OP OA =,求ABP ∆的面积.11BAOy x16.如图,分别以Rt △ABC 的直角边AC 及斜边AB 向外作等边△ACD 、等边△ABE .已知∠BAC =30º,EF ⊥AB ,垂足为F ,连结DF .BO A A 1 A2A 3 A 4 A 5B 1 B 2 B 3B 441(1)求证:AC =EF ;(2)求证:四边形ADFE 是平行四边形.17.先化简:2313(1)2349223x x x x ÷⋅++--;若结果等于23,求出相应x 的值.18.在某市举办的“读好书,讲礼仪”活动中,东华学校积极行动,各班图书角的新书、好书不断增多,除学校购买外,还有师生捐献的图书.下面是七年级(1)班全体同学捐献图书的情况统计图: 请你根据以上统计图中的信息,解答下列问题: (1)该班有学生多少人? (2)补全条形统计图;(3)七(1)班全体同学所捐献图书的中位数和众数分别是多少?ABCDEF四、解答题(本题共20分,每小题5分)19.某批发商以每件50元的价格购进800件T 恤.第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出10件,但最低单位应高于购进的价格;第二个月结束后,批发商将对剩余的T 恤一次性清仓销售,清仓时单价为40元.设第二个月单价降低x 元. (1)填表(不需要化简)时间 第一个月 第二个月 清仓时单价(元)80 ▲ 40 销售量(件) 200▲ ▲ (2)如果批发商希望通过销售这批T 恤获利9000元,那么第二个月的单价应是多少元?20.如图,等腰梯形ABCD 中,AD ∥BC ,AD =AB =CD =2,∠C =60°,M 是BC 的中点. (1)求证:△MDC 是等边三角形;(2)将△MDC 绕点M 旋转,当MD (即MD ′)与AB 交于一点E ,MC (即MC ′)同时与AD 交于一点F 时,点E ,F 和点A 构成△AEF .试探究△AEF 的周长是否存在最小值.如果不存在,请说明理由;如果存在,请计算出△AEF 周长的最小值.FEC'D'CDABM21.如图,已知ABC △,以BC 为直径,O 为圆心的半圆交AC 于点F ,点E 为弧CF 的中点,连接BE交AC 于点M ,AD 为△ABC 的角平分线,且AD BE ⊥,垂足为点H . (1)求证:AB 是半圆O 的切线;(2)若3AB =,4BC =,求BE 的长.22.已知:如图1,矩形ABCD 中,AB =6,BC =8,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 四条边上的点(且不与各边顶点重合),设m =AB +BC +CD +DA ,探索m 的取值范围.(1)如图2,当E 、F 、G 、H 分别是AB 、BC 、CD 、DA 四边中点时,m =________.(2)为了解决这个问题,小贝同学采用轴对称的方法,如图3,将整个图形以CD 为对称轴翻折,接着再连续翻折两次,从而找到解决问题的途径,求得m 的取值范围. ①请在图1中补全小贝同学翻折后的图形; ②m 的取值范围是____________.H GF EC DBA 图1图2HGF E C D BA 图3A BDCE FGH五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.已知一元二次方程x 2+ax +a -2=0.(1)求证:不论a 为何实数,此方程总有两个不相等的实数根;BD A O AH AC A E AMA F AA(2)设a <0,当二次函数y =x 2+ax +a -2的图象与x 轴的两个交点的距离为13时,求出此二次函数的解析式;(3)在(2)的条件下,若此二次函数图象与x 轴交于A 、B 两点,在函数图象上是否存在点P ,使得△P AB的面积为3132,若存在求出P 点坐标,若不存在请说明理由.24.如图,在△ABC 中,点D 是BC 上一点,∠B =∠DAC =45°. (1)如图1,当∠C =45°时,请写出图中一对相等的线段;_________________ (2)如图2,若BD =2,BA =3,求AD 的长及△ACD 的面积.图1CD BA图2AB D C25.巳知二次函数y=a(x2-6x+8)(a>0)的图象与x轴分别交于点A、B,与y轴交于点C.点D是抛物线的顶点.(1)如图①.连接AC,将△OAC沿直线AC翻折,若点O的对应点0'恰好落在该抛物线的对称轴上,求实数a的值;(2)如图②,在正方形EFGH中,点E、F的坐标分别是(4,4)、(4,3),边HG位于边EF的右侧.小林同学经过探索后发现了一个正确的命题:“若点P是边EH或边HG上的任意一点,则四条线段P A、PB、PC、PD不能与任何一个平行四边形的四条边对应相等(即这四条线段不能构成平行四边形).“若点P是边EF或边FG上的任意一点,刚才的结论是否也成立?请你积极探索,并写出探索过程;(3)如图②,当点P在抛物线对称轴上时,设点P的纵坐标l是大于3的常数,试问:是否存在一个正数a,使得四条线段P A、PB、PC、PD与一个平行四边形的四条边对应相等(即这四条线段能构成平行四边形)?请说明理由.CDBO'AxyOGH FECDBAxyO2012年北京市西城区初三一模试卷参考答案1.A . 2.C . 3.C .4.A . 5.C . 6.A . 7.A . 8.C . 9.x ≥3.10.2y x -=.11.(54,34)12.12;6.13.解:原式=13234122+-⨯-=12-. 14.(1)解:112x x ->,112x >,所以2x >.(2)21x y =⎧⎨=⎩15.(1)23y x =+;(2)设P 点坐标为()0x ,,依题意得3x =±,所以P 点坐标分别为()()123030P P -,,,. 1132733224ABP S ∆⎛⎫=⨯+⨯= ⎪⎝⎭,213933224ABP S ∆⎛⎫=⨯-⨯= ⎪⎝⎭,所以ABP ∆的面积为274或94. 16.略.17.原式=(23)(23)1233)233223x x x x x x +--+⋅⋅⋅+-=23x ;由23x=23,可,解得x =±2.18.解:(1)因为捐2本的人数是15人,占30%,所以该班人数为1530%=50 (2)根据题意知,捐4本的人数为:50-(10+15+7+5)=13.(如图)(3)七(1)班全体同学所捐献图书的中位数是242+=3(本),众数是2本. 19.(1)80-x ,200+10x ,800-200-(200+10x );(2)根据题意,得80×200+(80-x )(200+10x )+40[800-200-(200+10x )]-50×800=9000.整理,得x 2-20x +100=0,解这个方程得x 1=x 2=10, 当x =10时,80-x =70>50.答:第二个月的单价应是70元. 20.解:(1)证明:过点D 作DP ⊥BC ,于点P ,过点A 作AQ ⊥BC 于点Q ,PQFEC'D'CDA MB∵∠C =∠B =60°∴CP =BQ =12AB ,CP +BQ =AB ,又∵ADPQ 是矩形,AD =PQ , 故BC =2AD ,由已知,点M 是BC 的中点, BM =CM =AD =AB =CD , 即△MDC 中,CM =CD ,∠C =60°, 故△MDC 是等边三角形.(2)解:△AEF 的周长存在最小值,理由如下: 连接AM ,由(1)平行四边形ABMD 是菱形, △MAB ,△MAD 和△MC ′D ′是等边三角形, ∠BMA =∠BME +∠AME =60°,∠EMF =∠AMF +∠AME =60°, ∴∠BME =∠AMF ,在△BME 与△AMF 中,BM =AM ,∠EBM =∠F AM =60°, ∴△BME ≌△AMF (ASA ), ∴BE =AF ,ME =MF ,AE +AF =AE +BE =AB , ∵∠EMF =∠DMC =60°,故△EMF 是等边三角形,EF =MF , ∵MF 的最小值为点M 到AD 的距离错误!未找到引用源。
北京市西城区2012届高三第二次模拟 理科数学试题(2012西城二模)
北京市西城区2012年高三二模试卷数 学(理科) 2012.5第Ⅰ卷(选择题 共40分)一、选择题共8小题,每小题5分,共40分. 在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合2{|log 1}A x x =<,{|0B x x c =<<,其中0}c >.若A B B =,则c 的取值范围是( ) (A )(0,1] (B )[1,)+∞(C )(0,2](D )[2,)+∞2.执行如图所示的程序框图,若输入如下四个函数: ①()e x f x =; ②()e x f x =-; ③1()f x x x -=+; ④1()f x x x -=-. 则输出函数的序号为( ) (A )① (B )② (C )③ (D )④3.椭圆 3cos 5sin x y ϕϕ=⎧⎨=⎩(ϕ是参数)的离心率是( )(A )35 (B )45(C )925(D )16254.已知向量(,1)x =a ,(,4)x =-b ,其中x ∈R .则“2x =”是“⊥a b ”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件 (D )既不充分又不必要条件5.右图是1,2两组各7名同学体重(单位:kg ) 数据的茎叶图.设1,2两组数据的平均数依次 为1x 和2x ,标准差依次为1s 和2s ,那么( ) (注:标准差222121[()()()]n s x x x x x x n=-+-++-,其中x 为12,,,n x x x 的平均数)(A )12x x >,12s s > (B )12x x >,12s s < (C )12x x <,12s s < (D )12x x <,12s s >6.已知函数()1f x kx =+,其中实数k 随机选自区间[2,1]-.对[0,1]x ∀∈,()0f x ≥的概率是( ) (A )13(B )12(C )23(D )347.某大楼共有12层,有11人在第1层上了电梯,他们分别要去第2至第12层,每层1人.因 特殊原因,电梯只允许停1次,只可使1人如愿到达,其余10人都要步行到达所去的楼层.假设这10位乘客的初始“不满意度”均为0,乘客每向下步行1层的“不满意度”增量为1,每向上步行1层的“不满意度”增量为2,10人的“不满意度”之和记为S ,则S 的最小值是( ) (A )42 (B )41 (C )40 (D )398.对数列{}n a ,如果*k ∃∈N 及12,,,k λλλ∈R ,使1122n k n k n k k n a a a a λλλ++-+-=+++成立,其中*n ∈N ,则称{}n a 为k 阶递归数列.给出下列三个结论: ① 若{}n a 是等比数列,则{}n a 为1阶递归数列; ② 若{}n a 是等差数列,则{}n a 为2阶递归数列;③ 若数列{}n a 的通项公式为2n a n =,则{}n a 为3阶递归数列. 其中,正确结论的个数是( ) (A )0 (B )1 (C )2 (D )3第Ⅱ卷(非选择题 共110分)二、填空题共6小题,每小题5分,共30分. 9.在△ABC 中,3BC =,2AC =,π3A =,则B = _____.10.已知复数z 满足(1i)1z -⋅=,则z =_____.11.如图,△ABC 是⊙O 的内接三角形,PA 是⊙O 的切线,PB 交AC 于点E ,交⊙O 于点D .若PA PE =,60ABC ︒∠=,1PD =,9PB =,则PA =_____; EC =_____.12.已知函数2()1f x x bx =++是R 上的偶函数,则实数b =_____;不等式(1)||f x x -<的解集为_____.13.一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,该几何体 的体积是_____;若该几何体的所有顶点在同一球面 上,则球的表面积是_____.14.曲线C 是平面内到定点(0,1)F 和定直线:1l y =-的距离之和等于4的点的轨迹,给出下列三个结论:① 曲线C 关于y 轴对称;② 若点(,)P x y 在曲线C 上,则||2y ≤; ③ 若点P 在曲线C 上,则1||4PF ≤≤. 其中,所有正确结论的序号是____________.EADCB三、解答题共6小题,共80分. 解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)已知函数22π()cos ()sin 6f x x x =--. (Ⅰ)求π()12f 的值; (Ⅱ)若对于任意的π[0,]2x ∈,都有()f x c ≤,求实数c 的取值范围.16.(本小题满分14分)如图,直角梯形ABCD 与等腰直角三角形ABE 所在的平面互相垂直.AB ∥CD ,BC AB ⊥,BC CD AB 22==,EA EB ⊥.(Ⅰ)求证:AB DE ⊥;(Ⅱ)求直线EC 与平面ABE 所成角的正弦值;(Ⅲ)线段EA 上是否存在点F ,使EC // 平面FBD ?若存在,求出EFEA;若不存在,说明理由.17.(本小题满分13分)甲、乙两人参加某种选拔测试.在备选的10道题中,甲答对其中每道题的概率都是53,乙能答对其中的5道题.规定每次考试都从备选的10道题中随机抽出3道题进行测试,答对一题加10分,答错一题(不答视为答错)减5分,至少得15分才能入选.(Ⅰ)求乙得分的分布列和数学期望;(Ⅱ)求甲、乙两人中至少有一人入选的概率.18.(本小题满分13分)已知抛物线24y x =的焦点为F ,过点F 的直线交抛物线于A ,B 两点. (Ⅰ)若2AF FB =,求直线AB 的斜率;(Ⅱ)设点M 在线段AB 上运动,原点O 关于点M 的对称点为C ,求四边形OACB 面积的最小值.19.(本小题满分14分)已知函数2221()1ax a f x x +-=+,其中a ∈R .(Ⅰ)当1a =时,求曲线()y f x =在原点处的切线方程; (Ⅱ)求)(x f 的单调区间;(Ⅲ)若)(x f 在[0,)+∞上存在最大值和最小值,求a 的取值范围.20.(本小题满分13分) 若12(0n n i A a a a a ==或1,1,2,,)i n =,则称n A 为0和1的一个n 位排列.对于n A ,将排列121n n a a a a -记为1()n R A ;将排列112n n n a a a a --记为2()n R A ;依此类推,直至()n n n R A A =.对于排列n A 和()i n R A (1,2,,1)i n =-,它们对应位置数字相同的个数减去对应位置数字不同的个数,叫做n A 和()i n R A 的相关值,记作(,())i n n t A R A .例如3110A =,则13()011R A =, 133(,())1t A R A =-.若(,())1(1,2,,1)i n n t A R A i n =-=-,则称n A 为最佳排列.(Ⅰ)写出所有的最佳排列3A ; (Ⅱ)证明:不存在最佳排列5A ;(Ⅲ)若某个21(k A k +是正整数)为最佳排列,求排列21k A +中1的个数.北京市西城区2012年高三二模试卷数学(理科)参考答案及评分标准2012.5一、选择题:本大题共8小题,每小题5分,共40分.1.D ; 2.D ; 3.B ; 4.A ; 5.C ; 6.C ; 7.C ; 8.D .二、填空题:本大题共6小题,每小题5分,共30分. 9.π4; 10.1i22+; 11.3,4; 12.0,{|12}x x << 13.13,3π; 14.① ② ③.注:11、12、13第一问2分,第二问3分;14题少填不给分.三、解答题:本大题共6小题,共80分. 15.(本小题满分13分) (Ⅰ)解:22ππππ3()cos ()sin cos 12121262f =--==. ………………5分 (Ⅱ)解: 1π1()[1cos(2)](1cos 2)232f x x x =+--- ………………7分 1π133[cos(2)cos 2](sin 2cos 2)23222x x x x =-+=+ ………………8分 3πsin(2)23x =+. ………………9分 因为 π[0,]2x ∈,所以 ππ4π2[,]333x +∈, ………………10分 所以当 ππ232x +=,即 π12x =时,()f x 取得最大值32. ………………11分 所以 π[0,]2x ∀∈,()f x c ≤ 等价于32c ≤. 故当 π[0,]2x ∀∈,()f x c ≤时,c 的取值范围是3[,)2+∞. ………………13分16.(本小题满分14分)(Ⅰ)证明:取AB 中点O ,连结EO ,DO .因为EA EB =,所以AB EO ⊥. ………………1分 因为四边形ABCD 为直角梯形,BC CD AB 22==,BC AB ⊥, 所以四边形OBCD 为正方形,所以OD AB ⊥. ……………2分 所以⊥AB 平面EOD . ………………3分 所以 ED AB ⊥. ………………4分 (Ⅱ)解:因为平面⊥ABE 平面ABCD ,且 AB EO ⊥,所以⊥EO 平面ABCD ,所以OD EO ⊥.由OE OD OB ,,两两垂直,建立如图所示的空间直角坐标系xyz O -. …………5分 因为三角形EAB 为等腰直角三角形,所以OE OD OB OA ===,设1=OB ,所以(0,0,0),(1,0,0),(1,0,0),(1,1,0),(0,1,0),(0,0,1)O A B C D E -.所以 )1,1,1(-=EC ,平面ABE 的一个法向量为(0,1,0)OD =. ………………7分 设直线EC 与平面ABE 所成的角为θ, 所以 ||3sin |cos ,|3||||EC OD EC OD EC OD θ⋅=〈〉==, 即直线EC 与平面ABE 所成角的正弦值为33. ………………9分 (Ⅲ)解:存在点F ,且13EF EA =时,有EC // 平面FBD . ………………10分 证明如下:由 )31,0,31(31--==EA EF ,)32,0,31(-F ,所以)32,0,34(-=FB .设平面FBD 的法向量为v ),,(c b a =,则有0,0.BD FB ⎧⋅=⎪⎨⋅=⎪⎩v v所以 0,420.33a b a z -+=⎧⎪⎨-=⎪⎩ 取1=a ,得)2,1,1(=v . ………………12分 因为 ⋅EC v 0)2,1,1()1,1,1(=⋅-=,且⊄EC 平面FBD ,所以 EC // 平面FBD . 即点F 满足13EF EA =时,有EC // 平面FBD . ………………14分17.(本小题满分13分)(Ⅰ)解:设乙答题所得分数为X ,则X 的可能取值为15,0,15,30-.………………1分35310C 1(15)C 12P X =-==; 2155310C C 5(0)C 12P X ===; 1255310C C 5(15)C 12P X ===; 35310C 1(30)C 12P X ===. ………………5分乙得分的分布列如下:X 15-0 15 30 P121 125 125 121 ………………6分155115(15)01530121212122EX =⨯-+⨯+⨯+⨯=. ………………7分 (Ⅱ)由已知甲、乙至少答对2题才能入选,记甲入选为事件A ,乙入选为事件B .则 223332381()C ()()()555125P A =+=, ………………10分 511()12122P B =+=. ………………11分 故甲乙两人至少有一人入选的概率4411031()11252125P P A B =-⋅=-⨯=. ……13分18.(本小题满分13分)(Ⅰ)解:依题意(1,0)F ,设直线AB 方程为1x my =+. ………………1分将直线AB 的方程与抛物线的方程联立,消去x 得2440y my --=. …………3分 设11(,)A x y ,22(,)B x y ,所以 124y y m +=,124y y =-. ① ………………4分 因为 2AF FB =,所以 122y y =-. ② ………………5分联立①和②,消去12,y y ,得24m =±. ………6分所以直线AB 的斜率是22±. ………………7分ABCO MxyF(Ⅱ)解:由点C 与原点O 关于点M 对称,得M 是线段OC 的中点,从而点O 与点C 到直线AB 的距离相等,所以四边形OACB 的面积等于2AOB S ∆. ……………… 9分 因为 12122||||2AOB S OF y y ∆=⨯⋅⋅- ………………10分221212()441y y y y m =+-=+, ………………12分所以 0m =时,四边形OACB 的面积最小,最小值是4. ………………13分19.(本小题满分14分) (Ⅰ)解:当1a =时,22()1xf x x =+,22(1)(1)()2(1)x x f x x +-'=-+. ………………2分 由 (0)2f '=, 得曲线()y f x =在原点处的切线方程是20x y -=.…………3分 (Ⅱ)解:2()(1)()21x a ax f x x +-'=-+. ………………4分① 当0a =时,22()1xf x x '=+.所以()f x 在(0,)+∞单调递增,在(,0)-∞单调递减. ………………5分当0a ≠,21()()()21x a x a f x a x +-'=-+.② 当0a >时,令()0f x '=,得1x a =-,21x a=,()f x 与()f x '的情况如下:故)(x f 的单调减区间是(,)a -∞-,1(,)a +∞;单调增区间是1(,)a a-. ………7分 ③ 当0a <时,()f x 与()f x '的情况如下:x1(,)x -∞ 1x 12(,)x x 2x 2(,)x +∞ ()f x '-+-()f x↘1()f x ↗2()f x ↘x2(,)x -∞2x 21(,)x x 1x 1(,)x +∞()f x '+ 0-+所以()f x 的单调增区间是1(,)a -∞,(,)a -+∞;单调减区间是1(,)a a-………………9分(Ⅲ)解:由(Ⅱ)得, 0a =时不合题意. ………………10分当0a >时,由(Ⅱ)得,)(x f 在1(0,)a 单调递增,在1(,)a+∞单调递减,所以)(x f 在(0,)+∞上存在最大值21()0f a a=>.设0x 为)(x f 的零点,易知2012a x a-=,且01x a <.从而0x x >时,()0f x >;0x x <时,()0f x <.若)(x f 在[0,)+∞上存在最小值,必有(0)0f ≤,解得11a -≤≤.所以0a >时,若)(x f 在[0,)+∞上存在最大值和最小值,a 的取值范围是(0,1]. ………………12分 当0a <时,由(Ⅱ)得,)(x f 在(0,)a -单调递减,在(,)a -+∞单调递增,所以)(x f 在(0,)+∞上存在最小值()1f a -=-.若)(x f 在[0,)+∞上存在最大值,必有(0)0f ≥,解得1a ≥,或1a ≤-. 所以0a <时,若)(x f 在[0,)+∞上存在最大值和最小值,a 的取值范围是(,1]-∞-. 综上,a 的取值范围是(,1](0,1]-∞-. ………………14分20.(本小题满分13分)(Ⅰ)解:最佳排列3A 为110,101,100,011,010,001. ………………3分 (Ⅱ)证明:设512345A a a a a a =,则1551234()R A a a a a a =,因为 155(,())1t A R A =-,所以15||a a -,21||a a -,32||a a -,43||a a -,54||a a -之中有2个0,3个1.()f x↗2()f x↘1()f x↗按512345a a a a a a →→→→→的顺序研究数码变化,由上述分析可知有2次数码不发生改变,有3次数码发生了改变.但是5a 经过奇数次数码改变不能回到自身,所以不存在5A ,使得155(,())1t A R A =-,从而不存在最佳排列5A . ………………7分 (Ⅲ)解:由211221(0k k i A a a a a ++==或1,1,2,,21)i k =+,得 12121122()k k k R A a a a a ++=, 2212211221()k k k k R A a a a a a ++-=, (212134)2112()k k k R A a a a a a -++=, 22123211()k k k R A a a a a ++=. 因为 2121(,())1(1,2,,2)i k k t A R A i k ++=-=,所以 21k A +与每个21()i k R A +有k 个对应位置数码相同,有1k +个对应位置数码不 同,因此有12121221212||||||||1k k k k k a a a a a a a a k +-+-+-++-+-=+, 122212222121||||||||1k k k k k k a a a a a a a a k +-+--+-++-+-=+,……,132421212||||||||1k k a a a a a a a a k +-+-++-+-=+, 1223221211||||||||1k k k a a a a a a a a k ++-+-++-+-=+.以上各式求和得, (1)2S k k =+⨯. ………………10分另一方面,S 还可以这样求和:设12221,,...,,k k a a a a +中有x 个0,y 个1,则2S x y =. ………………11分 所以21,22(1).x y k xy k k +=+⎧⎨=+⎩ 解得,1,x k y k =⎧⎨=+⎩或1,.x k y k =+⎧⎨=⎩所以排列21k A +中1的个数是k 或1k +. ………………13分。
2012年北京市各区一模数学试题汇编--三角函数 3
2012年北京市各区一模数学试题汇编三角函数(2012年西城一模文科)11. 函数22sin 3cos y x x =+的最小正周期为_____. (2012年西城一模文科)15.(本小题满分13分)在△ABC 中,已知2sin cos sin()B A A C =+.(Ⅰ)求角A ;(Ⅱ)若2BC =,△ABC 的面积是3,求AB .(2012年西城一模理科)5.已知函数44()sin cos f x x x ωω=-的最小正周期是π,那么正数ω=( )(A )2 (B )1 (C )12 (D )14(2012年西城一模理科)15.(本小题满分13分)在△ABC 中,已知sin()sin sin()A B B A B +=+-.(Ⅰ)求角A ;(Ⅱ)若||7BC =,20=⋅AC AB ,求||AB AC +.(2012年东城一模文科)6、已知2sin(45)10α-=-,且090<<α,则cos α的值为 (A )513 (B )1213 (C ) 35 (D )45 (2012年东城一模文科)15、(本小题共13分)已知函数22()(sin2cos2)2sin 2f x x x x =+-.(Ⅰ)求()f x 的最小正周期;(Ⅱ)若函数()y g x =的图象是由()y f x =的图象向右平移8π个单位长度得到的,当x ∈[0,4π]时,求()y g x =的最大值和最小值.(2012年东城一模理科)15、(本小题共13分)已知函数22()(sin2cos2)2sin 2f x x x x =+-.(Ⅰ)求()f x 的最小正周期;(Ⅱ)若函数()y g x =的图象是由()y f x =的图象向右平移8π个单位长度,再向上平移1个单位长度得到的,当x ∈[0,4π]时,求()y g x =的最大值和最小值. (2012年海淀一模文科)10、若tan 2α=,则sin 2α= .(2012年海淀一模文科)15、本小题满分13分) 已知函数()sin sin()3f x x x π=+-. (Ⅰ)求()f x 的单调递增区间; (Ⅱ)在ABC ∆中,角A ,B ,C 的对边分别为,,a b c . 已知3()2f A =,3a b =,试判断ABC ∆的形状(2012年海淀一模理科)11、若1tan 2α=,则cos(2)απ2+= . (2012年海淀一模理科)15、(本小题满分13分)在ABC ∆中,角A ,B ,C 的对边分别为,,a b c ,且A ,B , C 成等差数列. (Ⅰ)若13b =,3a =,求c 的值;(Ⅱ)设sin sin t A C =,求t 的最大值.(2012年朝阳一模文科)3.函数2cos 1y x =+在下列哪个区间上为增函数(A )π[0, ]2 (B )π[, π]2 (C )[]0, π (D )[]π, 2π(2012年朝阳一模文科)15.(本小题满分13分)在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c .已知2c a =,4C π=. (Ⅰ)求sin A 的值; (Ⅱ)求cos(2)3A π-的值.(2012年朝阳一模理科)15. (本小题满分13分)已知函数π()cos()4f x x =-. (Ⅰ)若72()10f α=,求sin 2α的值; (II )设()()2g x f x f x π⎛⎫=⋅+⎪⎝⎭,求函数()g x 在区间ππ,63⎡⎤-⎢⎥⎣⎦上的最大值和最小值. (2012年丰台一模文科)15.(本小题共13分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且sin cos cos a B b C c B -=. (Ⅰ)判断△ABC 的形状;(Ⅱ)若()sin +cos f x x x =,求()f A 的最大值.(2012年丰台一模理科)4.已知向量(sin ,cos )a θθ=,(3,4)b =,若a b ⊥,则tan 2θ等于 (A) 247 (B) 67 (C) 2425- (D) 247- (2012年丰台一模理科)7.已知a b <,函数()=sin f x x ,()=cos g x x .命题p :()()0f a f b ⋅<,命题q :函数()g x 在区间(,)a b 内有最值.则命题p 是命题q 成立的(A) 充分不必要条件(B) 必要不充分条件 (C) 充要条件 (D) 既不充分也不必要条件(2012年丰台一模理科)15.(本小题共13分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且sin cos cos a B b C c B -=. (Ⅰ)判断△ABC 的形状; (Ⅱ)若121()cos 2cos 232f x x x =-+,求()f A 的取值范围.(2012年石景山一模文科)3 函数1sin()y x π=+-的图象( )(2012年石景山一模文科)9.设向量(cos ,1),(1,3cos )a b θθ==,且b a //,则θ2cos = .(2012年石景山一模文科)15.(本小题满分13分)在ABC ∆中,角A ,B ,C 所对应的边分别为a ,b ,c ,且C b B c a c o s c o s )2(=-. (Ⅰ)求角B 的大小; (Ⅱ)若2,4==a A π,求ABC ∆的面积.(2012年石景山一模理科)9.设向量)cos 3,1(),1,(cos θθ==b a ,且b a //,则θ2cos = .(2012年石景山一模理科)15.(本小题满分13分)在ABC ∆中,角A ,B ,C 所对应的边分别为a ,b ,c ,且C b B c a c o s c o s )2(=-. (Ⅰ)求角B 的大小;(Ⅱ)若2cos ,22A a ==,求ABC ∆的面积. A .关于2x π=对称 B .关于y 轴对称 C .关于原点对称 D .关于x π=对称。
北京市西城区高三数学第一次模拟考试试题 理
北京市西城区2012年高三一模试卷数 学(理科)2012.4第Ⅰ卷(选择题 共40分)一、选择题共8小题,每小题5分,共40分. 在每小题列出的四个选项中,选出符合题目要求的一项. 1.已知全集U =R ,集合1{|1}A x x=≥,则U A =ð( ) (A )(0,1)(B )(0,1](C )(,0](1,)-∞+∞ (D )(,0)[1,)-∞+∞2.执行如图所示的程序框图,若输入2x =,则输出y 的 值为( ) (A )2 (B )5 (C )11 (D )233.若实数x ,y 满足条件0,30,03,x y x y x +≥⎧⎪-+≥⎨⎪≤≤⎩则2x y -的最大值为( )(A )9 (B )3 (C )0 (D )3-4.已知正六棱柱的底面边长和侧棱长相等,体积为3. 其三视图中的俯视图如图所示,则其左视图的面积是( ) (A)2 (B)2 (C )28cm(D )24cm5.已知函数44()sin cos f x x x ωω=-的最小正周期是π,那么正数ω=( )(A )2(B )1(C )12(D )146.若2log 3a =,3log 2b =,4log 6c =,则下列结论正确的是( ) (A )b a c << (B )a b c << (C )c b a << (D )b c a <<7.设等比数列{}n a 的各项均为正数,公比为q ,前n 项和为n S .若对*n ∀∈N ,有23n n S S <,则q 的取值范围是( )(A )(0,1] (B )(0,2)(C )[1,2)(D )8.已知集合230123{|333}A x x a a a a ==+⨯+⨯+⨯,其中{0,1,2}(0,1,2,3)k a k ∈=,且30a ≠.则A 中所有元素之和等于( ) (A )3240 (B )3120(C )2997(D )2889第Ⅱ卷(非选择题 共110分)二、填空题共6小题,每小题5分,共30分.9. 某年级120名学生在一次百米测试中,成绩全部介于13秒 与18秒之间.将测试结果分成5组:[1314),,[1415),,[1516),,[1617),,[1718],,得到如图所示的频率分布直方图.如果从左到右的5个小矩形的面积之比为1:3:7:6:3,那么成绩在[16,18]的学生人数是_____.10.6(2)x -的展开式中,3x 的系数是_____.(用数字作答)11. 如图,AC 为⊙O 的直径,OB AC ⊥,弦BN 交AC于点M.若OC =1OM =,则MN =_____.12. 在极坐标系中,极点到直线:l πsin()4ρθ+=_____.13. 已知函数122,0,(),20,x x c f x x x x ⎧≤≤⎪=⎨+-≤<⎪⎩ 其中0c >.那么()f x 的零点是_____;若()f x 的值域是1[,2]4-,则c 的取值范围是_____.14. 在直角坐标系xOy 中,动点A ,B分别在射线(0)y x x =≥和(0)y x =≥上运动,且△OAB 的面积为1.则点A ,B 的横坐标之积为_____;△OAB 周长的最小值是_____.ABCOMN三、解答题共6小题,共80分. 解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)在△ABC 中,已知sin()sin sin()A B B A B +=+-. (Ⅰ)求角A ;(Ⅱ)若||7BC = ,20=⋅AC AB ,求||AB AC +.16.(本小题满分13分)乒乓球单打比赛在甲、乙两名运动员间进行,比赛采用7局4胜制(即先胜4局者获胜,比赛结束),假设两人在每一局比赛中获胜的可能性相同.(Ⅰ)求甲以4比1获胜的概率;(Ⅱ)求乙获胜且比赛局数多于5局的概率; (Ⅲ)求比赛局数的分布列.17.(本小题满分14分)如图,四边形ABCD 与BDEF 均为菱形, ︒=∠=∠60DBF DAB ,且FA FC =. (Ⅰ)求证:AC ⊥平面BDEF ;(Ⅱ)求证:FC ∥平面EAD ; (Ⅲ)求二面角B FC A --的余弦值.18.(本小题满分13分)已知函数()e (1)axa f x a x=⋅++,其中1-≥a .(Ⅰ)当1a =时,求曲线()y f x =在点(1,(1))f 处的切线方程;(Ⅱ)求)(x f 的单调区间.19.(本小题满分14分)已知椭圆:C 22221(0)x y a b a b +=>>的离心率为3,定点(2,0)M ,椭圆短轴的端点是1B ,2B ,且12MB MB ⊥.(Ⅰ)求椭圆C 的方程;(Ⅱ)设过点M 且斜率不为0的直线交椭圆C 于A ,B 两点.试问x 轴上是否存在定点P ,使PM 平分APB ∠?若存在,求出点P 的坐标;若不存在,说明理由.20.(本小题满分13分)对于数列12:,,,(,1,2,,)n n i A a a a a i n ∈=N ,定义“T 变换”:T 将数列n A 变换成数列12:,,,n n B b b b ,其中1||(1,2,,1)i i i b a a i n +=-=- ,且1||n n b a a =-,这种“T 变换”记作()n n B T A =.继续对数列n B 进行“T 变换”,得到数列n C ,…,依此类推,当得到的数列各项均为0时变换结束.(Ⅰ)试问3:4,2,8A 和4:1,4,2,9A 经过不断的“T 变换”能否结束?若能,请依次写出经过“T 变换”得到的各数列;若不能,说明理由;(Ⅱ)求3123:,,A a a a 经过有限次“T 变换”后能够结束的充要条件; (Ⅲ)证明:41234:,,,A a a a a 一定能经过有限次“T 变换”后结束.北京市西城区2012年高三一模试卷数学(理科)参考答案及评分标准2012.4一、选择题:本大题共8小题,每小题5分,共40分.1. C ;2. D ;3. A ;4.A ;5. B ;6. D ;7. A ;8. D .二、填空题:本大题共6小题,每小题5分,共30分.9.54; 10.160-; 11.1;13.1-和0,(0,4]; 14.2,2(1. 注:13题、14题第一问2分,第二问3分.三、解答题:本大题共6小题,共80分.15.(本小题满分13分)(Ⅰ)解:原式可化为 B A B A B A B sin cos 2)sin()sin(sin =--+=. ………………3分因为(0,π)B ∈, 所以 0sin >B , 所以21cos =A .………………5分因为(0,π)A ∈, 所以 π3A =. ………………6分(Ⅱ)解:由余弦定理,得 222||||||2||||cos BC AB AC AB AC A =+-⋅.………………8分因为 ||7BC = ,||||cos 20AB AC AB AC A ⋅=⋅=,所以 22||||89AB AC += . ………………10分因为 222||||||2129AB AC AB AC AB AC +=++⋅=, ………………12分所以 ||AB AC +=………………13分16.(本小题满分13分)(Ⅰ)解:由已知,甲、乙两名运动员在每一局比赛中获胜的概率都是21. ………………1分记“甲以4比1获胜”为事件A , 则334341111()C ()()2228P A -==. ………………4分(Ⅱ)解:记“乙获胜且比赛局数多于5局”为事件B . 因为,乙以4比2获胜的概率为3353151115C ()()22232P -==, ………………6分乙以4比3获胜的概率为3363261115C ()()22232P -==, ………………7分所以 125()16P B P P =+=. ………………8分(Ⅲ)解:设比赛的局数为X ,则X 的可能取值为4,5,6,7.44411(4)2C ()28P X ===, ………………9分334341111(5)2C ()()2224P X -===, ………………10分335251115(6)2C ()()22216P X -==⋅=, ………………11分336361115(7)2C ()()22216P X -==⋅=. ………………12分比赛局数的分布列为:X 4 5 6 7 P18 14 516 516………………13分17.(本小题满分14分)(Ⅰ)证明:设AC 与BD 相交于点O ,连结FO .因为 四边形ABCD 为菱形,所以BD AC ⊥, 且O 为AC 中点. ………………1分又 FC FA =,所以 AC FO ⊥. ………3分 因为 O BD FO = ,所以 ⊥AC 平面BDEF . ………………4分 (Ⅱ)证明:因为四边形ABCD 与BDEF 均为菱形,所以AD //BC ,DE //BF , 所以平面FBC//平面EAD . ………………7分又⊂FC 平面FBC , 所以FC// 平面EAD . ………………8分(Ⅲ)解:因为四边形BDEF 为菱形,且︒=∠60DBF ,所以△DBF 为等边三角形.因为O 为BD 中点,所以BD FO ⊥,故FO ⊥平面ABCD .由OF OB OA ,,两两垂直,建立如图所示的空间直角坐标系xyz O -. ………………9分设2=AB .因为四边形ABCD 为菱形,︒=∠60DAB ,则2=BD ,所以1OB =,OA OF ==所以 )3,0,0(),0,0,3(),0,1,0(),0,0,3(),0,0,0(F C B A O -.所以CF =,,0)CB =.设平面BFC 的法向量为=()x,y,z n ,则有0,0.CF CB ⎧⋅=⎪⎨⋅=⎪⎩n n 所以 ⎩⎨⎧=+=+.03,033y x z x 取1=x ,得)1,3,1(--=n . ………………12分易知平面AFC 的法向量为(0,1,0)=v . ………………13分由二面角B FC A --是锐角,得 cos ,⋅〈〉==n v n v n v. 所以二面角B FC A --的余弦值为515. ………………14分18.(本小题满分13分)(Ⅰ)解:当1a =时,1()e (2)xf x x=⋅+,211()e (2)xf x x x'=⋅+-. ………………2分由于(1)3e f =,(1)2e f '=,所以曲线()y f x =在点(1,(1))f 处的切线方程是2e e 0x y -+=. ………………4分(Ⅱ)解:2(1)[(1)1]()e axx a x f x a x++-'=,0x ≠. ………………6分① 当1-=a 时,令()0f x '=,解得 1x =-.)(x f 的单调递减区间为(,1)-∞-;单调递增区间为(1,0)-,(0,)+∞. (8)分当1a ≠-时,令()0f x '=,解得 1x =-,或11x a =+. ② 当01<<-a 时,)(x f 的单调递减区间为(,1)-∞-,1(,)1a +∞+;单调递增区间为(-,1(0,)1a +. ………………10分 ③ 当0=a 时,()f x 为常值函数,不存在单调区间. ………………11分④ 当0a >时,)(x f 的单调递减区间为(1,0)-,1(0,)1a +;单调递增区间为(,1)-∞-,1(,)1a +∞+. ………………13分19.(本小题满分14分)(Ⅰ)解:由 222222519a b b e a a -===-, 得23b a =. ………………2分依题意△12MB B 是等腰直角三角形,从而2b =,故3a =. ………………4分所以椭圆C的方程是22194x y +=. ………………5分 (Ⅱ)解:设11(,)A x y ,22(,)B x y ,直线AB 的方程为2x my =+.将直线AB 的方程与椭圆C 的方程联立,消去x得22(49)16200m y my ++-=. ………………7分所以 1221649m y y m -+=+,1222049y y m -=+. ………………8分若PF 平分APB ∠,则直线PA ,PB 的倾斜角互补, 所以=+PB PA k k .………………9分设(,0)P a ,则有12120y yx a x a+=--. 将 112x my =+,222x my =+代入上式, 整理得 1212122(2)()0(2)(2)my y a y y my a my a +-+=+-+-,所以12122(2)()0my y a y y +-+=. ………………12分将 1221649m y y m -+=+,1222049y y m -=+代入上式, 整理得(29)0a m -+⋅=. ………………13分由于上式对任意实数m 都成立,所以 92a =. 综上,存在定点9(,0)2P ,使PM 平分APB ∠. ………………14分20.(本小题满分13分)(Ⅰ)解:数列3:4,2,8A 不能结束,各数列依次为2,6,4;4,2,2;2,0,2;2,2,0;0,2,2; 2,0,2;….从而以下重复出现,不会出现所有项均为0的情形. ………………2分数列4:1,4,2,9A 能结束,各数列依次为3,2,7,8;1,5,1,5;4,4,4,4;0,0,0,0. ………………3分(Ⅱ)解:3A 经过有限次“T 变换”后能够结束的充要条件是123a a a ==.………………4分若123a a a ==,则经过一次“T 变换”就得到数列0,0,0,从而结束. ……………5分当数列3A 经过有限次“T 变换”后能够结束时,先证命题“若数列3()T A 为常数列,则3A 为常数列”.当123a a a ≥≥时,数列3122313():,,T A a a a a a a ---.由数列3()T A 为常数列得122313a a a a a a -=-=-,解得123a a a ==,从而数列3A 也为常数列.其它情形同理,得证.在数列3A 经过有限次“T 变换”后结束时,得到数列0,0,0(常数列),由以上命题,它变换之前的数列也为常数列,可知数列3A 也为常数列. ………………8分所以,数列3A 经过有限次“T 变换”后能够结束的充要条件是123a a a ==.(Ⅲ)证明:先证明引理:“数列()n T A 的最大项一定不大于数列n A 的最大项,其中3n ≥”.证明:记数列n A 中最大项为max()n A ,则0max()i n a A ≤≤.令()n n B T A =,i p q b a a =-,其中p q a a ≥.因为0q a ≥, 所以max()i p n b a A ≤≤,故max()max()n n B A ≤,证毕. ………………9分现将数列4A 分为两类.第一类是没有为0的项,或者为0的项与最大项不相邻(规定首项与末项相邻),此时由引理可知,44max()max()1B A ≤-.第二类是含有为0的项,且与最大项相邻,此时44max()max()B A =.下面证明第二类数列4A 经过有限次“T 变换”,一定可以得到第一类数列.不妨令数列4A 的第一项为0,第二项a 最大(0a >).(其它情形同理)① 当数列4A 中只有一项为0时,若4:0,,,A a b c (,,0a b a c bc >>≠),则4():,,||,T A a a b b c c --,此数列各项均不为0或含有0项但与最大项不相邻,为第一类数列;若4:0,,,(,0)A a a b a b b >≠,则4():,0,T A a a b b -;4(()):,,|2|,T T A a a b a b a b ---此数列各项均不为0或含有0项但与最大项不相邻,为第一类数列;若4:0,,,A a b a (,0a b b >≠),则4():,,,T A a a b a b b --,此数列各项均不为0,为第一类数列;若4:0,,,A a a a ,则4():,0,0,T A a a ;4(()):,0,,0T T A a a ;4((())):,,,T T T A a a a a , 此数列各项均不为0,为第一类数列.② 当数列4A 中有两项为0时,若4:0,,0,A a b (0a b ≥>),则4():,,,T A a a b b ,此数列各项均不为0,为第一类数列;若4:0,,,0A a b (0a b ≥>),则():,,,0T A a a b b -,(()):,|2|,,T T A b a b b a -,此数列各项均不为0或含有0项但与最大项不相邻,为第一类数列.③ 当数列4A 中有三项为0时,只能是4:0,,0,0A a ,则():,,0,0T A a a ,(()):0,,0,T T A a a ,((())):,,,T T T A a a a a ,此数列各项均不为0,为第一类数列.总之,第二类数列4A 至多经过3次“T 变换”,就会得到第一类数列,即至多连续经历3次“T 变换”,数列的最大项又开始减少.又因为各数列的最大项是非负整数,故经过有限次“T 变换”后,数列的最大项一定会为0,此时数列的各项均为0,从而结束. ………………13分。
北京市西城区2012年高三二模数学理(附答案) (1)
北京市西城区2012年高三二模试卷数 学(理科)第Ⅰ卷(选择题 共40分)一、选择题共8小题,每小题5分,共40分. 在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合2{|log 1}A x x =<,{|0B x x c =<<,其中0}c >.若A B B =,则c 的取值范围是( ) (A )(0,1] (B )[1,)+∞(C )(0,2](D )[2,)+∞2.执行如图所示的程序框图,若输入如下四个函数: ①()e x f x =; ②()e x f x =-; ③1()f x x x -=+; ④1()f x x x -=-. 则输出函数的序号为( ) (A )① (B )② (C )③ (D )④3.椭圆 3cos 5sin x y ϕϕ=⎧⎨=⎩(ϕ是参数)的离心率是( )(A )35 (B )45(C )925(D )16254.已知向量(,1)x =a ,(,4)x =-b ,其中x ∈R .则“2x =”是“⊥a b ”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件 (D )既不充分又不必要条件5.右图是1,2两组各7名同学体重(单位:kg ) 数据的茎叶图.设1,2两组数据的平均数依次 为1x 和2x ,标准差依次为1s 和2s ,那么( )(注:标准差s =x 为12,,,n x x x 的平均数)(A )12x x >,12s s > (B )12x x >,12s s < (C )12x x <,12s s < (D )12x x <,12s s >6.已知函数()1f x kx =+,其中实数k 随机选自区间[2,1]-.对[0,1]x ∀∈,()0f x ≥的概率是( ) (A )13(B )12(C )23(D )347.某大楼共有12层,有11人在第1层上了电梯,他们分别要去第2至第12层,每层1人.因 特殊原因,电梯只允许停1次,只可使1人如愿到达,其余10人都要步行到达所去的楼层.假设这10位乘客的初始“不满意度”均为0,乘客每向下步行1层的“不满意度”增量为1,每向上步行1层的“不满意度”增量为2,10人的“不满意度”之和记为S ,则S 的最小值是( ) (A )42 (B )41 (C )40 (D )398.对数列{}n a ,如果*k ∃∈N 及12,,,k λλλ∈R ,使1122n k n k n k k n a a a a λλλ++-+-=+++成立,其中*n ∈N ,则称{}n a 为k 阶递归数列.给出下列三个结论: ① 若{}n a 是等比数列,则{}n a 为1阶递归数列; ② 若{}n a 是等差数列,则{}n a 为2阶递归数列;③ 若数列{}n a 的通项公式为2n a n =,则{}n a 为3阶递归数列. 其中,正确结论的个数是( ) (A )0 (B )1(C )2(D )3第Ⅱ卷(非选择题 共110分)二、填空题共6小题,每小题5分,共30分.9.在△ABC 中,BC ,AC =π3A =,则B = _____.10.已知复数z 满足(1i)1z -⋅=,则z =_____.11.如图,△ABC 是⊙O 的内接三角形,PA 是⊙O 的切线,PB 交AC 于点E ,交⊙O 于点D .若PA PE =,60ABC ︒∠=,1PD =,9PB =,则PA =_____; EC =_____.12.已知函数2()1f x x bx =++是R 上的偶函数,则实数b =_____;不等式(1)||f x x -<的解集为_____.13.一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,该几何体 的体积是_____;若该几何体的所有顶点在同一球面 上,则球的表面积是_____.14.曲线C 是平面内到定点(0,1)F 和定直线:1l y =-的距离之和等于4的点的轨迹,给出下列三个结论:① 曲线C 关于y 轴对称;② 若点(,)P x y 在曲线C 上,则||2y ≤; ③ 若点P 在曲线C 上,则1||4PF ≤≤. 其中,所有正确结论的序号是____________.C三、解答题共6小题,共80分. 解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)已知函数22π()cos ()sin 6f x x x =--. (Ⅰ)求π()12f 的值; (Ⅱ)若对于任意的π[0,]2x ∈,都有()f x c ≤,求实数c 的取值范围.16.(本小题满分14分)如图,直角梯形ABCD 与等腰直角三角形ABE 所在的平面互相垂直.AB ∥CD ,BC AB ⊥,BC CD AB 22==,EA EB ⊥.(Ⅰ)求证:AB DE ⊥;(Ⅱ)求直线EC 与平面ABE 所成角的正弦值;(Ⅲ)线段EA 上是否存在点F ,使EC // 平面FBD ?若存在,求出EFEA;若不存在,说明理由.17.(本小题满分13分)甲、乙两人参加某种选拔测试.在备选的10道题中,甲答对其中每道题的概率都是53,乙能答对其中的5道题.规定每次考试都从备选的10道题中随机抽出3道题进行测试,答对一题加10分,答错一题(不答视为答错)减5分,至少得15分才能入选.(Ⅰ)求乙得分的分布列和数学期望; (Ⅱ)求甲、乙两人中至少有一人入选的概率.18.(本小题满分13分)已知抛物线24y x =的焦点为F ,过点F 的直线交抛物线于A ,B 两点. (Ⅰ)若2AF FB =,求直线AB 的斜率;(Ⅱ)设点M 在线段AB 上运动,原点O 关于点M 的对称点为C ,求四边形OACB 面积的最小值.19.(本小题满分14分)已知函数2221()1ax a f x x +-=+,其中a ∈R . (Ⅰ)当1a =时,求曲线()y f x =在原点处的切线方程; (Ⅱ)求)(x f 的单调区间;(Ⅲ)若)(x f 在[0,)+∞上存在最大值和最小值,求a 的取值范围. 20.(本小题满分13分) 若12(0n n i A a a a a ==或1,1,2,,)i n =,则称n A 为0和1的一个n 位排列.对于n A ,将排列121n n a a a a -记为1()n R A ;将排列112n n n a a a a --记为2()n R A ;依此类推,直至()n n n R A A =.对于排列n A 和()i n R A (1,2,,1)i n =-,它们对应位置数字相同的个数减去对应位置数字不同的个数,叫做n A 和()i n R A 的相关值,记作(,())i n n t A R A .例如3110A =,则13()011R A =, 133(,())1t A R A =-.若(,())1(1,2,,1)i n n t A R A i n =-=-,则称n A 为最佳排列.(Ⅰ)写出所有的最佳排列3A ; (Ⅱ)证明:不存在最佳排列5A ;(Ⅲ)若某个21(k A k +是正整数)为最佳排列,求排列21k A +中1的个数.北京市西城区2012年高三二模试卷数学(理科)参考答案及评分标准2012.5一、选择题:本大题共8小题,每小题5分,共40分.1.D ; 2.D ; 3.B ; 4.A ; 5.C ; 6.C ; 7.C ; 8.D .二、填空题:本大题共6小题,每小题5分,共30分. 9.π4; 10.1i22+; 11.3,4;12.0,{|12}x x << 13.13,3π; 14.① ② ③.注:11、12、13第一问2分,第二问3分;14题少填不给分.三、解答题:本大题共6小题,共80分. 15.(本小题满分13分) (Ⅰ)解:22ππππ()cos ()sin cos 1212126f =--==. ………………5分 (Ⅱ)解: 1π1()[1cos(2)](1cos 2)232f x x x =+--- ………………7分1π13[cos(2)cos 2]2cos 2)2322x x x x =-+=+ ………………8分π)3x =+. ………………9分 因为 π[0,]2x ∈,所以 ππ4π2[,]333x +∈, ………………10分所以当 ππ232x +=,即 π12x =时,()f x ………………11分所以 π[0,]2x ∀∈,()f x c ≤ 等价于c ≤.故当 π[0,]2x ∀∈,()f x c ≤时,c 的取值范围是)+∞. ………………13分16.(本小题满分14分)(Ⅰ)证明:取AB 中点O ,连结EO ,DO .因为EA EB =,所以AB EO ⊥. ………………1分 因为四边形ABCD 为直角梯形,BC CD AB 22==,BC AB ⊥, 所以四边形OBCD 为正方形,所以OD AB ⊥. ……………2分 所以⊥AB 平面EOD . ………………3分 所以 ED AB ⊥. ………………4分 (Ⅱ)解:因为平面⊥ABE 平面ABCD ,且 AB EO ⊥,所以⊥EO 平面ABCD ,所以OD EO ⊥.由OE OD OB ,,两两垂直,建立如图所示的空间直角坐标系xyz O -. …………5分 因为三角形EAB 为等腰直角三角形,所以OE OD OB OA ===,设1=OB ,所以(0,0,0),(1,0,0),(1,0,0),(1,1,0),(0,1,0),(0,0,1)O A B C D E -.所以 )1,1,1(-=EC ,平面ABE 的一个法向量为(0,1,0)OD =. ………………7分 设直线EC 与平面ABE 所成的角为θ, 所以 ||3sin |cos ,|||||EC OD EC OD EC OD θ⋅=〈〉==, 即直线EC 与平面ABE ………………9分 (Ⅲ)解:存在点F ,且13EF EA =时,有EC // 平面FBD . ………………10分证明如下:由 )31,0,31(31--==,)32,0,31(-F ,所以)32,0,34(-=. 设平面FBD 的法向量为v ),,(c b a =,则有0,0.BD FB ⎧⋅=⎪⎨⋅=⎪⎩v v所以 0,420.33a b a z -+=⎧⎪⎨-=⎪⎩ 取1=a ,得)2,1,1(=v . ………………12分 因为 ⋅v 0)2,1,1()1,1,1(=⋅-=,且⊄EC 平面FBD ,所以 EC // 平面FBD . 即点F 满足13EF EA =时,有EC // 平面FBD . ………………14分17.(本小题满分13分)(Ⅰ)解:设乙答题所得分数为X ,则X 的可能取值为15,0,15,30-.………………1分35310C 1(15)C 12P X =-==; 2155310C C 5(0)C 12P X ===; 1255310C C 5(15)C 12P X ===; 35310C 1(30)C 12P X ===. ………………5分乙得分的分布列如下:……………6分155115(15)01530121212122EX =⨯-+⨯+⨯+⨯=. ………………7分 (Ⅱ)由已知甲、乙至少答对2题才能入选,记甲入选为事件A ,乙入选为事件B .则 223332381()C ()()()555125P A =+=, ………………10分 511()12122P B =+=. ………………11分 故甲乙两人至少有一人入选的概率4411031()11252125P P A B =-⋅=-⨯=. ……13分18.(本小题满分13分)(Ⅰ)解:依题意(1,0)F ,设直线AB 方程为1x my =+. ………………1分将直线AB 的方程与抛物线的方程联立,消去x 得2440y my --=. …………3分 设11(,)A x y ,22(,)B x y ,所以 124y y m +=,124y y =-. ① ………………4分 因为 2AF FB =,所以 122y y =-. ② ………………5分联立①和②,消去12,y y,得4m =±. ………6分 所以直线AB的斜率是±. ………………7分(Ⅱ)解:由点C 与原点O 关于点M 对称,得M 是线段OC 的中点,从而点O 与点C 到直线AB 的距离相等,所以四边形OACB 的面积等于2AOB S ∆. ……………… 9分 因为 12122||||2AOB S OF y y ∆=⨯⋅⋅- ………………10分== ………………12分所以 0m =时,四边形OACB 的面积最小,最小值是4. ………………13分19.(本小题满分14分) (Ⅰ)解:当1a =时,22()1xf x x =+,22(1)(1)()2(1)x x f x x +-'=-+. ………………2分 由 (0)2f '=, 得曲线()y f x =在原点处的切线方程是20x y -=.…………3分 (Ⅱ)解:2()(1)()21x a ax f x x +-'=-+. (4)分① 当0a =时,22()1xf x x '=+. 所以()f x 在(0,)+∞单调递增,在(,0)-∞单调递减. ………………5分当0a ≠,21()()()21x a x a f x a x +-'=-+.② 当0a >时,令()0f x '=,得1x a =-,21x=,()f x 与()f x '的情况如下:故)(x f 的单调减区间是(,)a -∞-,1(,)a +∞;单调增区间是1(,)a a-. ………7分③ 当0a <时,()f x 与()f x '的情况如下:所以()f x 的单调增区间是1(,)a -∞,(,)a -+∞;单调减区间是1(,)a a-………………9分(Ⅲ)解:由(Ⅱ)得, 0a =时不合题意. ………………10分当0a >时,由(Ⅱ)得,)(x f 在1(0,)a 单调递增,在1(,)a+∞单调递减,所以)(x f 在(0,)+∞上存在最大值21()0f a a=>.设0x 为)(x f 的零点,易知2012a x a-=,且01x a <.从而0x x >时,()0f x >;0x x <时,()0f x <.若)(x f 在[0,)+∞上存在最小值,必有(0)0f ≤,解得11a -≤≤.所以0a >时,若)(x f 在[0,)+∞上存在最大值和最小值,a 的取值范围是(0,1]. ………………12分 当0a <时,由(Ⅱ)得,)(x f 在(0,)a -单调递减,在(,)a -+∞单调递增,所以)(x f 在(0,)+∞上存在最小值()1f a -=-.若)(x f 在[0,)+∞上存在最大值,必有(0)0f ≥,解得1a ≥,或1a ≤-. 所以0a <时,若)(x f 在[0,)+∞上存在最大值和最小值,a 的取值范围是(,1]-∞-. 综上,a 的取值范围是(,1](0,1]-∞-. ………………14分20.(本小题满分13分)(Ⅰ)解:最佳排列3A 为110,101,100,011,010,001. ………………3分(Ⅱ)证明:设512345A a a a a a =,则1551234()R A a a a a a =,因为 155(,())1t A R A =-,所以15||a a -,21||a a -,32||a a -,43||a a -,54||a a -之中有2个0,3个1. 按512345a a a a a a →→→→→的顺序研究数码变化,由上述分析可知有2次数码不发生改变,有3次数码发生了改变.但是5a 经过奇数次数码改变不能回到自身,所以不存在5A ,使得155(,())1t A R A =-,从而不存在最佳排列5A . ………………7分 (Ⅲ)解:由211221(0k k i A a a a a ++==或1,1,2,,21)i k =+,得 12121122()k k k R A a a a a ++=, 2212211221()k k k k R A a a a a a ++-=, (212134)2112()k k k R A a a a a a -++=, 22123211()k k k R A a a a a ++=. 因为 2121(,())1(1,2,,2)i k k t A R A i k ++=-=,所以 21k A +与每个21()i k R A +有k 个对应位置数码相同,有1k +个对应位置数码不 同,因此有12121221212||||||||1k k k k k a a a a a a a a k +-+-+-++-+-=+, 122212222121||||||||1k k k k k k a a a a a a a a k +-+--+-++-+-=+,……,132421212||||||||1k k a a a a a a a a k +-+-++-+-=+, 1223221211||||||||1k k k a a a a a a a a k ++-+-++-+-=+.以上各式求和得, (1)2S k k =+⨯. ………………10分另一方面,S 还可以这样求和:设12221,,...,,k k a a a a +中有x 个0,y 个1,则2S x y =. ………………11分所以21,22(1).x y k xy k k +=+⎧⎨=+⎩ 解得,1,x k y k =⎧⎨=+⎩或1,.x k y k =+⎧⎨=⎩所以排列21k A +中1的个数是k 或1k +. ………………13分。