七年级下《6.2立方根》课堂练习题含答案.doc

合集下载

人教版七年级数学下册 6.2立方根 同步练习题含答案

人教版七年级数学下册 6.2立方根 同步练习题含答案
一、单选题
1. 3 8 的平方根是( )
A.2
B.﹣2
2.下列说法不正确的是( )
立方根
C. 2
D.±2
A. 的平方根是±
B.﹣9 是 81 的一个平方根
C.0.2 的算术平方根是 0.04 D.﹣27 的立方根是﹣3
3.立方根等于它本身的有
A.0,1
B.-1,0,1
C.0,
4.下列各组数,互为相反数的是( )
2 14. 3
2
15.4
4 16.(1) 5 ;(2)1;(3) 4
2
3 ; (4)6 或 2
17.(1)7;2;27
D.1
A.﹣2 与
B.|﹣ |与
C.﹣2 与(﹣ ) 2 D.2 与
5.有下列说法:①负数没有立方根;②一个数的立方根不是 正数就是负数;③一个正数或 负数的立方根和这个数同号,0 的立方根是 0;④如果一个数的立方根是这个数本身,那么 这个数必是 1 或 0.其中错误的是( )
A.①②③
B.①②④
三、解答题
15.已知 a3 = 1 , b3 =216,c 是 100 的算术平方根,求 b+ca 的值.
8
16.计算下列 各题:
⑴ 1 9 25
(2) 3 27 + 32 - 3 1 ;
(3)3 2 - 3 2
(4)解方程(x-2)2=16;
17.观察下列计算过程,猜想立方根.
13=1 23=8 33=27 4 3=64 53=125 63=216 73=343 83=512 93=729
C.②③④
D.①③④
6.若 m 的立方根是 2,则 m 的值是( )
A.4
B.8
C. 4

人教版数学七年级下册6.2《立方根》同步练习 (含答案)

人教版数学七年级下册6.2《立方根》同步练习 (含答案)

人教版数学七下6.2《立方根》同步练习一、选择题1.下列说法错误的是( )A.1的平方根是1B.﹣1的立方根是﹣1C.是2的平方根D.是的平方根 2.64的立方根是( ) A.8 B.±2 C.4 D.23.32)1(-的立方根是( ) A.-1 B.O C.1 D.±14.下列计算正确的是( )A.4= ±2B.327-= -3C.2)4(-= -4D.39=35.若一个数的平方根是±8,则这个数的立方根是( ).A.2B.±2C.4D.±46.下列说法正确的是( )A.如果一个数的立方根是这个数本身,那么这个数一定是0B.一个数的立方根不是正数就是负数C.负数没有立方根D.一个不为零的数的立方根和这个数同号,0的立方根是07.如果-b 是a 的立方根,那么下列结论正确的是( ).A.-b 也是-a 的立方根B.b 也是a 的立方根C.b 也是-a 的立方根D.±b 都是a 的立方根8.正方体A 的体积是正方体B 的体积的27倍,那么正方体A 的棱长是正方体B 的棱长的( )A.2倍B.3倍C.4倍D.5倍9.估计96的立方根的大小在( )A.2与3之间B.3与4之间C.4与5之间D.5与6之间10.若a 2=(-5)2,b 3=(-5)3,则a +b 的值为( )A.0B.±10C.0或10D.0或-10二、填空题11.计算: = .12.若x -1是125的立方根,则x -7的立方根是 .13.小马做了一个棱长为6 cm 的正方体礼品盒,小朱说:“我做的礼品盒的体积比你的大127 cm 3”,则小朱的礼品盒的棱长为________cm.14.16的平方根与﹣8的立方根的和是_______.15.(1)填表:(2)由上表你发现了什么规律?请用语言叙述这个规律:;(3)根据你发现的规律填空:①已知33=1.442,则33 000=,30.003=;②已知30.000 456=0.076 97,则3456=.三、解答题16.求x的值:(x+3)3+27=0.17.求x的值:(2x﹣1)3﹣125=0.18.求x的值:27(x+1) 3+64=0;19.求x的值:﹣2(7﹣x)3=250.20.已知:2x+y+7的立方根是3,16的算术平方根是2x﹣y,求:(1)x、y的值;(2)x2+y2的平方根.参考答案1.答案为:A2.答案为:D.3.答案为:C.4.B5.C6.D7.C8.B9.C10.答案为:D.11.答案为:﹣0.4.12.答案为:-1.13.答案为:714.答案为:2或﹣615.填表:(2)被开方数扩大1_000倍,则立方根扩大10倍;(3)①14.42,0.144_2;②7.697.16.解:(x+3)3=-27,x+3=-3,x=-6.17.答案为:x=3;18.答案为:x=-7/3.19.答案为:x=12.20.解:(1)依题意,解得:;(2)x2+y2=36+64=100,100的平方根是±10.。

人教版初中数学七年级下册第六章《实数》6.2立方根同步练习题(含答案)

人教版初中数学七年级下册第六章《实数》6.2立方根同步练习题(含答案)

人教版初中数学七年级下册第六章《实数》 6.2立方根同步练习题(含答案)1 / 4 《6.2立方根》同步检测题一、选择题(每小题只有一个正确答案)1.下列说法中错误的是()A 3a 中的a 可以是正数、负数或零. B a 中的a 不可能是负数.C 数a 的平方根有两个.D 数a 的立方根有一个.2.下列各式正确的是().A.B. C. D. 3.如果3323.7 2.872,2370028.72,则30.0237等于()A. 0.2872 B. 28.72 C. 2.872D. 287.2 4.一个正数的算术平方根是8,则这个数的相反数的立方根是( )A. 4 B. -4 C. D.5.估计96的立方根的大小在( )A. 2与3之间B. 3与4之间C. 4与5之间D. 5与6之间6.一个数的立方根等于它本身,则这个数是()A. 0 B. 1 C. -1 D. ±1,07.下列各组数中互为相反数的一组是() A. |-2|与38 B. -4与-24C. -32与|32| D. -2与12二、填空题8.若一个数的平方根是8,则这个数的立方根是__________ .9.已知(x ﹣1)3=64,则x 的值为_____.10.若3a =-7,则a =_______.11.已知x -1的立方根是1,2y +2的算术平方根是4,则x +y 的平方根是________.12.已知一个数的平方根是3a+1和a+11,求这个数的立方根__________。

三、解答题13.求下列各式的值:(1) 30.001;(2) 3343125;(3)- 319127.。

6.2 立方根 人教版数学七年级下册分层作业(含答案)

6.2 立方根 人教版数学七年级下册分层作业(含答案)

人教版初中数学七年级下册6.2 立方根同步练习夯实基础篇一、单选题:1.下列说法正确的是( )A.2的平方根是B.3是的一个平方根C.负数没有立方根D.立方根等于它本身的数是【答案】B【分析】根据平方根、算术平方根、立方根的定义逐项进行判断即可.【详解】A.的平方根为,因此选项A不符合题意;B.由于的平方根是,因此是的一个平方根,因此选项B符合题意;C.任意一个实数都有立方根,因此选项C不符合题意;D.立方根等于它本身的数是,因此选项D不符合题意;故选:B.【点睛】本题考查平方根、算术平方根、立方根,理解算术平方根、平方根、立方根的定义是正确判断的前提.2.的立方根是()A.2B.2C.8D.-8【答案】A【详解】先根据算术平方根的意义,求得=8,然后根据立方根的意义,求得其立方根为2.故选A.3.下列计算正确的是()A.B.C.D.【答案】D【分析】本题只要根据算术平方根、平方根以及立方根的计算法则即可得出答案.【详解】解:A、,故该选项不符合题意;B、,故该选项不符合题意;C、,故该选项不符合题意;D、正确,故该选项符合题意;故选:D.【点睛】本题主要考查的就是立方根、平方根、算术平方根的计算,属于基础题型.一个非负数的平方根有两个,他们互为相反数;表示a的算术平方根,表示a的平方根.4.下列各组数中,不相等的一组是()A.和B.和C.和D.和【答案】C【分析】先求出每个式子的值,再比较即可.【详解】解:A、,相等,故此选项不符合题意;B、,,相等,故此选项不符合题意;C、,,不相等,故此选项符合题意;D、,相等,故此选项不符合题意.故选:C.【点睛】此题考查了立方根,算术平方根,有理数的乘方,以及绝对值,熟练掌握相关定义和运算法则是解本题的关键.5.下列说法:①如果一个实数的立方根等于它本身,这个数只有0或1;②的算术平方根是a;③的立方根是;④的算术平方根是4;其中,不正确的有()A.1个B.2个C.3个D.4个【答案】D【分析】根据立方根和平方根,算术平方根的性质,逐项判断即可求解.【详解】解:①如果一个实数的立方根等于它本身,这个数只有0或1或,故本选项错误;②当时,的算术平方根是a,故本选项错误;③的立方根是,故本选项错误;④因为,所以的算术平方根是2,故本选项错误;所以不正确的有4个.故选:D【点睛】本题主要考查了立方根和平方根,算术平方根的性质,熟练掌握立方根和平方根,算术平方根的性质是解题的关键.6.若,,()A.0.716B.7.16C.1.542D.15.42【答案】D【分析】根据小数点位置移动引起数的大小变化规律可知:一个数的小数点向右移动三位,它的立方根的小数点应向右移动一位,据此解答即可.【详解】解:一个小数的小数点向右移动三位,这个小数就扩大了1000倍,它的立方根的小数点就向右移动一位,,,故选:D.【点睛】本题考查了立方根的性质,熟练掌握和运用求一个数的立方根的方法是解决本题的关键.7.若,则的值为()A.5B.15C.25D.-5【答案】D【分析】直接利用算术平方根以及绝对值的性质得出x,y的值,进而代入得出答案.【详解】解:∵,∴x-5=0,y+25=0,∴x=5,y=-25,∴===-5,故选D.【点睛】此题主要考查了算术平方根以及绝对值的性质,立方根的求法,正确得出x,y的值是解题关键.二、填空题:8.算术平方根是本身的数是_________,平方根是本身的数是_________,立方根是本身的数是________.【答案】 0,1 0 0,±1【分析】根据算术平方根、平方根、立方根的定义即可解答.【详解】解:算术平方根是本身的数是0、1,平方根是其本身的数是0,立方根是其本身的数是0,±1.故答案为0,1;0,1;0,±1.【点睛】本题主要考查了算术平方根、平方根、立方根的定义等知识点,掌握特殊数的算术平方根、平方根、立方根是解答本题的关键.9.计算:(1)________;(2)________;(3)________;(4)________;(5)________;(6)________.【答案】【分析】根据平方根、算术平方根、立方根的定义逐项进行计算即可.【详解】(1),故答案为:;(2),故答案为:;(3),故答案为:;(4),故答案为:;(5),故答案为:;(6).故答案为:本题考查了平方根和立方根的概念和求法,理解、记忆平方根和立方根的概念是解题关键.平方根:如果x2=a,则x叫做a的平方根,记作“±”(a称为被开方数),立方根:如果x3=a,则x叫做a的立方根,记作“”(a 称为被开方数).10.计算________.【答案】-1【分析】根据立方根的定义和有理数的乘方法则进行计算,再相加即可.【详解】解:故答案为:-1.【点睛】本题考查了实数的混合运算,解题的关键是掌握立方根的定义和有理数的乘方运算法则.11.如果一个正数的两个平方根是a+1和2a﹣22,这个正数的立方根是_____.【答案】【分析】根据一个正数的两个平方根互为相反数,可得出关于的方程,解出即可.【详解】解:∵一个正数的两个平方根是和,∴,解得,∴这个正数是,∴这个正数的立方根是,故答案为:.【点睛】本题考查了平方根的定义和性质,立方根的定义,熟练掌握一个正数的两个平方根互为相反数是解题的关键.12.的算术平方根是3,的立方根是2,则的算术平方根为___________.【答案】6【分析】根据算术平方根的定义和立方根的定义,先求出a和b的值,再将a和b的值代入求解即可.【详解】解:∵的算术平方根是3,的立方根是2,∴,,∴,,∴,∴的算数平方根为:.故答案为:6.【点睛】本题主要考查了算术平方根和立方根的定义,解题的关键是熟练掌握算术平方根和立方根的定义.13.已知实数a,b满足,则的立方根是______.【答案】【分析】利用绝对值与算术平方根的非负性求解得到从而可得答案.【详解】解:∵,∴解得:∴∴的立方根是故答案为:【点睛】本题考查的是绝对值与算术平方根的非负性的应用,立方根的含义,掌握“算术平方根的非负性”是解本题的关键.14.如果,则________;,则________;如果,,则________;,则________.【答案】 395.22 1562 0.2872【分析】根据立方根和算术平方根的定义找出他们之间的规律即可得出答案.【详解】解:如果,则,,则;如果,,则;,则;故答案为:①395.22,②1562;③0.2872,④.【点睛】此题考查了立方根和算术平方根,熟练掌握立方根和算术平方根的定义是解题的关键.三、解答题:15.求下列各数的立方根.(1)64(2)(3)(4).【答案】(1)4(2)(3)(4)【分析】(1)根据立方根的定义,求解即可;(2)根据立方根的定义,求解即可;(3)根据立方根的定义,求解即可;(4)根据立方根的定义,求解即可.【详解】(1)解:64的立方根是4;(2)解:,立方根是;(3)解:的立方根是;(4)解:的立方根是.【点睛】本题考查了立方根的知识,解题的关键是掌握开立方的运算.16.求下列各式中x的值.(1);(2).【答案】(1),;(2).【分析】(1)直接利用平方根定义计算即可求出解;(2)方程变形后,利用立方根定义开立方即可求出解.【详解】(1)解:;开方得:,移项得,,系数化1得,,,;(2)解:方程变形得:,开立方得:,解得:.【点睛】此题考查了立方根,以及平方根,熟练掌握各自的定义是解本题的关键.17.已知:的平方根是与,且.(1)求,的值;(2)求的值;(3)求的立方根.【答案】(1),(2)(3)2【分析】(1)根据一个数的两个平方根互为相反数可得答案;(2)求出或者的平方即可得出答案;(3)将的值代入中,求其立方根即可.【详解】(1)解:的平方根是与,,解得,,;(2)的平方根是与,;(3).【点睛】本题考查了平方根以及立方根,熟知一个数的两个平方根互为相反数是解本题的关键.18.已知M=是m+12的算术平方根,N=是n-30的立方根,试求的值.【答案】M-N=7【分析】根据算术平方根及立方根的定义,求出m和n的值,进而求出M、N的值,代入可得出M−N的平方根.【详解】解:∵M=是m+12的算术平方根,N=是n−30的立方根,∴5−n=2,m−1=3,解得:m=4,n=3,把m=4,n=3代入m+12=16,n−30=−27,∴M=,N=,把M=4,N=−3代入可得:M−N=7.【点睛】本题考查了立方根、算术平方根的定义,属于基础题,求出M、N的值是解答本题的关键.能力提升篇一、单选题:1.已知x﹣1,则x2﹣1的值为()A.0和1B.0和2C.0、﹣1或3D.0或±1【答案】C【分析】根据立方根的定义,求得的值,代入代数式即可求解.【详解】∵x﹣1的立方根等于它本身,∴x﹣1=±1或0,∴x=0,1或2,∴当x=0时,原式=﹣1;当x=1时,原式=0;当x=2时,原式=3.故选:C.【点睛】本题考查了立方根,掌握立方根的定义与求法是解题的关键.2.若a是的平方根,b是的立方根,则a+b的值是()A.4B.4或0C.6或2D.6【答案】C【分析】由a是的平方根可得a=±2,由b是的立方根可得b=4,由此即可求得a+b的值.【详解】∵a是的平方根,∴a=±2,∵b是的立方根,∴b=4,∴a+b=2+4=6或a+b=-2+4=2.故选C.【点睛】本题考查了平方根及立方根的定义,根据平方根及立方根的定义求得a=±2、b=4是解决问题的关键.3.下列各式中,不正确的是()A.B.C.D.【答案】B【分析】根据平方根和立方根的特点求出各数,再根据实数的大小比较的法则进行解答即可.【详解】解:、,,,故本选项正确;B、,,,故本选项错误;C、,,故本选项正确;D、,,,故本选项正确;故选:.【点睛】此题考查了实数的大小比较,掌握实数的大小比较的法则是本题的关键.二、填空题:4.将一个体积为的立方体木块锯成个同样大小的小立方体木块,则每个小立方体木块的表面积_____.【答案】【分析】根据题意求得每个小正方体的体积,继而求得小正方体的棱长为,即可求解.【详解】解:每个小正方体的体积为:∴小正方体的棱长为∴每个小立方体木块的表面积.故答案为:.【点睛】本题考查了立方根的应用,求得小正方体的棱长为是解题的关键.5.已知﹣2x﹣1=0,则x=_____.【答案】0或﹣1或﹣【分析】将原方程变形得到=2x+1,根据一个数的立方根等于它本身得到这个数是0或1或-1,由此化成一元一次方程,解方程即可得到答案.【详解】∵﹣2x﹣1=0,∴=2x+1,∴2x+1=1或2x+1=﹣1或2x+1=0,解得x=0或x=﹣1或x=﹣.故答案为:0或﹣1或﹣.【点睛】此题考查立方根的性质,解一元一次方程,由立方根的性质得到方程是解题的关键.6.观察下列各式:用字母n表示出一般规律是__________.(n为不小于2的整数)【答案】(n为不小于2的整数)【分析】分析被开方数的变换规律即可求得【详解】解:1、观察4个等式左边根号内分数的特点:①整数部分与分数部分的分子相等,即2=2,3=3,4=4,5=5,②整数部分与分数部分的分母有下列关系:,2、观察四个等式右边的立方根前的倍数正好是等式左边被开方数的整数部分,立方根里的分数正好是左边被开方数的分数部分,所以其中的规律可以表示为(n为不小于2的整数)故答案为:(n为不小于2的整数).【点睛】本题考查了立方根的规律探究,分析被开方数的变换规律是解题关键.三、解答题:7.小燕在测量铅球的半径时,先将铅球完全浸没在一个带刻度的圆柱形小水桶中,拿出铅球时,小燕发现小水桶中的水面下降了,小燕量得小水桶的直径为,于是她就算出了铅球的半径.你知道她是如何计算的吗?请求出铅球的半径.(球的体积公式,r为球的半径.)【答案】3cm.【分析】设球的半径为r,求出下降的水的体积,即圆柱形小水桶中下降的水的体积,最后根据球的体积公式列式求解即可.【详解】解:设球的半径为r,小水桶的直径为,水面下降了,小水桶的半径为6cm,下降的水的体积是π×62×1=36π(cm3),即,解得:,,答:铅球的半径是3cm.【点睛】本题考查了立方根的应用,涉及圆柱的体积求解,解此题的关键是得出关于r的方程.8.已知为有理数,且,求的平方根.【答案】【分析】根据题意得:,解出,代入,求出平方根.【详解】解:,,解得,.【点睛】本题主要考查平方根、立方根,熟练掌握其定义及性质是解题关键.。

人教版七年级下册数学 6.2 立方根 同步练习(含答案)

人教版七年级下册数学 6.2 立方根 同步练习(含答案)

6.2 立方根同步练习一、单选题1.8的立方根是()A.2±B.4±C.2D.42.下列说法中正确的是()A.0 没有立方根B.9 的立方根是3C± 3D.立方根等于它本身的数有3个3的平方根是()A.8±B.8C.2±D.24.立方根等于它本身的数是( )A.±1B.1,0C.±1,0D.以上都不对5.一个正方体的体积扩大为原来的27倍,则它的棱长变为原来的()倍.A.2B.3C.4D.562<-,则a的值可以是()A.9-B.4-C.4D.97.的值是()A.没有意义B.8C.4-D.48.下列说法正确的是()A B.18-没有立方根C.立方根等于本身的数是0D.8-的立方根是2±9a b ,则b a 的值是( )A .9B .9±C .6D .6±10≈1.333 )A .287.2B .28.72C .13.33D .133.3二、填空题11.4-是数a 的立方根,则a =________.12.﹣8_____.13.实数a 化简后为___________.14.若3109,b a =-且b 的算术平方根为4,则a =__________.15a = b =c ==___________三、解答题16.求下列各式中的x :(1)29(1)25x -=(2)3548x += 17.已知一个正数的平方根是3a +和215a -.(1)求这个正数.(2的平方根和立方根.18.小燕在测量铅球的半径时,先将铅球完全浸没在一个带刻度的圆柱形小水桶中,拿出铅球时,小燕发现小水桶中的水面下降了1cm ,小燕量得小水桶的直径为12cm ,于是她就算出了铅球的半径.你知道她是如何计算的吗?请求出铅球的半径.(球的体积公式343V r π=,r 为球的半径.)参考答案1.C 2.D 3.C 4.C 5.B 6.A 7.D 8.A 9.A 10.C 11.-6412.0或﹣413.814.515.10a16.(1)x=83或x=-23;(2)x=32-.17.(1)441或49;(2)2±18.3cm.。

人教版数学七年级下册6.2立方根试题试卷含答案

人教版数学七年级下册6.2立方根试题试卷含答案

6.2 立方根6.2.1 立方根的概念及性质1.﹣27的立方根是( )A.﹣3B.3C.±3D.±92的立方根是( )A.2±B.4±C.4D.23A.3B.9C.24D.814.下列各数的立方根是﹣2的数是( )A.4B.﹣4C.8D.﹣8.=( )5A.b-也是a-的立方根B.b是a的立方根C.b是a-的立方根D.b±都是a的立方根纠错笔记________________________________________________________________________6.2 立方根6.2.1 立方根的概念及性质1.【答案】A【解析】﹣27的立方根是﹣3,故选A .2.【答案】D8=,8的立方根是2,故选D .3.【答案】A=3,故选A .4.【答案】D【解析】立方根是﹣2的数是﹣8,故选D .5.【答案】A【解析】(2)2=--=,故选A .6.【答案】C【解析】如果b -是ab =-b =,即b 是a -的立方根,故选C .参考答案及解析6.2.2 开立方1.开立方等于( )A.8-B.4-C.2-D.4±2.求一个数__________的运算叫做开立方,开立方与__________是互逆的两种运算.3.对于任意一个非零正实数,利用计算器对它不断进行开立方运算,其结果越来越趋近__________.4.=__________(保留两位有效数字).5.≈__________(精确到0.01)6.求下列各式中x的值.(1)x2=49;(2)3(x+1)3=24.________________________________________________________________________纠错笔记6.2.2 开立方1.【答案】C【解析】8=- ,8-的立方根是2-,开立方等于2-,故选C .2.【答案】a 的立方根,立方【解析】求一个数a 的立方根的运算叫开立方,其中a 叫做被开方数; 开立方与立方是互逆的两种运算.故答案为:a 的立方根,立方.3.【答案】1【解析】对于任意一个非零正实数,利用计算器对它不断进行开立方运算,其结果越来越趋近1.故答案为:1.4.【答案】0.562=1.442≈,原式2 1.4420.5580.56=-=≈,故答案为0.56.5.【答案】12.63≈12.63,故答案为12.63.6.【答案】(1)∵(±7)2=49,∴x =±7;(2)∵3(x +1)3=24,∴(x +1)3=8,∵23=8,∴x +1=2,∴x =1.参考答案及解析。

6.2 立方根 同步练习(含答案)数学人教版七年级下册

6.2 立方根 同步练习(含答案)数学人教版七年级下册

6.2 立方根一、选择题1.-64的立方根是( )A .4B .-4C .±4 D.142.估计68的立方根在( )A .2与3之间B .3与4之间C .4与5之间D .5与6之间3.下列说法正确的是( )A .一个正数的立方根有两个,它们互为相反数B .负数没有立方根C .任何一个数的立方根都是非负数D .正数有一个正的立方根,负数有一个负的立方根 4.3(-8)3的立方根是( )A .8B .-8C .2D .-25.若x 满足x =3x ,则x 的值为( )A .1B .0C .0或1D .0或±16.若3x =1.02,3xy =10.2,则y 等于( )A .1000000B .1000C .10D .100007.已知31-a =-2,则a 的平方根为( )A .2B .±2C .±3D .48.已知3x -1=x -1,则x 2-x 的值为( )A .0或1B .0或2C .0或-1D .0或±1二、填空题9.(1)18的立方根是 ;(2)计算:3-8= ;(3)若数a 的立方等于27,则a = .10.有以下四个说法:①因为(-1)3=-1,所以-1是-1的立方根;②因为43=64,所以64是4的立方根;③将2求立方与将8开立方互为逆运算;④将8求立方与将8开立方互为逆运算.其中正确的是 (填序号).11.正方体A 的体积是16 cm 3,正方体B 的体积是正方体A 体积的4倍,则正方体B 的表面积是 .12.如果一个正数a 的两个平方根是2x -2和6-3x ,则17+3a 的立方根为 ____.三、解答题13.求下列各数的立方根:(1)0.001; (2)-338;(3)-343; (4)103.14.计算: (1)3-27+(-3)2-3-1; (2)30.125+0.0121-3-0.216.15.求下列各式中x 的值:(1)x 3+1=3764; (2)(x -1)3=-216;(3)27(x +1)3+125=0.16.已知2a +1的平方根是±3,3a +2b -4的立方根是-2,求4a -5b +8的立方根.17.我们知道a+b=0时,a3+b3=0也成立,若将a看成a3的立方根,b看成b3的立方根,我们能否得出这样的结论:若两个数的立方根互为相反数,则这两个数也互为相反数.(1)上述结论是否成立?若成立,请给出证明;若不成立,请举出一个反例;(2)若31-2x与33x-5互为相反数,求1-x的值.参考答案一、选择题1.-64的立方根是( B )A .4B .-4C .±4 D.142.估计68的立方根在( C )A .2与3之间B .3与4之间C .4与5之间D .5与6之间3.下列说法正确的是( D )A .一个正数的立方根有两个,它们互为相反数B .负数没有立方根C .任何一个数的立方根都是非负数D .正数有一个正的立方根,负数有一个负的立方根 4.3(-8)3的立方根是( D )A .8B .-8C .2D .-25.若x 满足x =3x ,则x 的值为( C )A .1B .0C .0或1D .0或±16.若3x =1.02,3xy =10.2,则y 等于( B )A .1000000B .1000C .10D .100007.已知31-a =-2,则a 的平方根为( C )A .2B .±2C .±3D .48.已知3x -1=x -1,则x 2-x 的值为( B )A .0或1B .0或2C .0或-1D .0或±1二、填空题9.(1)18的立方根是 ;(2)计算:3-8= ;(3)若数a 的立方等于27,则a = .【答案】12 -2 310.有以下四个说法:①因为(-1)3=-1,所以-1是-1的立方根;②因为43=64,所以64是4的立方根;③将2求立方与将8开立方互为逆运算;④将8求立方与将8开立方互为逆运算.其中正确的是 (填序号).【答案】①③11.正方体A 的体积是16 cm 3,正方体B 的体积是正方体A 体积的4倍,则正方体B 的表面积是 .【答案】96 cm 212.如果一个正数a 的两个平方根是2x -2和6-3x ,则17+3a 的立方根为 ____.【答案】5三、解答题13.求下列各数的立方根:(1)0.001; (2)-338; 解:30.001=0.1. 解:3-338=3-278=-32. (3)-343; (4)103.解:3-343=-7. 解:3103=10.14.计算: (1)3-27+(-3)2-3-1;解:原式=-3+3+1=1. (2)30.125+0.0121-3-0.216.解:原式=0.5+0.11+0.6=1.21.15.求下列各式中x 的值:(1)x 3+1=3764; (2)(x -1)3=-216;解:x =-34. 解:x =-5. (3)27(x +1)3+125=0.解:x =-83. 16.已知2a +1的平方根是±3,3a +2b -4的立方根是-2,求4a -5b +8的立方根. 解:由题意,得2a +1=9,3a +2b -4=-8.解得a =4,b =-8.∴4a-5b+8=64=8,38=2.∴4a-5b+8的立方根是2.17.我们知道a+b=0时,a3+b3=0也成立,若将a看成a3的立方根,b看成b3的立方根,我们能否得出这样的结论:若两个数的立方根互为相反数,则这两个数也互为相反数.(1)上述结论是否成立?若成立,请给出证明;若不成立,请举出一个反例;解:上述结论成立.证明如下:∵a+b=0,∴b=-a.∴b3=(-a)3=-a3.∴a3+b3=a3-a3=0.即“若两个数的立方根互为相反数,则这两个数也互为相反数”是成立的.(2)若31-2x与33x-5互为相反数,求1-x的值.解:由题意得1-2x与3x-5互为相反数,即1-2x+3x-5=0.解得x=4.∴1-x=1-2=-1.。

人教版七年级下册数学 6.2 立方根 同步练习(包含答案)

人教版七年级下册数学 6.2 立方根 同步练习(包含答案)

6.2 立方根 同步练习一.选择题1.下列结论正确的是( )A .2764的立方根是34±B .1125-没有立方根C .有理数一定有立方根D .()61-的立方根是-1 2.-8的立方根是( )A .2B .-2C .2±D .32-3.下列说法中正确的有( )个.① 负数没有平方根,但负数有立方根.②49的平方根是28,327±的立方根是23±⋅ ③如果()322x =-,那么x =-2. ④算术平方根等于立方根的数只有1.A .1B .2C .3D .44.x 是()29-的平方根,y 是64的立方根,则x y +=( )A. 3B. 7C.3,7D. 1,75.的立方根是( ) A .﹣1 B . 0 C . 1 D . ±16. 有如下命题:①负数没有立方根;②一个实数的立方根不是正数就是负数;③一个正数或负数的立方根与这个数同号;④如果一个数的立方根是这个数本身,那么这个数是1或0,其中错误的是( )A.①②③B.①②④C.②③④D.①③④二.填空题7.若264a =,则3a =______.8.-8的立方根与81的平方根的和是______.9.若330,x y += 则x 与y 的关系是______.10.计算= .11. 如果344,a +=那么()367a -的值是______.12.若,则____________.13.若321a -和313b -互为相反数,求a b的值.14.已知5x +19的立方根是4,求2x +7的平方根.15.已知M=是m+3的算术平方根,N=是n ﹣2的立方根,试求M ﹣N 的值.一.选择题1. 【答案】 C ; 【解析】2764的立方根是34;()61-的立方根是1. 一个非零数与它的立方根符号相同. 2. 【答案】B ;【解析】-8的立方根是:382-=-.3. 【答案】A ;【解析】只有①正确. 算术平方根等于立方根的数有0和1.4. 【答案】D ;【解析】∵x 是()29-的平方根,y 是64的立方根,∴x =±3,y =4则x y +=3+4=7或x y +=-3+4=1.5.【答案】A ;【解析】解:∵=﹣1, ∴的立方根是=﹣1,故选A .6. 【答案】B ;【解析】①负数有立方根;②一个实数的立方根是正数、0、负数;④如果一个数的立方根是这个数本身,那么这个数是±1或0.二.填空题7.【答案】±2;【解析】∵264a =,∴8a =±;382±=±8.【答案】1或-5;【解析】注意81=9,9的平方根是±3.9. 【答案】0x y +=;【解析】两个互为相反数的实数的立方根也互为相反数.10.【答案】;【解析】解:,故答案为:.11.【答案】-343;【解析】a +4=64,a =60,a -67=-7,()37343-=-.12.【答案】;【解析】x -1=-2,x =-1.三.解答题13.【解析】 解:∵321a -和313b -互为相反数∴321a -+313b -=0,∴321a -=-313b -,∴321a -=3(13)b --,∴2a -1=3b -1, 2a =3b ,∴a b =32. 14.【解析】解:∵5x +19的立方根是4∴34=5x +19,即64=5x +19,解得x =9∴2x +7=25∴2x +7的平方根=255±=±.15.【解析】解:因为M=是m+3的算术平方根,N=是n ﹣2的立方根,所以可得:m ﹣4=2,2m ﹣4n+3=3,解得:m=6,n=3,把m=6,n=3代入m+3=9,n ﹣2=1,所以可得M=3,N=1,把M=3,N=1代入M ﹣N=3﹣1=2.。

人教版七年级数学下册 6.2《实数-立方根》同步练习(含答案)

人教版七年级数学下册 6.2《实数-立方根》同步练习(含答案)

1人教版七年级数学下册 6.2《实数-立方根》同步练习一、选择题(每小题只有一个正确答案)1.如果一个实数的平方根与它的立方根相等,则这个数是( ).A. 0和1B. 正实数C. 0D. 12.下列说法正确的是( )A. 4的平方根是±2B. 8的立方根是±2C.2=±D. 2=- 3.下列计算正确的是( ).A. 235a b ab +=B. 6=±C.3= D. 325777⨯= 4.下列说法错误的是( ) A. 1是1的算术平方根 B.7= C. -27的立方根是-3D. 12=±51.333≈2.872≈.A. 13.33B. 28.72C. 0.1333D. 0.28726.下列各式中值为正数的是( )A.B.C.D.70=,则x 与y 的关系是 ( )A. x+y≠0B. x 与y 相等C. x 与y 互为相反数D. 1x y= 8.若a 是(-3)2的平方根,( )A. —3B.C.D. 3或—3二、填空题9.8-的立方根是__________.10±3=__________.11.已知一个数的平方根是3a+1和a+11,求这个数的立方根__________。

124k =-,则k 的值为13.计算:|﹣1|=_,2﹣2=_,(﹣3)2=_.2三、解答题14.求下列各式中x 的值.(1)()241225x -= (2)()31270x -+=15.计算、求值:(1(2; (2)求x 的值:()31270x --=.16.(1(101320163-⎛⎫-- ⎪⎝⎭.(2)求下列方程中的x :①()2149x -=.②()38127x --=.17.已知2a -1的平方根是±3,3a -b +2的算术平方根是4,求a +3b 的立方根.18.已知一个小正方体的棱长是6cm,要做一个大正方体,使它的体积是小正方体体积的8倍,求这个大正方体的表面积是多少平方厘米?1 参考答案1.C2.A3.D4.D5.D6.D7.C8.C9.-210.411.412.4.13. 1149﹣2 14.(1)x=4或x=72-;(2)x=-2. 15.(1) 3;(2) x = 4 16.(1)1-.(2)①8x =或6x =-.②52x =. 17.218.2864cm .。

人教版七年级下册第6章实数 6.2 立方根 同步练习(含答案)

人教版七年级下册第6章实数 6.2 立方根 同步练习(含答案)

6.2 立方根 同步练习一、选择题1.一个数立方根和它本身的值相同,则这个数是( )A.1或-1B.0或1或-1C.0或-1D.非负数2.一个数的立方根等于它本身的绝对值,则这个数是( )A.0B.1C.0或1或-1 0D.0或13.一个数的立方根是-4,则这个数的相反数的平方根是( )A.4B.-4C.8±D.4±4.-27的立方根与9的算术平方根的和是( )A..0B.4C.-4D.0或45.下列命题中正确的是( )(1)0.00027的立方根是0.03;(2)3a 不可能是非正数;(3)如果a 是b 的立方根,那么ab ≥0;(4)一个数的平方根与其立方根相同,则这个数是1或-1.A.(1)(3)B.(2)(4)C.(1)(4)D.(3)(4)二、填空题1.若7292=x ,则3x =____.2.立方根是-4的数是___, 81的立方根是____。

3.若-273=x ,则x =___;2163=x ,则x =___,若33)8(a -=,则a =____.4.当a <8时,33)8a (-=____.5. -64的立方根与625的平方根之和是____.三、解答题1.求下列各式的值或x.(1)3833--; (2)327102+; (3)981333=-x ; (4)064)5(3=++x2.若7x +36的立方根是4,求3x +4的平方根.3.4.已知31x +的平方根是4±,求124x +的立方根;5.20,=已知(3-2x+y)求答案:一、选择题1.B2.D3.B4.A5.A二、填空题1.3±2.-64,393.-3,6,-84.8a -5.1或-9三、解答题1.解:(1)23)23(82783333=--=--=--(2)3427642710233==+ (3)3527125,27125,91253,981333333=====-x x x x(4)9,45,645,64)5(,064)5(333-=-=+-=+-=+=++x x x x x 2.43.41-4. 55.-8。

人教版数学七年级下册 6.2 立方根 同步练习题 含答案

人教版数学七年级下册    6.2  立方根  同步练习题 含答案

第六章实数 6.2 立方根同步练习题1. 的立方根是( )A.2B.±2C.D.±2. 若x=3-8,则下列式子正确的是( )A.3x=-8 B.x3=-8C.(-x)3=-8 D.x=(-8)33. 小雪在作业本上做了4道题目:①3-27=-3;②±16=4;③381=9;④(-6)2=6,她做对了的题目有( )A.1道 B.2道 C.3道 D.4道4. 若x2=1,则的值为( )A.1B.-1C.±1D.不能确定5. 要使=4-a成立,则a的取值范围是( )A.a≤4B.a≤-4C.a≥4D.任意数6. 用计算器计算某个运算式,若正确的按键顺序是2nd F 34=,则此运算式应是( )A.43 B.34 C.34 D.437. 莉莉利用计算器比较下列各数的大小,结果如下:①;②;③;④. 请问正确的有( )A.1个B.2个C.3个D.4个8. 27的立方根为_____.9. 利用计算器计算:6-34≈________(精确到0.01).10. 已知0.123是a的立方根,则-a的立方根是.11. 若32a-1=-35a+8,则a2 017的值为________.12. 观察下列各式:=2=3=4,…用字母n表示出一般规律是.13. 计算:(1)3-2-1027;(2)81-3 125.14. 计算:(1);(2)-15. 请根据如图所示的对话内容回答下列问题.(1)求该魔方的棱长;(2)求该长方体纸盒的长.16. 依照平方根(二次方根)和立方根(三次方根)的定义可给出四次方根、五次方根的定义:①如果x4=a(a≥0),那么x叫做a的四次方根;②如果x5=a,那么x 叫做a的五次方根.请依据以上两个定义,解决下列问题:(1)求81的四次方根;(2)求-32的五次方根;(3)求下列各式中未知数x的值:①x4=16;②100 000x5=243.17. 观察下列各式,并用所得出的规律解决问题:(1)2≈1.414,200≈14.14,20 000≈141.4……0.03≈0.173 2,3≈1.732,300≈17.32……由此可见,被开方数的小数点每向右移动_____位,其算术平方根的小数点向_____移动_____位;已知5≈2.236,50≈7.071,则0.5≈________,500≈_________.(2)31=1,31 000=10,31 000 000=100.小数点变化的规律是__被开方数的小数点向右(或向左)移动三位,其立方根的小数点向右(或向左)移动一位__;已知310≈2.154,3100≈4.642,则310 000≈_________,-30.1≈_____________.答案:1---7 ABBCD CB8. 39. 0.8610. -0.12311. -112. =n(n≥2).13. 解:(1)3-2-1027=3-6427=-43.(2)81-3125=9-5=414. 解(1)==.(2)-=-=-=-.15. 解:(1)设魔方的棱长为x cm,可得x3=216,解得x=6.答:该魔方的棱长为6 cm.(2)设该长方体纸盒的长为y cm,6y2=600,y2=100,y=10.答:该长方体纸盒的长为10 cm.16. 解(1)∵(±3)4=81,∴81的四次方根是±3.(2)∵(-2)5=-32, ∴-32的五次方根是-2.(3)①x=±=±=±2;②原式变形为x5=0.00243, ∴x==0.3.17. (1) 两右一0.7071 22.36(2) 21.54 -0.4642。

6.2 立方根 人教版七年级数学下册配套习题(含答案)

6.2 立方根 人教版七年级数学下册配套习题(含答案)

6.3立方根一、选择题(本大题共8小题)1. 下列计算正确的是( )A. √(−3)2=−3B. √−53=√53C. √36=±6D. −√0.36=−0.6 2. 下列式子没有意义的是( )A. −√3B. √(−3)2C. √−83D. √−33. 一个数的立方根是它本身,则这个数是( )A. 1B. 0或1C. −1或1D. 1,0或−1 4. 下列说法中,正确的是( )A. 一个数的立方根有两个,它们互为相反数B. 立方根是负数的数一定是负数C. 如果一个数有立方根,那么它一定有平方根D. 一个数的立方根是非负数5. 若a 2=16,√b 3=2,则a +b 的值为·( )A. 12B. 4C. 12或−4D. 12或46. 如图,数轴上点A 表示的数可能是( )A. 4的算术平方根B. 4的立方根C. 8的算术平方根D. 8的立方根7. 若√x 3+√y 3=0,则x 和y 的关系是 ( )A. x =y =0B. x 和y 互为相反数C. x 和y 相等D. 不能确定8. 下列说法: ①负数没有立方根. ②一个实数的立方根不是正数就是负数. ③一个正数或负数的立方根与这个数同号. ④如果一个数的立方根是这个数本身,那么这个数是1或0.其中错误的是( )A. ① ② ③B. ① ② ④C. ② ③ ④D. ① ③ ④二、填空题(本大题共6小题)9. 一个数的立方根是它本身,这个数是 .10. 如果x 3=−27,那么x = .11. √64的立方根是________;√643的平方根是________.12. 若一个数的平方根与其立方根是同一个数,则这个数是.13. 小成编写了一个程序:输入x→x2→立方根→倒数→算术平方根→12,则x为.14. 若实数x,y满足,则xy的立方根为.三、计算题(本大题共1小题)15. 求下列各式的值:(1)−√−0.0273;(2)√−8273;(3)√1−37643;(4)√78−13.四、解答题(本大题共1小题)16. (本小题8.0分)已知实数a,b,c,d,e,f,且a,b互为倒数,c,d互为相反数,e的绝对值为√2,f的算术平方根是8,求12ab+c+d5+e2+√f3的值.答案和解析1.【答案】D解:A 、√(−3)2=3,故此选项错误;B 、√−53=−√53,故此选项错误;C 、√36=6,故此选项错误;D 、−√0.36=−0.6,正确.故选D .2.【答案】D解:A 、被开方数是正数,该式子有意义,故本选项正确,不合题意;B 、(−3)2=9,被开方数是正数,该式子有意义,故本选项正确,不合题意;C 、三次根式的被开方数可以是任何数,该式子有意义,故本选项正确,不合题意.D 、被开方数是负数,该式子无意义,故本选项错误,符合题意.故选:D .3.【答案】D4.【答案】B解:A 选项,一个数的立方根有1个,故该选项不符合题意;B 选项,负数的立方根是负数,故该选项符合题意;C 选项,负数有立方根,但负数没有平方根,故该选项不符合题意;D 选项,正数的立方根是正数,负数的立方根是负数,0的立方根是0,故该选项不符合题意; 故选:B .5.【答案】D解:因为a 2=16,√b 3=2,所以a =±4,b =8,所以a +b 的值为12或4.6.【答案】C解:∵2<A <3,∴A 应该是8的算术平方根,故选C .7.【答案】B解:∵√x 3+√y 3=0,∴√x 3=−√y 3,∴x =−y ,即x 、y 互为相反数.故选B . 8.【答案】B9.【答案】0或±1解:一个数的立方根是它本身,则这个数是±1或0。

人教版数学七年级下册 6.2 立方根 练习(含答案)

人教版数学七年级下册 6.2 立方根 练习(含答案)

6.2 立方根 练习一、选择题1. −64的立方根是( )A. ±8B. 4C. −4D. 16 2. −8的立方根是( ) A. −2 B. ±2 C. 2D. −12 3. √(−1)23的立方根是( ) A. −1 B. 0C. 1D. ±1 4. −√a 3=√453,则a 的值为( ) A. 45B. −45C. ±45D. −64125 5. −18的立方根是( ) A. −12 B. ±12 C. 12 D. −146. 现有下列说法①2是8的立方根;②±4是64的立方根;③−13是−127的立方根;④(−4)3的立方根是−4,其中正确的有( )个.A. 1B. 2C. 3D. 47. 已知√3743≈7.205,√37.43≈3.344,则√−0.0003743约等于( )A. −0.07205B. −0.03344C. −0.007205D. −0.0033448. 已知√1773≈5.615,由此可见下面等式成立的是( )A. √0.1773≈0.5615B. √0.01773≈0.5615C. √1.773≈0.5165D. √17.73≈56.159. 下列说法中:①每个正数都有两个立方根;②平方根是它本身的数有1,0;③立方根是它本身的数有±1,0;④如果一个数的平方根等于它的立方根,那么这个数是1或0;⑤没有平方根的数也没有立方根;⑥算数平方根是本身的数有1,0.其中正确的有( )A. 2个B. 3个C. 4个D. 5个10. 如果a 的立方根等于a ,那么a 的值为( )A. 0B. 0或1C. 0或−1D. 0或±1二、填空题11. 已知4a +1的算术平方根是3,则a −10的立方根是______12. 已知x 满足(x +3)3=64,则x 等于______.13. 已知√68.83=4.098,√6.883=1.902,则√68803= ________.14. 已知一个数的平方根是3a +1和a +11,求这个数的立方根是______. 15. (−√9)2的平方根是x ,64的立方根是y ,则x +y 的值为______ .16. 将一块体积为1000 cm 3的正方体木块锯成8块同样大小的小正方体木块,则每块小正方体木块的棱长为________cm .三、解答题17. 已知一个正数的两个平方根分别为a 和2a −9.(1)求a 的值,并求这个正数;(2)求17−9a2的立方根.18.已知:x2=9,y3=−8,求x−y的值.19.已知长方体冰箱的容积为480立方分米,它的长、宽、高的比是5:4:3,则它的长、宽、高分别为多少分米?参考答案1.【答案】C2.【答案】A3.【答案】C4.【答案】B5.【答案】A6.【答案】C7.【答案】A8.【答案】A9.【答案】A10.【答案】D11.【答案】−212.【答案】113.【答案】19.0214.【答案】415.【答案】7或116.【答案】517.【答案】解:(1)由平方根的性质得,a+2a−9=0,解得a=3,∴这个正数为32=9;(2)当a=3时,17−9a2=−64,∵−64的立方根为−4,∴17−9a2的立方根为−4.18.【答案】解:由题意可知:x=±3,y=−2,∴x−y=5或−1;19.【答案】解:设长方体的长、宽、高分别是5x、4x、3x,由题意得,5x×4x×3x=480,解得,x=2,答:长方体的长、宽、高分别为10分米、8分米、6分米.。

6.2 立方根100题(含解析)

6.2 立方根100题(含解析)

绝密★启用前一、单选题1)A.2 B.﹣2 C.D.±2【答案】C【解析】【分析】利用立方根定义计算即可求出值.【详解】=2,2的平方根是.故选C.【点睛】本题考查了立方根以及平方根,熟练掌握各自的定义是解答本题的关键.2.有下列说法:①负数没有立方根;②一个数的立方根不是正数就是负数;③一个正数或负数的立方根和这个数同号,0的立方根是0;④如果一个数的立方根是这个数本身,那么这个数必是1或0.其中错误的是()A.①②③B.①②④C.②③④D.①③④【答案】B【解析】【分析】根据立方根的定义和性质解答即可.【详解】解:正数的立方根是正数,负数的立方根是负数,0的立方根是0.立方根等于它本身的数有0,1和−1.所以①②④都是错误的,③正确.故选:B.【点睛】本题考查立方根,熟练掌握立方根的定义和性质是解题的关键.3.立方根等于它本身的有( )A.0,1 B.-1,0,1 C.0, D.1【答案】B【分析】根据立方根性质可知,立方根等于它本身的实数0、1或-1. 【详解】解:∵立方根等于它本身的实数0、1或-1. 故选B . 【点睛】本题考查立方根:如果一个数x 的立方等于a ,那么这个数x 就称为a 的立方根,例如:x 3=a ,x 就是a 的立方根;任意一个数都有立方根,正数的立方根是正数,负数的立方根是负数,0的立方根是0. 4.有理数-8的立方根为( ) A .-2 B .2C .±2D .±4【答案】A 【分析】利用立方根定义计算即可得到结果. 【详解】解:有理数-8 故选A . 【点睛】此题考查了立方根,熟练掌握立方根的定义是解本题的关键.5.比较2 )A .2<<B .2<<C .2<D 2<【答案】C 【分析】先分别求出这三个数的六次方,然后比较它们的六次方的大小,即可比较这三个数的大小. 【详解】解:∵26=64,362125⎡⎤==⎢⎥⎣⎦,26349⎡⎤==⎢⎥⎣⎦,而49<64<125∴6662<<2<< 故选C . 【点睛】此题考查的是无理数的比较大小,根据开方和乘方互为逆运算将无理数化为有理数,然后比较大小是解决此题的关键. 6.下列计算正确的是( )A .3=-B =C 6±D .【答案】D 【分析】直接利用二次根式的性质以及立方根的性质分析得出答案. 【详解】解:3=,故此选项错误;=6=,故此选项错误;D.0.6=-,正确. 故选D . 【点睛】此题主要考查了平方根和算术平方根的性质以及立方根的性质,正确掌握相关性质是解题关键.7的结果是 ( )A .±B .C .±3D .3【答案】D 【解析】∵33=27,3=.故选D . 8.64的立方根是( ) A .4 B .±4 C .8 D .±8【答案】A 【解析】试题分析:∵43=64,∴64的立方根是4, 故选A考点:立方根.9.下列说法中正确的是 ( )A .若0a <0<B .x 是实数,且2x a =,则0a >C .有意义时,0x ≤D .0.1的平方根是0.01±【答案】C 【详解】>0,故A 不正确; 根据一个数的平方为非负数,可知a≥0,故不正确; 根据二次根式的有意义的条件可知-x≥0,求得x≤0,故正确; 根据一个数的平方等于a ,那么这个数就是a 的平方根,故不正确. 故选C10.利用计算器计算时,依次按键下:,则计算器显示的结果与下列各数中最接近的一个是( ) A .2.5 B .2.6 C .2.8 D .2.9【答案】B 【分析】的近似值即可作出判断. 【详解】2.646≈,∴最接近的是2.6, 故选B . 【点睛】本题主要考查了计算器,属于基础知识,解题的关键是掌握计算器上常用按键的功能和使用顺序.11.一个正方体的水晶砖,体积为100 cm 3,它的棱长大约在( ) A .4 cm ~5 cm 之间 B .5 cm ~6 cm 之间 C .6 cm ~7 cm 之间D .7 cm ~8 cm 之间【答案】A【解析】可以利用方程先求正方体的棱长,然后再估算棱长的近似值即可解决问题.解:设正方体的棱长为x,由题意可知x3=100,解得x=,由于43<100<53,所以4<<5.故选A.此题是考查估算无理数的大小在实际生活中的应用,“夹逼法”估算方根的近似值在实际生活中有着广泛的应用,我们应熟练掌握.12.如图为张小亮的答卷,他的得分应是()A.100分B.80分C.60分D.40分【答案】B【详解】解:-1的绝对值是1,2 的倒数是12,-2的相反数是2,1的立方根是1,-1和7的平均数是3,错一个,减去20分,得分是80,故选:B【点睛】本题考查绝对值,倒数,相反数,立方根,平均数.13.下列结论正确的是( )A.64的立方根是4±B.18-没有立方根C.立方根等于本身的的数是0 D=【答案】D【解析】选项A,64的立方根是±4;选项B,18-的立方根是12-;选项C,立方根等于本身的的数是0和±1;选项D,正确,故选D.14.下列说法正确的是()A.-64的立方根是4 B.9的平方根是±3C.4的算术平方根是16 D.0.1的立方根是0.001【答案】B【解析】【分析】依据立方根、平方根和算术平方根的性质求解即可.【详解】A.−64的立方根是−4,故A错误;B.9的平方根是±3,故B正确;C.4的算术平方根是2,故C错误;D.0.1是0.001的立方根,故D错误.故选B.【点睛】考查平方根,算术平方根以及立方根,掌握它们的概念是解题的关键.15.的值是()A.1 B.﹣1 C.3 D.﹣3【答案】B【解析】【分析】直接利用立方根的定义化简得出答案.【详解】因为(-1)3=-1,﹣1.故选:B . 【点睛】此题主要考查了立方根,正确把握立方根的定义是解题关键.,16=0.1738 1.738,则a 的值为( ) A .0.528 B .0.0528 C .0.00528 D .0.000528【答案】C 【分析】根据立方根的变化规律如果被开方数缩小1000倍,它的值就缩小10倍,从而得出答案 【详解】0.528= 1.738= , ∴a=0.00528, 故选C. 【点睛】此题考查了立方根,熟练掌握立方根的变化规律是本题的关键.17.下列语句:① 4 ② 2± ③ 平方根等于本身的数是0和1 ④ )个A .1B .2C .3D .4【答案】A 【解析】试题分析:①4=,的算术平方根为2,故错误;B 2==,故错误;③、平方根等于本身的数只有0,故错误;④22==,=故正确,则本题选A .18.下列计算正确的是( )A ±3B 2C 3D =【答案】B 【分析】根据算术平方根与立方根的定义即可求出答案. 【详解】解:(A )原式=3,故A 错误; (B )原式=﹣2,故B 正确;(C3,故C错误;(D D错误;故选B.【点睛】本题考查算术平方根与立方根,熟练掌握算术平方根与立方根的性质是解题关键. 19.下列各组数中互为相反数的是()A.-2B.-2C.2与()2D.|【答案】A【解析】选项A. -2=2,选项B. -2=-2,选项C. 2与(2=2,选项,故选A.20.(2的平方根是x,64的立方根是y,则x+y的值为()A.3 B.7 C.3或7 D.1或7【答案】D【分析】利用平方根及立方根的定义求出x与y的值,即可确定出x+y的值.【详解】∵(2=9,9的平方根x=±3,y=4,∴x+y=7或1.故答案为7或1.【点睛】此题考查了立方根,熟练掌握立方根的定义是解本题的关键.21.下列说法正确的是( )A.如果一个数的立方根等于这个数本身,那么这个数一定是零B.一个数的立方根和这个数同号,零的立方根是零C.一个数的立方根不是正数就是负数D .负数没有立方根 【答案】B 【解析】A. 如果一个数的立方根等于这个数本身,那么这个数一定是零或±1 ; C. 一个数的立方根不是正数就是负数,还有0;D. 负数有一个负的立方根故选B.22.下列说法中,不正确的是( )A .10B .2-是4的一个平方根C .49的平方根是23D .0.01的算术平方根是0.1 【答案】C 【分析】根据立方根,平方根和算术平方根的定义,即可解答. 【详解】解:A. 10,正确; B. -2是4的一个平方根,正确; C.49的平方根是±23,故错误; D. 0.01的算术平方根是0.1,正确. 故选C . 【点睛】本题考查了平方根和算术平方根,立方根,解决本题的关键是熟记立方根,平方根和算术平方根的定义.23.下列各式正确的是( )A .0.6=±B 3=±C 3=D 2=-【答案】A 【解析】3=,则B 3=-,则C 2=,则D 错,故选A . 24.下列计算中,错误的是( )A .B 34=-C 112=D .25=- 【答案】D 【解析】试题解析:A.正确. B.正确. C.正确.D.22.55⎛⎫=--= ⎪⎝⎭ 故错误. 故选D.25.若一个数的平方根是±8,那么这个数的立方根是( ) A .2 B .±4 C .4 D .±2【答案】C 【解析】 【分析】根据平方根定义,先求这个数,再求这个数的立方根. 【详解】若一个数的平方根是±8,那么这个数是82=64,4=. 故选:C 【点睛】本题考核知识点:平方根和立方根.解题关键点:理解平方根和立方根的意义. 26.下列各组数中互为相反数的一组是( )A .2--B .-4与C .与D .【答案】C 【解析】 【分析】根据只有符号不同的两个数互为相反数,可得答案. 【详解】A、-|-2|=-2,故A错误;B、-4=B错误;C、C正确;D、不是相反数,故D错误;故选C.【点睛】本题考查了相反数,利用了相反数的意义.27.()A.2 B.-2 C.±2 D.不存在【答案】A【解析】【分析】根据立方根的定义求解即可.【详解】∵-2的立方等于-8,∴-8的立方根等于-2,=-.2=--=.∴(2)2故选A.【点睛】此题主要考查了立方根定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.28,则x和y的关系是().A.x=y=0 B.x和y互为相反数C.x和y相等D.不能确定【答案】B【解析】分析:先移项,再两边立方,即可得出x=-y,得出选项即可.详解:,=∴x=-y ,即x 、y 互为相反数, 故选B .点睛:考查了立方根,相反数的应用,解此题的关键是能得出x=-y . 29.下列说法正确的是( )A .4的平方根是±2B .8的立方根是±2C 2=±D 2=-【答案】A 【解析】解:A .4的平方根是±2,故本选项正确; B .8的立方根是2,故本选项错误;C =2,故本选项错误;D =2,故本选项错误; 故选A .点睛:本题考查了对平方根、立方根、算术平方根的定义的应用,主要考查学生的计算能力.30.下列等式正确的是( )A .712=± B .32=-C .3=-D .4=【答案】D 【分析】原式各项利用立方根及算术平方根定义计算即可得到结果. 【详解】A 、原式=712,错误; B 、原式=-(-32)=32,错误;C 、原式没有意义,错误;D、原式=4,正确,故选D.【点睛】此题考查了立方根,以及算术平方根,熟练掌握各自的定义是解本题的关键.31的立方根是( )A.-1 B.0 C.1 D.±1【答案】C【解析】【详解】,=1,故选C.【点睛】此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.32.下列说法中正确的有()①负数没有平方根,但负数有立方根;②一个数的立方根等于它本身,则这个数是0或1;5=-⑤一定是负数A.1个B.2个C.3个D.4个【答案】B【分析】根据平方根、立方根的定义进行判断即可得.【详解】①负数没有平方根,但负数有立方根,正确;②一个数的立方根等于它本身,则这个数是0或1或-1,故错误;=,故错误;5,3的平方根是⑤当a=0时,,故错误;综上,正确的有2个,故选B.【点睛】本题考查了平方根、立方根的定义,熟练掌握相关的定义是解题的关键.33)A.2 B.±2 C D.【答案】C【分析】的值,再继续求所求数的算术平方根即可.【详解】,而2,故选C.【点睛】此题主要考查了算术平方根的定义,解题时应先明确是求哪个数的算术平方根,否则容易出现选A的错误.34)A.±2 B.±4 C.4 D.2【答案】D【分析】如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.根据算术平方根的定义可知64的算术平方根是8,而8的立方根是2,由此就求出了这个数的立方根.【详解】∵64的算术平方根是8,8的立方根是2,∴这个数的立方根是2.故选D.【点睛】本题考查了立方根与算术平方根的相关知识点,解题的关键是熟练的掌握立方根与算术平方根的定义.35.若a是(﹣3)2( )A.﹣3 B C D.3或﹣3【答案】C【解析】分析:由于a是(﹣3)2的平方根,则根据平方根的定义即可求得a的值,进而求得代数式的值.详解:∵a是(﹣3)2的平方根,∴a=±3,C.点睛:本题主要考查了平方根的定义,容易出现的错误是误认为平方根是﹣3.36.8的相反数的立方根是()A.2 B.12C.﹣2 D.12【答案】C【解析】【分析】根据相反数的定义、立方根的概念计算即可.【详解】8的相反数是﹣8,﹣8的立方根是﹣2,则8的相反数的立方根是﹣2,故选C.【点睛】本题考查了实数的性质,掌握相反数的定义、立方根的概念是解题的关键.37时只能显示1.41421356237十三位(包括小数点),现在想知道7后面的数字是什么,可以在这个计算器中计算下面哪一个值()A.B.10-1)C.D-1【答案】B【解析】由于计算器显示结果的位数有限,要想在原来显示的结果的右端再多显示一位数字,则应该设法去掉左端的数字“1”.对于整数部分不为零的数,计算器不显示位于左端的零. 于是,先将原来显示的结果左端的数字“1”1. 为了使该结果的整数部分不为零,再将该结果的101. 这样,位于原来显示的结果左端的数字消失小数点向右移动一位,即计算)了,空出的一位由原来显示结果右端数字“7”的后一位数字填补,从而实现了题目的要求.101的值.根据以上分析,为了满足要求,应该在这个计算器中计算)故本题应选B.点睛:本题综合考查了计算器的使用以及小数的相关知识. 本题解题的关键在于理解计算器显示数字的特点和规律. 本题的一个难点在于如何构造满足题目要求的算式. 解题过程中要注意,只将原结果的左端数字化为零并不一定会让这个数字消失. 只有当整数部分不为零时,左端的零才不显示. 另外,对于本题而言,将结果的小数点向右移动是为了使该结果的整数部分不为零,要充分理解这一原理.38的立方根是()A.2 B. 2 C.8 D.-8【答案】A【解析】=8,然后根据立方根的意义,求得其立方根为2. 故选A.39的值约为( )A.3.049 B.3.050C.3.051 D.3.052【答案】B【解析】首先根据数的开方的运算方法,然后根据四舍五入法,把结果精确到0.001即可,求出≈3.050.故选B.40.下列命题中正确的是()(1)0.027的立方根是0.3;(2(3)如果a是b的立方根,那么ab≥0;(4)一个数的平方根与其立方根相同,则这个数是1.A .(1)(3)B .(2)(4)C .(1)(4)D .(3)(4)【答案】A 【解析】根据立方根的概念和性质,可知0.027的立方根为0.3,故(1)正确;根据一个负数的立方根为负数,故(2)不正确;如果a 是b 的立方根,那么ab≥0(a 、b 同号),故(3)正确;一个数的平方根与其立方根相同,则这个数是0,故(4)错误. 故选:A.点睛:本题主要考查了平方根和立方根的概念,要掌握其中的几个特殊数字的特殊性质.如果一个数x 的立方等于a ,即x 的三次方等于a (x 3=a ),那么这个数x 就叫做a 的立方根,也叫做三次方根.读作“三次根号a”其中,a 叫做被开方数,3叫做根指数.(a 不等于0)如果x 2=a (a≥0),则x 是a 的平方根.若a >0,则它有两个平方根,我们把正的平方根叫a 的算术平方根:若a=0,则它有一个平方根,即0的平方根是0,0的算术平方根也是0:负数没有平方根. 41.下列计算正确的是( ) A.﹣4 B4C﹣4D﹣4【答案】D 【解析】试题分析:根据二次根式的意义,可知被开方数为非负数,因此A 不正确;根据算术平方根是平方根中带正号的,故B{0aa a ==-(0)(0)(0)a a a =><,故C ,故D 正确. 故选D二、解答题42.已知某正数的两个平方根分别是a ﹣3和2a +15,b 的立方根是﹣2.求﹣2a ﹣b 的算术平方根. 【答案】4【解析】试题分析:根据正数的平方根有两个,且互为相反数,得出a-3+2a+15=0,求出a,再根据b的立方根是-2,求出b,再求-2a-b的算术平方根.解:由题意得a-3+2a+15=0,解得a=-4,由b的立方根是-2,得b=(-2)3=-8.则-2a-b=-2×(-4)-(-8)=16,则-2a-b的算术平方根是4.43.计算下列各题:(1(2.【答案】(1)1 (2)11 4 -【解析】试题分析:(1)先化简根式,再加减即可;(2)先化简根式,再加减即可;试题解析:(1)原式=3311-++=;(2)原式=-3-0-12+0.5+14=11 4 -44.已知a+1的算术平方根是1,﹣27的立方根是b﹣12,c﹣3的平方根是±2,求a+b+c 的平方根.【答案】±4.【解析】【分析】根据题意分别求得a,b,c的值,然后代入式子求解即可.【详解】解:∵a+1的算术平方根是1,∴a+1=1,即a=0;∵﹣27的立方根是b﹣12,∴b﹣12=﹣3,即b=9;∵c ﹣3的平方根是±2, ∴c ﹣3=4,即c=7; ∴a+b+c=0+9+7=16, 则a+b+c 的平方根是±4. 【点睛】本题主要考查平方根,算术平方根,立方根,熟练掌握其知识点与区别是解此题的关键. 45.求出下列x 的值: (1)4x 2﹣81=0; (2)8(x+1)3=27.【答案】(1)92x =±.(2)12x =【分析】(1)先整理成x 2=a ,直接开平方法解方程即可; (2)先整理成x 3=a 的形式,再直接开立方解方程即可. 【详解】解:(1)24x 810-=,∴2814x =, 9x 2∴=±;(2)()38x 127+=, ∴327(1)8x +=, ∴312x +=, ∴12x =【点睛】本题考查算术平方根和立方根的相关知识解方程,属于基础题..关键是熟练掌握相关知识点,要灵活运用使计算简便.46.已知x ﹣2的一个平方根是﹣2,2x +y ﹣1的立方根是3,求x +y 的算术平方根.【解析】 【分析】根据x ﹣2的一个平方根是﹣2,可以得到x 的值,根据2x +y ﹣1的立方根是3,可以得到y 的值,从而可以求得x +y 的算术平方根. 【详解】∵x ﹣2的一个平方根是﹣2,∴x ﹣2=4,解得:x =6. ∵2x +y ﹣1的立方根是3,∴2x +y ﹣1=27.∵x =6,∴y =16,∴x +y =22,∴x +y .即x +y 【点睛】本题考查了立方根、平方根、算术平方根,解题的关键是明确立方根、平方根、算术平方根的定义.47.已知某正数的平方根是2a ﹣7和a+4,b ﹣12的立方根为﹣2. (1)求a 、b 的值; (2)求a+b 的平方根.【答案】(1)1a =,4b =;(2)【解析】试题分析:利用正数的平方根有两个,且互为相反数列出方程,求出方程的解即可得到a 的值,根据立方根的定义求出b 的值,根据平方根的定义求出+a b 的平方根.试题解析:(1)由题意得,2a −7+a +4=0, 解得:a =1, b −12=−8, 解得:b =4; (2)a +b =5,a +b 的平方根为48.已知x 的两个不同的平方根分别是a +3和2a -15,且 4=,求x ,y的值.【答案】x=49,y=17 【解析】试题分析:根据平方根的性质,一个正数平方根有两个,它们互为相反数,因此可列方程求出a 的值,然后根据立方根的意义,求出y 的值. 试题解析:∵x 的两个不同的平方根分别是a +3和2a -15 ∴a +3+2a -15=0解之,得a =4∴x =(a +3)2=494=∴49+y -2=64解之,得y =1749.已知 2x-y 的平方根为 ±3, -2是 y 的立方根,求 -4xy 的平方根.【答案】±4 【解析】试题分析:首先根据平方根和立方根的性质列出关于x 和y 的二元一次方程组,从而得出x 和y 的值,然后求出-4xy 的平方根.试题解析:根据题意得:298x y y -=⎧⎨=-⎩ , 解得:128x y ⎧=⎪⎨⎪=-⎩, 则-4xy=16 ,∴4==±.点睛:本题主要考查的是平方根和立方根的性质,属于简答题型.正数的平方根有两个,他们互为相反数;零的平方根为零;负数没有平方根;每个数的立方根只有一个,正数有一个正的立方根,负数有一个负的立方根.立方根等于本身的数有0和±1;平方根等于本身的数只有0;算术平方根等于本身的数为0和1.50.计算:201811--【答案】【解析】分析:收下根据立方根、算术平方根、绝对值、立方根的性质求出各式的值,然后进行求和得出答案.详解:原式15123=-++-=.点睛:本题主要考查的是实数的计算,属于基础问题.解决这个问题的核心就是要明确各种计算法则.51.已知2a -1的平方根是±3,3a -b +2的算术平方根是4,求a +3b 的立方根.【答案】2.【分析】根据平方根与算术平方根的定义得到3a -b +2=16,2a -1=9,则可计算出a =5,b =1,然后计算a +b 后利用立方根的定义求解.【详解】∵2a -1的平方根是±3∴2a -1=9,即a =5∵3a -b +2的算术平方根是4,a=5∴3a -b +2=16,即b =1∴a +3b =8∴a +3b 的立方根是252.已知m M =是m 3+的算术平方根,2m 4n N -=n 2-的立方根,求:M N -的值的平方根.【答案】2【详解】解:因为m M =是m+3的算术平方根,2m 4n N -=n ﹣2的立方根,所以可得:m ﹣4=2,2m ﹣4n+3=3,解得:m=6,n=3,把m=6,n=3代入m+3=9,n ﹣2=1,所以可得M=3,N=1,把M=3,N=1代入M ﹣N=3﹣1=2.53.请根据如图所示的对话内容回答下列问题.(1)求该魔方的棱长;(2)求该长方体纸盒的表面积.【答案】(1)魔方的棱长6cm ;(2)长方体纸盒的长为10cm .【解析】试题分析:(1)由正方体的体积公式,再根据立方根,即可解答;(2)根据长方体的体积公式,再根据平方根,即可解答.试题解析:(1)设魔方的棱长为xcm ,可得:x 3=216,解得:x=6,答:该魔方的棱长6cm ;(2)设该长方体纸盒的长为ycm ,6y 2=600,y 2=100,y=10,答:该长方体纸盒的长为10cm .54.解方程:()2116(2)9x -= ()3227(1)640x +-=.【答案】()11114x =,254x =,()123x =. 【解析】分析:(1)根据平方根的定义进行计算即可;(2)根据立方根的定义进行计算即可.详解:(1)(x ﹣2)2=916,x ﹣2=±34,x =±34+2,x 1=114,x 2=54; (2)(x +1)3=6427 x +1=43 x =43﹣1=13. 点睛:本题考查了立方根和平方根,掌握平方根和立方根的定义是解题的关键.55.已知一个正方体的体积是1 000 cm 3,现在要在它的8个角上分别截去8个大小相同的小正方体,使得截去后余下的体积是488 cm 3,问截得的每个小正方体的棱长是多少?【答案】截得的每个小正方体的棱长是4 cm.【解析】试题分析:于个正方体的体积是1000cm 3,现在要在它的8个角上分别截去8个大小相同的小正方体,使截去后余下的体积是488cm 3,设截得的每个小正方体的棱长xcm ,根据已知条件可以列出方程,解方程即可求解.试题解析:设截去的每个小正方体的棱长是xcm ,则由题意得310008488x -=,解得x =4.答:截去的每个小正方体的棱长是4厘米.点睛:此题主要考查了立方根的应用,其中求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号.56.已知一个正数的平方根是a+3和2a﹣15,b的立方根是﹣2,求﹣b﹣a的平方根.【答案】±2.【解析】由一个数的平方根互为相反数,有a+3+2a﹣15=0,可求出a值,又b的立方根是﹣2,可求出b值,然后代入求出答案.解:∵一个数的平方根互为相反数,∴a+3+2a﹣15=0,解得:a=4,又b的立方根是﹣2,∴b=﹣8,∴﹣b﹣a=4,其平方根为:±2,即﹣b﹣a的平方根为±2.57.已知M2m n+=m+3的算术平方根,N2m=是n﹣2的立方根.求(n﹣m)2008.【答案】1【解析】【分析】由于算术平方根的根指数为2,立方根的根指数为3,由此可以列出关于m、n的方程组,解方程组求出m和n,进而代入所求代数式求解即可.【详解】∵M2m n+=m+3的算术平方根,N2m=n﹣2的立方根,∴2m+n﹣3=2,2m﹣n=3,∴m=2,n=1,∴(n﹣m)2008=1.【点睛】本题考查了算术平方根、立方根的定义.解决本题的关键是利用根的指数知识得到未知字母的值.58.已知a是16的算术平方根,b是9的平方根,c是﹣27的立方根,求a2+b2+c3+a ﹣c+2的值.【答案】7【分析】根据算术平方根的定义,平方根的定义,立方根的定义,求出a、b、c的值,然后代入求解即可.【详解】解:因为a是16的算术平方根,所以a=4,所以a2=16,又因为b是9的平方根,所以b2=9,因为c是﹣27的互方根,所以c3=﹣27,c=﹣3,所以a2+b2+c3+a﹣c+2=16+9﹣27+4+3+2=7.【点睛】此题主要考查了算术平方根,平方根,立方根,熟记概念并列式求出a、b、c的值是解题关键.59.已知5a+2的立方根是3,3a+b-1的算术平方根是4,c(1)求a,b,c的值;(2)求3a-b+c的平方根.【答案】(1)a=5,b=2,c=3;(2)3a-b+c的平方根是±4.【分析】(1)利用立方根的意义、算术平方根的意义、无理数的估算方法,求出a、b、c的值;(2)把a、b、c的值代入代数式求出值后,进一步求得平方根即可.【详解】解:(1)∵5a+2的立方根是3,3a+b-1的算术平方根是4,∴5a+2=27,3a+b-1=16,∴a=5,b=2,∵c的整数部分,∴c=3,(2)由(1)可知a=5,b=2,c=3∴3a-b+c=16,3a-b+c 的平方根是±4.【点睛】利用立方根的意义、算术平方根的意义、无理数的估算方法,求出a 、b 、c 的值是解题关键.60.我们知道a +b =0时,a 3+b 3=0也成立,若将a 看成a 3的立方根,b 看成b 3的立方根,我们能否得出这样的结论:若两个数的立方根互为相反数,则这两个数也互为相反数.(1)试举一个例子来判断上述猜测结论是否成立;(2)若1的值.【答案】(1)成立;(2)-1【解析】【试题分析】举例:8和-8的立方根分别为2和-2. 2和-2互为相反数,则8和-8也互为相反数;(2)根据(1)的结论,1-2x+3x-5=0,解得:x=4,则=1-2=-1.【试题解析】(1)8和-8的立方根分别为2和-2;2和-2互为相反数,则8和-8也互为相反数(举例符合题意即可),成立.(2)根据(1)的结论,1-2x+3x-5=0,解得:x=4,则=1-2=-1.故答案为-1.【方法点睛】本题目是一道关于立方根的拓展题目,根据立方根互为相反数得到这两个数互为相反数;反之也成立.运用了从特殊的到一般的数学思想.61.已知2a 一1的平方根是531a b ±+-,的立方根是4,求210a b ++的平方根.【答案】 ±【解析】试题分析:由平方根的定义和列方程的定义可求得2a-1=25,3a+b-1=64,从而可求得a 、b 的值,然后可求得代数式a+2b+10的值,最后再求其平方根即可.试题解析:∵2a 一1的平方根是±5,3a+b ﹣1的立方根是4,∴2a ﹣1=25,3a+b ﹣1=64.解得:a=13,b=26.∴a+2b+10=13+52+10=75.∴a+2b+10的平方根为(或±)62.正数x的两个平方根分别为3﹣a和2a+7.(1)求a的值;(2)求44﹣x这个数的立方根.【答案】(1) a=﹣10;(2) 4-x的立方根是﹣5【分析】(1)理解一个正数有几个平方根及其两个平方根间关系:一个正数有两个平方根,它们互为相反数,求出a的值;根据a的值得出这个正数的两个平方根,即可得出这个正数,计算出44-x的值,再根据立方根的定义即可解答.【详解】解:(1)由题意得:3﹣a+2a+7=0,∴a=﹣10,(2)由(1)可知x=169,则44-x=﹣125,∴44-x的立方根是-5.【点睛】此题考查了立方根,平方根,注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.63.已知2a-1的算术平方根是3,3a+b+4的立方根是2,求a-b的平方根.【答案】a-b的平方根是±4.【解析】分析:根据算术平方根和立方根的定义得出2a-1=9,3a+b+4=8,求出a、b的值,求出3a+b=4,根据平方根定义求出即可.详解:∵2a-1的算术平方根是3,3a+b+4的立方根是2,∴2a-1=9,3a+b+4=8,解得a=5,b=-11,∴a-b=16,∴a-b的平方根是±4.点睛:本题考查了算术平方根和立方根的定义、平方根定义等知识点,能理解平方根、立方根、算术平方根定义是解此题的关键.64.某地气象资料表明:当地雷雨持续的时间t(h)可以用下面的公式来估计:t2=3 900d,其中d(km)是雷雨区域的直径.(1)如果雷雨区域的直径为9km,那么这场雷雨大约能持续多长时间?(2)如果一场雷雨持续了1h,那么这场雷雨区域的直径大约是多少(结果精确到0.1km)?【答案】(1)0.9h (2)9.7km【解析】【分析】(1)根据t 2=3900d ,其中d=9(km )是雷雨区域的直径,开立方,可得答案; (2)根据t 2=3900d ,其中t=1h 是雷雨的时间,开立方,可得答案. 【详解】(1)当d =9时,则t 2=3900d ,因此t 0.9. 答:如果雷雨区域的直径为9km ,那么这场雷雨大约能持续0.9h.(2)当t =1时,则3900d =12,因此d 答:如果一场雷雨持续了1h ,那么这场雷雨区域的直径大约是9.7km.【点睛】本题考查了立方根,注意任何数都有立方根.65.已知x+12平方根是2x+y ﹣6的立方根是2,求3xy 的算术平方根.【答案】6.【分析】由题意可知:x+12=13,2x+y ﹣6=8,分别求出x ,y 的值即可求出3xy 的值.【详解】由题意可知:x+12=13,2x+y ﹣6=8,∴x=1,y=12,∴3xy=3×1×12=36,∴36的算术平方根为6【点睛】本题考查了平方根和立方根的综合.66.已知5a ﹣1的算术平方根是3,3a+b ﹣1的立方根为2.(1)求a 与b 的值;(2)求2a+4b 的平方根.【答案】(1)a=2,b=3(2)±4 【分析】(1)根据算术平方根与立方根定义得出5a ﹣1=32,3a+b ﹣1=23,解之求得a 、b 的值;。

人教版七年级下册数学6.2 立方根 课时训练试卷含答案

人教版七年级下册数学6.2 立方根 课时训练试卷含答案

A.2B.-2C.±2D.-5. 的立方根是()A.-1B.0C.1D.±16. 若-=,则a的值为 ()A.B.-C.±D.-7. 如果=-,那么a,b的关系是()A.a=bB.a=±bC.a=-bD.无法确定8. 已知≈1.710,不再利用其他工具,根据规律能求出近似值的是()A.B.C.D.9. (2020·淄博)计算:.11. 设x=,y=,则xy=.12. 若+=0,则x=.13. 估计的值在两个相邻的正整数n和n+1之间,则n=.14. 若一个数的立方根等于它本身,则这个数是.15. -8的立方根与4的算术平方根的和是.16. 已知73=343,则=,=.三、解答题17. 用计算器求下列各式的值:(1)(精确到0.01);(2)(精确到0.001).18. 求下列各式的值:(1);(2)-;(3).19. 求下列各式中x的值:(1)x3=512;(2)64x3-125=0;(3)(x-1)3=-216;(4)27(x-3)3=-64.20. 某城市为了制作雕塑,需要把截面面积为25 cm2、长为45 cm的长方体钢块铸成两个大小不一的正方体,其中大正方体的棱长是小正方体棱长的2倍,求这两个正方体的棱长.参考答案一、选择题1. C2. B3. B4. C5. C6. B7. C8. D二、填空题9. 2+4=2.故答案为:210. 第一行填:18-27第二行填:-50-711. 1 12. 513. 614. -1,0,115. 016. 0.7-70三、解答题17.解:(1)≈10.71.(2)≈-6.009.18.(1)-(2)-(3)-19.解:(1)x=8.(2)x=.(3)x=-5.(4)x=.20.解:设小正方体的棱长为x cm,则大正方体的棱长为2x cm.根据题意,得x3+(2x)3=25×45,解得x=5,所以2x=10.答:这两个正方体的棱长分别为5 cm,10 cm.。

人教版七年级数学 下册 6.2 立方根 同步练习 有答案

人教版七年级数学 下册 6.2 立方根 同步练习 有答案

6.2 立方根一选择题1、x是5的算术平方根,那么x2-13的立方根是〔〕A、-13B、--13C、2D、-22、如果3x-6是x-6的三次算术根,那么x的值为〔〕A、0B、3C、5D、63、假设m<0,那么m的立方根是〔〕-A、B、-C、±D、3m4、在以下各式中:=,=0、1,=0、1,-=-27,其中正确的个数是〔〕A、1B、2C、3D、45、以下说法中正确的选项是〔〕A、-4没有立方根B、1的立方根是±1C、的立方根是D、-5的立方根是6、以下说法不正确的选项是〔〕A、-1的立方根是-1B、-1的平方是1C、-1的平方根是-1D、1的平方根是±17、在无理数5,6,7,8中,其中在与之间的有〔〕A、1个B、2个C、3个D、4个8、一个正方体的体积为28360立方厘米,正方体的棱长估计为〔〕A、22厘米B、27厘米C、30、5厘米D、40厘米9、,,那么的值等于〔〕A、485.8B、15360C、0.01536D、0.0485810、假设+有意义,那么的值是〔〕A 、0B 、21C 、81D 、161 二 填空题1、假设a 与b 互为相反数,那么它们的立方根的和是________、2、0的立方根是________、3、36的平方根的绝对值是________、4、立方根等于它本身的数是_______、5、当x 为________时,有意义;当x 为________时,有意义、三 解答题1、求以下各数的立方根、 〔1〕-1〔2〕10001 〔3〕-343〔4〕1585 〔5〕512〔6〕-827 〔7〕0〔8〕-0.2162、x 取何值时,下面各式有意义?〔1〕〔2〕〔3〕〔4〕 3、,其中x ,y 为实数,求的值.4、一个比例式的两个外项分别是0、294和0、024,两个内项是相等的数,求这两个内项各是多少?5、一个长方体木箱子,它的底是正方形,木箱高1、25米,体积2、718立方米、求这个木箱底边的长、〔精确到0、01米〕参考答案一 选择题DDACDCDCDB二 填空题三 解答题1.〔1〕-1〔2〕101〔3〕-7〔4〕25〔5〕8〔6〕23-〔7〕0〔8〕-0、6 2.〔1〕0=x 〔2〕x 取全体实数〔3〕1≥x 且3≠x 〔4〕x 取任何实数 3.4.5.1.47米。

人教版七年级数学下册《6.2立方根》同步练习(含答案)

人教版七年级数学下册《6.2立方根》同步练习(含答案)

6.2 立方根关键问答 ①立方根有几种表示方法? ②一个正数的平方根和立方根各有几个?一个负数呢?0 呢? ③怎样求一个数的立方根? ① 1. 8 的立方根是( ) 3 A.±2 B.2 C.-2 D. 2 2. 下列判断:①负数没有立方根;②一个数的立方根有两个,它们互为相反数;③任何有理数都有立 方根,它不是正数就是负数.其中正确的有( ) A.0 个 B.1 个 C.2 个 D.3 个 1 ③ 3. 若 x3=- ,则 x=__________. 27 4.求下列各数的立方根. 1 27 0.001,-1,- ,8000, . 216 64②命题点 1 立方根 [热度:90%] ④ 5. -1 是-1 的( ) A.平方根 B.相反数 C.绝对值 D.立方根 易错警示 ④-1 的倒数是它本身,立方根是它本身,相反数和绝对值都是 1,-1 没有平方根. 6.⑤327的值为()A.3 B.-3 C.-2 D.2 解题突破 3 ⑤ a表示 a 的立方根. 7. 64的立方根是( ) A.2 B.±2 C.4 D.±4 易错警示 ⑥本题易误认为是求 64 的立方根,从而产生错误. 3 8.下列各数中,立方根是 的是( 2 9 A. 4 9 B.± 4 27 C. 8 D.± 27 8 )⑥9.求下列各式的值:3 (1) -0.027;(2)3 1 ; 64(3)31 - ; 8(4)35 4- . 8命题点 2 立方根的性质 [热度:92%] 3 1 3 ⑦ 10. 若- a= ,则 a 的值是( 8 1 A. 8 1 B.- 8 1 C.± 8 )1 D.- 512模型建立 3 3 ⑦- a= -a. 3 ⑧ 11. 若 (k-4)3=4-k,则( )A.k=4 B.k≤4 C.k≥4 D.k 为任何数 模型建立 3 ⑧若 a3=-a,则 a=0. 3 3 12.若 2x+1= 3x-2,则 x=__________. 3 3 ⑨ 13. 已知 2a-3+ 7-3a=0,则 a+5=__________. 模型建立 3 3 ⑨若 a+ b=0,则 a+b=0,即 a,b 互为相反数. 命题点 3 开立方 [热度:94%] ⑩ 14. 在(k+8)3=-27 中,k 的值是( ) A.-9 B.13 C.-12 D.-11 解题突破 ⑩若把 k+8 看作一个整体,你能求出 k+8 的值吗?进而能求出 k 的值吗? 15.⑪一个正方体的体积为 125 cm3,现将它锯成 8 块同样大小的小正方体(不计损耗),则每个小正方体的表面积为( ) 2 A.2.5 cm B.6.25 cm2 C.25 cm2 D.37.5 cm2 解题突破 ⑪正方体有六个面. 16.小红做了一个棱长为 5 cm 的正方体盒子,小明对小红说: “我做的正方体盒子的体积比你做的大 218 3 cm .”则小明做的正方体盒子的棱长为__________cm. 3 3 2x-  -8=0 的解是__________. 17.方程 2  18.解下列方程: (1)3x2-75=0; (2)125(x-1)3=(-8)2.命题点 4 用计算器求立方根 [热度:88%] 19. 某居民生活小区需要建一个大型的球形储水罐, 需储水 13.5 立方米, 那么这个储水罐的半径 r 约为(结 4 果精确到 0.1 米,可用计算器计算)(提示:球的体积公式为 V= πr3)( 3 A.1.2 米 B.1.3 米 C.1.5 米 D.1.6 米 20.⑫(1)填表: a 3 a 0.000001 0.001 0.1 1 1000 1000000 )(2)由上表你发现了什么规律?请在下面填写这个规律: 被开方数的小数点每向右移动三位,立方根的小数点就相应地向________移动__________位. (3)根据你发现的规律填空: 3 3 ①已知 3≈1.442,则 3000≈__________; 3 3 ②已知 0.000456≈0.07697,则 456≈__________. 模型建立 ⑫一个有理数的小数点每向右(或左)移动三位,它的立方根则相应地向右(或左)移动 一位.21.⑬阅读下面的内容,并解决问题: 据说,我国著名数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题: 一个数是 59319,求它的立方根.华罗庚脱口而出:39.邻座的乘客十分惊奇,忙问计算的奥秘. 3 (1)由 103=1000,1003=1000000,你能确定 59319是几位数吗? 3 3 ∵1000<59319<1000000,∴10< 59319<100,∴ 59319是两位数; 3 (2)由 59319 的个位上的数字是 9,你能确定 59319的个位上的数字是几吗? ∵只有个位上的数字是 9 的数的立方的个位上的数字依然是 9,3 ∴ 59319的个位上的数字是 9; 3 (3)如果划去 59319 后面的三位数 319 得到 59,而 33=27,43=64,由此你能确定 59319的十位上的数字 是几吗? 3 3 ∵27<59<64,∴30< 59319<40,∴ 59319的十位上的数字是 3, 3 ∴ 59319=39,即 59319 的立方根是 39. 3 已知整数 50653 是一个整数的立方,根据上面的解题过程求 50653的值.方法点拨 ⑬本题先根据正数越大,其立方根越大,判断立方根的位数,再根据正整数的立方的特点,判断每个数 位上的具体数字.典题讲评与答案详析1 1.B 2.A 3.- 3 3 3 27 3 3 1 1 3 3 4.解: 0.001=0.1, -1=-1, - =- , 8000=20, = . 216 6 64 4 5.D [解析] 因为(-1)3=-1,所以-1 是-1 的立方根.3 6.A [解析] 因为 33=27,所以 27=3. 7.A [解析] 因为 64=8,8 的立方根为 2,所以 64的立方根是 2. 3 27 3 27 8.C [解析] 因为( )3= ,所以立方根是 的数是 . 2 8 2 8 1 1 9.(1)-0.3 (2) (3)- 4 2 10.B 3 (4) 23 1 3 [解析] 因为- a= , 81 1 3 所以 a=- ,所以 a=- . 2 8 11.A 3 [解析] (k-4)3=k-4=4-k,解得 k=4.3 3 12.3 [解析] 因为 2x+1= 3x-2, 所以 2x+1=3x-2,解得 x=3. 3 3 13.3 [解析] 因为 2a-3+ 7-3a=0,所以 2a-3=-(7-3a),解得 a=4,所以 a+5=3. 14.D 15.D 3 [解析] 因为(k+8)3=-27,所以 k+8= -27,所以 k+8=-3,所以 k 的值是-11. 5 [解析] 设小正方体的棱长为 a cm,则有 8a3=125,所以 a= , 2所以每个小正方体的表面积为 6a2=37.5(cm2). 16.7 [解析] 设小明做的正方体盒子的棱长为 a cm,则有 a3=53+218=343,所以 a=7. 7 17.x= 4 3 3 2x-  -8=0, [解析] 由 2 3 7 得 2x- =2,所以 x= . 2 4 9 18.(1)x=±5 (2)x= 5 19.C [解析] 由计算器计算可得 r≈1.5. 20.(1)从左到右依次填:0.01 1 10 100 (2)右 一 (3)①14.42 ②7.697 21.解:∵1000<50653<1000000,3 3 ∴10< 50653<100,∴ 50653是两位数. 3 ∵只有个位上的数字是 7 的数的立方的个位上的数字是 3,∴ 50653的个位上的数字是 7. 3 ∵27<50<64,∴30< 50653<40, 3 3 ∴ 50653的十位上的数字是 3,∴ 50653=37. 【关键问答】 ①有两种表示方法,一是用语言描述,二是用符号表示. ②一个正数有两个平方根,它们互为相反数,一个正数只有一个立方根;一个负数只有一个立方根,没 有平方根;0 的立方根和平方根都是 0. ③转化成找一个数的立方等于这个数.。

人教版初中数学七年级下册《6.2立方根》同步练习(含答案)

人教版初中数学七年级下册《6.2立方根》同步练习(含答案)

《立方根》同步练习1讲堂作业1.以下说法正确的选项是 ( )A .一个正数有两个立方根,它们的和为B .负数没有立方根C .假如一个数没有平方根,那么它必定没有立方根D .一个数的立方根与这个数同号2.化简 3 8 的结果为 ()A .±2B .- 2C . 2D .223.有一个正方体的水晶砖,体积为 100cm 3,则它的棱长在 ()A .4~ 5cm 范围内B . 5~ 6cm 范围内C . 6~ 7cm 范围内D .7~ 8cm 范围内4.一个数的算术平方根与它的立方根同样,这个数是 ________.5.假如x 的立方根是 2,那么 x = ________.假如 3 x 的平方根是 ±2,那么 x = ________.6.求以下各数的立方根:(1)343 ;(2)8;125(3)- 0.001;(4) 729 .7.求以下各式的值:(1) 3512;310(2)2;27(3) 3 1115 ;64 16(4) 30.001 3 1253( 2)3 .课后作业8. 3 ( 1)2 的立方根是 ( )A .-1B . 0C. 1D.±19.以下等式建立的是() A.31 1B.C.D.333225 15125 59310.若 x3=1000,则 x= ________;若 x3=- 216,则 x=- ________;若 x3=- (- 9)3,则 x= ________.11.已知31.12 1.038 ,3 11.2 2.237 ,3112 4.820,则31120________ ,30.112 ________ .12.若两个连续的整数a、b 知足a 3 68b ,则1ab的值为 ________.13.求以下各式中x 的值:(1)125x 3= 64;(2)(x -1) 3- 0.343= 0:(3) x3 1 98 ;1 27(4) (2 x 3)3 54 .414.若(x 2015)2 y 2016 0,求x+y的立方根.15.某田户原计划利用现有的一面墙再修三面墙,建筑如下图的长方体池塘,用来培养鱼苗,长方体长 9m、宽 8m、高 3m,后遵从建筑师的建议改为建筑等体积的正方体池塘,则待建的三面墙的总长度是多少(不考虑墙的厚度 )?答案[讲堂作业 ] 1. D 2. C 3. A 4.0或1 5. 64 64 6. (1)72 (2)5(3)- 0.1(4)37. (1) ±8 (2)4(3)5(4)134[课后作业 ] 8. C 9. C 10.10 -6 911. 10.38 - 0.48212.1204 (2)x = 1.75 (4) 313. (1) x(3) xx53214.∵(x - 2015) 2≥ 0, y2016 ≥ 0,(x 2015)2 y 2016 0 .∴ (x - 2015)2 =0, y 2016 0 .∴x = 2015, y =- 2016.∴ x + y =- 1.∴ x + y 的立方根为- 115.设正方体池塘的棱长为 xm 由题意,得 9×8×3= x 3.∴ x 39833216 6 ,即此正方体池塘的棱长为 6m .∴待建的三面墙的总长度是6×3= 18(m)《立方根》同步练习21.32)1 的立方根是 (A .-1B .0C.1D.±12.若一个数的立方根是 -3,则该数为 ()A .- 3 3B.-27C.± 3 3D.± 273.以下判断:①一个数的立方根有两个,它们互为相反数;②若 x 3 =(-2)3,则 x=-2;③ 15 的立方根是 315 ;④ 任何有理数都有立方根,它不是正数就是负数 .此中正确的有 ( )A.1个B.2 个C.3 个D.4 个4.立方根等于自己的数为 __________.5. 3 64 的平方根是 __________.6.若 x-1 是 125 的立方根,则 x-7 的立方根是 __________.7.求以下各数的立方根:(1)0.216;(2)0;(3)-2 10 ;(4)-5.278.求以下各式的值:(1) 30.001;(2) 3343;(3)- 31 19 .125279.用计算器计算3 28.36 的值约为( )A .3.049B .3.05010.预计 96 的立方根的大小在 ( )A.2与 3之间B.3与4 之间C.4与 5 之间D.5与 6之间11.计算:325 ≈__________( 精准到百分位 ).12.已知31.12 =1.038, 3 11.2 =2.237,3112=4.820,则3 1120 =__________,3 0.112 =__________.13.(1)填表:a 0.000 001 0.001 1 1 000 1 000 0003a(2)由上表你发现了什么规律?请用语言表达这个规律:______________________________.(3)依据你发现的规律填空:①已知3 3 =1.442,则3 3000 =__________,3 0.003 =__________;②已知3 0.000456 =0.076 96,则3 456 =__________.参照答案1.C2.B3.B4.0,1 或 -15.± 26.-17.(1)∵ 0.63=0.216,∴0.216 的立方根是 0.6,即30.216 =0.6;(2)∵ 03=0,∴0 的立方根是 0,即30 =0;(3)∵ -2 10 =- 64 ,且(-4)3=- 64 ,27 27 3 27∴ -2 10的立方根是 -4,即 3 2 10 =- 4 ;27 3 27 3(4)-5 的立方根是 3 5 .8.(1)0.1;(2)- 7 ;52(3)- .39.B10.C-0.482 013.(1)0.01 0.1 1 10 100(2)被开方数扩大 1 000 倍 ,则立方根扩大10 倍(3)14.42 0.144 2 7.696《立方根》同步练习 31.以下说法正确的选项是 ( )A . 一个数的立方根有两个,它们互为相反数B . 一个数的立方根比这个数平方根小C. 假如一个数有立方根,那么它必定有平方根D . 3 a 与3 a 互为相反数2.计算337 的正确结果是( )A . 7 B.- 7 C. ±7 D. 无心义3. 正方体 A 的体积是正方体 B 的体积的27 倍,那么正方体 A 的棱长是正方体B的棱长的 ( )A.2倍B.3倍C.4倍D.5倍4.- 27 的立方根与81 的平方根之和是__________.5. 计算: - 364 =__________,3371 =__________.646.已知 2x+1 的平方根是± 5,则 5x+4 的立方根是 __________.7.求以下各式的值:(1) 31000;( 2)- 364;( 3)- 3 729+3512;(4) 30.027 - 31124+30.001. 1258.比较以下各数的大小:(1) 39与3;(2)- 342与-3.4.9.求以下各式中的 x:( 1) 8x3+125=0;(2)( x+3) 3+27=0.10. 若 a 8 与( b- 27)2互为相反数,求 3 a-3b的立方根.11.好久好久从前 , 在古希腊的某个地方发生大旱, 地里的庄稼都干死了 , 人们找不到水喝 , 于是大家一同到神庙里去处神乞求 . 神说:“我之因此不给你们降水 , 是由于你们给我做的正方体祭坛太小, 假如你们做一个比它大一倍的祭坛放在我眼前 , 我就会给你们降雨 . ”大家感觉很好办 , 于是很快做好了一个新祭坛送到神那边, 新祭坛的棱长是本来的 2 倍 . 但是神愈发愤怒, 他说:“ 你们竟敢捉弄我. 这个祭坛的体积不是本来的 2 倍 , 我要进一步处罚你们!”如下图 , 不如设原祭坛边长为a, 想想:(1) 做出来的新祭坛是本来体积的多少倍?( 2) 要做一个体积是本来祭坛的 2 倍的新祭坛 , 它的棱长应当是本来的多少倍?参照答案1.D2.B3.B4.0或-65.- 4 - 36. 4 47.( 1)- 10;( 2) 4;( 3)- 1;( 4) 0.8.( 1) 39> 3;( 2)- 342<- 3. 4.9.( 1) 8x 3=- 125, x3=-125, x=- 5 ;8 2( 2) ( x+3)3=- 27, x+3=- 3, x=- 6.10.由题意知 a=- 8, b=27,因此3 a -3 b =- 5.故3 a -3 b 的立方根是3 5 . 11.( 1) 8 倍;(2) 32倍.。

人教版初中数学七年级下册《6.2立方根》同步练习卷(含答案解析

人教版初中数学七年级下册《6.2立方根》同步练习卷(含答案解析

⼈教版初中数学七年级下册《6.2⽴⽅根》同步练习卷(含答案解析⼈教新版七年级下学期《6.2 ⽴⽅根》同步练习卷⼀.选择题(共3⼩题)1.如果≈1.333,≈2.872,那么约等于()A.28.72B.0.2872C.13.33D.0.13332.如图,某计算器中有、、三个按键,以下是这三个按键的功能.①:将荧幕显⽰的数变成它的算术平⽅根;②:将荧幕显⽰的数变成它的倒数;③:将荧幕显⽰的数变成它的平⽅.⼩明输⼊⼀个数据后,按照以下步骤操作,依次按照从第⼀步到第三步循环按键.若⼀开始输⼊的数据为10,那么第2018步之后,显⽰的结果是()A.B.100C.0.01D.0.13.如图,某计算机中有、、三个按键,以下是这三个按键的功能.1.:将荧幕显⽰的数变成它的正平⽅根,例如:荧幕显⽰的数为49时,按下后会变成7.2.:将荧幕显⽰的数变成它的倒数,例如:荧幕显⽰的数为25时,按下后会变成0.04.3.:将荧幕显⽰的数变成它的平⽅,例如:荧幕显⽰的数为6时,按下后会变成36.若荧幕显⽰的数为100时,⼩刘第⼀下按,第⼆下按,第三下按,之后以、、的顺序轮流按,则当他按了第100下后荧幕显⽰的数是多少()A.0.01B.0.1C.10D.100⼆.填空题(共7⼩题)4.若=2.938,=6.329,则=.5.已知x满⾜(x+3)3=64,则x等于.6.如图为洪涛同学的⼩测卷,他的得分应是分.7.﹣8的⽴⽅根与的平⽅根之和是.8.如图,某计算机中有、、三个按键,以下是这三个按键的功能.(1):将荧幕显⽰的数变成它的算术平⽅根,例如:荧幕显⽰的数为49时,按下后会变成7.(2):将荧幕显⽰的数变成它的倒数,例如:荧幕显⽰的数为25时,按下后会变成0.04.(3):将荧幕显⽰的数变成它的平⽅,例如:荧幕显⽰的数为6时,按下后会变成36.若荧幕显⽰的数为100时,⼩刘第⼀下按,第⼆下按,第三下按,之后以、、的顺序轮流按,则当他按了第2018下后荧幕显⽰的数是.9.某计算机中有、、x2三个按键,以下是这三个按键的功能:(1):将荧幕显⽰的数变成它的算术平⽅根,例如:荧幕显⽰的数为49时,按下会变成7;(2):将荧幕显⽰的数变成它的倒数,例如:荧幕显⽰的数为25时,下后会变成0.04;(3)x2:将荧幕显⽰的数变成它的平⽅,例如:荧幕显⽰的数为6时,按下x2后会变成36.若⼀开始荧幕显⽰的数为100时,⼩刘第⼀下按,第⼆下按,第三下按x2,之后以、、x2的顺序轮流按,则当他按了第20下后荧幕显⽰的数是.10..我们知道=5,付⽼师⼜⽤计算器求得:=55、=555,=5555,则计算:(2016个3,2016个4)=.⼈教新版七年级下学期《6.2 ⽴⽅根》同步练习卷参考答案与试题解析⼀.选择题(共3⼩题)1.如果≈1.333,≈2.872,那么约等于()A.28.72B.0.2872C.13.33D.0.1333【分析】根据⽴⽅根,即可解答.【解答】解:∵≈1.333,∴=≈1.333×10=13.33.故选:C.【点评】本题考查了⽴⽅根,解决本题的关键是熟记⽴⽅根的定义.2.如图,某计算器中有、、三个按键,以下是这三个按键的功能.①:将荧幕显⽰的数变成它的算术平⽅根;②:将荧幕显⽰的数变成它的倒数;③:将荧幕显⽰的数变成它的平⽅.⼩明输⼊⼀个数据后,按照以下步骤操作,依次按照从第⼀步到第三步循环按键.若⼀开始输⼊的数据为10,那么第2018步之后,显⽰的结果是()A.B.100C.0.01D.0.1【分析】根据题中的按键顺序确定出显⽰的数的规律,即可得出结论.【解答】解:根据题意得:102=100,=0.01,=0.1;0.12=0.01,=100,=10;…∵2018=6×336+2,∴按了第2018下后荧幕显⽰的数是0.01.故选:C.【点评】此题考查了计算器﹣数的平⽅,弄清按键顺序是解本题的关键.3.如图,某计算机中有、、三个按键,以下是这三个按键的功能.1.:将荧幕显⽰的数变成它的正平⽅根,例如:荧幕显⽰的数为49时,按下后会变成7.2.:将荧幕显⽰的数变成它的倒数,例如:荧幕显⽰的数为25时,按下后会变成0.04.3.:将荧幕显⽰的数变成它的平⽅,例如:荧幕显⽰的数为6时,按下后会变成36.若荧幕显⽰的数为100时,⼩刘第⼀下按,第⼆下按,第三下按,之后以、、的顺序轮流按,则当他按了第100下后荧幕显⽰的数是多少()A.0.01B.0.1C.10D.100【分析】根据题中的按键顺序确定出显⽰的数即可.【解答】解:根据题意得:=10,=0.1,0.12=0.01,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020 年七年级下《 6.2 立方根》课堂练习题含答案基础题
知识点1 立方根
1.( 酒泉中考)64 的立方根是( A)
A.4 B.±4
C.8 D.±8
3
2.( 百色中考 ) 化简:8= ( C)
A.±2 B.-2
C.2 D.2 2
3.若一个数的立方根是- 3,则该数为 ( B)
3
3 B.-27
A.-
C.±3
3 D.±27
3
4.( 包头一模 )-8等于(D)
A.2 B.2 3
C.-1
D.-2 2
5.下列结论正确的是( D)
A.64的立方根是± 4
1
B.-8没有立方根
C.立方根等于本身的数是0
3 3
D.-216=-216
6.( 滑县期中 ) 下列计算正确的是( C)
3 3 27 3
A. 0.012 5 = 0.5
B.-64=4
3 3 1 3
-8 2
. 3 = 1 .-=-
C 8 2
D 125 5 7.下列说法正确的是( D)
A.如果一个数的立方根是这个数本身,那么这个数一定是0 B.一个数的立方根不是正数就是负数
C.负数没有立方根
D.一个不为零的数的立方根和这个数同号,0 的立方根是0
1 1
8.- 64 的立方根是- 4,-是-的立方根.
3 27
3
9.若 a=- 7,则 a=- 343.
3 3
10 .( 松江区月考 ) - 38的立方根是-2.
11 .求下列各数的立方根:
(1)0.216 ;
解:∵ 0.6 3= 0.216 ,
∴ 0.216 的立方根是
3
0.216 = 0.6.
0.6 ,即 (2)0 ;
解:∵ 03= 0,∴ 0 的立方根是 0,即 3 0= 0.
10
(3) - 2 ;
27
10
64 4 3 64
解:∵- 227=- 27,且 ( -3) =- 27,
10
4 3 10 4
∴- 227的立方根是- 3,即
- 227=- 3.
(4) - 5.
3
解:- 5 的立方根是
- 5.
12.求下列各式的值:
(1)
3
3
343 0.001 (2)
-;
125
解: 0.1.
7 解:- .
5
3
19 (3) -
1- 27.
2
解:- 3.
知识点 2
用计算器求立方根
3
13.用计算器计算 28.36 的值约为 ( B )
A . 3.049
B . 3.050
C . 3.051
D . 3.052
3
14.一个正方体的水晶砖,体积为 100 cm ,它的棱长大约在
( A )
A . 4~5 cm 之间
B . 5~ 6 cm 之间
. 6~7
cm 之间
. 7~ 8 cm 之间
C D
3
25≈ 2.92( 精确到百分位 ) .
15.计算:
中档题
16.( 潍坊中考 ) 3 (- 1) 2
的立方根是 ( )
C
A .- 1
B . 0 . 1
.± 1
C
D
17.下列说法正确的是 ( D )
A .一个数的立方根有两个,它们互为相反数
B.一个数的立方根比这个数平方根小
.如果一个数有立方根,那么它一定有平方根
C
3
3
D . a 与 - a 互为相反数
18 .( 毕节中考 ) 3
8的算术平方根是 ( C )
. 2
.± 2
A
B
C . 2
D .± 2
19
2
2
3
3
,则 a + b 的值为 ( D )
.( 东平县期中 ) 若 a = ( - 5) ,b =( - 5) A . 0 B .± 10
C . 0 或 10
D . 0 或- 10
20 .正方体 A 的体积是正方体 B 的体积的 27 倍,那么正方体 A 的棱长是正方体 B 的棱长的 ( )
B
A . 2 倍
B . 3 倍
C . 4 倍
D . 5 倍
21 .若 x - 1 是 125 的立方根,则
x - 7 的立方根是- 1.
22 .(1) 填表:
a 0.000 001 0.001 1 1 000 1 000 000
3
0.01
0.1
1
10
100
a
(2) 由上表你发现了什么规律?请用语言叙述这个规律:被开方数扩大
1_000 倍,则立方根扩大 10 倍;
(3) 根据你发现的规律填空:
3 3= 1.442 ,则 3
3 ①已知 3 000 = 14.42 , 0.003 = 0.144_2 ;
3 0.000 456 = 0.076 97 ,则 3
②已知 456= 7.697 .
23.求下列各式的值:
3
(1)
-1 000 ;
解:- 10.
3
(2) - - 64;解:- 4.
3 3
(3) - 729+ 512; 解:- 1.
3 3
124 3
(4)
0.027 -1- 125+ - 0.001.
解: 0.
24.比较下列各数的大小:
(1) 3 9与 3; (2) - 3 42与-
3.4.
3 3
42<- 3.4.
解:
9> 3. 解:-
25.求下列各式中的x:
(1)8x 3+ 125= 0;
解: 8x3=- 125,
3125
x=-8,
5
x=-.
2
(2)(x + 3) 3+27= 0.
3
解: (x + 3) =- 27,
x=- 6.
3
26.将一个体积为0.216m 的大立方体铝块改铸成8 个一样大的小立方体铝块,求每个小立方体铝块的表面积.解:设每个小立方体铝块的棱长为x m,则
8x3= 0.216.
∴x3= 0.027. ∴ x=0.3.
2
= 0.54( 2
∴ 6× 0.3 m),
即每个小立方体铝块的表面积为
2 0.54 m.
27.( 巩留县校级月考) 某居民生活小区需要建一个大型的球形储水罐,需储水13.5 立方米,那么这个球罐的半径r
为多少米( 球的体积V= 4π r 3,π 取
3
3.14 ,结果精确到0.1 米 )?
解:根据球的体积公式,得
4
3π r 3
=13.5. 解得r ≈ 1.5.
故这个球罐的半径r 约为 1.5 米.
综合题
28.请先观察下列等式:
3 2 3 2
2 = 2 ,
7 7
3 3 3 3
326= 3 26

3 4 3 4
463= 4 63

(1)请再举两个类似的例子;
(2)经过观察,写出满足上述各式规则的一般公式.
3 5 3 5 3 6 3 6
解: (1) 5 = 5 , 6 = 6 .
124 124 215 215
3
n 3n
(2) n+n-1= n n-1(n ≠ 1,且 n 为整数 ) .
3 3。

相关文档
最新文档