2020届高考数学二轮复习小题标准练十七文新人教A版8

合集下载

人教A版2020届高考数学二轮复习解答题题型归纳:导数单调性、极值和最值(基础)

人教A版2020届高考数学二轮复习解答题题型归纳:导数单调性、极值和最值(基础)

导数单调性、极值和最值1.已知0x 是函数()e ln x f x x =-的极值点,若()00,a x ∈, ()0,b x ∈+∞,则 A. ()0f a '>, ()0f b '< B. ()0f a '<, ()0f b '< C. ()0f a '>, ()0f b '> D. ()0f a '<, ()0f b '> 【答案】D()0f a '<, ()0f b '>,故选D.2.已知20a b =≠r r ,且关于x 的函数()321132f x x a x a bx =++⋅rr r 在R 上有极值,则a r 与b r的夹角范围为( )A. 0,6π⎛⎫⎪⎝⎭B.,6ππ⎛⎤⎥⎝⎦C. ,3ππ⎛⎤⎥⎝⎦D. 2,33ππ⎛⎤⎥⎝⎦【答案】C【方法点睛】本题主要考查向量的模及平面向量数量积公式、利用导数研究函数的极值,ma nb +vv 的模(平方后需求a b ⋅v v ).3.在ABC ∆中,,,a b c 分别为,,A B C ∠∠∠所对的边,若函数()()3222113f x x bx a c ac x =+++-+有极值点,则sin 23B π⎛⎫- ⎪⎝⎭的最小值是( )A. 0B.C.D. -1 【答案】D个不同的根,∴△=(2b )2-4(a 2+c 2-ac )>0,即ac >a 2+c 2-b 2,即ac >2accosB ;故选D4.设定义在(0,+∞)上的函数f(x)满足xf′(x)-f(x)=xlnx , 11f e e⎛⎫= ⎪⎝⎭,则f(x)( )A. 有极大值,无极小值B. 有极小值,无极大值C. 既有极大值,又有极小值D. 既无极大值,又无极小值 【答案】D也无极小值,故选D.点睛:根据导函数求原函数,常常需构造辅助函数,一般根据导数法则进行:如5.设a R ∈,若函数,x y e ax x R =+∈有大于零的极值点,则( )A. 1a e <-B. 1a e>- C. 1a >- D. 1a <-【答案】D【解析】()x f x e a '=+(x>0),显然当0a ≥时, ()0f x '>,f(x)在R 上单调递增,无极值点,不符。

新课标2020版高考数学二轮复习专题八数学文化及数学思想 练习理 新人教A版

新课标2020版高考数学二轮复习专题八数学文化及数学思想 练习理 新人教A版

第1讲 数学文化一、选择题1.“干支纪年法”是中国自古以来就一直使用的纪年方法.干支是天干和地支的总称.天干、地支互相配合,配成六十组为一周,周而复始,依次循环.甲、乙、丙、丁、戊、己、庚、辛、壬、癸十个符号为天干;子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥为地支.如:公元1984年为农历甲子年、公元1985年为农历乙丑年,公元1986年为农历丙寅年.则2049年为农历( )A .己亥年B .己巳年C .己卯年D .戊辰年解析:选B .法一:由公元1984年为农历甲子年、公元1985年为农历乙丑年,公元1986年为农历丙寅年,可知以公元纪年的尾数在天干中找出对应该尾数的天干,再将公元纪年除以12,用除不尽的余数在地支中查出对应该余数的地支,这样就得到了公元纪年的干支纪年.2049年对应的天干为“己”,因其除以12的余数为9,所以2049年对应的地支为“巳”,故2049年为农历己巳年.故选B .法二:易知(年份-3)除以10所得的余数对应天干,则2 049-3=2 046,2 046除以10所得的余数是6,即对应的天干为“己”.(年份-3)除以12所得的余数对应地支,则2 049-3=2 046,2 046除以12所得的余数是6,即对应的地支为“巳”,所以2049年为农历己巳年.故选B .2.北宋数学家沈括的主要成就之一为隙积术,所谓隙积,即“积之有隙”者,如累棋、层坛之类,这种长方台形状的物体垛积.设隙积共n 层,上底由a ×b 个物体组成,以下各层的长、宽依次增加一个物体,最下层(即下底)由c ×d 个物体组成,沈括给出求隙积中物体总数的公式为s =n 6[(2a +c )b +(2c +a )d ]+n6(c -a ),其中a 是上底长,b 是上底宽,c 是下底长,d 是下底宽,n 为层数.已知由若干个相同小球粘黏组成的隙积的三视图如图所示,则该隙积中所有小球的个数为( )A .83B .84C .85D .86解析:选C .由三视图知,n =5,a =3,b =1,c =7,d =5,代入公式s =n6[(2a +c )b +(2c +a )d ]+n6(c -a )得s =85,故选C .3.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关.”其意思为:“有一个人要走378里路,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,走了六天后(第六天刚好用完)到达目的地.”若将此问题改为“第6天到达目的地”,则此人第二天至少走了( )A .96里B .48里C .72里D .24里解析:选A .根据题意知,此人每天行走的路程构成了公比为12的等比数列.设第一天走a 1里,则第二天走a 2=12a 1(里).易知a 1[1-⎝ ⎛⎭⎪⎫126]1-12≥378,则a 1≥192.则第二天至少走96里.故选A .4.《数术记遗》相传是汉末徐岳(约公元2世纪)所著,该书主要记述了:积算(即筹算)、太乙算、两仪算、三才算、五行算、八卦算、九宫算、运筹算、了知算、成数算、把头算、龟算、珠算、计数共14种计算方法.某研究性学习小组3人分工搜集整理该14种计算方法的相关资料,其中一人4种,其余两人每人5种,则不同的分配方法种数是( )A .C 414C 510C 55A 33A 22 B .C 414C 510C 55A 22C 55A 33C .C 414C 510C 55A 22D .C 414C 510C 55解析:选A .先将14种计算方法分为三组,方法有C 414C 510C 55A 22种,再分配给3个人,方法有C 414C 510C 55A 22×A 33种.故选A .5.我国古代的天文学和数学著作《周髀算经》中记载:一年有二十四个节气,每个节气晷(ɡuǐ)长损益相同(晷是按照日影测定时刻的仪器,晷长即为所测量影子的长度).二十四个节气及晷长变化如图所示,相邻两个节气晷长的变化量相同,周而复始.若冬至晷长一丈三尺五寸,夏至晷长一尺五寸(一丈等于十尺,一尺等于十寸),则夏至之后的那个节气(小暑)晷长是( )A .五寸B .二尺五寸C .三尺五寸D .四尺五寸解析:选B .设从夏至到冬至的晷长依次构成等差数列{a n },公差为d ,a 1=15,a 13=135,则15+12d =135,解得d =10.所以a 2=15+10=25,所以小暑的晷长是25寸.故选B .6.《九章算术》是我国古代数学名著,书中有如下问题:“今有勾五步,股一十二步,问勾中容圆,径几何?”其意思为:“已知直角三角形两直角边长分别为5步和12步,问其内切圆的直径为多少步?”现从该三角形内随机取一点,则此点取自内切圆的概率是( )A .π15B .2π5C .2π15D .4π15解析:选C .因为该直角三角形两直角边长分别为5步和12步,所以其斜边长为13步,设其内切圆的半径为r ,则12×5×12=12(5+12+13)r ,解得r =2.由几何概型的概率公式,得此点取自内切圆内的概率P =4π12×5×12=2π15.故选C .7.《周易》历来被人们视作儒家群经之首,它表现了古代中华民族对万事万物深刻而又朴素的认识,是中华人文文化的基础,它反映出中国古代的二进制计数的思想方法.我们用近代术语解释为:把阳爻“”当作数字“1”,把阴爻“”当作数字“0”,则八卦所代表的数表示如下:依次类推,则六十四卦中的“屯”卦,符号为“”,其表示的十进制数是( )A .33B .34C .36D .35解析:选B .由题意类推,可知六十四卦中的“屯”卦的符号“”表示的二进制数为100010,转化为十进制数为0×20+1×21+0×22+0×23+0×24+1×25=34.故选B .8.《九章算术》中有如下问题:“今有卖牛二、羊五,以买一十三豕,有余钱一千;卖牛三、豕三,以买九羊,钱适足;卖六羊、八豕,以买五牛,钱不足六百,问牛、羊、豕价各几何?”依上文,设牛、羊、豕每头价格分别为x 元、y 元、z 元,设计如图所示的程序框图,则输出的x ,y ,z 的值分别是( )A .1 3009,600,1 1203B .1 200,500,300C .1 100,400,600D .300,500,1 200解析:选B .根据程序框图得:①y =300,z =4603,x =6 4009,i =1,满足i <3;②y =400,z =6803,x =8 6009,i =2,满足i <3;③y =500,z =300,x =1 200,i =3,不满足i <3; 故输出的x =1 200,y =500,z =300.故选B .9.(2019·洛阳市统考)如图所示,三国时代数学家在《周脾算经》中利用弦图,给出了勾股定理的绝妙证明.图中包含四个全等的直角三角形及一个小正方形(阴影),设直角三角形有一个内角为30°,若向弦图内随机抛掷200颗米粒(大小忽略不计,取3≈1.732),则落在小正方形(阴影)内的米粒数大约为( )A .20B .27C .54D .64解析:选B .设大正方形的边长为2,则小正方形的边长为3-1,所以向弦图内随机投掷一颗米粒,落入小正方形(阴影)内的概率为(3-1)24=1-32,向弦图内随机抛掷200颗米粒,落入小正方形(阴影)内的米粒数大约为200×(1-32)≈27,故选B . 10.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:“置如其周,令相乘也.又以高乘之,三十六成一.”该术相当于给出了由圆锥的底面周长L 与高h ,计算其体积V 的近似公式V ≈136L 2h .它实际上是将圆锥体积公式中的圆周率π近似取为3.那么,近似公式V ≈7264L 2h 相当于将圆锥体积公式中的π近似取为( )A .227B .258C .15750D .355113解析:选A .依题意,设圆锥的底面半径为r ,则V =13πr 2h ≈7264L 2h =7264(2πr )2h ,化简得π≈227.故选A .11.中国古代名词“刍童”原来是草堆的意思,关于“刍童”体积计算的描述,《九章算术》注曰:“倍上袤,下袤从之.亦倍下袤,上袤从之.各以其广乘之,并,以高乘之,六而一.”其计算方法是:将上底面的长乘二,与下底面的长相加,再与上底面的宽相乘;将下底面的长乘二,与上底面的长相加,再与下底面的宽相乘;把这两个数值相加,与高相乘,再取其六分之一.已知一个“刍童”的下底面是周长为18的矩形,上底面矩形的长为3,宽为2,“刍童”的高为3,则该“刍童”的体积的最大值为( )A .392B .752C .39D .6018解析:选B .设下底面的长为x ⎝ ⎛⎭⎪⎫92≤x <9,则下底面的宽为18-2x 2=9-x .由题可知上底面矩形的长为3,宽为2,“刍童”的高为3,所以其体积V =16×3×[(3×2+x )×2+(2x +3)(9-x )]=-x 2+17x 2+392,故当x =92时,体积取得最大值,最大值为-⎝ ⎛⎭⎪⎫922+92×172+392=752.故选B .12.在《九章算术》中,将四个面都是直角三角形的四面体称为鳖臑,如图所示,鳖臑ABCD 中,AB ⊥平面BCD ,且BD ⊥CD ,AB =BD =CD ,点P 在棱AC 上运动,设CP 的长度为x ,若△PBD 的面积为f (x ),则函数y =f (x )的图象大致是( )解析:选A .如图,作PQ ⊥BC 于Q ,作QR ⊥BD 于R ,连接PR ,则PQ ∥AB ,QR ∥CD .因为PQ ⊥BD ,又PQ ∩QR =Q ,所以BD ⊥平面PQR ,所以BD ⊥PR ,即PR 为△PBD 中BD 边上的高.设AB =BD =CD =1,则CP AC=x3=PQ1,即PQ =x3,又QR 1=BQ BC =AP AC =3-x 3,所以QR =3-x 3, 所以PR =PQ 2+QR 2=⎝ ⎛⎭⎪⎫x 32+⎝⎛⎭⎪⎫3-x 32=332x 2-23x +3, 所以f (x )=362x 2-23x +3=66⎝⎛⎭⎪⎫x -322+34,故选A .二、填空题13.古希腊毕达哥拉斯学派的数学家研究过各种多边形数.如三角形数1,3,6,10,…,第n 个三角形数为n (n +1)2=12n 2+12n .记第n 个k 边形数为N (n ,k )(k ≥3),以下列出了部分k边形数中第n 个数的表达式:三角形数 N (n ,3)=12n 2+12n ;正方形数 N (n ,4)=n 2; 五边形数 N (n ,5)=32n 2-12n ;六边形数 N (n ,6)=2n 2-n ; ……可以推测N (n ,k )的表达式,由此计算N (10,24)=________. 解析:易知n 2前的系数为12(k -2),而n 前的系数为12(4-k ).则N (n ,k )=12(k -2)n 2+12(4-k )n ,故N (10,24)=12×(24-2)×102+12×(4-24)×10=1 000.答案:1 00014. (2019·湖南师大附中模拟)庄子说:“一尺之棰,日取其半,万世不竭.”这句话描述的是一个数列问题,现用程序框图描述,如图所示,若输入某个正整数n 后,输出的S ∈⎝⎛⎭⎪⎫1516,6364,则输入的n 的值为________.解析:框图中首先给累加变量S 赋值0,给循环变量k 赋值1, 输入n 的值后,执行循环体,S =12,k =1+1=2.若2>n 不成立,执行循环体,S =34,k =2+1=3.若3>n 不成立,执行循环体,S =78,k =3+1=4.若4>n 不成立,执行循环体,S =1516,k =4+1=5.若5>n 不成立,执行循环体,S =3132,k =5+1=6.若6>n 不成立,执行循环体,S =6364,k =6+1=7.…由输出的S ∈(1516,6364),可得当S =3132,k =6时,应该满足条件6>n ,所以5≤n <6,故输入的正整数n 的值为5.答案:515.我国古代数学著作《九章算术》有如下问题:“今有蒲生一日,长三尺.莞生一日,长一尺.蒲生日自半,莞生日自倍.问几何日而长等?”意思是:“今有蒲草第1天长高3尺,莞草第1天长高1尺.以后,蒲草每天长高前一天的一半,莞草每天长高前一天的2倍.问第几天蒲草和莞草的高度相同?”根据上述的已知条件,可求得第________天时,蒲草和莞草的高度相同.(结果采取“只入不舍”的原则取整数,相关数据:lg 3≈0.477 1,lg 2≈0.301 0).解析:由题意得,蒲草的长度组成首项为a 1=3,公比为12的等比数列{a n },设其前n 项和为A n ;莞草的长度组成首项为b 1=1,公比为2的等比数列{b n },设其前n 项和为B n .则A n =3⎝ ⎛⎭⎪⎫1-12n 1-12,B n =2n-12-1,令3⎝ ⎛⎭⎪⎫1-12n 1-12=2n -12-1,化简得2n +62n =7(n ∈N *),解得2n=6,所以n =lg 6lg 2=1+lg 3lg 2≈3,即第3天时蒲草和莞草长度相等.答案:316.刘徽《九章算术注》记载:“邪解立方,得两堑堵.邪解堑堵,其一为阳马,一为鳖臑.阳马居二,鳖臑居一,不易之率也.”意即把一长方体沿对角面一分为二,这相同的两块叫堑堵,沿堑堵的一顶点与其相对的面的对角线剖开成两块,大的叫阳马,小的叫鳖臑,两者体积之比为定值2∶1,这一结论今称刘徽原理.如图是一个阳马的三视图,则其外接球的体积为________.解析:由三视图得阳马是一个四棱锥,如图中四棱锥P ­ABCD ,其中底面是边长为1的正方形,侧棱PA ⊥底面ABCD 且PA =1,所以PC =3,PC 是四棱锥P ­ABCD 的外接球的直径,所以此阳马的外接球的体积为4π3⎝ ⎛⎭⎪⎫323=3π2.答案:3π2第1讲 数学文化函数中的数学文化题[典型例题]中国传统文化中很多内容体现了数学的“对称美”.如图所示的太极图是由黑白两个鱼形纹组成的圆形图案,充分体现了相互转化、对称统一的形式美、和谐美.定义:图象能够将圆O 的周长和面积同时等分成两部分的函数称为圆O 的一个“太极函数”,给出下列命题:①对于任意一个圆O ,其“太极函数”有无数个;②函数f (x )=ln(x 2+x 2+1)可以是某个圆的“太极函数”; ③正弦函数y =sin x 可以同时是无数个圆的“太极函数”;④函数y =f (x )是“太极函数”的充要条件为函数y =f (x )的图象是中心对称图形. 其中正确的命题为( )A .①③B .①③④C .②③D .①④【解析】 过圆心的直线都可以将圆的周长和面积等分成两部分,故对于任意一个圆O ,其“太极函数”有无数个,故①正确;函数f (x )=ln(x 2+x 2+1)的图象如图1所示,故其不可能为圆的“太极函数”,故②错误;将圆的圆心放在正弦函数y =sin x 图象的对称中心上,则正弦函数y =sin x 是该圆的“太极函数”,从而正弦函数y =sin x 可以同时是无数个圆的“太极函数”,故③正确;函数y =f (x )的图象是中心对称图形,则y =f (x )是“太极函数”,但函数y =f (x )是“太极函数”时,图象不一定是中心对称图形,如图2所示,故④错误.故选A .【答案】 A中华太极图,悠悠千古昭著于世,像朝日那样辉煌宏丽,又像明月那样清亮壮美.它是我们华夏先祖的智慧结晶,它是中国传统文化的骄傲象征,它更是中华民族献给人类文明的无价之宝.试题通过太极图展示了数学文化的民族性与世界性.[对点训练](2019·福建泉州两校联考)我国古代数学著作《九章算术》中有如下问题:“今有人持金出五关,前关二而税一,次关三而税一,次关四而税一,次关五而税一,次关六而税一,并五关所税,适重一斤.”其意思为:“今有人持金出五关,第1关所收税金为持金的12,第2关所收税金为剩余持金的13,第3关所收税金为剩余持金的14,第4关所收税金为剩余持金的15,第5关所收税金为剩余持金的16,5关所收税金之和恰好重1斤.”则在此问题中,第5关所收税金为( )A .136斤 B .130斤 C .125斤 D .120斤解析:选C .设此人持金x 斤,根据题意知第1关所收税金为x2斤;第2关所收税金为x6斤;第3关所收税金为x 12斤;第4关所收税金为x 20斤;第5关所收税金为x30斤.易知x 2+x 6+x 12+x 20+x30=1,解得x =65.则第5关所收税金为125斤.故选C .数列中的数学文化题[典型例题](1)(2019·湖南长沙雅礼中学模拟)我国古代数学著作《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤,问次一尺各重几何?”意思是:“现有一根金箠,长5尺,一头粗,一头细,在粗的一端截下1尺,重4斤,在细的一端截下1尺,重2斤,问依次每一尺各重多少斤?”设该金箠由粗到细是均匀变化的,其重量为M ,现将该金箠截成长度相等的10段,记第i 段的重量为a i (i =1,2,…,10),且a 1<a 2<…<a 10,若48a i =5M ,则i =( )A .4B .5C .6D .7(2)(2019·河北辛集中学期中)中国古代数学著作《张丘建算经》中记载:“今有马行转迟,次日减半,疾七日,行七百里.”其意思是:“现有一匹马行走的速度逐渐变慢,每天走的里数是前一天的一半,连续行走7天,共走了700里.”若该匹马按此规律继续行走7天,则它这14天内所走的总路程为( )A .17532里B .1 050里C .22 57532里D .2 100里【解析】 (1)由题意知,由细到粗每段的重量组成一个等差数列,记为{a n },设公差为d ,则有⎩⎪⎨⎪⎧a 1+a 2=2,a 9+a 10=4⇒⎩⎪⎨⎪⎧2a 1+d =2,2a 1+17d =4⇒⎩⎪⎨⎪⎧a 1=1516,d =18.所以该金箠的总重量 M =10×1516+10×92×18=15.因为48a i =5M ,所以有48[1516+(i -1)×18]=75,解得i =6,故选C .(2)由题意可知,马每天行走的路程组成一个等比数列,设该数列为{a n },则该匹马首日行走的路程为a 1,公比为12,则有a 1[1-(12)7]1-12=700,则a 1=350×128127,则a 1[1-(12)14]1-12=22 57532(里).故选C .【答案】 (1)C(2)C(1)数列中的数学文化题一般以我国古代数学名著中的等差数列和等比数列问题为背景,考查等差数列和等比数列的概念、通项公式和前n 项和公式.(2)解决这类问题的关键是将古代实际问题转化为现代数学问题,掌握等比(差)数列的概念、通项公式和前n 项和公式.[对点训练]1.《九章算术》是我国古代的数学名著,书中《均输章》有如下问题:“今有五人分五钱,令上二人所得与下三人等,问各得几何.”其意思为:已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊每人所得依次成等差数列,问五人各得多少钱?(“钱”是古代的一种重量单位)在这个问题中,丙所得为( )A .76钱 B .56钱 C .23钱 D .1钱解析:选D .因为甲、乙、丙、丁、戊每人所得依次成等差数列,设每人所得依次为a -2d 、a -d 、a 、a +d 、a +2d ,则a -2d +a -d +a +a +d +a +2d =5,解得a =1,即丙所得为1钱,故选D .2.(一题多解)《九章算术》中有一题:今有牛、马、羊食人苗.苗主责之粟五斗.羊主曰:“我羊食半马.”马主曰:“我马食半牛.”今欲衰偿之,问各出几何.其意思是:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿五斗粟.羊主人说:“我羊所吃的禾苗只有马的一半.”马主人说:“我马所吃的禾苗只有牛的一半.”若按此比例偿还,牛、马、羊的主人各应赔偿多少粟?在这个问题中,牛主人比羊主人多赔偿( )A .507斗粟B .107斗粟C .157斗粟D .207斗粟解:选C .法一:设羊、马、牛主人赔偿的粟的斗数分别为a 1,a 2,a 3,则这3个数依次成等比数列,公比q =2,所以a 1+2a 1+4a 1=5,解得a 1=57,故a 3=207,a 3-a 1=207-57=157,故选C .法二:羊、马、牛主人赔偿的比例是1∶2∶4,故牛主人应赔偿5×47=207(斗),羊主人应赔偿5×17=57(斗),故牛主人比羊主人多赔偿了207-57=157(斗),故选C .三角函数中的数学文化题[典型例题]《数书九章》中给出了“已知三角形三边长求三角形面积的求法”,填补了我国传统数学的一个空白,与著名的海伦公式完全等价,由此可以看出我国古代人具有很高的数学水平,其求法是“以小斜幂并大斜幂减中斜幂,余半之,自乘于上;以小斜幂乘大斜幂,减上,余四约之,为实;一为从隅,开平方得积”.若把这段文字写成公式,即S =14⎣⎢⎡⎦⎥⎤c 2a 2-⎝ ⎛⎭⎪⎫c 2+a 2-b 222,现有周长为22+5的△ABC 满足sin A ∶sin B ∶sin C =(2-1)∶5∶(2+1),用上面给出的公式求得△ABC 的面积为( )A .32 B .34 C .52D .54【解析】 由正弦定理得sin A ∶sin B ∶sin C =a ∶b ∶c =(2-1)∶5∶(2+1),可设三角形的三边分别为a =(2-1)x ,b =5x ,c =(2+1)x ,由题意得(2-1)x +5x +(2+1)x =(22+5)x =22+5,则x =1,故由三角形的面积公式可得△ABC 的面积S =14⎣⎢⎡⎦⎥⎤(2+1)2(2-1)2-⎝ ⎛⎭⎪⎫3+22+3-22-522=34,故选B . 【答案】 B我国南宋数学家秦九韶发现的“三斜求积术”虽然与海伦公式(S =p (p -a )(p -b )(p -c ),其中p =12(a +b +c ))在形式上不一样,但两者完全等价,它填补了我国传统数学的一项空白,从中可以看出我国古代已经具有很高的数学水平,人教A 版《必修5》教材对此有专门介绍.本题取材于教材中出现的“三斜求积”公式,考查了运算求解能力,同时也传播了中华优秀传统文化.[对点训练](2019·济南市学习质量评估)我国《物权法》规定:建造建筑物,不得违反国家有关工程建设标准,妨碍相邻建筑物的通风、采光和日照.已知某小区的住宅楼的底部均在同一水平面上,且楼高均为45 m ,依据规定,该小区内住宅楼楼间距应不小于52 m .若该小区内某居民在距离楼底27 m 高处的某阳台观测点,测得该小区内正对面住宅楼楼顶的仰角与楼底的俯角之和为45°,则该小区的住宅楼楼间距实际为________m.解析:设两住宅楼楼间距实际为x m .如图,根据题意可得,tan ∠DCA =27x,tan ∠DCB =45-27x=18x,又∠DCA +∠DCB =45°,所以tan (∠DCA +∠DCB )=27x +18x1-27x ·18x=1,整理得x 2-45x -27×18=0,解得x =54或x =-9(舍去).所以该小区住宅楼楼间距实际为54 m.答案:54立体几何中的数学文化题[典型例题](1)(2019·高考浙江卷)祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V柱体=Sh ,其中S 是柱体的底面积,h 是柱体的高.若某柱体的三视图如图所示(单位:cm),则该柱体的体积(单位:cm3)是()A .158B .162C .182D .324(2) (2018·郑州第二次质量预测)我国古代数学专著《九章算术》对立体几何有深入的研究,从其中的一些数学用语可见,譬如“鳖臑”意指四个面都是直角三角形的三棱锥.某“鳖臑”的三视图(图中网格纸上每个小正方形的边长为1)如图所示,已知该几何体的高为22,则该几何体外接球的表面积为________.【解析】 (1)如图,该柱体是一个五棱柱,棱柱的高为6,底面可以看作由两个直角梯形组合而成,其中一个上底为4,下底为6,高为3,另一个的上底为2,下底为6,高为3.则底面面积S =2+62×3+4+62×3=27.因此,该柱体的体积V =27×6=162. 故选B .(2)由该几何体的三视图还原其直观图,并放入长方体中,如图中的三棱锥A ­BCD 所示,其中AB =22,BC =CD =2,易知长方体的外接球即三棱锥A ­BCD 的外接球,设外接球的直径为2R ,所以4R 2=(22)2+(2)2+(2)2=8+2+2=12,则R 2=3,因此外接球的表面积S =4πR 2=12π.【答案】 (1)B (2)12π立体几何中的数学文化题一般以我国古代发现的球的体积公式、圆柱的体积公式、圆锥的体积公式、圆台的体积公式和“牟合方盖”“阳马”“鳖臑”“堑堵”“刍薨”等中国古代几何名词为背景考查空间几何体的三视图、几何体的体积与表面积等.[对点训练]1.《九章算术》中有这样一个问题:“今有圆堢壔,周四丈八尺,高一丈一尺.问积几何?术曰:周自相乘,以高乘之,十二而一.”这里所说的圆堢壔就是圆柱体,它的体积为“周自相乘,以高乘之,十二而一”,意思是圆柱体的体积为V =112×底面圆的周长的平方×高,由此可推得圆周率π的取值为( )A .3B .3.1C .3.14D .3.2解析:选A .设圆柱体的底面半径为r ,高为h ,由圆柱的体积公式得体积为V =πr 2h .由题意知V =112×(2πr )2×h ,所以πr 2h =112×(2πr )2×h ,解得π=3.故选A .2.我国古代数学名著《数书九章》中有“天池盆测雨”题,与题中描绘的器具形状一样(大小不同)的器具的三视图如图所示(单位:寸).若在某地下雨天时利用该器具接的雨水的深度为6寸,则这一天该地的平均降雨量约为(注:平均降雨量等于器具中积水的体积除以器具口的面积.参考公式:圆台的体积V =13πh (R 2+r 2+R ·r ),其中R ,r 分别表示上、下底面的半径,h 为高)( )A .2寸B .3寸C .4寸D .5寸解析:选A .由三视图可知,该器具的上底面半径为12寸,下底面半径为6寸,高为12寸.因为所接雨水的深度为6寸,所以水面半径为12×(12+6)=9(寸),则盆中水的体积为13π×6×(62+92+6×9)=342π(立方寸),所以这一天该地的平均降雨量约为342ππ×122≈2(寸),故选A .算法中的数学文化题[典型例题](1)公元三世纪中期,数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并因此创立了割圆术.利用割圆术,刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的割圆术设计的程序框图,则输出的n为(参考数据:sin 15°≈0.258 8,sin 7.5°≈0.130 5)()A.12 B.24C.36 D.48(2)我国古代的劳动人民曾创造了灿烂的中华文明,戍边的官兵通过在烽火台上举火向国内报告,烽火台上点火表示数字1,不点火表示数字0,这蕴含了进位制的思想.图中的程序框图的算法思路就源于我国古代戍边官兵的“烽火传信”.执行该程序框图,若输入a=110011,k=2,n=7,则输出的b=( )A.19 B.31C.51 D.63【解析】(1)按照程序框图执行,n=6,S=3sin 60°=332,不满足条件S≥3.10,执行循环;n=12,S=6sin 30°=3,不满足条件S≥3.10,执行循环;n=24,S=12sin 15°≈12×0.258 8=3.105 6,满足条件S≥3.10,跳出循环,输出n的值为24,故选B.(2)按照程序框图执行,b依次为0,1,3,3,3,19,51,当b=51时,i=i+1=7,跳出循环,故输出b=51.故选C.【答案】(1)B (2)C辗转相除法、更相减损术、秦九韶算法、进位制和割圆术都是课本上出现的算法案例.其中,更相减损术和秦九韶算法是中国古代的优秀算法,课本上的进位制案例原本不渗透中国古代数学文化,但命题人巧妙地将烽火戍边的故事作为背景,强化了试题的“文化育人”功能.[对点训练]《九章算术》是中国古代的数学专著,其中的“更相减损术”可以用来求两个数的最大公约数,即“可半者半之,不可半者,副置分母、子之数,以少减多,更相减损,求其等也.以等数约之.”翻译为现代语言如下:第一步,任意给定两个正整数,判断它们是否都是偶数.若是,用2约简;若不是,执行第二步;第二步,以较大的数减去较小的数,接着把所得的差与较小的数比较,并以大数减小数.继续这个操作,直到所得的数相等为止,则这个数(等数)或这个数与约简的数的乘积就是所求的最大公约数.现给出“更相减损术”的程序框图如图所示,如果输入的a=114,b=30,则输出的n为( )A.3 B.6C.7 D.30解析:选C.a=114,b=30,k=1,n=0,a,b都是偶数,a=57,b=15,k=2,a,b 不满足都为偶数,a=b不成立,a>b成立,a=57-15=42,n=0+1=1;a=b不成立,a>b 成立,a=42-15=27,n=1+1=2;a=b不成立,a>b成立,a=27-15=12,n=2+1=3;a=b不成立,a>b不成立,a=15,b=12,a=15-12=3,n=3+1=4;a=b不成立,a>b 不成立,a=12,b=3,a=12-3=9,n=4+1=5;a=b不成立,a>b成立,a=9-3=6,n =5+1=6;a=b不成立,a>b成立,a=6-3=3,n=6+1=7;a=b成立,输出的kb=6,n=7.概率中的数学文化题[典型例题](1)齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,现从双方的马匹中随机选一匹马进行一场比赛,田忌获胜的概率是( )A .13 B .14 C .15D .16(2)太极图是以黑白两个鱼形纹组成的图案,它形象化地表达了阴阳轮转、相反相成是万物生成变化根源的哲理,展现了一种相互转化,相对统一的形式美.按照太极图的构图方法,在平面直角坐标系中,圆O 被函数y =3sin π6x 的图象分割为两个对称的鱼形图案,如图所示,其中小圆的半径均为1,现从大圆内随机取一点,则此点取自阴影部分的概率为( )A .136B .118C .112D .19【解析】 (1)从双方的马匹中随机选一匹马进行一场比赛,对阵情况如下表:双方马的对阵中,有3种对抗情况田忌能赢,所以田忌获胜的概率P =9=3.故选A .(2)函数y =3sin π6x 的图象与x 轴相交于点(6,0)和点(-6,0),则大圆的半径为6,面积为36π,而小圆的半径为1,两个小圆的面积和为2π,所以所求的概率是2π36π=118.故选B .【答案】 (1)A (2)B(1)本例(1)选取田忌赛马这一为人熟知的故事作为背景,考查了古典概型,趣味性很强,利于缓解考生在考场的紧张心理,体现了对考生的人文关怀.(2)本例(2)以中国优秀传统文化太极图为背景,考查几何概型,角度新颖,所给图形有。

【2020最新】人教版最新高考数学二轮复习测试题(文科)Word版

【2020最新】人教版最新高考数学二轮复习测试题(文科)Word版

教学资料范本【2020最新】人教版最新高考数学二轮复习测试题(文科)Word版编辑:__________________时间:__________________数学(文科)一、选择题:本大题共10小题,每小题5分,共50分。

1.集合,集合,则P 与Q 的关系是{|1}P x y x ==+{|1}Q y y x ==-A. P = QB. P QC. P QD. P ∩Q =≠⊂∅2.复数的虚部是( ).121ii ++A .B .C .D .2i 1212i 32 3.已知平面向量 ,, 则向量1,m -a=()r 2,m m b=()r +a b r r A .平行于轴 B .平行于第一、三象限的角平分线 x C .平行于轴 D .平行于第二、四象限的角平分线 y4.(文)下列函数中,在上是增函数的是(0,)πA. B. C. D.sin y x =1y x =2x y =221y x x =-+5. 某几何体的俯视图是如右图所示的矩形,正视图(或称主视图)是一个底边长为8、高为5的等腰三角形,侧视图(或称左视图)是一个底边长为6、高为5的等腰三角形.则该儿何体的体积为A.24B. 80C. 64D. 2406.设等差数列的前n 项和为,若, 则={}n a nS 25815a a a ++=9S A .18 B .36 C .45 D .607. 角终边过点,则=(1,2)P -sin αA . B. C. D.8. 在△中,角的对边边长分别为,ABC ,,A B C 3,5,6a b c === 则的值为cos cos cos bc A ca B ab C ++A .38B .37C .36D .359.方程的根所在的区间为( )。

1()202x x --=A . B.C .D .(1,0)-(0,1)(1,2)(2,3)10.将正整数排成下表: 12 3 45 6 7 8 910 11 12 13 14 15 16………………………………… 则数表中的数字20xx 出现的行数和列数是A .第44 行 75列B .45行75列C .44 行74列D .45行74列二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分.(一)必做题(11—13题)11. 已知点M (1,0)是圆C:内的一点,那么过点M 的最短弦所在的直线方程是 。

高三数学二轮复习 专题高效升级卷17 统计与统计案例课件 文 新人教A版

高三数学二轮复习 专题高效升级卷17 统计与统计案例课件 文 新人教A版
专题高效升级卷17 统计与统计案例
一、选择题(本大题共12小题,每小题4分,共48 分)
1.下列抽样试验中,最适宜用系统抽样的是 ( )
A.某市的4个区共有2 000名学生,且4个区的学生 人数之比为3∶2∶8∶2,从中抽取200人入样
B.从某厂生产的2 000个电子元件中随机抽取5个入 样
C.从某厂生产的2 000个电子元件中随机抽取200 个入样
设选中的2人都来自高校C的事件为X,
则Xc3包)含共的3种基.本因事此件P(有X(1)03 c=1,c2). ,10(3 c1,c3),(c2, 故选中的2人都来自高校C的概率为 .
18.某个体服装店经营某种服装,一周内获纯利润y (元)与该周每天销售这种服装的件数x(件) 之间的一组数据如下:
x
答案:C
3.在某项体育比赛中,七位裁判为一选手打出 的分数如下:
90 89 90 95 93 94 93
去掉一个最高分和一个最低分后,所剩数据的 平均值和方差分别为( )
A.92,2
B.92,2.8
C.93,2
D.93,2.8
答案:B
4.为了了解高三学生的数学成绩,抽取某班60 名学生的数学成绩,将所得数据整理后,画
回归方程为 yˆ =aˆ +bˆ x=77.37-1.82x.
(2)因为单位成本平均变动 bˆ =-1.82<0, 且产量x的计量单位是千件,所以根据回归系 数b的意义有:
产量每增加一个单位即1 000件时,单位成本平 均减少1.82元.
(3)当产量为6 000件,即x=6时,代入回归 方程:
yˆ =77.37-1.82×6=66.45(元)
会购买力的某项指标,要从中抽取一个容量
为200的样本;(2)从20人中抽取6人参加 座谈会,给出下列抽样方法:a简单随机抽样; b系统抽样;c分层抽样.上述两个问题应采用 的抽样方法分别为( )

高三数学二轮复习高考小题标准练八理新人教版

高三数学二轮复习高考小题标准练八理新人教版

高考小题标准练(八)满分80分,实战模拟,40分钟拿下高考客观题满分!一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合M={x|-2≤x≤2},N={x|y=},那么M∩N=( )A.{x|-2≤x<1}B.{x|-2≤x≤1}C.{x|x<-2}D.{x|x≤2}【解析】选B.N==,所以M∩N=.2.已知=a+i(a,b∈R),其中i为虚数单位,则a+b=( )A.-4B.4C.-10D.10【解析】选A.因为==-i=a+i,所以解之得所以a+b=-4.3.下列选项中,说法正确的是( )A.“∃x0∈R,-x0≤0”的否定是“∃x∈R,x2-x>0”B.若向量a,b满足a·b<0,则a与b的夹角为钝角C.若am2≤bm2,则a≤bD.命题“p∨q为真”是命题“p∧q为真”的必要不充分条件【解析】选D.特称命题的否定是全称命题,选项A中“存在x0”的否定应该是“任意的x”,所以A错误;当两向量共线反向时,数量积也是负值,所以B错误;C选项忽略了m=0的情况,错误;命题“p∨q为真”分为三种情况,p真q假;q真p假;p和q都真;而p∧q 为真是p和q都真,所以显而易见选项D正确.4.已知圆O:x2+y2=1,直线x-2y+5=0上动点P,过点P作圆O的一条切线,切点为A,则的最小值为( )A. B. C.2 D.3【解析】选C.因为==,当OP为最小值时,距离最小,如图所示此时圆心到直线的距离为,│PA│的最小值是=2.5.在平行四边形ABCD中,AB=2,AD=1,∠DAB=60°,E是BC的中点,则·=( )A.1B.2C.3D.4【解析】选C.·=·=-·-=3.6.在公差不为零的等差数列{a n}中,a1=2,a1,a2,a5成等比数列.若S n是数列{a n}的前n项和,则S10=( )A.20B.100C.200D.380【解析】选C.设公差为d,因为a1=2,a1,a2,a5成等比数列,所以=a1a5,所以(2+d)2=2(2+4d).又d≠0,所以d=4,所以S10=2×10+×4=200.7.执行如图所示的程序框图,若输入n的值为8,则输出s的值为( )A.4B.8C.16D.32【解析】选B.当i=2,k=1时,s=1×(1×2)=2;当i=4,k=2时,s=×(2×4)=4;当i=6,k=3时,s=×(4×6)=8;当i=8时,i<n不成立,输出s=8.8.已知cosθ=-,θ∈(-π,0),则sin+cos=( )A. B. C.- D.±【解析】选C.因为cosθ=-,θ∈(-π,0),所以sinθ=-,所以=1+sinθ=,又cosθ=-<0,θ∈(-π,0),所以θ∈,所以∈,所以sin<0,|sin|>|cos|,所以sin+cos=-.9.某班主任对全班50名学生进行了作业量多少的调查,数据如表:认为作业多认为作业不多总数喜欢玩电脑游戏18 9 27不喜欢玩电脑游戏8 15 23 总数26 24 50根据表中数据得到K2=≈5.059,参考下表:P(K2≥k0) 0.050 0.025 0.010 0.001 k0 3.841 5.024 6.635 10.828则认为喜欢玩电脑游戏与认为作业量的多少有关系出错的可能性大约为( )A.0.1B.0.05C.0.025D.0.001【解析】选C.P(K2≥k0)≈0.025,则出错的可能性大约为0.025认为喜欢玩电脑游戏与认为作业量的多少有关系.10.若函数f(x)=-x2-3x+tlnx在(1,+∞)上是减函数,则实数t的取值范围是( ) A.(-∞,2] B.(-∞,2)C.(-∞,4)D.(-∞,4]【解析】选D.函数f(x)的定义域是(0,+∞),而f′(x)=-x-3+=,因为x>0,函数f(x)=-x2-3x+tlnx在(1,+∞)上是减函数,所以-x2-3x+t≤0在(1,+∞)上恒成立,即t≤x2+3x在(1,+∞)上恒成立.令g(x)=x2+3x=-,因为x∈(1,+∞),g(x)>g(1)=4,所以t≤4.11.M为双曲线C:-=1(a>0,b>0)右支上一点,A,F分别为双曲线的左顶点和右焦点,且△MAF为等边三角形,则双曲线C的离心率为( )A.4B.-1C.2D.6【解析】选A.由题意可知,设双曲线左焦点为F′,由△MAF为等边三角形,所以|MF|=|AF|=a+c,从而|MF′|=3a+c,在△MFF′中,由余弦定理得,(3a+c)2=(a+c)2+4c2-2c·(a+c),解得e=4或e=-1(舍).12.设定义在R上的偶函数y=f,满足对任意x∈R都有f(t)=f(2-t)且x∈(0,1]时,f=,a=f,b=f,c=f,则( )A.b<c<aB.a<b<cC.c<a<bD.b<a<c【解析】选C.由y=f(x)为R上的偶函数,且f(t)=f(2-t),可得f(t)=f(t-2),从而y=f(x)为R上的周期函数,周期为2.当x∈(0,1]时,f′(x)==≥0.所以y=f(x)在x∈(0,1]上单调递增,由上述推导可得a=f=f=f=f,b=f=f=f=f,c=f=f=f,因为0<<<<1,所以f<f<f,即c<a<b.二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.在△ABC中,A=60°,b=1,△ABC的面积为,则边a的值为________.【解析】因为△ABC的面积为,所以bcsinA=,所以c=4,由余弦定理得:a2=b2+c2-2bccosA=13,所以a=.答案:14.某三棱锥的三视图如图所示,该三棱锥的体积是__________.【解析】由给定的三视图可知此三棱锥的直观图如图所示,满足平面SAC⊥平面ABC,△ABC为等腰三角形且AB=BC,AC=8,在△ABC中,AC边上的高为6,三棱锥S-ABC的高为4,故该三棱锥的体积V=×4×S△ABC=×4××8×6=32.答案:3215.已知函数f为奇函数,且当x>0时,f(x)=2x+1+1,则f(lo3)=________.【解析】f(lo3)=f(-log23)=-f(log23),因为f(log23)=+1=·2+1=7,故f=-7.答案:-716.直三棱柱ABC-A1B1C1的顶点在同一个球面上,AB=3,AC=4,AA1=2,∠BAC=90°,则球的表面积为________.【解析】取BC,B1C1的中点分别是D,D1,则由三棱柱的性质可得其外接球的球心O在DD1的中点,设外接球的半径为R,则R2=|AD|2+|DO|2=+()2=,故此球的表面积为4πR2=49π.答案:49π答案:49π。

高考数学二轮复习小题标准练十八文新人教A版

高考数学二轮复习小题标准练十八文新人教A版

高考数学二轮复习小题标准练十八文新人教A版满分80分,实战模拟,40分钟拿下高考客观题满分!一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.i为虚数单位,则i+i2+i3+i4= ( )A.0B.iC.2iD.-i【解析】选A.由i2=-1可知,i+i2+i3+i4=i-1-i+1=0.2.已知集合A={x|x2-x+4>x+12},B={x|2x-1<8},则A∩(B)= ( )A.{x|x≥4}B.{x|x>4}C.{x|x≥-2}D.{x|x<-2或x≥4}【解析】选B.由A={x|x<-2或x>4},B={x|x<4},故A∩(B)={x|x<-2或x>4}∩{x|x≥4}={x|x>4}.3.已知函数f(x)=则函数f(x)的值域为( )A.[-1,+∞)B.(-1,+∞)C. D.R【解析】选B.根据分段函数f(x)=的图象可知,该函数的值域为(-1,+∞).4.在等差数列{an}中,7a5+5a9=0,且a9>a5,则使数列的前n项和Sn 取得最小值的n=( ) A.5 B.6 C.7 D.8【解析】选 B.因为a9>a5,所以公差d>0.由7a5+5a9=0,得7(a1+4d)+5(a1+8d)=0,所以d=-a1.由an=a1+(n-1)d≤0,解得n≤.又an+1=a1+nd≥0,解得n≥,所以n=6.5.公元263年左右,我国古代数学家刘徽用圆内接正多边形的面积去逼近圆的面积求圆周率π,刘徽称这个方法为“割圆术”,并且把“割圆术”的特点概括为“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”.如图是根据刘徽的“割圆术”思想设计的一个程序框图.若运行该程序,则输出的n的值为:(参考数据:≈1.732,sin15°≈0.2588,sin7.5°≈0.1305) ( )A.48B.36C.30D.24【解析】选D.模拟执行程序,可得:n=6,S=3sin60°=,不满足条件S ≥3.10,n=12,S=6×sin 30°=3,不满足条件S≥3.10,n=24,S=12×sin 15°≈12×0.2588=3.1056,满足条件S≥3.10,退出循环,输出n的值为24.6.将函数f(x)=cos2x-sin2x的图象向左平移个单位后得到函数F(x)的图象,则下列说法正确的是( )A.函数F(x)是奇函数,最小值是-B.函数F(x)是偶函数,最小值是-C.函数F(x)是奇函数,最小值是-2D.函数F(x)是偶函数,最小值是-2【解析】选A.将函数f(x)=cos2x-sin2x=cos的图象向左平移个单位后得到函数F(x)=cos[2(x+)+]=cos=-sin2x的图象,故函数F(x)是奇函数,且它的最小值为-.7.已知某几何体的三视图如图所示,其中侧视图是边长为2的正三角形,正视图是矩形,且AA1=3,则该几何体的体积为( )A. B.2 C.3 D.4【解析】选C.由三视图可知,该几何体ABC-A1B1C1是正三棱柱,其底面是边长为2的正三角形、高为3.因为S△ABC=×2×=,h=A1A=3,所以=S△ABC·h=3.8.函数f(x)=的大致图象为( )【解析】选A.当0<x<1时,lnx<0,所以f(x)<0,当x>1时,lnx>0,所以f(x)>0.9.从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为( )A. B. C. D.【解析】选D.两次抽取卡片上的数字所有可能有5×5=25种,其中两次抽取卡片上的数大小相等的有(1,1),(2,2),(3,3),(4,4),(5,5),共5种,剩余的25-5=20种里第一张卡片上的数比第二张卡片上的数大的种数和第一张卡片上的数比第二张卡片上的数小的种数相同,各有10种,因此第一张卡片上的数大于第二张卡片上的数的概率为=.10.球面上有A,B,C三点,球心O到平面ABC的距离是球的半径的,且AB=2,AC⊥BC,则球O的表面积是( )A.81πB.9πC.D.【解析】选B.由题可知AB为△ABC外接圆的直径,令球的半径为R,则R2=+()2,可得R=,则球的表面积为S=4πR2=9π.11.设F1,F2是双曲线C:-=1(a>0,b>0)的两个焦点,P是C上一点,若|PF1|+|PF2|=6a,且△PF1F2最小内角的大小为30°,则双曲线C的渐近线方程是( )A.x±y=0B.x±y=0C.x±2y=0D.2x±y=0【解题指南】不妨设P为右支上一点,由双曲线的定义,可得,|PF1|-|PF2|=2a,求出△PF1F2的三边,比较即可得到最小的角,再由余弦定理,即可得到c与a的关系,再由a,b,c的关系,结合渐近线方程,即可得到所求.【解析】选A.不妨设P为右支上一点,由双曲线的定义,可得,|PF1|-|PF2|=2a,又|PF1|+|PF2|=6a,解得,|PF1|=4a,|PF2|=2a,且|F1F2|=2c,由于2a最小,即有∠PF1F2=30°,由余弦定理,可得,cos30°===.则有c2+3a2=2ac,即c=a,则b==a,所以双曲线的渐近线方程为y=±x,即y=±x.12.已知函数f(x)=(a>0,且a≠1)的图象上关于y轴对称的点至少有5对,则实数a的取值范围为( )A. B.C. D.【解析】选D.若x<0,则-x>0,因为x>0时,f(x)=sin-1,所以f(-x)=sin-1=-sin-1,则若f(x)=sin-1(x>0)关于y轴对称,则f(-x)=-sin-1=f(x),即y=-sin-1,x<0,设g(x)=-sin-1,x<0,作出函数g(x)的图象,要使y=-sin-1,x<0与f(x)=loga(-x),x<0的图象至少有5个交点,则0<a<1且满足g(-7)<f(-7),即-2<loga7,即loga7>logaa-2,即7<,综上可得0<a<.二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.已知实数x,y满足条件则z=y-2x的最小值为__________.【解析】z=y-2x,则y=2x+z,作出不等式组对应的平面区域如图阴影部分所示(含边界).平移直线y=2x+z,由图象知当直线y=2x+z经过点A时,直线y=2x+z 的截距最大,此时z最大,当直线y=2x+z经过点B时,直线y=2x+z的截距最小,此时z最小,由得即B(1,0),此时z=0-2=-2,即z=y-2x的最小值为-2.答案:-214.若非零向量a,b满足|a|=2|b|=|a+b|,则向量a与b夹角的余弦值为__________.【解析】设向量a与b夹角为θ,θ∈[0,π],由题意|a|=2|b|=|a+b|,可得|a|2=4|b|2=|a|2+|b|2+2a·b,即2a·b+|b|2=0,即2·2|b|·|b|cosθ=-|b|2,故cosθ=-.答案:-15.已知在锐角△ABC中,角A,B,C的对边分别是a,b,c,2asinB=b,b=2,c=3,AD是角A的平分线,D在BC上,则BD=__________.【解析】因为2asinB=b,所以由正弦定理可得2sinAsinB=sinB,因为sinB≠0,可得sinA=,因为A为锐角,可得A=,因为b=2,c=3,所以由余弦定理可得a2=b2+c2-2bccosA=4+9-2×2×3×=7,可得:a=BC=,所以根据角分线定理可知,BD=.答案:16.在平面直角坐标系xOy中,圆C1:(x-1)2+y2=2,圆C2:(x-m)2+(y+m)2=m2.圆C2上存在点P满足:过点P向圆C1作两条切线PA,PB,切点为A,B,△ABP的面积为1,则正数m的取值范围是____________.【解析】如图,由圆C1:(x-1)2+y2=2,圆C2:(x-m)2+(y+m)2=m2,得C1(1,0),C2(m,-m),设圆C2上点P,则PA2=PG·PC1,而PA2=P-2,所以P-2=PG·PC1,则PG=,AG===,所以S△PAB=2···==1.令=t(t≥0),得t3-t2-4=0,解得:t=2.即=2,所以PC1=2.圆C2:(x-m)2-(y+m)2=m2上点P到C1距离的最小值为|C1C2|-m=-m,最大值为|C1C2|+m=+m,由-m≤2≤+m,得解①得:3-2≤m≤3+2,解②得:m≤-3或m≥1.取交集得:1≤m≤3+2.所以正数m的取值范围是[1,3+2].答案:[1,3+2]。

2019-2020年高考数学二轮复习小题标准练二十文新人教A版

2019-2020年高考数学二轮复习小题标准练二十文新人教A版

2019-2020年高考数学二轮复习小题标准练二十文新人教A版一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集U={1,3,5,6,8},A={1,6},B={5,6,8},则(A)∩B= ( )A.{6}B.{5,8}C.{6,8}D.{5,6,8}【解析】选B.依题意A={3,5,8},(A)∩B={5,8}.2.若复数(1+mi)(3+i)(i是虚数单位,m∈R)是纯虚数,则复数的虚部为( ) A.3 B.-3C.3iD.-3i【解析】选B.由题意可知m=3,所以==-3(i+i2)=3-3i,所以复数的虚部为-3.3.甲、乙两名同学参加某项技能比赛,7名裁判给两人打出的分数如茎叶图所示,依此判断( )A.甲成绩稳定且平均成绩较高B.乙成绩稳定且平均成绩较高C.甲成绩稳定,乙平均成绩较高D.乙成绩稳定,甲平均成绩较高【解析】选 D.由题意得,==,===89,显然>,且从茎叶图来看,甲的成绩比乙的成绩离散程度大,说明乙的成绩较稳定.4.已知双曲线与椭圆+=1的焦点重合,它们的离心率之和为,则双曲线的渐近线方程为( )A.y=±xB.y=±xC.y=±D.y=±x【解析】选B.因为椭圆+=1的焦点为(-2,0),(2,0),离心率e=,所以双曲线的离心率为-=2,又在双曲线中c=2,可得a=1,所以b=,故双曲线的渐近线方程为y=±x.5.已知sinα=,则cos2= ( )A. B.-C. D.【解析】选A.因为sinα=,所以cos2====.6.已知点A(-1,1),B(1,2),C(-2,1),D(3,4),则向量在方向上的投影为( ) A.- B.-C. D.【解析】选D.因为点A(-1,1),B(1,2),C(-2,1),D(3,4),所以=(4,3),=(3,1),所以·=4×3+3×1=15,||==,所以向量在方向上的投影为==.7.执行如图所示的程序框图,输出的结果是( )A. B. C.2 D.-1【解析】选C.执行程序框图,可得y的值分别是:2,,-1,2,,-1,2,…所以它是以3为周期的一个循环数列,因为=672……1,所以输出结果是2.8.若0<a<b<1,则a b,b a,log b a的大小关系为( )A.a b>b a>log b aB.b a>a b>log b aC.log b a>b a>a bD.log b a<a b>b a【解析】选C.因为0<a<b<1,所以0<a b<b b<b a<1,log b a>log b b=1,所以log b a>b a>a b.9.三棱锥S-ABC的所有顶点都在球O的表面上,SA⊥平面ABC,AB⊥BC,又SA=AB=BC=1,则球O 的表面积为 ( )A.πB.πC.3πD.12π【解析】选 C.三棱锥S-ABC的所有顶点都在球O的表面上,SA⊥平面ABC,AB⊥BC,又SA=AB=BC=1,三棱锥可扩展为正方体,球O为正方体的外接球,外接球的直径就是正方体的对角线的长度,所以球的半径R=×=.球的表面积为:4πR2=4π×=3π.10.在△ABC中,角A,B,C的对边分别为a,b,c,若a2-c2=b,sinAcosC=3cosAsinC,则b的值为( )A.2B.3C.4D.5【解析】选A.因为△ABC中,sinAcosC=3cosAsinC,由正、余弦定理得a·=3c·,化简得a2-c2=.又a2-c2=b,所以=b,解得b=2或b=0(不合题意,舍去),所以b的值为2.11.如图是一个几何体的平面展开图,其中ABCD为正方形,E,F分别为PA,PD的中点,在此几何体中,给出下面四个结论:①直线BE与直线CF异面;②直线BE与直线AF异面;③直线EF∥平面PBC;④平面BCE⊥平面PAD.其中正确结论的个数是( )A.1个B.2个C.3个D.4个【解析】选B.画出几何体的立体图形,如图,由题意可知,①直线BE与直线CF异面,不正确,因为E,F是PA与PD的中点,可知EF∥AD,所以EF∥BC,直线BE与直线CF是共面直线.②直线BE与直线AF异面;满足异面直线的定义,正确.③直线EF∥平面PBC;由E,F是PA与PD的中点可知,EF∥AD,所以EF∥BC,因为EF⊄平面PBC,BC⊂平面PBC,所以EF∥平面PBC是正确的.④因为△PAB与底面ABCD的关系不是垂直关系,BC与平面PAB的关系不能确定,所以平面BCE ⊥平面PAD,不正确.12.函数f(x)=x+在(0,1)上单调递减,则实数a的取值范围是 ( )A.[1,+∞)B.(-∞,0)∪(0,1]C.(0,1]D.(-∞,0)∪[1,+∞)【解析】选C.函数f(x)=x+在(0,1)上单调递减等价于f′(x)=1-≤0在区间(0,1)上恒成立,即≥x2在区间(0,1)恒成立,又因为0<x2<1,所以≥1即0<a≤1.二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.将函数y=2sin的图象向左平移个单位后,所得图象对应的函数为y=________.【解析】由题意可知函数平移后所得图象对应的函数为y=2sin=2sin.答案:2sin14.已知实数x,y满足则z=x+2y的最小值为________.【解析】由题意作出可行域,可知可行域是由点A(2,1),B(3,3),C(0,3)围成的三角形,在点A(2,1)处z取最小值,z min=2+2×1=4.答案:415.已知f(x)是定义在R上以2为周期的偶函数,且当0≤x≤1时,f(x)=2x2-x,则f=________.【解析】f=f=f=f=2×-=-.答案:-16.若函数f(x)=e-x-(a>0,b>0)的图象在x=0处的切线与圆x2+y2=2相切,则a+b的最大值是________.【解析】由f(x)=e-x-(a>0,b>0)得f′(x)=-e-x,且f′(0)=-,又因为f(0)=-,所以切线方程为y+=-x,即ax+by+1=0,又因为切线与圆x2+y2=2相切,所以d==,即a2+b2=,因为a>0,b>0,所以a2+b2≥2ab,所以2(a2+b2)≥(a+b)2,所以a+b≤1,当且仅当a=b时取等号.所以a+b的最大值是1.答案:1。

2020高三高考数学二轮复习专题训练+17+Word版含答案

2020高三高考数学二轮复习专题训练+17+Word版含答案

20xx 最新高三高考数学二轮复习专题训练+17+Word 版含答案一、构造构造辅助数列1、递推公式满足型()n g a c a n n +⋅=+1 ①当为常数)(n g思路:利用待定系数法,将化为的形式,从而构造新数列是以为首项,以为公比的等比数列。

(待定系数法,构造等比数列)d ca a n n +=+1()x a c x a n n +=++1{}x a n +例1:数列满足,求数列的通项公式。

解:故由得,即,得新数列是以,121-=+n n a a )1(211-=-+n n a a 2111=--+n n a a {}1-n a为首项,以2为公比的等比数列,,即通项。

11211=-=-a 121-=-∴n n a 121+=-n n a②当为类一次函数)(n g思路:利用待定系数法,构造数列,使其为等比数列;{}b kn a n ++2、已知数列中,,,求数列的通项公式。

{}n a 11a =1111()22n n n a a ++=+{}n a解:在两边乘以得:1111()22n n n a a ++=+12+n 112(2)1n n n n a a ++•=•+令,则,解之得:,所以。

n n n a b •=211n n b b +-=111n b b n n =+-=-1+=n 122n n n n b n a -==n n 21+=3、已知,当时,,求数列的通项公式。

}{n a解:设,∴解得: ∴ ∴ 是以3为首项,为公比的等比数列;∴∴。

4、已知数列满足,求数列的通项公式。

{}n a 112356n n n a a a +=+⨯=,{}n a解:设.,比较系数得,,1152(5)n n n n a x a x +++⨯=+⨯1152(5)n n n n a a ++-=-则数列是以为首项,以2为公比的等比数列,则,{5}n n a -1151a -=152n n n a --=故。

2020届高考数学(文)二轮复习过关检测:解析几何十七+Word版含答案

2020届高考数学(文)二轮复习过关检测:解析几何十七+Word版含答案

过关检测(十七)1.“ab =4”是“直线2x +ay -1=0与直线bx +2y -2=0平行”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件D .既不充分也不必要条件解析:选C 因为两直线平行,所以斜率相等,即-2a =-b2,可得ab =4,又当a =1,b =4时,满足ab =4,但是两直线重合,故选C.2.(2019·南充期末)若直线l :y =kx +1被圆C :x 2+y 2-2x -3=0截得的弦最短,则直线l 的方程是( )A .x =0B .y =1C .x +y -1=0D .x -y +1=0解析:选D 依题意,直线l :y =kx +1过定点P (0,1).圆C :x 2+y 2-2x -3=0化为标准方程为(x -1)2+y 2=4.故圆心为C (1,0),半径为r =2.则易知定点P (0,1)在圆内.由圆的性质可知当PC ⊥l 时,此时直线l :y =kx +1被圆C :x 2+y 2-2x -3=0截得的弦最短.因为k PC =1-00-1=-1,所以直线l 的斜率k =1,即直线l 的方程是x -y +1=0.3.(2019·广东六校模拟)与圆(x -2)2+y 2=4关于直线y =33x 对称的圆的方程是( )A .(x -3)2+(y -1)2=4 B .(x -2)2+(y -2)2=4 C .x 2+(y -2)2=4D .(x -1)2+(y -3)2=4解析:选D 设所求圆的圆心为(a ,b ),则⎩⎪⎨⎪⎧b 2=33×a +22,b a -2=-3,∴⎩⎨⎧a =1,b =3,∴所求圆的方程为(x -1)2+(y -3)2=4.4.(2019·河南八市质检)过点(3,1)作圆(x -1)2+y 2=r 2的切线有且只有一条,则该切线的方程为( )A .2x +y -5=0B .2x +y -7=0C .x -2y -5=0D .x -2y -7=0解析:选B 由题意,过点(3,1)作圆(x -1)2+y 2=r 2的切线有且只有一条,则点(3,1)在圆上,代入可得r 2=5,圆的方程为(x -1)2+y 2=5,则过点(3,1)的切线方程为(x -1)(3-1)+y (1-0)=5,即2x +y -7=0.5.(2019·安徽六安模拟)已知过原点的直线l 与圆C :x 2+y 2-6x +5=0相交于不同的两点A ,B ,且线段AB 的中点坐标为D (2,2),则弦AB 的长为( )A .2B .3C .4D .5解析:选A 将圆C :x 2+y 2-6x +5=0整理,得其标准方程为(x -3)2+y 2=4,∴圆C 的圆心坐标为(3,0),半径为2.∵线段AB 的中点坐标为D (2,2),∴|CD |=1+2=3,∴|AB |=24-3=2.故选A.6.(2019·东北十校联考)已知P 是直线l :3x -4y +11=0上的动点,PA ,PB 是圆x 2+y 2-2x -2y +1=0的两条切线,C 是圆心,那么四边形PACB 面积的最小值是( )A. 2 B .2 2 C. 3D .2 3解析:选C 圆的标准方程为(x -1)2+(y -1)2=1,圆心C (1,1),半径r =1,根据对称性可知,四边形PACB 的面积为2S △APC =2×12|PA |r =|PA |=|PC |2-r 2,要使四边形PACB的面积最小,则只需|PC |最小,最小时为圆心到直线l :3x -4y +11=0的距离d =|3-4+11|32+(-4)2=105=2.所以四边形PACB 面积的最小值为(|PC |min )2-r 2=4-1= 3. 7.(2019·长沙一调)已知入射光线经过点M (-3,4),被直线l :x -y +3=0反射,反射光线经过点N (2,6),则反射光线所在直线的方程为___________________.解析:设点M (-3,4)关于直线l :x -y +3=0的对称点为M ′(a ,b ),则反射光线所在直线过点M ′,所以⎩⎪⎨⎪⎧b -4a -(-3)·1=-1,-3+a 2-b +42+3=0,解得⎩⎪⎨⎪⎧a =1,b =0,又反射光线经过点N (2,6),所以所求直线的方程为y -06-0=x -12-1,即6x -y -6=0. 答案:6x -y -6=08.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的一个焦点为(3,0),A 为椭圆C 的右顶点,以A为圆心的圆与直线y =b ax 相交于P ,Q 两点,且AP →·AQ →=0,OP →=3OQ →,则椭圆C 的标准方程为________,圆A 的标准方程为__________.解析:如图,设T 为线段PQ 的中点,连接AT ,则AT ⊥PQ .∵AP →·AQ →=0,即AP ⊥AQ , ∴|AT |=12|PQ |.又OP →=3OQ →,∴|OT |=|PQ |. ∴|AT ||OT |=12,即b a =12. 由已知得焦半距c =3,∴a 2=4,b 2=1, 故椭圆C 的方程为x 24+y 2=1.又|AT |2+|OT |2=4,∴|AT |2+4|AT |2=4, ∴|AT |=255,r =|AP |=2105.∴圆A 的方程为(x -2)2+y 2=85.答案:x 24+y 2=1 (x -2)2+y 2=859.(2019·安阳一模)已知AB 为圆C :x 2+y 2-2y =0的直径,点P 为直线y =x -1上任意一点,则|PA |2+|PB |2的最小值为________.解析:圆心C (0,1),设∠PCA =α,|PC |=m , 则|PA |2=m 2+1-2m cos α,|PB |2=m 2+1-2m cos (π-α)=m 2+1+2m cos α, ∴|PA |2+|PB |2=2m 2+2.又C 到直线y =x -1的距离d =|0-1-1|2=2,即m 的最小值为2,∴|PA |2+|PB |2的最小值为2×(2)2+2=6. 答案:610.(2019·南通模拟)如图,在平面直角坐标系xOy 中,已知圆C :x 2+y 2-4x =0及点A (-1,0),B (1,2).(1)若直线l 平行于AB ,与圆C 相交于M ,N 两点,|MN |=|AB |,求直线l 的方程; (2)在圆C 上是否存在点P ,使得|PA |2+|PB |2=12?若存在,求点P 的个数;若不存在,说明理由.解:(1)圆C 的标准方程为(x -2)2+y 2=4,所以圆心C (2,0),半径为2.因为l ∥AB ,A (-1,0),B (1,2),所以直线l 的斜率为2-01-(-1)=1.设直线l 的方程为x -y +m =0,则圆心C 到直线l 的距离为d =|2-0+m |2=|2+m |2.因为|MN |=|AB |=22+22=22,而|CM |2=d 2+⎝ ⎛⎭⎪⎫|MN |22,所以4=(2+m )22+2,解得m =0或m =-4,故直线l 的方程为x -y =0或x-y -4=0.(2)假设圆C 上存在点P ,设P (x ,y ),则(x -2)2+y 2=4,|PA |2+|PB |2=(x +1)2+(y -0)2+(x -1)2+(y -2)2=12,化简得x 2+y 2-2y -3=0,即x 2+(y -1)2=4.因为|2-2|< (2-0)2+(0-1)2<2+2,所以圆(x -2)2+y 2=4与圆x 2+(y -1)2=4相交,所以存在点P ,点P 的个数为2.11.(2019·武汉一模)在平面直角坐标系xOy 中,O 为坐标原点,以O 为圆心的圆与直线x -3y -4=0相切.(1)求圆O 的方程.(2)若直线l :y =kx +3与圆O 交于A ,B 两点,在圆O 上是否存在一点Q ,使得O Q →=OA→+OB →?若存在,求出此时直线l 的斜率;若不存在,说明理由.解:(1)设圆O 的半径为r ,因为直线x -3y -4=0与圆O 相切,所以r =|0-3×0-4|1+3=2,所以圆O 的方程为x 2+y 2=4.(2)因为直线l :y =kx +3与圆O 相交于A ,B 两点,所以圆心O 到直线l 的距离d =|3|1+k2<2,所以k >52或k <-52.假设存在点Q ,使得OQ →=OA →+OB →.因为A ,B 在圆上,且OQ →=OA →+OB →,同时|OA →|=|OB →|,由向量加法的平行四边形法则可知四边形OAQB 为菱形,所以OQ 与AB 互相垂直且平分.所以原点O 到直线l :y =kx +3的距离d =12|OQ |=1,即|3|1+k 2=1, 解得k 2=8,则k =±22,经验证满足条件.所以存在点Q ,使得OQ →=OA →+OB →,此时直线l 的斜率为±2 2.。

2020届高考数学二轮复习刷题型压轴题八文数17

2020届高考数学二轮复习刷题型压轴题八文数17

压轴题(八))已知函数f (x + 2)为R 上的偶函数,且当x >2时函数f (x )x32e满足 xf '(x ) + 3xf (x ) = -, f (3)z\.••• x € [2,3)时,g '(x ) v 0,因此 g (x )为减函数, ••• x € (3 ,+R )时,g '(x ) >0,因此 g (x )为增函数,334• g ( x ) > g (3) = e — 3h (3) = e — 3f (3) = 0, • f '(x ) >0,「.f (x )在[2 ,+R )上为增函数.•••函数f (x + 2)是偶函数,.••函数f ( — x + 2) = f (x + 2),•函数关于x = 2对称,又••• 81f (x )v e ,即卩f (x ) v f (3),又f (x )在[2 ,+R )上为增函数,• 2< x v 3,由函数关于x = 2对称可 得1 v x v 3,故选A.16. (2019 •沈阳第三次质量监测)已知数列{a n }满足a = 1,禺+禺+1=2( n +1)( n € N), 1111 1+ 一+一+ + - a 1 a 3a 2a 4 a 3a 5a 98a 1。

a 99a 101199303解析 ■/ a n + a n +1 = 2( n + 1)( n € N),•当 n 》2 时,a n — 1+ a n = 2n ,• a n +1 — a n — 1= 2,• a 2020— a 2018= 2,数列{a n }的奇数项和偶数项分别是公差为 2的等差数列,又a 1 = 1,1 1 1 1 1 10 111 11、• a 2= 3, • + — +— + …++= 2x=x 石一[+u+…+ 云一 +aa 3 a 2a 4 a 3a 5a 98aoo 899^012^ 5 5 799 101丿1 1 1 1 199----=—— ---- + —= --- 1 X3 3 101 3 303'220 .设函数 f (x ) = ln x —2mx — n ( m n € R). (1) 讨论f (x )的单调性;A . (1,3)B . ( —R, 1) U (2,3) C. (1,2) U (3 ,+s ) 答案 AD. ( —R, 1) U (3 ,+s)解析 x332e 3设 h (x ) = x f (x ),则 h '(x ) = x f ' (x ) + 3x f (x )=—,二x f xxe 2r(X )=-- — 3x f (x ),z\.x e 化简得f '(x ) = x 4 — 3f xe — 3h x4x设 g (x ) = e x — 3h (x ),••• g '(x) = e x —苧= e x x —x12 .(2019 •湘3e 381,则81f (x )<e 的解集是(贝V a 2020一 a 2018 =答案(2) 若f(x)有最大值一ln 2,求n的最小值. 解⑴函数f (x)的定义域为(0,+R ),2上,/ 11 — 4mxf (x ) = — 4mx=x x当 mco 时,f '(x )>0,「. f (x )在(0,+s )上单调递增;单调递减.⑵由(1)知,当n >o 时,f (x )在o , 2m 上单调递增,1••• m p n 的最小值为?ln 2. 21.已知动点M 到定点F 1( — 2,0)和F 2(2,0)的距离之和为4 2. (1)求动点M 的轨迹C 的方程;(2)设N 0,2),过点R — 1,— 2)作直线l ,交曲线C 于不同于N 的两点A , B,直线NA NB 的斜率分别为k 1, k 2,求k 1 + k 2的值.解(1)由椭圆的定义,可知点 M 的轨迹是以F 1, F 2为焦点,4.2为长轴长的椭圆•由 c=2, a = 2 2,得 b = 2.2 2x y故动点M 的轨迹C 的方程为T ^T= 1.8 4⑵ 当直线l 的斜率存在时,设其方程为y + 2 = k (x + 1),-2 2当 m >0 时,令 f '(x )>0 得 00<2洛,令 f '(x )<0 得 x > V f (x )在 °,上单调递增,在 -pm单调递减.\f m 11ln 2m — 2m 4m — n = — ln 2一2In 1m — 2 一 n = — In 2 ,1 1 1• n = — qln m — 2,二 m p n = m — qln1 m- 2, 令 h (x ) = x — 2|n x — 2(x >0),则 h '(x ) = 1 —》=2x2x•- h ( x )在0, 1上单调递减,在2+ m 上单调递增,h ( x ) min = hf ( x ) max =x-+y-= 1由8 4x +1y + 2= k2 2 2得(1 + 2k )x + 4k( k—2)x + 2k —8k = 0.2 2 2△ = [4 k(k —2)] —4(1 + 2k )(2 k —8k)>0 ,4则 k >0 或 k <— 7.y i — 2 y 2 — 2 从而 k i + k 2= + = X i X 24k k —/!=2k —(k — 4) • 2k 2— 8k = 4.当直线I 的斜率不存在时,得 A c i 書/ B c i -分.?所以 k i + k 2= 4. 综上,恒有k i + k 2= 4.设 A (x i , y i ), 0X 2, y 2), 则 X i + X 2 =—4k k ―2 1 + 2k,X 1X 2 2k 2 — 8ki + 2k 2.2kX i X 2+ k —X i + X 2 X i X 2。

高考数学二轮复习小题标准练二文新人教A版

高考数学二轮复习小题标准练二文新人教A版

——教学资料参考参考范本——高考数学二轮复习小题标准练二文新人教A版______年______月______日____________________部门满分80分,实战模拟,40分钟拿下高考客观题满分!一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={1,2,3},B={x|(x+1)(x-2)<0,x∈Z},则A∪B= ( )A.{1}B.{1,2}C.{0,1,2,3}D.{-1,0,1,2,3}【解析】选C.集合B={x|-1<x<2,x∈Z}={0,1},而A={1,2,3},所以A∪B={0,1,2,3},故选C.2.复数z=(i为虚数单位)在复平面内对应的点在( )A.第一象限B.第二象限C.第三象限D.第四象限【解析】选D.z==-i,在复平面上对应的点为,在第四象限.3.设a=201,b=log20xx,c=log20xx,则a,b,c的大小关系为( ) A.a>b>c B.a>c>bC.b>a>cD.c>b>a【解析】选A.c=log20xx=log20xx20xx<;b=log20xx=log20xx20xx>,所以b>c.a=201>1,b<1,所以a>b,所以a>b>c,故选A.4.等差数列{an}的前n项和为Sn,若a2+a4+a6=12,则S7的值是( ).A.21B.24C.28D.7【解析】选C.因为a2+a4+a6=3a4=12,所以a4=4,所以S7=×7=7a4=28.5.若执行如图所示的程序框图,则输出的k值是( )A.4B.5C.6D.7【解析】选A.由题知n=3,k=0;n=10,k=1;n=5,k=2;n=16,k=3;n=8,k=4,满足判断条件,输出的k=4.6.如表是一个容量为10的样本数据分组后的频数分布,若利用组中值近似计算本组数据的平均数,则的值为( )数据[12.5,15.5) [15.5,18.5) [18.5,21.5) [21.5,24.5) 频数 2 1 3 4A.16.5B.17.3C.19.7D.20.5【解析】选C.根据题意,样本容量为10,利用组中值近似计算本组数据的平均数,=×(14×2+17×1+20×3+23×4)=19.7.7.在平面直角坐标系xOy中,P为不等式组所表示的平面区域上一动点,则直线OP斜率的最大值为( )A.2B.C.D.1【解析】选D.联立得交点坐标为(1,1),如图知在点(1,1)处直线OP斜率有最大值,此时kOP=1.8.某几何体的三视图如图所示,则该几何体的体积为( )A. B. C. D.πa3【解析】选A.由三视图可知该几何体为一个圆锥的,其中圆锥的底面圆的半径为a,高为2a,所以该几何体的体积V=×πa2×2a×=.9.已知过定点(2,0)的直线与抛物线x2=y相交于A(x1,y1),B(x2,y2)两点.若x1,x2是方程x2+xsinα-cosα=0的两个不相等实数根,则tanα的值是( )A. B.- C.2 D.-2【解析】选A.设直线方程为y=k(x-2),由得x2-kx+2k=0,所以x1+x2=k,x1x2=2k.又因为x1,x2为x2+xsinα-cosα=0的两个不同的根,所以k=-sinα,2k=-cosα,所以tanα=.10.设函数f(x)=若对任意的t>1,都存在唯一的x∈R,满足f(f(x))=2a2t2+at,则正实数a的取值范围是 ( )A. B.C. D.【解析】选A.由已知函数可求得f(f(x))=由题意可知,2a2t2+at>1对一切t∈(1,+∞)恒成立,而2a2t2+at>1⇔(2ta-1)(ta+1)>0.又a>0,t∈(1,+∞),所以2at-1>0,即a>对一切t∈(1,+∞)恒成立,而<,所以a≥.11.已知函数f(x)=sin(ωx+φ)(ω>0)的图象关于直线x=对称且f=0,如果存在实数x0,使得对任意的x都有f(x0)≤f(x)≤f,则ω的最小值是( ) A.2 B.4 C.6 D.8【解析】选B.函数f(x)=sin(ωx+φ)(ω>0)的图象关于x=对称且f=0,所以ω+φ=kπ+ ①,-ω+φ=kπ②,ωx0++φ≤+2kπ且ωx0+φ≥-+2kπ③,由①②解得ω=4,φ=kπ+,(k∈Z),当k=0时,ω=4,φ=,③成立,满足题意.故得ω的最小值为4.12.已知双曲线-=1(a>0,b>0)的左、右焦点分别为F1,F2,点O为坐标原点,点P在双曲线右支上,△PF1F2内切圆的圆心为Q,圆Q与x轴相切于点A,过F2作直线PQ的垂线,垂足为B,则|OA|与|OB|的长度依次为( )A.a,aB.a,C.,D.,a【解析】选A.设|AF1|=x,|AF2|=y,由双曲线定义得|PF1|-|PF2|=2a,由三角形内切圆的性质得x-y=2a,又因为x+y=2c,所以x=a+c,所以|OA|=a.延长F2B交PF1于点C,因为PQ为∠F1PF2的平分线,所以|PF2|=|PC|,再由双曲线定义得|CF1|=2a,所以|OB|=a,故选A.二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.圆x2+y2=4上恰有三个点到直线x+y+m=0的距离都等于1,则m=________.【解析】由题意知直线x+y+m=0为斜率为1的半径的中垂线,圆心到该直线的距离为1,即=1,所以m=±.答案:±14.已知偶函数f(x)在上单调递减,f=0.若f(x-1)>0,则x的取值范围是________.【解析】因为f(x)是偶函数,所以不等式f(x-1)>0⇔f(|x-1|)>f(2),又因为f(x)在[0,+∞)上单调递减,所以|x-1|<2,解得-1<x<3.答案:(-1,3)15.《九章算术》是我国古代一部重要的数学著作.书中有如下问题:“今有良马与驽马发长安,至齐.齐去长安三千里,良马初日行一百九十三里,日增一十三里;驽马初日行九十七里,日减半里.良马先至齐,复还迎驽马.问几何日相逢.”其意为:“现在有良马和驽马同时从长安出发到齐去.已知长安和齐的距离是3000里,良马第一天行193里,之后每天比前一天多行13里;驽马第一天行97里,之后每天比前一天少行0.5里.良马到齐后,返回去迎驽马.多少天后两马相遇.”利用我们所学的知识,可知离开长安后的第________天,两马相逢.【解析】良马、驽马每天的行程分别构成等差数列、,其中a1=193,b1=97,公差分别为13,-0.5.假设第n天后两马相遇.由题意得193n+×13+97n+×=6000,整理得5n2+227n-4800=0,解得n=≈15.71(舍去负值),所以第16天相遇.答案:1616.若直线y=2x+m是曲线y=xlnx的切线,则实数m的值为________.【解析】设切点为(x0,x0lnx0),由y′=(xlnx)′=lnx+x·=lnx+1,得切线的斜率k=lnx0+1,故切线方程为y-x0lnx0=(lnx0+1)(x-x0),整理得y=(lnx0+1)x-x0,与y=2x+m比较得解得x0=e,故m=-e.答案:-e。

通用2020版高考数学二轮复习分小题精准练八文

通用2020版高考数学二轮复习分小题精准练八文

80分小题精准练(八)(建议用时:50分钟)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A ={0,1,2},B ={y |y =2x,x ∈A },则A ∩B =( ) A .{0,1,2} B .{1,2,4} C .{1,2}D .{0,1,2,4}C [由已知,得B ={y |y =2x,x ∈A }={1,2,4},所以A ∩B ={1,2}.故选C.]2.(2019·平顶山模拟)已知i 为虚数单位,若复数z =12+32i ,则复数1z 的虚部为( )A .-32i B .-32 C.32i D.32B [1z =112+32i =12-32i ⎝ ⎛⎭⎪⎫12+32i ⎝ ⎛⎭⎪⎫12-32i =12-32i 14+34=12-32i ,所以1z 的虚部为-32.故选B.]3.等差数列{a n }中,a 2与a 4是方程x 2-4x +3=0的两个根,则a 1+a 2+a 3+a 4+a 5=( ) A .6 B .8 C .10 D .12C [根据题意有a 2+a 4=4,在等差数列{a n }中,a 2+a 4=a 1+a 5=2a 3=4⇒a 3=2,所以a 1+a 2+a 3+a 4+a 5=5a 3=10.故选C.]4.已知函数f (x )=⎩⎪⎨⎪⎧e x +1,x ≤-1lg (6-x )+lg (x +1),-1<x <6,则f (-1)+f (1)=( )A .0B .1C .2D .e 2C [f (-1)+f (1)=e-1+1+lg 5+lg 2=2,故选C.]5.设θ∈R ,则“0<θ<π3”是“0<sin θ<32”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件A [当0<θ<π3时,利用正弦函数y =sin x 的单调性知0<sin θ<32;当0<sin θ<32时,2k π<θ<2k π+π3(k ∈Z )或2k π+2π3<θ<2k π+π(k ∈Z ).综上可知“0<θ<π3”是“0<sin θ<32”的充分不必要条件,故选A.] 6.(2019·贵阳模拟)甲、乙、丙三人在贵阳参加2018中国国际大数据产业博览会期间,计划选择到贵州的黄果树瀑布、梵净山两个景点旅游.由于时间关系,每个人只能选择一个景点,则甲、乙都到黄果树瀑布旅游的概率为( )A.23B.12C.13D.14D [用“黄”代表黄果树瀑布,“梵”代表梵净山,则甲、乙、丙三人选择旅游景点的选法有(黄,黄,黄),(黄,黄,梵),(黄,梵,黄),(黄,梵,梵),(梵,黄,黄),(梵,黄,梵),(梵,梵,黄),(梵,梵,梵),共8种,其中甲、乙都到黄果树瀑布旅游的选法有(黄,黄,黄),(黄,黄,梵),共2种,所以甲、乙都到黄果树瀑布旅游的概率P =28=14.故选D.]7.设m ,n 是两条不同的直线,α,β,γ是三个不同的平面,给出下面四个命题: ①若α⊥β,β⊥γ,则α⊥γ;②若α⊥β,m ⊂α,n ⊂β,则m ⊥n ;③若m ∥α,n ⊂α,则m ∥n ;④若α∥β,γ∩α=m ,γ∩β=n ,则m ∥n .其中正确命题的序号是( ) A .①④ B .①② C .②③④D .④D [对于①,同垂直于一个平面的两个平面可能平行,命题①错误;对于②,在两个互相垂直的平面内的两条直线可能互相平行,可能相交,也可能异面,命题②错误;对于③,直线m 与n 可能异面,命题③错误;对于④,由面面平行的性质定理知命题④正确.故正确命题的序号是④,选D.]8.函数f (x )=x 4|4x-1|的图象大致是( )D [由已知,得f (-x )-f (x )=x 44x |1-4x |-x 4|4x-1|=x 4(4x -1)|4x -1|, 当x >0时,4x>1,f (-x )-f (x )=x 4(4x -1)|4x-1|=x 4≠0,当x <0时,0<4x<1,f (-x )-f (x )=x 4(4x -1)|4x-1|=-x 4≠0,所以函数f (x )不是偶函数,排除选项A ,B ;当x →-∞时,4x→0,则|4x-1|→1,而x 4→+∞,所以f (x )→+∞,排除选项C ;故选D.]9.(2019·长沙模拟)如图,在直角梯形ABCD 中,AB =4,CD =2,AB ∥CD ,AB ⊥AD ,E 是BC 的中点,则AB →·(AC →+AE →)=( )A .8B .12C .16D .20D [法一:设AB →=a ,AD →=b ,则a·b =0,a 2=16,AC →=AD →+DC →=b +12a ,AE →=12(AC →+AB →)=12⎝ ⎛⎭⎪⎫b +12a +a =34a +12b ,所以AB →·(AC →+AE →)=a·⎝ ⎛⎭⎪⎫b +12a +34a +12b =a ·⎝ ⎛⎭⎪⎫54a +32b =54a 2+32a·b =54a 2=20,故选D.法二:以A 为坐标原点建立平面直角坐标系(如图所示),设AD =t (t >0),则B (4,0),C (2,t ),E ⎝ ⎛⎭⎪⎫3,12t ,所以AB →·(AC →+AE →)=(4,0)·⎣⎢⎡⎦⎥⎤(2,t )+⎝ ⎛⎭⎪⎫3,12t =(4,0)·⎝ ⎛⎭⎪⎫5,32t =20,故选D.] 10.(2019·沈阳模拟)过抛物线y 2=4x 的焦点F 的直线交该抛物线于A ,B 两点,该抛物线的准线与x 轴交于点M ,若|AF |=4,则△MAB 的面积为( )A.833 B.433 C.233D .23 A [法一:设A (x 1,y 1),B (x 2,y 2),则由抛物线的定义得|AF |=x 1+p2=x 1+1=4,所以x 1=3,代入抛物线方程y 2=4x ,得y =±23,不妨令A (3,23),又F (1,0),所以直线AF的斜率为23-03-1=3,所以直线AF 的方程为y =3(x -1),由⎩⎨⎧y =3(x -1)y 2=4x,可得B ⎝ ⎛⎭⎪⎫13,-233,所以|AB |=163.又点M (-1,0)到直线y =3(x -1)的距离d =23(3)2+(-1)2=3,所以△MAB 的面积S =12×163×3=833,故选A.法二:设A (x 1,y 1),B (x 2,y 2),则由抛物线的定义得|AF |=x 1+p2=x 1+1=4,所以x 1=3,代入抛物线方程y 2=4x ,得y =±23,不妨令A (3,23),又F (1,0),所以直线AF 的斜率为23-03-1=3,所以直线AF 的方程为y =3(x -1),由⎩⎨⎧y =3(x -1)y 2=4x,可得B ⎝ ⎛⎭⎪⎫13,-233,所以△MAB 的面积S =12×|MF |×|y 1-y 2|=12×2×⎪⎪⎪⎪⎪⎪23+233=833,故选A.]11.2018年12月1日,贵阳市地铁1号线全线开通,在一定程度上缓解了市内交通的拥堵状况.为了了解市民对地铁1号线开通的关注情况,某调查机构在地铁开通后的某两天抽取了部分乘坐地铁的市民作为样本,分析其年龄和性别结构,并制作出如下等高条形图:根据图中(35岁以上含35岁)的信息,下列结论中不一定正确的是 ( ) A .样本中男性比女性更关注地铁1号线全线开通 B .样本中多数女性是35岁以上C .样本中35岁以下的男性人数比35岁以上的女性人数多D .样本中35岁以上的人对地铁1号线的开通关注度更高 C [设等高条形图对应2×2列联表如下:35岁以上 35岁以下 总计男性 a c a +c 女性 b d b +d 总计a +bc +da +b +c +d性比35岁以下女性多,即c >d .根据第2个等高条形图可知,男性中35岁以上的比35岁以下的多,即a >c ;女性中35岁以上的比35岁以下的多,即b >d .对于A ,男性人数为a +c ,女性人数为b +d ,因为a >b ,c >d ,所以a +c >b +d ,所以A 正确;对于B,35岁以上女性人数为b,35岁以下女性人数为d ,因为b >d ,所以B 正确; 对于C,35岁以下男性人数为c,35岁以上女性人数为b ,无法从图中直接判断b 与c 的大小关系,所以C 不一定正确;对于D,35岁以上的人数为a +b,35岁以下的人数为c +d ,因为a >c ,b >d ,所以a +b >c +d .所以D 正确.故选C.]12.设f (x )=x ,点O (0,0),A (0,1),A n (n ,f (n )),n ∈N *,设∠AOA n =θn ,对一切n ∈N*都有不等式sin2θ112+sin2θ222+sin2θ332+…+sin2θnn2<t2-2t-2成立,则正数t的最小值为( )A.3 B.4 C.5 D.6A[由∠AOA n=θn,得sin2θnn2=⎝⎛⎭⎪⎫nn2+f2(n)21n2=⎝⎛⎭⎪⎫1n2+n2=1n(n+1)=1n-1n+1,所以sin2θ112+sin2θ222+sin2θ332+…+sin2θnn2=11-12+12-13+13-14+…+1n-1n+1=1-1n+1<1,所以t2-2t-2≥1⇒(t-3)(t+1)≥0⇒t≥3(t>0),所以正数t的最小值为3.故选A.]二、填空题:本大题共4小题,每小题5分,共20分.13.曲线y=13x3+x+1在点(0,1)处的切线方程为________.y=x+1[由y=13x3+x+1,得y′=x2+1,所以曲线在点(0,1)处的切线的斜率k=y′|x =0=1,所以切线方程为y=x+1.]14.若实数x,y满足约束条件⎩⎪⎨⎪⎧y≤x,x+y≥1,x-3y+3≥0,则z=3x+y的最小值为________.2[根据不等式组作出可行域,如图中阴影部分所示,作出直线3x+y=0,并平移,可知当直线经过点P时,z取得最小值.由⎩⎪⎨⎪⎧y=xx+y-1=0,得⎩⎪⎨⎪⎧x=12y=12,所以P⎝⎛⎭⎪⎫12,12,此时z min=3×12+12=2.]15.已知某几何体的三视图如图所示,其中正视图和侧视图都是矩形,俯视图为直角三角形,则该几何体的外接球的表面积为________.29π [根据三视图可知该几何体是一个底面为直角三角形的直三棱柱,可将该几何体补形为一个长方体,则该三棱柱的外接球即长方体的外接球,所以该几何体的外接球直径为长方体的体对角线,即(2R )2=22+32+42,即4R 2=29,所以该几何体的外接球的表面积为4πR 2=29π.]16.已知点F 是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点,过坐标原点且倾斜角为π3的直线l 与C 的左、右两支分别于A ,B 两点,且AF →·BF →=0,则C 的离心率为________.3+1 [法一:由题意,知直线l 的方程为y =3x ,与双曲线方程联立得⎩⎪⎨⎪⎧y =3xx 2a 2-y 2b2=1,可得x 2=a 2b 2b 2-3a 2,y 2=3a 2b 2b 2-3a 2.由AF →·BF →=0,得AF ⊥BF ,则在Rt△ABF 中,|OB |=12|AB |=|OF |=c ,所以|OB |2=x 2+y 2=c 2,即a 2b 2b 2-3a 2+3a 2b 2b 2-3a2=c 2,结合c 2=a 2+b 2,得4a 2b 2=(b 2+a 2)(b 2-3a 2),整理,得b 4-6a 2b 2-3a 4=0,即⎝ ⎛⎭⎪⎫b a 4-6⎝ ⎛⎭⎪⎫b a 2-3=0,解得b 2a 2=3+23或b 2a 2=3-23(舍去),所以双曲线的离心率e =ca=1+⎝ ⎛⎭⎪⎫b a 2=4+23=3+1.法二:设双曲线的左焦点为F ′,连接BF ′,AF ′,如图所示,由AF →·BF →=0,得AF ⊥BF .又直线l 的倾斜角为π3,所以∠BOF =π3,结合双曲线的对称性可得|OA |=|OB |,又∠AFB =π2,所以|OA |=|OB |=|OF |=|OF ′|,所以∠BF ′F =π6,所以|BF |=|F ′F |sin π6=c ,|BF ′|=|F ′F |cos π6=3c ,由双曲线的定义,得|BF ′|-|BF |=2a ,即3c -c =2a ,所以c a =23-1=3+1,即离心率e =3+1.]。

2020高考数学二轮复习小题标准练一理新人教A版

2020高考数学二轮复习小题标准练一理新人教A版

高考小题标准练(一)满分80分,实战模拟,40分钟拿下高考客观题满分!一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)ðB)=( )1.已知全集U=R,集合A=,集合B=,那么A∩(uA.∅B.C.(0,1)D.(1,+∞)【解析】选C.A==,又因为y=+1≥1,所以Β==,所以ðB)=(0,1).A∩(u2.设i是虚数单位,是复数z的共轭复数,若z·=2,则z=( )A.-1-iB.-1+iC.1+iD.1-i【解析】选C.设z=a+bi,由z·=2(+i)有 =2,解得a=b=1,所以z=1+i.3.设a=log3,b=,c=log2(log2),则( )A.b<c<aB.a<b<cC.c<a<bD.a<c<b【解析】选D.因为c=log2=-1=log3>log3=a,b>0,所以b>c>a.故选D.4.设数列{a n}的前n项和为S n,若S n+1,S n,S n+2成等差数列,且a2=-2,则a7=( )A.16B.32C.64D.128【解析】选C.因为若S n+1,S n,S n+2成等差数列,所以由题意得S n+2+S n+1=2S n,得a n+2+a n+1+a n+1=0,即a n+2=-2a n+1,所以{a n}从第二项起是公比为-2的等比数列,所以a7=a2q5=64.5.过抛物线y2=2px(p>0)的焦点F的直线l交抛物线于A,B,交其准线于点C,若=-2,|AF|=3,则抛物线的方程为( )A.y2=12xB.y2=9xC.y2=6xD.y2=3x【解析】选D.分别过A,B点作准线的垂线,垂足分别为A1,B1,过A作AD⊥x轴.所以|BF|=|BB1|,|AA1|=|AF|.又因为|BC|=2|BF|,所以|BC|=2|BB1|,所以∠CBB1=60°,所以∠AFD=∠CFO=60°,又|AF|=3,所以|FD|=,所以|AA1|=p+=3,所以p=,所以抛物线方程为y2=3x.6.程序框图如图所示,该程序运行后输出的S的值是( )A.2B.-C.-3D.【解析】选A.由程序框图知:S=2,i=1;S==-3,i=2;S==-,i=3;S==,i=4;S==2,i=5,…,可知S出现的周期为4,当i=2017=4×504+1时,结束循环,输出S,即输出的S=2.7.若函数f(x)=sin(ω>0)的图象的相邻两条对称轴之间的距离为,且该函数图象关于点(x0,0)成中心对称,x0∈,则x0=( )A. B. C. D.【解析】选A.由题意得=,T=π,ω=2,又2x0+=kπ(k∈Z),x0=-(k∈Z),而x0∈,所以x0=.8.多面体MN-ABCD的底面ABCD为矩形,其正视图和侧视图如图,其中正视图为等腰梯形,侧视图为等腰三角形,则该多面体的体积是( )A. B. C. D.【解析】选D.将多面体分割成一个三棱柱和一个四棱锥,如图所示,因为正视图为等腰梯形,侧视图为等腰三角形,所以四棱锥底面BCFE为正方形,S四边形BCFE=2×2=4,四棱锥的高为2,所以V N-BCFE=×4×2=.可将三棱柱补成直三棱柱,则V ADM-EFN=×2×2×2=4,所以多面体的体积为.9.的展开式中x2y3的系数是( )A.-20B.-5C.5D.20【解析】选A.由通项公式得T r+1=(-2y)r,令r=3,所以T4=(-2y)3=-2x2y3,所以x2y3的系数为-20.10.点A,B,C,D均在同一球面上,且AB,AC,AD两两垂直,且AB=1,AC=2,AD=3,则该球的表面积为( )A.7πB.14πC.πD.【解析】选B.三棱锥A-BCD的三条侧棱两两互相垂直,所以把它扩展为长方体,它也内接于球,长方体的对角线长为其外接球的直径,所以长方体的对角线长是=,它的外接球半径是,外接球的表面积是4π×=14π.11.双曲线C:-=1(a>0,b>0)的一条渐近线与直线x+2y+1=0垂直,F1,F2为C的焦点,A为双曲线上一点,若有|F1A|=2|F2A|,则cos∠AF2F1=( )A. B. C. D.【解析】选C.因为双曲线的一条渐近线与直线x+2y+1=0垂直,所以b=2a,又|F1A|=2|F2A|,且|F1A|-|F2A|=2a,所以|F2A|=2a,|F1A|=4a,而c2=5a2⇒2c=2a,所以cos∠AF2F1===.12.定义域在R上的奇函数f(x),当x≥0时,f(x)=若关于x的方程f(x)-a=0所有根之和为1-,则实数a的值为( )A. B. C. D.【解析】选B.因为函数f(x)为奇函数,所以可以得到当x∈(-1,0]时,f(x)=-f(-x)=-lo(-x+1)=log2(1-x),当x∈(-∞,-1]时,f(x)=-f(-x)=-(1-|-x-3|)=|x+3|-1,所以函数f(x)的图象如图,函数f(x)的零点即为函数y=f(x)与y=a的交点,如图所示,共5个,当x∈(-∞,-1]时,令|x+3|-1=a,解得:x1=-4-a,x2=a-2,当x∈(-1,0]时,令log2(1-x)=a,解得:x3=1-2a,当x∈[1,+∞)时,令1-|x-3|=a,解得:x4=4-a,x5=a+2,所以所有零点之和为:x1+x2+x3+x4+x5=-4-a+a-2+1-2a+4-a+a+2=1-2a=1-,所以a=.二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.设向量a,b不平行,向量λa+b与a+2b平行,则实数λ=________.【解析】因为向量λa+b与a+2b平行,所以λa+b=k(a+2b),则所以λ=.答案:14.已知不等式组所表示的平面区域为D,直线l:y=3x+m不经过区域D,则实数m的取值范围是________.【解析】由题意作平面区域如图,当直线l过点A(1,0)时,m=-3;当直线l过点B(-1,0)时,m=3;结合图象可知,实数m的取值范围是(-∞,-3)∪(3,+∞).答案:(-∞,-3)∪(3,+∞)15.《中国诗词大会》(第二季)亮点颇多,十场比赛每场都有一首特别设计的开场诗词,在声光舞美的配合下,百人团齐声朗诵,别有韵味,若《将进酒》《山居秋暝》《望岳》《送杜少府之任蜀州》和另外确定的两首诗词排在后六场,且《将进酒》排在《望岳》的前面,《山居秋暝》与《送杜少府之任蜀州》不相邻且均不排在最后,则后六场的排法有________种.【解析】根据题意,分2步进行分析:①将《将进酒》、《望岳》和另两首诗词的4首诗词全排列,有=24种排列方法,因为《将进酒》排在《望岳》前面,则这4首诗词的排法有=12种;②这4首诗词排好后,不含最后,有4个空位,在4个空位中任选2个,安排《山居秋暝》与《送杜少府之任蜀州》,有=12种安排方法,则后六场的排法有12×12=144种.答案:14416.已知M是曲线y=lnx+x2+(1-a)x上的一点,若曲线在M处的切线的倾斜角是均不小于的锐角,则实数a 的取值范围是________.【解析】依题意,得y′=+x+(1-a),其中x>0.由曲线在M处的切线的倾斜角是均不小于的锐角得,对于任意正数x,均有+x+(1-a)≥1,即a≤+x.注意到当x>0时,+x≥2=2,当且仅当=x,即x=1时取等号,因此实数a的取值范围是(-∞,2].答案:(-∞,2]。

高考数学二轮复习小题标准练八文新人教A版

高考数学二轮复习小题标准练八文新人教A版

高考小题标准练(八)满分80分,实战模拟,40分钟拿下高考客观题满分!一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合M={x|x2-4x<0},N={x|m<x<5},若M∩N={x|3<x<n},则m+n等于( )A.9B.8C.7D.6【解析】选C.因为M={x|x2-4x<0}={x|0<x<4},N={x|m<x<5},且M∩N={x|3<x<n},所以m=3,n=4,所以m+n=3+4=7.2.复数1+(i是虚数单位)的模等于( )A. B.10 C. D.5【解析】选A.因为1+=1+=1+2+i=3+i,所以其模为.3.下列命题正确的是( )A.∃x0∈R,+2x0+3=0B.∀x∈N,x3>x2C.“x>1”是“x2>1”的充分不必要条件D.若a>b,则a2>b2【解析】选C.对于A,因为Δ=22-12<0,所以不存在x0∈R,使+2x0+3=0,所以选项A错误;对于B,当x=1时,13=12,所以选项B错误;对于C,x>1,可推出x2>1,x2>1可推出x>1或x<-1,所以“x>1”是“x2>1”的充分不必要条件,所以选项C正确;对于D,当a=0,b=-1时,a2<b2,所以选项D错误.4.已知直线l:x+y+m=0与圆C:x2+y2-4x+2y+1=0相交于A,B两点,若△ABC为等腰直角三角形,则m= ( )A.1B.2C.-5D.1或-3【解析】选 D.△ABC为等腰直角三角形,等价于圆心到直线的距离等于圆的半径的.圆C的标准方程是(x-2)2+(y+1)2=4,圆心到直线l的距离d=,依题意得=,解得m=1或-3.5.已知向量a,b的模都是2,其夹角是60°,又=3a+2b,=a+3b,则P,Q两点间的距离为( )A.2B.C.2D.【解析】选C.因为a·b=|a|·|b|·cos60°=2×2×=2,=-=-2a+b,所以||2=4a2-4a·b+b2=12,所以||=2.6.阅读如图所示的程序框图,运行相应的程序,若输入某个正整数n后,输出的S∈(31,72),则n的值为( )A.5B.6C.7D.8【解析】选B.由程序框图知,当S=1时,k=2;当S=3时,k=3;当S=7时,k=4;当S=15时,k=5;当S=31时,k=6;当S=63时,k=7.所以n的值为6.7.《张丘建算经》卷上第22题——“女子织布”问题:某女子善于织布,一天比一天织得快,而且每天增加的数量相同.已知第一天织布5尺,30天共织布390尺,则该女子织布每天增加( )A.尺B.尺C.尺D.尺【解析】选B.依题意知,每天的织布数组成等差数列,设公差为d,则5×30+d=390,解得d=.8.已知cosθ=-,θ∈(-π,0),则sin+cos= ( )A. B. C.- D.±【解析】选C.因为cosθ=-,θ∈(-π,0),所以sinθ=-,所以=1+sinθ=,又cosθ=-<0,θ∈(-π,0),所以θ∈,所以∈,所以sin<0,>,所以sin+cos=-.9.欧阳修在《卖油翁》中写到:“(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不湿”,可见卖油翁的技艺之高超,若铜钱直径2厘米,中间有边长为1厘米的正方形小孔,随机向铜钱上滴一滴油(油滴大小忽略不计),则油恰好落入孔中的概率是( )A. B. C. D.【解析】选C.根据几何概型的求解方法可知,用正方形的面积除以圆的面积即为所求概率,所以P==.10.已知P是圆(x-1)2+y2=1上异于坐标原点O的任意一点,直线OP的倾斜角为θ,若|OP|=d,则函数d=f(θ)的大致图象是( )【解析】选D.由题意,当0≤θ<时,d=2cosθ;当<θ<π时,d=-2cosθ.11.已知抛物线C:y2=2px(p>0)的焦点为F,过点F且倾斜角为60°的直线l与抛物线C在第一、四象限分别交于A,B两点,则的值等于( )A.2B.3C.4D.5【解析】选 B.由抛物线的方程可知焦点F,直线l的斜率k=tan60°=,则直线l的方程为y=,设A(x1,y1),B(x2,y2)(y1>0,y2<0).将直线方程和抛物线方程联立消去x并整理可得y2-py-p2=0,解得y1=p,y2=-p.所以===3.12.设函数f(x)=e x+x-2,g(x)=lnx+x2-3.若实数a,b满足f(a)=0,g(b)=0,则( ) A.g(a)<0<f(b) B.f(b)<0<g(a)C.0<g(a)<f(b)D.f(b)<g(a)<0【解析】选A.因为f′(x)=e x+1>0,所以f(x)为增函数,且f(0)=1+0-2=-1<0,f(1)=e+1-2>0,所以0<a<1;g′(x)=+2x>0,g(x)在区间(0,+∞)上为增函数,g(1)=ln1+1-3=-2<0,g(2)=ln2+4-3=ln2+1>0,所以1<b<2,所以g(a)<g(1)<0,f(b)>f(1)>0,即g(a)<0<f(b).二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.在△ABC中,内角A,B,C所对的边分别是a,b,c.若c2=(a-b)2+6,C=,则△ABC的面积是________.【解析】因为c2=(a-b)2+6,所以c2=a2+b2-2ab+6.①因为C=,所以c2=a2+b2-2abcos=a2+b2-ab.②由①②得-ab+6=0,即ab=6.所以S△ABC=absinC=×6×=.答案:14.某几何体的三视图如图所示,则该几何体的体积为________.【解析】依题意,题中的几何体是由一个直三棱柱与一个三棱锥所组成的,其中该直三棱柱的底面是一个直角三角形(直角边长分别为1,2),高为1;该三棱锥的底面是一个直角三角形(直角边长分别为1,2),高为1,因此该几何体的体积为×2×1×1+××2×1×1=.答案:15.已知函数f(x)的定义域为{x∈R|x≠1},对定义域中任意的x,都有f(2-x)=f(x),且当x<1时,f(x)=2x2-x.那么当x>1时,f(x)的递增区间是________.【解析】由f(2-x)=f(x),得函数图象关于直线x=1对称,当x<1时,递减区间是,由对称性得f(x)的递增区间是.答案:16.已知边长为3的等边三角形ABC的三个顶点都在以O为球心的球面上,若三棱锥O-ABC的体积为,则球的表面积为________.【解析】设三角形ABC的外接圆的半径为r,圆心为O1,由正弦定理得2r= =2,r=,因为O1O⊥平面ABC,所以V O-ABC=××32|O1O|=,所以|O1O|=1,所以球O的半径R===2,所以S球=4πR2=16π.答案:16π。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考小题标准练(十七)
满分80分,实战模拟,40分钟拿下高考客观题满分!
一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.已知集合A={x|x2-2x-3≥0},B={x|-2≤x<2},则A∩B= ( )
A.[-2,-1]
B.[-1,1]
C.[-1,2)
D.[1,2)
【解析】选A.A={x|x≤-1或x≥3},故A∩B=[-2,-1].
2.命题∀x∈R,e x-x-1≥0的否定是( )
A.∀x∈R,e x-x-1≤0
B.∀x0∈R,-x0-1≥0
C.∃x0∈R,-x0-1≤0
D.∃x0∈R,-x0-1<0
【解析】选 D.全称命题的否定是特称命题,把全称量词改为存在量词,把不等式中的大于或等于改为小于.
3.若复数z满足(2+i)z=3-2i(其中i为虚数单位),则复数z在复平面内对应的点位于( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
【解析】选D.由(2+i)z=3-2i,得z===,其对应的点的坐
标为,位于第四象限.
4.从两盆不同的菊花和三盆不同的兰花中拿出两盆摆在会议桌上,则拿出的两盆花均为兰花的概率是( )
A. B. C. D.
【解析】选 D.记两盆菊花为J1,J2,三盆兰花为L1,L2,L3,基本事件为J1J2,J1L1,
J1L2,J1L3,J2L1,J2L2,J2L3,L1L2,L1L3,L2L3,共10个,其中两盆花均为兰花的基本事件有3个,故所求的概率为.
5.若抛物线x2=2my的准线过椭圆+=1的上顶点,则抛物线的方程为( )
A.x2=-16y
B.x2=16y
C.x2=-20y
D.x2=20y
【解析】选A.易知抛物线x2=2my的准线方程为y=-,椭圆+=1的上顶点为(0,4),故-=4,m=-8,所以抛物线的方程为x2=-16y.
6.若3sinα-4cosα=5,则tan= ( )
A.-
B.
C.-7
D.7
【解析】选B.由3sinα-4c osα=5,得5sin(α-φ)=5,其中cosφ=,sinφ=,由5sin(α-φ)=5,得sin(α-φ)=1,不妨取α-φ=,则α=φ+,所以tanα
====-,所以tan==.
7.如图,网格纸上小正方形的边长为1,粗线画出的是某空间几何体的三视图,则该几何体的体积为( )
A.π+32
B.4π+32
C.π+16
D.4π+16
【解析】选 A.由三视图可知该几何体为一个圆柱挖去一个圆锥再加上一个长方体组成的几
何体,故所求体积V=π×12×5-π×12×2+4×4×2=π+32.
8.如图所示的程序框图中的算法源于我国古代的“中国剩余定理”,用N≡n(modm)表示正整数N除以正整数m后的余数为n,例如:7≡1(mod3),执行该程序框图,则输出的n的值为( )
A.19
B.20
C.21
D.22
【解析】选D.执行题干中的程序框图:n=16,除以3余2,否,除以5余2,否;
n=17,除以3余2,是;n=18,除以3余2,否,除以5余2,否;
n=19,除以3余2,否,除以5余2,否;n=20,除以3余2,是;
n=21,除以3余2,否,除以5余2,否;n=22,除以3余2,否,除以5余2,是,则输出22.
9.函数f(x)=的图象可能是( )
【解析】选C.由函数f(x)的解析式可得x>0且x≠1时,f(x)>0,故排除选项A,B;当x>1时,f(x)=+,且f(x)随x的增大而减小,故排除D.
10.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,-<φ<)的部分图象如图所示,则函数g(x)=f(2x-1)的单调递增区间是( )
A.[4k-1,4k+1](k∈Z)
B.[4k+1,4k+3](k∈Z)
C.[8k-2,8k+2](k∈Z)
D.[8k+2,8k+6](k∈Z)
【解析】选 A.显然A=3,=7-3=4,得ω=,所以f(x)=3sin,又因为
f(5)=3sin=-3,-<φ<,所以φ=,所以f(x)=3sin(x+),所以
g(x)=3sin=3sin,由不等式2kπ-≤≤2kπ+(k∈Z),
解得4k-1≤x≤4k+1(k∈Z),故函数g(x)的单调递增区间为[4k-1,4k+1](k∈Z).
11.已知实数x,y满足约束条件则的取值范围是( )
A.[-2,3]
B.[0,3]
C.[-2,2]
D.[-1,3]
【解析】选 A.画出约束条件表示的平面区域,如图中阴影部分所示(含边
界),=1+3×,设z=,其几何意义是阴影部分内的点(x,y)与点P(-1,1)连线的斜率,故z的最小值为直线OP的斜率-1,z的最大值为直线PA的斜率,因为
A(2,3),所以直线PA的斜率为=,所以的取值范围为[-2,3].
12.如图,三棱锥P-ABC中,△PAB,△PBC均为正三角形,△ABC为直角三角形,斜边为AC,M为PB的中点,则直线AM,PC所成角的余弦值为( )
A.-
B.
C. D.
【解析】选B.如图,取BC的中点N,连接MN,AN,易得MN∥PC,则MN,AM所成的角即为直线AM,PC所成的角.设AB=2,则AN=,MN=1,AM=.在△AMN中,由余弦定理,得cos∠AMN==-,所以直线AM,PC所成角的余弦值为.
二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)
13.已知△ABC中,AB=10,AC=6,BC=8,M为AB边上的中点,则
·+·=________.
【解析】方法一:显然△ABC是直角三角形,且C=90°,以点C为坐标原点,射线CA,CB的方向分别为x轴,y轴的正方向,建立平面直角坐标系,则A(6,0),B(0,8),M(3,4),所以
·+·=·(+)=
(3,4)·(6,8)=50.
方法二:由题易得△ABC是直角三角形,且C=90°,+=2,
||=||=5,·+·=·(+)=·2=2 =50.
答案:50
14.在△ABC中,sinA∶sinB∶sinC=3∶3∶2.若△ABC的面积为2,则△ABC的内切圆的半径为________.
【解析】由sinA∶sinB∶sinC=3∶3∶2以及正弦定理可得a∶b∶c=3∶3∶2,令a=3t(t>0),则b=3t,c=2t,所以cosC==,
所以sinC==,
所以S△ABC=×3t×3t×=2t2=2,
解得t=1.
设△ABC的内切圆的半径为r,
则(a+b+c)r=2,解得r=.
答案:
15.已知半径为2的圆C经过点M(2,1)且圆心不在坐标轴上,直线l:x+y+1=0与圆C交于A,B 两点,△ABC为等腰直角三角形,则圆C的标准方程为________.
【解析】设圆C的圆心坐标为(a,b),其中ab≠0,则其标准方程为(x-a)2+(y-b)2=4,所以(2-a)2+(1-b)2=4①.因为△ABC为等腰直角三角形,所以圆心到直线l的距离为,即
=,所以=2,所以a+b=1或a+b=-3.
若a+b=1,则b=1-a,代入①,得(2-a)2+a2=4,解得a=0(舍去)或a=2,则b=-1;
若a+b=-3,则b=-3-a,代入①,得(2-a)2+(4+a)2=4,即a2+2a+8=0,该方程无解.
所以所求圆的标准方程为(x-2)2+(y+1)2=4.
答案:(x-2)2+(y+1)2=4
16.已知函数f(x)=a x+x2-xlna,对任意的x1,x2∈[0,1],不等式|f(x1)-f(x2)|≤a-1恒成立,则实数a的取值范围为________.
【解析】由题意可得,在[0,1]上f(x)max-f(x)min≤a-1,且a>1,由于f′(x)=
a x lna+2x-lna=(a x-1)lna+2x,所以当x≥0时,f′(x)≥0,函数f(x)在[0,1]上单调递增,则f(x)max=f(1)=a+1-lna,f(x)min=f(0)=1,所以f(x)max-f(x)min=a-lna,
故a-1≥a-lna⇒lna≥1,即a≥e,
故填[e,+∞).
答案:[e,+∞)。

相关文档
最新文档