复变函数与积分变换专业术语(Chapter 6)

合集下载

复变函数与积分变换答案-第6章共形映射

复变函数与积分变换答案-第6章共形映射

第六章 共形映射习题详解1、(1)21,2则'=+=w z w z ;伸缩率()22'==w i i ,旋转角()2'=A r g wi π;伸缩率()22'-=-=w i i ,旋转角()2'-=-Argw i π;(2)4=w z,则34'=w z ,伸缩率(1)4'=w ,旋转角()10'=Argw ;伸缩率()()()3(1)41421882'+=+=+=-=w i ii i i ()314'+=Argw i π。

2、21365,66,16w z z w z z '=--=-->部分被放大了,116z -<部分被缩小了。

3、43,41,w z z w z '=+=+具有伸缩率与旋转角不变性。

4、(1)1232,,1===-z z i z 分别映射成1233,1,0,w i w w =-=-=由30+32121::10111得+---+==++----w i i z zw i w z i i z; (2)123,1,0=∞==z z z 分别映射成1230,1,,w w w ==-=∞由-01111::11101得==-+--w w w z z; (3)1232,0,1===z z z 分别映射成1231,1,,w w w =-==∞由112121::110101得+--==----w z w w z z; (4)1230,,2===-z z i z 分别映射成1233,,1,w i w i w ===由3130206::1232得------==------w i i z z iw w i i z i i iz 。

5、由分式的分子与分母同乘以(或除以)非零复数后这些值不变化得:把系数,,,a b c d 加以整合有1ad bc -=。

6、(1)设(),az b f z cz d +=+由0()(0)0,()10,1,0()a b a i bf f i i i c d c i d ⋅+⋅-+=-=-==-⋅+⋅-+得解之0,2ab c d ===,故2();11122z z f z z z ==++(2)设(),az b f z cz d +=+由1(0)1,()(42)5==+f f i i ,得 ()0()11,420()5⋅+⋅+==+⋅+⋅+a b a i b i c d c i d ,解之()()11,(42)()424255=+=++=-++⎡⎤⎣⎦b d ai d i ci d d c i c d 05420,154222=⎧=+=⎧⎧⎪⇒⇒⇒⎨⎨⎨=-=-=-⎩⎩⎪⎩a a c d a d d c d c c d故 2()22==--+d f z dzz d 。

复变函数与积分变换公式汇总

复变函数与积分变换公式汇总

复变函数与积分变换公式汇总一、复变函数的基本概念和性质1. 复数集的定义:复数集是由实数和虚数构成的集合,形式为a + bi,其中a和b都是实数,i是虚数单位,满足i² = -12. 复变函数的定义:设有一个定义在平面上的函数f(z),其中z = x + yi是平面上的点,x和y是实数。

如果对任意给定的z都有唯一确定的复数w与之对应,那么称函数f(z)是复数域上的一个函数。

3.复变函数的连续性:如果在z0处存在一个复数A,使得当z趋于z0时,函数f(z)趋于复数A,则称函数f(z)在点z0处连续。

4.复变函数的可导性:如果函数f(z)在z0处连续,并且当z趋于z0时,函数f(z)的导数存在有一个有限的极限L,则称函数f(z)在z0处可导,并记为f'(z0)=L。

二、复变函数的常用公式1. 欧拉公式:e^(iθ) = cosθ + isinθ2. 增补公式:sinh(x + iy) = sinh(x)cos(y) + isin(y)cosh(x)3.多项式的根公式:设P(z)=aₙzⁿ+aₙ₋₁zⁿ⁻¹+…+a₀是一个非常数多项式,aₙ≠0,则P(z)=0在复数域存在n个根。

4.共轭根公式:如果z是复数P(z)=0的根,则z^*也是复数P(z)=0的根。

5. 辐角公式:对于复数z = x + yi,其中x和y是实数,辐角θ = arctan(y/x),其中-π < θ ≤ π。

6. 复数的模公式:对于复数z = x + yi,其中x和y是实数,模,z,= √(x² + y²)。

7. 三角和指数函数的关系:sinθ = (e^(iθ) - e^(-iθ))/(2i),cosθ = (e^(iθ) + e^(-iθ))/28. 三角函数和指数函数的关系:sin(ix) = i sinh(x),cos(ix) = cosh(x)。

三、复变函数的常用积分变换公式1.度量积分变换:对于复变函数f(z),定义如下的度量积分变换公式:∫(f(z)dz) = ∫(f(z₁)dz₁ + f(z₂)dz₂ + … + f(zₙ)dzₙ),(z₁,z₂,…,zₙ)为路径连续的点。

浙江大学宁波理工学院复变函数与积分变换-第6章(傅里叶变换)

浙江大学宁波理工学院复变函数与积分变换-第6章(傅里叶变换)
n
cn

1 T
T
2 T
2
fT (t)e jn0t dt

1 T
T
2 T
fT (t)e jntdt, n 0, 1, 2, 3,...
2
这里n n0.这样傅里叶级数可写为:
傅里叶级数的复指


fT (t) c0 (cne jnt cne jnt )
cne jnt .
数形式。称为连续
n1
信息科n学 与工程学院傅里叶级数变换
SCHOOL OF INFORMATION SCIENCE AND ENGINEERING
复变函数与 积分变换
§6.1 傅里叶变换的概念
傅里叶级数
傅里叶级数的物理含义
在傅里叶级数的三角形式fT
(t)

a0 2
1829年狄利克雷第一个给出了收敛条件。
信息科学与工程学院
SCHOOL OF INFORMATION SCIENCE AND ENGINEERING
复变函数与 积分变换
§6.1 傅里叶变换的概念
傅里叶级数
傅里叶级数的三角形式
[定理]设周期为T的实值函数fT
(t
)在[
T 2
,
T 2
]上满足狄利克雷条件:(1)连续或只有
在复变函数各章节中 采用i作为虚数单位, 而在积分变换中一般 采用j作为虚数单位
信息科学与工程学院
SCHOOL OF INFORMATION SCIENCE AND ENGINEERING
复变函数与 积分变换
§6.1 傅里叶变换的概念
傅里叶级数
傅里叶级数的复指数表示
1 T

复变函数与积分变换专业术语(Chapter 3)

复变函数与积分变换专业术语(Chapter 3)

复变函数与积分变换(双语)课专业术语Functions of a complex variable and integral transform terms§3.1 The concept of complex integral==================================================== oriented curve (directing curve): 有向曲线positive direction: 正方向complex integral: 复积分integral: 积分integrable: 可积分的integrand: 被积函数integrate: 求积分integration: (n.)求积分integrability: (n.) 可积性integral sign: 积分号property of linearity: 线性additive property: 可加性line integral: 曲线积分double integral: 二重积分definite integral: 定积分broken line: 折线the integral is independent of path: 积分与路径无关§3.2, §3.3 Cauchy integral theorem and Cauchy integral formula==================================================== Cauchy integral theorem: 柯西积分定理Cauchy-Goursat theorem: 柯西-古萨定理indefinite integral: 不定积分the principle of deformation of path: 闭路变形原理Generalized Cauchy integral theorem: 广义柯西积分定理compound curves: 复合闭路Cauchy integral formula: 柯西积分公式formula of higher derivatives: 高阶导数公式derivatives of all orders: 任意阶导数cube: 三次方recursion: 递推mathematical induction: 数学归纳法inverse proposition: 逆命题Cauchy inequality: 柯西不等式entire function: 整函数Fundamental theorem of algebra: 代数基本定理contradiction: 反证法,矛盾reciprocal: 倒数§3.4 analytic function and harmonic function==================================================== harmonic: 调和的harmonic function: 调和函数partial differential equation: (PDE) 偏微分方程Laplace function: 拉普拉斯方程harmonic conjugate: 调和共轭partial integration method: 偏积分法theorem of uniquely determined analytic function: 解析函数的唯一性定理indefinite integration method: 不定积分法。

复变函数与积分变换

复变函数与积分变换

复变函数与积分变换复变函数是数学中的一个重要概念,它涉及到实部和虚部的函数关系。

而积分变换则是将一个函数转化为另一个函数的方法。

本文将围绕复变函数和积分变换展开讨论。

一、复变函数复变函数是指具有复数域上的定义域和值域的函数。

它的定义域可以是复数集,也可以是复平面上的一个区域。

复变函数常用的表示形式是f(z),其中z为复数。

如f(z) = u(x, y) + iv(x, y),其中u(x, y)表示实部,v(x, y)表示虚部。

复变函数的性质与实变函数有很多相似之处,如连续性、可导性等。

它还具有一些特殊的性质,如解析性和调和性。

解析函数是指具有导数的复变函数,它在一个区域内处处可导。

而调和函数是指实部和虚部都是调和函数的复变函数。

复变函数的应用十分广泛,例如在电磁学、流体力学和信号处理等领域都有重要的应用。

通过复变函数的分析与运算,可以解决实变函数所无法解决的问题,并且有时可以简化问题的求解过程。

二、积分变换积分变换是将一个函数转化为另一个函数的方法,常用的积分变换有拉普拉斯变换和傅里叶变换。

积分变换在信号处理、控制理论等领域有广泛的应用。

1. 拉普拉斯变换拉普拉斯变换是将一个函数f(t)变换为复平面上的一个函数F(s)的方法。

其中s为复数,定义域为复平面上的一条直线。

拉普拉斯变换的公式表示为:F(s) = L{f(t)} = ∫[0, +∞] e^(-st) f(t) dt通过拉普拉斯变换,可以将时域中的函数转化为复频域中的函数。

它具有线性性质、位移性质和尺度性质等重要性质,可以简化信号的分析与处理。

2. 傅里叶变换傅里叶变换是将一个函数f(x)变换为另一个函数F(k)的方法。

其中k为实数,定义域为实数轴上的一条直线。

傅里叶变换的公式表示为:F(k) = ∫[-∞, +∞] e^(-ikx) f(x) dx傅里叶变换是时域与频域之间的转换工具,它将一个函数分解成不同频率的基函数。

傅里叶变换具有线性性质、位移性质和尺度性质等重要性质,可以对信号进行频谱分析和滤波处理。

复变函数和积分变换重要知识点归纳

复变函数和积分变换重要知识点归纳

.WORD.格式.复变函数复习重点(一)复数的概念1.复数的概念:z x iy =+,,x y 是实数,()()Re ,Im x z y z ==.21i =-.注:一般两个复数不比较大小,但其模(为实数)有大小. 2.复数的表示1)模:z=2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数);主值()arg z 是位于(,]ππ-中的幅角。

3)()arg z 与arctan y x之间的关系如下:当0,x > arg arctanyz x=;当0,arg arctan 0,0,arg arctan yy z x x y y z xππ⎧≥=+⎪⎪<⎨⎪<=-⎪⎩; 4)三角表示:()cos sin z z i θθ=+,其中arg z θ=;注:中间一定是“+”号。

5)指数表示:i z z e θ=,其中arg z θ=。

(二) 复数的运算1.加减法:若111222,z x iy z x iy =+=+,则()()121212z z x x i y y ±=±+±2.乘除法:1)若111222,z x iy z x iy =+=+,则()()1212122112z z x x y y i x y x y =-++;()()()()112211112121221222222222222222x iy x iy z x iy x x y y y x y x i z x iy x iy x iy x y x y +-++-===+++-++。

2)若121122,i i z z e z z e θθ==, 则()121212i z z z z e θθ+=;()121122i z z ez z θθ-=3.乘幂与方根1) 若(cos sin )i z z i z e θθθ=+=,则(cos sin )nnn in z z n i n z e θθθ=+=。

复变函数与积分变换复习提纲

复变函数与积分变换复习提纲

复变函数复习提纲(一)复数的概念1.复数的概念:z x iy =+,,x y 是实数,()()Re ,Im x z y z ==.21i =-.注:两个复数不能比较大小.2.复数的表示1)模:z =2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数);主值()arg z 是位于(,]ππ-中的幅角。

3)()arg z 与arctanyx之间的关系如下:当0,x >arg arctan yz x =;当0,arg arctan 0,0,arg arctan yy z xx y y z xππ⎧≥=+⎪⎪<⎨⎪<=-⎪⎩;4)三角表示:()cos sin z z i θθ=+,其中arg z θ=;注:中间一定是“+”号。

5)指数表示:i z z e θ=,其中arg z θ=。

(二)复数的运算1.加减法:若111222,z x iy z x iy =+=+,则()()121212z z x x i y y ±=±+±2.乘除法:1)若111222,z x iy z x iy =+=+,则()()1212122112z z x x y y i x y x y =-++;()()()()112211112121221222222222222222x iy x iy z x iy x x y y y x y x i z x iy x iy x iy x y x y +-++-===+++-++。

2)若121122,i i z z e z z eθθ==,则()121212i z z z z e θθ+=;()121122i z z e z z θθ-=3.乘幂与方根1)若(cos sin )i z z i z e θθθ=+=,则(cos sin )n nnin z z n i n z eθθθ=+=。

2)若(cos sin )i z z i z e θθθ=+=,则122cos sin (0,1,21)nk k z i k n n n θπθπ++⎛⎫=+=- ⎪⎝⎭ (有n 个相异的值)(三)复变函数1.复变函数:()w f z =,在几何上可以看作把z 平面上的一个点集D 变到w 平面上的一个点集G 的映射.2.复初等函数1)指数函数:()cos sin zxe ey i y =+,在z 平面处处可导,处处解析;且()z z e e '=。

复变函数与积分变换重要知识点归纳

复变函数与积分变换重要知识点归纳

复变函数复习重点(一)复数的概念1.复数的概念:z x iy =+,,x y 是实数,()()Re ,Im x z y z ==.21i =-.注:一般两个复数不比较大小,但其模(为实数)有大小. 2.复数的表示1)模:22zx y =+;2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数);主值()arg z 是位于(,]ππ-中的幅角。

3)()arg z 与arctan y x之间的关系如下:当0,x > arg arctanyz x=;当0,arg arctan 0,0,arg arctan yy z x x y y z xππ⎧≥=+⎪⎪<⎨⎪<=-⎪⎩;4)三角表示:()cos sin z z i θθ=+,其中arg z θ=;注:中间一定是“+”号。

5)指数表示:i z z e θ=,其中arg z θ=。

(二) 复数的运算1.加减法:若111222,z x iy z x iy =+=+,则()()121212z z x x i y y ±=±+±2.乘除法:1)若111222,z x iy z x iy =+=+,则()()1212122112z z x x y y i x y x y =-++;()()()()112211112121221222222222222222x iy x iy z x iy x x y y y x y x i z x iy x iy x iy x y x y +-++-===+++-++。

2)若121122,i i z z e z z e θθ==, 则()121212i z z z z e θθ+=;()121122i z z e z z θθ-=3.乘幂与方根1) 若(cos sin )i z z i z e θθθ=+=,则(cos sin )n nn in z z n i n z e θθθ=+=。

复变函数与积分变换概念公式

复变函数与积分变换概念公式

复变函数与积分变换概念公式一、复变函数复变函数是指定义在复平面上的函数,即函数的自变量和因变量均为复数。

复数可用标准形式表示为 z = x + yi,其中 x 和 y 分别表示实部和虚部。

复变函数可以将一个复数映射到另一个复数,即 f(z) = u(x, y) + iv(x, y),其中 u 和 v 分别表示实部和虚部。

复变函数通常具有解析性,即满足柯西-黎曼方程,即:∂u/∂x=∂v/∂y∂u/∂y=-∂v/∂x复变函数的求导规则也与实变函数类似,可以通过对u和v分别对x和y求偏导得到。

复变函数的积分也可类似地进行,即将曲线积分转换为线积分,并利用格林公式等方法进行计算。

积分变换是指将一个函数通过积分的方式转换为另一个函数,常见的积分变换包括拉普拉斯变换、傅里叶变换和z变换等。

1.拉普拉斯变换拉普拉斯变换是一种将实函数转换为复函数的积分变换方法,可以用于求解微分方程和信号处理等问题。

拉普拉斯变换的定义为:F(s) = L{f(t)} = ∫[0,∞] f(t)e^(-st)dt其中 f(t) 为已知的函数,s 为复变量。

拉普拉斯变换具有线性性质,即 L{af(t) + bg(t)} = aF(s) + bG(s),其中 a 和 b 为常数,f(t) 和g(t) 分别为待变换的函数。

2.傅里叶变换傅里叶变换是一种将复函数表示为基本正弦和余弦函数的线性组合的积分变换方法,主要用于信号处理和频谱分析等领域。

傅里叶变换的定义为:F(ω) = F{f(t)} = ∫[-∞,+∞] f(t)e^(-jωt)dt其中 f(t) 为已知的函数,ω 为角频率。

傅里叶变换也具有线性性质,即 F{af(t) + bg(t)} = aF(ω) + bG(ω),其中 a 和 b 为常数,f(t) 和 g(t) 分别为待变换的函数。

3.z变换z变换是一种将离散信号表示为z的幂次的线性组合的积分变换方法,主要用于差分方程的求解和数字信号处理等领域。

大学数学教程复变函数与积分变换 第六章 拉普拉斯变换

大学数学教程复变函数与积分变换 第六章  拉普拉斯变换

满足
0, δ(t) ,
0且 t δ(t)d t1 0 t
如一根无限杆 长, x的 在 0处 均有 匀一 细单位
在 x0处质0量 则 , 为 细杆的线密度为
(t) 0,,
0x且 m
ρ(t)d t1
x0
δ函数的— 筛 — 选 δ (t)f性 (t)d 质 tf(0),
δ(t-0)tf(t)d tf(t0), (t)f(t-0)td tf(t0)
(t)cos
te -st dt
u (t ) sin
te -st dt
0
0
(t )cos
te -st dt
sin
te -st dt
0
cos
te -st
t0
e -st s 2 1 ( sin
t cos
t)
0
1
1 s2 1
s2 s2 1
(2)
L [f
(t)]
1
1 e 2πs
2π f (t )e std t
0
T
kT
k0
(k 1)T kT
f
(t
)e-st
dt
但 (k1T)f(t)esd t tt k T uTf(uk)T es(ukT )du
kT
0
eskT Tf(u)esu d ueskT Tf(t)esd t t
0
0
L[f (t)] eskT T f (t)estdt 0 k 0
f (tT)f(t) (t0)
且f (t )在一个周期上是连续或分段连续的,证明:
L[f(t)] 1
1esT
T f(t)estdt
0
R(es)0

复变函数与积分变换 脉搏

复变函数与积分变换 脉搏

复变函数与积分变换脉搏
复变函数与积分变换
一、复变函数
复变函数是指定义在复平面上的函数,它可以用复数形式表示,即f(z)=u(x,y)+iv(x,y),其中z=x+iy,u(x,y)和v(x,y)都是实函数。

复变函数与实变函数不同,它具有许多独特的性质,如解析性、全纯性、调和性等。

其中最重要的是解析性,它是复变函数理论的核心。

二、积分变换
积分变换是将一个函数f(t)在一定范围内进行积分,得到一个新的函数F(s),称为积分变换。

常见的积分变换有拉普拉斯变换、傅里叶变换等。

积分变换在信号处理、控制理论、电路分析等领域中有广泛的应用。

三、脉搏
脉搏是指心脏收缩时,由于心脏的排血作用,使动脉内的血液产生的搏动。

脉搏的频率和节律可以反映心脏的健康状况。

脉搏的测量可以通过手动触摸动脉或使用电子设备进行测量。

以上三个概念看似没有直接联系,但它们在医学领域中有着密切的关系。

例如,心电图是一种通过记录心脏电活动来诊断心脏疾病的方法,而心电图的信号处理和分析需要使用到积分变换和复变函数的知识。

另外,脉搏的频率和节律也可以通过信号处理和分析来得到,这同样需要使用到积分变换和复变函数的知识。

总之,积分变换和复变函数是现代医学领域中不可或缺的数学工具,它们为医学研究和临床诊断提供了有力的支持。

复变函数与积分变换(修订版-复旦大学)第六章课后的习题答案-(1)

复变函数与积分变换(修订版-复旦大学)第六章课后的习题答案-(1)

习题六1. 求映射1w z=下,下列曲线的像. (1) 22x y ax += (0a ≠,为实数) 解:222211i=+i i x y w u v z x y x y x y ===-+++ 221x x u x y ax a===+, 所以1w z =将22x y ax +=映成直线1u a=. (2) .y kx =(k 为实数) 解: 22221i x y w z x y x y ==-++ 故1w z=将y kx =映成直线v ku =-. 2. 下列区域在指定的映射下映成什么?(1)Im()0,(1i)z w z >=+;解: (1i)(i )()i(+)w x y x y x y =+⋅+=-+所以Im()Re()w w >.故(1i)w z =+⋅将Im()0,z >映成Im()Re()w w >.(2) Re(z )>0. 0<Im(z )<1, i w z=. 解:设z =x +i y , x >0, 0<y <1.Re(w )>0. Im(w )>0. 若w =u +i v , 则因为0<y <1,则22221101,()22u u v u v <<-+>+ 故i w z=将Re(z )>0, 0<Im(z )<1.映为 Re(w )>0,Im(w )>0, 1212w > (以(12,0)为圆心、12为半径的圆) 3. 求w =z 2在z =i 处的伸缩率和旋转角,问w =z 2将经过点z =i 且平行于实轴正向的曲线的切线方向映成w 平面上哪一个方向?并作图.解:因为w '=2z ,所以w '(i)=2i , |w '|=2, 旋转角arg w '=π2. 于是, 经过点i 且平行实轴正向的向量映成w 平面上过点-1,且方向垂直向上的向量.如图所示.→4. 一个解析函数,所构成的映射在什么条件下具有伸缩率和旋转角的不变性?映射w =z 2在z 平面上每一点都具有这个性质吗?答:一个解析函数所构成的映射在导数不为零的条件下具有伸缩率和旋转不变性映射w =z 2在z =0处导数为零,所以在z =0处不具备这个性质.5. 求将区域0<x <1变为本身的整体线性质变换w z αβ=⋅+的一般形式.6. 试求所有使点1±不动的分式线性变换. 解:设所求分式线性变换为az bw cz d +=+(ad -bc ≠0)由11-→-.得 因为(1)a z c dw cz d ++-=+, 即(1)(1)1a z c z w cz d ++++=+,由11→代入上式,得22a ca d c d +=⇒=+. 因此11(1)(1)dcd cd c w z z cz d z +++=+=+⋅++ 令dq c =,得其中a 为复数.反之也成立,故所求分式线性映射为1111w z a w z ++=⋅--, a 为复数.7. 若分式线性映射,az bw cz d +=+将圆周|z |=1映射成直线则其余数应满足什么条件? 解:若az bw cz d +=+将圆周|z |=1映成直线,则dz c =-映成w =∞. 而dz c =-落在单位圆周|z |=1,所以1dc -=,|c |=|d |.故系数应满足ad -bc ≠0,且|c |=|d |.8. 试确定映射,11z w z -=+作用下,下列集合的像.(1) Re()0z =; (2) |z |=2; (3) Im(z )>0.解:(1) Re(z )=0是虚轴,即z =i y 代入得. 写成参数方程为2211y u y -+=+, 221y v y =+, y -∞<<+∞.消去y 得,像曲线方程为单位圆,即u 2+v 2=1.(2) |z |=2.是一圆围,令i 2e ,02πz θθ=≤≤.代入得i i 2e 12e 1w θθ-=+化为参数方程.消去θ得,像曲线方程为一阿波罗斯圆.即(3) 当Im(z )>0时,即11Im()011w w z w w ++=-⇒<--, 令w =u +i v 得221(1)i 2Im()Im()01(1)i (1)w u v v w u v u v +++-==<--+-+. 即v >0,故Im(z )>0的像为Im(w )>0.9. 求出一个将右半平面Re(z )>0映射成单位圆|w |<1的分式线性变换.解:设映射将右半平面z 0映射成w =0,则z 0关于轴对称点0z 的像为w =∞, 所以所求分式线性变换形式为00z z w k z z -=⋅-其中k 为常数. 又因为00z z w k z z -=⋅-,而虚轴上的点z 对应|w |=1,不妨设z =0,则 故000e (Re()0)i z z w z z z θ-=⋅>-.10. 映射e 1i z w zϕαα-=⋅-⋅将||1z <映射成||1w <,实数ϕ的几何意义显什么? 解:因为 从而2i i 2221||1()e e (1||)1||w ϕϕαααα-'=⋅=⋅-- 所以i 2arg ()arge arg (1||)w ϕααϕ'=-⋅-=故ϕ表示i e 1z w zθαα-=⋅-在单位圆内α处的旋转角arg ()w α'. 11. 求将上半平面Im(z )>0,映射成|w |<1单位圆的分式线性变换w =f (z ),并满足条件(1) f (i)=0, arg (i)f '=0; (2) f (1)=1, f. 解:将上半平面Im(z )>0, 映为单位圆|w |<1的一般分式线性映射为w =k z z αα-⋅-(Im(α)>0). (1) 由f (i)=0得α=i ,又由arg (i)0f '=,即i 22i ()e (i)f z z θ'=⋅+, πi()21(i)e 02f θ-'==,得π2θ=,所以 i i iz w z -=⋅+. (2) 由f (1)=1,得k =11αα--;由f,得kα联立解得w =12. 求将|z |<1映射成|w |<1的分式线性变换w =f (z),并满足条件:(1) f (12)=0, f (-1)=1.(2) f (12)=0, 12πarg ()2f '=, (3) f (a )=a , arg ()f a ϕ'=.解:将单位圆|z |<1映成单位圆|w |<1的分式线性映射,为 i e 1z w zθαα-=-⋅ , |α|<1. (1) 由f (12)=0,知12α=.又由f (-1)=1,知 1i i i 2121e e (1)1e 1π1θθθθ--⋅=-=⇒=-⇒=+. 故12221112z z z w z --=-⋅=--. (2) 由f (12)=0,知12α=,又i 254e (2)z w z θ-'=⋅- i 11224π()e arg ()32f f θθ''=⇒==, 于是 π21i 2221e ()i 12z z z w z --==⋅--. (3) 先求=()z ξϕ,使z =a 0ξ→=,arg ()a ϕθ'=,且|z |<1映成|ξ|<1.则可知 i =()=e 1z a z a zθξϕ-⋅-⋅ 再求w =g (ξ),使ξ=0→w =a , arg (0)0g '=,且|ξ|<1映成|w |<1.先求其反函数=()w ξψ,它使|w|<1映为|ξ|<1,w =a 映为ξ=0,且arg ()arg(1/(0))0w g ψ''==,则 =()=1w a w a wξψ--⋅. 因此,所求w 由等式给出.i =e 11w a z a a w a zθ--⋅-⋅-⋅. 13. 求将顶点在0,1,i 的三角形式的内部映射为顶点依次为0,2,1+i 的三角形的内部的分式线性映射. 解:直接用交比不变性公式即可求得02w w --∶1i 01i 2+-+-=02z z --∶i 0i 1-- 2w w -.1i 21i +-+=1z z -.i 1i-4z (i 1)(1i)w z -=--+. 14. 求出将圆环域2<|z |<5映射为圆环域4<|w |<10且使f (5)=-4的分式线性映射.解:因为z=5,-5,-2,2映为w=-4,4,10,-10,由交比不变性,有2525-+∶2525---+=104104-+--∶104104+- 故w =f (z )应为55z z -+∶2525---+=44w w +-∶104105+- 即 44w w +-=55z z --+20w z⇒=-. 讨论求得映射是否合乎要求,由于w =f (z )将|z |=2映为|w |=10,且将z =5映为w =-4.所以|z |>2映为|w |<10.又w =f (z )将|z |=5映为|w |=4,将z =2映为w =-10,所以将|z |<5映为|w |>4,由此确认,此函数合乎要求.15.映射2w z =将z 平面上的曲线221124x y ⎛⎫-+= ⎪⎝⎭映射到w 平面上的什么曲线? 解:略.16. 映射w =e z 将下列区域映为什么图形.(1) 直线网Re(z )=C 1,Im(z )=C 2;(2) 带形区域Im(),02πz αβαβ<<≤<≤;(3) 半带形区域 Re()0,0Im(),02πz z αα><<≤≤.解:(1) 令z =x +i y , Re(z )=C 1,z =C 1+i y 1i =e e C y w ⇒⋅, Im(z )=C 2,则z =x +i C 22i =e e C x w ⇒⋅故=e z w 将直线Re(z )映成圆周1e C ρ=;直线Im(z )=C 2映为射线2C ϕ=.(2) 令z =x +i y ,y αβ<<,则i i =e e e e ,z x y x y w y αβ+==⋅<<故=e z w 将带形区域Im()z αβ<<映为arg()w αβ<<的张角为βα-的角形区域.(3) 令z =x +i y ,x >0,0<y < α, 02πα≤≤.则故=e zw 将半带形区域Re(z )>0,0<Im(z )<α, 02πα≤≤映为 |w |>1, 0arg w α<<(02πα≤≤).17. 求将单位圆的外部|z |>1保形映射为全平面除去线段-1<Re(w )<1,Im(w )=0的映射. 解:先用映射11w z=将|z |>1映为|w 1|<1,再用分式线性映射. 1211i 1w w w +=-⋅-将|w 1|<1映为上半平面Im(w 2)>0, 然后用幂函数232w w =映为有割痕为正实轴的全平面,最后用分式线性映射3311w w w -=+将区域映为有割痕[-1,1]的全平面. 故221121132222132111111i 1111111()11211i 1111z z z z w w w w w z w w z w w ⎛⎫⎛⎫++--⋅- ⎪ ⎪----⎝⎭⎝⎭=====+++⎛⎫⎛⎫++-⋅++ ⎪ ⎪--⎝⎭⎝⎭. 18. 求出将割去负实轴Re()0z -∞<≤,Im(z )=0的带形区域ππI m ()22z -<<映射为半带形区域πIm()πw -<<,Re(w )>0的映射.解:用1e z w =将区域映为有割痕(0,1)的右半平面Re(w 1)>0;再用1211ln 1w w w +=-将半平面映为有割痕(-∞,-1]的单位圆外域;又用3w =将区域映为去上半单位圆内部的上半平面;再用43ln w w =将区域映为半带形0<Im(w 4)<π,Re(w 4)>0;最后用42i πw w =-映为所求区域,故e 1ln e 1z z w +=-. 19. 求将Im(z )<1去掉单位圆|z |<1保形映射为上半平面Im(w )>0的映射.解:略.20. 映射cos w z =将半带形区域0<Re(z )<π,Im(z )>0保形映射为∞平面上的什么区域.解:因为 1cos ()2iz iz w z e e -==+ 可以分解为 w 1=i z ,12e ww =,32211()2w w w =+ 由于cos w z =在所给区域单叶解析,所以(1) w 1=i z 将半带域旋转π2,映为0<Im(w 1)<π,Re(w 1)<0. (2) 12e w w =将区域映为单位圆的上半圆内部|w 2|<1,Im(w 2)>0.(3) 2211()2w w w =+将区域映为下半平面Im(w )<0.。

复变函数与积分变换学习指导(第六章)

复变函数与积分变换学习指导(第六章)

第七章保形变换前几章主要是用分析的方法,也就是用微分、积分和级数等,来讨论解析函数的性质和应用。

内容主要涉及所谓柯西理论;这一章主要是用几何方法来揭示解析函数的特征和应用。

保形变换现审定名为“共形映射”或“共性映照”。

它在数学本身以及在流体力学、弹性力学、电学等学科的某些实际问题中,都是一种使问题化繁为简的主要方法。

第一节解析变换的特性一.保域性1.定理7.1(保域定理)设在区域内解析且不恒为常数,则的象也是一个区域。

证先证的每一个点都是内点。

,使,则为的一个零点,由解析函数的零点孤立性知,,使,且在上无异于的零点。

令,则。

下证。

,考察,当时,,由Rouché定理,即在内有解,从而。

再证内任两点,可用全含于内的折线连接起来。

由于是区域,在内有折线,,连接,其中。

函数把折线映射成内连接的逐段光滑曲线。

由于为内紧集,根据有限覆盖定理,可被内有限个开圆盘所覆盖,从而在内可作出连接的折线。

综合,知为区域。

2.推论7.2设在区域内单叶解析,则的象也是一个区域。

证因为在区域内单叶,故在内不恒为常数。

3.定理还可推广为:在扩充平面的区域内除可能有极点外处处解析,且不恒为常数,则的像为扩充平面上的区域。

4.单叶解析函数的性质定理6.11若在区域内单叶解析,则在内。

定理7.3(局部单叶性) 设在解析且,则在的某个邻域内单叶解析。

(证明类似于和)二.解析变换的保角性——导数的几何意义1.导数辐角的几何意义设为过的光滑曲线,,则且是在处的切线的辐角。

设,故也是光滑的,。

若内过还有一个光滑曲线。

设,则即处曲线与的夹角恰好等于处曲线与的夹角。

单叶解析函数作为映射时,曲线间夹角(即切线的夹角)的大小及方向保持不变,这一性质称为旋转角不变性。

称为变换在的旋转角,仅与有关,与过的曲线的选择无关。

象曲线在处的切线正向可由原象曲线在的切线正向旋转一个旋转角得到。

2.导数模的几何意义由于,故象点间的无穷小距离与原象点间无穷小距离之比的极限是,称为变换在的伸缩率。

(完整版)复变函数与积分变换中的英文单词和短语

(完整版)复变函数与积分变换中的英文单词和短语
纯虚数
pure imaginary number
共轭复数
complex conjugate number
运算
operation
减法
subtraction
乘法
multiplication
除法
division
复平面
complex plane
分配律
distribute rule
交换律
exchange rule
幂函数
power function
高阶导数
higher order derivative
求导法则
derivation rule
链式法则
chain rule
定义域
domain
导函数
derivative function
反函数
inverse function
第三章
Chapter 3Integrals of functions of complex variable
复合函数
complex function
复数的三角形式
trigonometrical form of complex number

modulus
辐角
argument
乘方
power
开方
extraction
开集
open set
闭集
closed set
邻域
ghborhood
充分必要条件
sufficient and necessary condition
绝对收敛
absolutely convergent
一致收敛
uniform convergence

复变函数与积分变换中的英文单词和短语讲解

复变函数与积分变换中的英文单词和短语讲解

复变函数与积分变换Functions of ComplexVariable and IntegralTransforms第一章复数与复变函数Chapter 1 Complex Numbers and Functions of Complex Varialble 复数complex number实部real number虚部imaginary unit纯虚数pure imaginary number共轭复数complex conjugate number运算operation减法subtraction乘法multiplication除法division复平面complex plane分配律distribute rule交换律exchange rule复合函数complex function复数的三角形式trigonometrical form of complexnumber模modulus辐角argument乘方power开方extraction开集open set闭集closed set邻域neighborhood充分必要条件sufficient and necessary condition 边界点boundary point 有界集bounded set区域domain简单闭曲线simple closed curve连通区域connected region分段光滑piecewise smooth无穷远点point at infinity复变函数function of complex variable 单值函数single-valued function 多值函数multi-valued function连续continuity不等式inequality第二章解析函数Chapter 2 Analytic Functions微分differential奇点singularity解析函数analytic function导数derivative柯西-黎曼方程Cauchy-Riemann equation 调和函数harmonic function 指数函数exponential function对数函数logarithm function三角函数trigonometric function双曲函数hyperbolic function幂函数power function高阶导数higher order derivative求导法则derivation rule链式法则chain rule定义域domain导函数derivative function反函数inverse function复变函数与积分变换中的英文单词和短语第三章复变函数的积分Chapter 3 Integrals of functions of complex variable 柯西积分公式Cauchy integral formula柯西不等式Cauchy inequality第四章解析函数的级数表示Chapter 4 Series Expressions of Analytic Functions 复函数序列sequences of complex function级数series幂级数power series函数项级数series of functions收敛性convergence收敛半径radius of convergence泰勒级数Taylor series洛朗级数Laurent series发散divergence麦克劳林级数Maclaurin series泰勒级数展开Taylor series expansion绝对收敛absolutely convergent一致收敛uniform convergence部分和partial sum第五章留数及其应用Chapter 5 Residues and their Applications 留数residue 孤立奇点isolated singularity可去奇点removable singularity本性奇点essential singularity极点polem阶极点pole of order m当且仅当if and only if亚纯函数meromorphic function第六章共形映射Chapter 6Conformal Mappings从A到B的转角oriented angle from a to b保角映射angle-preserving mapping自映射self-mapping不动点fixed point分式线性变换linear fractional transformation 多边形polygon第七章傅里叶变换Chapter 7Fourier Transforms傅里叶变换Fourier transform傅里叶积分Fourier integral卷积convolution线性性linearity对称性symmetry延迟性time shifting积分变换integral transform反演公式inversion formula共轭傅里叶积分conjugate Fourier integral广义傅里叶积分generalized Fourier integral傅里叶逆变换inverse Fourier transform傅里叶反演公式Fourier inversion formula傅里叶正弦变换Fourier sine transform傅里叶余弦变换Fourier cosine transform第八章拉普拉斯变换Chapter 8Laplace Transforms 拉普拉斯变换Laplace transform像image。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档