浙江省宁波地区2014-2015学年八年级下学期期中考试数学试题及答案

合集下载

2014-2015学年第二学期期中考试试卷初二数学附答案

2014-2015学年第二学期期中考试试卷初二数学附答案
2014-2015学年第二学期期中考试试卷初二数学
一、选择题(本大题共10小题,每小题3分,共30分)
1.下列图形中,既是轴对称图形又是中心对称图形的是()
A. B.C.D.
2.下列分式中,属于最简分式的是()
A. B. C. D.
3.某学生某月有零花钱a元,其支出情况如图所示,那么下列说法不正确的是()
D.在相同条件下,只要试验 Nhomakorabea次数足够多,频率就可以作为概率的估计值
5.如图,将△ABC绕着点C顺时针旋转50°后得到△A′B′C′.若∠A=45°.∠B′=110°,则∠BCA′的度数是()
A.55° B.75°C.95° D.110°
6.菱形具有而矩形不一定具有的性质是()
A.对角线互相垂直B.对 角线相等C.对角线互相平分D.对角互补
A.该学生捐赠款为0.6a元B.捐赠款所对应的圆心角为240°
C.捐赠款是购书款的2倍D.其他支出占10%
4.下列说法中不正确的是()
A.
抛掷一枚硬币,硬币落地时正面朝上是随机事件
B.
把4个球放入三个抽屉中,其中一个抽屉中至少有2个球是必然事件
C.
任意打开七年级下册数学教科书,正好是97页是确定事件
(2 )若四边形BFDE是菱形, AB=2,求菱形BFDE的面积.
26.(本题10分)某超市用3000元购进某种干果销售,由于销售状况良好,超市又调拨9000元资金购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果的数量是第一次的2倍还多300千克,如果超市按每千克9元的价格出售,当大部分干果售出后,余下的600千克按售价的8折售完.
()
A.20 B.18 C.16 D.10
9.如图,四边形ABCD中,AC=a,BD=b,且AC⊥BD,顺次连接四边形ABCD各边中点,得到四边形A1B1C1D1,再顺次连接四边形A1B1C1D1各边中点,得到四边形A2B2C2D2,如此进行下去,得到四边形AnBnCnDn.①四边形A4B4C4D4是菱形;②四边形A3B3C3D3是矩形;③四边形A7B7C7D7周长为 ;④四边形AnBnCnDn面积为 .上述结论正确的是()

2014—2015学年度第二学期初二数学期中练习试卷附答案

2014—2015学年度第二学期初二数学期中练习试卷附答案

2014—2015学年度第二学期初二数学期中练习试卷2015.4.29班级 姓名 学号 成绩试卷总分120分 考试时间100分钟A 卷 满分100分一、选择题(本题共30分,每小题3分)1.下列各组数中,以它们为边长的线段能构成直角三角形的是( ).A .31,41,51 B .3,4,5 C .2,3,4 D .1,1,32.如图,在□ABCD 中,AE ⊥CD 于点E ,∠B =65°, 则∠DAE 等于( ).A .15°B .25°C .35°D .65° 3.若方程013)2(=+++mx xm m是关于x 的一元二次方程,则m =( )A .0B .2C .-2D .± 24.如图,在△ABC 中,AB =6,AC =10,点D ,E ,F 分别是AB ,BC ,AC 的中点,则四边形ADEF 的周长为( ).A .8B .10C .12D .165.已知直角三角形的两条边长分别为3和4,则第三条边的长为( ).A .5 BC .5D .无法确定 6.用配方法解方程2220x x --=,下列变形正确的是( ).A .2(1)2x -= B .2(2)2x -= C .2(1)3x -= D .2(2)3x -=7.若关于y 的一元二次方程 ky 2 - 4y - 3 = 3y + 4 有实数根, 则k 的取值范围是 ( ) .A . k ≥74-且k ≠ 0B . k > 74-且k ≠ 0C .k ≥74-D .k > 74-A B CD EF EABCDODCBA8.如图,在□ABCD 中,AB =4cm ,AD =7cm ,∠ABC 平分线交AD 于E ,交CD 的延长线于点F ,•则DF =( )A . 2㎝B .3㎝C . 4㎝D . 5㎝9.已知四边形ABCD 是平行四边形,下列结论中不正确...的是( ). A .当AB =BC 时,它是菱形 B .当AC ⊥BD 时,它是菱形C .当∠ABC =90º时,它是矩形D .当AC =BD 时,它是正方形10.如图,点P 是正方形ABCD 的对角线BD 上一点,PE ⊥BC ,PF ⊥CD ,垂足分别为点E ,F ,连接AP ,EF ,给出下列 四个结论:①AP =EF ;②∠PFE =∠BAP ;③PD = 2EC ;④△APD 一定是等腰三角形.其中正确的结论有( ). A .1个 B .2个 C .3个 D .4个二、填空题(本题共18分,每小题3分)11. 方程x x 22=的解是 .12. 在平行四边形中,一组邻边的长分别为8cm 和6cm ,一个锐角为60°, 则此平行四边形的面积为 .13. 如图,矩形纸片ABCD 中,AB =4,AD =3,折叠纸片使AD 边 与对角线BD 重合,折痕为DG ,则AG 的长为 .14. 如图,□ABCD 的对角线相交于点O,两条对角线的和为18, AD 的长为5,则∆OBC 的周长为 ___________.15.已知菱形ABCD 两对角线AC = 8 cm, BD = 6 cm, 则菱形的高为_ _______16. 如图,在□ABCD 中,AB =3,AD =4,∠ABC =60°, 过BC 的中点E 作EF ⊥AB ,垂足为点F ,与DC 的延长线相交于点H ,则△DEF 的面积是P ABECDF AGBDCA '三、.用适当的方法解下列方程(本题共16分)17.(1)2420x x +-= (2)()()22135+=-x x解:. 解:(3)3(32)1x x -=- (4)(3)(26)0x x x +-+=.解: 解:四、解答题(本题共36分,18-21题每题6分;22题4分,23题8分)18. 在□ABCD 中,点E 、F 是对角线AC 上两点,且AE =CF .求证:∠AFB =∠CED .19.已知:如图,□ABCD 中,对角线AC ,BD 相交于点O ,延长CD 至F ,使DF =CD ,连接BF 交AD 于点E . (1)求证:AE =ED ;(2)若AB =BC ,求∠CAF 的度数. 、20.已知:关于x 的一元二次方程2(3)30mx m x +--=(0m ≠).(1)求证:方程总有两个实数根;(2)如果m 为正整数,且方程的两个根均为整数,求m 的值. 解:E FA D CB O21. 已知:如图,在△ABC 中,∠ACB =90°,∠A =30°,AB =4,D 是AB 延长线上一点且∠CDB =45°, 求:DB 与DC 的长.22.直角三角形通过裁剪可以拼成一个与该三角形面积相等的矩形.方法如下:请你用上面图示的方法,解答下列问题:(1)对任意三角形,设计一种方案,将它分割后再拼成一个与原三角形面积相等的矩形. (2)对任意四边形设计一种方案,将它分成若干块,再拼成一个与原四边形面积相等的矩形.23.已知:在边长为6的菱形ABCD 中,动点M 从点A 出发,沿C B A →→向终点C 运动,连接DM 交AC 于点N .(1)如图1,当点M 在AB 边上时,连接BN . 1、求证:ADN ABN ∆≅∆2、若60=∠ABC ,4=AM ,求点M 到AD 的距离;(2)如图2,若90=∠ABC ,记点M 运动所经过的路程为)126(≤≤x x .试问:x 为何值时,AND ∆是等腰三角形.图1 图2BMAB 卷 满分20分1、填空题(本题5分)如图,矩形ABCD 中,AD =a ,AB =b ,依次连结它的各边中点得到第一个四边形E 1F 1G 1H 1,再依次连结四边形E 1F 1G 1H 1的各边中点得到第二个四边形E 2F 2G 2H 2,按此方法继续下去,得到的第n 个四边形E n F n G n H n 的面积等于________.2、选择题(本题5分)将矩形纸片ABCD 按如上图所示的方式折叠,恰好得到菱形AECF 。

2014-2015学年度第二学期八年级数学期中考试卷附答案

2014-2015学年度第二学期八年级数学期中考试卷附答案

2014-2015学年度第二学期八年级数学期中考试卷(考试时间:100分钟 满分:120分)一、选择题:(每小题3分,共42分)下列各题都有A 、B 、C 、D 四个答案供选择,其中只有一个答案是正确的,请把认为正确的答案前面的字母编号写在相应的题号下。

1.下列式子是分式的是( )A.2x B.11+x C.y x +2 D.πxy2 2. 使分式2-x x有意义的x 的取值范围是( )A. 2x =B.2x ≠C.2x =-D.2x ≠-3. 某种感冒病毒的直径是0.00000012米,用科学记数法表示为( )米.A .71.210-⨯ B .71012.0-⨯ C .6102.1-⨯ D .61012.0-⨯ 4.点)0,2(在( )A.x 轴上B.y 轴上C.第一象限D.第四象限 5.点P (5,4-)关于x 轴对称点是( )A .(5,4) B.(5,4-) C.(4,5-) D.(5-,4-) 6.若点P(3,-1m )在第二象限,则m 的取值范围是( )A. m <1B. m <0C. m >0D. m >1 7.函数23-=x y 的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限8.在同一坐标系中,函数x ky =和3+=kx y )0(≠k 的图像大致是( )9. 在平行四边形ABCD 中,A B C D ∠∠∠∠∶∶∶的值可以是( ) A.1234∶∶∶ B.1221∶∶∶ C.2211∶∶∶ D.2121∶∶∶ 10.下列说法错误的是( )学校: 班别: 姓名: 座号:………………………………………………………………装………………订………………线………………………………………………得分E A .平行四边形的对角相等 B.平行四边形的对角互补 C .平行四边形的对边相等 D.平行四边形的内角和是360°11.如图1,在平行四边形ABCD 中,CA ⊥AB ,若AB=3,BC=5,则平行四边形的面积等于( )A .6 B. 10 C. 12 D. 1512. 如图2,a b ∥,下列线段中是a b ,之间的距离的是( )A.AB B.AE C.EF D.BC图2 13.已知2111=-b a ,则b a ab -的值是( ) A .21 B.21- C.2 D.2-14.当一次函数32-=x y 的图像在第四象限时,自变量x 的取值范围是( ) A.0<x <23 B.x >0 C.x <23D.无法确定二、填空题:(每小题4分,共16分)15. 若分式方程212-=--x x m x 有增根,则这个增根是=x 16.若反比例函数xky = 的图象经过点(1,-2),则此函数的解析式为 。

2014-2015学年八年级下学期期中数学试卷附答案

2014-2015学年八年级下学期期中数学试卷附答案

2014-2015学年八年级下学期期中数学试卷一、选择题(本大题共10题,每小题3分,共计30分)1.下列各式、、、+1、中分式有( )A.2个B.3个C.4个D.5个2.顺次连结矩形四边的中点所得的四边形是( )A.矩形B.正方形C.菱形D.以上都不对3.函数中,自变量x的取值范围是( )A.B.C.D.4.如图,四边形ABCD中,对角线AC与BD相交于点O,不能判断四边形ABCD是平行四边形的是( )A.AB=DC,AD=BC B.AB∥DC,AO=BO C.AB=DC,∠B=∠D D.AB∥DC,∠B=∠D5.如果把分式中的m和n都扩大3倍,那么分式的值( )A.不变B.扩大3倍C.缩小3倍D.扩大9倍6.如图,平行四边形ABCD的对角线交于点O,且AB=7,△OCD的周长为23,则平行四边形ABCD的两条对角线的和是( )A.32 B.28 C.16 D.467.关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0的一个根是0,则m的值为( ) A.1 B.1或﹣1 C.﹣1 D.0.58.为了早日实现“绿色太仓,花园之城”的目标,太仓对4000米长的城北河进行了绿化改造.为了尽快完成工期,施工队每天比原计划多绿化10米,结果提前2天完成.若原计划每天绿化x米,则所列方程正确的是( )A.B.C.D.9.若要使分式的值为整数,则整数x可取的个数为( )A.5个B.2个C.3个D.4个10.在平面直角坐标系中,直角梯形AOBC的位置如图所示,∠OAC=90°,AC∥OB,OA=4,AC=5,OB=6.M、N分别在线段AC、线段BC上运动,当△MON的面积达到最大时,存在一种使得△MON周长最小的情况,则此时点M的坐标为( )A.(0,4)B.(3,4)C.(,4)D.(,3)二、填空题(本大题共8小题,每小题3分,共计24分)11.当x=__________时,分式的值为0.12.,﹣的最简公分母是__________.13.如果菱形的两条对角线长为a和b,且a、b满足,那么菱形的面积等于__________.14.如图,在▱ABCD中,BD为对角线,E、F分别是AD、BD的中点,连接EF.若EF=3,则CD的长为__________.15.如果分式方程无解,则m=__________.16.已知﹣=3,则代数式的值为__________.17.将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF.若AB=3,则BC的长为__________.18.关于x的方程:x+=c+的解是x1=c,x2=,x﹣=c﹣解是x1=c,x2=﹣,则x+=c+的解是__________.三、解答题(本大题共8小题,共计66分)19.计算或化简:(1)计算:a﹣1﹣;(2)先化简(﹣)÷,再从(1)中m的取值范围内,选取一个你认为合适的m的整数值代入求值.20.解方程(1)(x﹣5)2=2(5﹣x);(2)2x2﹣4x﹣6=0(用配方法).21.如图,在直角坐标系中,A(0,4),C(3,0).(1)①画出线段AC关于y轴对称线段AB;②将线段CA绕点C顺时针旋转一个角,得到对应线段CD,使得AD∥x轴,请画出线段CD;(2)若直线y=kx平分(1)中四边形ABCD的面积,请直接写出实数k的值.22.如图,线段AC是矩形ABCD的对角线,(1)请你作出线段AC的垂直平分线,交AC于点O,交AB于点E,交DC于点F(保留作图痕迹,不写作法)(2)求证:AE=AF.23.某中学利用假期进行学校改造,先要加固1560平方米校舍,按计划进行6天后,由于熟练,每天能多做原来的25%,结果比计划提前了4天完成.你能知道他们原来每天能加固多少平方米校舍么?实际上加固校舍花了多少天时间?24.阅读下列材料:我们定义:若一个四边形的一条对角线把四边形分成两个等腰三角形,则称这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形.如正方形就是和谐四边形.结合阅读材料,完成下列问题:(1)下列哪个四边形一定是和谐四边形__________A.平行四边形B.矩形C.菱形D.等腰梯形(2)如图,等腰Rt△ABD中,∠BAD=90°.若点C为平面上一点,AC为凸四边形ABCD 的和谐线,且AB=BC,请直接写出∠ABC的度数.25.如图1,矩形ABCD中,点P从A出发,以3cm/s的速度沿边A→B→C→D→A匀速运动;同时点Q从B出发,沿边B→C→D匀速运动,当其中一个点到达终点时两点同时停止运动,设点P运动的时间为t s.△APQ的面积s(cm2)与t(s)之间函数关系的部分图象由图2中的曲线段OE与线段EF给出.(1)点Q运动的速度为__________cm/s,a﹦__________cm2;(2)若BC﹦3cm,①求t>3时S的函数关系式;②在图(2)中画出①中相应的函数图象.26.如图①,在▱ABCD中,AB=13,BC=50,点P从点B出发,沿B﹣A﹣D﹣A运动.已知沿B﹣A运动时的速度为每秒13个单位长度,沿A﹣D﹣A运动时的速度为每秒8个单位长度.点Q从点B出发沿BC方向运动,速度为每秒5个单位长度.若P、Q两点同时出发,当点Q到达点C时,P、Q两点同时停止运动.设点P的运动时间为t(秒).连结PQ.(1)当点P沿A﹣D﹣A运动时,求AP的长(用含t的代数式表示).(2)过点Q作QR∥AB,交AD于点R,连结BR,如图②.在点P沿B﹣A﹣D运动过程中,是否存在线段PQ扫过的图形(阴影部分)被线段BR分成面积相等的两部分的情况?若存在,求出所有t的值;若不存在,请说明理由.(3)设点C、D关于直线PQ的对称点分别为C′、D′,在点P沿B﹣A﹣D运动过程中,当C′D′∥BC时,求t的值(直接写出结果)一、选择题(本大题共10题,每小题3分,共计30分)1.下列各式、、、+1、中分式有( )A.2个B.3个C.4个D.5个考点:分式的定义.分析:判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.解答:解:、、的分母中均不含有字母,因此它们是整式,而不是分式.、+1分母中含有字母,因此是分式.故选:A.点评:本题主要考查分式的定义,注意π不是字母,是常数,所以不是分式,是整式.2.顺次连结矩形四边的中点所得的四边形是( )A.矩形B.正方形C.菱形D.以上都不对考点:中点四边形.分析:因为题中给出的条件是中点,所以可利用三角形中位线性质,以及矩形对角线相等去证明四条边都相等,从而说明是一个菱形.解答:解:连接AC、BD,在△ABD中,∵AH=HD,AE=EB∴EH=BD,同理FG=BD,HG=AC,EF=AC,又∵在矩形ABCD中,AC=BD,∴EH=HG=G F=FE,∴四边形EFGH为菱形.故选:C.点评:本题考查了菱形的判定,菱形的判别方法是说明一个四边形为菱形的理论依据,常用三种方法:①定义,②四边相等,③对角线互相垂直平分.3.函数中,自变量x的取值范围是( )A.B.C.D.考点:函数自变量的取值范围.分析:根据当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.解答:解:由,得3﹣2x>0,解得x<,故选:B.点评:本题考查了函数自变量的范围,当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.4.如图,四边形ABCD中,对角线AC与BD相交于点O,不能判断四边形ABCD是平行四边形的是( )A.AB=DC,AD=BC B.AB∥DC,AO=BO C.AB=DC,∠B=∠DD.AB∥DC,∠B=∠D考点:平行四边形的判定.分析:根据平行四边形的判定定理进行判断即可.解答:解:A、根据两组对边分别相等的四边形是平行四边形可以判定四边形ABCD为平行四边形,故此选项不合题意;B、根据对角线互相平分的四边形是平行四边形可以判定四边形ABCD为平行四边形,故此选项不合题意;C、不能判定四边形为平行四边形,故此选项符合题意;D、∵AB∥CD,∴∠ABC+∠BCD=180°,∵∠B=∠D,∴AD∥BC,∴根据两组对边分别平行四边形是平行四边形可以判定四边形ABCD为平行四边形,故此选项不合题意;故选:C.点评:此题主要考查了平行四边形的判定,关键是掌握判定定理:(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形.5.如果把分式中的m和n都扩大3倍,那么分式的值( )A.不变B.扩大3倍C.缩小3倍D.扩大9倍考点:分式的基本性质.分析:根据分式的分子分母都乘以或除以同一个不为0的整式,结果不变,可得答案.解答:如果把分式中的m和n都扩大3倍,那么分式的值不变,故选:A.点评:本题考查了分式的性质,分式的分子分母都乘以或除以同一个不为0的整式,结果不变.6.如图,平行四边形ABCD的对角线交于点O,且AB=7,△OCD的周长为23,则平行四边形ABCD的两条对角线的和是( )A.32 B.28 C.16 D.46考点:平行四边形的性质.分析:由平行四边形的性质和已知条件计算即可,解题注意求平行四边形ABCD的两条对角线的和时要把两条对角线可作一个整体.解答:解:∵四边形ABCD是平行四边形,∴AB=CD=7,∵△OCD的周长为23,∴OD+OC=23﹣7=16,∵BD=2DO,AC=2OC,∴平行四边形ABCD的两条对角线的和=BD+AC=2(DO+OC)=32,故选A.点评:本题主要考查了平行四边形的基本性质,并利用性质解题.平行四边形的基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.7.关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0的一个根是0,则m的值为( ) A.1 B.1或﹣1 C.﹣1 D.0.5考点:一元二次方程的解;一元二次方程的定义.分析:根据一元二次方程的定义得到m﹣1≠0;根据方程的解的定义得到m2﹣1=0,由此可以求得m的值.解答:解:∵关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0的一个根是0,∴m2﹣1=0且m﹣1≠0,解得m=﹣1.故选:C.点评:本题考查了一元二次方程的解的定义和一元二次方程的定义.注意:一元二次方程的二次项系数不为零.8.为了早日实现“绿色太仓,花园之城”的目标,太仓对4000米长的城北河进行了绿化改造.为了尽快完成工期,施工队每天比原计划多绿化10米,结果提前2天完成.若原计划每天绿化x米,则所列方程正确的是( )A.B.C. D.考点:由实际问题抽象出分式方程.分析:关键描述语是:“提前2天完成绿化改造任务”.等量关系为:原计划的工作时间﹣实际的工作时间=2.解答:解:若设原计划每天绿化(x)m,实际每天绿化(x+10)m,原计划的工作时间为:,实际的工作时间为:方程应该为:﹣=2.故选:A.点评:此题主要考查了由实际问题抽象出分式方程,列方程解应用题的关键步骤在于找相等关系.本题主要用到的关系为:工作时间=工作总量÷工作效率.9.若要使分式的值为整数,则整数x可取的个数为( )A.5个B.2个C.3个D.4个考点:分式的值;约分.分析:首先化简分式可得,要使它的值为整数,则(x﹣1)应是3的约数,即x﹣1=±1或±3,进而解出x的值.解答:解:∵,∴根据题意,得x﹣1=±1或±3,解得x=0或x=2或x=﹣2或x=4,故选D.点评:此题考查分式的值,此类题首先要正确化简分式,然后要保证分式的值为整数,则根据分母应是分子的约数,进行分析.10.在平面直角坐标系中,直角梯形AOBC的位置如图所示,∠OAC=90°,AC∥OB,OA=4,AC=5,OB=6.M、N分别在线段AC、线段BC上运动,当△MON的面积达到最大时,存在一种使得△MON周长最小的情况,则此时点M的坐标为( )A.(0,4)B.(3,4)C.(,4)D.(,3)考点:轴对称-最短路线问题;坐标与图形性质.分析:过点M作MP∥OA,交ON于点P,过点N作NQ∥OB,分别交OA、MP于两点Q、G,则S△MON=S△OMP+S△NMP=MP•QG+MP•NG=MP•QN,因为QN取得最大值是OB 时,△MON的面积最大值=OA•OB,设O关于AC的对称点D,连接DB,交AC于M,此时AM=3,从而求得M的坐标(3,4).解答:解:如图,过点M作MP∥OA,交ON于点P,过点N作NQ∥OB,分别交OA、MP于两点Q、G,则S△MON=S△OMP+S△NMP=MP•QG+MP•NG=MP•QN,∵MP≤OA,QN≤OB,∴当点N与点B重合,QN取得最大值OB时,△MON的面积最大值=OA•OB,设O关于AC的对称点D,连接DB,交AC于M,此时△MON的面积最大,周长最短,∵=,即=,∴AM=3,∴M(3,4).故选B.点评:本题考查了直角梯形的性质,坐标和图形的性质,轴对称的性质等,作出辅助线是本题的关键.二、填空题(本大题共8小题,每小题3分,共计24分)11.当x=﹣1时,分式的值为0.考点:分式的值为零的条件.分析:根据分式值为零的条件得x+1=0且x﹣2≠0,再解方程即可.解答:解:由分式的值为零的条件得x+1=0,且x﹣2≠0,解得:x=﹣1,故答案为:﹣1.点评:此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.12.,﹣的最简公分母是4x3y.考点:最简公分母.分析:确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.解答:解:,﹣的最简公分母是4x3y;故答案为:4x3y.点评:此题考查了最简公分母,通分的关键是准确求出各个分式中分母的最简公分母,确定最简公分母的方法一定要掌握.13.如果菱形的两条对角线长为a和b,且a、b满足,那么菱形的面积等于12.考点:菱形的性质;非负数的性质:偶次方;非负数的性质:算术平方根.分析:由a、b满足,即可求得a与b的值,又由菱形的两条对角线长为a和b,根据菱形的面积等于对角线积的一半,即可求得答案.解答:解:∵a、b满足,∴,解得:a=4,b=6,∵菱形的两条对角线长为a和b,∴菱形的面积为:ab=12.故答案为:12.点评:此题考查了菱形的性质以及非负数的非负性.注意掌握菱形的面积等于对角线积的一半是关键.14.如图,在▱ABCD中,BD为对角线,E、F分别是AD、BD的中点,连接EF.若EF=3,则CD的长为6.考点:三角形中位线定理;平行四边形的性质.分析:根据三角形中位线等于三角形第三边的一半可得AB长,进而根据平行四边形的对边相等可得CD=AB.解答:解:∵EF是△ABD的中位线,∴AB=2EF=6,又∵AB=CD,∴CD=6.故答案为:6.点评:本题考查了三角形中位线定理及平行四边形的性质,熟练掌握定理和性质是解题的关键.15.如果分式方程无解,则m=﹣1.考点:分式方程的解.专题:计算题.分析:分式方程无解的条件是:去分母后所得整式方程无解,或解这个整式方程得到的解使原方程的分母等于0.解答:解:方程去分母得:x=m,当x=﹣1时,分母为0,方程无解.即m=﹣1方程无解.点评:本题考查了分式方程无解的条件,是需要识记的内容.16.已知﹣=3,则代数式的值为﹣.考点:分式的化简求值.专题:计算题.分析:已知等式左边通分并利用同分母分式的减法法则计算,整理得到x﹣y=﹣3xy,原式变形后代入计算即可求出值.解答:解:∵﹣==3,即x﹣y=﹣3xy,∴原式===﹣,故答案为:﹣点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.17.将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF.若AB=3,则BC的长为.考点:菱形的性质;勾股定理.专题:几何图形问题.分析:根据菱形及矩形的性质可得到∠BAC的度数,从而根据直角三角函的性质求得BC 的长.解答:解:∵AECF为菱形,∴∠FCO=∠ECO,由折叠的性质可知,∠ECO=∠BCE,又∠FCO+∠ECO+∠BCE=90°,∴∠FCO=∠ECO=∠BCE=30°,在Rt△EBC中,EC=2EB,又EC=AE,AB=AE+EB=3,∴EB=1,EC=2,∴BC=,故答案为:.点评:根据折叠以及菱形的性质发现特殊角,根据30°的直角三角形中各边之间的关系求得BC的长.18.关于x的方程:x+=c+的解是x1=c,x2=,x﹣=c﹣解是x1=c,x2=﹣,则x+=c+的解是x1=c,x2=+3.考点:分式方程的解.专题:计算题.分析:根据题中方程的解归纳总结得到一般性规律,所求方程变形后确定出解即可.解答:解:所求方程变形得:x﹣3+=c﹣3+,根据题中的规律得:x﹣3=c﹣3,x﹣3=,解得:x1=c,x2=+3,故答案为:x1=c,x2=+3点评:此题考查了分式方程的解,归纳总结得到题中方程解的规律是解本题的关键.三、解答题(本大题共8小题,共计66分)19.计算或化简:(1)计算:a﹣1﹣;(2)先化简(﹣)÷,再从(1)中m的取值范围内,选取一个你认为合适的m的整数值代入求值.考点:分式的化简求值.专题:计算题.分析:(1)原式通分并利用同分母分式的减法法则计算即可得到结果;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把m=0代入计算即可求出值.解答:解:(1)原式=﹣=﹣;(2)原式=•=•=,当m=0时,原式=﹣1.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.20.解方程(1)(x﹣5)2=2(5﹣x);(2)2x2﹣4x﹣6=0(用配方法).考点:解一元二次方程-因式分解法;解一元二次方程-配方法.分析:(1)先变形,再提公因式即可;(2)先把系数化为1,再配方法即可.解答:解:(1)整理得:(x﹣5)2+2(x﹣5)=0;(x﹣5)(x﹣5+2)=0,x﹣5=0或x﹣3=0,解得x1=5,x2=3;(2)把二次项系数化为1得,x2﹣2x﹣3=0,x2﹣2x=3,x2﹣2x+1=4,(x﹣1)2=4,x﹣1=±2;解得x1=﹣1,x2=3.点评:本题考查了解一元二次方程,用到的方法有:提公因式法和配方法,是常见题型,要熟练掌握.21.如图,在直角坐标系中,A(0,4),C(3,0).(1)①画出线段AC关于y轴对称线段AB;②将线段CA绕点C顺时针旋转一个角,得到对应线段CD,使得AD∥x轴,请画出线段CD;(2)若直线y=kx平分(1)中四边形ABCD的面积,请直接写出实数k的值.考点:作图-旋转变换;作图-轴对称变换.专题:作图题.分析:(1)①根据关于y轴对称的点的横坐标互为相反数确定出点B的位置,然后连接AB 即可;②根据轴对称的性质找出点A关于直线x=3的对称点,即为所求的点D;(2)根据平行四边形的性质,平分四边形面积的直线经过中心,然后求出AC的中点,代入直线计算即可求出k值.解答:解:(1)①如图所示;②直线CD如图所示;(2)∵由图可知,AD=BC,AD∥BC,∴四边形ABCD是平行四边形.∵A(0,4),C(3,0),∴平行四边形ABCD的中心坐标为(,2),代入直线得,k=2,解得k=.点评:本题考查了利用旋转变换作图,利用轴对称变换作图,还考查了平行四边形的判定与性质,是基础题,要注意平分四边形面积的直线经过中心的应用.22.如图,线段AC是矩形ABCD的对角线,(1)请你作出线段AC的垂直平分线,交AC于点O,交AB于点E,交DC于点F(保留作图痕迹,不写作法)(2)求证:AE=AF.考点:矩形的性质;线段垂直平分线的性质;作图—基本作图.分析:(1)分别以A,C为圆心,以大于AC的长为半径画弧,然后连接即可;(2)首先证得△COF≌△AOE,然后由线段垂直平分线的性质,证得AF=CF,即可证得结论.解答:(1)解:如图:分别以A,C为圆心,以大于AC的长为半径画弧,然后连接即可;(2)证明:∵四边形ABCD是矩形,∴AB∥CD,∴∠OCF=∠OAE,在△OCF和△OAE中,,∴△COF≌△AOE(ASA),∴AE=CF,∵EF是AC的垂直平分线,∴AF=CF,∴AE=AF.点评:此题考查了矩形的性质、线段垂直平分线的性质以及全等三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.23.某中学利用假期进行学校改造,先要加固1560平方米校舍,按计划进行6天后,由于熟练,每天能多做原来的25%,结果比计划提前了4天完成.你能知道他们原来每天能加固多少平方米校舍么?实际上加固校舍花了多少天时间?考点:分式方程的应用.分析:根据实际比计划提前了4天这一等量关系列出方程求解.解答:解:设原来每天加固x平方米,则熟练后每天加固(1+25%)x平方米,由题意得:=解得:x=60经检验x=60是方程的解,∴﹣4=22答:原来每天能加固60平方米校舍,实际上加固校舍花了22天时间.点评:本题考查了分式方程的应用,解题的关键是找到等量关系.24.阅读下列材料:我们定义:若一个四边形的一条对角线把四边形分成两个等腰三角形,则称这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形.如正方形就是和谐四边形.结合阅读材料,完成下列问题:(1)下列哪个四边形一定是和谐四边形CA.平行四边形B.矩形C.菱形D.等腰梯形(2)如图,等腰Rt△ABD中,∠BAD=90°.若点C为平面上一点,AC为凸四边形ABCD 的和谐线,且AB=BC,请直接写出∠ABC的度数.考点:等腰梯形的性质;等腰直角三角形;平行四边形的性质;菱形的性质;矩形的性质.专题:新定义.分析:(1)有和谐四边形的定义即可得到菱形是和谐四边形;(2)首先根据题意画出图形,然后由AC是四边形ABCD的和谐线,可以得出△ACD是等腰三角形,从图1,图2,图3三种情况运用等边三角形的性质,正方形的性质和30°的直角三角形性质就可以求出∠ABC的度数.解答:解:(1)∵菱形的四条边相等,∴连接对角线能得到两个等腰三角形,∴菱形是和谐四边形;(2)解:∵AC是四边形ABCD的和谐线,∴△ACD是等腰三角形,在等腰Rt△ABD中,∵AB=AD,∴AB=AD=BC,如图1,当AD=AC时,∴AB=AC=BC,∠ACD=∠ADC∴△ABC是正三角形,∴∠ABC=60°.如图2,当AD=CD时,∴AB=AD=BC=CD.∵∠BAD=90°,∴四边形ABCD是正方形,∴∠ABC=90°;如图3,当AC=CD时,过点C作CE⊥AD于E,过点B作BF⊥CE于F,∵AC=CD.CE⊥AD,∴AE=AD,∠ACE=∠DCE.∵∠BAD=∠AEF=∠BFE=90°,∴四边形ABFE是矩形.∴BF=AE.∵AB=AD=BC,∴BF=BC,∴∠BCF=30°.∵AB=BC,∴∠ACB=∠BAC.∵AB∥CE,∴∠BAC=∠ACE,∴∠ACB=∠BAC=∠BCF=15°,∴∠ABC=150°,综上:∠ABC的度数可能是:60°90°150°.点评:此题考查了等腰直角三角形的性质,等腰三角形的性质、矩形的性质、正方形的性质,菱形的性质,此题难度较大,注意掌握数形结合思想与分类讨论思想的应用.25.如图1,矩形ABCD中,点P从A出发,以3cm/s的速度沿边A→B→C→D→A匀速运动;同时点Q从B出发,沿边B→C→D匀速运动,当其中一个点到达终点时两点同时停止运动,设点P运动的时间为t s.△APQ的面积s(cm2)与t(s)之间函数关系的部分图象由图2中的曲线段OE与线段EF给出.(1)点Q运动的速度为1cm/s,a﹦6cm2;(2)若BC﹦3cm,①求t>3时S的函数关系式;②在图(2)中画出①中相应的函数图象.考点:二次函数综合题;动点问题的函数图象.专题:压轴题.分析:(1)根据点E时S最大,判断出2秒时点P运动至点B,点Q运动至点C,然后根据点P的速度求出AB,再根据3秒时,S=0判断出点P与点Q重合,然后根据追击问题的等量关系列出方程求出点Q的速度即可得解;(2)①求出3秒时点P、Q在点C重合,再求出点P到达点D的时间为5秒,到达点A 的时间为6秒,然后分3<t≤5时表示出PQ,然后根据三角形的面积公式列式整理即可;5<t≤6时,表示出AP、DQ,然后利用三角形的面积公式列式整理即可;②根据函数解析式作出图象即可.解答:解:(1)由图可知,2秒时点P运动至点B,点Q运动至点C,∵点P的速度为3cm/s,∴AB=3×=6cm,3秒时,S=0判断出点P与点Q重合,设点Q的速度为xcm/s,则3x+6=3×3,解得x=1,此时,BC=2×1=2cm,a=×6×2=6cm2,故答案为:1,6;(2)∵(6+3)÷3=3s,3÷1=3s,∴3秒时点P、Q在点C重合,点P到达点D的时间为:(6+3+6)÷3=5s到达点A的时间为:(6+3+6+3)÷3=6s,①若3<t≤5,则PQ=3t﹣t﹣6=2t﹣6,S=×(2t﹣6)×3=3t﹣9;若5<t≤6,则AP=(6+3+6+3)﹣3t=18﹣3t,DQ=(6+3)﹣t=9﹣t,S=×(18﹣3t)×(9﹣t)=t2﹣t+81;所以,S=;②函数图象如图2所示.点评:本题是二次函数综合题型,动点问题函数图象,主要利用了路程、速度、时间三者之间的关系,根据图2判断出2秒时点P、Q的位置是解题的关键,也是本题的难点,根据3秒时,点P、Q重合利用追击问题等量关系求出点Q的速度也很重要.26.如图①,在▱ABCD中,AB=13,BC=50,点P从点B出发,沿B﹣A﹣D﹣A运动.已知沿B﹣A运动时的速度为每秒13个单位长度,沿A﹣D﹣A运动时的速度为每秒8个单位长度.点Q从点B出发沿BC方向运动,速度为每秒5个单位长度.若P、Q两点同时出发,当点Q到达点C时,P、Q两点同时停止运动.设点P的运动时间为t(秒).连结PQ.(1)当点P沿A﹣D﹣A运动时,求AP的长(用含t的代数式表示).(2)过点Q作QR∥AB,交AD于点R,连结BR,如图②.在点P沿B﹣A﹣D运动过程中,是否存在线段PQ扫过的图形(阴影部分)被线段BR分成面积相等的两部分的情况?若存在,求出所有t的值;若不存在,请说明理由.(3)设点C、D关于直线PQ的对称点分别为C′、D′,在点P沿B﹣A﹣D运动过程中,当C′D′∥BC时,求t的值(直接写出结果)考点:相似形综合题.分析:(1)分情况讨论,当点P沿A﹣D运动时,当点P沿D﹣A运动时分别可以表示出AP的值;(2)分情况讨论,当0<t<1时,当1<t<时,当<t<时,利用三角形的面积相等建立方程求出其解即可;(3)分情况讨论当P在A﹣D之间或D﹣A之间时,如图⑥,根据轴对称的性质可以知道四边形QCOC′为菱形,根据其性质建立方程求出其解,当P在D﹣A之间如图⑦,根据菱形的性质建立方程求出其解即可.解答:解:(1)当点P沿A﹣D运动时,AP=8(t﹣1)=8t﹣8,当点P沿D﹣A运动时,AP=50×2﹣8(t﹣1)=108﹣8t;(2)当点P与点R重合时,AP=BQ,8t﹣8=5t,t=.当0<t≤1时,如图③.∵S△BPM=S△BQM,∴PM=QM.∵AB∥QR,∴∠PBM=∠QRM,∠BPM=∠MQR,在△BPM和△RQM中,∴△BPM≌△RQM(AAS).∴BP=RQ,∵RQ=AB,∴BP=AB∴13t=13,解得:t=1当1<t≤时,如图④.∵BR平分阴影部分面积,∴P与点R重合.∴t=.当<t≤时,如图⑤.∵S△ABR=S△QBR,∴S△ABR<S四边形BQPR.∴BR不能把四边形ABQP分成面积相等的两部分.综上所述,当t=1或时,线段PQ扫过的图形(阴影部分)被线段BR分成面积相等的两部分.(3)如图⑥,当P在A﹣D之间或D﹣A之间时,C′D′在BC上方且C′D′∥BC时,∴∠C′OQ=∠OQC.∵△C′OQ≌△COQ,∴∠C′OQ=∠COQ,∴∠CQO=∠COQ,∴QC=OC,∴50﹣5t=50﹣8(t﹣1)+13,或50﹣5t=8(t﹣1)﹣50+13,解得:t=7或t=.当P在A﹣D之间或D﹣A之间,C′D′在BC下方且C′D′∥BC时,如图⑦.同理由菱形的性质可以得出:OD=PD,∴50﹣5t+13=8(t﹣1)﹣50,解得:t=.∴当t=7,t=,t=时,点C、D关于直线PQ的对称点分别为C′、D′,且C′D′∥BC.点评:本题考查了平行四边形的性质的运用,菱形的性质的运用,全等三角形的判定及性质的运用,分类讨论的数学思想的运用,轴对称的性质的运用,三角形的面积公式的运用,解答时灵活运用动点问题的解答方法确定分界点是解答本题的关键和难点.。

2014-2015年浙江省宁波市八年级(下)期中数学试卷(解析版)

2014-2015年浙江省宁波市八年级(下)期中数学试卷(解析版)

2014-2015学年浙江省宁波市八年级(下)期中数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下列方程中,一元二次方程的是()A.2x﹣x2=0B.3(x﹣2)+x=1C.x2﹣2xy﹣3y2=0D.﹣x+3=02.(3分)下面这几个车标中,是中心对称图形而不是轴对称图形的共有()A.1B.2C.3D.43.(3分)把方程x2﹣4x﹣7=0化成(x﹣m)2=n的形式,则m、n的值是()A.2,7B.﹣2,11C.﹣2,7D.2,114.(3分)若一个多边形的内角和等于720°,则这个多边形的边数是()A.5B.6C.7D.85.(3分)一元二次方程x2+x+2=0的根的情况是()A.有两个不相等的正根B.有两个不相等的负根C.没有实数根D.有两个相等的实数根6.(3分)甲,乙两班举行班际电脑汉字输入比赛,各选10名选手参赛,各班参赛学生每分钟输入汉字个数统计如下表:通过计算可知两组数据的方差分别为S2甲=2.0,S2乙=2.7,则下列说法:①两组数据的平均数相同;②甲组学生比乙组学生的成绩稳定;③两组学生成绩的中位数相同;④两组学生成绩的众数相同.其中正确的有()A.1个B.2个C.3个D.4个7.(3分)四边形ABCD中,对角线AC、BD相交于点O,给出下列四个条件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD,从中任选两个条件,能使四边形ABCD为平行四边形的选法有()A.6种B.5种C.4种D.3种8.(3分)某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂五、六月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x)2=182B.50+50(1+x)+50(1+x)2=182C.50(1+2x)=182D.50+50(1+x)+50(1+2x)2=1829.(3分)如图,▱ABCD的对角线AC,BD相交于O,EF过点O与AD,BC分别相交于E,F,若AB=4,BC=5,OE=1.5,那么四边形EFCD的周长为()A.16B.14C.12D.1010.(3分)已知点D与点A(﹣5,0),B(0,12),C(a,a)是一平行四边形的四个顶点,则CD长的最小值为()A.13B.C.D.12二、填空题:(本大题共10小题,每小题3分,共30分)11.(3分)数据2,4,4,5,3,9,4,5,1,8的中位数为.12.(3分)若关于x的方程2x2﹣3x+c=0的一个根是1,则c的值是.13.(3分)用反证法证明“在三角形中,至少有一个内角大于或等于60°”时,应先假设.14.(3分)写出一个以3,﹣1为根的一元二次方程为.15.(3分)如图,若D,E分别是AB,AC中点,现测得DE的长为10米,则池塘的宽BC是米.16.(3分)已知关于x的方程x2﹣mx+2m﹣1=0的两个实数根的平方和为7,那么m的值是.17.(3分)已知一个三角形的两边长分别为2和9,第三边的长为一元二次方程x2﹣14x+48=0的一个根,则这个三角形的周长为.18.(3分)如图,E是直线CD上的一点.已知▱ABCD的面积为52cm2,则△ABE 的面积为cm2.19.(3分)如图,用同样大小的正方形瓷砖铺一块正方形地面,两条对角线铺黑色,其他地方铺白色.铺满这块地面一共用了白色瓷砖100块,那么黑色瓷砖共用了块.20.(3分)若一个四边形的一条对角线把四边形分成两个等腰三角形,我们把这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形.在四边形ABCD中,AB=AD=BC,∠BAD=90°,AC是四边形ABCD的和谐线,则∠BCD=.三、解答题:(本大题共7小题,共60分)21.(6分)解方程:(1)(x+2)2=2x+4(2)3x2﹣8x﹣3=0.22.(6分)如图所示,在平行四边形ABCD中,对角线AC与BD相交于点O,M,N在对角线AC上,且AM=CN,求证:四边形BNDM是平行四边形.23.(8分)某校初三学生开展踢毽子比赛活动,每班派5名学生参加,按团体总分多少排列名次,在规定时间内每人踢100个以上(含100)为优秀.下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个):经统计发现两班总数相等.此时有学生建议,可以通过考察数据中的其他信息作为参考.请你回答下列问题:(1)填空:甲班的优秀率为,乙班的优秀率为;(2)填空:甲班比赛数据的中位数为,乙班比赛数据的中位数为;(3)填空:估计两班比赛数据的方差较小的是班(填甲或乙)(4)根据以上三条信息,你认为应该把冠军奖状发给哪一个班级?简述你的理由.24.(8分)随着“五一”小长假的来临,某旅行社为了吸引市民组团去旅游,推出了如下收费标准:若某单位组织员工去古城旅游,预计将付给该旅行社旅游费用27000元,请问该单位这次共有多少员工去古城旅游?25.(10分)已知关于x的一元二次方程x2﹣(k+2)x+2k=0.(1)若x=1是这个方程的一个根,求k的值和它的另一根;(2)求证:无论k取任何实数,方程总有实数根.(3)若等腰三角形的一边长为5,另两边长恰好是这个方程的两个根,求这个等腰三角形的周长.26.(10分)在△ABC中,AB=AC,点D在边BC所在的直线上,过点D作DF∥AC交直线AB于点F,DE∥AB交直线AC于点E.(1)当点D在边BC上时,如图①,求证:DE+DF=AC.(2)当点D在边BC的延长线上时,如图②;当点D在边BC的反向延长线上时,如图③,请分别写出图②、图③中DE,DF,AC之间的数量关系,不需要证明.(3)若AC=6,DE=4,则DF=.27.(12分)如图,在Rt△ABC中,∠C=90°,BC=8,AC=6,动点P从点A开始,沿边AC向点C以每秒1个单位长度的速度运动,动点D从点A开始,沿边AB向点B以每秒个单位长度的速度运动,且恰好能始终保持连结两动点的直线PD⊥AC,动点Q从点C开始,沿边CB向点B以每秒2个单位长度的速度运动,连结PQ.点P,D,Q分别从点A,C同时出发,当其中一点到达端点时,另两个点也随之停止运动,设运动时间为t秒(t≥0).(1)当t为何值时,四边形BQPD的面积为△ABC面积的一半?(2)是否存在t的值,使四边形PDBQ为平行四边形?若存在,求出t的值;若不存在,说明理由.2014-2015学年浙江省宁波市八年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下列方程中,一元二次方程的是()A.2x﹣x2=0B.3(x﹣2)+x=1C.x2﹣2xy﹣3y2=0D.﹣x+3=0【解答】解:A、2x﹣x2=0是一元二次方程,故A正确;B、3(x﹣2)+x=1是一元一次方程,故B错误;C、x2﹣2xy﹣3y2=0是二元二次方程,故C错误;D、﹣x+3=0是分式方程,故D错误;故选:A.2.(3分)下面这几个车标中,是中心对称图形而不是轴对称图形的共有()A.1B.2C.3D.4【解答】解:第一个图形,既是中心对称图形,又是轴对称图形,故选项错误;第二个图形,是轴对称图形,不是中心对称图形,故选项错误;第三个图形,是轴对称图形,不是中心对称图形,故选项错误;第四、五个是中心对称图形而不是轴对称图形,故选项正确.故选:B.3.(3分)把方程x2﹣4x﹣7=0化成(x﹣m)2=n的形式,则m、n的值是()A.2,7B.﹣2,11C.﹣2,7D.2,11【解答】解:由原方程移项,得x2﹣4x=7,等式两边同时加上一次项系数一半的平方,得x2﹣4x+(﹣2)2=7+(﹣2)2配方,得∴(x﹣2)2=11,∴m=2,n=11,故选:D.4.(3分)若一个多边形的内角和等于720°,则这个多边形的边数是()A.5B.6C.7D.8【解答】解:因为多边形的内角和公式为(n﹣2)•180°,所以(n﹣2)×180°=720°,解得n=6,所以这个多边形的边数是6.故选:B.5.(3分)一元二次方程x2+x+2=0的根的情况是()A.有两个不相等的正根B.有两个不相等的负根C.没有实数根D.有两个相等的实数根【解答】解:∵a=1,b=1,c=2,∴△=b2﹣4ac=12﹣4×1×2=﹣7<0,∴方程没有实数根.故选:C.6.(3分)甲,乙两班举行班际电脑汉字输入比赛,各选10名选手参赛,各班参赛学生每分钟输入汉字个数统计如下表:通过计算可知两组数据的方差分别为S2甲=2.0,S2乙=2.7,则下列说法:①两组数据的平均数相同;②甲组学生比乙组学生的成绩稳定;③两组学生成绩的中位数相同;④两组学生成绩的众数相同.其中正确的有()A.1个B.2个C.3个D.4个【解答】解:①由平均数的定义知,甲班学生的平均成绩为:=135,乙班学生的平均成绩为:=135,所以他们的平均数相同.②甲组学生比乙组学生的成绩方差小,∴甲组学生比乙组学生的成绩稳定.③甲班学生的成绩按从小到大排列:132、134、134、135、135、135、135、136、137、137,可见其中位数是135;乙班学生的成绩按从小到大排列:133、134、134、134、134、135、136、136、137、137,可见其中位数是134.5,所以两组学生成绩的中位数不相同;④甲班学生成绩的众数是135,乙班学生成绩的众数是134,所以两组学生成绩的众数不相同.故选:B.7.(3分)四边形ABCD中,对角线AC、BD相交于点O,给出下列四个条件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD,从中任选两个条件,能使四边形ABCD为平行四边形的选法有()A.6种B.5种C.4种D.3种【解答】解:①②组合可根据一组对边平行且相等的四边形是平行四边形判定出四边形ABCD为平行四边形;③④组合可根据对角线互相平分的四边形是平行四边形判定出四边形ABCD为平行四边形;①③可证明△ADO≌△CBO,进而得到AD=CB,可利用一组对边平行且相等的四边形是平行四边形判定出四边形ABCD为平行四边形;①④可证明△ADO≌△CBO,进而得到AD=CB,可利用一组对边平行且相等的四边形是平行四边形判定出四边形ABCD为平行四边形;∴有4种可能使四边形ABCD为平行四边形.故选:C.8.(3分)某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂五、六月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x)2=182B.50+50(1+x)+50(1+x)2=182C.50(1+2x)=182D.50+50(1+x)+50(1+2x)2=182【解答】解:依题意得五、六月份的产量为50(1+x)、50(1+x)2,∴50+50(1+x)+50(1+x)2=182.故选:B.9.(3分)如图,▱ABCD的对角线AC,BD相交于O,EF过点O与AD,BC分别相交于E,F,若AB=4,BC=5,OE=1.5,那么四边形EFCD的周长为()A.16B.14C.12D.10【解答】解:∵四边形ABCD是平行四边形,∴CD=AB=4,AD=BC=5,OA=OC,AD∥BC,∴∠EAO=∠FCO,∠AEO=∠CFO,在△AOE和△COF中,,∴△AOE≌△COF(AAS),∴OF=OE=1.5,CF=AE,故四边形EFCD的周长为CD+EF+ED+FC=CD+EF+AE+ED=CD+AD+EF=4+5+1.5×2=12.故选:C.10.(3分)已知点D与点A(﹣5,0),B(0,12),C(a,a)是一平行四边形的四个顶点,则CD长的最小值为()A.13B.C.D.12【解答】解:有两种情况:①CD是平行四边形的一条边,那么有AB=CD==13,②CD是平行四边形的一条对角线,过C作CM⊥AO于M,过D作DF⊥AO于F,交AC于Q,过B作BN⊥DF于N,则∠BND=∠DFA=∠CMA=∠QFA=90°,∠CAM+∠FQA=90°,∠BDN+∠DBN=90°,∵四边形ACBD是平行四边形,∴BD=AC,∠C=∠D,BD∥AC,∴∠BDF=∠FQA,∴∠DBN=∠CAM,∵在△DBN和△CAM中∴△DBN≌△CAM(AAS),∴DN=CM=a,BN=AM=a+5,∴D(﹣5﹣a,12﹣a),由勾股定理得:CD2=(5+a+a)2+(12﹣a﹣a)2=8(a﹣)2+,当a=时,CD有最小值,是,∵<13,∴CD的最小值是.故选:C.二、填空题:(本大题共10小题,每小题3分,共30分)11.(3分)数据2,4,4,5,3,9,4,5,1,8的中位数为4.【解答】解:把数据按从小到大排列1,2,3,4,4,4,5,5,8,9共有10个数,最中间一个数为4,所以这组数据的中位数为4.故答案为:4.12.(3分)若关于x的方程2x2﹣3x+c=0的一个根是1,则c的值是1.【解答】解:∵关于x的方程2x2﹣3x+c=0的一个根是1,∴2×12﹣3×1+c=0,即﹣1+c=0,解得,c=1.故答案是:1.13.(3分)用反证法证明“在三角形中,至少有一个内角大于或等于60°”时,应先假设三角形的三个内角都小于60°.【解答】解:第一步应假设结论不成立,即三角形的三个内角都小于60°.故答案为:三角形的三个内角都小于60°.14.(3分)写出一个以3,﹣1为根的一元二次方程为(x﹣3)(x+1)=0.【解答】解:如(x﹣3)(x+1)=0等.15.(3分)如图,若D,E分别是AB,AC中点,现测得DE的长为10米,则池塘的宽BC是20米.【解答】解:∵D、E分别是AB、AC中点,∴BC=2DE=2×10=20(米).故答案是:20.16.(3分)已知关于x的方程x2﹣mx+2m﹣1=0的两个实数根的平方和为7,那么m的值是﹣1.【解答】解:∵方程x2﹣mx+2m﹣1=0有两实根,∴△≥0;即(﹣m)2﹣4(2m﹣1)=m2﹣8m+4≥0,解得m≥4+2或m≤4﹣2.设原方程的两根为α、β,则α+β=m,αβ=2m﹣1.α2+β2=α2+β2+2αβ﹣2αβ=(α+β)2﹣2αβ=m2﹣2(2m﹣1)=m2﹣4m+2=7.即m2﹣4m﹣5=0.解得m=﹣1或m=5∵m=5≤4+2,∴m=5(舍去)∴m=﹣1.故答案为:﹣1.17.(3分)已知一个三角形的两边长分别为2和9,第三边的长为一元二次方程x2﹣14x+48=0的一个根,则这个三角形的周长为19.【解答】解:解方程x2﹣14x+48=0得第三边的边长为6或8,依据三角形三边关系,不难判定边长2,6,9不能构成三角形,2,8,9能构成三角形,∴三角形的周长=2+8+9=19.故答案为:19.18.(3分)如图,E是直线CD上的一点.已知▱ABCD的面积为52cm2,则△ABE 的面积为26cm2.【解答】解:根据图形可得:△ABE的面积为平行四边形的面积的一半,又∵▱ABCD的面积为52cm2,∴△ABE的面积为26cm2.故答案为:26.19.(3分)如图,用同样大小的正方形瓷砖铺一块正方形地面,两条对角线铺黑色,其他地方铺白色.铺满这块地面一共用了白色瓷砖100块,那么黑色瓷砖共用了21块.【解答】解:设黑色瓷砖共用x块,则每条对角线上有瓷砖()块,由平移的性质得,正方形的边长上有()块瓷砖,正方形内总共有:()2块瓷砖,故可得方程:()2﹣x=100,解得:x=21,即黑色瓷砖共用了21块.故答案为21.20.(3分)若一个四边形的一条对角线把四边形分成两个等腰三角形,我们把这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形.在四边形ABCD中,AB=AD=BC,∠BAD=90°,AC是四边形ABCD的和谐线,则∠BCD= 45°或90°或135°.【解答】解:∵AC是四边形ABCD的和谐线,∴△ACD是等腰三角形.∵AB=AD=BC,如图1,当AD=AC时,∴AB=AC=BC,∠ACD=∠ADC∴△ABC是正三角形,∴∠BAC=∠BCA=60°.∵∠BAD=90°,∴∠CAD=30°,∴∠ACD=∠ADC=75°,∴∠BCD=60°+75°=135°.如图2,当AD=CD时,∴AB=AD=BC=CD.∵∠BAD=90°,∴四边形ABCD是正方形,∴∠BCD=90°;如图3,当AC=CD时,过点C作CE⊥AD于E,过点B作BF⊥CE于F,∵AC=CD.CE⊥AD,∴AE=AD,∠ACE=∠DCE.∵∠BAD=∠AEF=∠BFE=90°,∴四边形ABFE是矩形.∴BF=AE.∵AB=AD=BC,∴BF=BC,∴∠BCF=30°.∵AB=BC,∴∠ACB=∠BAC.∵AB∥CE,∴∠BAC=∠ACE,∴∠ACB=∠ACE=∠BCF=15°,∴∠BCD=15°×3=45°.综上:∠BCD的度数可能是:135°,90°或45°故答案为:45°或90°或135°.三、解答题:(本大题共7小题,共60分)21.(6分)解方程:(1)(x+2)2=2x+4(2)3x2﹣8x﹣3=0.【解答】解:(1)∵(x+2)2=2x+4,∴(x+2)2﹣2(x+2)=0,∴(x+2)(x+2﹣2)=0,∴x+2=0或x=0,∴x1=﹣2,x2=0;(2)∵3x2﹣8x﹣3=0,∴a=3,b=﹣8,c=﹣3,∴b2﹣4ac=(﹣8)2﹣4×3(﹣3)=100,∴x===,∴x1=﹣,x2=3.22.(6分)如图所示,在平行四边形ABCD中,对角线AC与BD相交于点O,M,N在对角线AC上,且AM=CN,求证:四边形BNDM是平行四边形.【解答】证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵AM=CN,∴OA﹣AM=OC﹣CN,即OM=ON,∴四边形BNDM是平行四边形.23.(8分)某校初三学生开展踢毽子比赛活动,每班派5名学生参加,按团体总分多少排列名次,在规定时间内每人踢100个以上(含100)为优秀.下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个):经统计发现两班总数相等.此时有学生建议,可以通过考察数据中的其他信息作为参考.请你回答下列问题:(1)填空:甲班的优秀率为60%,乙班的优秀率为40%;(2)填空:甲班比赛数据的中位数为100,乙班比赛数据的中位数为97;(3)填空:估计两班比赛数据的方差较小的是甲班(填甲或乙)(4)根据以上三条信息,你认为应该把冠军奖状发给哪一个班级?简述你的理由.【解答】解:(1)甲班的优秀率为:×100%=60%,乙班的优秀率为×100%=40%;(2)把甲班比赛数据从小到大排列为:89,98,100,103,110,最中间的数是100,则甲班比赛数据的中位数为100;把乙班比赛数据从小到大排列为:89,95,97,100,119,最中间的数是97,则乙班比赛数据的中位数为97;故答案为:100,97;(3)甲班的平均数是:(89+98+100+103+110)÷5=100(个);乙班的平均数是:(89+95+97+100+119)÷5=100(个),甲的方差是:[(89﹣100)2+(98﹣100)2+(100﹣100)2+(103﹣100)2+(110﹣100)2]=46.8,乙的方差是:[(89﹣100)2+(95﹣100)2+(97﹣100)2+(100﹣100)2+(119﹣100)2]=103.2,则甲班的方差较小;故答案为:甲;(4)甲班,理由:甲班的优秀率高于乙班,甲班的成绩从中位数看也高于乙班,甲班的方差小于乙班,成绩更稳定.24.(8分)随着“五一”小长假的来临,某旅行社为了吸引市民组团去旅游,推出了如下收费标准:若某单位组织员工去古城旅游,预计将付给该旅行社旅游费用27000元,请问该单位这次共有多少员工去古城旅游?【解答】解:∵25×1000<27000,∴人数应该大于25,设共有x名员工去古城旅游.[1000﹣(x﹣25)×20]×x=27000解得x=30或x=45,当x=45时,付费单价为1000﹣(x﹣25)×20=600<700,故舍去,当x=30时,1000﹣(x﹣25)×20=900>700.答:共有30名员工去古城旅游.25.(10分)已知关于x的一元二次方程x2﹣(k+2)x+2k=0.(1)若x=1是这个方程的一个根,求k的值和它的另一根;(2)求证:无论k取任何实数,方程总有实数根.(3)若等腰三角形的一边长为5,另两边长恰好是这个方程的两个根,求这个等腰三角形的周长.【解答】解:(1)把x=1代入x2﹣(k+2)x+2k=0,得1﹣k﹣2+2k=0,解得k=1.设方程的另一根为t,则t=2k=2.即k的值为1,方程的另一根为2;(2)∵△=(k﹣2)2≥0,∴对于任意实数k,原方程一定有实数根;(3)由x2﹣(k+2)x+2k=0得:(x﹣2)(x﹣k)=0此方程的两根为x1=k,x2=2若x1≠x2,则x1=5,此等腰三角形的三边分别为5,5,2,周长为12.若x1=x2=2,等腰三角形的三边分别为2,2,5,不存在此三角形,所以,这个等腰三角形的周长为12.26.(10分)在△ABC中,AB=AC,点D在边BC所在的直线上,过点D作DF∥AC交直线AB于点F,DE∥AB交直线AC于点E.(1)当点D在边BC上时,如图①,求证:DE+DF=AC.(2)当点D在边BC的延长线上时,如图②;当点D在边BC的反向延长线上时,如图③,请分别写出图②、图③中DE,DF,AC之间的数量关系,不需要证明.(3)若AC=6,DE=4,则DF=2或10.【解答】解:(1)证明:∵DF∥AC,DE∥AB,∴四边形AFDE是平行四边形.∴AF=DE,∵DF∥AC,∴∠FDB=∠C又∵AB=AC,∴∠B=∠C,∴∠FDB=∠B∴DF=BF∴DE+DF=AB=AC;(2)图②中:AC+DE=DF.图③中:AC+DF=DE.(3)当如图①的情况,DF=AC﹣DE=6﹣4=2;当如图②的情况,DF=AC+DE=6+4=10.故答案是:2或10.27.(12分)如图,在Rt△ABC中,∠C=90°,BC=8,AC=6,动点P从点A开始,沿边AC向点C以每秒1个单位长度的速度运动,动点D从点A开始,沿边AB向点B以每秒个单位长度的速度运动,且恰好能始终保持连结两动点的直线PD⊥AC,动点Q从点C开始,沿边CB向点B以每秒2个单位长度的速度运动,连结PQ.点P,D,Q分别从点A,C同时出发,当其中一点到达端点时,另两个点也随之停止运动,设运动时间为t秒(t≥0).(1)当t为何值时,四边形BQPD的面积为△ABC面积的一半?(2)是否存在t的值,使四边形PDBQ为平行四边形?若存在,求出t的值;若不存在,说明理由.【解答】解:(1)∵由题意可得:CQ=2t,AP=t,AD=t,∴BQ=8﹣2t,CP=6﹣t.又∵PD⊥AC,∴PD==t.∵S=S△ABC﹣S△CPQ﹣S△APD,四边形BQPD∴24﹣(×2t×(6﹣t)+t×t)=12,(t﹣9)2=45,解得t=9±3,t=9+3(不合题意,舍去),∴当t=9﹣3时,四边形BQPD的面积为三角形ABC面积的一半;(2)存在,t=2.4(秒).若四边形BQPD为平行四边形,则BQ与PD平行且相等,即:t=8﹣2t,解得t=2.4.答:存在t的值,使四边形PDBQ为平行四边形,此时t=2.4秒.。

2014—2015学年度第二学期期中考试试卷八年级数学

2014—2015学年度第二学期期中考试试卷八年级数学

2014—2015学年度第二学期期中考试试卷八年级数学2015.04本试卷由填空题、选择题和解答题三大题组成,共28题,满分130分.考试用时120分钟. 注意事项:l 、答题前,考生务必将学校、姓名、考场号、座位号、考试号填写在答题卷相应的位置上.2、答题必须用0.5mm 黑色墨水签字笔写在答题卷指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题.3、考生答题必须在答题卷上,答在试卷和草稿纸上一律无效.一、选择题:(本大题共有10小题,每小题3分,共30分,以下各题都有四个选项,其中只有一个是正确的,选出正确答案,并在答题卡上将该项涂黑.) 1.分式12x x -+的值为0时,x 的值是A .0B .1C .-1D . -2 2.下列事件中,属于不可能事件的是 A .明天某地区早晨有雾B .抛掷一枚质地均匀的骰子,向上一面的点数是6C .一个不透明的袋子中有2个红球和1个白球,从中摸出1个球,该球是黑球D .明天见到的第一辆公交车的牌照的末位数字将是偶数 3.已知平行四边形ABCD 中,∠B=4 ∠A ,则∠C=A .180︒B .36︒C .72︒D .144︒ 4.下列计算错误的是A .0.220.77a ba ba b a b ++=-- B .3223xx yx y y=C .1a b b a--=- D .123ccc+=5.已知四边形ABCD 中,∠A=∠B=∠C=90︒,如果添加一个条件,即可推出该四边形是正方形,那么这个条件可以是A .∠D=90︒B .AB=CDC .AD=BCD .BC=CD6.已知:菱形ABCD 中,对角线AC 与BD 相交O .E 是BC 中点E , AD =6,则OE 的长为A .6B .4C .3D .2 7.若双曲线k y x=与直线y =2x +1的一个交点的横坐标为-1,则k 的值为A .-1B .1C .-2D .28.今年我市有4万名学生参加中考,为了了解这些考生的数学成绩,从中抽取2000名考生的数学成绩进行统计分析.在这个问题中,下列说法:①这4万名考生的数学中考成绩的全体是总体;②每个考生是个体;③2000名考生是总体的一个样本;④样本容量是2000.其中说法正确的有A .4个B .3个C .2个D .1个9.函数y=mx+n 与y =n mx,其中m ≠0,n ≠0,那么它们在同一坐标系中的图象可能是10.如图,将矩形ABCO 放在直角坐标系中,其中顶点B 的坐标为(10, 8),E 是BC 边上一点,:博△ABE 沿AE 折叠,点B 刚好与OC 边上点D 重合,过点E 的反比例函数y=k x的图象与边AB 交于点F , 则线段AF的长为 A .154B. 2 C .158D .32二、填空题:(本大题共8小题,每小题3分,共24分,把答案直接填在答题卡相对应的位置上) 11.已知反比例函数y=13m x- (m 为常数)的图象在一、三象限,则m 的取值范围为 ▲ .12.分式方程3220xx --=的解为x = ▲ .13.某学校计划开设A ,B ,C ,D 四门校本课程供全体学生选修,规定每人必须并且只能选修其中一门.为了了解各门课程的选修人数,现从全体学生中随机抽取了部分学生进行调查,并把调查结果绘制成如图所示的条形统计图.已知该校全体学生人数为1200名,由此可以估计选修C 课程的学生有 ▲ 人.14.如图,在矩形ABCD 中,AB =3,BC =5,以点B 为圆心,BC 长为半径画弧,交边 AD于点E ,则AE ·ED = ▲ . 15.已知1112ab+=,则ab a b+的值是 ▲ .16.如图,点O 是菱形ABCD 两条对角线的交点,过O 点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为 ▲ . 17.如图,已知正方形ABCD 的边长为1,连接AC 、BD ,CE 平分∠ACD 交BD 于点E , 则DE = ▲ . 18.如图,△OAC 和△BAD 都是等腰直角三角形,∠A CO =∠ADB =90︒,反比例函数y=k x在第一象限的图象经过点B ,若OA 2-AB 2=6,则k 的值为 ▲ .三、解答题:(本大题共10小题,共76分.把解答过程写在答题卡相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明). 19.(本题满分8分,每小题4分)约分: (1) 262ab b-; (2)22222a a bab b-++ .20.(本题满分5分) 解方程:22210224x x x x x -++--=-21.(本题满分6分)先化简,再求值:21211x x ---,其中x =1.22.(本题满分6分)下面是小明和同学做“抛掷质地均匀的硬币试验”获得的数据.(1)填写表中的空格; (2)画出折线统计图; (3)当试验次数很大时,“正面朝上”的频率在 ▲ 附近摆动.23.(本题满分7分)如图,在矩形ABCD 中,M 、N 分别是边AD 、BC 的中点,E 、F 分别是线段BM 、CM 的中点. (1)求证:△ABM ≌△DCM ;(2)判断四边形MENF 是什么特殊四边形,并证明你的结论;24.(本题满分6分) 如图,已知点A 、B 的坐标分别为(0,0),(4,0),将△ABC 绕点A 按逆时针方向旋转90°得到△AB ′C '. (1)画出AAB 'C ';(2)写出点C ′,的坐标 ▲ ; (3)线段BB ′的长为 ▲ .25.(本题满分6分)给出下列命题: 命题l :直线y=x 与双曲线y=1x有一个交点是(1,1);命题2:直线y=8x 与双曲线y=2x有一个交点是(12,4);命题3:直线y=27x 与双曲线y=3x有一个交点是(13,9);命题4:直线y=64x 与双曲线y=4x有一个交点是(14,16);(1)请你阅读、观察上面命题,猜想出命题n (n 为正整数); (2)请验证你猜想的命题n 是真命题.26.(本题满分10分)如图,点P 是正方形ABCD 边AB 上一点(不与点A ,B 重合),连接PD 并将线段PD 绕点P 顺时针方向旋转90°得到线段PE ,PE 交边BC 于点F ,连接BE ,DF .(1)求证:∠ADP =∠EPB ; (2)求∠CBE 的度数;(3)当点P 是AB 的中点且AB=2,则BF 的长为 ▲ .27.(本题满分10分)如图,在直角坐标系中,O 为坐标原点. 已知反比例函数y=k x的图象经过点A (2,m ),过点A 作AB 上⊥x 轴于点B ,且△A OB 的面积为12.(1)则m = ▲ ,k = ▲ ;(2)点C (x ,y )在该反比例函数的图象上,求当1≤x ≤3时函数值y 的取值范围;(3)过原点O 的直线l 与该反比例函数的图象交于P 、Q 两点,试根据图象直接写出线段PQ 长度的最小值.28.(本题满分12分) 已知,矩形ABCD 中.AB =4cm ,BC =8cm ,对角线AC 的垂直平分线EF 分别交AD 、BC 于点E 、F ,垂足为O .(1)如图1,连接AF 、CE ,试证明:四边形AFCE 为菱形; (2)求AF 的长;(3)如图2,动点P 以每秒5cm 的速度自A →F →B →A 运动、同时点Q 以每秒4cm 的速度自C →D →E →C 运动,当点P 到达A 点时两点同时停止运动. 若运动t 秒后,以A 、C 、P 、Q 四点为顶点的四边形是平行四边形时,求t 的值.。

初二下册数学 2014-2015学年度八年级下册数学期中试卷及答案

初二下册数学 2014-2015学年度八年级下册数学期中试卷及答案

21.(本题 10 分)某超市经销为每件 40 元的商品.据市场调查分析,如果按 每件 50 元销售,一周能售出 500 件;若销售单价每涨 1 元,每周销售量就减少 10 件.设 销售单价为 x 元(x≥50),一周的销售量为 y 件.
(1) 求 y 与 x 之间的函数关系式; (2) 在超市对该种商品投入不超过 10000 元的情况下,要使得一周的销售利润达到 8000 元,销售单价应定为多少元?

A.0.3ab
B.3ab
C.
D.
7.若
,则 的值为(

A.1
B. -1
C. 2012
D. -2012
8.在某校“我的比赛中,有 9 名学生参加决赛,他们决赛的最终成绩各不相同.
其中的一名学生想要知道自己能否进入前 5 名,不仅要了解自己的成绩,还要了解这 9
名学生成绩的(

A.众数
B.方差
C.平均数
A.36°
B.108°
C.72°
) D.60°
4.已知三角形两边的长分别是 4 和 3,第三边的长是一元二次方程 的一个实
数根,则该三角形的面积是(

A.6
B.12
C.6 或 2
D. 12 或
5.若关于
2-4y-3=3y+4 ,则 k (
)
A.k>
B.k≥
且 k≠0 C.k≥
D.k 且 k≠0
6.设 ,用含 a,b 的式子表示 ,则下列表示正确的是(
图1
(3)当点 D 在直线 BC 上,其它条件不变,试猜想线段 DE、DF 之间的数量关系,请直 接写出等式(不需证明)。
图2
参考答案
一、选择题

2014-2015学年下学期八年级下册数学期中试卷和答案 (4)

2014-2015学年下学期八年级下册数学期中试卷和答案 (4)

12014-2015学年第二学期八年级期中数学试题姓名 班级 考号 得分:(考试时间:100分钟 满分:120分)一. 填空题(每空3分,共30分)1. 用科学记数法表示-0.000043为 。

2.计算:计算()=⎪⎭⎫⎝⎛+--1311 ; 232()3y x=__________; a b b b a a -+-= ; yx x x y xy x 22+⋅+= 。

3.当x 时,分式51-x 有意义;当x 时,分式11x 2+-x 的值为零。

4.反比例函数xm y 1-=的图象在第一、三象限,则m 的取值范围是 ;在每一象限内y 随x 的增大而 。

5. 如果反比例函数x my =过A (2,-3),则m= 。

6. 设反比例函数y=3mx-的图象上有两点A (x 1,y 1)和B (x 2,y 2),且当x 1<0<x 2时,有y 1<y 2,则m 的取值范围是 . 7.如图由于台风的影响,一棵树在离地面m 6处折断,树顶落在离树干底部m 8处,则这棵树在折断前(不包括树根)长度是 m.8. 三角形的两边长分别为3和5,要使这个三角形是直角三角 A D形,则第三条边长是 .9. 如图若正方形ABCD 的边长是4,BE=1,在AC 上找一点使PE+PB 的值最小,则最小值为 。

C210.如图,公路PQ 和公路MN 交于点P,且∠NPQ=30°,公路PQ 上有一所学校A,AP=160米,若有一拖拉机沿MN 方向以18米∕秒的速度行驶并对学校产生影响,则造成影响的时间为 秒。

二.单项选择题(每小题3分,共18分)11.在式子1a 、2xy π、2334a b c 、56x +、78x y+、109x y +中,分式的个数有( )A 、2个B 、3个C 、4个D 、5个 12.下面正确的命题中,其逆命题不成立的是( )A.同旁内角互补,两直线平行B.全等三角形的对应边相等C.角平分线上的点到这个角的两边的距离相等D.对顶角相等13.下列各组数中,以a 、b 、c 为边的三角形不是直角三角形的是( )A . 1.5,2,3a b c ===B . 7,24,25a b c ===C . 6,8,10a b c === D. 3,4,5a b c === 14.在同一直角坐标系中,函数y=kx+k 与(0)ky k x=≠的图像大致是( )15.如图所示:数轴上点A 所表示的数为a ,则a 的值是(A .16.如图,已知矩形ABCD 沿着直线BD 折叠,使点C 落在C /处,BC /交AD 于E ,AD =8,AB =4,则DE 的长为( ).A .3B .4C .5D .63三、解答题:17.(10分)计算:(1)xy y x y x ---22 (2)22111a a a a a ++---18.(8分)先化简代数式1121112-÷⎪⎭⎫⎝⎛+-+-+a a a a a a ,然后选取一个使原式有意义的a 的值代入求值.19.(10分)解方程: (1)1233x x x=+-- (2)482222-=-+-+x x x x x4/ 2mm20.(6分)已知:如图,四边形ABCD ,AB=8,BC=6,CD=26,AD=24,且AB ⊥BC 。

2014—2015学年度第二学期期中考试初二年级数学试卷附答案

2014—2015学年度第二学期期中考试初二年级数学试卷附答案

OABCD2014—2015学年度第二学期期中考试初二年级数学试卷考试时间:100分钟 满分:100分一、选择题 (每小题3分,共30分)1.下列各组长度的线段能组成直角三角形的是( ) A .a =2,b =3,c =4 B .a =4,b =4,c =5 C .a =5,b =6,c =7 D .a =5,b =12,c =132.下面各条件中,能判定四边形是平行四边形的是( )A.对角线互相垂直B.对角线互相平分C.一组对角相等D.一组对边相等3.直角三角形一条直角边长为8 cm ,它所对的角为30°,则斜边为( ) A. 16 cm B. 4cm C. 12cm D. 8 cm 4.用配方法解方程0262=+-x x 时,下列配方正确的是( )A .9)3(2=-xB .7)3(2=-xC .9)9(2=-xD . 7)9(2=-x 5.顺次连结菱形各边中点所围成的四边形是( )A .一般的平行四边形B .矩形C .菱形D .等腰梯形6.如图,矩形ABCD 中,AB=3,两条对角线AC 、BD 所夹的钝角为120°,则对角线BD 的长为( )A .6B .3C .33D .637.已知四边形ABCD 是平行四边形,下列结论中不正确...的是( ) A .当AB =BC 时,它是菱形 B .当AC ⊥BD 时,它是菱形 C .当∠ABC =90º时,它是矩形D .当AC =BD 时,它是正方形8.如图,□ABCD 中,∠DAB 的平分线AE 交CD 于E ,AB=5, BC=3,则EC 的长( ) A. 1 B. 1.5 C. 2 D. 39.直角三角形两直角边的长度分别为6和8,则斜边上的高为( )CBAED年级 班级 姓名 学号装 订 线3A.10B.5C. 9.6D.4.810.若关于x 的一元二次方程2210kx x --=有两个不相等的实数根,则k 的取值范围 是 ( )A.1k >-B. 1k >-且0k ≠C.1k <D. 1k <且0k ≠二、填空题(每小题3分,共30分)11.命题“菱形是对角线互相垂直的四边形”的逆命题是 . 12.梯子的底端离建筑物5米,13米长的梯子可以达到该建筑物的高度是 米. 13.如果菱形的两条对角线长为cm 10与cm 12,则此菱形的面积______2cm . 14.在ABC ∆中,∠C=090,AC=12,BC=5,则AB 边上的中线CD= . 15.一个正方形的面积为81cm 2,则它的对角线长为 cm.16. 已知□ABCD 的周长是24,对角线AC 、BD 相交于点O ,且△OAB 的周长比△OBC 的周长大4,则AB= .17.若关于x 的一元二次方程 220x x k -+=的一个实数根为2,则k 的值为________.18.如下图,已知OA=OB ,那么数轴上点A 所表示的数是____________.19.若(m -2)22-m x+x -3=0是关于x 的一元二次方程,则m 的值是______.20. 如图,⊿ABC 的周长为16,D, E, F 分别为AB, BC, AC1-30-1-2-4231B A A的中点,M, N, P 分别为DE, EF, DF 的中点,则⊿MNP 的周长为 。

2014-2015学年度第二学期期中考试试卷初二数学附答案

2014-2015学年度第二学期期中考试试卷初二数学附答案

2014-2015学年度第二学期期中考试试卷初二数学班级______分层班________ 姓名______________ 学号_________ 成绩___________注意:时间100分钟,满分120分一、选择题(本题共30分,每小题3分)1. 一元二次方程2410x x +-=的二次项系数、一次项系数、常数项分别是( ). A .4,0,1B .4,1,1C .4,1,-1D .4,1,02. 由下列线段a ,b ,c 不能..组成直角三角形的是( ). A .a =1,b =2,c =3 B .a =1, b =2, c =5 C .a =3,b =4,c =5 D .a =2,b=c =33. 如图,点A 是直线l 外一点,在l 上取两点B 、C ,分别以A 、C 为圆心,BC 、AB 长为半径画弧,两弧交于点D ,分别连结AB 、AD 、CD ,则四边形ABCD 一定是( ). A .平行四边形 B .矩形C .菱形D .正方形4. 下列各式是完全平方式的是( ). A. 224x x ++B. 269x x -+C. 244x x --D. 232x x -+5. 正方形具有而矩形不一定具有的性质是( ). A .四个角都是直角 B .对角线互相平分 C .对角线相等 D .对角线互相垂直6. 如图,数轴上点M 所表示的数为m ,则m 的值是( ).AB .CD7. 已知平行四边形ABCD 的两条对角线 AC 、BD 交于平面直角坐标系的原点,点A 的坐标为(-2,3),则点C 的坐标为( ).A. (3,-2)B. (2,-3)C. (-3,2)D. (-2,-3)8. 某果园2012年水果产量为100吨,2014年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x ,则由题意可列方程为( ). A. 100)1(1442=-x B. 144)1(1002=-xC. 100)1(1442=+x D. 144)1(1002=+x9. 如图,平行四边形ABCD 的两条对角线相交于点O ,E 是AB边的中点,第16题图图中与△ADE 面积相等的三角形(不包括...△.ADE ...)的个数为( ). A . 3 B . 4 C . 5 D . 610. 如图,在长方形ABCD 中,AC 是对角线,将长方形ABCD 绕点B 顺时针旋转90°到长方形GBEF 位置,H 是EG 的中点,若AB =6,BC =8, 则线段CH 的长为( ).A .52B .41C .102D .21 二、填空题(本题共24分,每小题3分)11. 已知2x =是一元二次方程2280x ax ++=的一个根,则a 的值为 .12. 如图,A 、B 两点被池塘隔开,在AB 外选一点C ,连接AC 和BC ,并分别找出它们的中点M 和N .如果测得MN =15m ,则A ,B 两点间的距离为 m .13. 如图,在□ABCD 中,CE ⊥AB 于E ,如果∠A =125°,那么∠BCE = °.14. 若把代数式223x x --化为2()x m k -+的形式,其中m 、k 为常数,则m +k = .15.如图,在□ABCD 中,E 为AB 中点,AC BC ⊥,若CE =3,则CD = .16. 如图,矩形纸片ABCD 中,AB =4,AD =3,折叠纸片使AD 边与对角线BD 重合,折痕为DG ,则AG 的长为 .17. 如图,菱形ABCD 的周长为40,∠ABC =60°,E 是AB 的中点,点P 是BD 上的一个动点, 则P A+PE 的最小值为___________.班级______分层班________ 姓名________ 学号______第17题图第12题图第13题图第15题图8. 如图:在平面直角坐标系中,A 、B 两点的坐标分别为 (1,5)、(3,3), M 、N 分别是x 轴、y 轴上的点. 如果以点A 、B 、M 、N 为顶点的四边形是平行四边形, 则M .的坐标...为 .三、解答题(本题共26分,第19题每小题5分,第20、21题每小题5分,第22题每小题6分) 19. 解方程:(1) x 2(3)25-=; (2) 2610x x -+=.解: 解:20. 如图,在□ABCD 中,已知AD =16cm ,AB =12cm ,DE 平分∠ADC 交BC 边于点E , 求BE 的长度. 解:21. 一个矩形的长比宽多1cm ,面积是90cm 2,矩形的长和宽各是多少? 解:22. 已知:关于x 的一元二次方程2(21)20x m x m +++=.B(1)求证:无论m 为何值,此方程总有两个实数根;(2)若x 为此方程的一个根,且满足06x <<,求整数m 的值. (1)证明:(2)解:四、解答题(本题共20分,第23题6分,第24、25题每小题7分)23.如图,已知菱形ABCD 的对角线相交于点O ,延长AB 至点E ,使BE =AB ,连结CE .(1) 求证:BD =EC ; (2) 若∠E =57°,求∠BAO 的大小.(1)证明:(2)解:班级______分层班________ 姓名_____ 学号____24. 已知:关于x 的一元二次方程2251(21)0422a x a x a +++++=有实根. (1)求a 的值;(2)若关于x 的方程23210kx x k a ----=的所有根均为整数,求整数k 的值. 解:(1) (2)25. 阅读下列材料:问题:如图1,在□ABCD中,E是AD上一点,AE=AB,∠EAB=60°,过点E作直线EF,在EF上取一点G,使得∠EGB=∠EAB,连接AG.求证:EG =AG+BG.小明同学的思路是:作∠GAH=∠EAB交GE于点H,构造全等三角形,经过推理解决问题.参考小明同学的思路,探究并解决下列问题:(1)完成上面问题中的证明;(2)如果将原问题中的“∠EAB=60°”改为“∠EAB=90°”,原问题中的其它条件不变(如图2),请探究线段EG、AG、BG之间的数量关系,并证明你的结论.(1)证明:(2)解:线段EG、AG、BG之间的数量关系为____________________________.班级______分层班________姓名_____学号____图1图2五、解答题(本题共20分,第26、27题每小题6分,第28题8分)26.已知a 是方程2520x x +-=的一个根,则代数式22109a a +-的值为___________;代数式32635a a a ++-的值为___________.27.如图,四边形ABCD 中,AC =m ,BD =n ,且AC 丄BD ,顺次连接四边形ABCD 各边中点,得到四边形A 1B 1C 1D 1,再顺次连接四边形A 1B 1C 1D 1各边中点,得到四边形A 2B 2C 2D 2…,如此进行下去,得到四边形A n B n C n D n . ①四边形A 2B 2C 2D 2是 形; ②四边形A 3B 3C 3D 3是 形; ③四边形A 5B 5C 5D 5的周长是 ; ④四边形A n B n C n D n 的面积是 .28.若一个四边形的一条对角线把四边形分成两个等腰三角形,我们把这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形.如菱形就是和谐四边形.(1)如图1,在四边形ABCD 中,AD ∥BC ,∠BAD =120°,∠C =75°,BD 平分∠ABC .求证:BD 是四边形ABCD 的和谐线;(2)图2和图3中有三点A 、B 、C ,且AB =AC , 请分别在图2和图3方框内...作一个点D ,使得以A 、B 、C 、D 为顶点的四边形的两条对角线都是和谐线,并画出相应的和谐四边形(要求尺规作图,保........留作图痕迹,不写作法..........); (3)四边形ABCD 中,AB =AD =BC ,∠BAD =90°,AC 是四边形ABCD 的和谐线,求∠BCD 的度数. (1)证明:B图1(2)在方框内用尺规作图,..........保留作图痕迹,不写作法...........(3)解:图3图2初二数学 答案及评分参考标准班级_____ 姓名_____ 学号_____ 成绩_____一、选择题(本题共30分每小题3分,)三、解答题(本题共26分,第19题每小题5分,第20、21题每小题5分,第22题每小题6分) 19. 解方程(1)x 2(3)25-=解: 35x -=± ----------------------------3分 ∴ 1282x x ==-, ------------------------5分(2) 2610x x -+=解: 261x x -=- -----------------------1分 2698x x -+= -----------------------2分2(3)8x -= --------------------3分3x -=± --------------4分∴13x =+23x =- --------------5分 另解:1a =,6b =-,1c =,--------------------------1分()224641132b ac -=--⨯⨯= -----------------2分x 3=± ------------------- 4分∴ 13x =+23x =- --------------5分20. 如图,在□ABCD 中,已知AD =16cm ,AB =12cm , DE 平分∠ADC 交BC 边于点E ,求BE 的长度.解: ∵四边形ABCD 是平行四边形,∴AD ∥BC ,AB =CD =12cm ,AD =BC =16cm , ---------2分 ∵AD ∥BC ∴∠ADE =∠DEC ,∵DE 平分∠ADC ,∴∠ADE =∠E DC , ∴∠DEC =∠EDC ,∴CE=CD =12cm , ----------4分 ∴BE=BC-CE =4cm. ----------5分21. 一个矩形的长比宽多1cm ,面积是90cm 2,矩形的长和宽各是多少?解:设矩形长为x cm ,则宽为(1x -)cm ,--------------1分 依题意得 (x 1)90x -=--------------3分解得1210,9x x ==-(不合题意,舍去)--------------4分 答:矩形的长和宽各是10cm 、9cm .--------------5分 22.已知:关于x 的一元二次方程2(21)20x m x m +++=. (1)求证:无论m 为何值,此方程总有两个实数根;(2)若x 为此方程的一个根,且满足06x <<,求整数m 的值. (1)证明: 2(21)412m m ∆=+-⨯⨯ 2441m m =-+ 2(21)m =-.∵2(21)m -≥0,即∆≥0,--------------1分∴无论m 为何值,此方程总有两个实数根.-----------2分(2)解:因式分解,得 (2)(1)0x m x ++=.于是得 20x m +=或10x +=.解得 12x m =-,21x =-. --------------4分∵10-<,而06x <<,∴2x m =-,即 026m <-<.∴30m -<<. ……………………………… 5分 ∵m 为整数,∴1m =-或2-. ……………………………… 6分B第19题B四、解答题(本题共20分,第23题6分,第24、25题每小题,7分) 23. 如图,已知菱形ABCD 的对角线相交于点O,延长AB 至点E,使BE=AB,连结CE. (1)求证:BD=EC;(2)若∠E =50°,求∠BAO 的大小. (1)证明:∵菱形ABCD ,∴AB=CD ,AB ∥CD ,……………………………1分 又∵BE=AB , ∴BE=CD ,BE ∥CD ,∴四边形BECD 是平行四边形,…………………………2分 ∴BD=EC …………………………3分 (2)解:∵平行四边形BECD ,∴BD ∥CE ,∴∠ABO=∠E=57°,…………………………4分 又∵菱形ABCD , ∴AC 丄BD ,∴∠BAO=90°…………………………5分 ∴∠BAO +∠ABO=90°∴∠BAO =90°-∠ABO=33°.………………………………6分24. 已知:关于x 的一元二次方程2251(21)0422a x a x a +++++=有实根. (1)求a 的值;(2)若关于x 的方程23210kx x k a ----=的所有根均为整数,求整数k 的值. 解:(1) ∵关于x 的一元二次方程2251(21)0422a x a x a +++++=有实数根. 22222514(21)4()42221(1)0a b ac a a a a a ∴-=+-++=-+-=--≥……………………1分 1a ∴=……………………………2分(2)由1a =得2330kx x k ---=当k=0时,所给方程为-3x-3=0,有整数根x= -1.……………………………3分 当k ≠0时,所给方程为二次方程,有(1)(3)0x kx k +--= 12331,1k x x k k+∴=-==+……………………………5分 1,3k x k ∴=±±、为整数……………………………6分综上0,1,3k =±±.……………………………7分 25. 阅读下列材料:问题:如图1,在□ABCD 中,E 是AD 上一点,AE =AB ,∠EAB =60°,过点E 作直线EF ,在EF 上取一点G ,使得∠EGB =∠EAB ,连接AG . 求证:EG =AG +BG .小明同学的思路是:作∠GAH =∠EAB 交GE 于点H ,构造全等三角形,经过推理使问题得到解决.参考小明同学的思路,探究并解决下列问题:(1)完成上面问题中的证明; (2)如果将原问题中的“∠EAB =60°”改为“∠EAB =90°”,原问题中的其它条件不变(如图2),请探究线段EG 、AG 、BG 之间的数量关系,并证明你的结论.图1 图2(1)证明:如图1,作∠GAH=∠EAB 交GE 于点H , 则∠GAB=∠HAE .……………………1分 ∵∠EAB=∠EGB ,∠AOE=∠BOF , ∴∠ABG=∠AEH . 在△ABG 和△AEH 中OGAB HAE AB AEABG AEH⎧∠∠⎪⎨⎪∠∠⎩===∴△ABG ≌△AEH .……………………2分∴BG=EH ,AG=AH . ∵∠GAH=∠EAB=60°, ∴△AGH 是等边三角形. ∴AG=HG .∴EG=AG+BG ;……………………3分(2)线段EG 、AG 、BG 之间的数量关系是EG+BG =AG .……………………4分 证明:如图2,作∠GAH=∠EAB 交GE 的延长线于点H ,则∠GAB=∠HAE . ∵∠EGB=∠EAB=90°,∴∠ABG+∠AEG=∠AEG+∠AEH=180°. ∴∠ABG=∠AEH .……………………5分在△ABG 和△AEH 中,∴△ABG ≌△AEH .……………………6分 ∴BG=EH ,AG=AH . ∵∠GAH=∠EAB=90°,∴△AGH 是等腰直角三角形. ∴AG=HG ,∴EG+BG =AG .……………………7分五、解答题(本题共20分,第26、27题每小题6分,第28题8分)26.已知a 是方程2520x x +-=的一个根,则代数式22109a a +-的值为__-5____;代数式32635a a a ++-的值为___-3____. ……………………每空3分27.如图,四边形ABCD 中,AC =m ,BD =n ,且AC 丄BD ,顺次连接四边形ABCD 各边中点,得到四边形A 1B 1C 1D 1,再顺次连接四边形A 1B 1C 1D 1各边中点,得到四边形A 2B 2C 2D 2…,如此进行下去,得到四边形A n B n C n D n . ①四边形A 2B 2C 2D 2是 菱形;………1分 ②四边形A 3B 3C 3D 3是 矩形 ;………2分ABD1A1C1D 2A2C2D2B③四边形A 5B 5C 5D 5的周长是 4m n+ ;………4分 ④四边形A n B n C n D n 的面积是 12n mn+ .……6分28.若一个四边形的一条对角线把四边形分成两个等腰三角形,我们把这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形.如菱形就是和谐四边形.(1)如图1,在四边形ABCD 中,AD ∥BC ,∠BAD =120°,∠C =75°,BD 平分∠ABC .求证:BD 是四边形ABCD 的和谐线;(2)图2和图3中有三点A 、B 、C ,且AB =AC , 请分别在图2和图3方框内...作一个点D ,使得以A 、B 、C 、D 为顶点的四边形的两条对角线都是和谐线,并画出相应的和谐四边形(要求尺规作图,.......保留作图痕迹,不写作法...........); (3)四边形ABCD 中,AB =AD =BC ,∠BAD =90°,AC 是四边形ABCD 的和谐线,求∠BCD 的度数. (1)证:(1)∵AD ∥BC , ∴∠ABC+∠BAD=180°,∠ADB=∠DBC . ∵∠BAD=120°, ∴∠ABC=60°. ∵BD 平分∠ABC , ∴∠ABD=∠DBC=30°, ∴∠ABD=∠ADB , ∴△ADB 是等腰三角形.…………………1分 在△BCD 中,∠C=75°,∠DBC=30°, ∴∠BDC=∠C=75°, ∴△BCD 为等腰三角形,∴BD 是四边形ABCD 的和谐线;……………………2分 (2)由题意作图为:图2,图3 ……………………4分(在方框内用.....尺规作图,..... 保留作图痕迹,....... 不写作法....)解(3)∵AC 是四边形ABCD 的和谐线,图1图3图2∴△ACD 是等腰三角形. ∵AB=AD=BC ,如图4,当AD=AC 时, ∴AB=AC=BC ,∠ACD=∠ADC ∴△ABC 是正三角形, ∴∠BAC=∠BCA=60°. ∵∠BAD=90°, ∴∠CAD=30°, ∴∠ACD=∠ADC=75°, ∴∠BCD=60°+75°=135°.……………………5分 如图5,当AD=CD 时, ∴AB=AD=BC=CD . ∵∠BAD=90°, ∴四边形ABCD 是正方形, ∴∠BCD=90°……………………6分 如图6,当AC=CD 时 法(一):过点C 作CE ⊥AD 于E ,过点B 作BF ⊥CE 于F , ∵AC=CD .CE ⊥AD , ∴AE=AD ,∠ACE=∠DCE . ∵∠BAD=∠AEF=∠BFE=90°, ∴四边形ABFE 是矩形. ∴BF=AE . ∵AB=AD=BC , ∴BF=BC , ∴∠BCF=30°. ∵AB=BC , ∴∠ACB=∠BAC . ∵AB ∥CE , ∴∠BAC=∠ACE , ∴∠ACB=∠ACE=∠BCF=15°,∴∠BCD=15°×3=45°.……………………8分 法(二): 作DM ⊥AD ,作BM ⊥AB ,则四边形ABMD 是正方形 ∴BC=B M ∵AC=CD ∴∠CA D=∠CDA ∴∠BAC=∠C DM在△AB C和△DMC中AB BAC CDM AC ⎧⎪∠∠⎨⎪⎩=DM ==CD∴△ABC ≌△D MC.B∴BC=CM,∠BCA=∠MCD∴△BCM为等边三角形∴∠CMD=150o∵MC=MD∴∠MCD=∠MDC=15o∴∠BCD=∠BCM-∠MCD=60°-15=45o……………………8分。

2014-2015学年第二学期期中试卷初二数学附答案

2014-2015学年第二学期期中试卷初二数学附答案

2014-2015学年第二学期期中试卷初二数学一、选择题(本大题共10小题,每小题3分,共30分.每小题都有四个选项,将正确的一个答案的代号填在答题卷相应位置上)1.下列图形中,既是轴对称图形又是中心对称图形的是( ▲ )A .B .C .D .2.在4y ,y x +6,xx x -2,πy +5,y x 1+中分式的个数有( ▲ )A.1个B.2个C.3个D.4个 3.不论x 取何值,下列分式中一定有意义的是( ▲ ) A .21xx - B .11-+x x C .11-+x x D .11+-x x 4.如果把分式yx xy+中的x 和y 都扩大为2倍,则分式的值( ▲ ) A .扩大为4倍; B .扩大为2倍; C .不变; D .缩小2倍5.下列函数中,当x >0时,y 随x 的增大而增大的是 ( ▲ )A .y =2-3xB .y =2x C .y =-2x -1 D .y =-12x6.正方形具备而矩形不具备的特征是 ( ▲ ) A .对角线互相垂直 B .对角线相等 C .对角线互相平分且相等 D .对角线互相平分7.如图,点D 、E 、F 分别是△ABC 三边的中点, 则下列判断错误的是 ( ▲ ) A .四边形AEDF 一定是平行四边形B .若∠A =90°,则四边形AEDF 是矩形C .若AD 平分∠BAC ,则四边形AEDF 是正方形D .若AD ⊥BC ,则四边形AEDF 是菱形 第7题图 8.已知点A (1,1y )、B (2,2y )、C (-3,3y )都在反比例函数xy 1=的图象上,则1y 、2y 和3y 的大小关系是( ▲ )A. 213y y y <<B. 321y y y <<C. 312y y y <<D. 123y y y << 9.下列图形中,阴影部分面积最大的是( ▲ )A B C D10.如图,在正方形ABCD 中,点E 、F 分别在B C 、CD 上, △AEF 是等边三角形,连接AC 交EF 于点G ,下列结论:①BE=DF ;②∠DAF=15°;③ AC 垂直平分EF ;④BE+DF=EF 其中正确的结论有 ( ▲ ) A .①②③ B .①②④C .②③④D .①②③④第10题图二、填空题(本大题共8小题,每小题3分,共24分,把答案填在答题卷相应横线上)11.若分式112--x x 的值为0,则x 的取值为 ▲ .12.分式34a b -与abc 61的最简公分母是 ▲ .第13题图 第14题图 第15题图13.如图,在△ABC 中,∠CAB =70º,在同一平面内,将△ABC 绕点A 逆时针旋转50º到△C B A ''的位置,则∠B CA '= _____▲_________度 14.如图,以正方形ABCD 的对角线AC 为一边作菱形AEFC ,则∠FAB 的度数为 ▲ . 15.如图,在梯形ABCD 中,AD ∥BC ,AB=DC=3,AD=5, ∠C=60°,则下底BC= ▲ . 16.如图,在四边形ABCD 中,对角线AC ⊥BD ,垂足为O ,E 、F 、G 、H 分别为AD 、AB 、BC 、CD 的中点,若AC =8,BD=10,则四边形EFGH 的面积是 ▲ .17.已知反比例函数x y 9=,当3-≥x 时,y 的取值范围是 ▲ . 18.如图,反比例函数xky =(x >0)的图象经过矩形OABC 对角线的交点M ,分别于AB 、BC 交于点D 、E ,若四边形ODBE 的面积为12,则k = ▲ .第16题图 第18题图三、简答题(本大题共11小题,共76分,解答时应写出必要的计算过程、推演步骤或文字说明) 19.(本题8分,每小题4分)化简与计算:(1)()2333⎪⎪⎭⎫ ⎝⎛-∙-÷⎪⎭⎫ ⎝⎛-a b ab b a (2)()x x x x x x -+∙+÷++-2121242220.(本题5分)化简分式2221121xx x x x x x x -⎛⎫-÷ ⎪---+⎝⎭,并从12x -≤≤中选一个你喜欢的整数x 代入求值.21.(本题5分)解分式方程:12112-=--x x x22.(本题5分)已知关于x 的分式方程111x k kx x +-=+-的解为正数,求k 的取值范围.23.(本题满分6分)如图,在平面直角坐标系中,已知△ABC 的三个顶点的坐标分别为A (-4,3)、B (-3,1)、C (-1,3).请按下列要求画图:①将△ABC 绕点O 顺时针旋转90°得到△111C B A ,画出△111C B A ;②△222C B A 与△ABC 关于原点O 成中心对称,画出△222C B A .24.(本题满分6分)已知:如图,在平行四边形ABCD 中,E 、F 分别为边AB 、CD 的中点,BD 是对角线,AG ∥DB 交CB 的延长线于G .(1)求证:△ADE ≌△CBF ;(2)若四边形BEDF 是菱形,则四边形AGBD 是什么特殊四边形?并证明你的结论.25.(本题满分7分)如图,已知反比例函数k y 11=的图像与一次函数b x k y +=22的图像交于A 、B 两点,A (1,n ),B (21-,2-).(1)求反比例函数和一次函数的解析式;(2)观察图像,直接写出不等式12y y >的解集; (3)求∆AOB 的面积.26.(本题满分7分)有200个零件,平均分给甲、乙两车间加工,由于乙另有任务,所以在甲开始工作2小时后,乙才开始工作,因此比甲迟20分钟完成任务,已知乙每小时加工零件的个数是甲的2倍,问甲、乙两车间每小时各加工多少零件? 27.(本题满分8分)如图,菱形OABC 放置在第一象限内,顶点A 在x 轴上,若顶点B 的坐标是(4,3),(1)请求出菱形边长OA 的长度. (2)反比例函数xky =经过点C ,请求出k 的值.28.(本题满分9分)(1)如图1,在正方形ABCD 中,点E 、F 分别在边BC 、CD 上,AE 与BF 交于点O ,∠AOF =90°,求证:BF =AE .(2) 如图2,在正方形ABCD 中,点E 、F 、G 分别在边BC 、CD 和AB 上,AE 与FG 交于点O ,∠AOF =90°,AE 与FG 相等吗?证明你的结论.(3) 如图3,正方形ABCD 边长为12,将正方形沿MN 折叠,使点A 落在DC 边上的点E 处,且DE =5,则折痕MN 的长是 .图1 图2 图329.(本题满分10分)(1)探究新知:如图1,已知△ABC 与△ABD 的面积相等, 试判断AB 与CD 的位置关系,并说明理由.(2)结论应用:① 如图2,点M ,N 在反比例函数xky =(k >0)的图象上,过点M 作ME ⊥y 轴,过点N 作NF ⊥x 轴,垂足分别为E ,F . 试证明:MN ∥EF .② 若①中的其他条件不变,只改变点M ,N 的位置如图3所示,请画出图形并判断MN与EF 是否平行.证明你的结论. ③ 在②中,反比例函数为xy 12=,且M (2,m ), 当四边形MEFN 的面积为14时,点N的坐标为 .班级____ 姓名_______ 准考证号_______ 考场号____ 座位号____密封线内不要答题 2014—2015学年第二学期期中测试(初二数学答题卷)密封线内不要答题班级____ 姓名_______ 准考证号_______ 考场号____ 座位号____密封线内不要答题 2014—2015学年第二学期期中测试(初二数学答案卷)10分)已知<)证出全等2分得到线段相等1分)证出全等2分得到线段相等1分题答29.(本题满分10分)(1)证明:分别过点C,D,作CG⊥AB,DH⊥AB,垂足为G,H,则∠CGA=∠DHB=90°.∴CG∥DH.∵△ABC与△ABD的面积相等,∴CG=DH.∴四边形CGHD为平行四边形.∴AB∥CD.3分(2)①证明:连结MF,NE.设点M的坐标为(x1,y1),点N的坐标为(x2,y2).∵点M,N在反比例函数(k>0)的图象上,∴∵ME⊥y轴,NF⊥x轴,∴OE=y1,OF=x2.∴S△EFM =S△EFN =∴S△EFM =S△EFN.由(1)中的结论可知:MN∥EF.3分②准确画出图形并判断出MN∥EF 1分证明1分。

2014—2015学年度第二学期期中教学质量检测八年级数学试卷附答案

2014—2015学年度第二学期期中教学质量检测八年级数学试卷附答案

2014—2015学年度第二学期期中教学质量检测八年级数学试卷一、选择题(30分)1x 的取值范围是( ) A .x >0 B .x ≥-2 C .x ≥2 D .x ≤2 2.下列式子中,属于最简二次根式的是( ) A.B.C.D.3.下列计算正确的是( )A. B. C. D.4.如图,数轴上点A 对应的数为2,AB ⊥OA 于A ,且AB=1,以OB 为半径画圆,交数轴于点C ,则OC 的长为( )A .3 BCD.5.下列命题中正确的是( )A. 有一组邻边相等的四边形是菱形B. 有一个角是直角的平行四边形是矩形C. 对角线垂直的平行四边形是正方形D. 一组对边平行的四边形是平行四边形 6.如图所示,AD ∥BC ,要使四边形ABCD 成为平行四边形还需要条件( ) A.AB=DC B.∠1=∠2 C.AB=AD D.∠D=∠B7.ABC ∆的三边为,,a b c 且2()()a b a b c +-=,则该三角形是( ) A.以a 为斜边的直角三角形 B.以b 为斜边的直角三角形 C.以c 为斜边的直角三角形 D.锐角三角形8.如图, 15个外径为1m 的钢管以如图方式堆放, 为了防雨, 需要搭建防雨棚的高度最低应为_______m. ( ) A. 23+1 B.255 C. 5 D. 23+29.如图,两个正方形的边长分别为a 和b ,如果a+b=10,ab=20,那么阴影部分的面积是( )A.10 B.20 C .30 D .4010.如图,在Rt △ABC 中,∠ACB=90°,AC=6,BC=8,AD 是∠BAC 的平分线.若P ,Q 分别是AD 和AC 上的动点,则PC+PQ 的最小值是( ) A .2.4 B .4 C .4.8 D .5二、填空题(24分)11.2(-= .12.已知x =+,y =,则x 2y +xy 2=________.13.已知△ABC 是直角三角形,AB=5,BC=12,则AC= .14.如图,在□ABCD 中,点E 、F 分别在边AD ,BC 上,且BE ∥DF .若∠EBF =50°,则∠EDF 的度数是________°.15.如图,在□ABCD 中,AC ⊥AB ,∠ABD =30°,AC 交BD 于O ,AO =1,则BC 的长为___ _____. 16.如图,网格中的小正方形边长均为1,△ABC 的三个顶点均在格点上,则AB 边上的高为 .17.如图,O 是矩形ABCD 的对角线AC 的中点,M 是AD 的中点,若AB =5,AD =12,则四边形ABOM的周长为_____ ___.18.如图,矩形ABCD 中,AB =12cm ,BC =24cm ,如果将该矩形沿对角线BD 折叠,那么图中阴影部分△BDE 的面积 cm 2.三、解答题 (46分)19.化简与计算(5+6)B(1)计算:-÷ (2)计算:21)---21.(7分)如图,在矩形ABCD 中,对角线AC 与DB 相交于点O ,CP ∥DB , BP ∥AC 。

2014-2015学年第二学期初二年级数学学科期中考试试卷附答案

2014-2015学年第二学期初二年级数学学科期中考试试卷附答案

2014-2015学年第二学期初二年级数学学科期中考试试卷一、选择题:1、下列图形中,既是轴对称图形,又是中心对称图形的有 ( ▲ )A .1个B . 2个C . 3个D . 4个2、下列等式一定成立的是( ▲ )A .工=B . 1553=C 3=±D .()992=-3、若式子21+-x x 在实数范围内有意义,则x 的取值范围是 ( ▲ ) A . x ≥1且0≠x B .1>x 且 2-≠x C .x ≥1 D .x ≥1 且 2-≠x4、下列约分结果正确的是 ( ▲ )A BC D 5、关于函数y =6x,下列说法错误的是( ) A .它的图像分布在第一、三象限 B .它的图像既是轴对称图形又是中心对称图形 C .当x>0时,y 的值随x 的增大而增大 D .当x<0时,y 的值随x 的增大而减小6、如图,菱形OABC 的顶点C 的坐标为(3,4),顶点A 在x 轴的正半轴上.反比例函数y =kx(x>0)的图像经过顶点B ,则k 的值为 ( ▲ ) A .12B .20C .24D .327、已知()111,P x y 、()222,P x y 、()333,P x y 是反比例函数2y x=的图象上的三点,且1230x x x <<<,则1y 、2y 、3y 的大小关系是( ▲ )A .321y y y <<B .123y y y <<C .213y y y <<D .231y y y << 8、如图,已知双曲线)0(>=k xky 经过直角三角形OAB 斜边OB 的中点D ,与直角边AB 相交于点C ,若点B 的坐标是(6,4),则△OBC 的面积为( ▲ ) A .12 B .9 C .6 D .4第6题 第8题 第10题9、已知四边形ABCD 是平行四边形,再从①AB =BC ,②∠ABC =90°,③AC =BD ,④AC ⊥BD 四个条件中,选两个作为补充条件后,使得四边形ABCD 是正方形,现有下列四种选法,其中错误的是( ▲ )A . 选①②B . 选②③C . 选①③D . 选②④10、我们学校教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热到100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min )成反比例关系.直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y (℃)和时间(min )的关系如图,为了在上午第一节下课时(8:30)能喝到不超过50℃的水,则接通电源的时间可以是当天上午的( ▲ )A .7:00B .7:05C .7:10D .7:15二、填空题:11、不改变分式的值,使ba b a 322122+-的分子分母中不含分数为 ▲12、计算:32234ba ab -∙= ▲ , 13、2)236(-= ▲14、若a>0,则化简____▲___15、在平行四边形ABCD 中,∠A 与∠B 的度数比是2:3,则∠C= ▲ ,∠D= ▲ 16、如图,在边长为12的正方形ABCD 中,点E 在边DC 上,AE = 14,把线段AE 绕点A 旋转,使点E 落在直线BC 上的点F 处,则F 、C 两点的距离为 ▲17、如图,菱形ABCD 中,对角线AC 、BC 相交于点O ,H 为AD 边中点,菱形ABCD 的周长为28,则OH 的长等于 ▲第16题 第17题 第18题18、根据图象写出使一次函数的值小于反比例函数的值的x 的值取值范围是 ▲19、已知关于x 的分式方程32122x a x x =---的解是非负数,则a 的取值范围是_ ▲ __ 20、点A (x 1,y 1)、B (x 2,y 2)分别在双曲线y =x1-的两分支上,若y 1+y 2>0,则x 1+x 2的范围是 ▲ . 三、解答题: 21、计算:(1) (2)baa b ab 1)122(18413÷-∙ ()0,0>>b a (3))252(23--+÷--x x x x 22、解方程23、已知:a 是2222214164821442a a a aa a a a a --+++÷-+-+-,再求值.24、已知:图中的曲线是反比例函数5m y x-=(m 为常数)图象的一支. (1)这个反比例函数图象的另一支在第几象限?常数m 的取值范围是什么? (2)若该函数的图象与正比例函数y=2x 的图象在第一象限内的交点为A ,过点A 作x 轴的垂线,垂足为B ,当△OAB 的面积为4时,求点A 的坐标及反比例函数的解析式.(3)在题(2)的条件下,点(,)C x y 在反比例函数5m y x-=的图象上,求当31<≤x 时,函数值y 的取值范围;25、如图,在口ABCD 中,AB ⊥AC ,AB=1,BC=BD 、AC 交于点O .将直线AC 绕点O 顺时针旋转分别交BC 、AD 于点E 、F . (1)试说明在旋转过程中,AF 与CE 总保持相等;(2)证明:当旋转角为90°时,四边形ABEF 是平行四边形; (3)在旋转过程中,四边形BEDF 可能是菱形吗?如果不能,请说明理由;如果能,求出此时AC 绕点O 顺时针旋转的角度.26、某一项工程在招标时,接到甲、乙两个工程队的投标书,施工一天,需付甲工程队工程款163104245--+=--x x x x1.2万元,付乙工程队工程款0.5万元,工程领导小组根据甲、乙两队的投标书测算,列出如下方案:①甲队单独完成这项工程刚好如期完成;②乙队单独完成这项工程要比规定工期多用6天;③若甲、乙两队合做3天,则余下的工程由乙队单独做也正好如期完成.那么在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?请说明理由. 27、(1)探究新知:如图1,已知△ABC 与△ABD 的面积相等,试判断AB 与CD 的位置关系,并说明理由. (2)结论应用:① 如图2,点M ,N 在反比例函数xky =(k >0)的图象上,过点M 作ME ⊥y 轴,过点N 作NF ⊥x 轴,垂足分别为E ,F . 试证明:MN ∥EF .② 若①中的其他条件不变,只改变点M ,N 的位置如图3所示,请判断 MN 与EF 是否平行,为什么?28、已知:如图①,在矩形ABCD 中,AB=5,AD=,AE ⊥BD ,垂足是E .点F 是点E 关于AB 的对称点,连接AF 、BF .(1)∠FAB ∠ADB (填>或<或=)(2)求AE 、BE 的值(2)如图②,将△ABF 绕点B 顺时针旋转一个角α(0°<α<180°),记旋转中的△ABF 为△A ′BF ′,在旋转过程中,设A ′F ′所在的直线与直线AD 交于点P ,与直线BD 交于点Q .是否存在这样的P 、Q 两点,使△DPQ 为等腰三角形?若存在,求出此时DQ 的长;若不存在,请说明理由.ABDC图①图③初二年级数学学科期中考试答题卷一、选择题(本大题共10小题,每小题2分,共20分)二、填空题(本大题共10小题,每小题2分,共20分)11.____________;12.____ ___;13 14.;15.,_______;16._____________;17._______;18._____________;19.____________;20.三、解答题(本大题共8题,共60分)21.(本题12分)(1(2)baabab1)122(18413÷-∙()0,0>>ba(3))252(23--+÷--xxxx22.(本题4分)解方程:23.(本题5分)已知:a是2的小数部分,考场号______________座位号____________班级__________姓名____________成绩____________————————————————————————装订线————————————————————————————163104245--+=--xxxx求:222214164821442a a a aa a a a a--++÷-+-+-的值.24.(本题7分)(1)(2)(3)25.(本题9分)(1)(2)(3)26.(本题6分)27.(本题8分)(1)(2)①②28.(本题9分)(1)∠FAB ∠ADB (2)A BD C图①图③(3)初二年级数学学科期中考试答案一、选择题(本大题共10小题,每小题2分,共20分)11.b a b a 3322+-; 12.b a 26-; 13.31224- 14.ab b -;15.72°,108°; 16.13212± 17.3.5; 18.04<<-x 或2>x ; 19.34-≥a 且31≠a ; 20.>0三、解答题(本大题共8题,共60分) 21.(本题12分) (1)323223+ (2) 263a - (3) 31+x 22.(本题4分)无解 23.(本题5分)a =12-,22211+=-a 24.(本题7分)(1)第三象限, 5>m (2)A(2,4),xy 8= (3)838≤<x25. (本题9分) (1)略 (2)略 (3)45° 26. (本题6分)设甲独做需x 天完成工程 ,则163=++x xx ,x =6,甲独做需工程款=7.2万元, 甲乙合做需工程款=6.6万元,则甲乙合做省工程款 27.(本题8分)(1)略(2)①证明:连结MF ,NE设点M 的坐标为(x 1,y 1),点N 的坐标为(x 2,y 2) ∵ 点M ,N 在反比例函数xky =(k >0)的图象上, ∴ k y x =11,k y x =22∵ ME ⊥y 轴,NF ⊥x 轴∴ OE =y 1,OF =x 2. ∴ S △EFM =k y x 212111=⋅S △EFN =k y x212122=⋅∴S △EFM =S △EFN . 由(1)中的结论可知:MN ∥EF 多于 ② MN ∥EF ,略 28.(本题9分) (1)=(2)AE=4,BE=3 (3)存在.理由如下:在旋转过程中,等腰△DPQ 依次有以下4种情形:①如答图3﹣1所示,点Q 落在BD 延长线上,且PD=DQ ,易知∠2=2∠Q , ∵∠1=∠3+∠Q ,∠1=∠2,∴∠3=∠Q ,∴A ′Q=A ′B=5,∴F ′Q=F ′A ′+A ′Q=4+5=9. 在Rt △BF ′Q 中,由勾股定理得:BQ===.∴DQ=BQ ﹣BD=﹣;②如答图3﹣2所示,点Q 落在BD 上,且PQ=DQ ,易知∠2=∠P , ∵∠1=∠2,∴∠1=∠P , ∴BA ′∥PD ,则此时点A ′落在BC 边上. ∵∠3=∠2,∴∠3=∠1,∴BQ=A ′Q ,∴F ′Q=F ′A ′﹣A ′Q=4﹣BQ .在Rt △BQF ′中,由勾股定理得:BF ′2+F ′Q 2=BQ 2,即:32+(4﹣BQ )2=BQ 2,解得:BQ=,∴DQ=BD ﹣BQ=﹣=;③如答图3﹣3所示,点Q 落在BD 上,且PD=DQ ,易知∠3=∠4. ∵∠2+∠3+∠4=180°,∠3=∠4, ∴∠4=90°﹣∠2.∵∠1=∠2,∴∠4=90°﹣∠1. ∴∠A ′QB=∠4=90°﹣∠1, ∴∠A ′BQ=180°﹣∠A ′QB ﹣∠1=90°﹣∠1,∴∠A ′QB=∠A ′BQ ,∴A ′Q=A ′B=5,∴F ′Q=A ′Q ﹣A ′F ′=5﹣4=1.在Rt △BF ′Q 中,由勾股定理得:BQ===,∴DQ=BD﹣BQ=﹣;④如答图3﹣4所示,点Q落在BD上,且PQ=PD,易知∠2=∠3.∵∠1=∠2,∠3=∠4,∠2=∠3,∴∠1=∠4,∴BQ=BA′=5,∴DQ=BD﹣BQ=﹣5=.综上所述,存在4组符合条件的点P、点Q,使△DPQ为等腰三角形;DQ的长度分别为﹣、、﹣或.。

2014-2015学年八年级下学期期中考试数学试题

2014-2015学年八年级下学期期中考试数学试题

2014-2015学年八年级下学期期中考试数学试题八年级数学下学期期中联考试卷一、选择题(40分)1、下列各数中,没有平方根的是( )A 、()22- B 、64 C 、21 D 、22- 2、下列二次根式有意义的范围为x ≥2的是( )A 、21-x B 、2-x C 、21+x D 、2+x3、下列运算正确的是( )A 、235=- B 、312914= C 、()52522-=- D 、32321+=-4、由线段a 、b 、c 组成的三角形不是直角三角形的是( )A 、a=7,b=24,c=25;B 、a=13,b=14,c=15; C 、a=54,b=1,c=34; D 、b=4,c=5;5、若平行四边形中两个内角的度数比为1∶2,则其中较小的内角是( )A 、30°B 、45°C 、60°D 、75° 6、已知n12是整数,则满足条件的最小正整数n 为( )A 、2B 、3C 、4D 、5延长AF 与BC 的延长线交于点M 。

以下结论:①AB=CM ; ②AE=AB+CE ;③S △AEF =ABCFS31四边形;④∠AFE=90°,其中正确结论的个数有( )A 、1个B 、2个C 、3个D 、4个二、填空题(24分) 10题图11、计算⑴20= ; ⑵114= 。

12、平面直角坐标系中,已知点A(-1,-3)和点B(1,-2),则线段AB 的长为 。

13、如图,平行四边形ABCD 的顶点A 、B 、D 的坐标分别是(0,0)、(5,0)、(2,3),则顶点C 的坐标是 。

13题图 14题图 15题图 14、如图,若将四根木条钉成的矩形木框变成平行四边形ABCD 的形状,并使其面积为矩形面积的一半,则这个平行四边形的最大内角等于15、如图,在Rt ΔABC 中,∠ACB=90°,AC=4,BC=3,DABCEDCBAD为斜边AB上一点,以CD、CB为边作平行四边形CDEB,当AD= 时,平行四边形CDEB为菱形。

2014-2015年下学期八年级期中考试数学试卷附答案

2014-2015年下学期八年级期中考试数学试卷附答案

2014-2015年下学期八年级期中考试数学试卷总分:120分 时量:120分钟一.精心选一选,旗开得胜(每小题3分,共30分)1. 把直角三角形的两直角边均扩大到原来的两倍,则斜边扩大到原来的( )A.8倍B.4倍C. 2倍D. 6倍2.两个直角三角形全等的条件是( )A. 一锐角对应相等B.两锐角对应相等C.一条边对应相等D.两条边对应相等3.下面的性质中,平行四边形不一定具有的是( )A.内角和为360°B.邻角互补C.对角相等D. 对角互补4.如图,如果平行四边形ABCD 的对角线AC 、BD 相交于点O ,那么图中的全等三角形共有( )A.1对B.2对C.3对D.4对ODCB A第4题图 5.□ABCD 的对角线交于点O ,且AB=5,△OCD 的周长为23,则□ABCD 的两条对角线的和是 ( )A.18B.28C.36D.466. 若点M(x ,y )满足x+y=0,则点M位于 ( )A. 第一、三象限两坐标轴夹角的平分线上;B. x 轴上;C. 第二、四象限两坐标轴夹角的平分线上;D. y 轴上。

7.已知x 、y 为正数,且|42-X |+(y 2-3)2=0,如果以x ,y 的长为直角边作一直角三角形, 那么以此直角三角形的斜边为边长的正方形的面积为( )A.5B.25C.7D.158.在平面中,下列说法正确的是( )A.四个角相等的四边形是矩形B.对角线垂直的四边形是菱形C.对角线相等的四边形是矩形D.四边相等的四边形是正方形9.下列图形中,既是轴对称图形又是中心对称图形的有( )A.4个B.3个C.2个D.1个第9题图 第10题图10. 如图所示,矩形ABCD 的对角线AC ,BD 相交于点O ,CE ∥BD ,DE ∥AC .若 BD = 6,则四边形CODE 的周长是( ) A .10 B .12 C .18 D .24二.细心填一填,一锤定音(每小题3分,共30分)11. 在Rt ∆ABC 中,∠C=90°,∠A=65°,则∠B= .D CA B 12一个等腰直角三角形中,它的斜边与斜边上的高的和是18cm ,那么斜边上的高为 cm .13.如图,已知□A BCD 中,AB=4,BC=6,BC 边上的高AE=2,则DC 边上的高AF 的长是 .C F ED A B C D FEA B C D1A B -2-10 第13题图 第15题图 第17题图14.□ABCD 的周长为60cm,其对角线交于O 点,若△AOB 的周长比△BOC 的周长多10cm, 则 AB= cm.15.如图,已知在□ABCD 中,AB=4cm,AD=7cm ,∠ABC 的平分线交AD 于点E ,交CD 的延长线 于点F ,则DF= cm.16. 一个多边形的每一个外角等于30°,则此多边形是 边形,它的内角和等于 。

2014-2015学年第二学期初二数学期中试卷附答案

2014-2015学年第二学期初二数学期中试卷附答案

2014-2015学年第二学期初二数学期中试卷2015、4一、选择题(本大题共10小题,每小题3分,共30分)1.下列图形中,既是中心对称图形又是轴对称图形的是…………………( ▲ ) A .B .C .D .2.用配方法解一元二次方程2430x x -+=时可配方得……………… ( ▲ ) A .2(2)7x -= B .2(2)1x += C .2(2)1x -= D .2(2)2x += 3.矩形具有而菱形不一定具有的性质是…………………… ( ▲ ) A .对角线互相垂直 B .对角线相等 C .对角线互相平分 D .对角互补4.在平行四边形ABCD 中,对角线AC 、BD 相交于点O ,如果AC=10,BD=8,AB=x ,则x 的取值范围是 ……… ( ▲ ) A .1<x <9 B .2<x <18 C .8<x <10 D .4<x <55.下列关于x 的一元二次方程中,有两个不相等的实数根的方程是……… ( ▲ ) A .x 2+4=0 B .4x 2-4x +1=0 C .x 2+x +3=0 D .x 2+2x -1=06. 某市为发展教育事业,加强了对教育经费的投入,2013年投入3 000万元,预计2015年投入5 000万元.设教育经费的年平均增长率为x ,根据题意,下面所列方程正确的是 …………………………………………………… ( ▲ ) A .23000(1)5000x +=% B .230005000x =C .23000(1)5000x +=D .23000(1)3000(1)5000x x +++=7.函数ky x=的图象经过点A (6,-1),则下列点中不在该函数图象上的点是 A .(-2,3) B .(-1,-6) C .(1,-6) D .(2,-3) ( ▲ ) 8.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P ( kPa ) 是气体体积V ( m 3) 的反比例函数,其图象如图所示.当气球内的气压大于120 kPa 时,气球将爆炸.为了安全起见,气球的体积应 ( ▲ ) A .不小于54 m 3 B .小于54 m 3 C .不小于45m 3D .小于45m 39.如图,P 为平行四边形ABCD 内一点,过点P 分别作AB 、AD 的平行线交平行四边 形于E 、F 、G 、H 四点,若5,3==PFCG AHPE S S ,则PBD S ∆为 ( ▲ )第4题第8题第9题A .0.5B .1C .1.5D .210.如图所示,已知A (21,1y ),B (2,2y )为反比例函数 1y x=图象上的两点,动点P (x ,0)在x 轴正半轴上运动,当线段AP 与线段BP 之差达到最大时,点P 的坐标是 A (21,0) B (1,0) C (23,0) D (25,0) ( ▲ ) 二、填空题(本大题共8小题,每空2分,共18分)11.设x 1,x 2是方程2x 2-6x +3=0的两根,则x 1+x 2=__▲____,x 1·x 2= ▲ . 12.已知y 与2x+1成反比例,且当x=1时,y=2,那么当x=-2时,y=__▲____. 13.关于x 的一元二次方程(m-2)x 2+3x+m 2-4=0有一解为0,则m 的值是 ▲ . 14.在菱形ABCD 中,已知AB=10,AC=16,那么菱形ABCD 的面积为___▲____.15.如图,平行四边形ABCD 中,点E 在边AD 上,以BE 为折痕,将△ABE 折叠,使点A 正好与CD 上的F 点重合,若△FDE 的周长为16,△FCB 的周长为28,则FC 的长为 ▲ .16.若函数y=kx的图象在第二、四象限,则函数y=kx-1的图象经过第__▲___象限.17.如图,菱形ABCD 中,AB=2,∠A=120°,点P ,Q ,K 分别为线段BC ,CD ,BD 上的任意一点,则PK+QK 的最小值为 ▲ .18.如图,在平面直角坐标系中,A(1,0),B(0,3),以AB 为边在第一象限作正方形ABCD,点D 在双曲线y=kx(k≠0)上,将正方形沿x 轴负方向平移 m 个单位长度后,点C 恰好落在双曲线上,则m的值是 ▲ . 三、解答题(共82分)19.解方程组(每题4分,共16分)(1) x 2-5x -6=0 (2) 3x 2-4x -1=0;(3) x(x-1)=3-3x ; (4)x 222-x+1=020.(本题8分)如图,在□ABCD 中,E 、F 为对角线BD 上的两点.(1)若AE ⊥BD ,CF ⊥BD ,证明BE =DF .(2)若AE =CF ,能否说明BE =DF ?若能,请说明理由;若不能,请画出反例.A B CDOxy(第18题) 第15题第17题21.(本题8分)如图,张大叔从市场上买回一块矩形铁皮,他将此矩形铁皮的四个角各剪去一个边长为1米的正方形后,剩下的部分刚好能围成一个容积为15米3的无盖长方体箱子,且此长方体箱子的底面长比宽多2米,现已知购买这种铁皮每平方米需20元钱,问张大叔购回这张矩形铁皮共花了多少元钱?22.(本题8分)在△ABC 中,D 是BC 边上的一点,E 是AD 的中点,过A 点作BC 的平行线交CE 的延长线于F ,且AF=BD ,连接BF . (1)求证:BD=CD .(2)如果AB=AC ,试判断四边形AFBD 的形状,并证明你的结论.23.(本题12分)如图,已知()n A ,4-,()4,2-B 是一次函数b kx y +=1的图象和 反比例函数xmy =2的图象的两个交点. (1) 求一次函数、反比例函数的关系式;(2) 求△AOB 的面积.(3) 当自变量x 满足什么条件时,y 1>y 2 .(直接写出答案)(4)将反比例函数xmy =2的图象向右平移n (n >0)个单位,得到的新图象经过点(3,-4),求对应的函数关系式y 3.(直接写出答案)24.(本题6分)矩形纸片ABCD 中,AB=5,AD=4.(1)如图1,四边形MNEF 是在矩形纸片ABCD 中裁剪..出的一个正方形.你能否在该矩形中裁剪出一个面积最大的正方形,最大面积是 ;(不必说明理由)ABCDE F (图1)ABCD(备用图)1米1米AFB C D E(2)请用矩形纸片ABCD 剪拼..成一个面积最大的正方形.要求:在图2的矩形ABCD 中画出裁剪线,并在网格中画出用裁剪出的纸片拼成的正方形示意图(使正方形的顶点都在网格的格点上).25.(本题12分)如图,ABCD 是一张矩形纸片,AD=BC=1,AB=CD=5.在矩形ABCD 的边AB 上取一点M ,在CD 上取一点N ,将纸片沿MN 折叠,使MB 与DN 交于点K ,得到△MNK .(1)若∠1=70°,求∠MKN 的度数. (2)△MNK 的面积能否小于12?若能,求出此时∠1的度数;若不能,试说明理由. (3)如何折叠能够使△MNK 的面积最大?请你利用备用图探究可能出现的情况.......,求出最大值.26.(本题12分)阅读理解:配方法是中学数学的重要方法,用配方法可求最大(小)值。

2014—2015学年第二学期八年级数学期中试卷附答案

2014—2015学年第二学期八年级数学期中试卷附答案

2014—2015学年第二学期八年级数学期中试卷(满分:150分 时间:120分钟)一、选择题(每题3分,共24分)1.下列调查中,适合用普查方式的是 ( ▲ )A.了解瘦西湖风景区中鸟的种类B.了解扬州电视台《关注》栏目的收视率C.了解学生对“扬农”牌牛奶的喜爱情况 D .航天飞机发射前的安全检查2.下列事件是随机事件的是 ( ▲ ) A .没有水分,种子发芽B .367人中至少有2人的生日相同C .三角形的内角和是180°D .小华一出门上学,天就下雨3.在一个不透明的布袋中装有2个白球和1个红球,它们除了颜色不同外,其余均相同.从中 随机摸出一个球,摸到红球的概率是( ▲ ) A .51 B .31 C .83 D .85 4. 分式242x x -+的值为0,则( ▲ )A .x=-2B .x=±2C .x=2D .x=07. 如图,小红在作线段AB 的垂直平分线时,是这样操作的:分别以点A ,B 为圆心,大于线段AB 长度一半的长为半径画弧,相交于点C ,D ,则直线CD 即为所求。

连结AC ,BC ,AD ,BD ,根据她的作图方法可知,四边形ADBC 定是..( ▲ ) A. 矩形 B. 正方形 C.菱形 D. 梯形(第8题)8.如图,正方形ABCD 中,AB =6,点E 在边CD 上,且CD =3DE .将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连结AG 、CF .下列结论中正确结论的个数是( ▲ ) ①△ABG ≌△AFG ; ②BG =GC ; ③AG ∥CF ; ④S △FGC =3. A.1 B.2C.3D.4二、填空题(每题3分,共30分)9.某校为了解该校500名初二学生的期中数学考试成绩,从中抽查了100名学生的数学成绩.在这次调查中, 样本容量是 10.当x 时,分式x-31有意义. 11.分式)(612123y x x x - ;的最简公分母是_ . 12.化简:xy÷a ⋅ y a = .13.在下列图形:①菱形 ②等边三角形 ③矩形 ④平行四边形中,既是中心对称图形又是轴对 称图形的是_ (填写序号).14顺次连接矩形四边中点所形成的四边形是 .学校的一块菱形花园两对角线的长分别是6 m 和 8 m ,则这个花园的面积为 .15.小明把如图所示的矩形纸板挂在墙上,玩飞镖游戏(每次飞镖均落在纸板上),则飞镖落在阴影区 域的概率是_ .( 第15题 ) ( 第16题 ) 16.如图,菱形ABCD 中,∠B =60°,AB =4,则以AC 为边长的正方形ACEF 的周长为_ .17 .如图,▱ABCD 的对角线AC 、BD 交于点O ,点E 是AD 的中点,△BCD 的周长为18,则△DEO 的周长是( 第17题 ) ( 第18题 )18.如图,正方形OABC 的两边OA 、OC 分别在x 轴、y 轴上,点D (5,3)在边AB 上,以C 为中心,把△CDB 旋转90°,则旋转后点D 的对应点D ′的坐标是_ .三、解答下列各题(共96分) 19.化简:(每小题5分,共20分) (1)2311x x +-- (2)(1-11m +) (m+1)(3)n m n n m ++-22 (4)4222(2-÷+--x xx x x x20.(本题6分)先化简,再求值:)211(342--⋅--a a a ,其中3-=a ⋅21.(10分)某学校开展课外体育活动,决定开设A :篮球、B :乒乓球、C :踢毽子、D :跑步四种活动项目.为了解学生最喜欢哪一种活动项目(每人只选取一种),随机抽取了部分学生进行调查,并将调查结果绘成如甲、乙所示的统计图,请你结合图中信息解答下列问题.(1)样本中最喜欢A 项目的人数所占的百分比为 ,其所在扇形统计图中对应的圆心角度数是 度; (2)请把条形统计图补充完整;(3)若该校有学生1000人,请根据样本估计全校最喜欢踢毽子的学生人数约是多少?22.(本题 8分) 如图,在方格纸中,△ABC 的三个顶点及H G F E D 、、、、、五个点分别位于小正方形的顶点上.(1)画出△ABC 绕点B 顺时针方向旋转90°后的图形.(2)先从H G F E 、、、四个点中任意取两个不同的点,再和D 点构成三角形,求所得三角形与△ABC面积相等的概率是 ▲ .23.(本题10分)用你发现的规律解答下列问题.111122=-⨯ 1112323=-⨯ 1113434=-⨯ ┅┅ (1) 计算111111223344556++++=⨯⨯⨯⨯⨯ . (2)探究1111......122334(1)n n ++++=⨯⨯⨯+ .(用含有n 的式子表示) (3)若1111......133557(21)(21)n n ++++⨯⨯⨯-+的值为1735,求n 的值.且∠ABC +∠ADC=180°。

2014-2015八年级下册数学期中考试试卷

2014-2015八年级下册数学期中考试试卷

2014/2015学年度第二学期八年级期中考试 数学试题题号 一 二 三 四 五 六 七 总分 得分注意事项:本卷满分150分,计23小题,考试时间120分钟.一、选择题(本题共10小题,每小题4分,满分40分)请将正确选项前的字母填在表格中相应的位置. 题号 1 2 3 4 5 6 7 8 9 10 答案1.若a 是二次根式,则( )A. a >0B. a <0C. a ≥0D. a ≤02.下列计算错误..的是 ( ) A .14772⨯= B .60302÷= C .9258a a a += D .3223-=3.已知四边形ABCD 是平行四边形,则下列各图中∠1与∠2一定不相等的是 ( )4.直角三角形两直角边边长分别为6cm 和8cm ,则连接这两条直角边中点的线段长为( ) A .10cm B .3cm C .4cm D .5cm 5.下列各式中,一定能成立的是( )。

A . 122+-x x =x-1 B .22)(a a = C . 22)5.2()5.2(=- D .3392+⋅-=-x x x6.在菱形ABCD 中,AC 与BD 相交于点O ,则下列说法不正确的是( ) A .AO ⊥BO B .∠ABD=∠CBD C .AO=BO D .AD=CD7.下列命题中是假命题的是( )学校:____________ 姓名:____________ 班级:____________ 考场座位号:___________—————————————————密 封 线 内 不 要 答 题——————————————————————————————————A .△ABC 中,若∠B=∠C -∠A ,则△ABC 是直角三角形.B .△ABC 中,若a 2=(b+c)(b -c),则△ABC 是直角三角形.C .△ABC 中,若∠A ∶∠B ∶∠C=3∶4∶5,则△ABC 是直角三角形.D .△ABC 中,若a ∶b ∶c=5∶4∶3,则△ABC 是直角三角形.8.如图,在△ABC 中,点E ,D ,F 分别在边AB ,BC ,CA 上,且DE ∥CA ,DF ∥BA ,则下列四个判断中不正确的是( )A .四边形AEDF 是平行四边形B .如果∠BAC =90°,那么四边形AEDF 是矩形 C .如果AD 平分∠BAC ,那么四边形AEDF 是菱形D .如果AD ⊥BC 且AB =AC ,那么四边形AEDF 是正方形第8题图9.已知,如图矩形ABCD 中,AB=3cm ,AD=9cm ,将此矩形折叠,使点B 与点D 重合,折痕为EF ,则△ABE 的面积为( )第9题图 第10题图A . 3cm 2B . 4cm 2C 6cm 2D . 12cm 210.如图,矩形ABCD 的面积为20cm 2,对角线交于点O ;以AB 、AO 为邻边做平行四边形AOC 1B ,对角线交于点O 1;以AB 、AO 1为邻边做平行四边形AO 1C 2B ;…;依此类推,则平行四边形AO 4C 5B 的面积为( )A .45 cm 2 B .85 cm 2 C .cm 2D .cm 2二、填空题(本题共4小题,每小题5分,满分20分)11. 在实数范围内分解因式:x 4-9=________12.已知直角三角形的两边长为3、5,则另一边长是13.已知231,3a b ab -=-=,则(1)(1)a b +-=14. 如图,在平面直角坐标系中,矩形OABC 的顶点A 、C 的坐标分别为(10,0),(0,4),点D 是OA 的中点,点P 在BC 上运动,当△ODP 是腰长为5的等腰三角形时,点P 的坐标为 .第14题图三、(本题共2小题,每小题8分,满分16分)15. (1)2484554+-+ (2)()1021125.3316-⎪⎭⎫ ⎝⎛+--+⨯π16.先化简,再求值:2222211()a ab b a b a b-+÷--,其中21,21a b =+=-四、(本题共2小题,每小题8分,满分16分)17. “中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方m 处,过了2s 后,测得小汽车与车速检测仪间距离为m ,这辆小汽车超速了吗?18. 现有5个边长为1的正方形,排列形式如图①,请把它们分割后拼接成一个新的正方形.要求:在图①中画出分割线并在图②正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形.五、(本题共2小题,每小题10分,满分20分)19.站在水平高度为h 米的地方看到可见的水平距离为d 米,它们近似地符号公式为58hd 。

2014~2015学年第二学期期中考试试卷八年级数学附答案

2014~2015学年第二学期期中考试试卷八年级数学附答案

ODCBA2014~2015学年第二学期期中考试试卷八年级数学一、精心选一选(本大题共有8小题,每小题3分,共24分) 1.下列图形中,是轴对称图形又是中心对称图形的是( ) A .B .C .D .2.下列各式:()22214151 ,, ,,232x x y a x x b yπ-+--其中分式共有( ) A .2个 B .3个 C .4个 D .5个 3.如图,等边△ABC 中,点D 、E 分别为边AB 、AC 的中点,则∠DEC 的度数为( )A . 30°B . 60°C . 120°D . 150°4. 下列说法中不正确的是( )A . 抛掷一枚硬币,硬币落地时正面朝上是随机事件B . 把4个球放入三个抽屉中,其中一个抽屉中至少有2个球是必然事件C . 任意打开七年级下册数学教科书,正好是97页是确定事件D . 一个盒子中有白球m 个,红球6个,黑球n 个(每个除了颜色外都相同).如果从中任取一个球,取得的是红球的概率与不是红球的概率相同,那么m 与n 的和是65.如图,在四边形ABCD 中,对角线AC 、BD 相交于点O ,下列条件不能..判定四边形ABCD 为平行四边形的是( )A . AB ∥CD ,AD ∥BC B . OA =OC ,OB =OD C . AD =BC ,AB ∥CD D . AB =CD ,AD =BC6.若分式方程2233x mx x --=--有增根,则m 的值为( ) A. 1- B. 1 C. 0 D.以上都不对7.“清明”期间,几名同学包租一辆面包车前往“宜兴竹海”游玩,面包车的租价为600元,出发时,又增加了4名学生,结果每个同学比原来少分担25元车费,设原来参加游玩的同学为x 人,则可得方程( )第3题图第5题图班级 姓名 考试号 .第8题图A .600600254x x -=+ B .600600254x x -=+ C .600600254x x -=- D .600600254x x -=- 8.正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2,…按如图的方式放置.点A 1,A 2,A 3,…和点C 1,C 2,C 3,…分别在直线y =x +1和x 轴上,则点B 6的坐标是( ) A .(63,32) B .(64,32) C .(63,31)D .(64,31)二、填空题(本大题共8小题,每空2分,共18分,请把答案直接填在题中的横线上)9.若分式211x x -+的值为零,则x 的值为____ ___;10.计算:(1) y 26x ÷y 3x = ;(2) a -2a -1-2a -3a -1= .11.分式2123a a-的值为负数,则a 的取值范围是__________.12.一只自由飞行的小鸟,将随意地落在如图所示的方格地面上,每个小方格形状完全相同,则小鸟落在阴影方格地面上的概率是 .13.如图,在菱形ABCD 中,AC 与BD 相交于点O ,点P 是AB 的 中点,PO =5,则菱形ABCD 的周长是 .14.如图,正方形ABCD 和正方形CEFG 中,点D 在CG 上,BC =1,CE =3,H 是AF 的中点,那么CH 的长是 .15.如图,在平面直角坐标系中,已知点A (1,1),B (﹣1,1), C (﹣1,﹣2),D (1,﹣2),把一根长为2015个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在A 处,并按A→B→C→D→A…的规律紧绕在四边形ABCD 的边上,则细线的 另一端所在位置的点的坐标是 .16.如图,AB =12,AB ⊥BC 于点B ,AB ⊥AD 于点A ,AD =5, BC =10,E 是CD 的中点,则AE 的长是____ ___. 三、解答题(本大题共有10小题,共58分) 17. (本题满分6分)计算: (1)÷; (2) (1+)÷ADC BO P第12题图第14题图第13题图第15题图第16题图18、(本题满分7分)解方程:(1)212x x-=-(2)2216124xx x--=+-19.(本题满分6分)如图,方格纸中每个小正方形的边长都是1个单位长度,Rt△ABC的三个顶点A(﹣2,2),B(0,5),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,得到△A1B1C,请画出△A1B1C的图形.(2)平移△ABC,使点A的对应点A2坐标为(﹣2,﹣6),请画出平移后对应的△A2B2C2的图形.(3)若将△A1B1C绕某一点旋转可得到△A2B2C2,请直接写出旋转中心的坐标____________________.20.(本题满分5分)某超市用3000元购进某种干果销售,由于销售状况良好,超市又调拨9000元资金购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量是第一次的2倍还多300千克。

宁波地区2014-2015学年八年级下期中考试数学试题及答案

宁波地区2014-2015学年八年级下期中考试数学试题及答案

宁波地区2014-2015学年第二学期区域八年级数学期中试卷(本试卷满分120分,时间120分钟)一、选择题(本大题共10小题,每小题3分,共30分) 1.下列方程中,一元二次方程的是( )A .022=-x xB .3(x ﹣2)+x =1C .03222=--y xy xD .0312=+-x x2. 下面这几个图形中,是中心对称图形而不是轴对称图形的共有( )A .1个B .2个C .3个D .4个 3.把方程2470x x --=化成()2x m n -=的形式,则m 、n 的值是( )A .2, 7B .-2,11C .-2,7D .2,11 4.若一个多边形的内角和等于720度,则这个多边形的边数是( )A .5B .6C .7D .8 5.一元二次方程220x x ++=的根的情况( )A .有两个不相等的正根B .有两个不相等的负根C .没有实数根D .有两个相等的实数根6.甲、乙两班举行电脑汉字输入比赛,各选10名选手参赛,各班参赛学生每分钟输入汉字个数统计如下表:输入汉字个数(个)132133134135136137甲班人数(人)102412乙班人数(人)014122通过计算可知两组数据的方差分别为0.22=甲S ,7.22=乙S ,则下列说法:①两组数据的平均数相同;②甲组学生比乙组学生的成绩稳定;③两组学生成绩的中位数相同;④两组学生成绩的众数相同。

其中正确的有( )A .1个B .2个C .3个D .4个7.四边形ABCD 中,对角线AC 、BD 相交于点O ,给出下列四个条件: ①A D∥BC ;②AD=BC;③OA=OC;④OB=OD 从中任选两个条件,能使四边形ABCD 为平行四边形的选法有( )A .6种 B.5种 C.4种 D.3种8.某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂五、六月份平均每月的增长率为x ,那么x 满足的方程是( ) A.182)1(502=+x B .182)21(50)1(5050=++++x xC.182)21(50=+x D .182)1(50)1(50502=++++x x9.如图,ABCD 的对角线AC 、BD 相交于O ,EF 过点O与AD 、BC 分别相交于E 、F ,若AB=4,BC=5,OE=1.5,那么四边形EFCD 的周长为( ) A .16 B .14 C .12 D .1010.已知点D 与点(5,0)A -,B (0,12),C (a ,a )是一平行四边形的四个顶点,则CD 长的最小值为( )A .13 B.1322C .1722D .12二、填空题:(本大题共10小题,每小题3分,共30分) 11.数据2,4,4,5,3,9,4,5,1,8的中位数为12.若关于x 的方程2230x x c -+=的一个根是1,则c 的值是 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

宁波地区2014-2015学年第二学期区域八年级数学期中试卷(本试卷满分120分,时间120分钟)一、选择题(本大题共10小题,每小题3分,共30分) 1.下列方程中,一元二次方程的是( )A .022=-x xB .3(x ﹣2)+x =1C .03222=--y xy xD .0312=+-x x 2. 下面这几个图形中,是中心对称图形而不是轴对称图形的共有( )A .1个B .2个C .3个D .4个3.把方程2470x x --=化成()2x m n -=的形式,则m 、n 的值是( )A .2, 7B .-2,11C .-2,7D .2,11 4.若一个多边形的内角和等于720度,则这个多边形的边数是( )A .5B .6C .7D .8 5.一元二次方程220x x ++=的根的情况( )A .有两个不相等的正根B .有两个不相等的负根C .没有实数根D .有两个相等的实数根6.甲、乙两班举行电脑汉字输入比赛,各选10名选手参赛,各班参赛学生每分钟输入汉字个数统计如下表:通过计算可知两组数据的方差分别为0.22=甲S ,7.22=乙S ,则下列说法:①两组数据的平均数相同;②甲组学生比乙组学生的成绩稳定;③两组学生成绩的中位数相同;④两组学生成绩的众数相同。

其中正确的有( )A .1个B .2个C .3个D .4个7.四边形ABCD 中,对角线AC 、BD 相交于点O ,给出下列四个条件: ①AD ∥BC ;②AD=BC ;③OA=OC ;④OB=OD 从中任选两个条件,能使四边形ABCD 为平行四边形的选法有( ) A .6种 B.5种 C.4种 D.3种8.某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂五、六月份平均每月的增长率为x ,那么x 满足的方程是( ) A.182)1(502=+x B .182)21(50)1(5050=++++x x C.182)21(50=+xD .182)1(50)1(50502=++++x x9.如图,Y ABCD 的对角线AC 、BD 相交于O ,EF 过点O与AD 、BC 分别相交于E 、F ,若AB=4,BC=5,OE=1.5,那么四边形EFCD 的周长为( ) A .16 B .14 C .12 D .1010.已知点D 与点(5,0)A -,B (0,12),C (a ,a )是一平行四边形的四个顶点,则CD 长的最小值为( ) A .13 BCD .12 二、填空题:(本大题共10小题,每小题3分,共30分) 11.数据2,4,4,5,3,9,4,5,1,8的中位数为12.若关于x 的方程2230x x c -+=的一个根是1,则c 的值是 。

13.用反证法证明“在三角形中,至少有一个内角大于或等于60°”时,应先假设14.写出一个以3,-1为根的一元二次方程 15.如图,D ,E 分别是AB ,AC 中点,现测得DE 的长为10米,池塘的宽BC 是___米.16.已知关于x 的方程2210x mx m -+-=的两个实数根的平方和为 7,那么m 的值是 。

17.已知三角形两边长分别是2和9,第三边的长为一元二次方程214480x x -+=的一个根,则这个三角形的周长为 ____。

18.如图,E 是直线CD 上的一点.已知Y ABCD 的面积为 52cm 2,则△ABE 的面积为 __cm 2;19.如图,用同样大小的正方形瓷砖铺一块正方形地面,两条对角线铺黑色,其他地方铺白色.铺满这块地面一共用了白色瓷 砖100块,那么黑色瓷砖共用了 块20. 若一个四边形的一条对角线把四边形分成两个等腰三角形,我们 把这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形.在四边形ABCD 中,AB=AD=BC ,∠BAD=90°,AC 是四边形ABCD 的和谐线, 则∠BCD= ° 三、解答题:(本大题共7小题,共60分) 21. (6分)解方程:(1)()2224x x +=+ (2)23830x x --=22.(6分)如图所示,在Y ABCD 中,对角线AC 与 BD 相交于点O ,M ,N 在对角线AC 上,且AM=CN , 求证:四边形BNDM 是平行四边形。

23.(8分)某校初三学生开展踢毽子比赛活动,每班派5名学生参加,按团体总分多少排列名次,在规定时间内每人踢100个以上(含100)为优秀.下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个):经统计发现两班总数相等。

此时有学生建议,可以通过考察数据中的其他信息作为参考 请你回答下列问题:第19题图(1)填空:甲班的优秀率为__________,乙班的优秀率为_____________;(2)填空:甲班比赛数据的中位数为__________,乙班比赛数据的中位数为__________;(3)填空:估计两班比赛数据的方差较小的是____________班(填甲或乙)(4)根据以上三条信息,你认为应该把冠军奖状发给哪一个班级?简述你的理由.24.(8分)随着“五一”小长假的来临,某旅行社为了吸引市民组团去旅游,推出了如下收费标准:若某单位组织员工去古城旅游,预计将付给该旅行社旅游费用27000元,请问该单位这次共有多少员工去古城旅游?25.(10分) 已知关于x的一元二次方程02)2(2=++-kxkx.(1)若1=x是这个方程的一个根,求k的值和它的另一根;(2)求证:无论k取任何实数,方程总有实数根.(3)若等腰三角形的一边长为5,另两边长恰好是这个方程的两个根,求这个等腰三角形的周长26.(10分)在△ABC中,AB=AC,点D在边BC所在的直线上,过点D作DF∥AC交直线AB于点F,DE∥AB 交直线AC于点E.(1)当点D在边BC上时,如图①,求证:DE+DF=AC.(2)当点D在边BC的延长线上时,如图②;当点D在边BC的反向延长线上时,如图③,请分别写出图②、图③中DE,DF,AC之间的数量关系,不需要证明.(3)若AC=6,DE=4,则DF=_________.27.(12分) 如图,在Rt△ABC中,∠C=90°,BC=8,AC=6,动点P从点A开始,沿边AC向点C以每秒1个单位长度的速度运动,动点D从点A开始,沿边AB向点B以每秒53个单位长度的速度运动,且恰好能始终保持连结两动点的直线PD⊥AC,动点Q从点C开始,沿边CB向点B以每秒2个单位长度的速度运动,连结PQ.点P,D,Q分别从点A,C同时出发,当其中一点到达端点时,另两个点也随之停止运动,设运动时间为t秒(t≥0).(1)当t为何值时,四边形BQPD的面积为△ABC面积的一半?(2)是否存在t的值,使四边形PDBQ为平行四边形?若存在,求出t的值;若不存在,说明理由;八年级数学期中参考答案二、填空题(每小题3分,共30分)11、 4 ; 12、 1 ; 13、三角形的三个内角都小于60°; 14、 2230x x --=(不唯一) ; 15、 20 ; 16、 -1 ; 17、 19 ; 18、 26 ;19、 21 ; 20、 45°或 90°或135°(每答对一个答1分) . 三、解答题题21.(1)()21222(2)0(2)(22)02002,0x x x x x x x x +-+=++-=+===-=或---------------3分(2) 22123,8,34(8)43(3)100(8)810223613,3a b c b ac b x a x x ==-=--=--⨯⨯-=-±--±±===⨯==-------------------3分22.∵Y ABCD∴OA=OC,OB=OD---------------2分 ∵AM=CN∴OA-AM=OC-CN即OM=ON---------------------2分∴四边形BNDM 是平行四边形-----------------2分 23.(1)60%,40%--------------2分 (2)100,97---------------2分 (3)甲-------------------2分(4)甲班,理由:甲班的优秀率高于乙班,甲班的成绩从中位数看也高于乙班,甲班的方差小于乙班,成绩更稳定.-----------------2分24.因为25⨯1000<27000所以人数超过25人------------------------1分 设该单位这次去共有x 人去古城旅游则()1000202527000x x --=⎡⎤⎣⎦-----------------3分 解得1245,30x x == ------------------------5分当x =45时100020(25)600x --=<700(舍去)--------------6分 当x =30时100020(25)900x --=>700--------------------7分 答: 该单位这次去共有30人去古城旅游.--------------------8分25.(1)2,12==x k ---------------2分(2)0)2(2≥-=∆k ,∴对于任意实数k ,原方程一定有实数根. ----4分 (3)此方程的两根为12,2x k x ==若12x x ≠,则15x =,此等腰三角形的三边分别为5,5,2,周长为12----2分 若12x x ==2,等腰三角形的三边分别为2,2,5,不存在此三角形, 所以,这个等腰三角形的周长为12------------2分 26.(1)证明:∵DF ∥AC ,DE ∥AB , ∴四边形AFDE 是平行四边形. ∴AF =DE ,-----------------------------2分 ∵DF ∥AC ,∴∠FDB =∠C 又∵AB =AC ,∴∠B =∠C , ∴∠FDB =∠C ∴DF =BF∴DE +DF =AB =AC ;--------------------------2分 (2)图②中:AC +DE =DF .----------------2分 图③中:AC +DF =DE .------------------------2分 (3)当如图①的情况,DF =AC -DE =6-4=2; 当如图②的情况,DF =AC +DE =6+4=10. 故答案是:2或10.----------------------------2分27.(1)由题意可得:52,,3CQ t AP t AD t ===所以,82,6BQ t CP t =-=----------------------------2分又43PD AC PD t ⊥⇒==-------------------4分ABC CPQ APD S S S S =--四边形BQPD V V V所以,21142(6)12(9)459223t t t t t t ⨯-+⨯=⇒-=⇒=±分9t =+--------------------------------8分所以,当9t =-时,四边形BQPD 的面积为三角形ABC 面积的一半----------------9分(2)存在,t=2.4--------------------------------------------------10分 若四边形BQPD 为平行四边形,则BQ 与PD 平行且相等,即:482 2.43t t t =-⇒=-------------------------------------12分。

相关文档
最新文档