Phase Transition in Perovskite Oxide La0.75Sr0.25Cr0.5Mn0.5O3-δ
固体氧化物燃料电池发电系统技术要求
固体氧化物燃料电池发电系统技术要求Solid oxide fuel cell (SOFC) systems are a type of clean energy technology that have received significant attentionin recent years. Unique among other fuel cells, SOFCs operate at high temperatures, typically between 600 to 1000 degrees Celsius, which allows for direct internal reforming of hydrocarbon fuels. This characteristic makes them an attractive option for power generation in various applications, including stationary and portable power sources.固体氧化物燃料电池(SOFC)系统是一种清洁能源技术,在最近几年受到了广泛的关注。
与其他燃料电池不同,SOFC在高温下工作,通常介于600到1000摄氏度之间,这使得它们可以直接内部重整碳氢化合物燃料。
这个特性使得SOFC成为各种应用中的理想发电选择,包括固定和便携式电源。
One of the key technical requirements for SOFC systems is efficient and reliable electrochemical performance. Thefuel cell stack, which consists of multiple individualcells connected in series or parallel, serves as the heartof the system. Each cell contains an electrolyte and electrodes, with the electrolyte allowing oxygen ions to migrate from the cathode to the anode while blocking the passage of electrons. This ion transport mechanism enables the process of electricity generation through electrochemical reactions between fuel and oxidant gases.SOFC系统的一个关键技术要求是高效可靠的电化学性能。
基于两步法的钙钛矿薄膜制备以及其在低温钙钛矿电池的应用
摘要基于两步法的钙钛矿薄膜制备以及其在低温钙钛矿电池的应用近年来,受能源危机及环境问题的影响,人们一直在寻找一种能够替代传统化石能源方法。
其中太阳能电池以低成本及可再生的优势吸引了越来越多人的注意。
在过去的五年当中,钙钛矿太阳能电池(PSC)效率飙升,成为太阳能电池领域里冉冉升起的一颗新星。
虽然钙钛矿电池器件效率一直在上升,但是依然存在一些问题制约着钙钛矿太阳能电池的发展, 例如:1.在平面结构钙钛矿太阳能电池中,理想的钙钛矿层成为获得高能量转换效率的必要条件之一。
人们发现在CH3NH3PbI3中存在适量的碘化铅晶体能够钝化钙钛矿薄膜晶界,抑制电子空穴的复合,提升短路电流。
两步顺序沉积法已经广泛用于在钙钛矿太阳能电池中。
这种方法将PbI2前驱体薄膜浸渍到碘化甲胺(CH3NH3I,MAI)中制备CH3NH3PbI3活性层。
通过该方法制备的PSC的光伏性能的差异总是被归因于不同浸渍时间将会引起PbI2完全/不完全转化为CH3NH3PbI3。
2.无机金属氧化物电子传输层被广泛地用于钙钛矿太阳能电池中。
大多数无机电子传输层需要高温以形成导电性良好和无缺陷的薄膜。
而这些方法将会限制其在柔性器件中的使用以及将来商业化的应用。
因此,如何得到一种可低温柔性制备的电子传输层成为钙钛矿太阳能电池领域里一项重要的问题之一。
针对以上两个问题我们提出两种解决方案:1.为了解决第一个问题,我们采用溶剂蒸汽退火(SVA)方法制备大晶粒尺寸的PbI2晶体,以制备得到高质量的钙钛矿薄膜。
使用该方法,发现在CH3NH3I溶液中增加的PbI2浸渍时间会降低得到的PSC的能量转换效率,而钙钛矿膜中PbI2 / CH3NH3PbI3的含量并没有明显的变化。
我们通过紫外-可见光吸收,X射线衍射,傅里叶变换红外光谱(FT-IR)和扫描电子显微镜的测试探究了这种变化的来源。
我们将这种光伏性能的异常减少是因为CH3NH3PbI3壳层对PbI2核的插层/脱嵌。
溶液空间限域法制备有机-无机杂化卤化铅钙钛矿单晶薄膜及其器件应用研究进展
第53卷第4期2024年4月人㊀工㊀晶㊀体㊀学㊀报JOURNAL OF SYNTHETIC CRYSTALS Vol.53㊀No.4April,2024溶液空间限域法制备有机-无机杂化卤化铅钙钛矿单晶薄膜及其器件应用研究进展张庆文,单东明,张㊀虎,丁㊀然(吉林大学电子科学与工程学院,集成光电子学国家重点实验室,长春㊀130012)摘要:近年来,有机-无机杂化卤化铅钙钛矿材料因其出色的光电特性在国际上备受瞩目,并已成功应用于太阳能光伏㊁光电探测㊁电致发光等多个领域㊂目前绝大部分器件研究都集中在钙钛矿多晶材料上,但钙钛矿单晶材料拥有更低的缺陷态密度㊁更高的载流子迁移率㊁更长的载流子复合寿命㊁更宽的光吸收范围,以及更高的稳定性等优异的性质,可有效减少载流子传输过程中的散射损失,以及在晶界处的非辐射复合,并抑制离子迁移所引起的迟滞效应㊂采用钙钛矿单晶薄膜作为器件有源层有望制备性能更高效且更稳定的钙钛矿光电器件㊂目前,已报道的多种钙钛矿单晶薄膜制备方法包括溶液空间限域法㊁化学气相沉积法㊁自上而下加工法等,其中溶液空间限域法的发展和应用最为广泛㊂本文聚焦利用溶液空间限域法制备高质量钙钛矿单晶薄膜的相关方法,以及钙钛矿单晶薄膜在光电探测器㊁太阳能电池㊁场效应晶体管和发光二极管等相关器件应用中的研究进展,并对钙钛矿单晶薄膜及其光电器件的未来发展趋势进行了展望㊂关键词:钙钛矿半导体材料;溶液空间限域法;钙钛矿单晶薄膜;光电子器件;单晶薄膜生长中图分类号:O78;O484;TN36㊀㊀文献标志码:A ㊀㊀文章编号:1000-985X (2024)04-0572-13Research Progress on Preparation of Organic-Inorganic Hybrid Lead Halide Perovskite Single-Crystalline Thin-Films by Solution-Processed Space-Confined Method and Their Device ApplicationsZHANG Qingwen ,SHAN Dongming ,ZHANG Hu ,DING Ran(State Key Laboratory of Integrated Optoelectronics,College of Electronic Science and Engineering,Jilin University,Changchun 130012,China)㊀㊀收稿日期:2023-11-20㊀㊀基金项目:国家重点研发计划青年科学家项目(2022YFB3607500);国家自然科学基金(62274076)㊀㊀作者简介:张庆文(1999 ),男,山东省人,硕士研究生㊂E-mail:zhangqw1012@ ㊀㊀通信作者:丁㊀然,教授,博士生导师㊂E-mail:dingran@Abstract :In recent years,organic-inorganic hybrid lead halide perovskite materials have attracted much attention in the world because of their excellent photoelectric properties,and have been successfully applied in many fields such as solar photovoltaic,photoelectric detection,electroluminescence and so on.At present,most of the device research focuses on perovskite polycrystalline materials,but perovskite single crystal materials have excellent properties such as lower defect state density,higher carrier mobility,longer carrier recombination lifetime,wider light absorption range and higher stability,which can effectively reduce the scattering loss during carrier transport and non-radiative recombination at the grain boundary,and inhibit the hysteresis effect caused by ion ing perovskite single crystal thin film as the active layer of the device is expected to produce more efficient and stable perovskite photoelectric devices.At present,many preparation methods of perovskite single crystal films have been reported,mainly including solution-processed space-confined method,chemical vapor deposition method,top-down processing method,etc.Among them,solution-processed space-confined method is the most widely developed and applied.This paper focuses on the preparation of high-quality perovskite single crystal thin films by solution-processed space-confined method,and the research progress of perovskite single crystal thin films in photodetectors,solar cells,field effect transistors,light-emitting diodes and other related devices,and prospects the future development trend of perovskite single crystal thin films and photoelectric devices.㊀第4期张庆文等:溶液空间限域法制备有机-无机杂化卤化铅钙钛矿单晶薄膜及其器件应用研究进展573㊀Key words:hybrid perovskite semiconductor;solution-processed space-confined method;perovskite single-crystalline thin-film;optoelectronic device;growth of single crystal thin film0㊀引㊀㊀言近年来,有机-无机杂化卤化铅钙钛矿材料因高的光吸收系数[1]㊁高的载流子迁移率[2-3]㊁长的载流子扩散距离[4]㊁带隙可调谐[5-7]等优异的光电性能,引起了科研界和产业界的广泛关注㊂尤其是在光伏器件领域,钙钛矿电池的功率转换效率(power conversion efficiency,PCE)从最初的3.8%[8]攀升到目前的25.9%[9],发展速度出人意料且远超其他光伏材料体系㊂理论计算得到单结钙钛矿电池的最高转换效率可达33%,这一效率优于晶体硅的理论极限效率29.4%㊂除光伏领域外,钙钛矿材料在光电探测[5,10-15]㊁电致发光[16-19]㊁光泵激光[20-23]和辐射探测[24-26]等诸多光电领域也展现出巨大的应用前景㊂有机-无机杂化卤化铅钙钛矿材料化学结构式通常为ABX3,一般为立方体或八面体结构[27],对于典型的三维钙钛矿材料,其中A代表一价阳离子(如MA+㊁FA+等),B代表二价Pb2+阳离子,X为一价卤素阴离子(如Cl-㊁Br-㊁I-等)㊂在钙钛矿材料中,B离子位于立方晶胞的中心[28],被6个X离子包围形成配位立方八面体结构㊂钙钛矿光电器件有源层材料以多晶薄膜为主,多晶材料虽然在器件应用方面已展现出卓越的性能,但是内部存在大量晶界,且在晶界处存在高密度的晶格位错,以及无序的晶粒生长,从而导致薄膜内存在大量的晶格缺陷和可自由移动的离子㊂多晶膜内大量晶粒㊁晶界㊁空隙和表面缺陷等,会显著增大非辐射复合过程并诱使激子猝灭,严重限制光电及电光转换效率[29-30]㊂同时,在外场作用下钙钛矿多晶膜中会产生明显的离子迁移现象,移动的离子会抑制自由载流子的感生㊁积累与传输,也将极大影响器件的光电性能[31]㊂相比之下,钙钛矿单晶拥有更低的缺陷态密度㊁更长的载流子扩散长度㊁更长的载流子复合寿命㊁更宽的光吸收范围,以及更高的稳定性等[32-33]㊂这些优秀的本征特性为克服以上挑战提供了良好的载体,有望制备性能更高效且更稳定的钙钛矿光电器件㊂从晶体形态学角度区分,钙钛矿单晶材料主要可分为块体[34-35]和薄膜两种类型[36-38]㊂相比于单晶块体材料,单晶薄膜更易于与传统半导体工艺相集成,并有望制备性能更加优越的光电器件,更因其突出的柔性[39]和机械性,在未来柔性电子器件领域也展现出良好的应用前景㊂目前,已报道的钙钛矿单晶薄膜制备方法中,主要包括溶液空间限域法[36-37,40]㊁化学气相沉积法[41-44]㊁自上而下加工法[13,45-48]等,其中溶液空间限域法的发展和应用最为广泛㊂由于单晶各向异性生长,为了有效控制单晶薄膜厚度,抑制薄膜沿垂直纵向方向生长,并且提高水平横向方向的生长速率㊁增大薄膜的表面积,常引入空间结构限制策略,实现可控制备钙钛矿单晶薄膜㊂本文聚焦利用溶液空间限域法制备高质量钙钛矿单晶薄膜的相关技术方法,以及钙钛矿单晶薄膜在光电探测器㊁太阳能电池㊁场效应晶体管和电致发光器件等相关器件应用中的研究进展㊂同时,对未来钙钛矿单晶薄膜材料的发展及其应用所面临的难题提出可行的解决方案㊂1㊀钙钛矿单晶薄膜生长策略目前,溶液法生长钙钛矿单晶块体技术较为成熟,包括冷却结晶法[4,49-52]㊁逆温结晶法[46,53-57]㊁反溶剂扩散法[58-62]等方法,但单晶块体的厚度较厚,展现出较高的光吸收损耗和较长的激子扩散距离,不适于垂直结构型光电器件的应用㊂为了进一步扩展钙钛矿单晶材料在光电器件领域的应用,急需开发厚度和形貌可控㊁重复性高的钙钛矿单晶薄膜制备方法㊂2016年,陕西师范大学刘生忠教授团队报道采用空间限域结合动态流反应系统的生长方法,通过控制两个玻璃片之间的间隙大小,确保钙钛矿单晶薄膜在预设的限域空间结构内生长,达到单晶薄膜厚度可控的目的,如图1(a)所示[37]㊂利用蠕动泵驱动空隙中溶液流动,为单晶薄膜生长提供源源不断的前驱体溶液,最终实现一系列厚度约为150μm的MAPbI3单晶薄片㊂然而,微米厚度的钙钛矿单晶薄膜依然无法满足垂直结构型器件的需求,通过施加外部压力的方式来控制几何限域空间的间隙距离,达到进一步减薄钙钛矿单晶薄膜的作用㊂2016年,中国科学院化学研究所胡劲松研究员团队设计如图1(b)所示装置,实现可控制备厚度均匀的钙钛矿单晶薄膜生长方法[36]㊂实验具体流程是将两个平面衬底夹在一起,通过控制夹具的压力来限制几何限域空间间隙,再垂直浸入钙钛矿前驱体溶液中,在毛细力的作用下溶液会填充满整个限域空间,然后加热底部前驱体溶液,控制溶剂挥发速率,形成底部饱和㊁顶部过574㊀综合评述人工晶体学报㊀㊀㊀㊀㊀㊀第53卷饱和的溶液环境,由于温度差引起的热对流,底部的溶液不断向顶部流动补充,为限域空间内生长钙钛矿单晶薄膜提供充足的前驱体溶液㊂制备的单晶薄膜具有厚度从纳米至微米可调㊁表面积达到亚毫米尺寸㊁横纵比可达~105等特点㊂同时,该方法可将钙钛矿单晶薄膜制备在各种衬底(如玻璃㊁石英㊁氧化铟锡(indiumtin oxide,ITO)㊁氟掺杂氧化锡(F-doped tin oxide,FTO))上,其厚度只取决于两个衬底之间的间隙距离,不同厚度的薄膜呈现出多彩均匀的颜色㊂图1㊀溶液空间限域法中厚度可控策略制备钙钛矿单晶薄膜㊂(a)溶液空间限域结合动态流反应系统生长法[37];(b)溶液空间限域法生长厚度可调的钙钛矿单晶薄膜[36]Fig.1㊀Strategies for the growth of thickness-controlled perovskite single-crystalline thin-films.(a)Schematic diagram of the geometry-confined dynamic-flow reaction system[37];(b)schematic diagram of the solution-processed space-confined growthmethod for perovskite single-crystalline thin-films[36]为了扩大钙钛矿单晶薄膜的横向尺寸,从晶体成核动力学角度出发,降低溶液空间限域法中衬底的表面能,将有助于提高溶剂中离子的扩散速度和扩散距离,诱导晶体沿横向方向加速生长㊂2017年,美国北卡罗来纳大学教堂山分校黄劲松教授团队提出对衬底表面进行疏水处理,在ITO衬底表面旋涂疏水的聚[双(4-苯基)(2,4,6-三甲基苯基)胺](Poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine,PTAA)空穴传输层材料,再用两片PTAA修饰后的ITO衬底构建限域空间,在空间内滴加MAPbBr3前驱体溶液后,将衬底结构置于㊀第4期张庆文等:溶液空间限域法制备有机-无机杂化卤化铅钙钛矿单晶薄膜及其器件应用研究进展575㊀110ħ热台上[1]㊂对比PTAA处理和未处理的衬底所构建限域空间内前驱体溶液的扩散差异,从图2(a)不难发现,由于疏水材料处理的衬底表面具有较低的表面能,将加速前驱体溶液中离子的扩散速率,解决生长过程中离子长程输运差的问题,有助于减少多晶成核结晶概率,同时增大单晶薄膜的横向生长尺寸㊂基于该衬底修饰方法,实现MAPbBr3单晶薄膜厚度可控制在10~20μm,横向截面尺寸可达数十mm2,该工作证明了对衬底表面进行合理改性对于控制钙钛矿单晶薄膜横向生长至关重要㊂2020年,北京大学马仁敏教授团队采取对衬底表面进行特异性处理的策略[63]㊂具体方式是对玻璃衬底进行不同的亲疏水处理,由于具有特异性的亲疏水能力,衬底展现出大小不同的溶液接触角㊂在观测亲疏水能力与单晶成核密度之间的关系后,发现从亲水到疏水的转变过程中,衬底表面的成核密度显著降低㊂分析其原因是亲水表面的成核自由能垒相对低于疏水条件下的表面成核自由能垒,从而拥有较快速的成核速率;并且亲水表面更易于吸附和捕获前驱体溶液中的离子,而降低了离子的扩散速率,导致单晶结晶速率较为缓慢㊂因此,疏水处理的衬底可有效降低单晶成核密度,并且加快单晶生长速率,更易于制备大尺寸的钙钛矿单晶薄膜㊂制得的MAPbBr3单晶薄膜边长尺寸达到1cm,厚度控制在10μm,同时展现出较好的结晶质量,薄膜陷阱态密度仅为1011cm-3,载流子迁移率超过60cm2/(V㊃s)㊂除了衬底修饰策略,衬底自身独特的表面特征也有助于钙钛矿单晶薄膜的生长㊂2020年,天津理工大学吴以成教授团队以云母作为溶液空间限域法的生长衬底[64],如图2(b)所示,将含有适量油酸(oleic acid,OA)的钙钛矿前驱体溶液滴加到两片云母组成的间隙中,旋转云母衬底去除多余的前驱体溶液,然后放置于热板上加热,最终获得超薄的MAPbBr3单晶薄膜㊂该方法是基于云母表面的钾原子与钙钛矿中卤素原子之间会产生较强的相互作用,导致界面能降低并促进钙钛矿单晶薄膜在云母表面横向生长,同时油酸作为表面改性剂附着在钙钛矿表面,抑制钙钛矿单晶薄膜沿纵向方向的生长,最终成功制备出厚度仅为8nm㊁横向尺寸可达数百微米的MAPbBr3单晶薄膜㊂图2㊀溶液空间限域法中衬底修饰策略制备钙钛矿单晶薄膜㊂(a)PTAA处理和未处理的ITO衬底结构中前驱体溶液扩散速度对比图[1];(b)云母衬底上生长钙钛矿单晶薄膜流程示意图[64]Fig.2㊀Substrate modification for the growth of perovskite single-crystalline thin-films.(a)Comparison of the diffusion rate of precursor solution within the PTAA treated and untreated ITO substrates[1];(b)growth of perovskite single-crystalline thin-films on mica substrates[64]钙钛矿单晶薄膜的生长开始于成核阶段,考虑到处于复杂溶液环境中,晶体将发生各向异性生长,容易形成多个晶核,并诱使出现晶畴㊁晶界等结构,严重影响钙钛矿单晶成膜的结晶质量[65]㊂为解决这一问题,科研人员提出了一种晶种法技术策略,首先生长钙钛矿单晶种子,再将种子转移到目标衬底,最后在合适的溶液环境中再结晶生长形成高质量的钙钛矿单晶薄膜㊂2018年,中国科学院化学研究所宋延林研究员团队提出了一种溶液空间限域结合晶种印刷法的生长策略,通过晶种再生长的方式,实现了厚度可控㊁重复性好㊁576㊀综合评述人工晶体学报㊀㊀㊀㊀㊀㊀第53卷结晶质量高的钙钛矿单晶薄膜[66]㊂如图3(a)所示,首先使用喷墨打印技术将钙钛矿前驱体溶液选择性滴加在目标衬底上,随着前驱体溶液的挥发,形成规则排布的钙钛矿单晶种子㊂获得的钙钛矿单晶种子将有效抑制无序成核结晶现象㊂然后,将载有钙钛矿单晶种子的衬底转移并浸入到钙钛矿前驱体饱和溶液中,置于热台上加热结晶后,通过控制钙钛矿单晶种子的数量和尺寸,最终制备出批量的毫米级钙钛矿单晶薄膜㊂2021年,韩国首尔大学Lee教授团队进一步拓展了晶种生长法,结合种子转移技术,如图3(b)所示[67]㊂首先在两片玻璃片中注入前驱体溶液,玻璃片之间由厚度为25μm的聚四氟乙烯(polytetrafluoroethylene,PTFE)薄膜隔开,在110ħ的加热温度下,过饱和的钙钛矿前驱体溶液成核结晶,形成厚度为23μm㊁尺寸为100~200μm 的MAPbBr3单晶种子㊂然后,挑选出单个种子转移至一个密封式液体池腔体中,随着浓度为1mol/L的MAPbBr3前驱体溶剂以5μL/min速率源源不断地流入液体池腔体内,基于逆温结晶法,MAPbBr3单晶薄膜将匀速生长,最终制得了高质量㊁大尺寸的MAPbBr3单晶薄膜,其厚度为40μm,表面积可达16.23mm2,表面粗糙度为0.51nm,缺陷态密度仅有7.61ˑ108cm-3㊂图3㊀溶液空间限域法中晶种法策略制备钙钛矿单晶薄膜㊂(a)溶液空间限域结合晶种印刷法制备钙钛矿单晶薄膜技术流程示意图[66];(b)晶种生长法结合晶种转移技术制备钙钛矿单晶薄膜技术流程示意图[67]Fig.3㊀Seed-induced methods for the growth of perovskite single-crystalline thin-films.(a)Technical flow diagram of preparation of perovskite single crystal film by solution-processed space-confined combined with seed printing[66];(b)process flow diagram of preparation of perovskite single crystal thin film by seed growth and seed transfer technology[67]图案化生长钙钛矿单晶薄膜对于推动钙钛矿单晶材料面向集成化光电器件应用至关重要㊂其主要思路是通过引入周期性的模板,构建结构化限域空间用于生长图案化钙钛矿单晶[68-74]㊂2021年,合肥工业大学罗林保教授团队利用高密度数字视频光盘(digital video disc,DVD)上的沟道作为结构化限域空间用于溶液空间限域法,如图4(a)所示[71]㊂首先,将聚二甲基硅氧烷(polydimethylsiloxane,PDMS)溶液旋涂在准备好的DVD磁盘上,固化后形成与磁盘沟道结构和形貌一致的PDMS模板㊂然后,在亲水性衬底上滴加钙钛矿前驱体溶液,溶液在亲水衬底上形成一层均匀的液膜,再将表面具有周期性沟道结构的PDMS模板覆盖其上,前驱体溶液便被重新分配并限制在PDMS模板与亲水性衬底形成的纳米沟道之间㊂放置于热台上加热之后,晶体沿着纳米沟道不断生长,最终形成规则且均匀的钙钛矿单晶阵列,得到的钙钛矿单晶阵列的结构完全与磁盘沟道形貌相一致,并可实现在不同衬底上生长大规模钙钛矿单晶阵列结构㊂2022年,苏州大学揭建胜教授团队开发了类似的三维限制结晶方法,在三维结构化的微通道模板上方利用一个三角形PDMS 基板协助溶液剪切过程,用于生长钙钛矿单晶阵列,PDMS模板紧密地附着在微通道表面,避免了溶液剪切㊀第4期张庆文等:溶液空间限域法制备有机-无机杂化卤化铅钙钛矿单晶薄膜及其器件应用研究进展577㊀过程中对微通道的破坏,同时利用PDMS模板表面的疏水性,可以有效防止溶液黏附在三角形PDMS基板上,如图4(b)所示[72]㊂在底部进行加热的情况下,缓慢移动三角形玻璃基板,钙钛矿前驱体溶液逐渐挥发结晶,最终形成与模板结构相同的MAPbI3单晶阵列㊂为了进一步提高钙钛矿单晶阵列横向尺寸,韩国汉阳大学Sung教授团队引入滚筒印刷技术,如图4(c)所示[73]㊂首先,钙钛矿前驱体溶液加在180ħ加热的基板衬底上,通过旋转图案化的PDMS模具包裹的圆柱形金属滚轮,PDMS模具上具有宽度为10mm㊁深度为200nm的周期性阵列,前驱体溶液被限制在模具和基板衬底之间,随着前驱体溶液的迅速蒸发而结晶,最终制得的钙钛矿单晶薄膜阵列与滚筒图案完全一致㊂成功实现了总宽度为10mm,周期尺寸为400nm,厚度为200nm的MAPbI3单晶薄膜阵列㊂利用该方法不仅可以在横向方向上约束钙钛矿单晶的生长,并且实现滚筒印刷制备大尺度钙钛矿单晶薄膜阵列的目的㊂通过上述总结,围绕溶液空间限域法制备大尺寸㊁高质量钙钛矿单晶薄膜,详细阐述了从厚度可控㊁衬底修饰㊁晶种生长㊁图案化生长等几个主要方面的生长和制备方法,相关性能参数如表1所示,对于未来实现可控制备钙钛矿单晶薄膜材料,进一步扩展其在光电器件领域的应用至关重要㊂图4㊀溶液空间限域法中图案化生长策略制备钙钛矿单晶薄膜㊂(a)磁盘沟道模板生长钙钛矿单晶阵列的技术流程图[71];(b)三维限制结晶方法生长钙钛矿单晶阵列装置示意图[72];(c)滚筒印刷技术制备大尺度钙钛矿单晶阵列的装置流程图[73] Fig.4㊀Periodic structures for the growth of perovskite single-crystalline thin-films.(a)Digital channel template for the growth of perovskite single-crystalline arrays[71];(b)schematic diagram of apparatus for growing perovskite single crystal array by a three-dimensional restricted crystallization method[72];(c)flow chart of device for preparing large-scale perovskite singlecrystal array by roller printing technology[73]578㊀综合评述人工晶体学报㊀㊀㊀㊀㊀㊀第53卷表1㊀溶液空间限域法及其改进策略制备钙钛矿单晶薄膜的相关性能参数Table1㊀Performance parameters of the perovskite single-crystalline thin-films prepared by solution-processedspace-confined method and its improvement strategySolution-processed space-confined method and its improvement strategy Perovskitematerial type Thickness/μmDensity of defectstates/cm-3Carrier mobility/(cm2㊃V-1㊃s-1)Surface dimension ReferenceDynamic-flow reaction system MAPbI3~1506ˑ10839.6 5.84mmˑ5.62mm[37] Thickness controlledgrowth method MAPbBr30.01~1 4.8ˑ101015.7Hundreds of microns[36]Substrate treatment MAPbI310~40Electron:36.8ʃ3.7Hole:12.1ʃ1.5Tens of square millimeters[1] Substrate specific processing MAPbBr3~10 1.6ˑ1011>601cm[63] Mica substrate MAPbX30.008~0.01436.5Hundreds of microns[64] Seed printing method MAPbX3,CsPbBr30.1~10 2.6ˑ101014000μm2[66] Seed transfer technology MAPbBr3407.61ˑ10816.23mm2[67] Digital channeltemplate method MAPbI3~0.065cycle:760nm[71] Three-dimensional confinedcrystallization method MAPbI30.5~58.5ˑ1010cycle:8μm[72] Rolling mould printingtechnology MAPbI30.2or0.545.64cycle:400nm[73] 2㊀钙钛矿单晶薄膜器件应用钙钛矿单晶薄膜因其高的光吸收系数㊁高的载流子迁移率㊁长的载流子扩散长度㊁带隙可调谐等优异的光电性能,被广泛应用于光电探测器㊁太阳能电池㊁场效应晶体管㊁发光二极管等器件中㊂光电探测器是基于传统光电效应将光信号转变为电信号的器件装置,其在光通信㊁激光雷达㊁医疗诊断㊁安防监控等多个领域应用广泛㊂传统光电探测器多以无机半导体材料为主,例如Si㊁GaAs㊁GaN等材料[11]㊂近年来,随着有机-无机杂化卤化物钙钛矿半导体材料的出现,其展现出的巨大的应用潜力,有望促进光电探测器在成本和性能上取得进一步的提升和跨越㊂大量研究表明,由于较低的光吸收损耗和理想的激子扩散距离,钙钛矿单晶薄膜光电探测器[68-69,75-77]相比于单晶块体探测器,在光电探测方面已展露出明显的性能优势㊂2015年,阿卜杜拉国王科学大学Bakr教授团队首次报道利用直接生长在ITO玻璃衬底上的MAPbCl3单晶薄膜,制备一种具有金属-半导体-金属器件结构的光电导型探测器[54],并展现出出色的光电探测性能,具有较高的探测率与开关比,响应时间在ms数量级,这与当时商用的III-V族半导体光电晶体管的性能几乎相当㊂2017年,黄劲松团队利用MAPbBr3单晶薄膜制作了垂直器件结构为p-i-n型的Cu/BCP/C60/MAPbBr3/PTAA/ITO钙钛矿单晶探测器[78],如图5(a)所示,该光电探测器的探测率(D∗)高达1.5ˑ1013Jones㊂由于单晶薄膜较低的缺陷态密度,探测器对于弱光探测极为敏感,探测最低可达pW/cm2量级,同时线性动态范围高达256dB,是当时报道最高的结果㊂2018年,马仁敏教授团队系统性研究了光电探测器性能与单晶薄膜厚度之间的依赖关系[14]㊂发现随着钙钛矿单晶薄膜的厚度从10μm降低到几百nm,光电探测器的探测能力提升了2个数量级,增益提升了4个数量级㊂通过优化钙钛矿单晶薄膜的厚度以及结晶度,器件的增益可达5ˑ107,增益带宽积为70GHz㊂钙钛矿材料具有可低温㊁液相制备的特点,并可与多种柔性衬底相兼容,制备可弯折的柔性光电子器件㊂同时,钙钛矿单晶薄膜展现出较好的柔性和机械性,可用于制备柔性钙钛矿单晶薄膜光电探测器㊂为此, 2020年,马仁敏教授团队引入超薄钙钛矿单晶薄膜作为有源层,制备了高性能的柔性光电探测器[39],如图5 (b)所示,该光电探测器的单晶薄膜厚度仅为20nm,器件响应度高达5600A/W,在经过1000次循环弯折后,探测器的光电流和开关比没有出现明显的下降,展现出较好的弯折稳定性㊂高质量的钙钛矿单晶纳米线阵列有利于限制载流子在几何通道内输运,提高载流子的迁移率和扩散距离㊂2021年罗林保教授团队制备的基于MAPbI3单晶纳米线阵列的光电探测器[71],在520nm入射光照射下,随入射光功率的升高,该光电探㊀第4期张庆文等:溶液空间限域法制备有机-无机杂化卤化铅钙钛矿单晶薄膜及其器件应用研究进展579㊀测器的光电流呈线性递增,最低暗电流为0.3nA,最高光电流达350nA,总开关比高达1.2ˑ103㊂同时,该探测器的响应度为20.56A/W,探测率达到4.73ˑ1012Jones㊂由于钙钛矿单晶纳米线阵列展现出良好的偏振敏感性,该类型器件也适用于探测线偏光的偏振度㊂为了解决钙钛矿材料中铅毒性[79]和不稳定性的问题,2020年,中山大学匡代彬教授团队在ITO玻璃上原位生长不含铅元素的全无机Cs3Bi2I9单晶薄膜并制备了相应的光电探测器[80]㊂制得的Cs3Bi2I9钙钛矿单晶薄膜的陷阱态密度比多晶材料低3个数量级,载流子迁移率也高出3.8ˑ104倍㊂这些优异的性质有利于实现高性能的光电探测器,基于此材料制备的垂直结构型光电探测器的开关比高达11000㊂而且,在未封装的情况下,处在潮湿环境中1000h之后,该钙钛矿单晶薄膜光探测器的光电流仍维持初始值的91%,体现了该材料出色的环境稳定性㊂由于钙钛矿多晶薄膜内存在大量的晶界㊁空穴和缺陷态等,太阳能电池存在显著的非辐射复合能量损失,限制了钙钛矿太阳能电池PCE的进一步提升㊂而无晶界㊁低缺陷态密度的钙钛矿单晶薄膜成为解决材料内在问题及器件PCE的理想材料体系㊂2017年,中国科学院深圳先进技术研究院李江宇教授团队在FTO/TiO2衬底上直接生长MAPbI3单晶薄膜,并制造了相应的钙钛矿单晶薄膜太阳能电池,该电池器件的PCE达到了8.78%[81]㊂同年,黄劲松教授团队利用在PTAA空穴传输层上直接生长的MAPbI3单晶薄膜,构建器件结构为ITO/PTAA/MAPbI3/PCBM/C60/BCP/Cu的太阳能电池器件,如图5(c)所示[1]㊂通过优化钙钛矿单晶薄膜厚度,其电池的光谱响应范围可以扩展到820nm,比相对应的多晶薄膜材料的光谱响应要宽20nm,器件的最佳短路电流密度J sc为20.5mA/cm2,开路电压V oc为1.06V,填充因子(fill factor,FF)为74.1%,PCE可达16.1%㊂在使用MAI离子溶液对单晶薄膜表面进行钝化处理之后,有效降低了MAPbI3单晶薄膜表面的电荷陷阱,器件最佳PCE提升到17.8%㊂2019年,Bakr教授团队利用20μm厚的MAPbI3单晶薄膜制备太阳能电池,器件结构为ITO/PTAA/MAPbI3/C60/BCP/Cu[82]㊂该钙钛矿单晶薄膜电池器件的PCE达到21.09%,填充因子FF为84.3%㊂之后,该团队通过优化前驱体溶液,采用碳酸丙烯酯(propylene carbonate,PC)和γ-丁内酯(1,4-butyrolactone,GBL)的混合溶剂,90ħ下生长MAPbI3钙钛矿单晶薄膜㊂基于此单晶材料制备的钙钛矿太阳能电池的V oc明显提高,PCE达到21.9%[84]㊂2021年,该团队在之前的器件结构基础上,将钙钛矿单晶的成分改为混合阳离子FA0.6MA0.4PbI3钙钛矿单晶,如图5(d)所示,制备的钙钛矿太阳能电池对近红外响应要比纯FAPbI3器件扩展了50meV,J sc达到26mA/cm2,PCE达到22.8%[84]㊂2023年,该团队在亲水性的([2-(3,6-dimethoxy-9H-carbazol-9-yl)ethyl]phosphonic acid,MeO-2PACz)单分子层表面生长FA0.6MA0.4PbI3钙钛矿单晶薄膜,与PTAA上生长的单晶薄膜相比,MeO-2PACz有效提高了钙钛矿单晶薄膜与衬底的机械粘附力,PCE达到创纪录的23.1%[85]㊂伴随着钙钛矿单晶薄膜生长技术的更新和迭代,钙钛矿单晶薄膜太阳能电池的器件性能有望超越钙钛矿多晶太阳能电池,在太阳能电池器件领域占据一席之地[86]㊂从钙钛矿材料结构角度出发,由金属阳离子和卤化物阴离子形成的强共价或离子键相互作用结合的钙钛矿八面体骨架结构,将为材料提供高的载流子迁移率骨架模型,据理论预测的迁移率最高可达1000cm2/(V㊃s);有机阳离子可以间接扭曲无机骨架,在分子尺度上影响材料的晶体结构和电学特性㊂因此,钙钛矿材料因其展现出较高的载流子迁移率,被认为是发展新一代半导体电子技术最理想的光电材料㊂基于钙钛矿单晶薄膜材料的场效应晶体管研究起步相对较晚,2018年,阿卜杜拉国王科技大学Amassian教授团队制备了底栅顶接触的钙钛矿单晶薄膜场效应晶体管器件,器件的沟道长度为10~150μm,如图5(e)所示[87]㊂该团队设计和制备了一系列基于MAPbCl3㊁MAPbBr3㊁MAPbI3单晶薄膜的场效应晶体管器件,测量和分析器件的转移和传输特性曲线,其空穴迁移率最高分别可达2.6㊁3.1㊁2.9cm2/(V㊃s),电子迁移率分别为2.2㊁1.8㊁1.1cm2/(V㊃s),且器件开关比分别可达2.4ˑ104㊁4.8ˑ103㊁6.7ˑ103㊂该系列场效应晶体管器件展现出良好的电学输运特性,为进一步推动钙钛矿单晶薄膜材料在集成电子器件领域的应用提供了良好的研究基础㊂钙钛矿发光二极管(perovskitelight emitting diodes,PeLED)近年来也发展迅速,自2014年英国剑桥大学的Friend教授课题组首次报道室温下PeLED器件以来,PeLED以其优异的光电性能㊁较低的器件成本,以及。
通常的化合物结晶是通过降温实现,但这篇钙钛矿的结晶是通过升温实现的,而且速度超快,还是单晶-2015-NC
of Physical Sciences and Engineering, Solar and Photovoltaics Engineering Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia. 2 Department of Chemistry, Faculty of Science, Mansoura University, Mansoura 35516, Egypt. 3 Mathematical Institute, University of Oxford, Woodstock Road, Oxford OX2 6GG, UK. 4 Materials Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia. 5 Imaging and Characterization Lab, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia. * These authors contributed equally to this work. Correspondence and requests for materials should be addressed to O.M.B. (email: osman.bakr@.sa).
LaCoO3钙钛矿氧化物为氧演变催化从分子轨道原则优化-supplement
Materials and Methods
Material synthesis. The perovskites oxides were synthesized with a co-precipitation method as described previously (26) with the exception of BSCF, which was synthesized with a nitrate combustion method. In the BSCF synthesis, alkaline earth and transition-metal nitrates (all 99.998+% Sigma-Aldrich) were prepared at 0.2 M concentration, to which glycine (>99% Sigma-Aldrich) was added at 0.1 M concentration. The mixture was heated until vigorously evaporating, at which point, sparks are emitted as a result of combustion; it was then calcined at 1100°C under air atmosphere for 24 hours. All samples were found to be in phase-pure form from X-ray diffraction with the exception of LaNiO3 (~2% NiO). All structure parameters, particle size distributions, estimated surface areas, and estimation of eg-electron filling of surface transition-metal ions are listed in tables S3-5.
磁控溅射制备金属-钙钛矿氧化物薄膜在水分解反应中的应用
第53卷第4期 辽 宁 化 工 Vol.53,No. 4 2024年4月 Liaoning Chemical Industry April,2024收稿日期: 2023-08-05磁控溅射制备金属-钙钛矿氧化物薄膜在水分解反应中的应用黄先杰(厦门建霖健康家居股份有限公司,福建 厦门 361000)摘 要: 目前,采用电催化途径将水转化为具有高能量密度的“零排放”能源载体:氢气,已成为研究的热点。
钙钛矿氧化物由于资源丰富、价格低廉等特点,被认为是最有可能替代贵金属基催化剂的选择之一。
本研究通过磁控溅射技术结合原位析出方法构筑了“金属-钙钛矿”异质结电解水析氧反应电催化剂薄膜,并发现原位析出策略显著提高了其电催化活性面积,电解水氧化反应活性及稳定性。
本研究为低成本电解水反应催化剂的设计构建提供了新的思路。
关 键 词:钙钛矿氧化物; 薄膜; 电解水; 磁控溅射中图分类号:O646.5 文献标识码: A 文章编号: 1004-0935(2024)04-0506-05近年来,随着经济的飞速发展,人类对能源,特别是石油等碳基能源的消耗与日俱增,而化石能源使用一方面造成了能源短缺危机,更造成的地球生态环境的恶化,因此,寻求高能量密度且环保低碳排的能源载体,以替代碳基燃料成为迫在眉睫的问题。
氢能具有清洁环保、储能密度高等特点,被认为是未来最理想的清洁能源。
目前,通过可再生能源发电,并基于此电能电解水制备氢气利用是氢能大规模利用的最佳制备途径之一 。
电解水制氢包含了阴极的产氢反应(Hydrogen Evolution Reaction ,HER)和阳极的产氧反应(Oxygen Evolution Reaction ,OER)。
相对于HER 来说,OER 反应涉及四步质子-电子耦合转移过程,电极过程动力学十分缓慢,过电位较大, 因此,OER 反应也成为制约电解水过程大规模应用的瓶颈[1]。
贵金属基氧化物如氧化铱(IrO 2) 和氧化钌(RuO 2) 具有较好的OER 性能,但是其高昂的成本高及较差的稳定性限制了在商业中的大规模应用。
钙钛矿 离子迁移 science
钙钛矿离子迁移 sciencePerovskite is a type of mineral that has gained significant attention in the field of science due to its unique properties and potential applications. One of the most well-known perovskite materials is the calciumtitanium oxide, commonly referred to as CaTiO3 or simply calcium titanate. This compound exhibits interesting properties such as high dielectric constant,ferroelectricity, and photoconductivity, making it suitable for various technological applications.One aspect that has been extensively studied in perovskite materials is the migration of ions within their crystal structure. Ion migration refers to the movement of charged particles, such as cations (positively charged ions) or anions (negatively charged ions), within the lattice of the material. In the case of calcium titanate, themigration of calcium and titanium ions is of particular interest.The migration of ions in perovskite materials is influenced by several factors, including temperature,electric field, and the presence of defects or impuritiesin the crystal structure. At high temperatures, themobility of ions increases, leading to enhanced ion migration. This phenomenon is often exploited in various applications, such as solid oxide fuel cells, where the movement of oxygen ions is crucial for the operation of the device.The presence of an electric field can alsosignificantly affect ion migration in perovskites. When an electric field is applied, the charged ions experience a force that drives their movement in a particular direction. This phenomenon, known as electromigration, can be utilized in devices such as memristors, which rely on the controlled migration of ions to alter their electrical resistance.Defects and impurities within the crystal structure of perovskite materials can act as diffusion pathways for ions, facilitating their migration. These defects can include vacancies (empty lattice sites), interstitials (extra ionsoccupying interstitial positions), or even grain boundaries between different regions of the crystal. Understanding the role of defects in ion migration is crucial for optimizing the performance of perovskite-based devices.The migration of ions in perovskite materials has implications for various technological applications. For instance, in solar cells, the movement of charge carriers (electrons and holes) generated by sunlight is influenced by the migration of ions. By controlling the ion migration, the efficiency and stability of perovskite solar cells can be improved.Furthermore, the migration of ions in perovskite materials can also affect their optical and electronic properties. For example, the migration of titanium ions in calcium titanate can lead to changes in its bandgap, which determines the material's ability to absorb and emit light. This property has implications for applications such as light-emitting diodes and photodetectors.In conclusion, the migration of ions in perovskitematerials, including calcium titanate, is a fascinating area of study with numerous implications for various technological applications. Understanding the factors influencing ion migration, such as temperature, electric field, and crystal defects, is crucial for optimizing the performance of perovskite-based devices. By controlling ion migration, researchers can enhance the efficiency, stability, and functionality of perovskite materials in fields ranging from energy conversion to optoelectronics.。
黄冈市人民政府关于颁授黄冈市第十届自然科学优秀学术论文的通报-黄政发〔2019〕13号
黄冈市人民政府关于颁授黄冈市第十届自然科学优秀学术论文的通报正文:----------------------------------------------------------------------------------------------------------------------------------------------------黄冈市人民政府关于颁授黄冈市第十届自然科学优秀学术论文的通报各县、市、区人民政府,龙感湖管理区、黄冈高新区管委会、黄冈白潭湖片区筹委会、白莲河示范区管委会,市直各单位:近年来,全市广大科技工作者潜心钻研,大胆创新,取得了一批自然科学成果及优秀学术论文。
为进一步营造崇尚科学、尊重知识、尊重人才、鼓励创造的科学文化氛围,鼓励全市科技工作者不断加强学术创新,更好地服务于黄冈市高质量发展,经各县(市、区)科协、市直各有关单位推荐、初评,经黄冈市第十届自然科学优秀学术论文评审委员会评审确定,并经公示无异议,市政府同意颁授万柳撰写的《Nitrogen, sulfur co-doped hierarchically porous carbon from rape pollen as high-performance supercapacitor electrode》、万美南撰写的《Observation of reduced phase transition temperature in N-doped thermochromic film of monoclinic VO2 》、丁秀娟撰写的《超声引导下置入PICC导管异位的原理分析及护理体会》等250 篇论文为黄冈市第十届自然科学优秀学术论文。
希望获奖的同志珍惜荣誉,再接再厉,不断探索奋进,在各自工作领域作出新的更大成绩。
市政府号召全市广大科技工作者要以优秀论文撰写者为榜样,进一步解放思想,紧紧围绕我市经济社会发展中的重大课题,深入研究,克难攻关,锐意进取,勇于创新,为推动黄冈在湖北高质量发展中力争上游作出新的更大贡献。
钙钛矿催化剂英语
钙钛矿催化剂英语Perovskite Catalysts: A Promising Pathway to a Sustainable FuturePerovskite materials have emerged as a remarkable class of catalysts, offering a versatile and efficient solution to a wide range of environmental and energy-related challenges. These materials, with their unique crystal structure and tunable properties, have captured the attention of researchers worldwide, paving the way for innovative applications in various fields including renewable energy, pollution control, and chemical synthesis.At the heart of perovskite catalysts lies their exceptional ability to facilitate critical chemical reactions. The perovskite structure, consisting of a central metal cation surrounded by an octahedron of anions, provides a highly customizable platform for tailoring catalytic performance. By substituting different elements into the perovskite lattice, researchers can fine-tune the material's electronic structure, surface properties, and catalytic activity, enabling targeted optimization for specific applications.One of the most promising applications of perovskite catalysts is in the realm of renewable energy. Perovskite materials havedemonstrated exceptional efficiency in the water-splitting reaction, a crucial process for the generation of clean hydrogen fuel. By leveraging the unique redox properties of perovskites, researchers have developed highly active and stable catalysts for both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER), the two half-reactions that comprise water splitting. These perovskite-based catalysts have shown superior performance compared to traditional precious metal-based catalysts, making them a cost-effective and sustainable alternative for large-scale hydrogen production.Moreover, perovskite catalysts have also found applications in the field of carbon dioxide (CO2) reduction, a vital process for mitigating greenhouse gas emissions and achieving a circular carbon economy. Perovskite-based electrocatalysts have demonstrated the ability to selectively convert CO2 into valuable chemicals and fuels, such as carbon monoxide, formic acid, and methanol, with high efficiency and selectivity. This capability holds immense promise for the development of integrated CO2 capture and utilization systems, contributing to a more sustainable and environmentally-friendly future.Beyond renewable energy applications, perovskite catalysts have also made significant strides in the field of pollution control. These materials have shown remarkable catalytic activity in the removal ofvarious air and water pollutants, including nitrogen oxides (NOx), sulfur oxides (SOx), volatile organic compounds (VOCs), and heavy metals. Perovskite-based catalysts can effectively oxidize or reduce these harmful substances, transforming them into less toxic or even benign compounds. This versatility makes perovskite catalysts a promising solution for addressing pressing environmental challenges, such as urban air pollution and water contamination.In the realm of chemical synthesis, perovskite catalysts have also showcased their potential. These materials have been employed in a wide range of organic transformations, including hydrogenation, oxidation, and coupling reactions. Perovskite catalysts have demonstrated superior activity, selectivity, and stability compared to traditional metal-based catalysts, opening up new avenues for the development of more efficient and sustainable chemical processes.The remarkable performance of perovskite catalysts can be attributed to their unique structural and electronic properties. The flexibility of the perovskite structure allows for the incorporation of a diverse range of elements, enabling the fine-tuning of catalytic activity and selectivity. Additionally, the strong metal-oxygen bonds in perovskites confer excellent thermal and chemical stability, crucial for maintaining catalytic performance under harsh reaction conditions.Furthermore, the scalable and cost-effective synthesis methods for perovskite materials have made them increasingly attractive for industrial applications. Compared to traditional precious metal-based catalysts, perovskite catalysts can be produced using more abundant and less expensive raw materials, making them a more economically viable option for large-scale deployment.As the field of perovskite catalysts continues to evolve, researchers are exploring innovative strategies to further enhance their performance and broaden their applications. This includes the development of nanostructured perovskite catalysts with increased surface area and active site density, the integration of perovskites with other functional materials to create hybrid catalytic systems, and the exploration of novel perovskite compositions for targeted catalytic reactions.In conclusion, perovskite catalysts have emerged as a transformative technology, offering a promising pathway towards a more sustainable future. Their versatility, efficiency, and cost-effectiveness have positioned them as a game-changing solution in renewable energy, pollution control, and chemical synthesis. As research and development in this field continue to advance, the impact of perovskite catalysts is poised to extend far beyond their current applications, contributing to a cleaner, more environmentally-friendly, and resource-efficient world.。
钙钛矿的表面化学和钝化
钙钛矿的表面化学和钝化英文回答:Calcium titanium oxide, also known as perovskite, is a fascinating material with a wide range of applications in various fields. Its surface chemistry plays a crucial role in determining its properties and performance. In this response, I will discuss the surface chemistry of perovskite and the methods used to passivate its surface.The surface of perovskite can undergo various chemical reactions with the surrounding environment, leading to changes in its electronic and optical properties. One important aspect of its surface chemistry is the presence of defects, such as oxygen vacancies and surface states. These defects can act as trap sites for charge carriers, affecting the material's conductivity and recombination dynamics.To improve the performance of perovskite-based devices,it is essential to passivate the surface and reduce the density of defects. One commonly used method for surface passivation is the deposition of a thin layer of a passivating material, such as organic or inorganic compounds. This passivation layer can effectively reduce the surface recombination rate and improve the charge extraction efficiency.Another approach to surface passivation is the use of surface modifiers or functional groups. These modifiers can chemically bind to the surface of perovskite, creating a protective layer that prevents the interaction of perovskite with the surrounding environment. For example, organic molecules with long alkyl chains can form self-assembled monolayers on the surface, providing a hydrophobic barrier and reducing the degradation of perovskite in the presence of moisture.In addition to passivation, surface engineering techniques can also be employed to tailor the surface properties of perovskite. For example, surface doping can be used to introduce specific impurities into theperovskite lattice, altering its electronic structure and enhancing its performance in certain applications. Surface functionalization with specific chemical groups can also enable the attachment of functional molecules or nanoparticles, allowing for the development of hybrid perovskite systems with enhanced properties.中文回答:钙钛矿,也被称为钙钛矿石英,是一种具有广泛应用的材料,可在各个领域发挥作用。
NaBr界面修饰SnO_(2)基钙钛矿太阳能电池的研究
第42卷第2期2021年4月Vol.42No.2Apr.2021 Journal of C eramicsDOI:ki.tcxb.2021.02.005NaBr界面修饰S11O2基钙钛矿太阳能电池的研究骆鹏辉,江和栋,李家科,范学运,郭平春,黄丽群,孙健,朱华,王艳香(景德镇陶瓷大学,江西景德镇333403)摘要:采用一步法制备平面结构的钙钛矿太阳能电池(Perovskite Solar Cells,PSCs)。
采用旋涂法在SnO2电子传输层(Electron Transport Layers,ETLs)和钙钛矿层之间插入漠化钠(N^r)界面修饰层,主要研究了NaBr溶液的浓度对PSCs的影响,并探索了NaBr的对电池性能的影响机理。
通过XRD、SEM、ATM、XPS、PL、UV-Vis及J-V等对样品的形貌、结构、吸光度及光电性能等参数进行系统研究。
结果表明:NaBr能够增强钙钛矿的结晶性能和光吸收,增强SnO?ETLs 和钙钛矿层之间的界面结合,有效提升电池效率。
当NaBr浓度为0.2mol/L时,器件的光电性能最佳,其光电转换效率(Photoelectric Conversion Efficiency,PCE)为16.21%,开路电压(Open-circuit Voltage,Voc)为 1.07V,短路电流密度(Short-circuit Current Density,Jsc)为20.22mA/cm2,填充因子(Fill Factor,FF)为75.13%。
关键词:钙钛矿太阳能电池;SnO2电子传输层;NaBr;界面修饰中图分类号:TQ174.75文献标志码:A文章编号:1000-2278(2021)02-0271-08 NaBr Interface Modification on the Performances of SnO2-basedPerovskite Solar CellsLUO Penghui,JIANG Hedong,LI J iake,FANXueyun,GUO Pingchun,HUANG Liqun,SUNJian,ZHUHua,WANG Yanxiang(Jingdezhen Ceramic Institute,Jingdezhen333403,Jiangxi,China)Abstract:In this study,a one-step method was used to prepare perovskite solar cells(PSCs)with planar structure. Sodium bromide(NaBr)was inserted in between the SnO2electron transport layers(ETLs)and the perovskite layer as the interface modification layer by using spin coating.The effect of concentration of the NaBr solution on performance of the PSCs was studied,while the effect mechanism of NaBr was explored.With XRD,SEM,AFM,XPS,PL,UV-Vis and J-V,morphology, structure,absorbance and photoelectric properties of the samples were systematically studied.It is found that the modification of NaBr can improve the crystallization behavior and light absorption of the perovskite,enhance the interface bonding between the SnO2ETLs and the perovskite layers and effectively improve the efficiency of PSCs.When the concentration of NaBr was0.2 mol/L,the photoelectric performance of the device was optimized,with photoelectric conversion efficiency(PCE)of16.21%, open-circuit voltage(V O c)of1.07V,short-circuit current density(J sc)of20.22mA/cm2and fill factor(FF)of75.13%.Key words:perovskite solar cells;electron transport layer;NaBr;interface modification0引言近年来,有机-无机杂化钙钛矿太阳能电池(Perovskite Solar cells,PSCs)以其高效率和低成本的制备工艺引起了广泛的关注,其光电转换效率(Photoelectric Conversion Efficiency,PCE)从2009年的3.8%[1】提升到25.5%[2]o在PSCs的结构中,电子传输层(Electron Transport Layer,ETLs)是最重要的组成部分之一,其作用是与钙钛矿吸收层形成电子选择性接触,提高光生电子的抽取效率,并阻挡空穴向阴极方向迁移已勺。
钙钛矿缺陷化学和表面钝化研究
钙钛矿缺陷化学和表面钝化研究Calcium titanium oxide (CaTiO3), also known as perovskite, has attracted considerable attention in recent years due to its excellent photovoltaic properties. However, the performance of perovskite solar cells is often limited by defects and surface instabilities. In order to optimize the device efficiency and stability, extensive research hasbeen conducted on defect chemistry and surface passivation techniques.钙钛矿氧化物(CaTiO3),也被称为钙钛矿,由于其优异的光伏特性而在近年来引起了广泛的关注。
然而,钙钛矿太阳能电池的性能往往受到缺陷和表面不稳定性的限制。
为了优化器件的效率和稳定性,科学家们进行了大量关于缺陷化学和表面钝化技术方面的研究。
Defects in perovskite materials can arise from various sources, including lattice imperfections, impurities, and vacancies. These defects lead to trap states within the bandgap of the material, which can affect charge carrier dynamics and recombination processes. To understand and characterize these defect states, advanced spectroscopictechniques such as photoluminescence spectroscopy and transient absorption spectroscopy have been employed.钙钛矿材料中的缺陷可能来自多个来源,包括晶格缺陷、杂质和空位。
钙钛矿化合物负热膨胀调控与机理研究.doc-附件4
项目简介: 本项目属化学学科固体化学重要方向,涉及物理、化学、晶体学、材料等多学科 交叉。揭示物质属性的本质一直固体化学学科重要的研究命题,有利于发现新化合物 以及设计与调控物质性能。本项目以负热膨胀(NTE)为研究目标,在钙钛矿型结构 化合物制备、晶体结构、化学成键、点阵动力学方面开展了深入系统的研究,为解决 负热膨胀本质和功能裁剪等问题提供理论基础。本项目丰富了固体化学在晶格、电子、 声子相互作用领域的理论和研究方法。 1、1999 年率先开展 PbTiO3 基负热膨胀材料研究,并产生重要国际影响。系统地 研究了从-150 到 1000ºC 的 PbTiO3 的热膨胀性,对 PbTiO3 基化合物的晶体结构、电子 结构、晶格动力学、热膨胀性、铁电铁磁性质进行深入研究,发现热膨胀系数(CTE) 的变化规律,实现了 CTE 和铁电铁磁化合物的可控制备。发展了熔盐法快速制备钙钛 矿结构氧化物,设计和制备出零膨胀高性能压电陶瓷 PT-BMT、优异力学性能的多铁性 零膨胀陶瓷 PT-BNT 等。研究结果被国际上的理论工作者作为标准。对 CTE 调控方面 研究在国际上起到一定的引导和促进作用,被用于提升铁电、压电、热电等功能薄膜 的性能。 2、发现了负热膨胀增强及零膨胀体系。一般正热膨胀材料与负热膨胀材料复合或 固溶,都使 NTE 削弱。我们的研究发现,当在 PbTiO3 的 A 位替代 Cd 形成固溶化合物 (Pb,Cd)TiO3,NTE 得到增强;当在 A、B 位同时替代 Bi、Fe,形成 PbTiO3-BiFeO3 固 溶化合物,得到巨大 NTE。这是目前国际上报道的仅有两例 NTE 氧化物增强体系。发 现 了 目 前 为 止 在 高 温 下 ( 500ºC ) 仍 具 有 零 膨 胀 特 性的 氧 化 物 0.7PT-0.3BZT 和 0.6PT-0.3BZT-0.1BF,该化合物的发现为零膨胀材料高温下的应用提供了可能性。 3、实现了热膨胀有效调控和物性的裁剪,设计和制备出一系列零膨胀多功能陶瓷。 通过元素替代等结构设计实现了负热膨胀性能调控,如通过简单调节 0.5PbTiO3-0.5(Bi1-xLax)FeO3 中 La 含量(0.0 x 0.2),即可达到在巨大范围内控制热膨 胀性能的目的,该研究结论为有效控制 NTE 提供了直接途径,即通过控制元素的铁电 活性控制 NTE。制备出零膨胀高性能多铁性陶瓷 PT-BNT,该体系是室温多铁性陶瓷, 热稳定性好,力学性能优越。通过化学修饰,零膨胀功能陶瓷 PT-BNT-BS 的压电系数 达到 314pC/N,极具应用前景。我们报道的钙钛矿铁电体 PbTiO3 体系的热膨胀被认为 是具有化学替代高度可调性。 4、揭示 PbTiO3 负热膨胀机理。我们通过 RAMAN 光谱晶格动力学、高温中子衍
First-Order Phase Transition in Potts Models with finite-range interactions
First-Order Phase Transition in Potts Models with finite-range interactions
T. Gobron and I. Merola
Abstract. We consider the Q-state Potts model on Zd , Q ≥ 3, d ≥ 2, with Kac ferromagnetic interactions and scaling parameter γ . We prove the existence of a first order phase transition for large but finite potential ranges. More precisely we prove that for γ small enough there is a value of the temperature at which coexist Q + 1 Gibbs states. The proof is obtained by a perturbation around mean-field using Pirogov-Sinai theory. The result is valid in particular for d = 2, Q = 3, in contrast with the case of nearest-neighbor interactions for which available results indicate a second order phase transition. Putting both results together provides an example of a system which undergoes a transition from second to first order phase transition by changing only the finite range of the interaction.
固体催化材料之高热稳定性材料:钙钛矿、尖晶石、水滑石、六铝酸盐、堇青石 2016
RA RO 2(RB RO ) t
式中RA、RB、RO分别代表A、B、O的离子半径,t 称为容差因子(Tolerance Factor)。t =1时为理想的结构,此时A、B、O离子相互接触。理想结构只有 在t接近1或高温情况下出现。
1928年,鲍林根据当时已测定的晶体结构数据和晶格能公式所反 映的关系,提出了判断离子化合物结构稳定性的规则──鲍林规则。 鲍林规则共包括五条规则。
功能与智能材料:结构演化与结构分析 出版社:科学出版社发行部 作者:王中林 出版日期:2002-06-01
/plugin.php?identifier=download&module=download&acti=softview&softid=5251
现任佐治亚理工学院终身教授,西安电子科技大学 荣誉教授,华中科技大学-武汉光电国家实验室海 外主任,北京大学工学院先进材料与纳米技术系首 届系主任,中国科学院外籍院士 ,中科院研究生院 博士生导师。主要从事材料科学和纳米科学研究, 他在纳米材料可控生长、表征和应用等多方面取得 了多项有国际重要影响力的原创性研究成果。
• 第三规则 在配位结构中,公用多面体的棱,特别是公用多面体的面 将会降低结构的稳定性。对于高电价和低配位数的正离子,这一效应特别显 著。
• 第四规则 在含有一种以上正离子的晶体中,电价大、配位数低的那 些正离子倾向于不公用多面体的点、棱、面等几何元素。
• 第五规则 晶体中实质不同的组成者的种数一般趋于最小限度。
钙钛矿层堆垛面
3) 如果以A阳离子为中心观察,A阳离子组成一个六方密堆层,
在此密堆层的基本单元正三角形内,有一个氧负离子密堆单元小 正三角形,这是一个负电荷集中区,为了使3个氧负离子稳定地组 合在一起,B阳离子必须也只有位于此中心。以A阳离子为结点堆
钙钛矿氧化物oh吸附能
钙钛矿氧化物oh吸附能English Answer:Perovskite oxides are a class of materials that have attracted significant attention in recent years due totheir potential applications in energy storage, catalysis, and other areas. The surface properties of perovskiteoxides play a crucial role in determining their performance in these applications, and the adsorption of hydroxyl (OH) groups on their surfaces is of particular interest.The adsorption of OH groups on perovskite oxides has been studied extensively using a variety of experimentaland theoretical techniques. Experimental studies have shown that OH groups can adsorb on the surfaces of perovskite oxides in a variety of different ways, including dissociatively, molecularly, and as hydrogen-bonded species. The type of adsorption that occurs depends on the specific perovskite oxide surface, the temperature, and the surrounding environment.Theoretical studies have provided insights into the mechanisms of OH adsorption on perovskite oxides and the nature of the surface species that are formed. Thesestudies have shown that the adsorption of OH groups on perovskite oxides is a complex process that involvesmultiple steps and can result in the formation of a variety of different surface species.The adsorption of OH groups on perovskite oxides can have a significant impact on their surface properties. For example, the adsorption of OH groups can change the surface charge, the surface reactivity, and the wettability of perovskite oxides. These changes can affect the performance of perovskite oxides in applications such as energy storage, catalysis, and sensing.The adsorption of OH groups on perovskite oxides is a complex process that is influenced by a variety of factors. Understanding the mechanisms of OH adsorption on perovskite oxides and the nature of the surface species that areformed is essential for designing and optimizing perovskiteoxide materials for specific applications.中文回答:钙钛矿氧化物是一类近年来备受关注的材料,因其在储能、催化等领域具有潜在应用价值。
双功能氧电反应催化剂
双功能氧电反应催化剂英文回答:A dual-functional oxygen electrocatalyst is a catalyst that can perform two different reactions involving oxygen. One example of such a catalyst is the perovskite oxide, which has shown promise in both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in fuel cells and electrolyzers.The ORR is a reaction where oxygen is reduced to water or other products, while the OER is a reaction where water or other compounds are oxidized to generate oxygen. These reactions are crucial for the efficient operation of energy conversion devices such as fuel cells and electrolyzers.The dual-functionality of a catalyst is important because it allows for the simultaneous optimization of both ORR and OER, leading to improved overall performance of the energy conversion device. For example, in a fuel cell, adual-functional oxygen electrocatalyst can enhance the rate of oxygen reduction at the cathode while also promoting the oxygen evolution reaction at the anode. This leads to improved overall efficiency and stability of the fuel cell.One possible mechanism for the dual-functionality of a catalyst is the presence of multiple active sites on its surface. These active sites can have different properties that favor either ORR or OER. For example, in the case of perovskite oxide, the oxygen vacancies on the surface can promote the ORR, while the transition metal ions can enhance the OER. By controlling the composition andstructure of the catalyst, it is possible to tune the relative activity of these active sites and achieve the desired dual-functionality.In addition to perovskite oxide, other materials have also been investigated as dual-functional oxygen electrocatalysts. These include transition metal oxides, metal-organic frameworks, and carbon-based materials. Eachof these materials has its own advantages and disadvantages, and the choice of catalyst depends on the specificrequirements of the energy conversion device.Overall, the development of dual-functional oxygen electrocatalysts is an active area of research in the field of energy conversion. By designing catalysts that can simultaneously optimize both ORR and OER, it is possible to improve the performance and efficiency of fuel cells and electrolyzers, leading to a more sustainable and clean energy future.中文回答:双功能氧电反应催化剂是一种可以进行两种涉及氧气的不同反应的催化剂。
固体电解质质子导体的研究进展
固体电解质质子导体的研究进展第l7卷第2期2006年6月化学CHEMICAL研究RESEARCHV0I_l7No.2Jun.20o6固体电解质质子导体的研究进展李芳(辽宁石油化工人学石油化工学院,辽宁抚顺113001)摘要:介绍了固体电解质质子导体的应用,结构,质子传输机理以及国内外的最新研究进展,详细地综述了钙钛矿型和非钙钛矿型固体电解质质子导体的多种结构类型以及其质子传导机理的最新理论研究,同时分别介绍了两种质子导体的发展概况和面f临问题,展望了未来质子导体的发展前景.关键词:固体电解质;质子导体;钙钛矿;综述中图分类号:0614.4文献标识码:A文章编号:1008—1011(2006)02—0108—05 ResearchDevelopmentofSolidElectrolyteProtonConductorsLIFang(PetrochemicalEngineeringFaculty,LiaoningUniversityofPetroleum&a mp;ChemwalTechnologyFushun113001,Liaoning,China)Abstract:Thispaperintroducedtheapplication,structure,transportmechani smandnewlyresearch developmentofsolidelectrolyteprotonconductors.Manystructuraltypesan dnewlytheoreticalprogressofperovskite--basedandnon—-perovskite--basedsolidelectrolyteprotonc onductorswerereviewedinde?-tail.Atthesametimethedevelopmentsurveyandfacingproblemsoftwokinds ofprotonconductorswerereported,respectively,aswellasthefutureprospectofprotonconductors wasdiscussed.Keywords:solidelectrolyte;protonconductor;perovskite;review离子.电子混合导体固体材料在能量转化,气体分离,气体传感器等方面有着重要用途….世界各国都在积极推进以氢气为代表的新型替代能源的研究,但是氢气分离难度较大,费用较高0.现在各国竞相研究的固体电解质质子导体透氢膜材料可在800℃以上操作,具有较强的抗腐蚀能力,理论选择性可达到100%,可对氢气进行一步分离而得到纯净氢气,大大节省了操作费用和材料成本.因此以高温质子导体陶瓷膜为代表的固体电解质材料日益受到世界各国的重视.高温质子导体除了在氧气分离方面具有巨大用途外,还在固体氧化物燃料电池,气体传感器等方面具有潜在的应用前景.当今开发的高温质子导体主要集中在钙钛矿型固体氧化物材料,中温和低温质子导体主要集中在磷酸盐和硫酸盐系列.作者主要对近年来钙钛矿型质子导体的传输机理理论和新材料研究进行论述,同时也对中低温质子导体的研究进行一些简介.1钙钛矿型质子导体的结构和导电机理研究进展1.1钙钛矿型质子导体的结构钙钛矿结构是一种较为常见的晶体结构,其具有ABO,化学式(A可以为+1,+2,+3价阳离子,B为+5,+4和+3价的阳离子),其中B位于6个O一构成的八面体中心,A 位于4个八面体的中心,与O一构成12配位(见图1).通过对A和B位阳离子进行掺杂,例如用+3价的稀土离子M代替+4价B位离子,这样收稿日期:2005—12—2O.作者简介:李芳(1978一),女,助教,从事物理化学研究.E.mail:*********************第2期李芳:固体电解质质子导体的研究进——一—就产生了过剩的负电荷,为保持材料整体的电中性,必然产生带正电的氧缺陷V..或电子孔穴h.,构成ABM..O一(x为掺杂元素所形成的固溶体的范围,X≤O.2;8代表每个钙钛矿单元中所含氧缺陷的个数).第二类为复合钙钛矿的结构,例如A:(B’B)06或A(B’B)09型,其中A为+2价阳离子,B为+3价或+2价,B,,为+5价,B和B,,偏离了化学计量比而产生氧晶格缺陷,即A:(B.+B,,.一)O一或A(B.+B,,一)O.,典型的例子为Ba,(caNb)O一(即BCN18),其具有较高的质子导电性.●A●BoOOxygenoetahedm图l钙钛矿氧化物晶体结构图F培lSchematicstructralpatternsofperovskiteoxidecrystalline1.2钙钛矿型质子导体导电机理研究进展钙钛矿固体氧化物质子传导机理的研究经历了很多年,现在基本上形成了共识.钙钛矿型氧化物,例如BaCeY0,本身并不含有能够释放出质子的成分,其质子来源是氧化物的氧品格缺陷和环境中的水分子或氢分子相互作用的结果.在这些氧化物当中,通过变价阳离子在钙钛矿晶体B位的掺杂产生氧离子晶格缺陷和电子孔穴,这些氧离子晶格缺陷和电子孔穴在质子形成过程中起着重要的作用.钙钛矿缺陷晶体的电导率作为离子掺杂量,水蒸气分压和氧气分压的函数存在着下面三个平衡(其在氧品格缺陷和环境气体问建立):V..-+1/202一0:+2h?H20+2h一2H+1/202H20+V?2H+0:其中V o1.,0:,h.,和K分别代表氧离子晶格缺陷,晶格氧,电子孔穴,质子和平衡常数,其中K3=K.K2.质子就是以上述机制形成的,当然在氢气气氛中还存在着H和0:反应形成HO的平衡.至于质子以什么样的机制在钙钛矿晶体内部进行体相扩散还存在一定的争议,有人趋向于质子与晶格氧离子形成氢氧根离子并通过氧缺陷进行扩散,然而这样的扩散机制只有通过氢氧根离子连续传播才能实现.大量的证据趋向于不需要载体的自由质子传导,浓差电池测定],同位素传导效应],扩散的SIMS 研究和QNS_8],都有力地证明了这一点.近来发展起来的分子量子动力学模拟研究很好的模拟了单质子传导机理.质子是一个离子半径很小的粒子,它不可能占据一个晶格或正常的内部亚晶格位,它只能束缚于氧离子的电子云中形成OH’,同时质子在晶体内很容易环绕晶格氧离子作旋转运动(其旋转活化能为0.1eV_8),但是质子如果跃迁到临近的品格氧离子却需要较高的活化能,在较高的温度下其围绕旋转的氧离子会产生振幅较大的晶格振动从而与临近氧离子的距离处于不断变化当中,当两个氧离子之问的距离缩短到0.24~0.265rim¨..时,质子跃迁所需要的活化能就会大大减小从而质子跃迁到临近晶格氧离子上继续做旋转运动,因此可以把质子跃迁的活化看作是宿主氧离子和目标氧离子活化的一种表现,这也很好的解释了质子传导活化能与氧离子缺陷问的内在关系.Hempelmann深入研究了质子在钙钛矿氧化物SrCeYb...0中的传输机制¨,他在上述机制的基础上提出质子陷落机制,他提出通过Yh¨对ce的掺杂,Yb¨将带有一个有效负电荷并使所处的亚晶格发生了弹性扭曲,这样接近Yb¨的氧离子上的质子位就会发生变化形成质子陷阱来俘获质子,但是质子还会通过热运动获得足够的能量逃离陷阱区成为自由扩散质子.质子在没有被Yb¨影响的质子位的自由扩散和这种俘获扩散机制中交替进行,但是由于Yb¨量很少,所以自由扩散所占的比重要大一些.llO化学研究2006芷2固体电解质质子导体的研究进展2.1钙钛矿型质子导体的研究进展钙钛矿型高温质子导体在1980年首次被1wahara等人报道,1wahara 与其工作人员发现三价Yb离子掺杂的SrCeO,在高温含氢或含水气氛中具有质子传导性,他们的发现引起世界各国科学家的重视,因为如果能找到质子传输性能优良和稳定性较高的无机材料,其意义非常重大,世界各国都对该项研究表现出浓厚兴趣.钙钛矿型质子导体目前的研究焦点都集中于高的质子传导性能和高质子浓度的研究,这是由于当前虽然发现了质子传导率较高的质子导体,但是其距离实际应用还有一定差距,除了质子传感器应用于工业测定微量铝以外,其他的如氢泵,固体氧化物燃料电池,膜反应器,水蒸气电解等方面的应用仍处于研究阶段,研究的瓶颈问题主要集中于如何提高固体电解质质子传导效率.典型的质子导体是SrCeYb㈣O,该物质是钙钛矿SrCeO,中的四价ce 离子部分被三价Yb离子取代而得到的,其在高温下(800—1000℃)的含氢气氛中具有较高的质子传导性.后来经过科学家的探索发现BaCeO,或SrCeO中的四价Ce离子被三价的阳离子代替都可以产生一定的质子电导性.SrCeO基的质子导体发现以后,人们又发现LaScO3基的氧化物,Y2O陶瓷,CaZrO3,BaZrO3,SrZrO等氧化物15,16]经过掺杂也具有质子导电性,但是质子导电性相当低.在这些钙钛矿氧化物中BaCeO,基氧化物具有最高的电导率,但是随着温度的升高,氧离子对电导率的贡献会着提高,而SrCeO,基化合物的质子传导性虽然较低,但是氢离子的迁移数相对要大一些.锆基氧化物陶瓷掺杂的钙钛矿质子导体虽然电导率低一些,但是其又具有较强的化学和机械稳定性.总之在这些早期研究的钙钛矿质子导体中存在一些相互矛盾的因素,某一些性质得到改善后,另外一些性质就会下降,因此能够找到各种性质都符合要求的质子导体需要人们通过各种分析仪器和最新理论深入分析内部微观结构.近年来人们发现复合钙钛矿质子导体Ba,Ca¨Nb㈤O,(BCN18)是一类很有前途的质子导体,BCN18每个钙钛矿单元中含有0.18个质子位,其与一些典型的钙钛矿质子导体具有相同的数量级.一些氧离子缺陷的钙钛矿型质子导体甚至具有更高的质子浓度,例如BaYSnO¨(每个单元有0.5个质子)和Ba,InSnO”(每个单元有1个质子),这些钙钛矿质子导体的氧缺陷可以溶解来源于水中的氧离子,并且质子作为电荷补偿同时溶解于钙钛矿型质子导体中,如果质子是无序的,质子导体就保持着质子化的钙钛矿结构;如果质子是有序的,质子导体就保持着一种氢氧化物结构.当然要弄清质子导体内部的一些微观结构还需要最新理论的发展和应用,同时高温原位有序一无序过程的缺陷结构研究也必不可少.对于各种质子导体来说,人们采用各种各样的合成技术.德国的SchoberI17j运用丝网印刷涂层技术合成复合膜实现氧离子导体向质子导体的转化.我们知道具有萤石结构的YSZ是一种典型的氧离子导体,其也是目前在固体氧化物燃料电池中使用最广泛的材料,但是YSZ的质子电导率很低,Schober通过涂层技术在覆有5I~mYSZ层镍基载体上涂上BaO或BaCO,层,然后经过干燥,焙烧等工艺生成BaZrYO,:质子导体,其在成熟的YSZ薄膜工艺基础上将其由氧离子导体转化为质子导体,收到了很好的效果.Taniguchi等人组成的科研小组先后开发了多种质子导体,例如BaCe.GdO质子导体¨,该质子导体有很高的质子导电性,但是稳定性较差,在水蒸气或CO气氛中质子导电性下降得很厉害.后来他们开发了质子电导率和稳定性都很好的BaZro.CeIn.+O,一,该质子导体在氢气气氛中具有很好的质子传感特性,其电池的输出电流在各种温度下与氢气呈现很好的比例关系,因此该质子导体是一种很有前途的传感器用质子导体.Lin等人¨研究了SrCeO,基的化合物,他们采用液相合成法改变了传统的固相合成的简单模式,在sr.CeO,基钙钛矿化合物中掺杂Tm,在合成中严格控制焙烧温度获得了相结构单一的SrCeTmO薄膜,并把其负载在相同材质的多孑L载体上,其质子导电性与质子导电性较好的SrCeYb.O相当.美国阿贡实验室在发展氧气分离技术方面成绩优异,他们发展了金属陶瓷复合膜.为了发展不需要外电路的质子导体透氢膜,他们在BaCeO基氧化物中加入导电性较好的透氢金属或合金,这一技术弥补了单一BaCeO基钙钛矿结构电子传导性能不足的缺陷,大大提高了该金属陶瓷膜的氢气通量,并节省了贵金属钯膜所需要的高额费用.除了这些化学计量学的钙钛矿质子导体外,有些科研小组研究非化学计量学的钙钛矿质子导体,例如BaCeO,基氧化物中掺杂过量的氧化钡.经过水蒸气吸收和导电率的测试,Kreuer指出过量的BaO形成了晶第2期李芳:固体电解质质子导体的研究进展111界相.最近Haile等报道在Gd掺杂的BaCeO,基钙钛矿氧化物中过量BaO有助于提高氧化物的致密化,同时提高质子导体的导电性能,但是过量4%的BaO会在反应中与CO反应最终破坏膜的机械性能.2.2其他类型质子导体材料的研究进展除了钙钛矿型的质子导体外,一些非钙钛矿的氧化物和盐类也具有一定的质子传导性,例如磷酸盐和硫酸盐类,当然其质子传导性比钙钛矿型质子导体要低一些,但是它们的使用温度较低能耗小,例如Ln:ZrO和CsH:PO,甚至一些报道指出0【-A1:O,陶瓷也具有一定纯质子传导性.当前研究比较多的低温无机质子导体大部分是含有易挥发物质的硫酸盐和磷酸盐,例如CsHSO和CsHPW.O∞,国外科研人员研究发现它们在较低温度下就具有一定的质子传导性,其最新研究结果见文献[2l,22].一些研究人员还发现sol一中的硫原子可以被变价的磷原子部分随机替代从而产生部分占据的质子位,但是这类可以实际应用的低温电解质质子导体还没有出现.新疆大学的王吉德等人在燃料电池电解质材料CeO的萤石结构基础上通过掺杂La,Y,Gd,sm等元素设计了ce㈣MO一质子导体,其质子导电率分别达到7.2,7.5,7.7,8.2nmol?s~?cnl~,收到了很好的效果,他们并把这一质子导体用于了合成氨反应.美国阿贡实验室_2..在发展氢气分离技术方面发展了金属陶瓷复合膜.他们认为质子导体的导电性能达不到氢气分离的要求,于是他们在陶瓷相中加入了体积分数为40%~50%的透氢金属或合金.这一技术使得氧离子和电子在两相中独立传导,大大提高了氢气透量,并且也节省了单一贵金属透氢膜的高额费用.例如他们设计的Pd/YSZ透氢膜氢气通透量达到了20cm(STP)/(rain?cm)(900oC,22Ixm),并且他们发现膜厚度与反应速率控制步骤的关系,在膜较厚时为体相扩散控制,而当膜厚度下降到一定程度时,表面交换反应开始变为速率控制步骤,这一发现为透氢膜的膜厚度设计提供了理论依据.3质子导体面临的问题和发展前景无机质子导体由于耐高温,耐腐蚀,使用方便,越来越受到人们的高度重视,但是无机质子导体与已经商业化的有机质子交换膜相比仍然存在诸多问题,例如材料制作费用高,质子传输效率低,稳定性较差,重复性不好等等,所以无机质子导体虽然在过去2O年来逐步兴起并受到各国的高度重视,但是由于上述问题的存在,商业化产品如透氢膜,燃料电池装置等具有重要意义的产品仍然很少,但是我们相信在未来lO一2O年里,将会看到无机质子导体的重大进展.世界各国日益重视环境保护,诸如大气污染,温室效应,汽车尾气等问题已成为各国政府迫切需要解决的问题.在环境方面面临的巨大压力会迫使世界各国加大研究力度,而无机质子导体被给予厚望.例如燃料电池技术已经13趋成熟,如果再在无机质子导体方面获得突破,它会在燃料电池方而发挥重要作用.另外随着各国对替代型能源氢能的重视,无机质子导体透氢膜在氢气分离方面也会大显身手.这种在环境和经济利益方面的巨大需求会促使无机质子导体在不远的将来获得巨大进展.参考文献:[1]SiriwardaneRV,PostonJrJA,FisherEP,eta1.Characterizationofceramic hydrogenseparationmembraneswithvaryingnick-elconcentrations[J].Appls”r厂Sci,2000,167:34—50.[2]Y amaguchiS,Y amamotoS,FsuchiyaB,eta1.Constructionoffuelreforme rusingprotonconduetingoxideselectrolyteandhydro—gen—permeablemetalmembmnecathode(J].I,PowerSources,2005,145:7 12—7I5.[3]王吉德,宿新泰,刘瑞泉,等钙钛矿型高温质子导体研究进展[J].化学进展,2004,16(5):829—835.[4JKatsuhiroN,TomonariT,Shin—iehiK,eta1.ProtonconductionindopedI aSeO3perovskites[J],SolidStatelonics,21304,175:553—555.[5]SutijaD,Norbyr,BjiimbomP.Fransportnumberdeterminationsbythecon centrationcell/open—circuitvohagemethodforoxides withmixedelectron,ionic,andprotoniceonduetivily[JJ.删,Statelonics+1995,77:167—174.[6]SeherbenT,NowiekASBulkprotonicconductioninYb—dopedSrCeO3[ J],.SolidStatelonics,1996,35:189—194.[7]DeSouzaRA,KilnerJA,SteeleBC1t.ASIMSstudyofhydrogeninaccepto r—dopedperovskiteoxideslJJSolidStateIonics,1995.77:18O—I84.[8]PionkeM,MonoT,SchweikaW,eta1.Investigationofthehydrogenmobili tyinamixedperovskiteBa[ca()/3Nb(2]112化学研究2006镪O3-x/2byquasielasticneutronscattering[J].SolidStatelonics,1997,97:497—5 04.[9]MatzkeT,StimmingU,KarmonikC,eta1.Quasielasticthemulneutronsca tteringexperimentontheprotonconductorSrCe0Yb005H0.0202985[J].SolidStatelonics,1996,86(88):621—628. [10]KreuerKD.Protonconductivity:materialsandapplications[J].ChemM ater,1996,8:610—641.[11]MunchW,SeifertG,KreuerKD,eta1.Aquantummoleculardynamicsstu dyofprotonconductionphenomenoninBaCeO3[J].SolidStateIonics,1996,86(88):647—652.[12]MatsushitaE,TanaseA.Theoreticalapproachforprotonicconductionin perovskite—oxidecemmics[J].SolidStateIonics,1997,93(4):212—216.[13]HempelmannR.Hydrogendiffusionmechanisminprotonconductingo xides[J].脚B,1996,226:72—77.[14]KatsuhiroN,TomonariT,Shin-iehiK,eta1.ProtonconductionindopedL aScO3perovskites[J]ISolidStateIonics,2004,175:553—555.[15]MagrezA,SchoberT.Preparation,sintering,andwaterincorporationofp rotonconductingBao鲫zr08Y0.2O3—8comparisonbetweenthreedifferentsynthesistechniques[J].SolidStateIonics,2004,175:58 5—588.[16]HiroshigeM,TetsuoS,Hiroyasu1,eta1.Hydrogenseparationusingprot on—conductingperovskites[J].JAlloysCompd,2006,412:456—462.[17]SchoberT.Transformationofanoxygenionconductortoaprotonconduc torbysolidstatereaction[J].SolidStatelonics,2005,176:2275—2277.[18]NoboruT,TomohiroK,ChiharuN,eta1.CharacteristicsofnovelBaZr04 Ce04In0.2O3protonconductingceramicsandtheirap—plicationtohydrogensensors[J].SolidStatelonics,2005,176(40):2979—29 83.[19]ChengSG,GuptaVK,JerryLinYS.Synthesisandhydrogenpermeationp ropertiesofasymmetricproton.conductingceramicmembranes[J].SolidStatelonics,2005,176:2653—2662.[20]BalachandranU,LeeTH,ChenL,eta1.Hydrogenseparationbydensecer metmembranes[J].Fuel,2006,85(2):150—155.[21]ShuqiangW,JunichiroO,MasaruO,eta1.Preparationandcharacterizati onofproton—conductingCsHSO4一SiO2nanocompesite electrolytemembranes[J].SolidStateIonics,2005,176:755—760. [22]TomokazuK,RyujiK,TatsuyaT,eta1.Protonconductivityandstabilityo fCs2HPWI2O40electrolyteatintermediatetempera—tures[J].SolidStateIonics,2005,176:I845—1848.[23]LiuRQ,XieYH,WangJD,eta1.SynthesisofammoniaatatmosphericpressurewithCe0.8Mo+2O2一s(M=La,Y,Gd,Sm) andtheirprotonconductionatintermediatetemperature[J].SolidStateIonics ,2006,177(2):73—76.[24]HiroyasuI,Y amatoA,KojiK,eta1.Prospectofhydrogentechnologyusin gproton—conductingceramics[J].SolidStateIonics,2004,168:299—310.八l’,6t,Ot,Ot,2t,^^^^^^^^^^^^^^^’I,。
磁疗在便秘中的疗效观察
磁疗在便秘中的疗效观察【摘要】目的:探讨磁疗在便秘患者治疗中的疗效。
方法:选取96例于2021年11月~2022年8月期间我院收治的便秘患者作为研究对象,随机分为两组,分别为对照组(n=48例)与观察组(n=48例),对照组进行常规护理,观察组在对照组的基础上进行磁疗。
比较两组患者护理后的便秘症状和治愈效果。
结果:治疗后观察组患者的便秘症状优于对照组(P<0.05),而且观察组患者的治愈有效率高于对照组(P<0.05)。
结论:对便秘患者进行磁疗,可以大大缓解便秘情况,提升患者的生活质量。
【关键词】磁疗;便秘;疗效便秘是一种常见且多发的疾病,随着时代、社会的发展,人们的饮食结构逐渐改变,并受到各种复杂心理因素影响,慢性便秘的患病率逐渐增加。
数据显示成年人发病率较高,且随着年龄增加,患病率随着上升。
便秘主要表现为排便次数少且困难,该疾病虽常见于我们生活中,但其实会增加肠道息肉的发生率,是发生心血管、脑科、结直肠意外疾病的潜在因素之一[1],对于我们的健康威胁极大。
电磁治疗通过产生磁场被人体吸收,在人体内产生生物学效应,调节神经功能紊乱的问题,从而恢复平滑肌、括约肌张力,有效缓解便秘。
因此我们探讨磁疗法用于便秘患者的疗效,分析如下。
1.资料与方法1.1临床资料选取96例于2021年11月~2022年8月期间我院的便秘患者,随机分为对照组与观察组。
对照组48例,女性,年龄35~65岁,平均45岁,疗程2~6个月,平均(4.23±0.23)月;观察组48例,女性,年龄35~65岁,平均46岁,疗程2~5个月,平均(4.83±0.25)月。
1.3方法对照组:常规治疗护理方法。
患者每日服用20mg谷维素,3次/d;每日睡前0.2g的果导片,有腹痛症状则连续三天服用阿托品片,0.3mg/次;采取心理护理,消除焦虑压抑情绪,排除思想顾虑;饮食上要多食用易消化、清淡、含纤维素的食物、多喝水;提供好的排便环境,协助患者使用便盆,适应床上排便养成定时排便习惯。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Phase Transition in Perovskite Oxide La0.75Sr0.25Cr0.5Mn0.5O3-δObserved by in Situ High-Temperature Neutron Powder DiffractionShanwen Tao and John T.S.Irvine*School of Chemistry,Uni V ersity of St Andrews,Fife KY169ST,Scotland,UKRecei V ed June17,2006.Re V ised Manuscript Recei V ed August25,2006(La0.75Sr0.25)Cr0.5Mn0.5O3-δ(LSCM)has recently been shown to be an efficient redox stable anode for solid oxide fuel cells(SOFCs).The structure of LSCM has been investigated by X-ray diffraction and neutron diffraction to further understand its properties under SOFC operating conditions.Samples were prepared with nominal A-site deficiency;however,neutron diffraction demonstrates that the A-site deficiency is actually minimal or even null,with spinel impurity compensating for low content of A-site species.This was not apparent from XRD.The perovskite oxide La0.75Sr0.25Cr0.5Mn0.5O3(LSCM)exhibits a rhombohedral structure with space group R3h c(167),a)5.4479(1)Å, )60.477(1)°,and V)115.563Å3at room temperature.Conductivity and thermal expansion data in air exhibit an anomalous change starting at∼400°C which we here demonstrate as being correlated to a phase transition.The perovskite phase undergoes a R3h c f Pm3h m,rhombohedral to cubic phase transition over the temperature range from500to over1100°C as observed using in situ high-temperature neutron powder diffraction.The fraction of the cubic phase increases with increasing temperature and reaches85%at1000°C.The phase transition is gradual;therefore,any sudden volume change due to a phase transition would be minimized,allowing a good electrolyte/anode interface on thermal cycling.The reduced form of La0.75Sr0.25Cr0.5Mn0.5O3-δexhibits a primitive cubic structure with space group Pm3h m,which is the same as the major phase of La0.75Sr0.25Cr0.5Mn0.5O3in air at high temperatures;therefore,the stresses due to phase changes on redox cycling may be minimized.1.IntroductionPerovskite oxides are a very important class of materials due to their application as catalysts,1magnetic,and electric materials.2,3Perovskite oxides have been widely investigated as electrolyte and electrode materials for solid oxide fuel cells(SOFCs).4-7Recently,we found that the perovskite oxide(La0.75Sr0.25)Cr0.5Mn0.5O3-δ(LSCM)is an efficient, redox-stable anode material for SOFCs.8-12It was found that LSCM exhibits rhombohedral structure at room temperature from XRD analysis.After LSCM is reduced in5%H2/Ar at 900°C for120h,it exhibits a cubic structure.10Lower electrode interfacial resistance and overpotential losses have been reported when using an A-site deficient perovskite,(La0.85Sr0.15)0.9MnO3,as the cathode for solid oxide fuel cells compared to the stoichiometric(La0.85Sr0.15)1.0-MnO3.13The much poorer performance of the latter is believed to be due to the formation of resistive substances such as La2Zr2O7/SrZrO3between LSM and YSZ phases in the composite electrode and at the electrode/electrolyte interface.13,14A-site deficiency is also often used to extend the stability range in perovskites by decreasing the sintering temperature and so enabling co-sintering.15In our experi-ments,a perovskite with nominal composition(La0.75-Sr0.25)0.95Cr0.5Mn0.5O3was selected as the A-site deficiency to enhance stability against interfacial reaction.The structure of perovskite can be very complicated due to the tilting of the octahedra and the ordering of both A-and B-site elements.16-21Perovskite oxides may undergo several phase transitions at high temperatures as has been observed in BaCeO3,22Pr1-x Sr x MnO3,23and Sr2MWO6(M*Corresponding author.Tel.:+441334463817.Fax:+441334463808.E-mail:jtsi@.(1)Pena,M.A.;Fierro,J.L.G.Chem.Re V.2001,101,1981.(2)Kobayashi,K.L.;Kimura,T.;Sawada,H.;Terakura,K.;Tokura,Y.Nature1998,395,677.(3)DeMarco,M.;Blackstead,H.A.;Dow,J.D.;Wu,M.K.;Chen,D.Y.;Chien,F.Z.;Haka,M.;Toorongian,S.;Fridmann,J.Phys.Re V.B2000,62,14301.(4)Ishihara,T.;Matsuda,H.;Takita,Y.J.Am.Chem.Soc.1994,116,3801.(5)Minh,N.Q.J.Am.Ceram.Soc.1993,76,563.(6)Tao,S.W.;Irvine,J.T.S.Chem.Rec.2004,4,83.(7)Atkinson,A.;Barnett,S.;Gorte,R.J.;Irvine,J.T.S.;McEvoy,A.J.;Mogensen,M.;Singhal,S.C.;Vohs,J.Nat.Mater.2004,3,17.(8)Tao,S.W.;Irvine,J.T.S.Nat.Mater.2003,2,320.(9)Boukamp,B.A.Nat.Mater.2003,2,294.(10)Tao,S.W.;Irvine,J.T.S.J.Electrochem.Soc.2004,151,A252.(11)Tao,S.W.;Irvine,J.T.S.;Kilner,J.A.Ad V.Mater.2005,17,1734.(12)Zha,S.W.;Tsang,P.;Cheng,Z.;Liu,M.L.J.Solid State Chem.2005,178,1844.(13)Mitterdorfer,A.;Gauckler,L.J.Solid State Ionics1998,111,185.(14)Leng,Y.J.;Chan,S.H.;Khor,K.A.;Jiang,S.P.J.Appl.Electrochem.2004,34,409.(15)Jones,F.G.E.;Connor,P.A.;Irvine,J.T.S.Proceedings of the9thInternational Symposium on Solid Oxide Fuel Cells;Singal,S.C., Mizusaki,J.,Eds.;The Electrochemical Society Inc/:Pennington,NJ, 2005;Vol.2,pp1571-1576.(16)Glazer,A.M.Acta Crystallogr.,B1972,28,3384.(17)Thomas,N.W.;Bettollahi A.Acta Crystallogr.,B1994,50,549.(18)Woodward,P.M.Acta Crystallogr.,B1997,53,32.(19)Howard C.J.;Stokes,H.T.Acta Crystallogr.,B1998,54,782.(20)Tao,S.W.;Canales-Vazquez,J.;Irvine,J.T.S.Chem.Mater.2004,11,2309.(21)Garcia-Martin,S.;Alario-Franco,M.A.;Ehrenberg,H.;Rodriguez-Carvajal,J.;Amador,U.J.Am.Chem.Soc.2004,126,3587.(22)Knight,K.S.Solid State Ionics1994,74,109.(23)Knizek,K.;Hejtmanek,J.;Jirak,Z.;Martin,C.;Hervieu,M.;Raveau,B.;Andre´,G.;Bouree,F.Chem.Mater.2004,16,1104.5453Chem.Mater.2006,18,5453-546010.1021/cm061413n CCC:$33.50©2006American Chemical SocietyPublished on Web10/13/2006)Ni,Zn,Co,Cu)24etc.Both first-and second-order phase transitions may occur in perovskite.Knowledge of the possible phase transitions in LSCM at elevated temperature is very important to allow a good electrolyte/anode interface to be achieved when fabricating and operating the cell at high temperature.A first-order phase transition with an abrupt volume change that might cause delamination of the elec-trolyte/anode interface would not be welcome.To investigate structure and phase evolution of LSCM at high temperature, an in situ neutron diffraction study has been carried out up to1000°C.The results of this study are presented here.2.Experimental SectionThe perovskite oxide with nominal composition(La0.75Sr0.25)0.95-Cr0.5Mn0.5O3was synthesized using a solid-state method.To ensure good crystallinity,dried La2O3,SrCO3,Cr2O3,and Mn2O3powderswere ground under acetone.The sample was calcined at1100°C for2h and then fired at1400°C for116h in total with intermediate grindings.The final cooling rate was5°C/min.XRD analysis of powders reacted at different temperatures were carried out on a Stoe Stadi-P diffractometer to determine phase purity and measure crystal parameters.Structure refinement was performed using the Rietveld method using the program General Structure Analysis System(GSAS).25The dilatometry investigation of LSCM was carried out on a NETZSCH DIL402C dilatometer(alumina holder)with a TASC 414/4controller.A(La0.75Sr0.25)0.95Cr0.5Mn0.5O3cylinder(L≈30 mm,φ≈12mm)with a relative density of about95%was tested in air in the temperature range from room temperature to950°C at a rate of3°C/min.The dc conductivity was measured by the conventional four-terminal method using a Keithley220Programmable Current Source and a Schlumberger Solartron7150Digital Multimeter for voltage measurements.The in situ time-of-flight neutron diffraction data were collected on the POLARIS diffractometer at ISIS,the UK pulsed spallation neutron source.Diffraction patterns collected on the POLARIS backscattering detector bank were used in all data analyses.The backscattering detector bank is made up of an array of583He tubes, covering an angular range of130-160°in2θ,thus giving access to a d-spacing range of0.2-3.2Åin the20ms time interval between successive neutron pulses from the ISIS target.The sample was put into a vanadium sample holder to minimize the diffraction from the sample container.The sample holder was put in a vacuum of10-5-10-4atm during the measurements to prevent oxidation of the vanadium container.26The neutron diffraction data were processed and manipulated using the program Genie,27which enabled output of data in a format appropriate for the Rietveld refinement using the program GSAS.25For the backscattering bank on POLARIS,the detectors have L ranging from0.65to1.35m.Normalization and conversion of time-of-flight to d spacing is performed within the program Genie.26The measurement was performed starting at room temperature,then increased to200°C,and held isothermally for an hour.Data between200and1000°C were then collected at100°C intervals, holding at each temperature for1h to reach equilibrium before data collection.To examine any effects that the vacuum may have had on the composition of LSCM when undergoing neutron diffraction,some LSCM powders were heated under vacuum(partial pressure∼10-5) in a TORVAC high-temperature furnace at1000°C for10h after these neutron experiments.3.Results and Discussion3.1.Structure at Room Temperature.To achieve phase purity as observed by XRD,the sample had to be fired at 1400°C for116h with intermediate grindings.The X-ray diffraction pattern of an as-prepared sample with nominal composition(La0.75Sr0.25)0.95Cr0.5Mn0.5O3is shown in Figure 1.The material exhibits a rhombohedral structure with a) 2a p and ≈60°from XRD data where a p is the lattice parameter of a primitive cubic perovskite.The unit cell was refined as rhombohedral with space group R3h c(167),a) 5.4570(1)Å, )60.4887(1)°,and V)116.173Å.3During the refinement,it was found that a smaller R-value was achieved when the occupancy of La and Sr was fixed to0.75 and0.25,respectively,rather than0.7125and0.2375as expected from the nominal formula,indicating the real composition of“(La0.75Sr0.25)0.95Cr0.5Mn0.5O3-δ”might not be A-site deficient perovskite,as also demonstrated later by neutron diffraction.Despite the apparent absence of A-site deficiency,the material appears to be pure by XRD analysis, although due to a fluorescence problem,XRD with copper radiation is not best applied to manganese-containing phases. The refined structural parameters from XRD are listed in Table1.Neutron diffraction was utilized to further investigate the structure.The room-temperature neutron diffraction pattern is shown in Figure2a.The same space group,R3h c(167)was applied and a good fit was achieved.During the refinement, it was found that the occupancy of La and Sr is close to 0.75and0.25,respectively,and that a small amount of spinel impurity was present,indicating that the real composition of“(La0.75Sr0.25)0.95Cr0.5Mn0.5O3-δ”is not actually A-site deficient.Also the oxygen occupancy refined to1,indicating(24)Gateshki,M.;Igartua,J.M.;Hernandez-Bocanegra, E.J.Phys.-Condens.Matter2003,15,6199.(25)Larson,A.C.;Von Dreele,R.B.GSAS-Generalised Crystal StructureAnalysis Systeml Los Alamos National Laboratory Report -UR-86-748;Los Alamos National Laboratory:Los Alamos,NM, 1994.(26)Walton,R.I.;Millange,F;Smith,R.I.;Hansen,T.C.;O’Hare,D.J.Am.Chem.Soc.2001,123,12547.(27)David,W.I.F.;Johnson,M.W.;Knowles,K.J.;Smith,C.M.M.;Crosbie,G.D.;Campbell,E.P.;Graham,S.P.;Lyall,J.S.Rutherford Appleton Laboratory Report RAL-86-102;Rutherford Appleton Laboratory:Chilton,Didcot,Oxfordshire,U.K.,1986.Figure1.X-ray powder diffraction pattern of La0.75Sr0.25Cr0.5Mn0.5O3 prepared at1400°C.*Vaseline.5454Chem.Mater.,Vol.18,No.23,2006Tao and Ir V ineabsence of oxygen vacancies.As a consequence,the oc-cupancies of La,Sr,and O were fixed as 0.75,0.25,and 1during the refinement.Thus,the correct formula should beLa 0.75Sr 0.25Cr 0.5Mn 0.5O 3and therefore we use La 0.75Sr 0.25Cr 0.5-Mn 0.5O 3-δas the formula in the rest of this paper.The R 3h c (167)model fits most of the peaks in the neutron diffraction pattern;however,the two peaks at d )2.115and 2.443Åcannot be fitted by this model (Figure 2a).Models of perovskite with lower symmetry do not fit these two peaks either.Although these diffraction peaks cannot be indexed by the three strongest lines of known La-or Sr-containing compounds,they are fairly close to the (311)and (400)diffractions of cubic Mn -Cr -O spinel phases such as MnCr 2O 4(JCPDF 76-1614)and Mn 1.5Cr 1.5O 4(JCDF 33-892),even though the minor Mn -Cr -O second phase was not observed by X-ray diffraction.This is entirely consistent with the observation that the perovskite was not A-site deficient,even though the overall composition was deficient of La/Sr.The intensity and number of peaks from the spinel phase with space group Fd 3h m (227)does not change with temper-ature up to 1000°C.The refined composition is Mn(Mn 2/3-Cr 4/3)O 4.The refined lattice parameter a )8.453Åfrom neutron diffraction is consistent with that reported for Mn 1.5-Cr 1.5O 4(8.455Å)and differs from that of MnCr 2O 4(8.437Å).The refined fraction of the second Mn -Cr -O spinel phase is 0.26%.The fraction of the spinel phase was therefore fixed to 0.26%during the refinement of the high-temperature patterns.Details of the room-temperature neutron diffraction refinement are presented in Table 2.3.2.Evolution of Phase and Structure with Tempera-ture.The properties of materials are correlated with their structure.For La 0.75Sr 0.25Cr 0.5Mn 0.5O 3the high-temperature conductivity and thermal expansion of La 0.75Sr 0.25Cr 0.5Mn 0.5O 3have been examined and some changes with temperature observed.A sample with a nominal composition of “(La 0.75Sr 0.25)0.95-Cr 0.5Mn 0.5O 3”was pressed into a cylinder with a diameter of 13mm and a length of about 100mm.After the cylinder was fired at 1500°C for 36h,the diameter of the cylinder was about 12mm.The as-prepared cylinder was used for a dilatometry test in air.As shown in Figure 3,the linear thermal expansion coefficient (TEC)of LSCM is 8.9×10-6K -1in the temperature range of 64-435°C and 10.1×10-6K -1between 520and 956°C.There is a change in slope at 435-520°C,which may relate to phase transformation behavior.The average TEC between 64and 956°C is 9.3Table 1.Structure Parameters of La 0.75Sr 0.25Cr 0.5Mn 0.5O 3Preparedat 1400°C Obtained from X-ray Powder Diffraction Data a atom site occupancy x y z U iso (Å2)La 2a 0.750.250.250.250.0123(3)Sr 2a 0.250.250.250.250.0123(3)Cr 2b 0.50000.0130(6)Mn 2b 0.5000.0130(6)O6e10.7928(12)0.7071(12)0.250.0108(15)aSpace group R 3h c (167);a )5.4570(1)Å,R )60.488(3)°,V )116.173(1)Å3,Z )2.R wp )4.53%,R p )3.55%, red 2)1.097.Figure 2.Neutron diffraction pattern of La 0.75Sr 0.25Cr 0.5Mn 0.5O 3at room temperature (a),700°C (b),and 1000°C (c).Tick marks,upper,spinel;down,R 3h c for (a);upper,R 3h c ;middle,spinel;down,Pm 3h m for (b)and (c).Inserts show the split of the main diffraction peaks at d ∼2.3Å.Table 2.Room-Temperature Structure Parameters of La 0.75Sr 0.25Cr 0.5Mn 0.5O 3Prepared at 1400°C Obtained fromNeutron Powder Diffraction Data atom site occupancy x y z U iso (Å2)Perovskite Phase a La 2a 0.750.250.250.250.0089(2)Sr 2a 0.250.250.250.250.0089(2)Cr 2b 0.50000.0131Mn 2b 0.50000.0131O 6e 1-0.7947(1)0.7053(1)0.250.0104(1)Spinel Phase bMn 8a 11/81/81/80.0131Mn 16d 0.32(5)1/21/21/20.0131Cr 16d 0.68(5)1/21/21/20.0131O32e10.2642(1)0.2642(1)0.2642(1)0.0299(2)aSpace group R 3h c (167);a )5.4479(1)Å,R )60.477(1)°,V )115.563(1)Å3,Z )2.R wp )3.15%,R p )4.12%, red 2)4.86.The second spinel phase is about 0.26%.b Space group Fd 3h m (227);a )8.453(4)Å,V )603.99(4)Å3,Z )8.Phase Transition in La 0.75Sr 0.25Cr 0.5Mn 0.5O 3-δChem.Mater.,Vol.18,No.23,20065455×10-6K -1.This is close to the TEC value for yttria-stabilized zirconia,the most commonly used SOFC electro-lyte (10.3×10-6K -1).5The conductivities of LSCM in air and 5%H 2/Ar were also measured by the four-terminal dc method.In a previous study which used both ac impedance and dc techniques to separate bulk and grain boundary elements,the change in activation energy in both air and 5%H 2/Ar was reported as insignificant over the tested temperature range.10On more careful inspection of the data,it was found that there is a small activation energy change for the conductivity in air which could be related to a phase change.The extracted grain conduction activation energy in air is 0.19(0.01eV between 150and 390°C and 0.26(0.02eV between 390and 903°C.The activation energy in 5%H 2/Ar is 0.54(0.01eV between 150and 905°C.No changes in activation energies were observed over the temperature range in 5%H 2/Ar,suggesting that a phase change is unlikely when cooling in 5%H 2/Ar;however,the change in conductivity behavior in air (Figure 4)may relate to a possible phase change,which is consistent with the dilatometric test.To investigate these phenomena,an in situ high-temperature structural study has been performed.The dependence of the conductivity upon oxygen partial pressure at 900°C is shown in Figure 5.LSCM is a p-type conductor at low p O 2and its conductivity drops with decreasing p O 2.The decrease of conductivity happens at a p O 2of 10-10atm at 900°C due to the loss of oxygen.Therefore,it is assumed that the oxygen content remains stoichiometric for a p O 2higher than 10-10atm.The vanadium sample holder might act as an oxygen getter at the highest temperatures;however,the sample and the interior of the can were not sealed from the vacuum and the can had previously been equilibrated in the vacuum,so it seems that the vanadium is unlikely to act as a getter here.This was further confirmed by the lack of visible change in the inside of the can after the experiments.During neutron diffraction,the sample was placed in a partially sealed vanadium container with a vacuum of ∼10-5atm.Therefore,the p O 2of the La 0.75Sr 0.25Cr 0.5Mn 0.5O 3sample in the high-temperature neutron diffraction experiment is assumed to be in the range of 10-5to 10-3atm.Thus,any phase transition is unlikely to be due to the reducing vanadium sample holder because the same phenomena were observed when high-temperature X-ray diffraction was performed in air.Decomposition or significant loss of oxygen is thus unlikely under the experimental conditions.To further confirm that no weight change occurs under vacuum,TGA analysis of the LSCM sample was carried out in Ar (which has a similar p O 2to the vacuum)heating up to 900°C and held isothermally for 2h.No significant weight loss could be detected,giving an upper limit for any oxygen loss on heating of <0.04wt %,i.e.,<0.01oxygen per perovskite unit.This is much smaller than that of 1.5wt %when the LSCM sample was heated in 5%H 2/Ar at 900°C.10The oxygen stoichiometry change on heating in vacuum is very small,or possibly nil,so it is unlikely to trigger a phase transition.In the high-temperature neutron diffraction study,the data at 20,200,300,and 400°C may be refined well with the rhombohedral perovskite model.When combined rhombo-hedral R 3h c and cubic Pm 3h m models are applied to the patterns at such temperatures,the refined fraction of the cubic phase tends to zero,indicating that the rhombohedral phase is dominant.The splitting of the main peaks gets less and less with increasing temperature as shown in Figure 2.At 1000°C,the splitting of the main peak is insignificant,suggesting that the material exhibits a structure with higher symmetry.According to the group -subgroup relationships among the perovskite structures,the next possiblehigherFigure 3.Thermal expansion of La 0.75Sr 0.25Cr 0.5Mn 0.5O 3at high temper-atures in air.The heating rate is 3°C/min.Figure 4.Total conductivity of (La 0.75Sr 0.25Cr 0.5)0.95Mn 0.5O 3-δin air and 5%H 2/Ar at differenttemperatures.Figure5.Isothermalconductivityvs p O 2diagramforLa 0.75Sr 0.25Cr 0.5Mn 0.5O 3-δat 900°C.Lines show extrapolated conductivity behavior illustrating onset of oxygen loss.The oxygen partial pressure range relevant to the neutron diffraction experiments is denoted.5456Chem.Mater.,Vol.18,No.23,2006Tao and Ir V inesymmetry after R 3h c would be Pm 3h m .19At 500°C and above,the splitting of the main peak at d )2.25Ådecreases,indicating less lattice distortion and the tendency to higher symmetry (Figure 2).The relative intensity of an important R 3h c peak absent from the cubic variant at d )2.33Åalso decreased with temperature but had not disappeared by 1000°C.After a review of the pattern at 1000°C,it was found that splitting of the main peak is insignificant;therefore,the cubic phase is dominant.However,some rhombohedral phase still remained at 1000°C,as evidenced by the existence of the peak at d )2.33Å(Figure 6).Very poor fitting was observed when the rhombohedral R 3h c model was solely applied for the pattern at 1000°C (Figure 6b),indicating that both cubic and rhombohedral phases coexist at 1000°C.Good fitting was achieved when the combined Pm 3h m /R 3h c model was used for the refinement.The refined fractions for the cubic phase and rhombohedral phases are 85.5%and 14.2%,respectively,at 1000°C.The R 3h c f Pm 3h m transition was incomplete even at a temperature as high as 1000°C.At 600°C,the presence of two phases is even more clearly demonstrated.Poor fitting with large R -values and goodness-to-fit was observed when the pattern was fitted with only one phase (Figure 7).Better fitting has been achieved with the combined Pm 3h m /R 3h c model with R wp ,R p ,and 2of 4.54%,5.91%,and 7.014,respectively (Figure 7c),comparedto single-phase models which gave R -values over 10and 2over 20.Therefore,the two-phase model,together with the minor spinel second phase,was used to fit the patterns between 500and 1000°C.Table 3lists the refined parameters of La 0.75Sr 0.25Cr 0.5-Mn 0.5O 3at selected temperatures.The A site is shared by La and Sr and the B-site by Cr and Mn.The neutron scattering lengths of Cr and Mn on the B-sites are 3.635and -3.73fm,respectively;thus,it is fairly precise to determine their occupancy by neutron diffraction for both R 3h c and Pm 3h m models.Also,due to the comparableamountsFigure 6.Neutron diffraction pattern of La 0.75Sr 0.25Cr 0.5Mn 0.5O 3at 1000°C fitted to Pm 3h m perovskite (lower tick marks)and spinel (upper tick marks).*)unindexed peaks from R 3h c phase (a)and R 3h c perovskite (upper tick marks)and spinel (lower tick marks)(b).Figure 7.Neutron diffraction pattern of La 0.75Sr 0.25Cr 0.5Mn 0.5O 3at 600°C fitted with Pm 3h m (a)and R 3h c (b)models and combined Pm 3h m and R 3h c model (c),all with minor spinel impurity.Phase Transition in La 0.75Sr 0.25Cr 0.5Mn 0.5O 3-δChem.Mater.,Vol.18,No.23,20065457of Cr and Mn on the B site and the opposite signs for the scattering lengths,the net scattering length for the Cr/Mn site is very weak,and the error in determination of the corresponding thermal factors is huge.28The refinement is very unstable if the thermal factors of Cr and Mn in either phase are refined.Therefore,the thermal factor of Cr/Mn from X-ray diffraction was applied to the neutron refinement. It was found that the occupancies of Cr and Mn are fairly close to the starting composition of50%each in both rhombohedral and cubic phases,indicating that no phase segregation occurs between phases.As expected,the thermal factors of La/Sr and O increase with increasing temperature. The fraction of each phase may be refined as shown in Figure8.It was found that the fraction of the cubic phase increased with temperature and,accordingly,the fraction of the rhombohedral phase decreased.At1000°C,the fraction of the cubic phase reached85.5%but still the R3h c f Pm3h m phase change was incomplete.This transition should be complete around1100°C by extrapolating the data points from Figure8.The observed almost linear relationship between temperature and the cubic phase fraction indicates that,most likely,thermodynamic equilibrium was achieved for the phase transition since it is unlikely to be linear if it is under kinetic control.This was confirmed by performing in situ XRD studies at800°C over a period of5h with no change in peak positions or intensities.Figures9and10show the lattice parameters and cell volume of each phase plotted against temperature.The linear increase with temperature confirms that the unit cells for Rietveld refinement were correctly chosen.The beta angle of the rhombohedral phase decreased from60.5to60.1°between20and1000°C.This indicates the rhombohedral distortion of the lattice becomes less as the symmetry approaches cubic.The linear volume change of the rhom-bohedral and cubic phase fractions against temperature indicates that the phase transition is second order,which is also allowed by the group-subgroup relationship analysis.19 Figure11shows the normalized primitive perovskite lattice volume of the R3h c and Pm3h m phases against temperature. The primitive cell volume of the cubic phase is slightly larger than that of the rhombohedral phase at the same temperature. The R3h c f Pm3h m phase transition is not unusual in perovskite oxides.It was reported that perovskite oxide Pr1-x Sr x MnO3exhibits this phase transition at high temper-ature.29The perovskite-related R-AlF3also undergoes the same phase transition at470°C.30Most phase transitions in perovskite oxides happen in a narrow temperature range. There are few reports of a significant two-phase coexistence area in perovskite oxides.The P21/n and R3h phases coexist over685-775K in SrLaCuRuO6and from610to730K in SrLaNiRuO6.31The I4/mcm and Ibmm phases also coexist in Pr1-x Sr x MnO3with the reported temperature range of the two-phase area being<100°C.29The R3h c f Pm3h m phase transition is straightforward in the Pr1-x Sr x MnO3high-temperature phase diagram and no two-phase area was (28)Alonso,J.A.;Martinez-Lope,M.J.;Casais,M.T.;Martinez,J.L.;Pomjakushin V.Eur.J.Inorg.Chem.2003,15,2839.(29)Knizek,K.;Hejtmanek,J.;Jirak,Z.;Martin,C.;Hervieu,M.;Raveau,B.;Andre,G.;Bouree,F.Chem.Mater.2004,16,1104.(30)Chupas,P.J.;Chaudhuri,S.;Hanson,J.C.;Qiu,X.Y.;Lee,P.L.;Shastri,S.D.;Billinge,S.J.L.;Grey,C.P.J.Am.Chem.Soc.2004, 126,4756.(31)Gateshki,M.;Igartua,J.M.Mater.Res.Bull.2003,38,1893.Table3.Refined Structure Parameters for La0.75Sr0.25Cr0.5Mn0.5O3between200and1000°C200°C400°C600°C800°C1000°C atom parameter R3h c R3h c R3h c Pm3h m R3h c Pm3h m R3h c Pm3h m La/Sr x1/41/41/401/401/40 y1/41/41/401/401/40z1/41/41/401/401/40U iso(Å2)0.0092(1)0.0073(1)0.0125(2)0.0125(2)0.0161(3)0.0161(3)0.0167(2)0.0167(2) occupancy La0.750.750.750.750.750.750.750.75 Sr0.250.250.250.250.250.250.250.25Cr/Mn x0001/201/201/2 y0001/201/201/2z0001/201/201/2U iso(Å2)0.01310.01310.01310.01310.01310.01310.01310.0131 occupancy Cr0.513(3)0.528(3)0.530(9)0.497(2)0.518(1)0.512(1)0.514(3)0.515(1) Mn0.487(3)0.472(3)0.470(9)0.503(2)0.482(1)0.488(1)0.486(3)0.485(1) O x-0.2072(1)-0.2092(1)-0.2033(2)0-0.1964(4)0-0.1947(9)0 y0.7072(1)0.7092(1)0.7033(2)1/20.6964(4)1/20.6947(9)1/2z1/41/41/41/21/41/21/41/2U iso(Å2)0.0120(1)0.0125(1)0.0162(2)0.0163(2)0.0230(3)0.0229(3)0.0307(3)0.0307(3) occupancy O 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0R wp(%) 5.01 5.45 4.54 6.07 3.14R p(%)7.478.68 5.917.64 4.48red2 5.9057.8837.019.2855.837Figure8.Fraction of different phases in the perovskite oxide La0.75Sr0.25-Cr0.5Mn0.5O3at different temperatures.5458Chem.Mater.,Vol.18,No.23,2006Tao and Ir V ine。