第14课时 二次函数的应用

合集下载

二次函数的应用

二次函数的应用

二次函数的应用【教学建议】二次函数是中考数学中最重要的内容之一,属于中考数学的必考内容,也是难点内容,我们可以利用二次函数的模型解决很多实际问题(比如:长度、面积和周长等的最值问题、商品利润问题等等)。

实际生活中的很多问题都可以借助建立二次函数的模型来解决,这属于中考必考题。

解决此类问题一般是根据几何图形的性质,先找变量,再确定变量与该图形周长或面积之间的关系,用变量表示出其他边的长,从而确定二次函数的表达式,再根据题意及二次函数的性质解题即可.1. 如何求关于利润的二次函数表达式(1)若题目给出销售量与单价之间的函数表达式,以及销售单价与进价之间的关系时,则可直接根据:销售利润 =销售总额-成本 =销售量×销售价-销售量×进价 =销售量×(销售价-进价)来解决; (2)若题目中未给出销售量与单价之间的函数表达式,则要先求出销售量与单价之间的函数表达式,表达式一般是一次函数关系,再根据销售利润 =销售量×(销售价-进价)来解决. 2. 如何求二次函数的最值(1)可直接利用公式法求顶点的纵坐标,即y =ax 2+bx +c 的最大值为244ac b a−(a <0)或最小值为244ac b a−(a >0);(2)若顶点在已知给定的自变量取值范围内,则函数在顶点处取得最大值或最小值;若顶点不在已知给定的自变量取值范围内,则根据二次函数的性质判断所给自变量取值范围的两端点处对应的函数值大小,从而确定最值.3.解决最值应用题要注意两点(1)设未知数,在“当某某为何值时,什么最大(最小)”的设问中,“某某”要设为自变量,“什么”要讲义一、导入 二、知识讲解知识点1 利用二次函数求图形的最大面积知识点2 销售中的最大利润设为函数;(2)求解最值时,一定要考虑顶点(横、纵坐标)的取值是否在自变量的取值范围内.知识点3 抛物线形问题常见设问形式和解题策略:(1)抛球运动判断球是否过网:即判断此点的坐标是否在抛物线上方;(2)投篮判断是否能投中:即判断篮网是否在球的运动轨迹所在的抛物线图象上;(3)判断货车是否能通过隧道:即判断两端点的坐标是否在抛物线的下方;(4)判断船是否能通过拱桥:即判断船的高度是否比桥的最高点到水面的距离小;(5)判断人是否会被喷泉淋湿:即判断人所处位置的水的高度是否比人的身高大.解题步骤:1.据题意,结合函数图象求出函数解析式;2.确定自变量的取值范围;3.根据图象,结合所求解析式解决问题.注意事项:若题目中未给出坐标系,则需要建立坐标系求解,建立的原则:①所建立的坐标系要使求出的二次函数表达式比较简单;②使已知点所在的位置适当(如在x轴,y轴、原点、抛物线上等),方便求二次函数表达式和之后的计算求解.知识点4 二次函数中的实际应用综合复习回顾:1.二次函数如何配成顶点式?2.如何根据实际问题情境确定自变量的取值范围?三、例题精析例题1【题干】1.如图,利用一面长为34米的墙,用铁栅栏围成一个矩形自行车场地ABCD,在AB和BC边各有一个2米宽的小门(不用铁栅栏).设矩形ABCD的边AD长为x米,AB长为y米,矩形的面积为S平方米,且x<y.(1)若所用铁栅栏的长为40米,求y 与x 的函数关系式,并直接写出自变量x 的取值范围;(2)在(1)的条件下,求S 与x 的函数关系式,并求出怎样围才能使矩形场地的面积为192平方米? 【答案】(1)y=-2x+44,3445<x ≤(2)2244S x x =−+,AD=6米,AB=32米. 【解析】(1)由34米的墙,及2米宽的小门,得到平行与墙的边,以及垂直于墙的两条边之和,由AD =x ,AB =y ,所用铁栅栏的长为40米,根据求出的之和表示出y 与x 的关系式;(2)由(1)表示出的y 与x 的关系式,列出S 与x 的函数关系式,根据矩形场地的面积为192平方米,求出AD 与AB 的长即可.试题解析:解:(1)∵y +2x -2×2=40, ∴y =-2x +44, ∴5≤x <443; (2)∵y =-2x +44,∴S =xy =x (-2x +44)=-2x 2+44x ; ∵矩形场地的面积为192平方米, ∴-2x 2+44x =192,∴x =6或x =16(不合题意), ∴AB =y =-2x +44=-2×6+44=32.答:AD =6米,AB =32米才能使矩形场地的面积为192平方米.【题干】2.有一块形状如图的五边形余料ABCDE ,AB =AE =6,BC =5,∠A =∠B =90°,∠C =135°,∠E >90°.要在这块余料中截取一块矩形材料,其中一边在AE 上,并使所截矩形的面积尽可能大. (1)若所截矩形材料的一条边是BC 或AE ,求矩形材料的面积;(2)能否截出比(1)中面积更大的矩形材料?如果能,求出这些矩形材料面积的最大值,如果不能,请说明理由.【答案】见解析【解析】解:(1)截法一:如答图①,S 四边形ABCF =AB ·BC =6×5=30. 截法二:如答图②.过点C 作CH ⊥FG 于点H . 则四边形BCHG 为矩形,△CHF 为等腰直角三角形, ∴HG =BC =5,BG =CH ,FH =CH ,∴BG =CH =FH =FG -HG =AE -HG =6-5=1, ∴AG =AB -BG =6-1=5. ∴S 四边形AGFE =AE ·AG =6×5=30.(2)如答图③,在CD 上取点F ,过点F 作FM ⊥AB 于点M ,FN ⊥AE 于点N ,过点C 作CG ⊥FM 于点G . 则四边形AMFN ,BCGM 为矩形, △CGF 为等腰直角三角形, ∴MG =BC =5,BM =CG ,FG =CG . 设AM =x ,则BM =6-x ,∴FM =GM +FG =GM +CG =BC +MB =11-x , ∴S 四边形AMFN =AM ·FM =x (11-x )=-(x -5.5)2+30.25, ∴当x =5.5时,S 的最大值为30.25. ∵30.25>30,∴能截出此(1)中面积更大的矩形材料.图①图②图③【题干】如图,在矩形ABCD 中,AB =2AD ,线段EF =10.在EF 上取一点M ,分别以EM 、MF 为一边作矩形EMNH 、矩形MFGN ,使矩形MFGN ∽矩形ABCD .令MN =x ,当x 为何值时,矩形EMNH 的面积S 有最大值,最大值是多少?【答案】252【解析】∵矩形MFGN ∽矩形ABCD ,∴MN :AD =MF :AB . ∵AB =2AD ,MN =x , ∴MF =2x .(2分)∴EM =EF −MF =10−2x (0<x <5). ∴S =x (10−2x )(5分)=−2x 2+10x =−2(x −52)2+252 ∴当x =52时,S 有最大值为252。

二次函数的性质及应用

二次函数的性质及应用

二次函数的性质及应用二次函数是一类形式为y = ax² + bx + c(a ≠ 0)的函数,它在数学中具有重要的性质和广泛的应用。

本文将介绍二次函数的性质以及它在实际问题中的应用。

一、二次函数的性质1. 函数图像二次函数的图像通常为抛物线,具体的形状取决于a的正负和大小:- 当a > 0时,图像开口向上,形状类似于“U”字型;- 当a < 0时,图像开口向下,形状类似于倒置的“U”字型。

2. 对称性二次函数关于其顶点具有对称性。

设二次函数的顶点坐标为(h, k),则函数图像关于直线x = h对称。

3. 零点与判别式二次函数的零点即为方程ax² + bx + c = 0的解。

一元二次方程的判别式Δ = b² - 4ac可以判断二次函数的零点情况:- 当Δ > 0时,方程有两个不相等的实根,函数图像与x轴有两个交点;- 当Δ = 0时,方程有两个相等的实根,函数图像与x轴有一个切点;- 当Δ < 0时,方程无实根,函数图像与x轴无交点。

4. 极值点二次函数在最高点(开口向下)或最低点(开口向上)取得极值。

当二次函数开口向上时,极小值等于函数的最低点y = k;当二次函数开口向下时,极大值等于函数的最高点y = k。

二、二次函数的应用1. 物理学应用二次函数在物理学中有广泛的应用,例如抛物线运动。

抛物线运动可以用二次函数的形式进行建模,通过分析和解决相关的二次函数问题,可以求得抛物线物体的最高点、运动轨迹等信息。

2. 经济学应用经济学中的一些问题也可以通过二次函数来描述和解决。

比如,成本函数和利润函数常常使用二次函数来表示,通过求解这些二次函数的极值点,可以确定最低成本、最大利润等关键数据。

3. 工程学应用工程学中的一些问题也可以用二次函数进行建模。

比如,在建筑设计中,可以用二次函数来描述一个拱形或穹顶的形状;在电子工程中可以通过二次函数来描述某些电子元件的特性和响应等等。

二次函数的应用案例总结

二次函数的应用案例总结

二次函数的应用案例总结二次函数是一种常见的数学函数形式,它的形式为:y = ax^2 + bx + c。

在现实生活中,二次函数可以用于解决各种问题,包括物理、经济、工程等领域。

本文将总结几个常见的二次函数应用案例,以展示二次函数的实际应用。

案例一:物体自由落体的高度模型假设一个物体从高处自由落体,忽略空气阻力,我们可以用二次函数来表示物体的高度与时间之间的关系。

设物体初始高度为H,加速度为g,时间为t。

根据物理定律,物体的高度可以表示为:h(t) = -0.5gt^2 + H。

这个二次函数模型可以帮助我们计算物体在任意时间点的高度,并可以用于预测物体何时落地。

案例二:销售收入和定价策略假设一个公司生产和销售某种产品,销售价格为p(单位:元),销售量为q(单位:件)。

二次函数可以用于建立销售收入与定价策略之间的模型。

设定售价的二次函数为:R(p) = -ap^2 + bp + c,其中a、b、c为常数。

我们可以通过分析二次函数的图像、求解极值等方法,确定最佳售价,以使得销售收入最大化。

案例三:桥梁设计中的弧线形状在桥梁设计中,常常需要确定桥梁的弧线形状,以使得车辆在桥上行驶时感到平稳。

二次函数可以用来描述桥梁的曲线形状。

设桥梁的弧线形状为y = ax^2 + bx,其中x表示桥梁长度的一半,y表示桥梁的高度。

通过调整参数a和b,可以得到不同形状的弧线,以满足设计要求。

案例四:市场需求和价格关系分析在经济学中,二次函数可以用于建立市场需求与价格之间的关系模型。

设市场需求量为D,价格为p。

根据经济理论,市场需求可以表示为:D(p) = ap^2 + bp + c,其中a、b、c为常数。

通过分析二次函数的图像、求解极值等方法,可以研究市场需求和价格之间的关系,得出不同价格下的市场需求量。

综上所述,二次函数在物理、经济、工程等领域中具有广泛的应用。

通过建立二次函数模型,我们可以更好地理解和解决各种实际问题。

2015年浙江省杭州数学中考总复习课件第14课时:二次函数的应用

2015年浙江省杭州数学中考总复习课件第14课时:二次函数的应用
第14课时
二次函数的应用
第14课时┃ 二次函数的应用
考 点 聚 焦
考点1 二次函数与几何图形的综合应用
[2014·北京] 已知点 A 为某封闭图形边界上一定点,动点 P 从点 A 出发,沿其边界顺时针匀速运动一周,设点 P 运动的时间 为 x,线段 AP 的长为 y,表示 y 与 x 的函数关系大致如图 14-1 所示,则该封闭图形可能是 ( A )
当堂检测
第14课时┃ 二次函数的应用
杭 考 探 究
探究一 用二次函数解决抛物线形实际问题
例 1 [2014·天水] 如图 14-3,排球运动员站在 O 处练习 发球,将球从点 O 正上方 2 米的点 A 处发出,把球看成点,其运 行的高度 y(米)与运行的水平距离 x(米)满足关系式 y=a(x- 2 6) +h.已知球网与点 O 的水平距离为 9 米,高度为 2.43 米,球 场的边界与点 O 的水平距离为 18 米. (1)当 h=2.6 时,求 y 与 x 的关系式;
考点聚焦
杭考探究
当堂检测

第14课时┃ 二次函数的应用
根据问题信息求出函数表达式, 并求相应的 自变量的值及函数最值.
思路点津
考点聚焦
杭考探究
当堂检测
第14课时┃ 二次函数的应用
解:(1)y= (2)设销售 A 类杨梅 x 吨,则 ①当 2≤x<8 时,w=x(-x+14)+9(20-x)-3×20-x- [12+3(20-x)]=-x2+7x+48. 当 x≥8 时,w=6x+9(20-x)-3×20-x-[12+3(20-x)] =-x+48. 所以函数表达式为 w=
考点聚焦
杭考探究
当堂检测
第14课时┃ 二次函数的应用

二次函数的引入与应用

二次函数的引入与应用

二次函数的引入与应用二次函数是高中数学中的重要概念之一,在实际生活中有着广泛的应用。

本文将从二次函数的引入开始,探讨其在实际问题中的应用。

一、引入在代数学中,二次函数的一般形式为:y = ax^2 + bx + c其中,a、b、c为常数,且a≠0。

二次函数图像为抛物线,具有开口方向、顶点、对称轴等性质。

二、二次函数的应用1. 物体的抛体运动二次函数可以用于描述物体的抛体运动。

当物体受到初速度和重力影响时,其运动轨迹可以通过二次函数来表示。

由于重力的作用,物体的竖直方向运动会产生加速度,从而使得抛体运动可以用二次函数来描述。

2. 汽车制动距离在汽车行驶过程中,制动距离是一个非常重要的概念,涉及到行车安全。

根据物理学原理,汽车在制动过程中所需的距离与制动的时间和初始速度有关。

通过二次函数的模型可以有效地计算汽车制动距离,从而为驾驶员提供准确的参考。

3. 成本与收益在经济学中,企业的成本与收益关系是一个重要的经营指标。

通过二次函数的模型,可以对企业的成本和收益进行建模分析。

这有助于企业在制定经营策略时,做出科学的决策,以最大化利润。

4. 最优化问题二次函数也广泛应用于最优化问题中。

例如,生产车间的生产效率与生产成本之间存在着一定的关系。

通过建立二次函数模型,可以找到能够使得生产效率最大化或者生产成本最小化的最佳方案。

5. 能量分配问题在工程学中,能量的分配是一个常见的问题。

通过二次函数的模型,可以合理地分配能量,以满足各种需求。

例如,太阳能板的能量分配问题,可以利用二次函数模型来优化能量的利用效率。

综上所述,二次函数作为数学中的重要概念,在实际生活和各个学科领域中有着广泛的应用。

从物理运动到经济决策,从最优化问题到能量分配,二次函数的引入和应用为我们提供了更加科学的分析工具,帮助我们更好地理解和解决实际问题。

无论在哪个领域,了解和掌握二次函数的应用都将为我们的学习和工作带来更大的便利和效益。

二次函数在生活中的应用

二次函数在生活中的应用

二次函数在生活中的应用
二次函数是一种常见的数学函数,它在我们的生活和工作中有许多应用。

以下是二次函数在生活中的几个应用:
1. 抛物线运动
当一个物体以一定的初速度开始运动,并且受到重力的影响而向下运动时,它的运动轨迹就是一条抛物线。

这个运动过程可以用二次函数来描述。

例如,当你抛出一颗球时,它的高度会随着时间的推移而不断降低,形成一条抛物线。

2. 建筑设计
在建筑设计中,二次函数可以用来描述建筑物的结构和形状。

例如,在建造一座拱形桥时,设计师需要使用二次函数来确定桥的最高点和曲线的形状。

3. 经济学
在经济学中,二次函数可以用来描述成本和收益之间的关系。

例如,当一家企业决定生产某种产品时,它需要考虑生产成本和销售收益之间的平衡点,这个平衡点可以用二次函数来计算。

4. 电子技术
在电子技术中,二次函数可以用来描述电路中的电压和电流之间的关系。

例如,在设计一条放大电路时,工程师需要使用二次函数来确定电路的增益和频率响应。

总之,二次函数在我们的生活和工作中有许多应用,这些应用涉及到不同的领域,包括物理学、工程学、经济学和电子技术等。

熟练
掌握二次函数的概念和应用可以帮助我们更好地理解和解决实际问题。

二次函数的应用

二次函数的应用

二次函数的应用二次函数是数学中一种常见的函数形式,其方程可以表示为:y = ax^2 + bx + c其中,a、b、c为常数,且a ≠ 0。

二次函数在许多实际问题中都有广泛的应用,本文将介绍二次函数在几个不同领域的具体应用案例。

一、物理学领域中的应用1. 自由落体问题当物体在重力作用下自由落体时,其高度与时间之间的关系可以用二次函数来描述。

假设物体从初始高度h0下落,时间t与高度h之间的关系可以表示为:h = -gt^2 + h0其中g为重力加速度,取9.8m/s^2。

通过解二次方程可以求解物体落地的时间以及落地时的位置。

2. 弹射物体的运动考虑一个弹射物体,如抛射出的炮弹或投射物,其路径可以用一个抛物线来表示。

弹射物体的运动轨迹可以通过二次函数得到,可以利用二次函数的顶点坐标来确定最远射程或最高点。

二、经济学领域中的应用1. 成本和收入关系在经济学中,企业的成本和收入通常与产量相关。

通常情况下,成本和收入之间存在二次函数关系。

通过分析二次函数的图像,可以确定最大利润产量或最低成本产量。

2. 售价和需求关系在市场经济中,产品的售价通常与需求量相关。

通常情况下,售价和需求量之间存在二次函数关系。

通过分析二次函数的图像,可以找到最佳定价,以达到利润最大化。

三、工程学领域中的应用1. 抛物线拱桥在建筑和结构工程中,抛物线是通常用来设计拱桥的形状。

由于抛物线具有均匀承重特性,因此可以最大程度地减少桥墩的数量,提高桥梁的承载能力。

2. 抛物面反射器在光学和声学工程中,抛物面被广泛应用于反射器的设计。

由于抛物面具有焦点特性,因此可以实现光或声波的聚焦效果,提高反射效率。

四、生物学领域中的应用1. 生长模型植物和动物的生长通常可以使用二次函数模型来描述。

二次函数可以帮助分析生物在不同生长阶段的生长速率,并预测未来的生长趋势。

2. 群体增长生态学中,群体增长通常可以使用二次函数模型来描述。

例如,一种昆虫群体的数量随时间的变化可以通过二次函数来表示,通过分析二次函数的图像,可以预测种群数量的变化趋势。

中考数学总复习 第三单元 函数及其图象 第14课时 二次函数的实际应用随堂小测

中考数学总复习 第三单元 函数及其图象 第14课时 二次函数的实际应用随堂小测

二次函数的实际应用1.★在A 市中学生男子足球比赛中,某队守门员踢出的足球飞行高度y (m)与水平距离x (m)之间满足关系式y =-18x 2+1.5x ,则足球飞出的最远距离是( ) A .8 m B .12 m C .15 m D .20 m2.★王大爷用200 m 的竹篱笆围成一个长方形的养鸡场,则能围成的养鸡场的最大面积是( ) A .50 m 2 B .100 m 2 C .200 m 2 D .2500 m 23.我国最新研制的38 mm 高射炮炮弹的飞行高度y (m)与飞行时间x (s)满足关系式y =ax 2+bx ,若该炮弹在第3秒和第11秒的飞行高度相同,则下列哪一个时间的高度最高( )A .第4秒B .第7秒C .第10秒D .第15秒4.一所中学的大门近似于抛物线(如图Y -15),若大门的跨度AB =10 m ,大门最高点C 距离地面6 m ,则该二次函数的表达式是____________.Y -16.如图Y -16是一条单向行驶的隧道的截面图,其截面图是抛物线,且表达式为y =-13x 2+3.那么一辆宽为2米,载物高度为2.5米的载货汽车________(填“能”或“不能”)安全通过该隧道.6.为了响应政府提出的由中国制造向中国创造转型的号召,某公司自主设计了一款成本为40元/件的可控温杯,并投放市场进行试销售,经过调查发现该产品每天的销售量y (件)与销售单价x (元)/件满足一次函数关系:y =-10x +1200.(1)求出利润S (元)与销售单价x (元)/件之间的表达式;(利润=销售额-成本)(2)当销售单价定为多少时,该公司每天获取的利润最大?最大利润是多少元?参考答案1.B [解析] 足球飞出距离最远时,y =0,即-18x 2+1.5x =0,解得x =0或x =12,所以足球飞出的最远距离是12 m .本题容易出错的地方是不理解飞出最远距离的意义,导致无法求解.2.D3.B [解析] 根据抛物线的对称性知对称轴为直线x =3+(11-3)÷2=7,所以第7秒时,炮弹的飞行高度最高.4.y =-625(x -5)2+6 [解析] 根据题意,抛物线的顶点坐标为(5,6).设抛物线的表达式为y =a (x -5)2+6.又因为抛物线过点(0,0),所以0=a (0-5)2+6,解得a =-625,故所求抛物线的表达式为y =-625(x -5)2+6. 5.能 [解析] 当x =1时,y =-13×12+3≈2.67>2.5(m),所以该汽车能安全通过隧道. 6.解:(1)根据题意,得S =(x -40)y =(x -40)(-10x +1200)=-10x 2+1600x -48000,其中x >40.所以利润S (元)与销售单价x (元件)之间的表达式是S =-10x 2+1600x -48000(x >40).(2)S =-10x 2+1600x -48000.因为a =-10<0,所以当x =-b 2a =-16002×(-10)=80时,S 有最大值,最大值是=-10×802+1600×80-48000=16000(元).答:当销售单价定为80元/件时,销售利润最大,最大利润是16000元.。

二次函数在生活中的应用

二次函数在生活中的应用

二次函数在生活中的应用二次函数在生活中的应用二次函数是高中数学中的一大重点,是研究量与量之间的关系的一种数学工具。

在生活中,二次函数的应用非常广泛,与我们的日常生活息息相关。

本文将从多个方面介绍二次函数在生活中的应用。

1. 物理学中的应用在物理学中,二次函数是研究运动的重要工具。

当物体处于自由落体状态,其下落距离随时间的变化关系就可以用二次函数来表示,这个函数就是常见的自由落体公式:y = -1/2 g t² + v₀t + y₀其中,y 表示下落距离,g 表示重力加速度,t 表示时间,v₀表示物体的初速度,y₀表示物体的初始高度。

二次函数还可以用来描述物体的抛物线运动。

例如,一个抛出的物体的高度与水平距离之间的关系就是一个二次函数。

这个函数被称为抛物线,可以用以下形式表示:y = ax² + bx + c其中,a 表示抛物线的形状,b 表示抛物线的位置,c 表示抛物线的高度。

2. 经济学中的应用在经济学中,二次函数也被广泛应用。

例如,一家公司的成本与生产量之间的关系可以用一个二次函数来表示。

成本由固定成本和可变成本组成,其中固定成本不随生产量变化,可变成本与生产量成二次函数关系。

其函数关系式为:C = a + bx + cx²其中,C 表示总成本,x 表示生产量,a 表示固定成本,b 和 c 是常数。

二次函数还可以应用在市场调研中。

例如,研究一个新产品的销售量与价格之间的关系,就可以用一个二次函数来表示:y = -ax² + bx + c其中,y 表示销售量,x 表示价格,a、b、c 为常数。

这个函数就是常见的需求函数,有助于制定合理的价格策略。

3. 工程中的应用在工程中,二次函数也有很多应用。

例如,一个建筑物的荷载与塔高之间的关系就可以用二次函数来表示,这个函数被称为荷载曲线。

荷载曲线可以用以下形式表示:y = ax² + bx + c其中,y 表示荷载,x 表示塔高,a 表示荷载的变化率,b 和 c 是常数。

二次函数的实际应用总结

二次函数的实际应用总结

二次函数的实际应用总结二次函数是高中数学中重要的一类函数。

它具有形如y=ax^2+bx+c的特点,其中a、b、c是实数且a不等于0。

二次函数有许多实际应用,涉及到物理、经济和生活中的各种问题。

本文将总结几个二次函数的实际应用。

一、物体自由落体物体自由落体是一个常见的物理问题,可以用二次函数来描述。

当一物体从高处自由落下时,它的高度与时间之间的关系可以由二次函数表示。

设物体自由落下的高度为H(米),时间为t(秒),重力加速度为g(9.8米/秒²),则有公式H = -gt²/2。

其中负号表示高度的减小,因为物体向下运动。

通过这个二次函数,我们可以计算物体在不同时间下的高度,进而研究物体的运动规律。

例如,我们可以计算物体自由落地所需的时间,或者计算物体在某个时间点的高度。

这在工程设计和物理实验中具有重要意义,帮助我们预测和控制物体的运动。

二、开口向上/向下的抛物线二次函数的图像通常是一个抛物线,其开口的方向由二次项系数a的正负决定。

当a大于0时,抛物线开口向上;当a小于0时,抛物线开口向下。

对于开口向上的抛物线,我们可以将其应用到生活中的一些情景。

比如,一个喷泉的水柱,水流高度与时间之间的变化可以用开口向上的二次函数来描述。

同样,开口向下的抛物线也有实际应用。

例如,一个弹簧的变形量与受力之间的关系常常是开口向下的二次函数。

通过了解抛物线的性质和方程,我们可以更好地理解和解决与之相关的问题。

三、经济学中的应用二次函数在经济学中也有广泛的应用。

例如,成本函数和收入函数常常是二次函数。

企业的成本与产量之间的关系可以用二次函数来刻画。

同样,市场需求和供给也可以用二次函数来表达。

在经济学中,研究成本、收入、需求和供给的函数对于决策和市场分析至关重要。

通过对二次函数的运用,我们可以计算某一产量下的成本和收入,并了解市场价格的影响因素。

这有助于企业决策和经济政策的制定。

四、其他实际应用除了以上提到的应用,二次函数还可以用于建模和预测其他实际问题。

最新中考数学初三总复习第三单元函数第14课时 二次函数的实际应用达标训练及答案(word版)

最新中考数学初三总复习第三单元函数第14课时 二次函数的实际应用达标训练及答案(word版)

第三单元函数第十四课时二次函数的实际应用1. (8分)(2017眉山)东坡某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元.调查表明:生产提高一个档次的蛋糕产品,该产品每件利润增加2元.(1)若生产的某批次蛋糕每件利润为14元,此批次蛋糕属第几档次产品;(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件,若生产的某档次产品一天的总利润为1080元,该烘焙店生产的是第几档次的产品?2. (8分)(2017济宁)某商店经销一种双肩包,已知这种双肩包的成本价为每个30元,市场调查发现,这种双肩包每天的销售量y(单位:个)与销售单价x(单位:元)有如下关系:y=-x+60(30≤x≤60).设这种双肩包每天的销售利润为w元.(1)求w与x之间的函数解析式;(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种双肩包的销售单价不高于48元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?3. (8分)(2017成都)随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择.李华从文化宫站出发,先乘坐地铁,准备在离家较近的A,B,C,D,E中的某一站出地铁,再骑共享单车回家.设他出地铁的站点与文化宫的距离为x(单位:千米),乘坐地铁的时间y1(单位:分钟)是关于x的一次函数,其关系如下表:地铁站 A B C D Ex(千米) 8 9 10 11.5 13y1(分钟) 18 20 22 25 28(1)求y1关于x的函数表达式;(2)李华骑单车的时间y2(单位:分钟)也受x的影响,其关系可以用y2=12x2-11x+78来描述.请问:李华应选择在哪一站出地铁,才能使他从文化宫站回到家所需要的时间最短?并求出最短时间.4. (8分)(2017青岛)青岛市某大酒店豪华间实行淡季、旺季两种价格标准,旺季每间价格比淡季上涨13.下表是去年该酒店豪华间某两天的相关记录:淡季旺季未入住房间数10 0日总收入(元) 24000 40000(1)该酒店豪华间有多少间?旺季每间价格为多少元?(2)今年旺季来临,豪华间的间数不变.经市场调查发现,如果豪华间仍旧实行去年旺季价格,那么每天都客满;如果价格继续上涨,那么每增加25元,每天未入住房间数增加1间.不考虑其他因素,该酒店将豪华间的价格上涨多少元时,豪华间的日总收入最高?最高日总收入是多少元?5. (9分)(2017河北)某厂按用户的月需求量x(件)完成一件产品的生产,其中x>0.每件的售价为18万元,每件的成本y(万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需要量x(件)成反比.经市场调研发现,月需求量x与月份n(n为整数,1≤n≤12)符合关系式x=2n2-2kn+9(k+3)(k为常数),且得到了表中的数据.月份n(月) 1 2成本y(万元/件) 11 12需求量x(件/月) 120 100(1)求y与x满足的关系式,请说明一件产品的利润能否是12万元;(2)求k,并推断是否存在某个月既无盈利也不亏损;(3)在这一年12个月中,若第m个月和第(m+1)个月的利润相差最大,求m.6. (9分)(2017南雅中学一模)九年级(3)班数学兴趣小组经过市场调查整理出某种商品在第x天(1≤x≤90,且x为整数)的售价与销售量的相关信息如下,已知商品的进价为30元/件,设该商品的售价为y(单位:元/件),每天的销售量为p(单位:件),每天的销售利润为w(单位:元).时间x(天) 1 30 60 90每天销售量p(件) 198 140 80 20(1)求出w与x的函数关系式;(2)问销售该商品第几天时,当天的销售利润最大?并求出最大利润;(3)该商品在销售过程中,共有多少天每天的销售利润不低于5600元?请直接写出结果.第6题图答案1. 解:(1)当每件蛋糕利润是14元时,提高了(14-10)÷2=2个档次,∵提高2个档次,∴此批次蛋糕属第3档次产品;(2)设烘焙店生产的是第x档次的产品,则每件的利润为10+2(x-1),每天的产量为76-4(x-1),由题意可得[10+2(x-1)][76-4(x-1)]=1080,整理得8x2-128x+440=0,解得x1=5,x2=11(∵11>6,不符合题意,舍去),答:该烘焙店生产的是第5档次的产品.2. 解:(1)w=(x-30)·y=(x-30)·(-x+60)=-x2+90x-1800,∴w与x的函数关系式为w=-x2+90x-1800(30≤x≤60);(2)w=-x2+90x-1800=-(x-45)2+225,∴当x =45时,w 有最大值,w 最大值为225,答:销售单价定为45元时,每天销售利润最大,最大销售利润225元; (3)当w =200时,可列方程-(x -45)2+225=200, 解得x 1=40,x 2=50, ∵50>48,∴x 2=50(不符合题意,应舍去),答:该商店销售这种双肩包每天想要获得200元的销售利润,销售单价应定为40元.3. 解:(1)设一次函数为y 1=kx +b (k ≠0), 将x =8,y =18和x =9,y =20代入, 得⎩⎪⎨⎪⎧8k +b =189k +b =20,解得⎩⎪⎨⎪⎧k =2b =2, ∴y 1与x 的函数关系式为y 1=2x +2;(2)设李华从文化宫乘地铁和骑单车回家共需y 分钟,∵y 2=12x 2-11x +78,∴y =y 1+y 2=12x 2-9x +80=12(x -9)2+792,∵12>0, ∴当x =9时,y 最小=792(分钟),答:李华应选择在B 站出地铁,才能使他从文化宫回到家的时间最短,最短时间为792分钟.4. 解:(1)设该酒店有豪华间a 间,则:40000a =24000a -10(1+13), 解得a =50,经检验a =50是原方程的解,符合题意, ∴旺季每间=40000÷50=800(元),答:该酒店豪华间有50间,旺季每间价格为800元; (2)设该酒店豪华间上涨x 元,日总收入为w 元,则w =(x +800)(50-x 25)=-125x 2+18x +40000=-125(x -225)2+42025,∵-125<0,∴当x =225时,w 有最大值,此时w max =42025,答:当每间价格上涨225元时,日总收入最高,最高总收入为42025元.5. 解:(1)由题意,设y =a +bx,由表中数据,得⎩⎨⎧11=a +b 12012=a +b 100,解得⎩⎪⎨⎪⎧a =6b =600,∴y =6+600x,由题意,若12=18-(6+600x ),则600x =0,∵x >0,∴600x >0, ∴一件产品的利润不可能是12万元;(2)将n =1,x =120代入x =2n 2-2kn +9(k +3),得120=2-2k +9k +27, 解得k =13,将n =2,x =100代入x =2n 2-2kn +9(k +3),得100=8-4k +9(k +3), 解得k =13,由题意,得18=6+600x ,解得x =50,∴50=2n 2-26n +144,即n 2-13n +47=0, ∵b 2-4ac =(-13)2-4×1×47<0,∴方程无实根,∴不存在某个月既无盈利也不亏损;(3)∵第m 个月的利润为W m =x(18-y )=18x -x(6+600x )=12(x -50)=12(2m 2-26m +144-50)=24(m 2-13m +47),∴第(m +1)个月的利润为W m +1=24[(m +1)2-13(m +1)+47]=24(m 2-11m +35),若W m ≥W m +1,W m -W m +1=48(6-m ),m 取1时,W m -W m +1=240,利润相差最大;若W m <W m +1,W m +1-W m =48(m -6),m +1≤12,m 取11时,W m +1-W m =240,利润相差最大, ∴m =1或m =11.6. 解:(1)当1≤x ≤50时,设商品的售价y 与时间x 的函数关系式为y =kx +b (k 、b 为常数且k ≠0),∵y =kx +b 经过点(0,40)、(50,90),代入得 ∴⎩⎪⎨⎪⎧b =4050k +b =90,解得⎩⎪⎨⎪⎧k =1b =40, ∴售价y 与时间x 的函数关系式为y =x +40;当50<x ≤90时,y =90, ∴售价y 与时间x 的函数关系式为 y =⎩⎪⎨⎪⎧x +40(1≤x≤50,且x 为整数)90 (50<x≤90,且x 为整数),由数据可知每天的销售量p 与时间x 成一次函数关系,设每天的销售量p 与时间x 的函数关系式为p =mx +n (m 、n 为常数,且m ≠0), ∵p =mx +n 经过点(60,80)、(30,140),代入得, ∴⎩⎪⎨⎪⎧60m +n =8030m +n =140,解得⎩⎪⎨⎪⎧m =-2n =200, ∴p =-2x +200(1≤x ≤90,且x 为整数),当1≤x ≤50时,w =(y -30)·p=(x +40-30)(-2x +200)=-2x 2+180x +2000; 当50<x ≤90时,w =(90-30)(-2x +200)=-120x +12000, 综上所述,每天的销售利润w 与时间x 的函数关系式是w = ⎩⎪⎨⎪⎧-2x2+180x +2000(1≤x≤50,且x 为整数)-120x +12000(50<x≤90,且x 为整数); (2)当1≤x ≤50时,w =-2x 2+180x +2000=-2(x -45)2+6050, ∵a =-2<0且1≤x ≤50,∴当x =45时,w 取最大值,最大值为6050元,当50<x≤90时,w=-120x+12000,∵k=-120<0,w随x增大而减小,∴当x=50时,w取最大值,最大值为6000元,∵6050>6000,∴当x=45时,w最大,最大值为6050元,答:销售第45天时,当天获得的销售利润最大,最大利润是6050元;(3)24天.【解法提示】当1≤x≤50时,令w=-2x2+180x+2000≥5600,即-2x2+180x -3600≥0,解得30≤x≤60,∵1≤x≤50,∴30≤x≤50,∴50-30+1=21(天),当50<x≤90时,令w=-120x+12000≥5600,即-120x+6400≥0,解得x≤531 3,∵50<x≤90,x为整数,∴50<x≤53,53-50=3(天),综上可知:21+3=24(天),答:该商品在销售过程中,共有24天每天的销售利润不低于5600元.。

江苏省中考数学试题研究第一部分考点研究第三章函数第14课时二次函数的应用试题(5年真题)

江苏省中考数学试题研究第一部分考点研究第三章函数第14课时二次函数的应用试题(5年真题)

江苏省中考数学试题研究第一部分考点研究第三章函数第14课时二次函数的应用试题(5年真题)函数第14课时二次函数的应用江苏近5年中考真题精选(2013~2017)命题点1二次函数的实际应用(盐城1考,淮安1考,宿迁1考)考向一最大利润问题1. (2016徐州26题8分)某宾馆拥有客房100间,经营中发现:每天入住的客房数y(间)与房价x(元)(180≤x≤300)满足一次函数关系,部分对应值如下表:(1)求y与x之间的函数表达式;(2)已知每间入住的客房,宾馆每日需支出各种费用100元;每间空置的客房,宾馆每日需支出各种费用60元.当房价为多少元时,宾馆当日利润最大?求出最大利润.(宾馆当日利润=当日房费收入-当日支出)2. (2013盐城25题10分)水果店王阿姨到水果批发市场打算购进一种水果销售,经过还价,实际价格每千克比原来少2元,发现原来买这种水果80千克的钱,现在可买88千克.(1)现在实际购进这种水果每千克多少元?(2)王阿姨准备购进这种水果销售,若这种水果的销售量y(千克)与销售单价x(元/千克)满足如图所示的一次函数关系.①求y与x之间的函数关系式;②请你帮王阿姨拿个主意,将这种水果的销售单价定为多少时,能获得最大利润?最大利润是多少?(利润=销售收入-进货金额)第2题图3. (2017扬州27题12分)农经公司以30元/千克的价格收购一批农产品进行销售,为了得到日销售量p(千克)与销售价格x(元/千克)之间的关系,经过市场调查获得部分数据如下表:销售价格x(元/千克) 30 35 40 45 50日销售量p(千克) 600 450 300 150 0(1)请你根据表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定p 与x之间的函数表达式;(2)农经公司应该如何确定这批农产品的销售价格,才能使日销售利润最大?(3)若农经公司每销售1千克这种农产品需支出a元(a>0)的相关费用,当40≤x≤45时,农经公司的日获利的最大值为2430元,求a值.(日获利=日销售利润-日支出费用) 考向二费用问题4. (2016宿迁24题8分)某景点试开放期间,团队收费方案如下:不超过30人时,人均收费120元;超过30人且不超过m(30<m≤100)人时,每增加1人,人均收费降低1元;超过m人时,人均收费都按照m人时的标准.设景点接待有x名游客的某团队,收取总费用为y元.(1)求y关于x的函数表达式;(2)景点工作人员发现:当接待某团队人数超过一定数量时,会出现随着人数的增加收取的总费用反而减少这一现象.为了让收取的总费用随着团队中人数的增加而增加,求m的取值范围.考向三 几何图形面积问题5. (2014淮安25题10分)用长为32 m 的篱笆围一个矩形养鸡场,设围成的矩形一边长为x m ,面积为y m 2.(1)求y 关于x 的函数关系式;(2)当x 为何值时,围成的养鸡场面积为60 m 2?(3)能否围成面积为70 m 2的养鸡场?如果能,请求出其边长;如果不能,请说明理由. 6. (2013连云港23题10分)小林准备进行如下操作实验:把一根长为40 cm 的铁丝剪成两段,并把每一段各围成一个正方形.(1)要使这两个正方形的面积之和等于58 cm 2,小林该怎么剪?(2)小峰对小林说:“这两个正方形的面积之和不可能...等于48 cm 2.”他的说法对吗?请说明理由.命题点2 二次函数的综合应用(盐城必考,淮安2考,宿迁必考)7. (2016淮安27题12分)如图,在平面直角坐标系中,二次函数y =-14x 2+bx +c的图象与坐标轴交于A 、B 、C 三点,其中点A 的坐标为(0,8),点B 的坐标为(-4,0).(1)求该二次函数的表达式及点C 的坐标;(2)点D 的坐标为(0,4),点F 为该二次函数在第一象限内图象上的动点,连接CD 、CF ,以CD 、CF 为邻边作平行四边形CDEF ,设平行四边形CDEF 的面积为S .①求S 的最大值;②在点F 的运动过程中,当点E 落在该二次函数图象上时,请直接写出此时S 的值.第7题图8. (2013南京26题9分)已知二次函数y=a(x-m)2-a(x-m)(a、m为常数,且a≠0).(1)求证:不论a与m为何值,该函数的图象与x轴总有两个公共点;(2)设该函数的图象的顶点为C,与x轴交于A、B两点,与y轴交于点D.①当△ABC的面积等于1时,求a的值;②当△ABC的面积与△ABD的面积相等时,求m的值.9. (2016宿迁26题10分)如图,在平面直角坐标系xOy中,将二次函数y=x2-1的图象M沿x轴翻折,把所得到的图象向右平移2个单位长度后再向上平移8个单位长度,得到二次函数图象N.(1)求N的函数表达式;(2)设点P(m,n)是以点C(1,4)为圆心、1为半径的圆上一动点,二次函数的图象M 与x轴相交于两点A、B,求PA2+PB2的最大值;(3)若一个点的横坐标与纵坐标均为整数,则该点称为整点.求M与N所围成封闭图形内(包括边界)整点的个数.第9题图10. (2013宿迁27题12分)如图,在平面直角坐标系xOy中,二次函数y=ax2+bx -3(a,b是常数)的图象与x轴交于点A(-3,0)和点B(1,0),与y轴交于点C.动直线y =t(t为常数)与抛物线交于不同的两点P、Q.(1)求a和b的值;(2)求t 的取值范围;(3)若∠PCQ =90°,求t 的值.第10题图 答案1. 解:(1)设y =kx +b ,将(180,100),(260,60)代入得:⎩⎨⎧=+=+60260100180b k b k , 解得⎪⎩⎪⎨⎧==19021-b k ,(2分) ∴y 与x 之间的函数表达式为y =-12x +190(180≤x ≤300);(4分)(2) 设利润为w ,w =y·x -100y -60(100-y )=x (-12x +190)-100(-12x +190)-60[100-(-12x +190)]=-12x 2+210x -13600=-12(x -210)2+8450,∵180<210<300, (6分)∴当x =210时,w 最大=8450(元),答:当房价为210元时,宾馆当日利润最大,最大利润为8450元.(8分)2. 解:(1)设现在实际购进这种水果每千克a 元,则原来购进这种水果每千克(a +2)元,根据题意,得80(a +2)=88a , 解得a =20.答:现在实际购进这种水果每千克20元; (2)①设y 与x 之间的函数关系式为y =kx +b ,将(25,165),(35,55)代入,得⎩⎨⎧=+=+553516525b k b k ,解得⎩⎨⎧==44011-b k , 故y 与x 之间的函数关系式为y =-11x +440;②设这种水果的销售单价为x 元时,所获利润为w 元, 则w =(x -20)y =(x -20)(-11x +440) =-11x 2+660x -8800 =-11(x -30)2+1100, ∵a =-11<0,∴当x =30时,w 有最大值1100.答:将这种水果的销售单价定为30元时,能获得最大利润,最大利润是1100元. 3. 解:(1)p 与x 之间满足一次函数关系p =kx +b (k ≠0),因为点(50,0),(30,600)在图象上,所以⎩⎨⎧=+=+60030050b k b k ,解得⎩⎨⎧==150030-b k , ∴p 与x 之间的函数表达式为p =-30x +1500(30≤x ≤50);(2)设日销售价格为x 元/千克,日销售利润为w 元,依题意得w =(-30x +1500)(x -30)=-30x 2+2400x -45000(30≤x ≤50), ∵a =-30<0, ∴w 有最大值,当x =-24002×(-30)=40 (元/千克)时,w 有最大值,即最大值为w 最大=4×(-30)×(-45000)-240024×(-30)=3000(元);答:销售价格为40元/千克时,日销售利润最大;(3)∵w =p (x -30-a)=-30x 2+(2400+30a )x -(1500a +45000), 对称轴为x =-2400+30a 2×(-30)=40+12a ,①若a >10,当x =45时取最大值,(45-30-a )×150=2250-150a <2430(舍去), ②若a <10,当x =40+12a 时取最大值,将x =40+12a 代入,得w =30(14a 2-10a +100),令w =2430,则30(14a 2-10a +100)=2430,解得a =2或a =38(舍去). 综上所述,a =2. 4. 解:(1)由题意得,y =⎪⎪⎪⎩⎪⎪⎪⎨⎧≤=≤<+=≤)<()()()()()()<100-150]30-120[30150--150]30-120[300(1202x m x m m x m x x x x x x x x x ;(4分) (2)由(1)知当0<x ≤30或m <x ≤100时, 函数值都是随着x 的增大而增大, 当30<x ≤m 时,y =x [120-(x -30)]=x(150-x ) =-x 2+150x=-(x 2-150x +752-752) =-(x -75)2+752,∴当30<m ≤75时,收取的总费用随着团队中人数的增加而增加.(8分)5. 解:(1)已知围成的矩形一边长为x m ,则矩形的邻边长为(32÷2-x ) m .依题意得:y =x (32÷2-x )=-x 2+16x ,∴y 关于x 的函数关系式是y =-x 2+16x ;(3分)(2)由(1)知y =-x 2+16x , 当y =60时,-x 2+16x =60,即(x -6)(x -10)=0, 解得 x 1=6,x 2=10,即当x 是6 m 或10 m 时,围成的养鸡场面积为60 m 2;(5分) (3)不能围成面积为70 m 2的养鸡场.(6分) 理由如下:由(1)知,y =-x 2+16x , 当y =70时,-x 2+16x =70, 即x 2-16x +70=0,(8分) ∵b 2-4ac =(-16)2-4×1×70 =-24<0, ∴该方程无解;即不能围成面积为70 m 2的养鸡场.(10分)6. 解:(1)设剪成的较短的一段为x cm ,较长的一段就为(40-x)cm ,由题意得:)4(x 2+(4-40x )2=58, 解得x 1=12,x 2=28,当x =12时,较长的为40-12=28 cm , 当x =28时,较长的为40-28=12<28(舍去), ∴较短的一段为12 cm ,较长的一段为28 cm ;(2)设剪成的较短的一段为m cm ,较长的一段就为(40-m)cm ,由题意得:(4m )2+(4-40m )2=48, 变形为:m 2-40m +416=0, ∵b 2-4ac =(-40)2-4×416 =-64<0,∴原方程无实数根,∴小峰的说法正确,这两个正方形的面积之和不可能等于48 cm 2. 7. 解:(1)∵二次函数y =-14x 2+bx +c 过A (0,8)、B (-4,0)两点,∴⎪⎩⎪⎨⎧==+⨯804-4-41-2c c b )(, 解得⎩⎨⎧==81c b , ∴二次函数的解析式为y =-14x 2+x +8,当y =0时,解得x 1=-4,x 2=8, ∴C 点坐标为(8,0);(2)①如解图,连接DF 、OF ,设F (m ,-14m 2+m +8),第7题解图∵S 四边形OCFD =S △CDF +S △OCD =S △ODF +S △OCF , ∴S △CDF =S △ODF +S △OCF -S △OCD ,=12×4×m +12×8×(-14m 2+m +8)-12×8×4 =2m -m 2+4m +32-16 =-m 2+6m +16=-(m -3)2+25,∴当m =3时,△CDF 的面积有最大值,最大值为25,∵四边形CDEF 为平行四边形,∴S 四边形CDEF =2S △CDF =50,∴S 的最大值为50;②18.【解法提示】∵四边形CDEF 为平行四边形,∴CD ∥EF ,CD =EF ,∵点C 向左平移8个单位,再向上平移4个单位得到点D ,∴点F 向左平移8个单位,再向上平移4个单位得到点E ,即E (m -8,-14m 2+m +12), ∵E (m -8,-14m 2+m +12)在抛物线上, ∴-14(m -8)2+(m -8)+8 =-14m 2+m +12, 解得m =7,当m =7时,S △CDF =-(7-3)2+25=9,∴此时S 四边形CDEF =2S △CDF =18.8. (1)证明:y =a (x -m )2-a (x -m )=ax 2-(2am +a )x +am 2+am .∵当a ≠0时,[-(2am +a )]2-4a (am 2+am )=a 2>0.∴方程ax 2-(2am +a )x +am 2+am =0有两个不相等的实数根,∴不论a 与m 为何值且a ≠0时,该函数的图象与x 轴总有两个公共点;(3分)(2)解:①y =a (x -m )2-a (x -m )=a (x -212+m )2-4a ,∴点C 的坐标为(212+m ,-4a).当y =0时,a (x -m )2-a (x -m )=0,解得x 1=m ,x 2=m +1,∴AB =1.当△ABC 的面积等于1时,有12×1×|-4a|=1,∴12×1×(-4a )=1,或12×1×4a=1,∴a =-8或a =8;(6分)②当x =0时,y =am 2+am ,所以点D 的坐标为(0,am 2+am ),当△ABC 的面积与△ABD 的面积相等时,12×1×|-a 4|=12×1×|am 2+am |;即|4a|=|am 2+am |,∵a ≠0,∴14=|m 2+m |,∴m 2+m =±14,即m 2+m +14=0或m 2+m -14=0,∴m =-12或m =-1-22或m =-1+22.(9分) 9. 解:(1)由题意得N 的函数表达式为y =-(x -2)2+9;(3分)(2)∵点P 的坐标为(m ,n),点A 为(-1,0),点B 为(1,0),∴PA 2+PB 2=(m +1)2+(n -0)2+(m -1)2+(n -0)2=m 2+2m +1+n 2+m 2-2m +1+n 2=2m 2+2n 2+2=2(m 2+n 2)+2=2OP 2+2,∴当PA 2+PB 2最大时,要满足OP 最大,即满足直线OP 经过点C ,(5分)又∵点P (m , n )是以点C (1,4)为圆心、1为半径的圆上一动点,∴CP =1,∵OC =12+42=17,∴OP =17+1,∴PA 2+PB 2=2OP 2+2=2(17+1)2+2=38+417;(7分) (3)由⎩⎨⎧+==92--1-22)(x y x y 得两二次函数交点坐标为(-1,0),(3,8). 两曲线围成的封闭图形如解图所示,第9题解图纵坐标的取值范围为:-1≤y ≤9,横坐标的取值范围-1≤x ≤3,∴M 与N 所围成封闭图形内(包括边界)的整点有:(-1,0),(0,-1),(0,0),(0,1),(0,2),(0,3),(0,4),(0,5),(1,0),(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,8)共25个.(10分)10. 解:(1)将点A (-3,0)、点B (1,0)坐标代入y =ax 2+bx -3中可得: ⎩⎨⎧==+03-3-903-b a b a , 解得⎩⎨⎧==21b a ;(2)由(1)知抛物线的解析式为y =x 2+2x -3,动直线y =t ,联立两个解析式可得:x 2+2x -3=t ,即x 2+2x -(3+t)=0.∵动直线y =t (t 为常数)与抛物线交于不同的两点,∴b 2-4ac =4+4(3+t )>0,解得t >-4;(3)∵y =x 2+2x -3=(x +1)2-4,∴抛物线的对称轴为直线x =-1,当x =0时,y =-3,∴C (0,-3).设点Q 的坐标为(m ,t ),则点P 的坐标为(-2-m ,t),如解图,设PQ 与y 轴交于点D ,第10题解图则CD =t +3,DQ =m ,DP =m +2,∵∠PCQ =∠PCD +∠QCD =90°,∠DPC +∠PCD =90°,∴∠QCD =∠D P C ,又∵∠PDC =∠QDC =90°,∴△QCD ∽△CPD ,∴DQ DC =DC PD , 即3+t m =23++m t ,整理得:t 2+6t +9=m 2+2m ,∵Q =(m ,t)在抛物线上,∴t =m 2+2m -3,∴m 2+2m =t +3,∴t 2+6t +9=t +3,化简得t 2+5t +6=0,解得t =-2或t =-3,当t =-3时,动直线y =t 经过点C ,故不合题意,舍去,∴t =-2.。

第14章 二次函数的应用

第14章 二次函数的应用

第十四章 二次函数的应用(2012北海,7,3分)7.已知二次函数y =x 2-4x +5的顶点坐标为:( )A .(-2,-1)B .(2,1)C .(2,-1)D .(-2,1)【解析】二次函数的顶点坐标公式为(ab ac a b 44,22--),分别把a ,b ,c 的值代入即可。

【答案】B【点评】本题考查的是二次函数顶点公式,做题时要灵活把握,求纵坐标时,也可以把横坐标的值代入到函数中,求y 值即可,属于简单题型。

(2012山东省滨州,1,3分)抛物线234y x x =--+ 与坐标轴的交点个数是( ) A .3 B .2 C .1 D .0【解析】抛物线解析式234x x --+,令x=0,解得:y=4,∴抛物线与y 轴的交点为(0,4),令y=0,得到2340x x --+=,即2340x x +-=,分解因式得:(34)(1)0x x +-= ,解得:143x =- , 21x =,∴抛物线与x 轴的交点分别为(43-,0),(1,0),综上,抛物线与坐标轴的交点个数为3. 【答案】选A【点评】本题考查抛物线的性质,需要数形结合,解出交点,即可求出交点的个数.此题也可用一元二次方程根的判别式判定与x 轴的交点个数,与y 轴的交点就是抛物线中C 的取值.( 2012年四川省巴中市,8,3)对于二次函数y=2(x+1)(x-3)下列说法正确的是( ) A.图象开口向下 B.当x >1时,y 随x 的增大而减小 C.x <1时,y 随x 的增大而减小 D.图象的对称轴是直线x= - 1【解析】y=2(x+1)(x-3)可化为y=(x -1)2-8,此抛物线开口向上,可排除A,对称轴是直线x=1可排除D,根据图象对称轴右侧部分, y 随x 的增大而减小,即x <1时,故选C. 【答案】C【点评】本题考查将二次函数关系式化成顶点式的方法及图象性质.12.(2012湖南衡阳市,12,3)如图为二次函数y=ax 2+bx+c (a≠0)的图象,则下列说法: ①a>0 ②2a+b=0 ③a+b+c>0 ④当﹣1<x <3时,y >0 其中正确的个数为( )A .1B .2C .3D .4解析:由抛物线的开口方向判断a 与0的关系,由x=1时的函数值判断a+b+c >0,然后根据对称轴推出2a+b 与0的关系,根据图象判断﹣1<x <3时,y 的符号. 答案:解:①图象开口向下,能得到a <0; ②对称轴在y 轴右侧,x==1,则有﹣=1,即2a+b=0;③当x=1时,y >0,则a+b+c >0; ④由图可知,当﹣1<x <3时,y >0. 故选C .点评:本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.(2012呼和浩特,9,3分)已知:M 、N 两点关于y 轴对称,且点M 在双曲线12y x=上,点N 在直线y=x+3上,设点M 的坐标为(a,b ),则二次函数y = –abx 2+(a+b)x A . 有最大值,最大值为 –92B . 有最大值,最大值为92C . 有最小值,最小值为92D . 有最小值,最小值为 –92【解析】M (a ,b ),则N (–a ,b ),∵M 在双曲线上,∴ab =12;∵N 在直线上,∴b =–a +3,即a +b =3;∴二次函数y = –abx 2+(a+b)x= –12x 2+3x = –12(x –3)2+92,∴有最大值,最大值为92【答案】B【点评】本题考查了轴对称的性质,利用点在函数图象上,把点代入的解析式中求得ab 和a +b 的值。

二次函数在生活中的运用

二次函数在生活中的运用

二次函数在生活中的运用二次函数是一个具有形式为y=ax^2+bx+c的二次多项式函数,其中a、b、c是实数且a≠0。

它是数学中一个重要的函数类型,其在现实生活中有许多广泛的应用。

下面将介绍一些二次函数在生活中的运用。

1.物体的自由落体运动:当物体从静止的位置开始自由下落时,其高度与时间的关系可以用二次函数来描述。

根据物体下落的加速度和初速度,我们可以建立二次函数模型来预测物体的高度随时间的变化。

2.弹性力的计算:弹性力是恢复力的一种,其大小与物体偏离平衡位置的距离成正比。

当物体被施加一个力使其偏离平衡位置时,恢复力的大小可以用二次函数描述。

3.抛物线的建模:抛物线是二次函数的图像,它在很多领域中都有应用。

例如,在建筑设计中,抛物线形状的屋顶可以提供更好的排水系统。

在桥梁设计中,抛物线形状的拱桥可以提供更好的结构稳定性。

4.投射物体的路径预测:当一个物体以一定的初速度和角度被抛出时,它的轨迹可以用二次函数模型来预测。

例如,在棒球运动中,球员可以通过分析投球的初速度和角度来预测球的落点。

5.音乐乐器的调音:乐器的音高可以通过改变乐器弦的张力来调节。

根据弦的拉紧程度,可以建立一个二次函数模型来描述音高与弦长的关系。

这使得乐器演奏者能够根据需要调整乐器的音高。

6.经济中的成本与产出关系:在经济学中,成本与产出的关系经常可以用二次函数来描述。

例如,生产一定数量的商品所需的成本与产出之间可能存在一个最优点,通过求二次函数的极值,可以确定最大化利润的产量。

7.变量与值的关系:二次函数可以用来描述两个变量之间的关系。

例如,员工的工资与工作经验之间可能存在一个二次函数模型,随着工作经验的增加,工资可能会呈现先上升后下降的趋势。

8.交通流量的模拟:交通流量的变化可以用二次函数来建模。

例如,小时交通流量随时间的变化可能呈现一个钟形曲线,交通高峰期的交通流量较大,而其他时间段的交通流量相对较小。

以上仅列举了二次函数在生活中的一些应用,其中还有许多其他的应用。

二次函数的应用

二次函数的应用

现在两船同时出发,A船以每时12km
的速度朝正北方向行驶,B船以每时
5km的速度朝正西方向行使,何时两
船相距最近?最近距离是多少?
A
D
B
解:设经过 t 时后,A,B两船分别到达C,D,
两船之间的距离 是s :
s = CD = √AC2+AD2 = √(26-5t)2+(12t)2
= √169t2-260t+676 = √ (13t-10)2+576 (t>0)
问题?
2021/12/14
地面 14
课内练习
1.一球从地面抛出的运动路线呈抛物线,如图,当球离
抛出地的水平距离为 30m 时,到达最大高10m。 ⑴ 求球运动路线的函数解析式和自变量的取值范围;
⑵ 求球被抛出多远;
⑶ 当球的高度为5m时,球离抛出地面的水平距离
是多少m?
y
提出问题远比解
决问题更有价值
➢注意:有此求得的最大值或最小值对应的
。 字变量的值必须在自变量的取值范围内
2021/12/14
11
例:
如图,B船位于A船正东26KM处,现在A,B 两船同时出发,A船以12KM/H的速度朝正北方向行 驶,B船以5KM/H的速度朝正西方向行驶,何时两船 相距最近?最近距离是多少?
➢ ①设经过t时后,A、B两 船分别到达A/、B/〔如图〕, A’ 那么两船的距离S应为多少 ?
当 13t-10=0 , 即t=10/13时, 被开放式 (13t-10)2+576 有最小值 576 所以当 t=10/13时, s最小值= √ 576 =24(km) 2021答/12:/14 经过10/13时,两船之间的距离最近,最近距离为24k2m1

二次函数的日常应用实例

二次函数的日常应用实例

二次函数的日常应用实例二次函数作为高中数学中的一个重要概念,具有广泛的应用领域。

本文将介绍二次函数在现实生活中的几个常见应用实例,以帮助读者更好地理解和应用这一数学知识。

1. 物体运动的轨迹分析二次函数可以描述物体在空间中的运动轨迹。

例如,当一个投掷物体从地面上抛出时,它的运动轨迹可以用二次函数来描述。

假设一个物体从地面上以初始速度v向上抛出,重力加速度为g。

物体的高度h 可以用二次函数h(t) = -0.5gt^2 + vt + h_0来表示,其中t表示时间,h_0表示初始高度。

通过解析二次函数,可以分析物体的运动轨迹、最大高度、飞行时间等参数。

2. 抛物线形状的建筑设计在建筑设计中,抛物线形状经常被应用于拱门、扶手、悬臂等结构中。

这些结构的形状可以用二次函数来描述。

通过对二次函数进行合适的平移、缩放和旋转,可以根据设计要求来创建出各种形态的抛物线结构。

抛物线结构不仅具有美观的外观,还具有稳定性和均衡负荷的优势。

3. 经济学中的消费模型在经济学中,二次函数常常被用来建立消费模型,帮助研究者了解人们的消费行为。

例如,假设一个人的收入为x,他的消费支出为y。

那么,他的消费行为可以用二次函数y = ax^2 + bx + c来模拟。

通过研究二次函数的系数a、b、c,可以分析消费者的倾向、边际消费率以及其对价格变化的敏感度等信息,为企业和政府制定经济政策提供指导。

4. 高精度测量中的误差修正在科学实验和测量中,我们经常需要对测量误差进行修正。

二次函数被广泛应用于误差修正的算法中。

假设我们进行一次测量,得到的结果为y,而真实值为x。

我们可以构建一个二次函数y = ax^2 + bx + c 来表示测量值与真实值之间的关系。

通过测量多组数据并利用最小二乘法求解系数a、b、c,我们可以对测量结果进行校正,提高测量精度。

5. 经典力学中的力学模型二次函数在经典力学中也有重要的应用。

例如,胡克定律描述了弹簧的弹性变形与施加力之间的关系。

(沪科版)中考数学总复习课件【第14讲】二次函数的实际应用

(沪科版)中考数学总复习课件【第14讲】二次函数的实际应用
2 2Байду номын сангаас
第13讲┃二次函数的图象和性质
(3) 当 0<x≤2 时,w=10x2+40x+480=10(x+2)2+ 440,此时 x =2 时,w 最大=600. 当 2<x≤4 时,w=- 10x +80x +480=-10(x-4) + 640,此时 x =4 时,w 最大=640. 当 4< x<6 时,w=-5x +30x+600=-5(x- 3) +645,此时,w <640,∴x=4 时,w 最大=640. 答:该公司每年国内的销售量为 4 千件,国外的销售量为 2 千件 时,可使公司每年的总利润最大,最大利润为 64 万元.
2
第13讲┃二次函数的图象和性质
某小商场以每件 20 元的价格购进一种服装,先试销一周, 试销期间每天的销量 t(件)与每件的销售价格 x(元)如下表所示:
x(元) 38 36 34 32 30 28 26
t(件)
4
8
12
16
20
24
28
第14讲┃二次函数的实际应用
假定试销中每天的销售量 t( 件 ) 与每件的销售价格 x(元 )
= - 9t2 +
14400+(-9t2 +360t)=- 9t2+14400(30≤t≤ 40) .
第13讲┃二次函数的图象和性质
(3) 当 W=-9t2 +480t(0≤t≤30)时, 80 ∵a=-9<0,对称轴为直线 t= , 3 ∴当 t =27 时 W 有最大值 6399 , 当 W=-9t +14400(30≤t≤40)时, ∵a=-9<0,对称轴为 y 轴, ∴t= 30 时,W 最大值 =-9×302+ 14400=6300,∴第 27 天日销售利 润最大,为 6399 万元.

二次函数的应用

二次函数的应用

二次函数的应用随着数学的发展,二次函数逐渐渗透进我们的生活中。

二次函数的应用广泛而且深入,从物理学到经济学,从建筑设计到人工智能,都能看到二次函数的身影。

本文将深入探讨二次函数的应用,以及它给我们带来的便利和挑战。

1. 物理学中的二次函数应用在物理学中,二次函数能够描述物体在运动中所呈现的曲线。

例如,抛体运动的轨迹可以用二次函数来表示。

我们可以通过二次函数的特点,如凹凸性质、根的情况等,来推断物体的抛射高度、落地点等重要参数。

此外,二次函数还能够用于描述光的传播、声音的传播等现象。

通过二次函数的应用,我们能更好地理解和解释物理现象。

2. 经济学中的二次函数应用经济学中,二次函数被广泛应用于成本分析、收益分析等方面。

例如,在生产成本分析中,二次函数可以描述边际成本和边际产量的关系。

通过求解二次函数的极值,我们可以找到最优的生产数量,从而实现效益最大化。

此外,二次函数还可以应用于市场需求曲线和供给曲线的分析,通过研究二次函数的性质,我们能够预测市场的变化趋势,制定合理的经济政策。

3. 建筑设计中的二次函数应用在建筑设计中,二次函数被广泛用于描述建筑物的曲线形状。

例如,拱门的形状可以用二次函数来表示。

通过研究二次函数的属性,建筑师可以设计出更加美观和稳定的建筑物。

此外,二次函数还能够应用于地质勘探和土木工程等领域。

通过分析地表地下的形状和变化规律,我们能够更好地预测地震、滑坡等自然灾害的发生概率,从而采取相应的防护措施。

4. 人工智能中的二次函数应用随着人工智能的快速发展,二次函数在机器学习和深度学习等领域也发挥着重要的作用。

例如,在图像处理中,我们可以通过二次函数来描述图像的亮度和对比度的调整关系。

此外,二次函数还可以用于模式识别、自然语言处理等方面。

通过分析二次函数的特征,我们能够训练出更加准确和智能的机器学习模型,实现人工智能技术的飞速发展。

总结起来,二次函数的应用范围十分广泛,涵盖了物理学、经济学、建筑设计、人工智能等多个领域。

江西专版中考数学第14讲二次函数的应用精练本课件

江西专版中考数学第14讲二次函数的应用精练本课件

下列说法正确的是( C ) A.水流运行轨迹满足函数 y=-410 x2-x+1 B.水流喷射的最远水平距离是 40 米 C.喷射出的水流与坡面 OA 之间的最大铅直 高度是 9.1 米 D.若将喷灌架向后移动 7 米,可以避开对这 棵石榴树的喷灌
4.(2021·沈阳)某超市购进一批单价为8元的 生活用品,如果按每件9元出售,那么每天可 销售20件.经调查发现,这种生活用品的销 售单价每提高1元,其销售量相应减少4件, 那么将销售价定为__1_1__元时,才能使每天所 获销售利润最大.
②抛物线y=ax2+2ax-b的顶点坐标为(-1, -a-b),∵点(-1,-a-b)关于点(0,k+n2) 的对称点为(1,a+b+2k+2n2),∴抛物线yn 的顶点坐标An为(1,a+b+2k+2n2),同理: An+1(1,a+b+2k+2(n+1)2),∴AnAn+1=a +b+2k+2(n+1)2-(a+b+2k+2n2)=4n+2.
9.(2018·江西)小贤与小杰在探究某类二次函数 问题时,经历了如下过程: 求解体验: (1)已知抛物线y=-x2+bx-3经过点(-1,0), 则b=________,顶点坐标为________,该抛物 线关于点(0,1)成中心对称的抛物线表达式是 ______________.
抽象感悟: 我们定义:对于抛物线y=ax2+bx+c(a≠0), 以y轴上的点M(0,m)为中心,作该抛物线关 于点M中心对称的抛物线y′,则我们又称抛物线y′ 为抛物线y的“衍生抛物线”,点M为“衍生中心”. (2)已知抛物线y=-x2-2x+5关于点(0,m)的 衍生抛物线为y′,若这两条抛物线有交点,求 m的取值范围.
8.(2021·南充)超市购进某种苹果,如果进价 增加2元/千克要用300元;如果进价减少2元/千 克,同样数量的苹果只用200元. (1)求苹果的进价; (2)如果购进这种苹果不超过100千克,就按原 价购进;如果购进苹果超过100千克,超过部 分购进价格减少2元/千克,写出购进苹果的支 出y(元)与购进数量x(千克)之间的函数关系式;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第14课时┃ 二次函数的应用
方法点析
解决此类问题的一般步骤:(1)合理建立直角坐标系, 把已知数据转化为点的坐标;(2)根据题意,把所求问题转 化为求最值或已知 x 的值(范围)求 y 的值(范围)问题.
考点聚焦
杭考探究
当堂检测
第14课时┃ 二次函数的应用
[2014·绍兴] 如图 14-4 的一座拱桥,当水面宽 AB 为 12 m 时,桥洞顶部离水面 4 m,已知桥洞的拱形是抛物线,以 水平方向为 x 轴,建立平面直角坐标系,若选取点 A 为坐标原点 1 2 时的抛物线表达式是 y=- (x-6) +4,则选取点 B 为坐标原点 9 1 2 y =- (x + 6) +4 . 时的抛物线表达式是________________ 9
考点聚焦
杭考探究
当堂检测
第14课时┃ 二次函数的应用
(2)当点 P 在直线 BC 上方时,请用含 m 的代数式表示 PG 的长 度; (3)在(2)的条件下,是否存在这样的点 P,使得以 P,B,G 为顶点的三角形与△DEH 相似?若存在, 求出此时 m 的值; 若不存 在,请说明理由.
图 14-6
考点聚焦
杭考探究
当堂检测
第14课时┃ 二次函数的应用
根据问题信息求出函数表达式, 并求相应的 自变量的值及函数最值.
思路点津
考点聚焦
杭考探究
当堂检测
第14课时┃ 二次函数的应用
解:(1)y= (2)设销售 A 类杨梅 x 吨,则 ①当 2≤x<8 时,w=x(-x+14)+9(20-x)-3×20-x- [12+3(20-x)]=-x2+7x+48. 当 x≥8 时,w=6x+9(20-x)-3×20-x-[12+3(20-x)] =-x+48. 所以函数表达式为 w=
考点聚焦 杭考探究 当堂检测
第14课时┃ 二次函数的应用
当 堂 检 测
1.[2014·安徽] 如图 14-9,矩形 ABCD 中,AB=3,BC =4 , 动点 P 从 A 点出发, 按 A→B→C 的方向在 AB 和 BC 上移动, 记 PA=x,点 D 到直线 PA 的距离为 y,则 y 关于 x 的函数图象 大致是 ( B )
第14课时 二次函数的应用
第14课时┃ 二次函数的应用
考 点 聚 焦
考点1 二次函数与几何图形的综合应用
[2014·北京] 已知点 A 为某封闭图形边界上一定点,动点 P 从点 A 出发,沿其边界顺时针匀速运动一周,设点 P 运动的时间 为 x,线段 AP 的长为 y,表示 y 与 x 的函数关系大致如图 14-1 所示,则该封闭图形可能是 ( A )
变式题
考点聚焦
杭考探究
当堂检测
第14课时┃ 二次函数的应用
探究三 二次函数与几何图形的综合
例 3 [2014·钦州] 如图 14-6,在平面直角坐标系中,抛物 4 2 线 y=- x +bx+c 与 x 轴交于 A,D 两点,与 y 轴交于点 B,四 3 边形 OBCD 是矩形,点 A 的坐标为(1,0),点 B 的坐标为(0,4), 已知点 E(m,0)是线段 DO 上的动点,过点 E 作 PE⊥x 轴交抛物线 于点 P,交 BC 于点 G,交 BD 于点 H. (1)求抛物线的表达式;
考点聚焦
杭考探究
当堂检测
第14课时┃ 二次函数的应用
2.[2011·聊城] 某公园草坪的防护栏由 100 段形状相同的 抛物线形构件组成,为了牢固起见,每段护栏需要间距 0.4 m 加 设一根不如图 14- 11),则这条防护栏需要不锈钢支柱的总长度至少为 ( C )
考点聚焦 杭考探究 当堂检测
第14课时┃ 二次函数的应用
解:(1)把点 A(1,0),点 B(0,4)代入表达式,得 解得 4 2 8 所以抛物线的表达式为 y=- x - x+4. 3 3
考点聚焦
杭考探究
当堂检测
第14课时┃ 二次函数的应用
4 2 8 (2)由题意得:点 G(m,4),点 P(m,- m - m+4). 3 3 当点 P 在直线 BC 上方时, 4 2 8 4 2 8 PG=- m - m+4-4=- m - m. 3 3 3 3
考点聚焦
杭考探究
当堂检测
第14课时┃ 二次函数的应用
方法点析
利用二次函数解决日常生活问题, 要根据图表或图象中的信 息,建立函数关系式,然后利用二次函数求最值,有时需分段进 行.
考点聚焦
杭考探究
当堂检测
第14课时┃ 二次函数的应用
[2014·沈阳] 某种商品每件进价为 20 元,调 查表明:在某段时间内若以每件 x 元(20≤x≤30,且 x 为整数) 出售,可卖出 (30 - x) 件.若使利润最大,每件的售价应为 25 ________ 元.
考点聚焦
杭考探究
当堂检测
第14课时┃ 二次函数的应用
(2)当 h=2.6 时, 球能否越过球网?球会不会出界?请说明 理由; (3)若球一定能越过球网,又不出界,则 h 的取值范围是多 少?
图 14-3
考点聚焦
杭考探究
当堂检测
第14课时┃ 二次函数的应用
思路点津 (1)用待定系数法求表达式; (2)即分别判断 x=9 时 y 是否大于 2.43,x=18 时 y 是否大于 0;(3)把(0,2), (9,2.43)和(0,2),(18,0)分别代入表达式,求出 h 的两个边 界值.
考点聚焦
杭考探究
当堂检测
第14课时┃ 二次函数的应用
【归纳总结】 利用二次函数解决实际问题中的最值问题, 一般先根据题意 建立二次函数关系式,并确定自变量的取值范围,然后利用求最 值的方法求出何时获得最值,从而解决问题.
考点聚焦
杭考探究
当堂检测
第14课时┃ 二次函数的应用
【知识树】
考点聚焦
杭考探究
A.50 m B.100 m
图 14-11 C.160 m D.200 m
考点聚焦
杭考探究
当堂检测
第14课时┃ 二次函数的应用
4 2 8 4 2 8 (3)令 y=- x - x+4 中,y=0,得- x - x+4=0, 3 3 3 3 x2+2x-3=0, x1=-3,x2=1, ∴点 D 的坐标为(-3,0), ∴OD=3. ∵PE⊥x 轴,OB⊥x 轴, ∴PE∥OB, ∴△DEH∽△DOB, DE DO 3 ∴ = = . EH BO 4
考点聚焦
杭考探究
当堂检测
第14课时┃ 二次函数的应用
②当 2≤x<8 时,-x +7x+48=30, 解得 x1=9,x2=-2,均不合题意. 当 x≥8 时,-x+48=30,x=18. ∴直接销售的 A 类杨梅有 18 吨.
2
考点聚焦
杭考探究
当堂检测
第14课时┃ 二次函数的应用
(3)该公司用 132 万元共购买 m 吨杨梅,由题意得 3m+x+12 +3(m-x)=132,化简得 3m=x+60. ①当 2≤x<8 时,w=x(-x+14)+9(m-x)-132=-x2+5x +9m-132, 2 把 3m=x+60 代入,得 w=-(x-4) +64, 当 x=4 时有最大毛利润 64 万元; 64 52 此时,m= ,m-x= . 3 3
考点聚焦
杭考探究
当堂检测
第14课时┃ 二次函数的应用
△PGB 与△DEH 相似有两种情况: ①当△PGB∽△DEH 时, PG DE 3 = = . GB EH 4 4 2 8 ∵PG=- m - m,GB=-m, 3 3 4 2 8 - m- m 3 3 3 ∴ = ,16m2+23m=0, -m 4 23 m1=0(舍去),m2=- . 16
考点聚焦
杭考探究
当堂检测
第14课时┃ 二次函数的应用
(2)第一次该公司收购了 20 吨杨梅,其中 A 类杨梅 x 吨,经 营这批杨梅所获得的毛利润为 w 万元(毛利润=销售总收入-经营 总成本). ①求 w 关于 x 的函数关系式; ②若该公司获得了 30 万元毛利润,问:用于直销的 A 类杨梅 有多少吨? (3)第二次该公司准备投入 132 万元资金,请设计一种经营方 案,使公司获得最大毛利润,并求出最大毛利润.
考点聚焦 杭考探究 当堂检测
第14课时┃ 二次函数的应用
②当△PGB∽△HED 时, PG EH 4 ∴ = = , GB DE 3 4 2 8 - m- m 3 3 4 ∴ = , -m 3 m2+m = 0 , m1=0(舍去),m2=-1, 23 综上所述,存在符合条件的点 P,此时 m 的值为- 或-1. 16
考点聚焦
杭考探究
当堂检测
第14课时┃ 二次函数的应用
【归纳总结】 利用二次函数的相关性质结合几何图形求解某些问题的关键 是找出几何图形中存在的相关关系, 能够用给定的条件将几个变量 间的内在联系表示出来.
考点聚焦
杭考探究
当堂检测
第14课时┃ 二次函数的应用
考点2 二次函数在生活实际中的应用
[2014·安徽] 某厂今年一月份新产品的研发资金为 a 元, 以 后每月新产品的研发资金与上月相比增长率都是 x,则该厂今年 2 a(1 + x) 三月份的研发资金 y(元)关于 x 的函数关系式为 y=________.
考点聚焦
杭考探究
当堂检测
第14课时┃ 二次函数的应用
方法点析
二次函数在几何中的运用,实际上是数形结合思想的 运用,其融代数、几何于一体,把代数问题与几何问题进 行转化.涉及最大 (小)面积、周长等问题,解决过程需建 立函数关系,运用函数性质来解.
考点聚焦
杭考探究
当堂检测
第14课时┃ 二次函数的应用
考点聚焦
杭考探究
当堂检测
第14课时┃ 二次函数的应用
相关文档
最新文档