【金版优课】高中数学人教A版选修1-1课时作业:第2章习题课2(含答案解析)
金版学案高中数学选修1-2人教A版2.2.1同步辅导与检测课件.ppt
当 ab<0 时,有 3 b>3 a,即 b>a. 所以选 D. 答案:D
金品质•高追求 我们让你更放心!
返回
◆数学•选修1-2•(配人教A版)◆
5.直线l,m与平面α,β,γ满足β∩γ=l,l∥α,m⊂α和
m⊥γ,那么必定有( )
A
A.α⊥γ且l⊥m
◆数学•选修1-2•(配人教A版)◆
1.结合已经学习过的数学实例,了解直接证明的两种最 根本的方法:综合法和分析法.
2.了解用综合法和分析法解决问题的思考特点和过程, 会用综合法和分析法证明具体的问题.通过实例充分认识这 两种证明方法的特点,认识证明的重要性.
金品质•高追求 我们让你更放心!
返回
◆数学•选修1-2•(配人教A版)◆
(2)用Q表示要证明的结论,那么分析法可用框图表示为:
Q⇐P1 → P1⇐P2 → P2⇐P3 →…→
得到一个明显成立的 条件
金品质•高追求 我们让你更放心!
返回
◆数学•选修1-2•(配人教A版)◆
3.分析综合法.
(1)定义:根据条件的结构特点去转化结论,得到 _中__间__结__论_Q;根据结论的结构特点去转化条件,得到 _中__间__结__论_P.假设由P可以推出Q成立,就可以证明结论成 立.这种证明方法称为分析综合法.
3.综合法和分析法是直接证明中最根本的两种证明方法, 也是解决数学问题时常用的思维方式.如果从解题的切入点 的角度细分,直接证明方法可具体分为:比较法、代换法、 放缩法、判别式法、构造函数法等.这些方法是综合法和分 析法的延续与补充.
金品质•高追求 我们让你更放心!
返回
◆数学•选修1-2•(配人教A版)◆
【金版优课】高三数学人教A版选修2-1课时作业:1.1.2 四种命题 Word版含解析
第一章 1.1 课时作业2一、选择题1.[2013·江西九江一模]命题“若x2>y2,则x>y”的逆否命题是( )A. “若x<y,则x2<y2”B. “若x>y,则x2>y2”C. “若x≤y,则x2≤y2”D. “若x≥y,则x2≥y2”解析:根据原命题和逆否命题的条件和结论的关系得命题“若x2>y2,则x>y”的逆否命题是“若x≤y,则x2≤y2”.答案:C 2.命题“若函数f(x)=log a x(a>0,a≠1)在其定义域内是减函数,则log a2<0”的逆否命题是( )A.若log a2≥0,则函数f(x)=log a x(a>0,a≠1)在其定义域内不是减函数B.若log a2<0,则函数f(x)=log a x(a>0,a≠1)在其定义域内不是减函数C.若log a2≥0,则函数f(x)=log a x(a>0,a≠1)在其定义域内是减函数D.若log a2<0,则函数f(x)=log a x(a>0,a≠1)在其定义域内是减函数解析:由互为逆否命题的关系可知,原命题的逆否命题为:若log a2≥0,则函数f(x)=log a x(a>0,a≠1)在其定义域内不是减函数.答案:A 3.命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是( )A.若f(x)是偶函数,则f(-x)是偶函数B.若f(x)不是奇函数,则f(-x)不是奇函数C.若f(-x)是奇函数,则f(x)是奇函数D.若f(-x)不是奇函数,则f(x)不是奇函数解析:命题“若p,则q”的否命题为“若綈p,则綈q”,而“是”的否定是“不是”,故选B.答案:B 4.命题“当AB=AC时,△ABC为等腰三角形”与它的逆命题、否命题、逆否命题中,真命题的个数是( )A.4 B.3C.2 D.0解析:原命题和它的逆否命题为真命题.答案:C 二、填空题5.命题“若x>y,则x3>y3-1”的否命题是________.答案:若x≤y,则x3≤y3-1,将条件、结论分别否定即可.6.[2014·江西省临川一中月考]命题“若实数a满足a≤2,则a2<4”的否命题是________命题.(填“真”或“假”)解析:本题考查否命题及命题真假性的判断.原命题的否命题是“若实数a满足a>2,则a2≥4”,这是一个真命题.答案:真7.已知命题“若m-1<x<m+1,则1<x<2”的逆命题为真命题,则m的取值范围是________.解析:由已知得,若1<x<2成立,则m-1<x<m+1也成立,∴Error!∴1≤m≤2.答案:[1,2]三、解答题8.把下列命题写成“若p,则q”的形式,并写出它们的逆命题、否命题与逆否命题.(1)正数的平方根不等于0;(2)当x=2时,x2+x-6=0;(3)对顶角相等.解:(1)原命题:“若a是正数,则a的平方根不等于0”.逆命题:“若a的平方根不等于0,则a是正数”.否命题:“若a不是正数,则a的平方根等于0”.逆否命题:“若a的平方根等于0,则a不是正数”.(2)原命题:“若x=2,则x2+x-6=0”.逆命题:“若x2+x-6=0,则x=2”.否命题:“若x≠2,则x2+x-6≠0”.逆否命题:“若x2+x-6≠0,则x≠2”.(3)原命题:“若两个角是对顶角,则它们相等”.逆命题:“若两个角相等,则它们是对顶角”.否命题:“若两个角不是对顶角,则它们不相等”.逆否命题:“若两个角不相等,则它们不是对顶角”.9.写出下列命题的逆命题、否命题和逆否命题,并判断命题的真假.(1)垂直于同一个平面的两直线平行.(2)若m·n<0,则方程mx2-x+n=0有实根.(3)若ab=0,则a=0或b=0.解:(1)逆命题:如果两条直线平行,那么这两条直线垂直于同一个平面;假命题.否命题:如果两条直线不垂直于同一平面,那么这两条直线不平行;假命题.逆否命题:如果两条直线不平行,那么这两条直线不垂直于同一平面;真命题.(2)逆命题:若方程mx2-x+n=0有实数根,则m·n<0;假命题.否命题:若m·n≥0,则方程mx2-x+n=0没有实数根;假命题.逆否命题:若方程mx2-x+n=0没有实数根,则m·n≥0;真命题.(3)逆命题:若a=0或b=0,则ab=0;真命题.否命题:若ab≠0,则a≠0且b≠0;真命题.逆否命题:若a≠0且b≠0,则ab≠0;真命题.。
高中数学选修1-2第二章课后习题解答
高中数学高中数学新课程标准数学选修1—2第二章课后习题解答第二章 推理与证明2.1合情推理与演绎推理 练习(P30)1、由12341a a a a ====,猜想1na=.2、相邻两行数之间的关系是:每一行首尾的数都是1,其他的数都等于上一行中与之相邻的两个数的和.3、设111O PQ R V -和222O P Q R V -分别是四面体111O PQ R -和222O P Q R -的体积,的体积, 则111222111222O PQR O P Q R V OP OQ OR V OP OQ OR --=××. 4、略. 练习(P33)1、略.2、因为通项公式为n a 的数列{}n a ,若1n na p a +=,p 是非零常数,则{}n a 是等比数列;是等比数列; …………………………大前提…………………………大前提又因为0cq ¹,则q 是非零常数,则11n n nna cq q a cq ++==;……………………小前提……………………小前提 所以,通项公式为(0)n n a cq cq =¹的数列{}n a 是等比数列.……………………结论……………………结论 3、由A D B D >,得到ACD BCD Ð>Ð的推理是错误的. 因为这个推理的大前提是因为这个推理的大前提是“在同一“在同一个三角形中,大边对大角”,小前提是“AD BD >”,而AD 与BD 不在同一个三角形中. 4、略.习题2.1A 组(P35) 1、2(1)n -(n 是质数,且5n ³)是24的倍数.2、21n a n =+()n N *Î. 3、2F V E +=+. 4、当6n £时,122(1)n n -<+;当7n =时,122(1)n n -=+;当8n =时,122(1)n n ->+()n N *Î.5、212111(2)n n A A A n p++³-(2n >,且n N *Î). 6、121217n n b b b b b b -=(17n <,且n N *Î).7、如图,作DE ∥AB 交BC 于E . 因为两组对边分别平行的四边形是平行四边形,因为两组对边分别平行的四边形是平行四边形,因为两组对边分别平行的四边形是平行四边形, 又因为AD ∥BE ,AB ∥DE . 所以四边形所以四边形ABED 是平行四边形是平行四边形.. 因为平行四边形的对边相等因为平行四边形的对边相等因为平行四边形的对边相等. . DEBAC(第7题)又因为四边形ABED 是平行四边形是平行四边形. .所以所以AB DE =.因为与同一条线段等长的两条线段的长度相等,因为与同一条线段等长的两条线段的长度相等,因为与同一条线段等长的两条线段的长度相等, 又因为AB DE =,AB DC =, 所以DE DC = 因为等腰三角形的两底角是相等的. 又因为△DEC 是等腰三角形是等腰三角形, , 所以DEC C Ð=Ð 因为平行线的同位角相等因为平行线的同位角相等 又因为DEC Ð与B Ð是平行线AB 和DE 的同位角的同位角, , 所以DEC B Ð=Ð 因为等于同角的两个角是相等的,因为等于同角的两个角是相等的, 又因为DEC C Ð=Ð,DEC B Ð=Ð, 所以B C Ð=Ð习题2.1B 组(P35) 1、由123S =-,234S =-,345S =-,456S =-,567S =-,猜想12n n S n +=-+.2、略.3、略. 2.2直接证明与间接证明 练习(P42)1、因为442222cos sin (cos sin )(cos sin )cos 2q q q q q q q -=+-=,所以,命题得证. 2、要证67225+>+,只需证22(67)(225)+>+, 即证1324213410+>+,即证42210>,只需要22(42)(210)>,即证4240>,这是显然成立的. 所以,原命题得证.3、因为、因为222222222()()()(2sin )(2tan )16sin tan a b a b a b a a a a -=-+==, 又因为又因为 sin (1cos )sin (1cos )1616(tan sin )(tan sin )16cos cos ab a a a a a a a a a a +-=+-=×22222222sin (1cos )sinsin161616sin tan cos cos aa aa a a aa-===,从而222()16a b ab -=,所以,命题成立.说明:进一步熟悉运用综合法、分析法证明数学命题的思考过程与特点.练习(P43)1、假设B Ð不是锐角,则90B г°. 因此9090180C B Ð+г°+°=°. 这与三角形的内角和等于180°矛盾. 所以,假设不成立. 从而,B Ð一定是锐角.2、假设2,3,5成等差数列,则2325=+.所以22(23)(25)=+,化简得5210=,从而225(210)=,即2540=, 这是不可能的. 所以,假设不成立. 从而,2,3,5不可能成等差数列. 说明:进一步熟悉运用反证法证明数学命题的思考过程与特点.习题2.2A 组(P44) 1、因为、因为(1tan )(1tan )2A B ++=展开得展开得1tan tan tan tan 2A B A B +++=,即tan tan 1tan tan A B A B +=-. ① 假设1tan tan 0A B -=,则cos cos sin sin 0cos cos A B A B A B -=,即cos()0cos cos A B A B += 所以cos()0A B +=.因为A ,B 都是锐角,所以0A B p <+<,从而2A B p+=,与已知矛盾.因此1tan tan 0A B -¹.①式变形得①式变形得 tan tan 11tan tan A BA B +=-,即tan()1A B +=. 又因为0A B p <+<,所以4A B p+=.说明:本题也可以把综合法和分析法综合使用完成证明. 2、因为PD ^平面ABC ,所以PD AB ^. 因为AC BC =,所以ABC D 是等腰三角形. 因此ABC D 底边上的中线CD 也是底边上的高,也是底边上的高, 因而CD AB ^ 所以AB ^平面PDC . 因此AB PC ^.3、因为,,a b c 的倒数成等差数列,所以211b ac =+.假设2B p<不成立,即2B p³,则B 是ABC D 的最大内角,的最大内角,所以,b a b c >>(在三角形中,大角对大边),从而从而 11112a c b b b +>+=. 这与211b a c =+矛盾.所以,假设不成立,因此,2B p<.习题2.2B 组(P44) 1、因为、因为 1tan 12tan aa-=+,所以12tan 0a +=,从而2sin cos 0a a +=.另一方面,要证另一方面,要证3sin 24cos2a a =-, 只要证226sin cos 4(cos sin )a a a a =-- 即证即证 222sin 3sin cos 2cos 0a a a a --=,即证即证 (2s i n c o s )(s i n 2c o s a a a a+-= 由2sin cos 0a a +=可得,(2sin cos )(sin 2cos )0a a a a +-=,于是命题得证.说明:本题可以单独使用综合法或分析法进行证明,但把综合法和分析法结合使用进行证明的思路更清晰.2、由已知条件得、由已知条件得2b ac = ① 2x a b =+,2y b c =+ ②要证2a cx y +=,只要证2ay cx xy +=,只要证224ay cx xy +=由①②,得由①②,得22()()2ay cx a b c c a b ab ac bc +=+++=++, 24()()2x y a b b c a b b a c b c a b a c b c=++=+++=++, 所以,224ay cx xy +=,于是命题得证.第二章 复习参考题A 组(P46)1、图略,共有(1)1n n -+(n N *Î)个圆圈.2、333n 个(n N *Î).3、因为2(2)(1)4f f ==,所以(1)2f =,(3)(2)(1)8f f f ==,(4)(3)(1)16f f f ==………… 猜想()2n f n =.4、如图,设O 是四面体A BCD -内任意一点,连结AO ,BO ,CO ,DO 并延长交对面于A ¢,B ¢,C ¢,D ¢,则,则1O A O B O C O D A A B B C C D D ¢¢¢¢+++=¢¢¢¢ 用“体积法”证明:用“体积法”证明: O A O B O C O DA AB BC CD D¢¢¢¢+++¢¢¢¢ O B C D O C D AO D A B OA B C A B C D BC D A CD AB D A B CV VV V V VVV --------=+++1A B C D A B C DVV --==5、要证、要证(1tan )(1tan )2A B ++= 只需证只需证 1tan tan tan tan 2A B A B +++=即证即证t a n t a n 1t a n t a A B A B +=- 由54A B p +=,得tan()1A B +=. ①又因为2A B k p p +¹+,所以tan tan 11tan tan A BA B+=-,变形即得①式.所以,命题得证. 第二章 复习参考题B 组(P47)1、(1)25条线段,16部分;部分; (2)2n 条线段;条线段;(3)222n n ++部分. 2、因为90BSC Ð=°,所以BSC D 是直角三角形.A BCDA'B'D'C'(第4题)在Rt BSC D 中,有222BC SB SC =+.类似地,得类似地,得 222AC SA SC =+,222AB SB SA =+ 在ABC D 中,根据余弦定理得中,根据余弦定理得2222cos 02AB AC BC SA A AB AC AB AC+-==>××2222cos 02AB BC AC SB B AB BCAB BC+-==>×× 2222cos 02BC AC AB SC C BC ACBC AC +-==>×× 因此,,,A B C 均为锐角,从而ABC D 是锐角三角形. 3、要证、要证cos 44cos 43b a -= 因为因为 cos 44cos 4cos(22)4cos(22)b a b a -=´-´ 2212sin 24(12sin 2)b a =--´-222218s i n c o s 4(18s i n c o s )b b a a =--´-222218s i n (1s i n )4[18s i n (1s i n )]bb a a=---´-- 只需证只需证 222218sin (1sin )4[18sin (1sin )]3b b a a ---´--= 由已知条件,得由已知条件,得 sincos sin2q q a +=,2sin sin cos b q q =,代入上式的左端,得代入上式的左端,得 222218sin (1sin )4[18sin (1sin )]b b a a ---´-- 2238sin cos (1sin cos )32sin (1sin )q q q q a a =---+-2238sin cos 8sin cos 2(12sin cos )(32sin cos )q q q q q q q q =--+++-222238s i n c o s 8s i nc o s 68s i n c o s 8s i nc o sq q q q q q q q =--++-+ 3= 因此,cos 44cos 43b a -=。
2022-2021年《金版学案》数学·选修1-1(人教A版)习题:模块综合评价(一)
模块综合评价(一)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列命题中的假命题是()A.∀x∈R,2x-1>0 B.∀x∈N*,(x-1)2>0C.∃x∈R,lg x<1 D.∃x∈R,tan x=2解析:当x=1∈N*时,x-1=0,不满足(x-1)2>0,所以B为假命题.答案:B2.设点P(x,y),则“x=2且y=-1”是“点P在直线l:x+y-1=0上”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析:“x=2且y=-1”满足方程x+y-1=0,故“x=2且y=-1”可推得“点P在直线l:x+y-1=0上”;但方程x+y-1=0有很多多个解,故“点P在直线l:x+y-1=0上”不能推得“x=2且y=-1”,故“x=2且y=-1”是“点P在直线l:x+y-1=0上”的充分不必要条件.答案:A3.对∀k∈R,则方程x2+ky2=1所表示的曲线不行能是()A.两条直线B.圆C.椭圆或双曲线D.抛物线解析:分k=0,1及k>0且k≠1,或k<0可知:方程x2+ky2=1不行能为抛物线.答案:D4.曲线y=xx+2在点(-1,-1)处的切线方程为()A.y=2x+1 B.y=2x-1C.y=-2x-3 D.y=-2x-2解析:由y=xx+2,得y′=2(x+2)2,所以在点(-1,-1)处切线的斜率k=y′|x=-1=2.由点斜式得切线方程为y+1=2(x+1),即y=2x+1.答案:A5.抛物线y=14x2的焦点到准线的距离是()A.14 B.12C.2 D.4解析:方程化为标准方程为x2=4y.所以2p=4,p=2.所以焦点到准线的距离为2.答案:C6.下列结论中,正确的为()①“p且q”为真是“p或q”为真的充分不必要条件②“p且q”为假是“p或q”为真的充分不必要条件③“p或q”为真是“綈p”为假的必要不充分条件④“綈p”为真是“p且q”为假的必要不充分条件A.①②B.①③C.②④D.③④解析:p∧q为真⇒p真q真⇒p∨q为真,故①正确,由綈p为假⇒p为真⇒p∨q 为真,故③正确.答案:B7.函数f (x )=x 2+2xf ′(1),则f (-1)与f (1)的大小关系为( ) A .f (-1)=f (1) B .f (-1)<f (1) C .f (-1)>f (1) D .无法确定解析:f ′(x )=2x +2f ′(1), 令x =1,得f ′(1)=2+2f ′(1),所以 f ′(1)=-2.所以 f (x )=x 2+2x ·f ′(1)=x 2-4x .f (1)=-3,f (-1)=5. 所以 f (-1)>f (1). 答案:C8.过点P (0,3)的直线与双曲线x 24-y 23=1只有一个公共点,则这样的直线有( )A .1条B .2条C .3条D .4条解析:数形结合,直线与双曲线只有一个公共点,有两个可能:一是直线恰与双曲线相切,二是直线与双曲线的渐近线平行.依据图形的对称性共有4条.答案:D9.若函数f (x )=kx 3+3(k -1)x 2-k 2+1在区间(0,4)上是减函数,则k 的取值范围是( )A.⎝ ⎛⎭⎪⎫-∞,13 B.⎝⎛⎦⎥⎤0,13 C.⎣⎢⎡⎭⎪⎫0,13D.⎝⎛⎦⎥⎤-∞,13 解析:f ′(x )=3kx 2+6(k -1)x .由题意知3kx 2+6(k -1)x ≤0. 即kx +2k -2≤0在(0,4)上恒成立, 得k ≤2x +2,x ∈(0,4)又13<2x +2<1,所以 k ≤13. 答案:D10.以正方形ABCD 的相对顶点A ,C 为焦点的椭圆,恰好过正方形四边的中点,则该椭圆的离心率为( )A.10-23 B.5-13 C.5-12D.10-22解析:设正方形的边长为m ,则椭圆中的2c =2m ,2a = 12m +m 2+14m 2=1+52m ,故椭圆的离心率为ca =221+5=10-22.答案:D11.已知a 为常数,函数f (x )=x (ln x -ax )有两个极值点x 1,x 2(x 1<x 2),则( ) A .f (x 1)>0,f (x 2)>-12B .f (x 1)<0,f (x 2)<-12C .f (x 1)>0,f (x 2)<-12D .f (x 1)<0,f (x 2)>-12解析:函数f (x )=x (ln x -ax )有两个极值点x 1,x 2(x 1<x 2),则f ′(x )=ln x -2ax+1有两个零点,即方程ln x =2ax -1有两个极根,由数形结合易知0<a <12且0<x 1<1<x 2.由于在(x 1,x 2)上f (x )递增,所以f (x 1)<f (1)<f (x 2),即f (x 1)<-a <f (x 2), 所以f (x 1)<0,f (x 2)>-12.答案:D12.设e 1,e 2分别为具有公共焦点F 1与F 2的椭圆和双曲线的离心率,P 为两曲线的一个公共点,且满足PF 1→·PF 2→=0,则e 21+e 22(e 1e 2)2的值为( )A.12B .1C .2D .4 解析:设椭圆长半轴长为a 1,双曲线实半轴长为a 2, 则|PF 1|+|PF 2|=2a 1,||PF 1|-|PF 2||=2a 2.平方相加得|PF 1|2+|PF 2|2=2a 21+2a 22.又由于PF 1→·PF 2→=0, 所以 PF 1⊥PF 2,所以 |PF 1|2+|PF 2|2=|F 1F 2|2=4c 2, 所以a 21+a 22=2c 2,所以a 21c 2+a 22c 2=2, 即1e 21+1e 22=e 21+e 22e 21e 22=2. 答案:C二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.函数f (x )=x +1x的极大值是________,微小值是________.解析:f ′(x )=1-1x 2(x ≠0),由f ′(x )=0得x =±1,当x <-1时,f ′(x )>0,当-1<x <0时f ′(x )<0,则f (x )有极大值f (-1)=-2;又当0<x <1时f ′(x )<0,当x >1时f ′(x )<0,则f (x )有微小值f (1)=2.答案:-2 214.已知抛物线y 2=4x ,过点P (4,0)的直线l 与抛物线交于A (x 1,y 1),B (x 2,y 2)两点,当y 21+y 22=32时,直线l 的方程为________.解析:y 21+y 22=4(x 1+x 2)=32,所以 x 1+x 2=8,所以 线段AB 的中点的横坐标为4. 答案:x =415.抛物线y 2=2px (p >0)上的动点Q 到焦点的距离的最小值为1,则p =________.解析:依题意,设抛物线的焦点为F ,点Q 的横坐标是x 0(x 0≥0),则有|QF |=x 0+p 2的最小值是p2=1,则p =2.答案:216.下列命题中,正确命题的序号是________.①可导函数f (x )在x =1处取极值则f ′(1)=0;②若p 为:∃x 0∈R ,x 20+2x 0+2≤0,则綈p 为:∀x ∈R ,x 2+2x +2>0;③若椭圆x 216+y 225=1两焦点为F 1,F 2,弦AB 过F 1点,则△ABF 2的周长为16.解析:命题③中,椭圆焦点在y 轴上,a 2=25,故△ABF 2的周长为4a =20,故命题③错误.答案:①②三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)求适合下列条件的标准方程: (1)已知椭圆经过点P (-5,0),Q (0,3),求它的标准方程;(2)已知双曲线的离心率e =2,经过点M (-5,3),求它的标准方程. 解:(1)已知椭圆经过点P (-5,0),Q (0,3),可得焦点在x 轴,所以 a =5,b =3,则标准方程:x 225+y29=1;(2)由于离心率e =2,所以 a =b ,又经过点M (-5,3), 所以 ⎩⎪⎨⎪⎧25a 2-9b 2=1,a =b ,解得:a 2=b 2=16或⎩⎪⎨⎪⎧9a 2-25b 2=1,a =b ,无解. 所以 双曲线C 的标准方程为:x 216-y 216=1.18.(本小题满分12分)已知函数f (x )=13x 3+bx 2+cx +d 的图象过点(0,3),且在(-∞,-1)和(3,+∞)上为增函数,在(-1,3)上为减函数.(1)求f (x )的解析式; (2)求f (x )在R 上的极值.解:(1)由于f (x )的图象过点(0,3),所以 f (0)=d =3所以 f (x )=13x 3+bx 2+cx +3,所以 f ′(x )=x 2+2bx +c .又由已知得x =-1,x =3是f ′(x )=0的两个根.所以 ⎩⎨⎧-1+3=-2b ,-1×3=c ,所以 ⎩⎨⎧b =-1,c =-3.故f (x )=13x 3-x 2-3x +3.(2)由已知可得x =-1是f (x )的极大值点,x =3是f (x )的微小值点. 所以 f (x )极大值=f (-1)=143,f (x )微小值=f (3)=-6.19.(本小题满分12分)已知命题p :方程x 2t +1+y 23-t =1所表示的曲线为焦点在y 轴上的椭圆;命题q :实数t 满足不等式t 2-(a -1)t -a <0.(1)若命题p 为真,求实数t 的取值范围;(2)若命题p 是命题q 的充分不必要条件,求实数a 的取值范围. 解:(1)由于方程x 2t +1+y 23-t =1所表示的曲线为焦点在y 轴上的椭圆,所以 3-t >t +1>0,解得:-1<t <1. (2)由于命题p 是命题q 的充分不必要条件,所以 -1<t <1是不等式t 2-(a -1)t -a =(t +1)(t -a )<0解集的真子集. 法一:因方程t 2-(a -1)t -a =(t +1)(t -a )=0两根为-1,a .故只需a >1. 法二:令f (t )=t 2-(a -1)t -a ,因f (-1)=0,故只需f (1)<0,解得:a >1.20.(本小题满分12分)某分公司经销某种品牌的产品,每件产品的成本为3元,并且每件产品需向总公司交3元的管理费,估计当每件产品的售价为x (9≤x ≤11)元时,一年的销售量为(12-x )2万件.(1)求分公司一年的利润y (万元)与每件产品的售价的函数关系式;(2)当每件产品的售价为多少元时,分公司一年的利润y 最大,并求出y 的最大值.解:(1)分公司一年的利润y (万元)与售价x 的函数关系式为L =(x -3-3)(12-x )2=(x -6)(114+x 2-24x )=x 3-30x 2+288x -864,x ∈[9,11];(2)函数的导数为y ′=3x 2-60x +288= 3(x 2-20x +96)=3(x -12)(x -8), 当x ∈[9,11]时,y ′<0,L 单调递减, 于是当每件产品的售价x =9时,该分公司一年的利润最大,且最大利润y max =27万元.21.(本小题满分12分)已知函数f (x )=12ax 2-(2a +1)x +2ln x (a ∈R ).(1)若曲线y =f (x )在x =1和x =3处的切线相互平行,求a 的值; (2)求y =f (x )的单调区间. 解:f ′(x )=ax -(2a +1)+2x (x >0).(1)f ′(1)=f ′(3),解得a =23.(2)f ′(x )=(ax -1)(x -2)x (x >0).①当a ≤0时,x >0,ax -1<0,在区间(0,2)上,f ′(x )>0;在区间(2,+∞)上f ′(x )<0,故f (x )的单调递增区间是(0,2),单调递减区间是(2,+∞).②当0<a <12时,1a >2,在区间(0,2)和⎝ ⎛⎭⎪⎫1a ,+∞上,f ′(x )>0;在区间⎝ ⎛⎭⎪⎫2,1a 上,f ′(x )<0,故f (x )的单调递增区间是(0,2)和⎝⎛⎭⎪⎫1a ,+∞,单调递减区间是⎝⎛⎭⎪⎫2,1a .③当a =12时,f ′(x )=(x -2)22x,故f (x )的单调递增区间是(0,+∞).④当a >12时,0<1a <2,在区间⎝ ⎛⎭⎪⎫0,1a 和(2,+∞)上,f ′(x )>0;在区间⎝⎛⎭⎪⎫1a ,2上,f ′(x )<0,故f (x )的单调递增区间是⎝⎛⎭⎪⎫0,1a 和(2,+∞),单调递减区间是⎝⎛⎭⎪⎫1a ,2.22.(本小题满分12分)已知椭圆C 的对称中心为原点O ,焦点在x 轴上,左、右焦点分别为F 1和F 2,且|F 1F 2|=2,点⎝⎛⎭⎪⎫1,32在该椭圆上. (1)求椭圆C 的方程;(2)过F 1的直线l 与椭圆C 相交于A ,B 两点,若△AF 2B 的面积为 1227.求以F 2为圆心且与直线l 相切的圆的方程.解:(1)由题意知c =1,2a =32+⎝ ⎛⎭⎪⎫322+22=4,a =2,故椭圆C 的方程为x 24+y 23=1. (2)①当直线l ⊥x 轴时,可取A ⎝⎛⎭⎪⎫-1,-32,B ⎝ ⎛⎭⎪⎫-1,32,△AF 2B 的面积为3,不符合题意. ②当直线l 与x 轴不垂直时,设直线l 的方程为y =k (x +1),代入椭圆方程得: (3+4k 2)x 2+8k 2x +4k 2-12=0,明显Δ>0成立, 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8k 23+4k 2,x 1·x 2=4k 2-123+4k 2. 可得|AB |=12(k 2+1)3+4k 2, 又圆F 2的半径r =2|k |1+k2,所以 △AF 2B 的面积为12|AB |r =12|k |k 2+13+4k 2=1227, 化简得:17k 4+k 2-18=0,得k =±1, 所以 r =2,圆的方程为(x -1)2+y 2=2.。
【金版优课】高三数学人教A版选修2-1课时作业:1.2.2 充要条件 Word版含解析
第一章 1.2 课时作业1一、选择题1.“x (y -2)=0”是“x 2+(y -2)2=0”的( ) A .必要不充分条件 B .充分不必要条件 C .充要条件D .既不充分也不必要条件解析:若x (y -2)=0,则x =0或y =2,x 2+(y -2)2=0不一定成立,反之, 若x 2+(y -2)2=0,则x =0且y =2,一定有 x (y -2)=0,因此,“x (y -2)=0”是“x 2+(y -2)2=0”的必要而不充分条件,故选A. 答案:A2.“m =1”是“函数y =xm 2-4m +5为二次函数”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:当m =1时,y =x 1-4+5=x 2,是二次函数;反之,若y =xm 2-4m +5为二次函数,则m 2-4m +5=2,即m 2-4m +3=0,∴m =1或m =3,因此,“m =1”是“y =xm 2-4m +5为二次函数”的充分不必要条件,故选A.答案:A3.函数y =x 2+bx +c (x ∈[0,+∞))是单调函数的充要条件是( ) A .b ≥0 B .b ≤0 C .b >0D .b <0解析:由于函数y =x 2+bx +c 的图象是开口向上的抛物线,且对称轴方程为x =-b 2,要使该函数在[0,+∞)上单调,必须-b2≤0,即b ≥0,故选A.答案:A4.方程“ax2+2x-1=0至少有一个正实根”的充要条件是()A.-1≤a<0B.a>-1C.a≥-1D.-1≤a<0或a>0解析:a=0时,方程ax2+2x-1=0有一正根,排除A、D两项;a=-1时,方程化为x2-2x+1=0,即(x-1)2=0,x=1>0.答案:C二、填空题5.不等式x2-3x+2<0成立的充要条件是________.解析:x2-3x+2<0⇔(x-1)(x-2)<0⇔1<x<2.答案:1<x<26.设n∈N*,一元二次方程x2-4x+n=0有整数根的充要条件是n=__________.解析:由于方程都是正整数解,由判别式Δ=16-4n≥0得“1≤n≤4”,逐个分析,当n=1、2时,方程没有整数解;而当n=3时,方程有正整数解1、3;当n=4时,方程有正整数解2.答案:3或47.平面内的一个四边形为平行四边形的充要条件有多个,如两组对边分别平行,类似地,写出空间中的一个四棱柱为平行六面体的两个充要条件:充要条件①____________;充要条件②____________.(写出你认为正确的两个充要条件)解析:根据平行六面体的定义和性质可知,平行六面体的两组相对侧面分别平行,反之亦成立;平行六面体的一组相对侧面平行且全等,反之亦成立;平行六面体的底面是平行四边形,反之亦成立.从中任选两个即可.答案:底面是平行四边形两组相对侧面分别平行三、解答题8.求关于x的方程ax2+x+1=0至少有一个负实根的充要条件.解:(1)当a=0时,解得x=-1,满足条件;(2)当a≠0时,显然方程没有零根,若方程有两异号实根,则a<0;若方程有两个负的实根,则必须满足⎩⎨⎧1a>0-1a<0Δ=1-4a ≥0⇒0<a ≤14.综上,若方程至少有一个负的实根,则a ≤14.反之,若a ≤14,则方程至少有一个负的实根.因此,关于x 的方程ax 2+x +1=0至少有一个负实根的充要条件是a ≤14.9.[2014·江苏省南京师大附中月考]已知数列{a n }的前n 项和S n =p n +q (p ≠0且p ≠1),求证:数列{a n }为等比数列的充要条件为q =-1.证明:(充分性)当q =-1时,a 1=S 1=p -1;当n ≥2时,a n =S n -S n -1=p n -1(p -1),且n =1时也成立. 于是a n +1a n =p n (p -1)p n -1(p -1)=p (p ≠0且p ≠1),即{a n }为等比数列.(必要性)当n =1时,a 1=S 1=p +q ; 当n ≥2时,a n =S n -S n -1=p n -1(p -1).因为p ≠0且p ≠1,所以当n ≥2时,a n +1a n =p n (p -1)p n -1(p -1)=p ,又{a n }为等比数列,∴a 2a 1=p ,故p (p -1)p +q=p ,即p -1=p +q ,求得q =-1. 综上可知,q =-1是数列{a n }为等比数列的充要条件.。
高中人教a版数学选修1-1课时作业1.1命题及其关系 word版含答案
第一章第节命题及其关系本节教材分析(一)三维目标1、知识与技能:理解命题的概念和命题的构成,能判断给定陈述句是否为命题,能判断命题的真假;能把命题改写成“若,则”的形式;2、过程与方法:多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力;3、情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣。
()教学重点:命题的概念、命题的构成()教学难点:分清命题的条件、结论和判断命题的真假()教学建议:通过学生的参与,激发学生学习数学的兴趣。
(一)三维目标◆知识与技能:了解原命题、逆命题、否命题、逆否命题这四种命题的概念,掌握四种命题的形式和四种命题间的相互关系,会用等价命题判断四种命题的真假.◆过程与方法:多让学生举命题的例子,并写出四种命题,培养学生发现问题、提出问题、分析问题、有创造性地解决问题的能力;培养学生抽象概括能力和思维能力.◆情感、态度与价值观:通过学生的举例,激发学生学习数学的兴趣和积极性,培养他们的辨析能力以及培养他们的分析问题和解决问题的能力.()教学重点:()会写四种命题并会判断命题的真假;()四种命题之间的相互关系.()教学难点:()命题的否定与否命题的区别;()写出原命题的逆命题、否命题和逆否命题;()分析四种命题之间相互的关系并判断命题的真假.()教学建议:通过学生的举例,激发学生学习数学的兴趣和积极性,培养他们的辨析能力以及培养他们的分析问题和解决问题的能力新课导入设计学生探究过程:1.复习引入初中已学过命题与逆命题的知识,请同学回顾:什么叫做命题的逆命题?导入二一、创设情境在我们日常生活中,经常涉及到逻辑上的问题。
无论是进行思考、交流,还是从事各项工作,都需要用逻辑用语表达自己的思想,需要用逻辑关系进行判断和推理。
因此,正确使用逻辑用语和逻辑关系是现代社会公民应该具备的基本素质。
本章我们将从命题及其关系入手,学习四种命题的相互关系、充分条件和必要条件,学习逻辑用语,了解数理逻辑的有关知识,体会逻辑用语在表述或论证中的作用,使以后的论证和表述更加准确、清楚和简洁。
【金版学案】高中数学人教A版选修1-1练习:章末复习课2(含答案解析)
章末复习课[整合·网络构建][警示·易错提醒]1.关注圆锥曲线“定义”的三点应用(1)在求轨迹方程时,若所求轨迹符合某种圆锥曲线的定义,则根据圆锥曲线定义,写出所求的轨迹方程.(2)涉及椭圆、双曲线上的点与两个定点构成三角形问题时,常用定义结合解三角形的知识来解决.(3)在求有关抛物线的最值问题时,常利用定义把焦点的距离转化为到准线的距离,结合几何图形,利用几何意义去解决.2.研究圆锥曲线几何性质的两个注意点(1)应把不是标准方程的化为标准方程形式;(2)有字母的注意分类讨论.3.直线、圆锥曲线的位置关系易错点(1)直线与圆锥曲线交点问题(或弦长问题),不注意直线的斜率是否存在,以及Δ是否大于0;(2)中点弦问题使用“点差法”,不注意直线存在的条件.圆锥曲线的定义是相应标准方程和几何性质的“源”,对于圆锥曲线的有关问题,要有运用圆锥曲线定义解题的意识,“回归定义”是一种重要的解题策略.在高考试题中,有关圆锥曲线的问题很多都需要利用圆锥曲线的定义求解.在选择题、填空题中应用得更多一些.[例1] 一动圆与两圆:x 2+y 2=1和x 2+y 2-6x +5=0相外切.求动圆圆心的轨迹. 解:x 2+y 2=1是以原点为圆心,半径为1的圆;x 2+y 2-6x +5=0化为标准方程为(x -3)2+y 2=4,是圆心为A(3,0),半径为2的圆.设所求动圆圆心为P ,动圆半径为r ,如图,则⎭⎬⎫|PO|=r +1,|PA|=r +2⇒|PA|-|PO|=1<|AO|=3,符合双曲线的定义,结合图形可知,动圆圆心的轨迹为双曲线的一支.归纳升华当题设出现两定点,设为A 、B ,要通过平面几何知识,找出动点P 与它们的关系,即|PA|+|PB|为定值,还是||PA|+|PB||为定值,再根据圆锥曲线定义解决问题.[变式训练] F 1,F 2是椭圆x 2a 2+y 2b 2=1(a >b >0)的两焦点,P 是椭圆上任一点,从任一焦点引∠F 1PF 2的外角平分线的垂线,垂足为Q ,则点Q 的轨迹为( )A .圆B .椭圆C .双曲线D .抛物线解析:延长垂线F 1Q 交F 2P 的延长线于点A ,如图所示,则△APF 1是等腰三角形,所以 |PF 1|=|AP|,从而|AF 2|=|AP|+|PF 2|=|PF 1|+|PF 2|=2a.由题意知O 是F 1F 2的中点,Q 是AF 1的中点,连接OQ ,则|OQ|=12|AF 2|=a.所以 Q 点的轨迹是以原点O 为圆心,半径为a 的圆. 答案:A专题二 求圆锥曲线方程圆锥曲线的轨迹与方程是本章命题的重点,解决此类问题,一要准确理解圆锥曲线的定义,熟练掌握标准方程的特征;二要熟练掌握求曲线方程的常用方法——定义法与待定系数法.求曲线方程的一般步骤是“先定位,后定量”,“定位”是指确定焦点的位置及对称轴,“定量”是指确定参数的大小.[例2] 已知中点在原点,一焦点为F(0,52)的椭圆被直线l :y =3x -2截得的弦的中点的横坐标为12,求椭圆的标准方程.解:由题意可设所求椭圆方程为y 2a 2+x 2b 2=1(a >b >0),该椭圆与直线l 交于两点A(x 1,y 1),B(x 2,y 2). 由y 2a 2+x 2b 2=1及y =3x -2得 (a 2+9b 2)x 2-12b 2x +b 2(4-a 2)=0.① 则x 1+x 2=12b 2a 2+9b 2.由已知得x 1+x 22=12,即12b 2a 2+9b 2=1,所以a 2=3b 2.又因为a 2-b 2=c 2=50, 则a 2=75,b 2=25.此时,方程①根的判别式Δ>0, 方程①有两实根x 1,x 2,符合要求. 故所求椭圆的方程为x 225+y 275=1.归纳升华1.当焦点位置不确定时,要分情况讨论,也可以设为一般形式:椭圆方程为Ax 2+By 2=1(A >0,B >0,A ≠B);双曲线方程为Ax 2+By 2=1(AB <0);抛物线方程可设为y 2=2px(p≠0)或x 2=2py(p≠0).2.与已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)共渐近线的双曲线方程可设为x 2a 2-y 2b 2=λ(λ≠0);已知所求双曲线为等轴双曲线,其方程可设为x 2-y 2=λ(λ≠0).[变式训练] 已知双曲线与椭圆x 2+4y 2=64共焦点,它的一条渐近线方程x -3y =0,求双曲线的方程.解:法一:椭圆x 2+4y 2=64,即x 264+y 216=1,其焦点是(±43,0).设双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0),其渐近线方程是y =±ba x.又因为双曲线的一条渐近线方程为x -3y =0,所以 ab = 3.又由a 2+b 2=c 2=48,解得a 2=36,b 2=12.所以 所求双曲线方程为x 236-y 212=1.法二:由双曲线与椭圆共焦点,可设双曲线方程为x 264-λ-y 2λ-16=1(16<λ<64).因为双曲线的一条渐近线方程为x -3y =0, 即y =13x ,所以 λ-1664-λ=13,所以 λ=28.故所求双曲线方程为x 236-y 212=1.专题三 直线与圆锥曲线的关系近几年来直线与圆锥曲线的位置关系在高考中占据高考解答题压轴题的位置,且选择题、填空题也有涉及.有关直线与圆锥曲线的位置关系的题目可能会涉及线段中点、弦长等,分析这类问题时,往往利用数形结合的思想、设而不求的方法、对称的方法以及根与系数的关系等.[例3] 已知椭圆M :x 24+y 23=1,点F 1,C 分别是椭圆M 的左焦点、左顶点,过点F 1的直线l(不与x 轴重合)交M 于A ,B 两点.(1)求M 的离心率及短轴长;(2)是否存在直线l ,使得点B 在以线段AC 为直径的圆上,若存在,求出直线l 的方程;若不存在,说明理由.解:(1)由x 24+y 23=1得:a =2,b = 3.所以椭圆M 的短轴长为2 3.因为c =a 2-b 2=1,所以e =c a =12,即M 的离心率为12.(2)由题意知:C(-2,0),F 1(-1,0),设B(x 0,y 0)(-2<x 0<2),则x 204+y 203=1.因为BF 1→·BC →=(-1-x 0,-y 0)·(-2-x 0,-y 0)= 2+3x 0+x 20+y 20=14x 20+3x 0+5>0, 所以∠B ∈⎝⎛⎭⎫0,π2. 所以点B 不在以AC 为直径的圆上,即:不存在直线l ,使得点B 在以线段AC 为直径的圆上.归纳升华圆锥曲线的综合问题一般综合性较强,计算量较大,对能力要求较高,因此寻求简便、合理的运算途径显得尤为重要.数形结合是解答圆锥曲线综合问题的主要方法,根据题意画出图形,通过代数运算细化图形结构.[变式训练] 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,点(2,2)在C 上.(1)求C 的方程;(2)直线l 不经过原点O ,且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 中点为M ,证明:直线OM 的斜率与直线l 的斜率的乘积为定值.(1)解:由题意有a 2-b 2a =22,4a 2+2b 2=1,解得a 2=8,b 2=4,所以椭圆C 的方程为x 28+y 24=1.(2)证明:设直线l :y =kx +b(k≠0,b ≠0),A(x 1,y 1),B(x 2,y 2),M(x M ,y M ),把y =kx +b 代入x 28+y 24=1得(2k 2+1)x 2+4kbx +2b 2-8=0.故x M =x 1+x 22=-2kb 2k 2+1,y M =kx M +b =b2k 2+1,于是直线OM 的斜率k OM =y M x M =-12k, 所以k OM ·k =-12,所以直线OM 的斜率与直线l 的斜率的乘积为定值.专题四 分类讨论思想分类讨论思想是高中数学中解题的重要思想,解析几何中许多问题都涉及分类讨论,如轨迹方程中轨迹类型的确定、最值问题、参数问题等都可能遇到因为变量范围不同而结果不同的情形,因此要对变量分类讨论,才能确定.在圆锥曲线的问题中,有很多由公式、运算等引起的分类讨论.分类的原则是标准一致、不重不漏.[例4] 当m≤1时,讨论方程mx 2+(2-m)y 2=1表示的曲线形状.解:(1)当m <0时,方程表示焦点在y 轴上的双曲线y 212-m -x 2-1m =1;(2)当m =0时,方程表示两条平行于x 轴的直线y =±22;(3)当0<m <1时,方程表示焦点在x 轴上的椭圆x 21m +y 212-m=1;(4)当m =1时,方程表示圆x 2+y 2=1.归纳升华在解决圆锥曲线问题时,按照某一确定的标准在比较的基础上,将某一对象划分为若干既有联系又有区别的部分,然后分别解决,从而达到解决问题的目的.在圆锥曲线中,常见的分类讨论思想的应用主要表现在:(1)直线斜率存在或不存在引起的分类讨论;(2)曲线类型不确定引起的分类讨论;(3)已知条件不确定引起的分类讨论;(4)字母参数的不确定性引起的分类讨论等.解决此类问题的关键是:“化整为零,各个击破”,即将“整体问题”化为“部分问题”.[变式训练] 设F 1,F 2为椭圆x 29+y 24=1的两个焦点,P 是椭圆上的一点,已知P ,F 1,F 2是一个直角三角形的三个顶点,且|PF 1|>|PF 2|,求|PF 1||PF 2|的值. 解:由已知得|PF 1|+|PF 2|=6,|F 1F 2|=25, 根据直角的不同位置,分两种情况:(1)若P 是直角顶点,则|PF 1|2+|PF 2|2=|F 1F 2|2, 即|PF 1|2+(6-|PF 1|)2=20,化简得|PF 1|2-6|PF 1|+8=0,解得|PF 1|=4 或|PF 1|=2(舍).所以 |PF 2|=6-4=2,得|PF 1||PF 2|=2.(2)若F 2是直角顶点,则|PF 1|2-|PF 2|2=|F 1F 2|2,即|PF 1|2-(6-|PF 1|)2=20,解得|PF 1|=143. 所以 |PF 2|=6-143=43,得|PF 1||PF 2|=72.。
人教A版高中数学选修1-1课时提升作业二十二3.3.1函数的单调性与导数精讲优练课型Word版含答案
(x)<0.
2.(2019 ·南昌高二检测 ) 设 f(x),g(x) 分别是定义在 R 上的奇函数和偶函数 , 当 x<0 时,f ′
(x)g(x)+f(x)g ′ (x)>0, 且 g(-3)=0, 则不等式 f(x)g(x)<0 的解集
是( )
A.(-3,0) ∪(3,+ ∞ )
B.(-3,0) ∪ (0,3)
答案 :, 令 f ′ (x)=0, 得 x 1=1,x 2 =a-1. 因为 f(x) 在 (1,4) 内为减函数 , 所以当 x∈(1,4) 时 ,f ′ (x) ≤0; 因为 f(x) 在 (6,+ ∞ ) 内为增函数 , 所以当 x∈(6,+ ∞ ) 时 ,f ′ (x) ≥ 0. 所以 4≤ a-1 ≤ 6, 解得 5≤ a≤ 7. 所以实数 a 的取值范围为 . 方法二 :f ′(x)=x 2-ax+a-1. 因为 f(x) 在 (1,4) 内为减函数 , 所以当 x∈(1,4) 时 ,f ′ (x) ≤0; 因为 f(x) 在 (6,+ ∞ ) 内为增函数 , 所以当 x∈(6,+ ∞ ) 时 ,f ′ (x) ≥ 0.
.
2. 下列函数中 , 在 (0,+ ∞ ) 内为增函数的是 (
)
A.y=sinx
B.y=xe 2
3
C.y=x -x
D.y=lnx-x
【解析】选 B. 对于 A,y=sinx 在 (0,+ ∞) 内有增有减 ,
2
2
2
对于 B,y ′=(xe ) ′ =e >0, 故 y=xe 在 (0,+ ∞ ) 内是增函数 ;
所以当 x∈(- ∞ ,-3) 时 ,f(x)g(x)<0;
高中数学人教A版选修1-1教学案:第二章 2.1 椭 圆 Word版含答案
第1课时椭圆及其标准方程[核心必知]1.预习教材,问题导入根据以下提纲,预习教材P32~P36的内容,回答下列问题.(1)阅读教材P32“探究”的内容,思考下列问题:①移动笔尖,画出的轨迹是什么图形?提示:椭圆.②笔尖在移动的过程中,笔尖到两个定点F1和F2的距离之和是一个定值吗?提示:是.其距离之和始终等于线段的长度.(2)观察教材P33-图2.1-2.设M(x,y),F1(-c,0),F2(c,0),且|MF1|+|MF2|=2a(a>c),则M点的轨迹方程是什么?提示:.(3)观察教材P34“思考”.设M(x,y),F1(0,-c),F2(0,c),且|MF1|+|MF2|=2a(a>c),则M点的轨迹方程是什么?提示:.2.归纳总结,核心必记(1)椭圆的定义平面内与两个定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.(2)椭圆的标准方程焦点在x轴上焦点在y轴上标准方程图形焦点坐标(-c,0),(c,0)(0,-c),(0,c)a,b,ca2=b2+c2的关系[问题思考](1)定义中,将“大于|F1F2|”改为“等于|F1F2|”或“小于|F1F2|”的常数,其他条件不变,点的轨迹是什么?提示:当距离之和等于|F1F2|时,动点的轨迹就是线段F1F2;_当距离之和小于|F1F2|时,动点的轨迹不存在.(2)如图,你能从中找出表示a,b,c的线段吗?提示:a=|PF2|,b=|OP|,c=|OF2|.(3)确定椭圆的标准方程需要知道哪些量?提示:a,b的值及焦点的位置.[课前反思](1)椭圆的定义是:;(2)椭圆的标准方程是:;特点:;(3)在椭圆的标准方程中,a,b,c之间的关系是:.讲一讲1.已知椭圆x 2a 2+y 2b 2=1(a >b >0),F 1,F 2是它的焦点.过F 1的直线AB 与椭圆交于A 、B两点,求△ABF 2的周长.[尝试解答] ∵|AF 1|+|AF 2|=2a ,|BF 1|+|BF 2|=2a ,又∵△ABF 2的周长=|AB |+|BF 2|+|AF 2|=|AF 1|+|BF 1|+|AF 2|+|BF 2|=4a , ∴△ABF 2的周长为4a .由椭圆的定义可知,点的集合P ={M ||MF 1|+|MF 2|=2a }(其中|F 1F 2|=2c )表示的轨迹有三种情况:当a >c 时,集合P 为椭圆;当a =c 时,集合P 为线段F 1F 2;当a <c 时,集合P 为空集.在利用椭圆的定义判断有关点的轨迹问题时一定要注意所给常数与已知两定点之间距离的大小关系.因为椭圆上的点与两个焦点构成一个三角形,所以可联系三角形两边之和大于第三边来帮助记忆.练一练1.已知命题甲:动点P 到两定点A ,B 的距离之和|P A |+|PB |=2a ,其中a 为大于0的常数;命题乙:P 点轨迹是椭圆,则命题甲是命题乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选B 若点P 的轨迹是椭圆,则一定有|P A |+|PB |=2a (a >0,为常数). 所以甲是乙的必要条件.反过来,若|P A |+|PB |=2a (a >0,为常数),当2a >|AB |时,点P 的轨迹是椭圆;当2a =|AB |时,点P 的轨迹是线段AB ;当2a <|AB |时,点P 的轨迹不存在,所以甲不是乙的充分条件.综上可知,甲是乙的必要不充分条件.2.已知定点F 1,F 2,且|F 1F 2|=8,动点P 满足|PF 1|+|PF 2|=8,则动点P 的轨迹是( ) A .椭圆 B .圆 C .直线 D .线段解析:选D 因为|PF 1|+|PF 2|=|F 1F 2|,所以动点P 的轨迹是线段F 1F 2.讲一讲2.(1)已知椭圆的两个焦点坐标分别是(-2,0),(2,0),并且经过点⎝⎛⎭⎫52,-32,求它的标准方程;(2)若椭圆经过两点(2,0)和(0,1),求椭圆的标准方程.[尝试解答] (1)法一:∵椭圆的焦点在x 轴上,∴设它的标准方程为x 2a 2+y 2b 2=1(a >b >0).由椭圆的定义知 2a =⎝⎛⎭⎫52+22+⎝⎛⎭⎫-322+ ⎝⎛⎭⎫52-22+⎝⎛⎭⎫-322=210,∴a =10.又∵c =2,∴b 2=a 2-c 2=10-4=6. ∴所求椭圆的标准方程为x 210+y 26=1.法二:设标准方程为x 2a 2+y 2b 2=1(a >b >0).依题意得⎩⎪⎨⎪⎧254a 2+94b 2=1,a 2-b 2=4,解得⎩⎪⎨⎪⎧a 2=10,b 2=6.∴所求椭圆的标准方程为x 210+y 26=1.(2)法一:当椭圆的焦点在x 轴上时,设所求椭圆的方程为x 2a 2+y 2b 2=1(a >b >0).∵椭圆经过两点(2,0),(0,1),∴⎩⎨⎧4a 2+0b 2=1,0a 2+1b 2=1,则⎩⎪⎨⎪⎧a =2,b =1.∴所求椭圆的标准方程为x 24+y 2=1;当椭圆的焦点在y 轴上时,设所求椭圆的方程为y 2a 2+x 2b 2=1(a >b >0).∵椭圆经过两点(2,0),(0,1), ∴⎩⎨⎧0a 2+4b 2=1,1a 2+0b 2=1,则⎩⎪⎨⎪⎧a =1,b =2.与a >b 矛盾,故舍去.综上可知,所求椭圆的标准方程为x 24+y 2=1.法二:设椭圆方程为mx 2+ny 2=1(m >0,n >0,m ≠n ). ∵椭圆过(2,0)和(0,1)两点,∴⎩⎪⎨⎪⎧4m =1,n =1, ∴⎩⎪⎨⎪⎧m =14,n =1.综上可知,所求椭圆的标准方程为x 24+y 2=1.求椭圆的标准方程时,要“先定型,再定量”,即要先判断焦点位置,再用待定系数法设出适合题意的椭圆的标准方程,最后由条件确定待定系数即可.当所求椭圆的焦点位置不能确定时,应按焦点在x 轴上和焦点在y 轴上进行分类讨论,但要注意a >b >0这一条件.当已知椭圆经过两点,求椭圆的标准方程时,把椭圆的方程设成mx 2+ny 2=1(m >0,n >0,m ≠n )的形式有两个优点:①列出的方程组中分母不含字母;②不用讨论焦点所在的坐标轴,从而简化求解过程.练一练3.求适合下列条件的椭圆的标准方程:(1)两个焦点坐标分别是(-3,0),(3,0),椭圆经过点(5,0);(2)两个焦点坐标分别是(0,5),(0,-5),椭圆上一点P 到两焦点的距离之和为26. 解:(1)因为椭圆的焦点在x 轴上,所以设它的标准方程为x 2a 2+y 2b 2=1(a >b >0).因为2a =(5+3)2+02+(5-3)2+02=10,2c =6, 所以a =5,c =3,所以b 2=a 2-c 2=52-32=16.所以所求椭圆的标准方程为x 225+y 216=1.(2)因为椭圆的焦点在y 轴上,所以设它的标准方程为y 2a 2+x 2b 2=1(a >b >0).因为2a =26,2c =10, 所以a =13,c =5. 所以b 2=a 2-c 2=144.所以所求椭圆的标准方程为y 2169+x 2144=1.讲一讲3.已知圆M :(x +1)2+y 2=1,圆N :(x -1)2+y 2=9,动圆P 与圆M 外切并且与圆N内切,圆心P 的轨迹为曲线C .求C 的方程.[尝试解答] 由已知得圆M 的圆心为M (-1,0),半径r 1=1;圆N 的圆心为N (1,0),半径r 2=3.设圆P 的圆心为P (x ,y ),半径为R .动圆P 与圆M 外切并且与圆 N 内切,所以|PM |+|PN |=(R +r 1)+(r 2-R )=r 1+r 2=4.由椭圆定义可知,曲线C 是以M 、N 为左、右焦点,长半轴长为2,短半轴长为 3的椭圆(左顶点除外),其方程为x 24+y 23=1(x ≠-2).解决与椭圆有关的轨迹问题的两种方法(1)定义法:用定义法求椭圆方程的思路是:先观察、分析已知条件,看所求动点轨迹是否符合椭圆的定义.若符合椭圆的定义,则用待定系数法求解即可.(2)相关点法:有些问题中的动点轨迹是由另一动点按照某种规律运动而形成的,只要把所求动点的坐标“转移”到另一个动点在运动中所遵循的条件中去,即可解决问题,这种方法称为相关点法.练一练4.如图,圆C :(x +1)2+y 2=16及点A (1,0),Q 为圆上一点,AQ 的垂直平分线交CQ 于M ,求点M 的轨迹方程.解:由垂直平分线性质可知|MQ |=|MA |,∴|CM |+|MA |=|CM |+|MQ |=|CQ |. ∴|CM |+|MA |=4.又|AC |=2, ∴M 点的轨迹为椭圆.由椭圆的定义知,a =2,c =1,∴b 2=a 2-c 2=3. ∴所求轨迹方程为x 24+y 23=1.讲一讲4.如图所示,P 是椭圆x 24+y 23=1上的一点,F 1,F 2为椭圆的左、右焦点,且∠PF 1F 2=120°,求△PF 1F 2的面积.[思考点拨] 由余弦定理结合椭圆的定义求出|PF 1|,再代入三角形的面积公式求解. [尝试解答] 由已知a =2,b =3, 得c =a 2-b 2=4-3=1,|F 1F 2|=2c =2. 在△PF 1F 2中,由余弦定理,得|PF 2|2=|PF 1|2+|F 1F 2|2-2|PF 1||F 1F 2|·cos 120°, 即|PF 2|2=|PF 1|2+4+2|PF 1|, ① 由椭圆定义,得|PF 1|+|PF 2|=4, 即|PF 2|=4-|PF 1|. ② ②代入①解得|PF 1|=65.∴S △PF 1F 2=12|PF 1|·|F 1F 2|·sin 120°=12×65×2×32=335.即△PF 1F 2的面积是335.对于椭圆上一点P 与椭圆的两焦点F 1,F 2构成的△F 1PF 2,求其三角形的面积时注意整体思想的应用,如已知∠F 1PF 2,可利用S =12ab sin C 把|PF 1|·|PF 2|看成一个整体,运用公式|PF 1|2+|PF 2|2=(|PF 1|+|PF 2|)2-2|PF 1|·|PF 2|及余弦定理求出|PF 1|·|PF 2|,而无需单独求出|PF 1|和|PF 2|,这样可以减少运算量.练一练5.将本讲中“∠PF 1F 2=120°”改为“∠F 1PF 2=60°”,求△PF 1F 2的面积. 解:由已知a =2,b =3, 得c =a 2-b 2=4-3=1. ∴|F 1F 2|=2c =2,在△PF 1F 2中,|F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1||PF 2|·cos 60°,即4=(|PF 1|+|PF 2|)2-2|PF 1||PF 2|-2|PF 1|·|PF 2|cos 60°. ∴4=16-3|PF 1||PF 2|. ∴|PF 1||PF 2|=4.∴S △PF 1F 2=12|PF 1||PF 2|·sin 60°=12×4×32= 3.——————————————[课堂归纳·感悟提升]———————————————1.本节课的重点是椭圆的定义、标准方程的求法,以及与椭圆焦点有关的三角形问题. 2.对椭圆定义的理解易忽视“2a >2c ”这一条件,是本节课的易错点. 平面内到两定点F 1,F 2的距离之和为常数,即|MF 1|+|MF 2|=2a , 当2a >|F 1F 2|时,轨迹是椭圆;当2a =|F 1F 2|时,轨迹是一条线段F 1F 2; 当2a <|F 1F 2|时,轨迹不存在. 3.本节课要重点掌握的规律方法 (1)椭圆标准方程的求法,见讲2. (2)与椭圆有关的轨迹问题的求法,见讲3. (3)与椭圆焦点有关的三角形问题,见讲4.课时达标训练(六)[即时达标对点练]题组1 椭圆的标准方程1.已知方程 x 2k -4+y 210-k =1表示焦点在x 轴上的椭圆,则实数k 的取值范围是( )A .(4,10)B .(7,10)C .(4,7)D .(4,+∞)解析:选B 由题意知⎩⎪⎨⎪⎧k -4>0,10-k >0,k -4>10-k ,解得7<k <10.2.已知椭圆 x 2a 2+y 22=1的一个焦点为(2,0),则椭圆的方程是( )A.x 24+y 22=1B.x 23+y 22=1 C .x 2+y 22=1 D.x 26+y 22=1 解析:选D 由题意知,椭圆焦点在x 轴上,且c =2, ∴a 2=2+4=6,因此椭圆方程为x 26+y 22=1,故选D.3.椭圆9x 2+16y 2=144的焦点坐标为________. 解析:椭圆的标准方程为x 216+y 29=1,∴a 2=16,b 2=9,c 2=7,且焦点在x 轴上, ∴焦点坐标为(-7,0),(7,0). 答案:(-7,0),(7,0)4.已知椭圆的中心在原点,一个焦点为(0,-23)且a =2b ,则椭圆的标准方程为________.解析:∵c =23,a 2=4b 2,∴a 2-b 2=3b 2=c 2=12, b 2=4,a 2=16.又∵焦点在y 轴上,∴标准方程为y 216+x 24=1.答案:y 216+x 24=1题组2 与椭圆有关的轨迹问题5.已知圆x 2+y 2=1,从这个圆上任意一点P 向y 轴作垂线,垂足为P ′,则PP ′的中点M 的轨迹方程是( )A .4x 2+y 2=1B .x 2+y 214=1 C.x 24+y 2=1 D .x 2+y 24=1解析:选A 设点M 的坐标为(x ,y ),点P 的坐标为(x 0,y 0),则x =x 02,y =y 0.∵P (x 0,y 0)在圆x 2+y 2=1上,∴x 20+y 20=1. ① 将x 0=2x ,y 0=y 代入方程①,得4x 2+y 2=1.6.已知B ,C 是两个定点,|BC |=8,且△ABC 的周长等于18,求这个三角形的顶点A 的轨迹方程.解:以过B ,C 两点的直线为x 轴,线段BC 的垂直平分线为y 轴,建立直角坐标系xOy ,如图所示.由|BC |=8,可知点B (-4,0),C (4,0).由|AB |+|AC |+|BC |=18,|BC |=8,得|AB |+|AC |=10.因此,点A 的轨迹是以B ,C 为焦点的椭圆,这个椭圆上的点与两焦点的距离之和2a =10,c =4.但点A 不在x 轴上.由a =5,c =4,得b 2=a 2-c 2=25-16=9.所以点A 的轨迹方程为x 225+y 29=1(y ≠0).题组3 椭圆的定义及焦点三角形问题7.椭圆的两焦点为F 1(-4,0)、F 2(4,0),点P 在椭圆上,若△PF 1F 2的面积最大为12,则椭圆方程为________.解析:如图,当P 在y 轴上时△PF 1F 2面积最大,∴12×8b =12,∴b =3, 又∵c =4,∴a 2=b 2+c 2=25. ∴椭圆的标准方程为x 225+y 29=1.答案:x 225+y 29=18.在平面直角坐标系xOy 中,已知△ABC 的顶点A (-4,0)和C (4,0),顶点B 在椭圆x 225+y 29=1上.则sin A +sin C sin B=________. 解析:由椭圆方程x 225+y 29=1知,a =5,b =3,∴c =4,即点A (-4,0)和C (4,0)是椭圆的焦点.又点B 在椭圆上,∴|BA |+|BC |=2a =10,且|AC |=8.于是,在△ABC 中,由正弦定理,得sin A +sin C sin B =|BC |+|BA ||AC |=54.答案:549.已知椭圆的焦点在x 轴上,且焦距为4,P 为椭圆上一点,且|F 1F 2|是|PF 1|和|PF 2|的等差中项.(1)求椭圆的方程;(2)若△PF 1F 2的面积为23,求点P 坐标. 解:(1)由题意知,2c =4,c =2, |PF 1|+|PF 2|=2|F 1F 2|=8, 即2a =8,∴a =4. ∴b 2=a 2-c 2=16-4=12. ∵椭圆的焦点在x 轴上,∴椭圆的方程为x 216+y 212=1.(2)设点P 坐标为(x 0,y 0), 依题意知,12|F 1F 2||y 0|=23,∴|y 0|=3,y 0=±3.代入椭圆方程x 2016+y 2012=1,得x 0=±23,∴点P 坐标为(23,3)或(23,-3)或(-23,3)或(-23,-3).[能力提升综合练]1.设定点F 1(0,-3),F 2(0,3),动点P 满足条件|PF 1|+|PF 2|=a +9a (a >0),则点P 的轨迹是( )A .椭圆B .线段C .不存在D .椭圆或线段 解析:选D ∵a +9a≥2a ·9a=6, 当且仅当a =9a ,即a =3时取等号,∴当a =3时,|PF 1|+|PF 2|=6=|F 1F 2|, 点P 的轨迹是线段F 1F 2;当a >0,且a ≠3时,|PF 1|+|PF 2|>6=|F 1F 2|,点P 的轨迹是椭圆.2.椭圆x 24+y 2=1的两个焦点为F 1,F 2,过F 1作x 轴的垂线与椭圆相交,一个交点为P ,则△PF 1F 2的面积等于( )A.32B. 3C.72D .4 解析:选A 如图所示,由定义可知,|PF 1|+|PF 2|=2a =4,c =a 2-b 2=3,又由PF 1⊥F 1F 2,可设点P 的坐标为(-3,y 0),代入x 24+y 2=1,得|y 0|=12,即|PF 1|=12,所以S △PF 1F 2=12|PF 1|·|F 1F 2|=32.3.已知P 为椭圆C 上一点,F 1,F 2为椭圆的焦点,且|F 1F 2|=23,若|PF 1|与|PF 2|的等差中项为|F 1F 2|,则椭圆C 的标准方程为( )A.x 212+y 29=1 B.x 212+y 29=1或 x 29+y 212=1 C.x 29+y 212=1 D.x 248+y 245=1或 x 245+y 248=1 解析:选B 由已知2c =|F 1F 2|=23,∴c = 3. ∵2a =|PF 1|+|PF 2|=2|F 1F 2|=43, ∴a =2 3.∴b 2=a 2-c 2=9.故椭圆C 的标准方程是x 212+y 29=1或x 29+y 212=1.4.设F 1,F 2是椭圆C :x 28+y 24=1的焦点,在曲线C 上满足的点P 的个数为( )A .0B .2C .3D .4 解析:选B ∵,∴PF 1⊥PF 2.∴点P 为以线段F 1F 2为直径的圆与椭圆的交点,且此圆的半径为c =8-4=2. ∵b =2,∴点P 为该椭圆y 轴的两个端点.5.F 1,F 2分别为椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,点P 在椭圆上,△POF 2是面积为 3的正三角形,则b 2的值是________.解析:∵|OF 2|=c ,∴由已知得3c 24=3,∴c 2=4,c =2.设点P 的坐标为(x 0,y 0),由△POF 2为正三角形, ∴|x 0|=1,|y 0|=3,代入椭圆方程得1a 2+3b 2=1.∵a 2=b 2+4,∴b 2+3(b 2+4)=b 2(b 2+4), 即b 4=12,∴b 2=2 3. 答案:2 36.椭圆x 225+y 29=1上的一点M 到左焦点F 1的距离为2,N 是MF 1的中点,则|ON |等于________.解析:如图,设椭圆的右焦点为F 2,则由|MF 1|+|MF 2|=10,知|MF 2|=10-2=8.又因为点O 为F 1F 2的中点,点N 为MF 1的中点, 所以|ON |=12|MF 2|=4.答案:47.已知椭圆的中心在原点,两焦点F 1,F 2在x 轴上,且过点A (-4,3).若F 1A ⊥F 2A ,求椭圆的标准方程.解:设所求椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0).设焦点F 1(-c ,0),F 2(c ,0)(c >0). ∵F 1A ⊥F 2A ,∴(-4+c )·(-4-c )+32=0, ∴c 2=25,即c =5. 即F 1(-5,0),F 2(5,0). 则2a =|AF 1|+|AF 2|=(-4+5)2+32+(-4-5)2+32 =10+90=410. ∴a =210,∴b 2=a 2-c 2=(210)2-52=15. 故所求椭圆的标准方程为x 240+y 215=1.8.已知P 是椭圆x 24+y 2=1上的一点,F 1,F 2是椭圆的两个焦点.(1)当∠F 1PF 2=60°时,求△F 1PF 2的面积; (2)当∠F 1PF 2为钝角时,求点P 横坐标的取值范围.解:(1)由椭圆的定义,得|PF 1|+|PF 2|=4且F 1(-3,0),F 2(3,0).①在△F 1PF 2中,由余弦定理,得|F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|cos 60°.②由①②得|PF 1|·|PF 2|=43.所以S △PF 1F 2=12|PF 1||PF 2|·sin ∠F 1PF 2=33.(2)设点P (x ,y ),由已知∠F 1PF 2为钝角, 得即(-3-x ,-y )·(3-x ,-y )<0.又y 2=1-x 24, 所以34x 2<2,解得-263<x <263.所以点P 横坐标的范围是⎝⎛⎭⎫-263,263.第2课时 椭圆的简单几何性质[核心必知]1.预习教材,问题导入根据以下提纲,预习教材P 37~P 40“探究”的内容,回答下列问题. 观察教材P 38-图2.1-7,思考以下问题:(1)椭圆x 2a 2+y 2b 2=1(a >b >0)中x ,y 的取值范围各是什么?提示:-a ≤x ≤a ,-b ≤y ≤b .(2)椭圆x 2a 2+y 2b 2=1(a >b >0)的对称轴和对称中心各是什么?提示:对称轴为x 轴和y 轴,对称中心为坐标原点(0,0). (3)椭圆x 2a 2+y 2b2=1(a >b >0)与坐标轴的交点坐标是什么?提示:与x 轴的交点坐标为(±a ,0),与y 轴的交点坐标为(0,±b ). (4)椭圆的长轴和短轴分别对应图中的哪些线段? 提示:长轴为A 1A 2,短轴为B 1B 2.(5)椭圆的离心率是什么?用什么符号表示?其取值范围是什么? 提示:离心率e =ca;0<e <1.(6)如果保持椭圆的长半轴长a 不变,改变椭圆的短半轴长b 的值,你发现b 的变化与椭圆的扁圆程度有什么关系?提示:b越大,椭圆越圆;b越小,椭圆越扁.(7)根据离心率的定义及椭圆中a,b,c的关系可知,e=ca=c2a2=a2-b2a2=1-⎝⎛⎭⎫ba2,所以e越接近于1,则c越接近于a,从而b=a2-c2就越小;e越接近于0,则c越接近于0,从而b越接近于a.那么e的大小与椭圆的扁圆程度有什么关系?提示:e越大,椭圆越扁;e越小,椭圆越圆.2.归纳总结,核心必记椭圆的简单几何性质焦点的位置焦点在x轴上焦点在y轴上图形标准方程续表焦点的位置焦点在x轴上焦点在y轴上范围-a≤x≤a且-b≤y≤b -b≤x≤b且-a≤y≤a顶点A1(-a,0),A2(a,0),B1(0,-b),B2(0,b)A1(0,-a),A2(0,a),B1(-b,0),B2(b,0)轴长短轴长=2b,长轴长=2a焦点F1(-c,0),F2(c,0)F1(0,-c),F2(0,c) 焦距|F1F2|=2c对称性对称轴x轴和y轴,对称中心(0,0)离心率e=ca(0<e<1)[问题思考](1)借助椭圆图形分析,你认为椭圆上到对称中心距离最近和最远的点各是哪些?提示:短轴端点B1和B2到中心O的距离最近;长轴端点A1和A2到中心O的距离最远.(2)借助椭圆图形分析,你认为椭圆上的点到焦点距离的最大值和最小值各是何值? 提示:点(a ,0),(-a ,0)与焦点F 1(-c ,0)的距离分别是椭圆上的点与焦点F 1的最大距离和最小距离,分别为a +c 和a -c .(3)如何用a ,b 表示离心率? 提示:由e =c a 得e 2=c 2a 2=a 2-b 2a 2,∴e = 1-⎝⎛⎭⎫b a 2. ∴e =1-b 2a2. [课前反思](1)椭圆的几何性质: ;(2)椭圆的离心率与椭圆的扁圆程度的关系是: .讲一讲1.求椭圆4x 2+9y 2=36的长轴长和焦距、焦点坐标、顶点坐标和离心率. [尝试解答] 将椭圆方程变形为x 29+y 24=1,∴a =3,b =2.∴c =a 2-b 2=9-4= 5. ∴椭圆的长轴长和焦距分别为2a =6,2c =25, 焦点坐标为F 1(-5,0),F 2(5,0),顶点坐标为A 1(-3,0),A 2(3,0),B 1(0,-2),B 2(0,2),离心率e =c a =53.解决此类问题的方法是将所给方程先化为标准形式,然后根据方程判断出椭圆的焦点在哪个坐标轴上,再利用a ,b ,c 之间的关系和定义,求椭圆的基本量.练一练1.求椭圆m 2x 2+4m 2y 2=1(m >0)的长轴长、短轴长、焦点坐标、顶点坐标和离心率. 解:椭圆的方程m 2x 2+4m 2y 2=1(m >0),可转化为x 21m 2+y 214m 2=1.∵m 2<4m 2, ∴1m 2>14m 2, ∴椭圆的焦点在x 轴上,并且长半轴长a =1m ,短半轴长b =12m ,半焦距长c =32m .∴椭圆的长轴长2a =2m ,短轴长2b =1m ,焦点坐标为⎝⎛⎭⎫-32m ,0,⎝⎛⎭⎫32m ,0,顶点坐标为⎝⎛⎭⎫1m ,0,⎝⎛⎭⎫-1m ,0,⎝⎛⎭⎫0,-12m ,⎝⎛⎭⎫0,12m . 离心率e =c a =32m 1m=32.讲一讲2.求适合下列条件的椭圆的标准方程. (1)长轴长是短轴长的5倍,且过点A (5,0); (2)离心率e =35,焦距为12.[尝试解答] (1)若椭圆焦点在x 轴上,设其标准方程为x 2a 2+y 2b 2=1(a >b >0),由题意得⎩⎪⎨⎪⎧2a =5×2b ,25a 2+0b 2=1,解得⎩⎪⎨⎪⎧a =5,b =1.故所求椭圆的标准方程为x 225+y 2=1;若焦点在y 轴上,设其标准方程为y 2a 2+x 2b 2=1(a >b >0),由题意,得⎩⎪⎨⎪⎧2a =5×2b ,0a 2+25b 2=1,解得⎩⎪⎨⎪⎧a =25,b =5.故所求椭圆的标准方程为y 2625+x 225=1.综上所述,所求椭圆的标准方程为x 225+y 2=1或y 2625+x 225=1.(2)由e =c a =35,2c =12,得a =10,c =6,∴b 2=a 2-c 2=64.当焦点在x 轴上时,所求椭圆的标准方程为x 2100+y 264=1;当焦点在y 轴上时,所求椭圆的标准方程为y 2100+x 264=1.综上所述,所求椭圆的标准方程为x 2100+y 264=1或y 2100+x 264=1.(1)根据椭圆的几何性质求标准方程,通常采用待定系数法,其步骤仍然是“先定型,后计算”,即首先确定焦点位置,其次根据已知条件构造关于参数的关系式,利用方程(组)求得参数.(2)在求椭圆方程时,要注意根据题目条件判断焦点所在的坐标轴,从而确定方程的形式,若不能确定焦点所在的坐标轴,则应进行讨论.一般地,已知椭圆的焦点坐标时,可以确定其所在的坐标轴;而已知椭圆的离心率、长轴长、短轴长、焦距时,则不能确定焦点的位置,这时应对两种情况分别求解并进行取舍.练一练2.求满足下列条件的椭圆的标准方程. (1)长轴长是短轴长的2倍,且经过点A (2,3);(2)短轴一个端点与两焦点组成一个正三角形,且焦点到同侧顶点的距离为 3. 解:(1)若椭圆的焦点在x 轴上, 设标准方程为x 24b 2+y 2b2=1(b >0),∵椭圆过点A (2,3),∴1b 2+9b 2=1,b 2=10.∴方程为x 240+y 210=1.若椭圆的焦点在y 轴上. 设椭圆方程为y 24b 2+x 2b2=1(b >0),∵椭圆过点A (2,3),∴94b 2+4b 2=1,b 2=254.∴方程为y 225+4x 225=1.综上所述,椭圆的标准方程为x 240+y 210=1或y 225+4x 225=1.(2)由已知⎩⎨⎧a =2c ,a -c =3,∴⎩⎨⎧a =23,c = 3.从而b 2=9,∴所求椭圆的标准方程为x 212+y 29=1或x 29+y 212=1.讲一讲3.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F 1(-c ,0),A (-a ,0),B (0,b )是两个顶点,如果F 1到直线AB 的距离为b7,求椭圆的离心率e . [尝试解答] 由A (-a ,0),B (0,b ), 得直线AB 的斜率为k AB =ba,故AB 所在的直线方程为y -b =ba x ,即bx -ay +ab =0.又F 1(-c ,0),由点到直线的距离公式可得 d =|-bc +ab |a 2+b 2=b 7,∴7·(a -c )=a 2+b 2.又b 2=a 2-c 2,整理,得8c 2-14ac +5a 2=0, 即8⎝⎛⎭⎫c a 2-14c a +5=0.∴8e 2-14e +5=0. 解得e =12或e =54(舍去).综上可知,椭圆的离心率e =12.求椭圆离心率及范围的两种方法(1)直接法:若已知a ,c ,可直接利用e =ca 求解.若已知a ,b 或b ,c ,可借助于a 2=b 2+c 2求出c 或a ,再代入公式e =ca求解.(2)方程法:若a ,c 的值不可求,则可根据条件建立a ,b ,c 的关系式,借助于a 2=b 2+c 2,转化为关于a ,c 的齐次方程或不等式,再将方程或不等式两边同除以a 的最高次幂,得到关于e 的方程或不等式,即可求得e 的值或范围.练一练3.如图,已知F 1为椭圆的左焦点,A ,B 分别为椭圆的右顶点和上顶点,P 为椭圆上的一点,当PF 1⊥F 1A ,PO ∥AB (O 为椭圆的中心)时,求椭圆的离心率.解:由已知可设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),则由题意可知P ⎝⎛⎭⎫-c ,b 2a .∵△PF 1O ∽△BOA , ∴PF 1BO =F 1OOA. ∴b 2a b =ca ,即b =c , ∴a 2=2c 2, ∴e =c a =22.——————————————[课堂归纳·感悟提升]———————————————1.本节课的重点是椭圆的几何性质及椭圆离心率的求法,难点是求椭圆的离心率. 2.由椭圆的几何性质求标准方程时易忽视椭圆的焦点位置,这也是本节课的易错点. 3.本节课要重点掌握的规律方法(1)已知椭圆的方程讨论性质时,若不是标准形式,应先化成标准形式,见讲1. (2)根据椭圆的几何性质,可以求椭圆的标准方程,其基本思路是“先定型,再定量”,常用的方法是待定系数法,见讲2.(3)求椭圆的离心率要注意函数与方程的思想、数形结合思想的应用,见讲3.课时达标训练(七)[即时达标对点练]题组1 由椭圆的标准方程研究几何性质1.椭圆25x 2+9y 2=225的长轴长、短轴长、离心率依次是 ( ) A .5、3、0.8 B .10、6、0.8 C .5、3、0.6 D .10、6、0.6解析:选B 把椭圆的方程写成标准方程为x 29+y 225=1,知a =5,b =3,c =4.∴2a =10,2b =6,ca=0.8.2.椭圆以两条坐标轴为对称轴,一个顶点是(0,13),另一个顶点是(-10,0),则焦点坐标为( )A .(±13,0)B .(0,±10)C .(0,±13)D .(0,±69)解析:选D 由题意知,其焦点在y 轴上,且a =13,b =10,则c =a 2-b 2=69. 3.已知椭圆x 2a 2+y 2b 2=1与椭圆x 225+y 216=1有相同的长轴,椭圆x 2a 2+y 2b 2=1的短轴长与椭圆y 221+x 29=1的短轴长相等,则( ) A .a 2=25,b 2=16 B .a 2=9,b 2=25C .a 2=25,b 2=9或a 2=9,b 2=25D .a 2=25,b 2=9解析:选D 因为椭圆x 225+y 216=1的长轴长为10,焦点在x 轴上,椭圆y 221+x 29=1的短轴长为6,所以a 2=25,b 2=9.题组2 由椭圆的几何性质求标准方程4.中心在原点,焦点在x 轴上,若长轴长为18,且两个焦点恰好将长轴3等分,则此椭圆的方程是( )A.x 281+y 272=1B.x 281+y 29=1 C.x 281+y 245=1 D.x 281+y 236=1 解析:选A 因为2a =18,2c =13×2a =6,所以a =9,c =3,b 2=81-9=72.5.已知椭圆x 210-m +y 2m -2=1,长轴在y 轴上.若焦距为4,则m 等于( )A .4B .5C .7D .8解析:选D 由题意得m -2>10-m 且10-m >0,于是6<m <10,再由(m -2)-(10-m )=22,得m =8.6.已知椭圆G 的中心在坐标原点,长轴在x 轴上,离心率为32,两个焦点分别为F 1和F 2,椭圆G 上一点到F 1和F 2的距离之和为12.则椭圆G 的方程为_______________________.解析:依题意可设椭圆G 的方程为x 2a 2+y 2b2=1,a >b >0,半焦距为c ,∵椭圆G 的离心为率为32, ∴c a =32⇒c =32a . ∵椭圆G 上一点到F 1和F 2的距离之和为12, ∴2a =12⇒a =6.∴c =33,b =a 2-c 2=3, ∴椭圆G 的方程为x 236+y 29=1.答案:x 236+y 29=1题组3 椭圆的离心率7.椭圆x 2+4y 2=4的离心率为( ) A.32 B.34 C.22 D.23解析:选A 化为标准方程为x 24+y 2=1,a 2=4,b 2=1,c 2=3,∴e =c a =32.8.椭圆的短半轴长为3,焦点到长轴的一个端点的距离等于9,则椭圆的离心率为( ) A.513 B.35 C.45 D.1213解析:选C 由题意,得⎩⎪⎨⎪⎧b =3,a -c =9,或⎩⎪⎨⎪⎧b =3,a +c =9. 当a -c =9时,由b 2=9得a 2-c 2=9=(a -c )(a +c ), a +c =1,则a =5,c =-4(不合题意).当a +c =9时,解得⎩⎪⎨⎪⎧a =5,c =4,故e =45.9.A 为y 轴上一点,F 1,F 2是椭圆的两个焦点,△AF 1F 2为正三角形,且AF 1的中点B 恰好在椭圆上,求此椭圆的离心率.解:如图,连接BF 2.∵△AF 1F 2为正三角形, 且B 为线段AF 1的中点, ∴F 2B ⊥AF 1.又∵∠BF 2F 1=30°,|F 1F 2|=2c ,∴|BF 1|=c ,|BF 2|=3c , 根据椭圆定义得|BF 1|+|BF 2|=2a , 即c +3c =2a , ∴ca=3-1. ∴椭圆的离心率e 为3-1.[能力提升综合练]1.椭圆x 2+my 2=1的焦点在y 轴上,长轴长是短轴长的两倍,则m 的值是( ) A.14 B.12 C .2 D .4 解析:选A 由题意可得21m =2×2,解得m =14. 2.过椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点F 1作x 轴的垂线交椭圆于点P ,F 2为右焦点,若∠F 1PF 2=60°,则椭圆的离心率为( )A.52B.33 C.12 D.13解析:选B 记|F 1F 2|=2c ,则由题设条件,知|PF 1|=2c 3,|PF 2|=4c3,则椭圆的离心率e =2c 2a =|F 1F 2||PF 1|+|PF 2|=2c 2c 3+4c 3=33. 3.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF ⊥x轴,直线AB 交y 轴于点P .若,则椭圆的离心率是( )A.32 B.22 C.13 D.12解析:选D又∵PO ∥BF ,∴|P A ||AB |=|AO ||AF |=23,即a a +c =23,∴e =c a =12.4.与椭圆9x 2+4y 2=36有相同焦点,且短轴长为45的椭圆方程是________. 解析:椭圆9x 2+4y 2=36可化为x 24+y 29=1,因此可设待求椭圆为x 2m +y 2m +5=1.又b =25,故m =20,得x 220+y 225=1.答案:x 220+y 225=15.已知椭圆的中心在原点,焦点在x 轴上,离心率为55,且过P (-5,4),则椭圆的方程为________.解析:∵e =c a =55,∴c 2a 2=a 2-b 2a 2=15, ∴5a 2-5b 2=a 2即4a 2=5b 2.设椭圆的标准方程为x 2a 2+5y 24a 2=1(a >0),∵椭圆过点P (-5,4),∴25a 2+5×164a 2=1.解得a 2=45.∴椭圆方程为x 245+y 236=1. 答案:x 245+y 236=16.已知F 1,F 2是椭圆的两个焦点,满足的点M 总在椭圆内部,则椭圆离心率的取值范围是________.解析:设椭圆方程为x 2a 2+y 2b 2=1(a >b >0).因为,所以MF 1⊥MF 2,所以点M 的轨迹是以O 为圆心,c 为半径的圆. 因为点M 总在椭圆内部,所以c <b , 所以c 2<b 2=a 2-c 2,所以2c 2<a 2,所以e 2<12,所以0<e <22.答案:⎝⎛⎭⎫0,22 7.中心在原点,焦点在坐标轴上的椭圆上有M ⎝⎛⎭⎫1,432,N ⎝⎛⎭⎫-322,2两点,求椭圆的标准方程.解:当焦点在x 轴上时,设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0).将点M ⎝⎛⎭⎫1,432,N ⎝⎛⎭⎫-322,2代入上式,得⎩⎪⎨⎪⎧12a 2+⎝⎛⎭⎫4322b2=1,⎝⎛⎭⎫-3222a 2+(2)2b 2=1,解得⎩⎪⎨⎪⎧a 2=9,b 2=4.此时椭圆的标准方程为x 29+y 24=1.当焦点在y 轴上时,设椭圆的标准方程为y 2a 2+x 2b 2=1(a >b >0).将点M ⎝⎛⎭⎫1,432,N ⎝⎛⎭⎫-322,2代入上式得 ⎩⎪⎨⎪⎧⎝⎛⎭⎫4322a 2+12b2=1,(2)2a 2+⎝⎛⎭⎫-3222b 2=1,解得⎩⎪⎨⎪⎧a 2=4,b 2=9.因为a >b >0,所以舍去, 所以椭圆的标准方程为x 29+y 24=1.8.已知椭圆x 2+(m +3)y 2=m (m >0)的离心率e =32,求m 的值及椭圆的长轴和短轴的长、焦点坐标、顶点坐标.解:椭圆方程可化为x 2m +y 2mm +3=1,由m >0,易知m >m m +3,∴a 2=m ,b 2=mm +3.∴c =a 2-b 2= m (m +2)m +3.由e =32,得 m +2m +3=32,解得m =1, ∴椭圆的标准方程为x 2+y 214=1. ∴a =1,b =12,c =32.∴椭圆的长轴长为2,短轴长为1, 两焦点坐标分别为F 1⎝⎛⎭⎫-32,0,F 2⎝⎛⎭⎫32,0, 顶点坐标分别为A 1(-1,0),A 2(1,0),B 1⎝⎛⎭⎫0,-12,B 2⎝⎛⎭⎫0,12. 第3课时 直线与椭圆的位置关系(习题课)[思考1] 判断直线与圆的位置关系有哪几种方法?名师指津:(1)几何法:利用圆心到直线的距离d 与圆的半径的大小关系判断,d =r ⇔相切;d >r ⇔相离;d <r ⇔相交.(2)代数法:联立直线与圆的方程,利用方程组解的个数判断.[思考2] 能否利用判断直线与圆的位置关系的方法判断直线与椭圆的位置关系? 名师指津:不能采用几何法,但是可以利用代数法判断直线与椭圆的位置关系. [思考3] 已知直线l 和椭圆C 的方程,如何判断直线与椭圆的位置关系?名师指津:判断直线与椭圆的位置关系,通过解直线方程与椭圆方程组成的方程组,消去方程组中的一个变量,得到关于另一个变量的一元二次方程,则Δ>0⇔直线与椭圆相交; Δ=0⇔直线与椭圆相切; Δ<0⇔直线与椭圆相离.讲一讲1.已知椭圆4x 2+y 2=1及直线y =x +m .问m 为何值时,直线与椭圆相切、相交、相离. [尝试解答] 将y =x +m 代入4x 2+y 2=1,消去y 整理得5x 2+2mx +m 2-1=0.Δ=4m 2-20(m 2-1)=20-16m 2.当Δ=0时,得m =±52,直线与椭圆相切;当Δ>0时,得-52<m <52,直线与椭圆相交; 当Δ<0时,得m <-52或m >52,直线与椭圆相离.判断直线与椭圆的位置关系的方法练一练1.若直线y =kx +1与焦点在x 轴上的椭圆 x 25+y 2m =1总有公共点,求m 的取值范围.解:由⎩⎪⎨⎪⎧y =kx +1,x 25+y 2m =1,消去y ,整理得(m +5k 2)x 2+10kx +5(1-m )=0,所以Δ=100k 2-20(m +5k 2)(1-m )=20m (5k 2+m -1), 因为直线与椭圆总有公共点, 所以Δ≥0对任意k ∈R 都成立, 因为m >0,所以5k 2≥1-m 恒成立, 所以1-m ≤0, 即m ≥1.又因为椭圆的焦点在x 轴上, 所以0<m <5, 综上,1≤m <5,即m 的取值范围是[1,5).[思考1] 若直线l 与圆C 相交于点A ,B ,如何求弦长|AB |? 名师指津:(1)利用r 2=d 2+⎝⎛⎭⎫l 22求解;(2)利用两点间的距离公式求解;(3)利用弦长公式|AB |=1+k 2|x 1-x 2|求解.[思考2] 若直线l :y =kx +m 与椭圆x 2a 2+y 2b 2=1相交于A (x 1,y 1),B (x 2,y 2)两点,如何求|AB |的值?名师指津:|AB |=1+k 2|x 1-x 2|. 讲一讲2.已知椭圆x 236+y 29=1和点P (4,2),直线l 经过点P 且与椭圆交于A 、B 两点.(1)当直线l 的斜率为12时,求线段AB 的长度;(2)当P 点恰好为线段AB 的中点时,求l 的方程.[尝试解答] (1)由已知可得直线l 的方程为y -2=12(x -4),即y =12x .由⎩⎨⎧y =12x ,x 236+y29=1,可得x 2-18=0,若设A (x 1,y 1),B (x 2,y 2). 则x 1+x 2=0,x 1x 2=-18.于是|AB |=(x 1-x 2)2+(y 1-y 2)2 =(x 1-x 2)2+14(x 1-x 2)2=52(x 1+x 2)2-4x 1x 2 =52×62=310. 所以线段AB 的长度为310.(2)法一:设l 的斜率为k ,则其方程为y -2=k (x -4). 联立⎩⎪⎨⎪⎧x 236+y 29=1,y -2=k (x -4),消去y 得(1+4k 2)x 2-(32k 2-16k )x +(64k 2-64k -20)=0. 若设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=32k 2-16k 1+4k 2,由于AB 的中点恰好为P (4,2), 所以x 1+x 22=16k 2-8k 1+4k 2=4,解得k =-12,且满足Δ>0.这时直线的方程为y -2=-12(x -4),即y =-12x +4.法二:设A (x 1,y 1),B (x 2,y 2),则有⎩⎨⎧x 2136+y 219=1,x 2236+y 229=1,两式相减得x 22-x 2136+y 22-y 219=0,整理得k AB =y 2-y 1x 2-x 1=-9(x 2+x 1)36(y 2+y 1), 由于P (4,2)是AB 的中点, ∴x 1+x 2=8,y 1+y 2=4, 于是k AB =-9×836×4=-12,于是直线AB 的方程为y -2=-12(x -4),即y =-12x +4.(1)弦长公式设直线方程为y =kx +m (k ≠0),椭圆方程为x 2a 2+y 2b 2=1(a >b >0)或y 2a 2+x 2b 2=1(a >b >0),直线与椭圆的两个交点为A (x 1,y 1),B (x 2,y 2),则|AB |=(x 1-x 2)2+(y 1-y 2)2, 所以|AB |=(x 1-x 2)2+(kx 1-kx 2)2 =1+k 2·(x 1-x 2)2=1+k 2·(x 1+x 2)2-4x 1x 2, 或|AB |=⎝⎛⎭⎫1ky 1-1k y 22+(y 1-y 2)2=1+1k 2·(y 1-y 2)2 =1+1k2·(y 1+y 2)2-4y 1y 2. 其中,x 1+x 2,x 1x 2或y 1+y 2,y 1y 2的值,可通过由直线方程与椭圆方程联立消去y 或x 后得到关于x 或y 的一元二次方程得到.(2)解决椭圆中点弦问题的两种方法①根与系数的关系法:联立直线方程和椭圆方程构成方程组,消去一个未知数,利用一元二次方程根与系数的关系以及中点坐标公式解决.②点差法:利用交点在曲线上,坐标满足方程,将交点坐标分别代入椭圆方程,然后作差,构造出中点坐标和斜率的关系,具体如下:已知A (x 1,y 1),B (x 2,y 2)是椭圆x 2a 2+y 2b 2=1(a >b >0)上的两个不同的点,M (x 0,y 0)是线段AB 的中点,则⎩⎨⎧x 21a 2+y 21b2=1,①x 22a 2+y22b 2=1,②由①-②,得1a 2(x 21-x 22)+1b 2(y 21-y 22)=0,变形得y 1-y 2x 1-x 2=-b 2a 2·x 1+x 2y 1+y 2=-b 2a 2·x 0y 0,即k AB=-b 2x 0a 2y 0.练一练2.直线y =x +1被椭圆x 24+y 22=1所截得线段的中点的坐标是( )A.⎝⎛⎭⎫23,53B.⎝⎛⎭⎫43,73C.⎝⎛⎭⎫-23,13D.⎝⎛⎭⎫-132,-172 解析:选C 联立方程组⎩⎪⎨⎪⎧y =x +1,x 24+y 22=1,消去y 得3x 2+4x -2=0.设交点A (x 1,y 1),B (x 2,y 2),中点M (x 0,y 0), ∴x 1+x 2=-43,x 0=x 1+x 22=-23,y 0=x 0+1=13.∴所求中点的坐标为⎝⎛⎭⎫-23,13. 3.椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为32,且椭圆与直线x +2y +8=0相交于P ,Q ,且|PQ |=10,求椭圆方程.解:∵e =32,∴b 2=14a 2.∴椭圆方程为x 2+4y 2=a 2. 与x +2y +8=0联立消去y ,得2x 2+16x +64-a 2=0,由Δ>0得a 2>32,由弦长公式得10=54×[64-2(64-a 2)].∴a 2=36,b 2=9.∴椭圆方程为x 236+y 29=1.讲一讲。
人教A版高中数学选修1-1课时提升作业二1.1.2四种命题精讲优练课型Word版含答案
温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
人教A版高中数学选修1-1课时提升作业二 1.1.2 四种命题精讲优练课型Word版含答案课时提升作业二四种命题一、选择题(每小题4分,共12分)1. 命题“若A∩B=A,则A?B”的逆否命题是( )A.若A∪B≠A,则A?BB.若A∩B≠A,则A?BC.若A?B,则A∩B≠AD.若A?B,则A∩B≠A【解析】选 C.命题:“若A∩B=A,则A?B”的逆否命题是:若A?B,则A∩B≠A.故C正确.2. (2019·泉州高二检测)已知命题p:垂直于平面α内无数条直线的直线l垂直于平面α,q 是p的否命题,下面结论正确的是( )A.p真,q真B.p假,q假C.p真,q假D.p假,q真【解析】选 D.当平面α内的直线相互平行时,l不一定垂直于平面α.故p为假命题.易知p的否命题q:若直线l不垂直于平面α内无数条直线,则l不垂直于平面α.易知q为真命题.3.(2019·宝鸡高二检测)有下列四个命题:①“若x+y=0,则x,y互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若q≤1,则x2+2x+q=0有实根”的逆否命题;④“不等边三角形的三个内角相等”的逆命题;其中真命题为( )A.①②B.②③C.①③D.③④【解析】选 C.①逆命题为“若x,y互为相反数,则x+y=0”是真命题;②的否命题为“不全等的三角形面积不等”为假命题;③当q≤1时,Δ=4-4q≥0,方程有实根,为真命题,故逆否命题为真命题;④逆命题为“若三角形三内角相等,则三角形是不等边三角形”为假命题.【补偿训练】下列有关命题的说法正确的是( )A.“若x>1,则2x>1”的否命题为真命题B.“若cosβ=1,则sinβ=0”的逆命题是真命题C.“若平面向量a,b共线,则a,b方向相同”的逆否命题为假命题D.命题“若x>1,则x>a”的逆命题为真命题,则a>0【解析】选 C.A中,2x≤1时,x≤0,从而否命题“若x≤1,则2x≤1”为假命题,故A不正确;B 中,sinβ=0时,cosβ=±1,则逆命题为假命题,故B不正确;D中,由已知条件得a的取值范围为[1,+∞),故D不正确.二、填空题(每小题4分,共8分)e A,则a∈A”的逆命题是,它是4.“已知a∈U(U为全集),若a?U(填“真”或“假”)命题.【解析】“已知a∈U(U为全集)”是大前提,条件是“a?U e A”,结论是“a∈A”,所以原命题e A”.它为真命题.的逆命题为“已知a∈U(U为全集),若a∈A,则a?Ue A 真答案:已知a∈U(U为全集),若a∈A,则a?U【误区警示】改写逆命题时,易漏大前提5.命题p:“若=b,则a,b,c成等比数列”,则命题p的否命题是(填“真”或“假”)命题.【解析】命题p的否命题是“若≠b,则a,b,c不成等比数列”,是假命题,如a=c=1,b=-1满足≠b,但a,b,c成等比数列.答案:假三、解答题6.(10分)(教材P6练习1改编)写出命题“末位数字是偶数的整数能被2整除”的逆命题、否命题、逆否命题,并判断真假.【解析】因为原命题是:“若一个整数的末位数字是偶数,则它能被2整除”.所以逆命题:若一个整数能被2整除,则它的末位数字是偶数,真命题.否命题:若一个整数的末位数字不是偶数,则它不能被2整除,真命题.逆否命题:若一个整数不能被2整除,则它的末位数字不是偶数,真命题.【补偿训练】已知命题p:“若ac≥0,则二次方程ax2+bx+c=0没有实根”.(1)写出命题p的否命题.(2)判断命题p的否命题的真假,并证明你的结论.【解题指南】(1)根据命题“若p,则q”的否命题是“若p,则q”即可写出命题p的否命题.(2)根据二次方程有实根的条件,即可判断命题的真假.【解析】(1)命题p的否命题为:“若ac<0,则二次方程ax2+bx+c=0有实根”.(2)命题p的否命题是真命题.证明:因为ac<0?-ac>0?Δ=b2-4ac>0?二次方程ax2+bx+c=0有实根,所以该命题是真命题.一、选择题(每小题5分,共10分)1.命题“若x≠3且x≠2,则x2-5x+6≠0”的否命题是( )A.若x=3且x=2,则x2-5x+6=0B.若x≠3且x≠2,则x2-5x+6=0C.若x=3或x=2,则x2-5x+6=0D.若x=3或x=2,则x2-5x+6≠0【解题指南】“若x≠3且x≠2”是同时不成立的意思,否定时要改成不同时不成立,即至少一个成立.【解析】选C.命题的否命题需将条件和结论分别否定,x≠3且x≠2的否定是x=3或x=2,因此该命题的否命题为“若x=3或x=2,则x2-5x+6=0”.【补偿训练】命题“若a>b,则a-1>b-1”的否命题是( )A.若a>b,则a-1≤b-1B.若a≥b,则a-1<b-1C.若a≤b,则a-1≤b-1D.若a<b,a-1<b-1【解析】选 C.命题的否命题是将条件和结论分别否定,对a>b的否定为a≤b,对a-1>b-1的否定为a-1≤b-1,所以命题的否命题为“若a≤b,则a-1≤b-1”.2.(2019·郴州高二检测)“若x2-3x+2=0,则x=2”为原命题,则它的逆命题、否命题与逆否命题中真命题的个数是( )A.1B.2C.3D.0【解析】选 B.逆命题是“若x=2,则x2-3x+2=0”,为真命题;否命题是“若x2-3x+2≠0,则x ≠2”为真命题;逆否命题是“若x≠2,则x2-3x+2≠0”,因为x=1时,x2-3x+2=0,所以为假命题;所以真命题的个数为 2.二、填空题(每小题5分,共10分)3.“若a>b,则2a>2b”的逆否命题为.【解析】原命题:“若p,则q”的逆否命题为:“若q,则p”.所以“若a>b,则2a>2b”的逆否命题为“若2a≤2b,则a≤b”.答案:若2a≤2b,则a≤b4.命题“若实数a满足a≤3,则a2<9”的否命题是(填“真”或“假”)命题.【解析】命题“若实数a满足a≤3,则a2<9”的否命题是“若实数a满足a>3,则a2≥9”,命题是真命题.答案:真三、解答题5.(10分)(2019·合肥高二检测)设M是一个命题,它的结论是q:x1,x2是方程x2+2x-3=0的两个根,M的逆否命题的结论是p:x1+x2≠-2或x1x2≠-3.(1)写出M.(2)写出M的逆命题、否命题、逆否命题.【解题指南】把逆否命题的结论否定即可得到原命题的条件.【解析】(1)设命题M表述为:若p,则q,那么由题意知其中的结论q为:x1,x2是方程x2+2x-3=0的两个根.而条件p的否定形式p为:x1+x2≠-2或x1x2≠-3,故p的否定形式即p为:x1+x2=-2且x1x2=-3.所以命题M为:若x1+x2=-2且x1x2=-3,则x1,x2是方程x2+2x-3=0的两个根.(2)M的逆命题为:若x1,x2是方程x2+2x-3=0的两个根,则x1+x2=-2且x1x2=-3.逆否命题为:若x1,x2不是方程x2+2x-3=0的两个根,则x1+x2≠-2或x1x2≠-3.否命题为:若x1+x2≠-2或x1x2≠-3,则x1,x2不是方程x2+2x-3=0的两个根.关闭Word文档返回原板块。
【金版优课】高中数学人教A版选修1-1课时作业:1.1.3四种命题的相互关系(含答案解析)
课时作业 3一、选择题1.命题“若 ?p,则 q”是真命题,则以下命题必定是真命题的是()A.若 p,则 ?q C.若 ?q,则 p B .若 q,则 ?p D.若 ?q,则 ?p分析:命题“若?p,则 q”的逆否命题为“若?q,则p”.答案: C2.有以下四个命题:① “若 x2+y2=0,则 xy=0”的否命题;② “若 x>y,则 x2>y2”的逆否命题;③ “若 x≤3,则 x2-x- 6>0”的否命题;④ “对顶角相等”的抗命题此中真命题的个数是()A. 0B. 1C. 2D. 3分析:(1)该命题的否命题与其抗命题有同样的真假性,其抗命题为“若 xy=0,假则 x2+ y2= 0”,为假命题.该命题与其逆否命题拥有同样的真假性.而该命题为假命题(如 x= 0,(2)假y=- 1),故其逆否命题为假命题.(3)假该命题的否命题为“若x>3,则x2-x-6≤0”,很明显为假命题.(4)假该命题的抗命题是“相等的角是对顶角”,明显是假命题.答案: A3.以下说法中正确的选项是()A.一个命题的抗命题为真,则它的逆否命题必定为真B.“a>b”与“a+ c>b+ c”不等价C.“a2+ b2= 0,则 a, b 全为 0”的逆否命题是“若 a, b 全不为 0,则 a2+ b2≠0” D.一个命题的否命题为真,则它的抗命题必定为真分析:利用四种命题真假性关系可知 D 正确.答案: D4. [2014 ·南教课质量检测济]以下相关命题的说法正确的选项是()A.命题“若 xy= 0,则 x= 0”的否命题为:“若 xy= 0,则 x≠ 0”B.若“ x+ y= 0,则 x, y 互为相反数”的抗命题为真命题C.命题“随意的 x∈ R,都有 2x2-1<0 建立”为真命题D.命题“若 cosx= cosy,则 x=y”的逆否命题为真命题分析: A 不正确,命题“若xy=0,则x=0”的否命题为:“若xy≠0,则x≠0”;B 正确,命题“若 x+ y=0,则 x, y 互为相反数”的抗命题为“若 x, y 互为相反数,则x + y= 0”,明显建立;C 不正确,当x= 1 时, 2x2- 1<0 不建立;D 不正确,由于命题“若cosx=cosy,则x=y”是假命题,因此其逆否命题也是假命题.答案: B二、填空题5.在原命题“若 A∪B≠B,则 A∩B≠A”与它的抗命题、否命题、逆否命题中,真命题的个数为________.分析:原命题为真命题,其抗命题为“若A∩B≠A 则A∪B≠B”,否命题为“若 A∪ B=B 则 A∩B= A”,逆否命题为“若 A∩B= A 则 A∪B= B”,全为真命题.答案: 46.以下命题中:①若一个四边形的四条边不相等,则它不是正方形;②若一个四边形对角互补,则它内接于圆;③正方形的四条边相等;④圆内接四边形对角互补;⑤对角不互补的四边形不内接于圆;⑥若一个四边形的四条边相等,则它是正方形.此中互为抗命题的有__________ ;互为否命题的有__________ ;互为逆否命题的有__________ .分析:命题③可改写为“若一个四边形是正方形,则它的四条边相等”;命题④可改写为“若一个四边形是圆内接四边形,则它的对角互补”;命题⑤可改写为“若一个四边形的对角不互补,则它不内接于圆”,再依照四种命题间的关系,便不难判断.答案:③和⑥,②和④①和⑥,②和⑤①和③,④和⑤7.在空间中,①若四点不共面,则这四点中的任何三点都不共线;②若两条直线没有公共点,则这两条直线是异面直线.以上两个命题中,抗命题为真命题的是__________( 把切合要求的命题序号都填上).分析:①中的抗命题是若四点中任何三点都不共线,则这四点不共面.我们用正方体ABCD -A 1B 1C 1D 1 做模型来察看:上底面 A 1B 1C 1D 1 中任何三点都不共线,但 A 1、 B 1、 C 1、 D 1 四点共面,因此①的抗命题不真;②中的抗命题是:若两条直线是异面直线,则这两条直线没有公共点. 由异面直线的定义知, 成异面直线的两条直线不会有公共点,因此②的逆命题是真命题.答案:②三、解答题8.命题: 已知 a 、b 为实数, 若对于 x 的不等式 x 2+ax + b ≤0 有非空解集, 则 a 2- 4b ≥0,写出该命题的抗命题、否命题、逆否命题,并判断这些命题的真假.解:抗命题:已知a 、b 为实数,若 a 2- 4b ≥0,则对于 x 的不等式 x 2 +ax + b ≤0有非空解集.22否命题:已知 a 、b 为实数,若对于 x 的不等式 x + ax +b ≤0没有非空解集, 则 a -4b<0.22逆否命题:已知 a 、 b 为实数,若 a - 4b<0,则对于 x 的不等式 x + ax + b ≤0没有非空解集.原命题、抗命题、否命题、逆否命题均为真命题.9. [2013 ·阳模拟咸 ]给出命题 “已知 a ,x 为实数,若对于 x 的不等式 x 2+ (2a - 1)x + a 2- 2≤0的解集不是空集,则 a ≤3”,判断其逆否命题的真假.解:先判断原命题的真假:由于 a , x 为实数,且对于x 的不等式 x 2+ (2a - 1)x + a 2- 2≤0的解集不是空集,则22≥0,解得 9 = (2a - 1) - 4(a - 2) a ≤4.9当 a ≤ 建即刻, a ≤3恒建立,因此原命题为真命题.4又由于原命题与其逆否命题等价,因此逆否命题是真命题.。
高中数学选修1_1全册习题(答案详解)
目录:数学选修1-1第一章常用逻辑用语 [基础训练A组]第一章常用逻辑用语 [综合训练B组]第一章常用逻辑用语 [提高训练C组]第二章圆锥曲线 [基础训练A组]第二章圆锥曲线 [综合训练B组]第二章圆锥曲线 [提高训练C组]第三章导数及其应用 [基础训练A组]第三章导数及其应用 [综合训练B组]第三章导数及其应用 [提高训练C组](数学选修1-1)第一章 常用逻辑用语[基础训练A 组]一、选择题1.下列语句中是命题的是( )A .周期函数的和是周期函数吗?B .0sin 451=C .2210x x +->D .梯形是不是平面图形呢?2.在命题“若抛物线2y ax bx c =++的开口向下,则{}2|0x ax bx c φ++<≠”的逆命题、否命题、逆否命题中结论成立的是( )A .都真B .都假C .否命题真D .逆否命题真3.有下述说法:①0a b >>是22a b >的充要条件. ②0a b >>是ba 11<的充要条件. ③0ab >>是33a b >的充要条件.则其中正确的说法有( )A .0个B .1个C .2个D .3个 4.下列说法中正确的是( )A .一个命题的逆命题为真,则它的逆否命题一定为真B .“a b >”与“ a c b c +>+”不等价C .“220a b +=,则,a b 全为0”的逆否命题是“若,a b 全不为0, 则220a b +≠”D .一个命题的否命题为真,则它的逆命题一定为真5.若:,1A a R a ∈<, :B x 的二次方程2(1)20x a x a +++-=的一个根大于零,另一根小于零,则A 是B 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.已知条件:12p x +>,条件2:56q x x ->,则p ⌝是q ⌝的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件二、填空题1.命题:“若a b ⋅不为零,则,a b 都不为零”的逆否命题是 。
高中数学人教A版选修1-2课时作业2.1.3 演绎推理 Word版含解析
课时作业一、选择题.已知在△中,∠=°,∠=°,求证:<.证明:∴<.画框格部分是演绎推理的( ).小前提.大前提.三段论.结论解析:本题应用了三段论.大前提是大角对大边,小前提是∠<∠.故选.答案:.下面几种推理是演绎推理的是( ). 全等三角形的对应角相等,如果△≌△′′′,则=′. 某校高三()班有人,()班有人,()班有人,由此得高三各班的人数均超过人. 由平面内三角形的性质,推测空间中四面体的性质. 在数列{}中,=,=(-+)(≥),由此猜想出{}的通项公式解析:项是归纳推理,项是类比推理,项是归纳推理.答案:.指数函数都是增函数,大前提函数=()是指数函数,小前提所以函数=()是增函数.结论上述推理错误的原因是( ). 大前提不正确. 小前提不正确. 推理形式不正确. 大、小前提都不正确解析:大前提错误.因为指数函数=(>且≠).在>时是增函数,而在<<时为减函数.故选.答案:.在上定义运算⊗:⊗=(-),若不等式(-)⊗(+)<对任意实数都成立,则( ). <<. -<<. -<<. -<<解析:(-)⊗(+)<对任意恒成立⇔(-)[-(+)]<对任意恒成立⇔--++>对任意恒成立⇔Δ=-(-++)<⇔-<<.答案:二、填空题.已知推理:“因为△的三边长依次为,所以△是直角三角形”.若将其恢复成完整的三段论,则大前提是.解析:大前提:一条边的平方等于其他两条边的平方和的三角形是直角三角形;小前提:△的三边长依次为满足+=;结论:△是直角三角形.答案:一条边的平方等于其他两条边的平方和的三角形是直角三角形.若不等式++<的解集为空集,则实数的取值范围为.解析:①=时,有<,显然此不等式解集为∅.②≠时须有(\\(>,,Δ≤,))⇒(\\(>,-≤,))⇒(\\(>,≤≤.))∴<≤.综上可知实数的取值范围是[].答案:[].有些导演留大胡子,因此,有些留大胡子的人是大嗓门,为使上述推理成立,请补充大前提.解析:利用“三段论”推理.大前提:所有导演是大嗓门,小前提:有些导演留大胡子,结论:有些留大胡子的人是大嗓门.答案:所有导演是大嗓门三、解答题.如下图所示,在梯形中,==,和是对角线.求证:平分∠.证明:等腰三角形两底角相等(大前提),△是等腰三角形,,是两腰(小前提),∴∠=∠(结论).两条平行线被第三条直线所截得的内错角相等(大前提),∠和∠是平行线,被截出的内错角(小前提),∴∠=∠(结论).。
高中数学人教A版选修1-1课时作业第2章习题课2 Word版含解析
习题课()一、选择题.动点到点()及点()的距离之差为,则点的轨迹是( ).双曲线.双曲线的一支.两条射线.一条射线解析:由已知-==,所以点的轨迹是一条以为端点的射线.答案:.方程=所表示的曲线是( ).双曲线.椭圆.双曲线的一部分.椭圆的一部分解析:依题意:≥,方程可化为:-=,所以方程表示双曲线的一部分.故选.答案:.[·安徽省合肥一中月考]若双曲线+=的离心率是,则实数的值是( ). -.. . -解析:本题主要考查双曲线的简单性质.双曲线+=可化为+=,故离心率==,解得=-,故选.答案:.[·广东实验中学期末考试]已知双曲线-=(>,>),两渐近线的夹角为°,则双曲线的离心率为( ). .. . 或解析:本题考查双曲线的简单几何性质的应用.根据题意,由于双曲线-=(>,>),两渐近线的夹角为°,则可知=或=,那么可知双曲线的离心率为=,所以结果为或,故选.答案:.已知双曲线的焦点、实轴端点恰好分别是椭圆+=的长轴端点、焦点,则双曲线的渐近线方程为( ).±=.±=.±=.±=解析:由已知得,双曲线焦点在轴上,且=,=,∴双曲线方程为-=.∴渐近线方程为=±=±.答案:.若双曲线实轴的长度、虚轴的长度和焦距成等差数列,则该双曲线的离心率是().解析:由已知得=+,∴=+.∴=+.平方得(-)=++即--=.∴=.答案:二、填空题.[·陕西高考]双曲线-=的离心率为.解析:本题主要考查双曲线的离心率的求法.由已知得=,=,∴=+=,∴==,=.答案:.[·北师大附中月考]已知直线=+与双曲线-=的右支相交于不同两点,则的取值范围是.解析:本题主要考查直线与双曲线的位置关系和根与系数的关系的应用.由(\\(=+-=))得(-)--=①,直线=+与双曲线-=的右支相交于不同两点,即方程①有两个不同的正实数解,所以(\\(-≠,Δ=+(-(>,(-)>,-(-)>)),解得-<<-.答案:(-,-).对于曲线:+=,给出下面四个命题:①曲线不可能表示椭圆;②当<<时,曲线表示椭圆;③若曲线表示双曲线,则<或>;④若曲线表示焦点在轴上的椭圆,则<<.其中命题正确的序号为.解析:由(\\(->,->,-≠-,))解得<<或<<,此时方程表示椭圆,且<<时表示焦点在轴上的椭圆,所以①②错,④正确;由(-)(-)<得<或>,此时方程表示双曲线,故③正确.所以应填③④.答案:③④三、解答题.求适合下列条件的双曲线标准方程.()虚轴长为,离心率为;()顶点间距离为,渐近线方程为=±;()求与双曲线-=有公共渐近线,且过点(,-)的双曲线方程.。
【金版学案】2019年高中数学选修1-1(人教A版)课件:第
(4)过抛物线焦点且垂直于对称轴的直线与抛物线相 交于两点 A,B,则|AB|与抛物线标准方程的一次项系数 相等.( )
解析:(1)抛物线的类型一共有 4 种,经过第一象限 的抛物线有 2 种, 故满足条件的抛物线有 2 条, 故此种说 法错误.(2)一条抛物线只有一个焦点,一条对称轴,无 对称中心,故此种说法错误.(3)抛物线 x2=4y 的范围是 x∈R,y≥0,焦点到准线的距离是 2,离心率为 1;
抛物线 y2=4x 的范围是 y∈R,x≥0,焦点到准线的 距离是 2,离心率为 1.故此种说法正确.(4)利用抛物线的 定义(到焦点的距离等于到准线的距离),可以推导出|AB| = 2p(p > 0) ,而抛物线标准方程一次项系数有可能小于 零,故 |AB| 与抛物线标准方程的一次项系数不一定相 等.故此种说法不正确.
第二章
圆锥曲线与方程
2.3 抛物线 2.3.2 抛物线的简单几何 性质
[学习目标]
1.理解抛物线的几何性质(包括范围、对
称性、顶点、离心率)(重点). 2.能根据抛物线的几何性 质解决与抛物线有关的问题(难点).
[知识提炼· 梳理] 1.抛物线的几何性质
标准 方程 图形
y2=2px y2=-2px x2=2py (p>0) (p>0) (p>0)
[思考尝试· 夯基] 1.思考判断(正确的打“√”,错误的打“×”) (1)顶点在原点、焦点在坐标轴上且经过点(3,2)的抛 物线有 4 条.( )
(2)像椭圆、双曲线一样,一条抛物线有两个焦点, 两条对称轴,一个对称中心.( )
(3)抛物线 x2=4y,y2=4x 的 x,y 的范围是不同的, 但是其焦点到准线的距离是相同的,离心率也相 同.( )
2.解决抛物线问题要始终把定义的应用贯彻其中, 通过定义的运用, 实现两个距离之间的转化, 简化解题过 程.
【金版优课】高三数学人教A版选修2-1课时作业:第2章 习题课3 Word版含解析
第二章 习题课(3)一、选择题1.[2014·人大附中月考]以双曲线-=1的右顶点为焦点的抛物线的标准方程为( )x 216y 29A. y 2=16x B. y 2=-16x C. y 2=8x D. y 2=-8x解析:本题主要考查双曲线、抛物线的标准方程及其几何性质.因为双曲线-=1的右顶点为(4,0),即抛物线的焦点坐标为(4,0),所以抛物线的标准方程为x 216y 29y 2=16x ,故选A.答案:A 2.若抛物线y 2=2px (p >0)上三个点的纵坐标的平方成等差数列,那么这三个点到抛物线焦点F 的距离的关系是( )A .成等差数列B .既成等差数列又成等比数列C .成等比数列D .既不成等比数列也不成等差数列解析:设三点为P 1(x 1,y 1),P 2(x 2,y 2),P 3(x 3,y 3),则y =2px 1,y =2px 2,y =2px 3,21223因为2y =y +y ,所以x 1+x 3=2x 2,22123即|P 1F |-+|P 3F |-=2,p2p2(|P 2F |-p2)所以|P 1F |+|P 3F |=2|P 2F |.答案:A 3.设斜率为2的直线l 过抛物线y 2=ax (a ≠0)的焦点F ,且和y 轴交于点A ,若△OAF (O 为坐标原点)的面积为4,则抛物线方程为( )A .y 2=±4xB .y 2=±8xC .y 2=4xD .y 2=8x解析:y 2=ax 的焦点坐标为,过焦点且斜率为2的直线方程为y =2,令(a4,0)(x -a4)x =0得y =-.∴××=4,∴a 2=64,∴a =±8.a 212|a |4|a |2答案:B 4.设直线l 1:y =2x ,直线l 2经过点P (2,1),抛物线C :y 2=4x ,已知l 1、l 2与C 共有三个交点,则满足条件的直线l 2的条数为( )A .1B .2C .3D .4解析:∵点P (2,1)在抛物线内部,且直线l 1与抛物线C 相交于A ,B 两点,∴过点P 的直线l 2在过点A 或点B 或与x 轴平行时符合题意.∴满足条件的直线l 2共有3条.答案:C 5.过抛物线y 2=ax (a >0)的焦点F 作一直线交抛物线于P 、Q 两点,若PF 与FQ 的长分别为p 、q ,则+等于( )1p 1q A .2a B.12a C .4a D.4a解析:可采用特殊值法,设PQ 过焦点F 且垂直于x 轴,则|PF |=p =x p+=+(a 4,0)a 4a4=,a 4a2|QF |=q =,∴+=+=.a21p 1q 2a 2a 4a 答案:D 6.[2014·河北省衡水中学期中考试]已知抛物线y =x 2-1上一定点B (-1,0)和两个动点P ,Q ,当BP ⊥PQ 时,点Q 的横坐标的取值范围是( )A. (-∞,-3)∪[1,+∞)B. [-3,1]C. [1,+∞)D. (-∞,-3]∪[1,+∞)解析:本题主要考查直线垂直的条件和直线与抛物线的位置关系.设P (t ,t 2-1),Q (s ,s 2-1),∵BP ⊥PQ ,∴·=-1,即t 2+(s -1)t 2-1t +1(s 2-1)-(t 2-1)s -tt -s +1=0,∵t ∈R ,P ,Q 是抛物线上两个不同的点,∴必须有Δ=(s -1)2+4(s -1)≥0,即s 2+2s -3≥0,解得s ≤-3或s ≥1.∴点Q 的横坐标的取值范围是(-∞,-3]∪[1,∞),故选D.答案:D 二、填空题7.抛物线y =ax 2的准线方程为y =1,则实数a 的值是__________.解析:抛物线y =ax 2化为x 2=y ,1a 由于其准线方程为y =1,故a <0,且||=1,14a 解得a =-.14答案:-148.[2014·四川省绵阳南山中学月考]抛物线y 2=2x 上的两点A 、B 到焦点的距离之和是5,则线段AB 的中点到y 轴的距离是________.解析:本题主要考查抛物线的定义和基本性质的应用.抛物线y 2=2x 的焦点为F (,0),12准线方程为x =-,设A (x 1,y 1)、B (x 2,y 2),则|AF |+|BF |=x 1++x 2+=5,解得121212x 1+x 2=4,故线段AB 的中点横坐标为2.故线段AB 的中点到y 轴的距离是2.答案:29.设抛物线y 2=8x 的焦点为F ,准线为l ,P 为抛物线上一点,PA ⊥l ,A 为垂足,如果直线AF 的斜率为-,那么|PF |=__________.3解析:∵直线AF 的斜率为-,3∴∠PAF =60°.又|PA |=|PF |,∴△PAF 为正三角形,作FM ⊥PA ,则M 为PA 中点,MA =p ,∴PA =2p .∴|PF |=|AP |=2p =8.答案:8三、解答题10.(1)求过点(-,0)(p >0)且与直线x =相切的动圆圆心M 的轨迹方程;p 2p2(2)平面上动点M 到定点F (0,3)的距离比M 到直线y =-1的距离大2,求动点M 满足的方程,并画出相应的草图.解:(1)根据抛物线的定义知,圆心M 的轨迹是以点(-,0)为焦点,p2直线x =为准线的抛物线,p2其方程为y 2=-2px (p >0).(2)因为动点M 到定点F (0,3)的距离比点M 到直线y =-1的距离大2,所以动点M 到定点F (0,3)的距离等于点M 到直线y =-3的距离,由抛物线的定义得动点M 的轨迹是以定点F (0,3)为焦点,定直线y =-3为准线的抛物线,故动点M 的轨迹方程为x 2=12y ,草图如右图所示.11.已知点A (0,4),B (0,-2),动点P (x ,y )满足·-y 2+8=0.PA→ PB → (1)求动点P 的轨迹方程;(2)设(1)中所求轨迹与直线y =x +2交于C ,D 两点,求证:OC ⊥OD (O 为原点).解:(1)由题意可知,=(-x,4-y ),=(-x ,-2-y ),PA → PB→ ∴x 2+(4-y )(-2-y )-y 2+8=0,∴x 2=2y 为所求动点P 的轨迹方程.(2)由Error!,整理得x 2-2x -4=0,∴x 1+x 2=2,x 1x 2=-4,∵k OC ·k OD =·=y 1x 1y 2x 2(x 1+2)(x 2+2)x 1x 2=x 1x 2+2(x 1+x 2)+4x 1x 2=-4+4+4-4=-1,∴OC ⊥OD .12.[2014·江西师大附中期中考试]已知抛物线y 2=2px (p >0)的焦点为F ,点P 是抛物线上的一点,且其纵坐标为4,|PF |=4.(1)求抛物线的方程;(2)设点A (x 1,y 1),B (x 2,y 2)(y i ≤0,i =1,2)是抛物线上的两点,∠APB 的角平分线与x 轴垂直,求直线AB 的斜率;(3)在(2)的条件下,若直线AB 过点(1,-1),求弦AB 的长.解:(1)设P (x 0,4),因为|PF |=4,由抛物线的定义得x 0+=4,p2又42=2px 0,所以x 0=,因此+=4,8p 8p p2解得p =4,所以抛物线的方程为y 2=8x .(2)由(1)知点P 的坐标为(2,4),因为∠APB 的角平分线与x 轴垂直,所以PA ,PB 的倾斜角互补,即PA ,PB 的斜率互为相反数.设直线PA 的斜率为k ,则PA :y -4=k (x -2),由题意知k ≠0,把x =+2-代入抛物线方程得y 2-y -16+=0,该方程的解为4,y 1,yk 4k 8k 32k 由根与系数之间的关系得y 1+4=,即y 1=-4.因为PB 的斜率为-k ,所以8k 8k y 2=-4,8-k 所以k AB ===-1.y 2-y 1x 2-x 18y 2+y 1(3)结合(2)可得AB :y =-x ,代入抛物线方程得A (0,0),B (8,-8),故|AB |=8.2。
【金版学案】高中数学人教A版选修1-1练习:章末复习课1(含答案解析)
章末复习课[整合·网络构建][警示·易错提醒]1.命题及其关系的关注点(1)命题的四种形式的转换,方法是首先确定原命题的条件和结论,然后对条件与结论进行交换、否定,就可以得到各种形式的命题.(2)命题真假的判断,依据是命题所包含的知识点,判断的正确与否反映了对这一知识点的掌握情况,还可以根据互为逆否命题具有相同的真假性来判断.2.充分条件与必要条件的注意点(1)在判定充分条件、必要条件时,要注意既要看由p能否推出q,又要看由q能否推出p,不能顾此失彼.(2)证明题一般是要求就充要条件进行论证,证明时要分两个方面,防止将充分条件和必要条件的证明弄混.3.简单的逻辑联结词的两个关注点(1)正确理解“或”的意义,日常用语中的“或”有两类用法:其一是“不可兼”的“或”;其二是“可兼”的“或”,我们这里仅研究“可兼”的“或”.(2)有的命题中省略了“且”“或”,要正确区分.4.否命题与命题的否定的注意点否命题与命题的否定的区别.对于命题“若p ,则q”,其否命题形式为“若綈p ,则綈q”,其否定为“若p ,则綈q”,即否命题是将条件、结论同时否定,而命题的否定是只否定结论.有时一个命题的叙述方式是简略式,此时应先分清条件p ,结论q ,改写成“若p ,则q”的形式再判断.专题一 命题及其关系对于命题正误的判断是高考的热点之一,理应引起大家的关注,命题正误的判断可涉及各章节的内容,覆盖面宽,也是学生的易失分点.命题正误的判断的原则是正确的命题要有依据或者给以论证;不一定正确的命题要举出反例,绝对不要主观推断,这也是最基本的数学逻辑思维方式.[例1] (1)下面是关于公差d >0的等差数列{a n }的四个命题:p 1:数列{a n }是递增数列;p 2:数列{na n }是递增数列;p 3:数列⎩⎨⎧⎭⎬⎫a n n 是递增数列; p 4:数列{a n +3nd}是递增数列.其中的真命题为( )A .p 1,p 2B .p 3,p 4C .p 2,p 3D .p 1,p 4(2)已知原命题“菱形的对角线互相垂直”,则对它的逆命题、否命题、逆否命题的真假判断正确的是( )A .逆命题、否命题、逆否命题都为真B .逆命题为真,否命题、逆否命题为假C .逆命题为假,否命题、逆否命题为真D .逆命题、否命题为假,逆否命题为真解析:(1)设a n =a 1+(n -1)d =dn +a 1-d ,因为d >0,所以{a n }是递增数列,所以p 1为真命题;若a n =3n -12,则满足已知,但na n =3n 2-12n ,此时{na n }不是递增数列,所以p 2为假命题;若a n =n +1,则满足已知,但a n n =1+1n ,此时⎩⎨⎧⎭⎬⎫a n n 是递减数列,所以p 3为假命题;因为a n+3nd=4dn+a1-d,所以{a n+3nd}是递增数列,所以p4为真命题.(2)因为原命题“菱形的对角线互相垂直”是真命题,所以它的逆否命题为真;其逆命题“对角线互相垂直的四边形是菱形”显然是假命题,所以原命题的否命题也是假命题.答案:(1)D(2)D归纳升华1.判断一个命题是真命题还是假命题,关键是看能否由命题的条件推出命题的结论,若能推出,则是真命题,否则为假命题.2.还可根据命题的四种形式之间的真假关系进行判断,即当一个命题的真假不易判断时,可以先把它转换成与它等价的命题(逆否命题),再进行判断.[变式训练]给出下列四个命题:①“若xy=1,则x,y互为倒数”的逆命题;②“相似三角形的周长相等”的否命题;③“若b≤-1,则关于x的方程x2-2bx+b2+b=0有实数根”的逆否命题;④若sin α+cos α>1,则α必定是锐角.其中是真命题的有________(请把所有真命题的序号都填上).解析:②可利用逆命题与否命题同真假来判断,易知“相似三角形的周长相等”的逆命题为假,故其否命题为假.④中α应为第一象限角.答案:①③专题二充分条件与必要条件的判定充分条件与必要条件的判定是高考考查的热点内容,在高考试题中主要以选择题的形式出现.解决此类问题的关键是充分利用充分条件、必要条件与充要条件的定义,同时,丰富的数学基础知识是做好此类题目的前提.[例2](1)若向量a=(x,3)(x∈R),则“|a|=5”是“x=4”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件(2)已知条件p:x+y≠-2,条件q:x≠-1或y≠-1,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:(1)|a|=x2+32=5得x=4或x=-4.反之当x=4时,|a|=42+32=5,故“|a|=5”是“x=4”的必要不充分条件.(2)由逆否命题:若綈q,则綈p,则x=-1=y⇒x+y=-2正确,但x+y=-2 x =y=-1,即綈q是綈p的充分不必要条件.答案:(1)B(2)A归纳升华判断充分条件和必要条件的方法1.定义法:根据充分条件和必要条件的定义直接判断.如本例中(1).2.集合法:运用集合思想判断充分条件和必要条件也是一种很有效的方法,主要是通过集合范围的大小判断.3.等价命题法:利用原命题与它的逆否命题是等价命题的结论,有时可以很快地判断.如本例中(2).[变式训练] 已知p :x 2-8x -33>0,q :x 2-2x +1-a 2>0(a >0),若p 是q 的充分不必要条件,求正实数a 的取值范围.解:解不等式x 2-8x -33>0,得p :A ={x|x >11或x <-3};解不等式x 2-2x +1-a 2>0,得q :B ={x|x >1+a 或x <1-a ,a >0}.依题意p ⇒q 但q p ,说明AB.于是有⎩⎪⎨⎪⎧a >0,1+a≤11,1-a >-3或⎩⎪⎨⎪⎧a >0,1+a <11,1-a≥-3,解得0<a≤4,所以正实数a 的取值范围是0<a≤4.专题三 含逻辑联结词的命题用逻辑联结词“且”“或”“非”正确地表述数学内容是学习数学的基本要求.本内容在高考试题中,既可以以选择题、填空题的形式单独出现,又可以渗透到解答题中.掌握本部分内容的关键是弄清含“且”“或”“非”命题的真假判断方法,即“p ∧q”有假则假,“p ∨q ”有真则真.綈p 与p 真假相反.[例3] 已知命题p :幂函数y =x 1-a 在(0,+∞)上是减函数,命题q :∀x ∈R ,ax 2-ax +1>0恒成立.如果p ∧q 为假命题,p ∨q 为真命题,求实数a 的取值范围.解:若命题p 真,1-a <0⇒a >1,若命题q 真,则⎩⎪⎨⎪⎧a >0,a 2-4a <0或a =0⇒0≤a <4. 因为p ∧q 假,p ∧q 真,所以 命题p 与q 一真一假.当命题p 真q 假时,⎩⎪⎨⎪⎧a >1,a <0或a≥4⇒a ≥4. 当命题p 假q 真时,⎩⎪⎨⎪⎧a ≤1,0≤a <4,⇒0≤a ≤1. 所以 所求a 的取值范围是[0,1]∪[4,+∞).归纳升华解答这类问题的一般步骤1.求出命题p ,q 为真时参数的条件;2.根据命题p ∧q ,p ∨q 的真假判定命题p ,q 的真假;3.根据p ,q 的真假建立不等式(组),求出参数的取值范围.[变式训练] 已知命题p :对任意x ∈R ,总有|x|≥0.q :x =1是方程x +2=0的根,则下列命题为真命题为( )A .p ∧(綈q)B .(綈p)∧qC .(綈p)∧(綈q)D .p ∧q解析:由题意,知命题p 是真命题,命题q 是假命题,故綈p 是假命题,綈q 是真命题.由含有逻辑联结词的命题的真值表可知p ∧(綈q)是真命题.答案:A专题四 转化思想所谓转化思想,就是在研究和解决有关数学问题时采用某种手段将问题通过变换使之转化、归结为在已学知识范围内可以解决的问题的一种方法.一般总是将复杂的问题通过变换转化为容易求解的问题,将未解决的问题转化为已解决的问题.可以说数学解题就是转化问题,每一个数学问题都是在不断的转化中获得解决的.即使是数形结合思想、函数与方程思想、分类讨论思想也都是转化思想的一种表现形式.[例4] 已知p :⎪⎪⎪⎪1-x -13≤2,q :x2-2x +1-m 2≤0(m >0),且綈p 是綈q 的必要而不充分条件,求实数m 的取值范围.解:因为綈p 是綈q 的必要而不充分条件,所以 p 是q 的充分而不必要条件,由q :x 2-2x +1-m 2≤0,得1-m≤x≤1+m ,所以 q :Q ={x|1-m≤x≤1+m},由⎪⎪⎪⎪1-x -13≤2,解得-2≤x≤10, 所以 p :P ={x|-2≤x≤10},因为p 是q 的充分而不必要条件,所以 PQ ,所以 ⎩⎪⎨⎪⎧m >0,1-m <-2,1+m≥10或⎩⎪⎨⎪⎧m >0,1-m≤-2,1+m >10, 即m≥9或m >9.所以 实数m 的取值范围是m≥9.归纳升华对于条件或结论是否定式的命题一般应用等价法.这里要注意“原命题⇔逆否命题”,对于本题綈p 是綈q 的必要不充分条件⇔p 是q 的充分不必要条件,进而转化为研究p ,q 对应的集合之间的关系,求出实数m 的取值范围.[变式训练] 若r(x):sin x +cos x >m ,s(x):x 2+mx +1>0,如果对∀x ∈R ,r(x)为假命题且s(x)为真命题,求实数m 的取值范围.解:因为sin x +cos x =2sin ⎝⎛⎭⎫x +π4∈[-2, 2 ], 所以 如果对∀x ∈R ,r(x)为假命题,即对∀x ∈R ,不等式sin x +cos x >m 不恒成立, 所以 m≥- 2.又对∀x ∈R ,s(x)为真命题,即对∀x ∈R ,不等式x 2+mx +1>0恒成立,所以 m 2-4<0,即-2<m <2.所以 如果对∀x ∈R ,r(x)为假命题且s(x)为真命题,应有-2≤m <2.。
【金版优课】高中数学人教B版选修1-1课时作业:模块综合测试2(含答案解析)
选修1-1 模块综合测试(二)(时间120分钟 满分150分)一、选择题(本大题共12小题,每小题5分,共60分) 1.已知命题p :∀x ∈R ,x ≥1,那么命题¬p 为( ) A .∀x ∈R ,x ≤1 B .∃x ∈R ,x <1 C .∀x ∈R ,x ≤-1 D .∃x ∈R ,x <-1 解析:全称命题的否定是特称命题. 答案:B2.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)与抛物线y 2=8x 有一个相同的焦点F ,且该点到双曲线的渐近线的距离为1,则该双曲线的方程为( )A . x 2-y 2=2 B . x 23-y 2=1C . x 2-y 2=3D . x 2-y 23=1解析:本题主要考查双曲线与抛物线的有关知识.由已知,a 2+b 2=4 ①,焦点F (2,0)到双曲线的一条渐近线bx -ay =0的距离为|2b |a 2+b2=1 ②,由①②解得a 2=3,b 2=1,故选B.答案:B3.已知命题p ,q ,如果命题“¬p ”与命题“p ∨q ”均为真命题,那么下列结论正确的是( ) A .p ,q 均为真命题 B .p ,q 均为假命题 C .p 为真命题,q 为假命题D .p 为假命题,q 为真命题解析:命题“¬p ”为真,所以命题p 为假命题.又命题“p ∨q ”也为真命题,所以命题q 为真命题.答案:D4.[2014·福建高考]直线l :y =kx +1与圆O :x 2+y 2=1相交于A ,B 两点,则“k =1”是“△OAB 的面积为12”的( )A . 充分而不必要条件B . 必要而不充分条件C . 充分必要条件D . 既不充分又不必要条件解析:若k =1,则直线l :y =x +1与圆相交于(0,1),(-1,0)两点,所以△OAB 的面积S △OAB =12×1×1=12,所以“k =1”⇒“△OAB 的面积为12”;若△OAB 的面积为12,则k =±1,所以“△OAB 的面积为12”D ⇒/“k =1”,所以“k =1”是“△OAB 的面积为12”的充分而不必要条件,故选A.答案:A5.函数f (x )=x 3-6bx +3b 在(0,1)内有极小值,则实数b 的取值范围是( ) A . (0,1) B . (-∞,1) C . (0,+∞)D . (0,12)解析:f ′(x )=3x 2-6b , ∵f (x )在(0,1)内有极小值, ∴f ′(x )=0在x ∈(0,1)时有解,∴⎩⎨⎧f f∴0<b <12.答案:D6.若直线y =x +1与椭圆x 22+y 2=1相交于A ,B 两个不同的点,则|AB →|等于( )A .43B .423C .83D .823解析:联立方程组⎩⎪⎨⎪⎧y =x +1,x 22+y 2=1,得3x 2+4x =0, 解得A (0,1),B (-43,-13),所以|AB →|=-43-2+-13-2=423.答案:B7.若x >0,则f (x )=12x +3x 的最小值为( )A . 12B . -12C . 6D . -6 解析:f (x )=12x +3x ,f ′(x )=3-12x 2,由f ′(x )=0得x =2或x =-2(舍去), ∴f (x )在(0,2)内递减,在(2,+∞)内递增, ∴f (x )min =f (2)=12. 答案:A8.下列四个结论中正确的个数为( )①命题“若x 2<1,则-1<x <1”的逆否命题是“若x >1或x <-1,则x 2>1”; ②已知p :∀x ∈R ,sin x ≤1,q :若a <b ,则am 2<bm 2,则p ∧q 为真命题; ③命题“∃x ∈R ,x 2-x >0”的否定是“∀x ∈R ,x 2-x ≤0”; ④“x >2”是“x 2>4”的必要不充分条件. A .0个 B .1个 C .2个D .3个解析:只有③中结论正确. 答案:B9.[2014·贵州六校联盟高三联考]已知函数y =xf ′(x )的图象如图所示(其中f ′(x )是函数f (x )的导函数).下面四个图象中,y =f (x )的图象大致是( )解析:由条件可知当0<x <1时,f ′(x )<0,函数f (x )递减,当x >1时,f ′(x )>0,函数f (x )递增,所以当x =1时,函数f (x )取得极小值.当x <-1时,xf ′(x )<0,所以f ′(x )>0,函数f (x )递增,当-1<x <0,xf ′(x )>0,所以f ′(x )<0,函数f (x )递减,所以当x =-1时,函数f (x )取得极小值.所以选C.答案:C10.[2014·聊城高二检测]若点P 是曲线y =x 2-ln x 上任意一点,则点P 到直线y =x -2的最小距离为( )A . 1B . 2C .22D . 3解析:由题意知,过点P 作与直线y =x -2平行的直线,且与曲线y =x 2-ln x 相切.设切点P (x 0,x 20-ln x 0),则有k =y ′|x =x 0=2x 0-1x 0=1,解得x 0=1或x 0=-12(舍去),∴点P (1,1),d =|1-1-2|2= 2.答案:B11.已知F 是抛物线y 2=4x 的焦点,过点F 且斜率为3的直线交抛物线于A 、B 两点,则||F A |-|FB ||的值为( )A . 83B . 163C .833D .823解析:本题主要考查直线与抛物线的位置关系以及抛物线的有关性质.直线AB 的方程为y =3(x -1),由⎩⎨⎧y 2=4xy =3x -得3x 2-10x +3=0,故x 1=3,x 2=13,所以||F A |-|FB ||=|x 1-x 2|=83.故选A.答案:A12.[2012·浙江高考]如图,F 1、F 2分别是双曲线C :x 2a 2-y 2b 2=1(a ,b >0)的左、右焦点,B 是虚轴的端点,直线F 1B 与双曲线C 的两条渐近线分别交于P 、Q 两点,线段PQ 的垂直平分线与x 轴交于点M .若|MF 2|=|F 1F 2|,则双曲线C 的离心率是( )A .233B .62C . 2D . 3解析:本题主要考查双曲线离心率的求解.结合图形的特征,通过PQ 的中点,利用线线垂直的性质进行求解.不妨设c =1,则直线PQ :y =bx +b ,双曲线C 的两条渐近线为y =±b a x ,因此有交点P (-a a +1,b a +1),Q (a 1-a ,b 1-a),设PQ 的中点为N ,则点N 的坐标为(a 21-a 2,b 1-a 2),因为线段PQ 的垂直平分线与x 轴交于点M ,|MF 2|=|F 1F 2|,所以点M 的坐标为(3,0),因此有k MN =b1-a 2-0a 21-a2-3=-1b ,所以3-4a 2=b 2=1-a 2,所以a 2=23,所以e =62.答案:B二、填空题(本大题共4小题,每小题5分,共20分) 13.命题“∃x ∈R ,x 2+2x +2≤0”的否定是__________.解析:特称命题的否定是全称命题,故原命题的否定是∀x ∈R ,x 2+2x +2>0. 答案:∀x ∈R ,x 2+2x +2>014.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)与方向向量为k =(6,6)的直线交于A ,B 两点,线段AB 的中点为(4,1),则该双曲线的渐近线方程是________.解析:设A (x 1,y 1),B (x 2,y 2),则x 21a 2-y 21b 2=1且x 22a 2-y 22b 2=1得:y 2-y 1x 2-x 1=b 2x 2+x 1a 2y 2+y 1=4b 2a 2,又k =1,∴4b 2a 2=1即:b a =±12.即双曲线的渐近线方程为:y =±12x .答案:y =±12x15.[2014·云南师大附中月考]对于三次函数f (x )=ax 3+bx 2+cx +d (a ≠0),给出定义:设f ′(x )是函数f (x )的导数,f ″(x )是f ′(x )的导数,若方程 f ″(x )=0有实数解x 0,则称点(x 0,f (x 0))为函数y =f (x )的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数的图象都有对称中心,且“拐点”就是对称中心.根据这一发现,则函数f (x )=13x 3-12x 2+3x -512的图象的对称中心为________.解析:由f (x )=13x 3-12x 2+3x -512,得f ′(x )=x 2-x +3,f ″(x )=2x -1,由f ″(x )=0,解得x =12,且f (12)=1,所以此函数图象的对称中心为(12,1). 答案:(12,1)16.[2014·湖北省襄阳五中月考]已知函数f (x )=|x 2-2ax +b |(x ∈R),给出下列命题:①若a 2-b ≤0,则f (x )在区间[a ,+∞)上是增函数;②若a 2-b >0,则f (x )在区间[a ,+∞)上是增函数;③当x =a 时,f (x )有最小值b -a 2;④当a 2-b ≤0时,f (x )有最小值b -a 2.其中正确命题的序号是________.解析:本题考查含绝对值的二次函数单调区间和最小值问题的求解.由题意知f (x )=|x 2-2ax +b |=|(x -a )2+b -a 2|.若a 2-b ≤0,则f (x )=|(x -a )2+b -a 2|=(x -a )2+b -a 2,可知f (x )在区间[a ,+∞)上是增函数,所以①正确,②错误;只有在a 2-b ≤0的条件下,才有x =a 时,f (x )有最小值b -a 2,所以③错误,④正确.答案:①④三、解答题(本大题共6小题,共70分)17.(10分)(1)设集合M ={x |x >2},P ={x |x <3},则“x ∈M 或x ∈P ”是“x ∈(M ∩P )”的什么条件?(2)求使不等式4mx 2-2mx -1<0恒成立的充要条件. 解:(1)x ∈R ,x ∈(M ∩P )⇔x ∈(2,3). 因为“x ∈M 或x ∈P ”x ∈(M ∩P ). 但x ∈(M ∩P )⇒x ∈M 或x ∈P .故“x ∈M 或x ∈P ”是“x ∈(M ∩P )”的必要不充分条件.(2)当m ≠0时,不等式4mx 2-2mx -1<0恒成立⇔⎩⎪⎨⎪⎧4m <0Δ=4m 2+16m <0⇔-4<m <0. 又当m =0时,不等式4mx 2-2mx -1<0对x ∈R 恒成立, 故使不等式4mx 2-2mx -1<0恒成立的充要条件是-4<m ≤0.18.(12分)[2014·河南洛阳统考]已知函数f (x )=ln x -ax +a (a ∈R),g (x )=x 2+2x +m (x <0). (1)讨论f (x )的单调性;(2)若a =0,函数y =f (x )在A (2,f (2))处的切线与函数y =g (x )相切于B (x 0,g (x 0)),求实数m 的值.解:(1)f ′(x )=1-axx,x >0. 若a ≤0,f ′(x )>0,f (x )在(0,+∞)上单调递增;若a >0,当x ∈(0,1a )时,f ′(x )>0,f (x )在(0,1a )上单调递增;当x ∈(1a ,+∞)时,f ′(x )<0,f (x )在(1a ,+∞)上单调递减.(2)当a =0时,f (x )=ln x . f ′(x )=1x ,∴k =f ′(2)=12.∴函数f (x )在A (2,ln2)处的切线方程为y =12(x -2)+ln2,易得函数g (x )在B (x 0,g (x 0))处的切线方程为y =(2x 0+2)·(x -x 0)+x 20+2x 0+m ,整理得:y =(2x 0+2)x -x 20+m . 由已知得:⎩⎪⎨⎪⎧12=x 0+ln2-1=-x 20+m,解得x 0=-34,m =-716+ln2.19.(12分)设直线l :y =x +1与椭圆x 2a 2+y 2b 2=1(a >b >0)相交于A ,B 两个不同的点,l 与x 轴相交于点F .(1)证明:a 2+b 2>1;(2)若F 是椭圆的一个焦点,且AF →=2FB →,求椭圆的方程. 解:(1)证明:将x =y -1代入x 2a 2+y 2b 2=1,消去x ,整理,得(a 2+b 2)y 2-2b 2y +b 2(1-a 2)=0. 由直线l 与椭圆相交于两个不同的点,得 Δ=4b 4-4b 2(a 2+b 2)(1-a 2)=4a 2b 2(a 2+b 2-1)>0, 所以a 2+b 2>1.(2)设A (x 1,y 1),B (x 2,y 2),则(a 2+b 2)y 21-2b 2y 1+b 2(1-a 2)=0,① 且(a 2+b 2)y 22-2b 2y 2+b 2(1-a 2)=0.②因为AF →=2FB →,所以y 1=-2y 2.将y 1=-2y 2代入①,与②联立,消去y 2, 整理得(a 2+b 2)(a 2-1)=8b 2.③因为F 是椭圆的一个焦点,则有b 2=a 2-1. 将其代入③式,解得a 2=92,b 2=72,所以椭圆的方程为2x 29+2y 27=1.20.(12分)已知两点M (-1,0)、N (1,0),动点P (x ,y )满足|MN →|·|NP →|-MN →·MP →=0, (1)求点P 的轨迹C 的方程;(2)假设P 1、P 2是轨迹C 上的两个不同点,F (1,0),λ∈R ,FP 1→=λFP 2→,求证:1|FP 1→| +1|FP 2→|=1. 解:(1)|MN →|=2,则MP →=(x +1,y ), NP →=(x -1,y ). 由|MN →||NP →|-MN →·MP →=0, 则2x -2+y 2-2(x +1)=0,化简整理得y 2=4x .(2)由FP 1→=λ·FP 2→,得F 、P 1、P 2三点共线,设P 1(x 1,y 1)、P 2(x 2,y 2),斜率存在时,直线P 1P 2的方程为:y =k (x -1). 代入y 2=4x 得:k 2x 2-2(k 2+2)x +k 2=0. 则x 1x 2=1,x 1+x 2=2k 2+4k 2.∴1|FP 1→| +1|FP 2→|=1x 1+1+1x 2+1 =x 1+x 2+2x 1x 2+x 1+x 2+1=1.当P 1P 2垂直x 轴时,结论照样成立.21.(12分)[2014·银川唐徕回民中学三模]已知函数f (x )=ln x ,g (x )=e x , (1)若函数φ(x )=f (x )-x +1x -1,求函数φ(x )的单调区间;(2)设直线l 为函数f (x )的图象在点A (x 0,f (x 0))处的切线,证明:在区间(1,+∞)上存在唯一x 0,使直线l 与曲线y =g (x )相切.解:(1)证明:(1)φ(x )=ln x -x +1x -1,故φ′(x )=1x +2x -2,显然当x >0且x ≠1时都有φ′(x )>0,故函数φ(x )在(0,1)和(1,+∞)内均单调递增.(2)因为f ′(x )=1x ,所以直线l 的方程为y -ln x 0=1x 0(x -x 0),设直线l 与曲线y =g (x )切于点(x 1,e x 1),因为g ′(x )=e x ,所以e x 1=1x 0,从而x 1=-ln x 0,所以直线l 的方程又为y =1x 0x +ln x 0x 0+1x 0,故ln x 0-1=ln x 0x 0+1x 0,从而有ln x 0=x 0+1x 0-1,由(1)知,φ(x )=ln x -x +1x -1在区间(1,+∞)内单调递增,又因为φ(e)=lne -e +1e -1=-2e -1<0,φ(e 2)>0,故φ(x )=ln x -x +1x -1在区间(e ,e 2)内存在唯一的零点x 0,此时,直线l 与曲线y =g (x )相切.22.(12分)[2014·四川高考]已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(1)求椭圆C 的标准方程;(2)设F 为椭圆C 的左焦点,T 为直线x =-3上任意一点,求F 作TF 的垂线交椭圆C 于点P ,Q .①证明:OT 平分线段PQ (其中O 为坐标原点); ②当|TF ||PQ |最小时,求点T 的坐标.解:(1)由已知可得⎩⎨⎧a 2+b 2=2b ,2c =2a 2-b 2=4,解得a 2=6,b 2=2,所以椭圆C 的标准方程是x 26+y 22=1.(2)①由(1)可得,F 的坐标是(-2,0),设T 点的坐标为(-3,m ),则直线TF 的斜率k TF=m -0-3--=-m .当m ≠0时,直线PQ 的斜率k PQ =1m ,直线PQ 的方程是x =my -2.当m =0时,直线PQ 的方程是x =-2,也符合x =my -2的形式.设P (x 1,y 1),Q (x 2,y 2),将直线PQ 的方程与椭圆C 的方程联立,得⎩⎪⎨⎪⎧x =my -2,x 26+y 22=1,消去x ,得(m 2+3)y 2-4my -2=0, 其判别式Δ=16m 2+8(m 2+3)>0. 所以y 1+y 2=4mm 2+3,y 1y 2=-2m 2+3,x 1+x 2=m (y 1+y 2)-4=-12m 2+3.所以PQ 的中点M 的坐标为(-6m 2+3,2mm 2+3),所以直线OM 的斜率k OM =-m3.又直线OT 的斜率k OT =-m3,所以点M 在直线OT 上,因此OT 平分线段PQ . ②由①可得, |TF |=m 2+1, |PQ |=x 1-x 22+y 1-y 22=m 2+y 1+y 22-4y 1y 2]=m 2+4m m 2+32-4·-2m 2+3]=24m 2+m 2+3.所以|TF ||PQ |=124·m 2+2m 2+1=124·m 2+1+4m 2+1+≥124+=33. 当且仅当m 2+1=4m 2+1即m =±1时,等号成立,此时⎪⎪⎪⎪TF PQ 取得最小值. 所以当⎪⎪⎪⎪TF PQ 最小时,T 点的坐标是(-3,1)或(-3,-1).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题课(2)
一、选择题
1.动点P 到点M (1,0)及点N (3,0)的距离之差为2,则点P 的轨迹是( ) A .双曲线 B .双曲线的一支 C .两条射线
D .一条射线
解析:由已知|PM |-|PN |=2=|MN |,所以点P 的轨迹是一条以N 为端点的射线. 答案:D
2.方程x =3y 2-1所表示的曲线是( ) A .双曲线
B .椭圆
C .双曲线的一部分
D .椭圆的一部分
解析:依题意:x ≥0,方程可化为:3y 2-x 2=1,所以方程表示双曲线的一部分.故选C.
答案:C
3.[2014·安徽省合肥一中月考]若双曲线x 2+ky 2=1的离心率是2,则实数k 的值是( ) A. -3 B. 1
3 C. 3
D. -13
解析:本题主要考查双曲线的简单性质.双曲线x 2
+ky 2
=1可化为x 21+y 2
1
k =1,故离心率
e =
1-
1k 1=2,解得k =-1
3,故选D. 答案:D
4.[2014·广东实验中学期末考试]已知双曲线x 2a 2-y 2b 2=1(a >0,b >0),两渐近线的夹角为
60°,则双曲线的离心率为( )
A. 23
3
B. 3
C. 2
D.
23
3
或2 解析:本题考查双曲线的简单几何性质的应用.根据题意,由于双曲线x 2a 2-y 2
b 2=1(a >0,
b >0),两渐近线的夹角为60°,则可知b a =3或b a =3
3,那么可知双曲线的离心率为e =
1+
b
a
2
,所以结果为2或23
3
,故选D.
答案:D
5.已知双曲线C 的焦点、实轴端点恰好分别是椭圆x 225+y 2
16=1的长轴端点、焦点,则
双曲线C 的渐近线方程为( )
A .4x ±3y =0
B .3x ±4y =0
C .4x ±5y =0
D .5x ±4y =0
解析:由已知得,双曲线焦点在x 轴上,且c =5,a =3,∴双曲线方程为x 29-y 2
16=1.
∴渐近线方程为y =±b a x =±4
3x .
答案:A
6.若双曲线实轴的长度、虚轴的长度和焦距成等差数列,则该双曲线的离心率是( ) A.35 B.4
5 C.53
D. 54
解析:由已知得2b =a +c , ∴2b a =1+c a
. ∴2e 2-1=1+e .平方得4(e 2-1)=e 2+2e +1 即3e 2-2e -5=0.∴e =53.
答案:C 二、填空题
7.[2013·陕西高考]双曲线x 216-y 2
9
=1的离心率为________.
解析:本题主要考查双曲线的离心率的求法.由已知得a 2=16,b 2=9,∴c 2=a 2+b 2
=25,∴e 2
=c 2a 2=2516,e =5
4
.
答案:5
4
8.[2014·北师大附中月考]已知直线y =kx +2与双曲线x 2-y 2=6的右支相交于不同两点,则k 的取值范围是________.
解析:本题主要考查直线与双曲线的位置关系和根与系数的关系的应用.由⎩⎪⎨⎪⎧
y =kx +2x 2-y 2
=6
得(1-k 2)x 2-4kx -10=0 ①,直线y =kx +2与双曲线x 2-y 2=6的右支相交于不同两点,
即方程①有两个不同的正实数解,所以⎩⎪⎨⎪⎧
1-k 2≠0
Δ=
16k 2+-k
2
4k
1-k
2
>0
-101-k 2
>0
,解得-
15
3
<k <-1.
答案:(-
15
3
,-1) 9.对于曲线C :x 24-k +y 2
k -1=1,给出下面四个命题:
①曲线C 不可能表示椭圆; ②当1<k <4时,曲线C 表示椭圆; ③若曲线C 表示双曲线,则k <1或k >4; ④若曲线C 表示焦点在x 轴上的椭圆,则1<k <5
2.
其中命题正确的序号为__________. 解析:由⎩⎪⎨⎪
⎧
4-k >0,k -1>0,
4-k ≠k -1,
解得1<k <52或52<k <4,此时方程表示椭圆,且1<k <5
2
时表示焦
点在x 轴上的椭圆,所以①②错,④正确;由(4-k )(k -1)<0得k <1或k >4,此时方程表示双曲线,故③正确.所以应填③④.
答案:③④ 三、解答题
10.求适合下列条件的双曲线标准方程. (1)虚轴长为16,离心率为2;
(2)顶点间距离为6,渐近线方程为y =±3
2
x ;
(3)求与双曲线x 22-y 2
=1有公共渐近线,且过点M (2,-2)的双曲线方程.
解:(1)由题意知b =8,且为等轴双曲线, ∴双曲线标准方程为x 264-y 264=1或y 264-x 2
64
=1.
(2)设以y =±32x 为渐近线的双曲线方程为x 24-y 2
9=λ(λ≠0),
当λ>0时,a 2=4λ, ∴2a =24λ=6⇒λ=9
4
,
当λ<0时,a 2=-9λ, ∴2a =2-9λ=6⇒λ=-1.
∴双曲线的方程为x 29-4y 281=1和y 29-x 2
4
=1.
(3)设与双曲线x 22-y 2=1有公共渐近线的双曲线方程为x 22-y 2
=k (k ≠0),
将点(2,-2)代入得k =22
2-(-2)2=-2,
∴双曲线的标准方程为y 22-x 2
4
=1.
11.已知双曲线的中心在原点,焦点F 1、F 2在坐标轴上,离心率为2,且过点(4,-10). (1)求此双曲线的方程;
(2)若点M (3,m )在此双曲线上,求证:F 1M →·F 2M →=0. 解:(1)∵离心率e =c
a =2,∴a =
b .
设双曲线方程为x 2-y 2=n (n ≠0), ∵(4,-10)在双曲线上, ∴n =42-(-10)2=6. ∴双曲线方程为x 2-y 2=6.
(2)∵M (3,m )在双曲线上,则M (3,±3), 即m =±3,
∴kMF 1·kMF 2=m 3+23·m 3-23=-m 2
3=-1.
∴F 1M →·F 2M →
=0.
12.[2014·四川成都六校协作体期中考试]已知双曲线焦距为4,焦点在x 轴上,且过点P (2,3).
(1)求该双曲线的标准方程;
(2)若直线m 经过该双曲线的右焦点且斜率为1,求直线m 被双曲线截得的弦长. 解:(1)设双曲线方程为x 2a 2-y 2
b
2=1(a ,b >0),
由已知可得左、右焦点F 1、F 2的坐标分别为(-2,0),(2,0), 则|PF 1|-|PF 2|=2=2a ,所以a =1, 又c =2,所以b =3, 所以双曲线方程为x 2
-y 2
3
=1.
(2)由题意可知直线m 方程为y =x -2,
联立双曲线及直线方程消去y 得2x 2+4x -7=0,
设两交点为A (x 1,y 1),B (x 2,y 2),所以x 1+x 2=-2,x 1x 2=-7
2,由弦长公式得|AB |=1+k 2
|x 1-x 2|=1+k 2x 1+x 2
2
-4x 1x 2=6.。