高一下期中考答案

合集下载

北京市2023-2024学年高一下学期期中练习物理试卷含答案

北京市2023-2024学年高一下学期期中练习物理试卷含答案

北京2023~2024学年第二学期期中练习高一物理(答案在最后)2024.4注意事项1.本试卷共4页,共四道大题,20小题,满分100分。

考试时间90分钟。

2.在试卷和答题纸上准确填写班级、姓名、学号。

3.试卷答案填写在答题纸的相应位置上,在试卷上作答无效。

4.在答题纸上,选择题用2B铅笔作答,其他试题用黑色字迹签字笔作答。

一、单项选择题(本题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一个选项是符合题意的。

)1.物体做曲线运动时,一定发生变化的是()A.速度方向B.速度大小C.加速度方向D.加速度大小【答案】A【解析】【详解】物体做曲线运动时,速度方向一定变化,但是速度大小不一定变化,例如匀速圆周运动;加速度方向和大小都不一定变化,例如平抛运动。

故选A。

2.如图所示的曲线为运动员抛出的铅球运动下落轨迹(铅球视为质点),A、B、C为曲线上的三点,关于铅球在B点的速度方向,下列说法正确的是()A.沿AB的方向B.沿BD的方向C.沿BC的方向D.沿BE的方向【答案】B【解析】【详解】曲线运动的速度方向沿轨迹上该点的切线方向.铅球做平抛运动轨迹由A到C,B点的速度方向沿切线方向,即BD方向,故B正确,ACD错误。

故选B。

3.用如图所示装置研究物体做曲线运动的条件。

小铁球以图甲所示的初速度v 0在水平桌面上运动,忽略阻力,要使小铁球沿图乙中曲线所示轨迹运动,磁铁应该放在()A.位置AB.位置BC.位置CD.位置D【答案】C 【解析】【详解】磁铁对钢球的作用力为引力,轨迹往引力的方向偏转,所以磁铁可能放在C 位置。

故选C 。

4.两个质点之间万有引力的大小为F ,如果将这两个质点之间的距离变为原来的2倍,那么它们之间万有引力的大小变为()A.4F B.4FC.2F D.2F【答案】A 【解析】【详解】万有引力2GMm F r =将这两个质点之间的距离变为原来的2倍,它们之间万有引力的大小变为2(2)4GMm FF r '==故选A 。

高一下学期期中质量检测语文试卷(含答案)

高一下学期期中质量检测语文试卷(含答案)

高一下学期期中质量检测语文试卷(含答案)张家口市2023-2024学年高一下学期期中质量检测语文试卷注意事项:1.答卷前,考生务必将自己的姓名、班级和考号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、现代文阅读(35分)(一)现代文阅读Ⅰ(本题共5小题,18分)阅读下面的文字,完成下面小题。

材料一:世界上每个成熟的民族都有自己独特的医学。

中医作为有着数千年悠久历史的中国原创医学,是中华民族自古以来认识生命、维护健康、防治疾病的经验总结和智慧结晶,是中华民族在长期生活实践基础上,通过不断总结与疾病斗争的经验发展起来的一门科学,其独特的医学理论、治疗理念和技术体系,在世界医学宝库中具有重要地位。

同时,在传承发展中,中医药文化已深深融入日常生活,人们衣食住行等方面很多日用而不知的观念、常识均源自中医药。

可以说,中医药是一门贴近日常、高度生活化的科学,是最适合融入生活、也最能够融入生活的医学。

在一定意义上,中医生活化是中华优秀传统文化的一种具体传承和具身体验。

融入生活,融入寻常百姓家,是中医药得以不断传承、发展的一个重要原因。

中医药理论源于生产生活实践。

中医药理论体系形成于战国到两汉时期,《黄帝内经》《难经》《伤寒杂病论》《神农本草经》等经典著作标志着其理论体系的形成。

这些理论均来源于人们长期对日常生活生命现象和自然现象的观察和总结。

比如,人们发现,对一些身体不适的症候,能够通过砭石针灸、推拿穴位、服中草药等缓解,于是形成了针灸、推拿、煎服草药等医疗经验和理念。

通过对大量生活经验的总结,借助取象比类、以外揣内等方法,以中国古代哲学为主要思维方式,进一步总结规律升华形成了气一元论、阴阳五行、精气神学说等中医药基础理论,并一直延续至今,指导和影响着中国人的医疗实践和思维方式。

2023年高一下册期中考试语文题带参考答案(江苏省淮安市淮阴中学)

2023年高一下册期中考试语文题带参考答案(江苏省淮安市淮阴中学)

阅读下面的文字,完成下面小题。

社交化让阅读不再孤独①今年的世界读书日,受疫情影响,许多读书活动转移到线上开展。

比如,粤鄂澳联合举办“共读半小时”活动,万余人云上共读佳作、品味书香的同时,也传递了对抗疫战士的祝福和关爱;中国原创音乐基地5sing平台发起的寻找青年领读者活动,则号召各路网友以献声朗诵的方式读书、荐书。

②无论是共读还是领读,背后正是日益显著的社交化阅读大趋势。

有学者概括指出,所谓社交化阅读,是一种以内容为核心、以社交关系为纽带,注重分享、交流和互动的移动阅读新模式。

有人说,阅读是一件私人的事,但从另一个角度看,阅读行为一直就存在社交属性,因为阅读行为本身是作者与读者的一种交流,作者向读者传递知识思想,读者向作者反馈阅读感受。

传统线下读书会的产生,正好满足双方需求。

这种形式虽有互动,但大多仍是作者本人或专业学者带领读者品读书籍。

③互联网时代,新兴科技带来全新传播模式,加之书香社会的倡导建设、优质出版物海量供给、阅读基础设施越发完善、社会平均教育水平不断上升,大环境升级放大了社交化阅读原有特点,并持续释放阅读者需求,促进社交化阅读产生全新变化。

在线上读书会,每个人都可以成为领读者,读者群体间交流也更加频繁,激活了书本之外的文化产品,形成思想上的“二次创作”。

也许原作者只是在书中提到了某一个观点,但不同的读者讨论后,或由此形成热议的社会话题,让知识更具有延展性和流动性。

社交互动带来的参与感,也得以让人体会读书的另一种乐趣。

④互联网时代的社交化阅读,进一步“模糊”了作者与读者的界限,使读者兼具信息接受者、知识传播者乃至文化创造者的身份。

尤其是青年群体,他们更热衷表达、愿意分享并擅长利用新兴媒介。

对于90后、00后来说,他们不再那么渴求所谓的“青年必读经典书目”,在大数据和算法的帮助下,他们大可自己私人订制一份个性化书单,读书后通过撰写书评、制作“拆书”视频来分享个人心得,并以此为媒介找到志同道合的朋友。

北京市2023—2024学年高一下学期期中考试语文试卷含答案

北京市2023—2024学年高一下学期期中考试语文试卷含答案

北京市2023~2024学年第二学期期中考试高一语文(答案在最后)2024年4月班级姓名考号(考试时间150分钟满分150分)提示:试卷答案请一律填涂或书写在答题卡上,在试卷上作答无效。

在答题卡上,选择题用2B 铅笔作答,其他试题用黑色签字笔作答。

一、本大题共5小题,共18分。

阅读下面材料,完成下面小题。

材料一阅读是伟大的文化发明,但文字出现的历史非常短暂,人类尚不足以进化出一个先天的“阅读脑”。

这意味着,我们无法仅依靠遗传获得阅读技能。

我们之所以能够完成从“非阅读脑”到“阅读脑”的转变,既有赖于先天的大脑特性,又有赖于后天的阅读训练。

虽然人类没有进化出“阅读脑”,但先天拥有“口语脑”。

口语是人类自然习得的本能。

通过遗传,每一个准备接受阅读训练的个体已经具备了从语音通达语义的口语加工脑区和环路。

这些加工口语的脑区与环路即是“阅读脑”形成的开端。

从出生到死亡,人类的大脑并非一成不变,你可以把大脑想象成一台持续更新的机器,始终处于调整变化中。

这种能够不停“重组”的特性被称为“脑的神经可塑性”。

后天的阅读训练,有针对性地促成了先天脑的重组,其中最重要的改变当属视觉词形区的出现。

法国认知神经科学家斯坦尼斯拉斯•德阿纳比较了无阅读能力(文盲)和有阅读能力的两组成年人,发现在阅读任务中,有阅读能力组的左脑梭状回(即视觉词形区)在观看文字时的活跃强度要高于观看人脸、房屋等其他视觉刺激时的活跃强度;而文盲组,相应的脑区未发现异常活跃现象。

这一发现首次直接证明了阅读训练对脑区功能的塑造作用。

除此之外,阅读还会“改写”大脑的灰质和白质结构。

一项追踪研究发现,与刚入学时相比,儿童在二年级时,左半球的顶下小叶、中央前回和中央后回的灰质体积有所减小,推测是阅读训练引发了相关脑区神经突触的修剪过程,使这些脑区变得更加精简高效。

另一项研究发现,8-10岁儿童在接受100小时的阅读训练后,白质纤维束的走向一致性显著增强,意味着不同脑区之间的信息传输能力有所提高。

北京市西城区2023-2024学年高一下学期期中考试语文试卷含答案

北京市西城区2023-2024学年高一下学期期中考试语文试卷含答案

北京2023~2024学年第二学期期中练习高一语文(答案在最后)2024.04注意事项:1.本试卷共5页,共八道大题,24小题,满分150分。

考试时间150分钟。

2.在试卷和答题纸上准确填写班级、姓名、学号。

3.试卷答案填写在答题纸的相应位置上,在试卷上作答无效。

4.在答题纸上,选择题用2B铅笔作答,其他试题用黑色字迹签字笔作答。

第I卷一、(共15分)阅读下面的文字,完成下列小题。

江南暮春清明风俗随着寒食、清明、上巳的来临,江南已是红梅零落,樱花渐离枝头,桃花也随雨打风吹去了。

江南的暮春习俗像是在彷徨中寻找着什么寄托。

以水驱邪与魏晋修禊《孝经纬》记载:“春分后十五日……为清明三月节。

万物至此皆洁齐而清明矣。

”古人对于“洁”的渴求出于对死亡的恐惧。

暮春时节,寒热不定,疾病时来侵袭。

古人认为这是被压抑的阴气或浊气在作怪,用洁净的流水来清除浊邪成了必要举动。

明代以来,江南地区产生了许多以水清除浊邪的“方法”,如三月初二以桃叶浸井水服食,传说可治心病;三月初三取枸杞煎汤沐浴,能使皮肤光泽不衰。

人们对这些方法的信任,大抵都源于临水修禊的风俗。

修禊,是古人祈福消灾的仪式,通常在三月上旬巳日临水举行,自魏晋以后,上巳节的日期固定为三月初三。

《晋书·王羲之传》记载“暮春之初,会于会稽山阴之兰亭,修禊事也”,说的就是著名的兰亭雅集。

当日,王羲之与众名士相聚曲水之畔,三杯两盏之后,他联想到战争的频繁与生命之脆弱,感慨:“固.知一死生为虚诞,齐彭殇为妄作。

后之视今,亦犹今之视昔,悲夫!故列叙时人,录其所述。

”庄周在《齐物论》中告诉世人:生为梦幻,死是苏醒,早逝(殇)反而能使人走向长生(彭)。

王羲之并不相信修禊的功效,认为死亡总是突然来袭,同时也不接受庄周为消解死亡恐惧所提出的解释。

王羲之与名士们聚饮赋诗,且将雅集诗作逐一记录,企图通过这种方式创造一条与后人沟通的途径——这是对死亡的新知。

寒食禁火与唐人祭墓寒食,在清明前一两日。

湖南省长沙市第一中学2023-2024学年高一下学期期中考试英语试题(含答案)

湖南省长沙市第一中学2023-2024学年高一下学期期中考试英语试题(含答案)

2023-2024-2长沙市一中城南高一下期中考试英语时量:120分钟满分:150分第一部分听力(共两节,满分30分)略第二部分阅读(共两节,满分50分)第一节(共15小题;每小题2.5分,满分37.5分)阅读下列短文,从每题所给的A、B、C、D四个选项中选出最佳选项。

AFamily Vacations in HawaiiWhether your interests are history, native cultures, hiking, water sports, or simply relaxing in the sun, Hawaii has abundant choices to keep you and your family entertained.Waikiki BeachThis famous two-mile stretch of sand is home to scores of family-friendly beach hotels and all kinds of action-packed excitement. Waikiki Beach is the perfect place to go if you’re looking for warm ocean water and golden beaches. Kids will enjoy walking along the beach, stopping for shaved ice or an ice cream and taking a dip in a safe area of the ocean.Oahu’s North ShoreSome of the talle st ocean waves in the world are found at Oahu, Hawaii’s North Shore coastline during the winter months. These crashing walls of water are born for surfing and offer one of the best free shows on the islands. The North Shore is home to world-class surf cont ests, attracting the world’s top surfers.Polynesian Cultural CenterNothing appeals to the whole family like Hawaiian past coming alive. Besides, the colorful costumes, lively songs, and traditional dances in the Pacific region are presented here. You’ll see customs of Fiji, New Zealand, Marquesas, Samoa, Tahiti, Tonga, and Hawaii all represented in Polynesian Cultural Center’s re-created island villages, which is decorated with palm trees and tropical gardens.Waimea Canyon(峡谷) State ParkMore than 3,500 feet deep, this landmark on Hawaii’s island of Kauai is the largest canyon in the Pacific. Unlike Grand Canyon, plentiful rain keeps Waimea Canyon and its surrounding area thick with vegetation(植被), and visitors are frequently treated to the sight of vivid rainbows. It offers a great canyon view and a covered picnic area.21. What makes Oahu’s North Shore known to the world?A. Its best free cultural shows.B. Its family-friendly beach hotels.C. Having the tallest coastline.D. Being a perfect place for surfing.22. Which place is most likely to attract those who are interested in history?A. Waikiki Beach.B. Oahu’s North Shore.C. Polynesian Cultural Center.D. Waimea Canyon State Park.23. What is special about Waimea Canyon compared to Grand Canyon?A. It has a covered picnic area.B. It’s rich in plants and rainfall.C. It has a depth of over 3,500 feet.D. It owns a unique kind of vegetation.BBeing cut from a school team can be a difficult experience for a kid. But when 13-year-old Emmie Tallent whohas Down syndrome(唐氏综合征) didn’t make her school’s cheer squad(啦啦队), she responded in the most impressive way — she cheered anyway. Emmie Tallent, a girl with firm determination, took to the sidelines while her school’s cheer squad performed. She matched the entire routine, moving for moving, in a black dress and tie-dyed shoes.Her sister, Sydnee, recorded this moment on video, and it’s now capturing hearts worldwide. The video, with over 3 million views and 87,000 likes, shows Emmie facing the official squad and performing the routine alongside them. Her performance is nothing short of inspiring. “Girl didn’t make the cheer team, but she didn’t care,” Sydnee wrote, admiring Emmie’s confidence.“E m mie may not be on the cheer team this time, but I’m s ure her talent and spirit will shine through somewhere in the future,” Sydnee said with a smile. “Right now, she’s satisfied and happy doing what she loves. Thank you all for supporting her. I want to show the world Emmie’s joy from pursuing what she likes and the beauty of diversity.”The team did not have a lot of spots and even neurotypical(神经正常的) girls who were much better than Emmie didn’t make it to join it. Emmie’s school was giving Emmie help and kept encouraging her, but there are hard decisions that have to be made sometimes. Though Emmie didn’t make the squad, she wasn’t feeling upset at home, and continued to follow cheer squad’s routines and moves to please herself and spread joy to others, even if from th e sidelines.In the face of rejection, this tough 13-year-old chose to dance rather than sit by and let it define her, inspiring us all to embrace our uniqueness and find joy in every moment.24. What do we know about Emmie from the first two paragraphs?A. She refused to give up performing.B. She used to be looked down upon.C. She showed a special talent for cheerleading.D. She felt down for not joining the cheer squad.25. Why did Sydnee post the video online?A. To show Emmie’s dancing skills.B. To inspire others with Emmie’s spirit.C. To help Emmie attract people’s attention.D. To express her gratitude to the cheer squad.26. How did the school react to Emmie’s joining the cheer squad?A. They told her to quit.B. They satisfied her need.C. They made an excuse.D. They offered her support.27. What does the author mainly intend to tell us?A. Believe in ourselves.B. Prepare for the worst.C. Keep our dreams alive.D. Youth gives us light.CLucy was rescued from a rural farm in New South Wales, Australia, two years ago. She was suffering from chlamydia(衣原体病), a disease widespread among koalas. Today, she is one of “the lucky” living creatures in tree corridors(走廊) that have been created by volunteers to protect koalas and other animals by saving their quickly shrinking habitats, or natural environment.The corridors, planted by the local conservation group Bangalow Koalas, are made up of large systems of plants. They are intended for koalas and other animals like the glossy black cockatoos, possums, and wallabies. All of them are endangered, or at risk of becoming extinct. The corridors provide a safe path across the koala’s increasingly broken habitat. “Our corridors are actually trying to get them away from humans, from cars and from dogs,” said Linda Sparrow, president o f Bangalow Koalas. “They can safely move across the landscapes and don’t have to put up with us humans.”The koala is predicted to be extinct in the wild in New South Wales by 2050. Some of the biggest dangers include wildfires and habitat loss through land clearing for development. Koalas have already been declared endangered in several Australian states. A recent report by the Australian Koala Foundation said the animal was worth an estimated $3.2 billion per year to the tourism industry.Founded in 2016, Bangalow Koalas has planted over 936,000 trees on 119 properties, helping koala conservation and improving the local ecosystem. The group, which depends on community volunteers, aims to plant 500,000 trees by 2025. V olunteer Lindy Stacker, who has been planting trees for over five years, still remains devoted to the cause. She said the activity is good for mental health and has brought the community together. “I can’t imagine a world where there’s no koalas in the wild. We’re going to do everything we can possibly to make sure that won’t happen,” Lindy said.28. Who is Lucy?A. A farmer.B. A patient.C. A koala.D. A volunteer.29. What are the tree corridors intended to do?A. To shelter koalas from human threat.B. To test the local natural environment.C. To save koalas suffering from chlamydia.D. To stop koalas’ habitats from being rebuilt.30. What does the author want to show in paragraph 3?A. The reason for koa las’ extinction.B. Koalas’ value in tourism industry.C. People’s deep love for k oalas.D. The necessity of saving koalas.31. What can be the best title for the text?A. Bangalow Koalas: A Group Intended For KoalasB. Tree Corridors: A Lifeline For Endangered KoalasC. Bangalow Koalas: Call On V olunteers For Koalas’ ProtectionD. Tree Corridors: Responsible For The Loss Of Koalas’ HabitatsDDeep sleep doesn’t just rest your body. Scientists believe it’s also when the brain washes away toxins(毒素), with a new project looking at whether the brain’s self-clean can be boosted.South Australian Health and Medical Research Institute (SAHMRI) neuroscientist Dr Tim Sargeant has teamed with D r Edward Robins from SAHMRI’s Molecular Imaging and Therapy Research Unit to develop a brain scan that shows how well a brain is cleaning itself. Studies have shown that a clean brain would help with memory while fighting dementia(痴呆).Scientists believe our brains clean themselves out each night when we enter deep sleep. Cerebrospinal fluid(脑脊液) is thought to wash through the brain, cleaning out toxins. Studies have shown a clear link between poor memory and toxins like the buildup of sticky plaques(黏性斑块) in the brains. Scientists believe brains that have a buildup of this plaque over time may not be cleaning themselves properly, putting people at risk of dementia.Fortunately, the hope is that a clean brain would help with memory while fighting dementia. The brain scan will use special material to track how well the brain can keep itself clean and healthy through the process of removing and recycling its waste. “We’re aiming to catch the signs of the brain struggling to keep itself clean in individuals around the age of 50 or 60, well before the onset of Alzheimer’s dis ease(老年痴呆) in most people,” Dr Sargeant said.This new scan, an exciting imaging technology, will allow scientists to form a picture of a living brain and watch how it’s recycling wasting material in real time. “The scan takes out a lot of the guess work, by allowing scientists to see with their own eyes if they’ve hit the target or not,” Dr Robins said. “Without imaging, a researcher can get all the way up to the trial st age before realising they’r e at a dead end.”32. What is the aim of Dr Sargeant and Dr Robins’ developing the brain scan?A. To help people enter deep sleep.B. To reduce memory loss and dementia.C. To research how to remove sticky plaques.D. To study what the brain uses to clean itself.33. What may cause dementia according to the text?A. Not enough blood in the brain.B. Too frequent cleaning of the brain.C. The increase of cerebrospinal fluid.D. The gradual increase of sticky plaques.34. What does the underlined word “onset” in paragraph 4 mean?A. Worsening.B. Improvement.C. Beginning.D. Disappearance.35. What does Dr Robins think of the brain scan?A. It is quite effective.B. It is just imaginary.C. It brings more work.D. It is far from exact.第二节(共5小题;每小题2.5分,满分12.5分)阅读下面短文,从短文后的选项中选出可以填入空白处的最佳选项。

广东省广州市广州中学2023-2024学年高一下学期期中考试数学试卷(含简单答案)

广东省广州市广州中学2023-2024学年高一下学期期中考试数学试卷(含简单答案)

广州市广州中学2023-2024学年高一下学期期中考试数学试卷一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知向量,,则( )A. 2B. 3C. 4D. 52( )A. B. C. D. 3. 如图,四边形中,,则必有( )A. B. C. D. 4. 如图,在空间四边形中、点、分别是边、上的点,、分别是边、上的点,,,则下列关于直线,的位置关系判断正确的是( )A. 与互相平行;B. 与是异面直线;C. 与相交,其交点在直线上;D. 与相交,且交点在直线上.5.已知,,且与互相垂直,则与的夹角为( )A. B. C. D. .(2,1)a =(2,4)b =- ||a b -= ()i 13i 1i-=+2i +2i -2i-+2i--ABCD AB DC =AD CB=DO OB=AC DB=OA OC=ABCD E H AB AD F G BC CD EH FG ∥EH FG ≠EF GH EF GH EF GH EF GH BD EF GH AC a = 1b = a b - 2a b + a b30︒45︒60︒90︒6. 已知圆锥的底面圆周在球的球面上,顶点为球心,圆锥的高为3,且圆锥的侧面展开图是一个半圆,则球的表面积为( )A. B. C. D.7. 函数的部分图象如图所示,则函数的单调递减区间为( )A. B. C. D. 8. 如图的曲线就像横放的葫芦的轴截面的边缘线,我们叫葫芦曲线(也像湖面上高低起伏的小岛在水中的倒影与自身形成的图形,也可以形象地称它为倒影曲线),它每过相同的间隔振幅就变化一次,且过点,其对应的方程为(,其中为不超过的最大整数,).若该葫芦曲线上一点到轴的距离为,则点到轴的距离为( )A.B.C.D.二、选择题:本题共3个小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 如图,弹簧挂着的小球做上下运动,它在时相对于平衡位置的高度(单位:)由关系式O O O 12π16π48π96π()()πsin 1002f x A x A ωϕωϕ⎛⎫=++>>< ⎪⎝⎭,,()π16g x f x ⎛⎫=-- ⎪⎝⎭πππ,π,Z 66k k k ⎡⎤-+∈⎢⎥⎣⎦ππ2π,2π,Z 66k k k ⎡⎤-+∈⎢⎥⎣⎦π5ππ,π,Z 36k k k ⎡⎤++∈⎢⎥⎣⎦πππ,π,Z 63k k k ⎡⎤-+∈⎢⎥⎣⎦π,24P ⎛⎫⎪⎝⎭122sin 2πx y x ω⎛⎫⎡⎤=- ⎪⎢⎥⎣⎦⎝⎭0x ≥[]x x 05ω<<M y 4π3M x 1412s t h cm,确定,其中,,.小球从最高点出发,经过后,第一次回到最高点,则( )A B.C. 与时的相对于平衡位置的高度D. 与时的相对于平衡位置的高度之比为10. 下列说法正确的是( )A. 向量在向量上的投影向量可表示为B. 若,则与的夹角θ的范围是C. 若是等边三角形,则D 已知,,则11. 如图,在直三棱柱中,分别是棱上的点,,,则下列说法正确的是( )A. 直三棱柱的体积为..()sin h A t ωϕ=+[)0,t ∞∈+0A >0ω>(]0,πϕ∈2s π4ϕ=πω=3.75s t =10s t =h 3.75s t =10s t =h 12ab a b b b b⋅⋅0a b ⋅< a bπ,π2⎛⎤⎥⎝⎦ABC V π,3AB BC <>=(1,2)A -(1,1)B ()2AB =-,1111ABC A B C -,E F 11,B B C C 11111224AA A B A C ===111π3A CB ∠=111ABC A B C -B. 直三棱柱外接球的表面积为;C. 若分别是棱的中点,则直线;D. 当取得最小值时,有三、填空题:本小题共3小题,每小题5分,共15分12. 在复平面内,对应的复数是,对应的复数是,则点之间的距离是______.13. 已知不共线的三个单位向量满足与的夹角为,则实数____________.14. 将函数且的图象上各点的横坐标伸长为原来的2倍,再将所得图形向左平移个单位长度后,得到一个奇函数图象,则__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. (1)将向量运算式化简最简形式.(2)已知,且复数,求实数的值.16. 如图所示,正六棱锥的底面周长为24,H 是的中点,O 为底面中心,,求:(1)正六棱锥的高;(2)正六棱锥斜高;(3)正六棱锥的侧棱长.17. (1)在三角形中,内角所对的边分别是,其中,,求.(2)热气球是利用加热的空气或某些气体,比如氢气或氦气的密度低于气球外的空气密度以产生浮力飞行.热气球主要通过自带的机载加热器来调整气囊中空气的温度,从而达到控制气球升降的目的.其工作的基本原理是热胀冷缩,当空气受热膨胀后,比重会变轻而向上升起,热气球可用于测量.如图,在离地为的111ABC A B C -64π3,E F 11,B B C C 1A F AE ∥1AE EF FA ++1A F EF=AB1i -AD 1i +,B D ,,a b c0,a b c a λ++=bπ3λ=()sin cos (,R f x a x b x a b =+∈0)b ≠π3ab =AB CB DC DE FA --++x ∈R ()222522i 0x x x x -++--=x BC 60SHO ∠=︒ABC ,,A B C ,,a b c 2c a =1sin sin sin 2b B a A a C -=cos B面高的热气球上,观测到山顶处的仰角为,山脚处的俯角为,已知,求山的高度.18. 如图,在梯形中,,,且,,,在平面内过点作,以为轴将四边形旋转一周.(1)求旋转体的表面积;(2)求旋转体的体积;(3)求图中所示圆锥的内切球体积.19. 如图,在的边上做匀速运动的点,当时分别从点,,出发,各以定速度向点前进,当时分别到达点.(1)记,点为三角形的重心,试用向量线性表示(注:三角形的重心为三角形三边中线的公共点)(2)若的面积为,求的面积的最小值.(3)试探求在运动过程中,的重心如何变化?并说明理由.800m M C 15︒A 45︒60BAC ∠=︒BC ABCD 90ABC ∠=︒AD BC ∥AD a =2BC a =60DCB ∠=︒ABCD C l CB ⊥l ABCD CO ABC V ,,D E F 0=t A B C ,,B C A 1t =,,B C A ,AB a AC b == G ABC ,a bBG ABC V S DEF V DEF V广州市广州中学2023-2024学年高一下学期期中考试数学试卷简要答案一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.【1题答案】【答案】D【2题答案】【答案】B【3题答案】【答案】B【4题答案】【答案】D【5题答案】【答案】D【6题答案】【答案】C【7题答案】【答案】C【8题答案】【答案】D二、选择题:本题共3个小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.【9题答案】【答案】BC【10题答案】【答案】AB【11题答案】【答案】ABD三、填空题:本小题共3小题,每小题5分,共15分【12题答案】【答案】2【13题答案】【答案】-1【14题答案】【答案】四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.【15题答案】【答案】(1);(2)2.【16题答案】【答案】(1)6;(2)3)【17题答案】【答案】(1);(2)【18题答案】【答案】(1)(2(3【19题答案】【答案】(1)(2)(3)的重心保持不变,理由略.FE341200m 2(9πa +3a 3πa 1233BG b a =-14S DEF V。

2023-2024学年上海中学高一下学期期中考试英语试卷含答案

2023-2024学年上海中学高一下学期期中考试英语试卷含答案

上海中学2023学年第二学期期中考试英语试卷高一______班学号______ 姓名______ 成绩______Ⅰ.Listening ComprehensionSection ADirections: In Section A, you will hear ten short conversations between two speakers. At the end of each conversation, a question will be asked about what was said. The conversations and the questions will be spoken only once. After you hear a conversation and a question about it, read the four possible answers on your paper, and decide which one is the best answer to the question you have heard.1.A.15 dollars.B.20 dollars.C.25 dollars.D.45 dollars. 2.A.To the gallery.B.To the dentist’s.C.To her flat.D.To the garage. 3.A.She was fired by the company.B.She broke the law.C.She is on leave right now.D.She is replacing the company’s website. 4.A.Patient and doctor.B.Resident and government official. C.Customer and insurance agent.D.Boss and secretary.5.A.He was sitting opposite Mr. Johnson.B.He is planning a farewell party for Mr. Johnson. C.All the tasks that Mr. Johnson did failed.D.He is glad Mr. Johnson left the company. 6.A.She prefers dogs to cats.B.She had a close relationship with the man’s daughter.C.She used to sorrow over her dog’s death.D.She is always in low spirits.7.A.The woman should get the chips herself.B.The woman shouldn’t eat chips.C.The woman used to have several heart attacks.D.The woman warned the man against heart attacks. 8.A.They plan to have the meeting in another place.B.The availability of the meeting room will be discussed.C.They have already had the meeting.D They will have the meeting sometime later.9.A.The car’s demand greatly exceeds supply.B.The woman has listed the car’s advantages. C.The woman received a car a month ago.D.The woman didn’t like the car.10.A.She won’t do the presentation.B.She needs to collect a lot of data for the presentation.C.She is still at an early stage of preparation for the presentation.D.The topic is most important for the presentation.Section BDirections: In Section B, you will hear two short passages and a longer conversation, and you will be asked some questions on the passages and the conversation. The passages and the conversation will be read twice, but the questions will be spoken only once. When you hear a question, read the four possible answers on your paper anddecide which one is the best answer to the question you’ve heard.Questions 11 through 13 are based on the following passage.11.A.The type of food you freeze.B.The way you warm up the frozen food. C.Whether the freezer bags are sealed.D.What temperature you set your freezer to. 12.A.Because they can be easily stocked.B.Because they fit well in the fridge. C.Because they come in different sizes and shapes.D.Because they help to keep the dry food dry 13.A.Prevent people from eating too much food.B.Stop people from removing food that hasn’t gone bad.C.Make people become cautious about eating unhealthy food.D.Make people become ambitious in making use of leftover food.Questions 14 through 17 are based on the following passage.14.A.Postpone retirement age.B.Involve more women in work.C.Hire more foreign workers.D.Attract workers with high salaries. 15.A.Relieve pressure on human nursing care.B.Take care of children and the elderly. C.Finally replace humans in workforce.D.Give humans more time to r creative work. 16.A.Robots can’t do certain work.B.Some people don’t accept robots.C.The expenses for robots are still high.D.The functions of robots need improving. 17.A.Japan struggles to fight workforce shortage.B.Japanese attitudes towards robots change a lot.C.Robots have played a major role in Japan’s industry.D.Robots can help in Japanese workforce shortage.Questions 18 through 20 are based on the following conversation.18.A.The cruise liner will provide all sorts of food and entertainment.B.Only half of the cabins will be filled up.C.The prices of unsold tickets will be reduced.D.Everyone will be able to afford the ticket.19.A.Book tickets as soon as they are available.B.Closely watch the changes of ticket prices C.Compare deals from different sources.D.Keep in contact with a travel age n you can trust. 20.A.Because cruise tours are only suitable for people who have much free time.B.Because he can work part-time to earn money to pay for the tour.C.Because doing price research and comparing takes time.D.Because he can sail shortly after buying the cheap ticket.Ⅱ.Grammar and VocabularySection A Multiple Choice21.No man is useless in this world ______ lightens the burden of someone else.A.which B.that C.who D.as22.______ be considered for the role of team leader in our upcoming project?A.Who do you suggest that should B.Who do you suggestC.Whom do you suggest should D.Do you suggest who should23.I’m now applying to graduate school, ______ means someday I’ll return to a profession ______people need to be nice to me in order to get what they want.A.which, as B.which, which C.which, where D.as, in which 24.The reason ______ she gave for her resignation was ______ she wanted to pursue her passion for travel and exploration.A.that, that B.why, that C.why, because D./, because25.It might be years ______ we ______ the creation of artificial intelligence systems capable of true human-like cognition.A.since, made possible B.before, make possibleC.since, made possible that D.before, make it possible26.The budget for the project ended up being twice ______, causing unexpected financial strain on the company. A.how it intended to B.that it had intended toC.as it intended to D.what it was intended to27.It was ______ she took her first step onto foreign soil ______ signaled the beginning of a journey filled with unknown adventures and unforgettable experiences.A.the moment, that B.the moment, whenC.the moment when, that D.the moment when, which28.The complexities of the English language are ______ even native speakers cannot always communicate effectively, ______ almost every American learns on his first day in Britain.A.so that, as B.such that, as C.so that, with D.such that, in that 29.His confidence and strong will clearly show that he is no longer ______ he used to be the first time ______ he undertook such a demanding task.A.who, when B.who, /C.what, /D.what, that30.It was not so much her talent ______ her perseverance and determination ______ motivated her to the top of her field.A but. that B.as, that C.nor, which D.like, which31.______ the children tracked mud all over them again.A.No sooner did he sweep the floors clean than B.Hardly had he sweep the floors clean when C.Barely he had swept the floors clean than D.Scarcely had he swept the floors clean when 32.Although the suspect insisted ______ alone during the time of the crime, the court still demanded ______ evidence to support his alibi.A.being at home, he should provide B.he be at home, he providedC.he was at home, be provide D.he was at home, he providing33.Visitors are permitted to take photographs for personal use only, ______ stated otherwise by the museum staff. A.though B.if C.as D.unless34.The recipe book features helpful ______, making it easier for learners to visualize the cooking process. A.explanation B.demonstrations C.illustrations D.presentations35.The heroic idea that ______ qualities such as excellence, generosity courage, loyalty and dignity is highly valued and modeled.A.embraces B.identifies C.examines D.criticizes36.______ by the work pressure, he has been experiencing serious physical symptoms of stress and had to turn to a therapist for help.A.Overwhelmed B.Disappointed C.Frustrated D.Shocked37.After witnessing her tireless dedication to practice every day, the parents were ______ her enthusiasm for playing the piano.A.concerned with B.committed to C.informed of D convinced of38.When we ______ the data further, we can identify specific trends and patterns that may not be evident at first glance.A.break up B.break out C.break through D.break down 39.The temptation for a declining church to ______ old privileges is strong.A.hang on to B.settle for C.pass up D.sign for40.After signing the contract, every employee is ______ fulfill their duties and conform to the rules made by the company.A.reluctant to B.obliged to C.motivated to D.honored to 41.Due to the long-term environmental and financial benefits, renewable energy technologies are ______ A.worthwhile to develop B.worth being developedC.worthy to be developed D.worthy of developingSection B VocabularyDirections: Complete the following passage by using the words in the box. Each word can only be used once. Note that there is one word more than you need.Stressed out? Get chewing: can a wellness rebrand make Americans buy gum again?When was the last time you saw someone chewing gum? 1998, maybe? 2007? Chances are, it probably wasn’t recently. Like high heels and affordable housing, chewing gum appears to be going 42Gum’s popularity has been fading globally thanks to increased competition from products like breath mints and mobile phones distracting us from impulse purchases while shopping. The pandemic, moreover,43 ·accelerated gum’s decline.Even after people 44 from lockdown, sales didn’t recover. Gum sales worldwide in 2023 were 10% below 2018 figures. In the US, the drop has been particularly pronounced: last year 1.2 billion units of gum were sold in the US, 32% fewer than in 2018.However, chewing gum, in various forms, is one of the oldest habits there is. Stone age teenagers were chewing birch bar k tar possibly for pleasure, medicinal purposes, or to use it as a glue. Gum has also been loaded with cultural meaning and the subject of various 45 panics. Some people believe it is a marker of the bad kidsor a habit of the lower class.Despite a certain amount of social stigma(污名)attached to gum, it has - until relatively recently -been a wildly successful product. That’s thanks to William Wrigley Jr, who was a marketing and advertising genius. Wrigley always 46 to find a way to make gum relevant and insert it into consumer culture. For example, Wrigley advertised the idea that chewing gum was a health aid that would help digestion and would relieve stress.This year the Wrigley brand’s owner —Mars— came out with an ad campaign it hopes will revive gum’s47 by positioning it as an almost instant stress reliever. Linking gum with wellness worked in the 1910s, but is it going to work now? Alex Hayes at the food consultancy is 48 optimistic. “The global well ness market is estimated to be worth more than $1.5 trillion, so it’s no surprise that Mars wants a piece of the pie,” Hayes says. “We’ve seen the success of categories such as tea promoting their products via functional 49 and messaging-teas for good sleep, mental clarity, stress relief, etc. So it comes as no surprise that Mars is risking the same 50 .” But he also notes, customers are increasingly worried about processed foods and are eager to move away from artificial 51 . There’s still ongoing discussion on just how effective repositioning chewable plastic as a health supplement is going to be.Ⅲ.Reading ComprehensionSection A ClozeDirections: For each blank in the following passage there are four words or phrases marked A, B, C and D. Fill in each blank with the word or phrase that best fits the context.It’s safe to say Jeremy Scott is having a lucky year. In March while working as a chauffeur, he told his boss about his plans to set up a driving business. By the end of the journey, Scott’s boss had offered to 52 his idea-a starting capital along with the gift of a £110,000 limousine(豪车)to kick start the business.Of course, there’s an element of luck to everyone’s career. Whether you’re a chief executive or an artist — your 53 won’t be based on hard work alone. For example, the place you were born 54 your education. It determines whether you learn to read, write or complete qualifications, which 55 limits your career choices.Many people believe success is down to talent and hard work, but “this is because most people underestimate the role of 56 ”, says psychologist Dr Elizabeth Nutt Williams. “We do a lot of work to prepare for our careers-education, training, taking advantage of mentoring-all of which tend to be in our control.” People don’t like to acknowledge the role of luck in their work, as it 57 this feeling of being in control, adds Williams.Everyone remembers working hard, so people are more likely to overestimate how much of their success is down to diligence than something much more 58 like luck.The reality of success (at least in terms of 59 )is less clear cut. In the UK, studies show where you are born is likely to determine how much you earn.2017 research found that there is a “class pay gap’’, where professional employers from 60 backgrounds are paid almost £7,000 less a year — despite having the same role, education and experience as colleagues from more privileged families. 61 , black graduates earn up to 23% less per hour than white university leavers, whereas woman in the UK earn 14% less on average than men.Socio-economic status also plays a big role in the 62 you enter. A recent study by the Debrett’s Foundation found seven in every 10 young people aged 16-25 use 63 to get their first job. While research hasshown that less able, richer children are 35% more likely to become high earners than their brighter. poorer peers.The truth is: chance and coincidences 64 our careers more than we like to think. Realizing that parts of your career are out of your control sounds 65 , but being grateful for the role of luck in your career can actually make you more fortunate.This is because when you acknowledge the role of luck in your work, you become prepared to take advantage of more fortunate moments. “Chance events occur·but it is all about the individual’s 66 to see those events as possibilities and their willingness to take a risk,” says Williams.52.A.challenge B.adopt C.finance D.reject 53.A.performances B.accomplishments C.assessments D.outcomes 54.A.accounts for B.applies to C.makes up for D.depends on 55.A.in reward B.after all C.in turn D.by nature 56.A.chance B.accident C.education D.diligence 57.A.emphasizes B.overlooks C.maintains D.weakens 58.A.manageable B.vital C.slippery D.minor 59.A.reputation B.income C.education D.occupation 60.A.wealthier B.poorer C.unique D.diverse 61.A.Nevertheless B.Contrarily C.Consequently D.Similarly 62.A.profession B.circle C.community D.university 63.A.certificates B.online platforms C.career fairs D.family connections 64.A.contribute to B.result from C.add to D.hold back 65.A.inspiring B.encouraging C.appealing D.discouraging 66.A.reluctance B.eagerness C.readiness D.resolutionSection B Passages(A)When you think about coffee alternatives, garlic is probably one of the last things that comes to mind, but that is exactly the ingredient that one Japanese inventor used to create a drink that looks and tastes like coffee.74-year-old Yokitomo Shimotai, a coffee shop owner in Aomori Prefecture, Japan, claims that his unique “garlic coffee” is the result of a cooking blunder he made over 30 years ago, when he burned a steak and garlic while waiting tables at the same time. Intrigued by the burnt garlic’s smell, he mashed it up with a spoon and mixed it with hot water. The resulting drink looked and tasted a lot like coffee. Making a mental note of his discovery, Yokimoto carried on with his job and only started researching garlic coffee again after he retired.Committed to turning his weird drink into a commercial product, Yokitomo Shimotai spent years optimizing the formula, and about five years ago, he finally achieved a result he was satisfied with. To make his dissolvable garlic grounds, he roasts the cloves(蒜瓣)in an electric oven, and after they’ve cooled off, smashes them into fine particles and packs them in dripbags.“My drink is probably the world’s first of its kind,” the garlic coffee inventor told Kyodo News. “It contains no caffeine so it’s good for those who would like to drink coffee at night or pregnant women.”“The bitterness of burned garlic apparently helps create the coffee-like flavor,” Shimotai adds. He claims that,although his garlic coffee does give off an aroma of roasted garlic, it doesn’t cause bad breath, because the garlic is thoroughly cooked. And if you can get past the smell, the drink apparently does taste a lot like actual coffee. If decaf isn’t good enough for you, and you’re in the mood for something new, you can try Yokitomo Shimotai’s garlic coffee at his shop, in the city of Ninohc, lwate Prefecture, or buy your own dripbags for just 324 yen ($2.8).67.Which word is the closest in meaning to the underlined word “blunder” in the second paragraph?A mistake B.show C.mixture D.brand68.Who is NOT suitable to drink garlic coffee?A.A student having trouble with sleep B.A woman bearing a baby.C.A cleaner working on a day shift.D.A young lady sick of garlic.69.Which of the following is NOT characteristic of garlic coffee?A.It is caffeine-free.B.Garlic powder dissolves in waterC.The burnt garlic create s bitterness.D.It is an improvement on a garlic dish. 70.Which of the following can be used to describe Yokitomo Shimotai?A.Venturous and greedy B.Innovative and perseverantC.Hardworking and cautious D.Observant and helpful(B)71.By “how they stacked up” in paragraph 1, the author probably means “how they ______.”A.make sense to manufacturers B.get stuck in storesC are compared with each other D.are piled up together72.Which of the following devices favourably reacts to users?A.Dreampad pillow B.Eight sleep trackerC.Smart Nora Wireless Snoring Solution D.Nightingale Smart Home Sleep System 73.Which of the following statements is true according to the passage?A.The Eight keeps the entire bed at the same temperature.B.The Nightinga, is an economical but perfect device.C.Soft music is applied to all these four devices.D.One in three people suffer from sleep problem.(C)One way to divide up the world is between people who like to explore new possibilities and those who stick to the tried and true. In fact, the tension between betting on a sure thing and taking a chance that something unexpected and wonderful might happen troubles human and nonhuman animals alike.Take songbirds, for example. The half-dozen finches(雀)resting at my desk feeder all summer know exactly what they’ll find there: black sunflower seed, and lots of it. Meanwhile, the warblers(莺)exploring the woods nearby don’t depend on this predictable food source in fine weather. As food hunters, they enjoy less exposure to predators and, as a bonus, the chance to meet the perfect mate flying from tree to tree.This “explore-exploit” trade-off(权衡)has prompted scores of lab studies, computer simulations and algorithms(算法), trying to determine which strategy brings in the greatest reward. Now a new study of human behavior in the real world, published last month in the journal Nature Communications, shows that in good times, there isn’t much of a difference between pursuing novelty and sticking to the status quo(原状). When the going gets tough. however, explorers are the winners.The new study, led by Shay O’Farrell and James Sanchirico, both of the University of California, Davis, along with Orr Spiegel of Tel Aviv University, examined the routes and results of nearly 2,500 commercial fishing trips in the Gulf of Mexico over a period of 2.5 years. The study focused on “bottom longline” fishing, a system where hundreds of lines are attached to a horizontal bar that is then lowered to reach the sea bed. Dr. O’Farrell explained the procedure this way: Go to a location and put the line down. Stay for a few hours. The lines are a mile long and have a buoy (浮标)at either end. When they pull that up, they assess the catch, and then decide if they will stay or move on to a different spot.Over two years of collecting data under various climate conditions, the researchers discovered that thefishermen were fairly consistent. “The exploiters would go to a smaller set of locations over and over, and go with what they know,” Dr. O’Farrell said. The explorers would constantly try a wider range; they’d sample new places.In the long run, there wasn’t a huge difference in payoffs between the two groups, perhaps due to the sharing information between fishing crews, said Dr. O’Farrell. But in challenging times, the study’s message was clear: “You can try new things in the face of uncertainty.”74.The author takes the songbird as an example to indicate that ______.A.like birds, humans tend to be satisfied with the predictableB.some birds are used to looking for food instead of being fedC.there exist the conservative and the adventurous like humansD.birds choose different ways to look for food in different weather75.According to the third paragraph, people who mastered “explore-exploit” trade-off ______.A.will choose either to pursue novelty or keep the status quoB.are ready to risk in time of difficultyC.will be tough in good times and bad timesD.will grow to be experts in lab studies76.Which can be inferred from the new study led by Shay O’Farrell and James Sanchirico?A.The two groups react to the unexpected differently.B.The “explore-exploit” trade-off helps scientific research a lot.C.The exploiters are used to fishing based solely on their experience.D.The explorers tend to achieve more than the exploiters in the long run.77.Which of the following can be the best title for passage?A.How the Exploiter differs from the Explorer B.How to Become a Productive Fisherman C.What is “Explore-Exploit” Trade-off D.When to take risks mattersSection CDirections: Read the following passage. Fill in each blank with a proper sentence given in the Each sentence can be used only once. Note that there are two more sentences than you need.The Maya loved cacao so much that they used the beans as currency. They also believed it is good for you—which many people still say today about cacao’s most famous byproduct, chocolate. 78 . While some have suggested that less than an ounce of dark chocolate might improve heart health, much of the research doesn’t involve eating actual chocolate but rather its components — flavanol, especially.79 . In a clinical trial of 21,000 adults, they found that the half of the group that took500mg of. cocoa flavanol supplements daily had a significantly lower risk of death from cardiovascular disease than those who had taken a placebo(安慰剂).Flavanols may also boost insulin sensitivity, according to some studies, which might be helpful in reducing the risk of type 2 diabetes(糖尿病). 80 . Those at risk of diabetes might be wise to choose a cacao-inspired supplement instead of eating chocolate—and the sugar it contains. Other research suggests that the flavanols found in cacao (also present in fruits, vegetables, and tea)could slow cognitive decline during aging, or even boost brain performance by improving blood flow to the cerebral cortex.What these findings mean for chocolate is limited, however. Participants would have had to eat multiple fat and sugar filled chocolate bars a day to source 500mg of flavanols. 81 . So understanding why certain types of chocolate are healthier than the rest is the focus of further research.Ⅳ.Fill in the BlanksHow sneaker culture took over the worldSneakers have come a long way from when they were first invented in 1860s England for the upper-class playing croquet(槌球)and tennis.Long worn for function 82 82 fashion, today sneakers have become an entire culture—both a form of self-expression and a high art found in museum exhibits and designer auction houses.83 transformed sneaker culture into a true phenomenon was the 1985 release of Nike’s Air Jordan 1s. In 1984, Michael Jordan was a talented rookie who had yet to play in a professional game. 84 that, Nike saw Jordan as the future of their brand, signing him to a five-year, $2.5 million endorsement(代言)deal. 85 Jordan matured into one of the greatest basketball players of all time, the sneaker’s popularity skyrocketed.Meanwhile, another cultural shift 86 (take)place with casual Fridays introduced in white-collar businesses. It was when men were allowed to put aside their suits and wear something one day a week that showed people who they really were.As sneakers became increasingly desired, footwear companies turned to 87 (generate)even more publicity by collaborating with celebrities and luxury brands, as well as releasing small batches of limited-edition shoes with eye-pop ping designs.Celebrities also started their collaborations with sneaker brands, which helped target a whole new demographic of people to experience sneaker culture. It was a blending of high and low fashion, 88 the shoe industry has never really seen before. A pair that Jordan wore in his legendary final NBA season 89 (sell )even for $2.2 mllion, making them the most expensive sneakers ever to appear at auction.By the mid-2010s, speakers 90 (become)solid gold status symbols. Wearing rare and cool sneakers became an expression of one’s social status. But not until recently, sneakers are finally getting their due as part of our cultural heritage—and particularly how Black culture has shaped that heritage. It took decades for the sneaker industry to recognize that 91 these Black athletes or artists that championed their products there would be no sneaker culture.Ⅴ.Translations92.结果看来这项传统的确值得传承给我们的后代。

北京市2023-2024学年高一下学期期中考试数学试题含答案

北京市2023-2024学年高一下学期期中考试数学试题含答案

北京2023—2024学年第二学期期中练习高一数学(答案在最后)2024.04说明:本试卷共4页,共120分.考试时长90分钟.一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.sin120︒的值等于()A.12-B.12C.2D.2【答案】D 【解析】【分析】根据特殊角的三角函数值得到2,从而可求解.【详解】由题意可得sin1202︒=,故D 正确.故选:D.2.若角α的终边过点()4,3,则πsin 2α⎛⎫+= ⎪⎝⎭()A.45B.45-C.35D.35-【答案】A 【解析】【分析】根据余弦函数定义结合诱导公式计算求解即可.【详解】因为角α的终边过点()4,3,所以4cos 5α==,所以π4sin cos 25αα⎛⎫+== ⎪⎝⎭.故选:A3.已知扇形的弧长为4cm ,圆心角为2rad ,则此扇形的面积是()A.22cmB.24cm C.26cm D.28cm 【答案】B【解析】【分析】由条件结合弧长公式l R α=求出圆的半径,然后结合扇形的面积公式12S lR =可得答案.【详解】因为扇形的圆心角2rad α=,它所对的弧长4cm l =,所以根据弧长公式l R α=可得,圆的半径2R =,所以扇形的面积211424cm 22S lR ==⨯⨯=;故选:B .4.向量a ,b ,c在正方形网格中的位置如图所示,若向量c a b λ=+,则实数λ=()A.2-B.1-C.1D.2【答案】D 【解析】【分析】将3个向量的起点归于原点,根据题设得到它们的坐标,从而可求λ的值.【详解】如图,将,,a b c的起点平移到原点,则()()()1,1,0,1,2,1a b c ==-= ,由c a b λ=+可得()()()2,11,10,1λ=+-,解得2λ=,故选:D.5.下列四个函数中以π为最小正周期且为奇函数的是()A.()cos2f x x =B.()tan2x f x =C.()()tan f x x =- D.()sin f x x=【答案】C 【解析】【分析】根据三角函数的周期性和奇偶性对选项逐一分析,由此确定正确选项.【详解】对于A ,函数()cos2f x x =的最小正周期为π,因为()()()cos 2cos 2f x x x f x -=-==,所以()cos2f x x =为偶函数,A 错误,对于B ,函数()tan 2xf x =的最小正周期为2π,因为()()tan tan 22x x f x f x ⎛⎫-=-=-=- ⎪⎝⎭,所以函数()tan 2x f x =为奇函数,B 错误,对于C ,函数()()tan f x x =-的最小正周期为π,因为()()()tan tan f x x x f x -==--=-,所以函数()()tan f x x =-为奇函数,C 正确,对于D ,函数()sin f x x =的图象如下:所以函数()sin f x x =不是周期函数,且函数()sin f x x =为偶函数,D 错误,6.在ABC 中,4AB =,3AC =,且AB AC AB AC +=- ,则AB BC ⋅= ()A.16B.16- C.20D.20-【答案】B 【解析】【分析】将AB AC AB AC +=- 两边平方,即可得到0AB AC ⋅=,再由数量积的运算律计算可得.【详解】因为AB AC AB AC +=- ,所以()()22AB ACAB AC +=-,即222222AB AB AC AC AB AB AC AC +⋅+=-⋅+uu u r uu u r uuu r uuu r uu u r uu u r uuu r uuu r ,所以0AB AC ⋅= ,即AB AC ⊥ ,所以()220416AB BC AB AC AB AB AC AB ⋅=⋅-=⋅-=-=- .故选:B7.函数cos tan y x x =⋅在区间3,22ππ⎛⎫⎪⎝⎭上的图像为()A.B.C.D.【答案】C 【解析】【分析】分别讨论x 在3,,[,)22ππππ⎛⎫⎪⎝⎭上tan x 的符号,然后切化弦将函数化简,作出图像即可.【详解】因为3,22x ππ⎛⎫∈ ⎪⎝⎭,所以sin ,,23sin ,.2x x y x x πππ⎧-<<⎪⎪=⎨⎪≤<⎪⎩故选:C.8.已知函数()sin 24f x x π⎛⎫=+ ⎪⎝⎭,则“()ππ8k k α=+∈Z ”是“()f x α+是偶函数,且()f x α-是奇函数”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【解析】【分析】首先求出()f x α+、()f x α-的解析式,再根据正弦函数的性质求出使()f x α+是偶函数且()f x α-是奇函数时α的取值,再根据充分条件、必要条件的定义判断即可.【详解】因为()sin 24f x x π⎛⎫=+⎪⎝⎭,则()sin 224f x x ααπ⎛⎫+=++ ⎪⎝⎭,()sin 224f x x ααπ⎛⎫-=-+ ⎪⎝⎭,若()f x α-是奇函数,则112π,Z 4k k απ-+=∈,解得11π,Z 82k k απ=-∈,若()f x α+是偶函数,则222π,Z 42k k αππ+=+∈,解得22π,Z 82k k απ=+∈,所以若()f x α+是偶函数且()f x α-是奇函数,则π,Z 82k k απ=+∈,所以由()ππ8k k α=+∈Z 推得出()f x α+是偶函数,且()f x α-是奇函数,故充分性成立;由()f x α+是偶函数,且()f x α-是奇函数推不出()ππ8k k α=+∈Z ,故必要性不成立,所以“()ππ8k k α=+∈Z ”是“()f x α+是偶函数,且()f x α-是奇函数”的充分不必要条件.故选:A9.已知向量,,a b c 共面,且均为单位向量,0a b ⋅= ,则a b c ++ 的最大值是()A.1+ B.C.D.1-【答案】A 【解析】【分析】根据题意,可设出向量,,a b c 的坐标,由于这三个向量都是单位向量,则向量,,a b c的终点都落在以坐标原点为圆心的单位圆上,作出示意图,由向量的性质可知,只有当c 与a b +同向时,a b c ++ 有最大值,求解即可.【详解】因为向量,,a b c 共面,且均为单位向量,0a b ⋅= ,可设()1,0a =,()0,1b = ,(),c x y = ,如图,所以2a b += ,当c 与a b +同向时,此时a b c ++ 有最大值,为21+.故选:A .10.窗花是贴在窗户玻璃上的贴纸,它是中国古老的传统民间艺术之一在2022年虎年新春来临之际,人们设计了一种由外围四个大小相等的半圆和中间正方形所构成的剪纸窗花(如图1).已知正方形ABCD 的边长为2,中心为O ,四个半圆的圆心均为正方形ABCD 各边的中点(如图2),若P 为 BC 的中点,则()PO PA PB ⋅+=()A .4B.6C.8D.10【答案】C 【解析】【分析】根据平面向量的线性运算将()PO PA PB ⋅+ 化为OA 、OB 、OP表示,再根据平面向量数量积的运算律可求出结果.【详解】依题意得||||2OA OB ==,||2OP =,3π4AOP =Ð,π4BOP =Ð,所以3π2||||cos 22(242OA OP OA OP ⋅=⋅=⨯-=- ,π2||||cos 22242OB OP OB OP ⋅=⋅=⨯= ,所以()PO PA PB ⋅+= ()OP OA OP OB OP -⋅-+- 22||OA OP OB OP OP =-⋅-⋅+ 222228=-+⨯=.故选:C二、填空题(本大题共5小题,每小题4分,共20分,把答案填在题中横线上)11.写出一个与向量()3,4a =-共线的单位向量_____________.【答案】34,55⎛⎫- ⎪⎝⎭(答案不唯一)【解析】【分析】先求出a r ,则aa±即为所求.【详解】5a ==所以与向量()3,4a =- 共线的单位向量为34,55⎛⎫- ⎪⎝⎭或34,55⎛⎫- ⎪⎝⎭.故答案为:34,55⎛⎫- ⎪⎝⎭(答案不唯一)12.已知函数()()sin 0,0,2πf x A x A ωϕωϕ⎛⎫=+>><⎪⎝⎭的部分图象如图,则π3f ⎛⎫= ⎪⎝⎭__________.【解析】【分析】根据图象可得函数()f x 的最大值,最小值,周期,由此可求,A ω,再由5π212f ⎛⎫=⎪⎝⎭求ϕ,由此求得的解析式,然后求得π3f ⎛⎫⎪⎝⎭.【详解】由图可知,函数()f x 的最大值为2,最小值为2-,35ππ3π41234T =+=,当5π12x =时,函数()f x 取最大值2,又()()sin 0,0,2πf x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭所以2A =,32π3π44ω⨯=,所以2ω=,所以()()2sin 2f x x ϕ=+,又5π212f ⎛⎫=⎪⎝⎭,所以5π5π2sin 2126f ϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,由于πππ5π4π,22363ϕϕ-<<<+<,所以5πππ,623ϕϕ+==-,所以()π2sin 23f x x ⎛⎫=- ⎪⎝⎭,ππ2sin 33f ⎛⎫== ⎪⎝⎭.13.已知函数()()πsin 0,2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭的图象过点10,2⎛⎫ ⎪⎝⎭,则ϕ=__________.,若将函数()f x 图象仅向左平移π4个单位长度和仅向右平移π2个单位长度都能得到同一个函数的图象,则ω的最小值为__________.【答案】①.π6##1π6②.83##223【解析】【分析】由条件列方程求ϕ,再利用平移变换分别得到变换后的函数解析式,并根据相位差为2π,Z k k ∈求解;【详解】因为函数()()sin f x x ωϕ=+的图象过点10,2⎛⎫ ⎪⎝⎭,所以1sin 2ϕ=,又π2ϕ<,所以π6ϕ=,函数()πsin 6f x x ω⎛⎫=+⎪⎝⎭(0ω>)的图象仅向左平移π4个单位长度得到函数ππππsin sin 4646y x x ωωω⎡⎛⎫⎤⎛⎫=++=++ ⎪ ⎢⎥⎝⎭⎦⎝⎭⎣的图象,函数()πsin 6f x x ω⎛⎫=+⎪⎝⎭(0ω>)的图象仅向右平移π2个单位长度得到ππππsin sin 2626y x x ωωω⎡⎤⎛⎫⎛⎫=-+=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图象,则ππππ2π4626k ωω⎛⎫⎛⎫+--+=⎪ ⎪⎝⎭⎝⎭(Z k ∈),化简得3π2π4k ω=(Z k ∈),解得83k ω=(Z k ∈),由于0ω>,所以当1k =时,ω取得最小值83,故答案为:π8,63.14.已知边长为2的菱形ABCD 中,π3DAB ∠=,点E 满足3BE EC = ,点F 为线段BD 上一动点,则AF BE ⋅的最大值为______.【答案】3【解析】【分析】建立如图平面直角坐标系,设BF BD λ= ,利用平面向量线性运算与数量积的坐标表示可得AF BE⋅关于λ的表达式,从而得解.【详解】如图,以A为原点建立平面直角坐标系,则(0,0),(2,0),A B C D ,因为3BE EC =,所以(33333,4444BE BC ⎛⎫=== ⎪ ⎪⎝⎭,由题意,设()01BF BD λλ=≤≤,则(()BF λλ=-=- ,则()()()2,02,AF AB BF λλ=+=+-=-,所以()3333324422AF BE λλ⋅=-+=+,因为01λ≤≤,所以当1λ=时,AF BE ⋅的最大值为3.故答案为:3.15.声音是由物体振动产生的声波.我们听到的每个音都是由纯音合成的,纯音的数学模型是函数sin y A t ω=.音有四要素,音调、响度、音长和音色.它们都与函数sin y A t ω=及其参数有关,比如:响度与振幅有关,振幅越大响度越大,振幅越小响度越小;音调与频率有关,频率低的声音低沉,频率高的声音尖锐.我们平时听到的乐音不只是一个音在响,而是许多音的结合,称为复合音.我们听到的声音对应的函数是111sin sin 2sin 3sin 4234y x x x x =++++⋯..给出下列四个结论:①函数1111sin sin 2sin 3sin 4sin1023410y x x x x x =++++⋯+不具有奇偶性;②函数()111sin sin2sin3sin4234f x x x x x =+++在区间ππ,88⎡⎤-⎢⎥⎣⎦上单调递增;③若某声音甲对应的函数近似为()11sin sin 2sin 323g x x x x =++,则声音甲的响度一定比纯音()1sin22h x x =的响度小;④若某声音乙对应的函数近似为()1sin sin 22x x x ϕ=+,则声音乙一定比纯音()1sin22h x x =更低沉.其中所有正确结论的序号是__________.【答案】②④【解析】【分析】对①,结合奇偶性的定义判断即可;对②,利用正弦型函数的单调性作出判断;对③,分别判断()(),g x h x 的振幅大小可得;对④,求出周期,可得频率,即可得出结论.【详解】对于①,令()1111sin sin2sin3sin4sin1023410F x x x x x x =++++⋯+,所以()()()()()()1111sin sin 2sin 3sin 4sin 1023410F x x x x x x -=-+-+-+-+⋯+-,所以()1111sin sin2sin3sin4sin1023410F x x x x x x -=-----⋅⋅⋅-,所以()()F x F x -=-,所以()F x 是奇函数,①错误;对于②,由ππ88x -≤≤可得,ππ244x -≤≤,3π3π388x -≤≤,ππ422x -≤≤,所以111sin ,sin2,sin3,234x x x x 都在ππ,88⎡⎤-⎢⎥⎣⎦上单调递增,所以()111sin sin2sin3sin4234f x x x x x =+++在ππ,88⎡⎤-⎢⎥⎣⎦上单调递增,所以函数()f x 在区间ππ,88⎡⎤-⎢⎥⎣⎦上单调递增,②正确;对于③.因为()11sin sin 2sin 323g x x x x =++,所以π223g ⎛⎫= ⎪⎝⎭,所以()max 23g x ≥,即()g x 的振幅比()1sin22h x x =的振幅大,所以声音甲的响度一定比纯音()1sin22h x x =的响度大,所以③错误;对于④,因为()()()()112πsin 2πsin 24πsin sin 222x x x x x x ϕϕ+=+++=+=,所以函数()x ϕ为周期函数,2π为其周期,若存在02πα<<,使()()x x ϕϕα=+恒成立,则必有()()0ϕϕα=,()()110sin 0sin 00sin sin 222ϕϕααα∴=+===+,()sin 1cos 0αα∴+=,因为02πα<<,πα∴=,又()()()11πsin πsin 2πsin sin 222x x x x x ϕ+=+++=-+与()1sin sin 22x x x ϕ=+不恒相等,所以函数()1sin sin22x x x ϕ=+的最小正周期是2π,所以频率1112πf T ==而()h x 的周期为π,频率21πf =,12f f <,所以声音乙一定比纯音()1sin22h x x =更低沉,所以④正确.故答案为:②④.三、解答题(本大题共5小题,共60分.解答应写出文字说明,证明过程或演算步骤)16.如图,在ABC 中,2BD DC = ,E 是AD 的中点,设AB a = ,AC b = .(1)试用a ,b 表示AD ,BE ;(2)若1a b == ,a 与b 的夹角为60︒,求AD BE ⋅ .【答案】(1)1233AD a b =+ ,5163BE a b =-+ (2)518-【解析】【分析】(1)利用向量加法减法的三角形法则及数乘运算即可求解;(2)根据(1)的结论,利用向量的数量积运算法则即可求解.【小问1详解】因为2BD DC = ,所以23BD BC = ,所以221)212(333333AB AC AB AB AC a b AD AB BD AB BC +-=+=+=+=+= .因为E 是AD 的中点,所以()11211()22323BE BA BD AB BC AB AC AB ⎛⎫=+=-+=-+- ⎪⎝⎭ 51516363AB AC a b =-+=-+ .【小问2详解】因为1a b == ,a 与b 的夹角为60︒,所以11cos ,1122a b a b a b ⋅==⨯⨯= ,由(1)知,1233AD a b =+ ,5163BE a b =-+ ,所以22125154233631899AD BE a b a b a a b b ⎛⎫⎛⎫⋅=+⋅-+=--⋅+ ⎪ ⎪⎝⎭⎝⎭541251892918=--⨯+=-.17.已知函数()π3sin 24f x x ⎛⎫=+⎪⎝⎭(1)求()f x 的最小正周期;(2)求函数()f x 的单调递增区间;(3)若函数()f x 在区间[]0,a 内只有一个零点,直接写出实数a 的取值范围.【答案】(1)()f x 的最小正周期为π,(2)函数()f x 的单调递增区间是3πππ,π88k k ⎡⎤-+⎢⎥⎣⎦()k ∈Z ;(3)a 的取值范围为3π7π,88⎡⎫⎪⎢⎣⎭.【解析】【分析】(1)根据正弦型函数的周期公式求解即可;(2)利用正弦函数的单调区间结论求解;(3)求出()0f x =的解后可得a 的范围.【小问1详解】因为()π3sin 24f x x ⎛⎫=+ ⎪⎝⎭,所以函数()f x 的最小正周期2ππ2T ==;【小问2详解】由πππ2π22π242k x k -≤+≤+,Z k ∈,可得3ππππ88k x k -≤≤+,Z k ∈,所以函数()f x 的单调递增区间是3πππ,π88k k ⎡⎤-+⎢⎥⎣⎦()k ∈Z ;【小问3详解】由π()3sin(204f x x =+=可得,π2π4x k +=,Z k ∈所以ππ28k x =-,Z k ∈,因为函数()f x 在区间[]0,a 上有且只有一个零点,所以3π7π88a ≤<,所以实数a 的取值范围为3π7π,88⎡⎫⎪⎢⎣⎭.18.已知()()()4,0,0,4,cos ,sin ,(0π)A B C ααα<<.(1)若OA OC += (O 为坐标原点),求OB 与OC 的夹角;(2)若⊥ AC BC ,求sin cos αα-的值.【答案】(1)OB 与OC 的夹角为π6,(2)sin cos 4αα-=【解析】【分析】(1)根据向量模长以及夹角的坐标公式计算即可;(2)由向量垂直得到数量积为0,进而得到1sin cos 4αα+=,通过平方得到2sin cos αα,进而可得()2sin cos αα-,再根据α的范围确定正负,开方得解.【小问1详解】因为()()()4,0,0,4,cos ,sin A B C αα,所以()()()4,0,0,4,cos ,sin OA OB OC αα=== ,所以()4cos ,sin OA OC αα+=+ ,由OA OC += ()224+cos sin 21αα+=,所以1cos 2α=,又0πα<<,,所以π3α=,13,22C ⎛⎫ ⎪ ⎪⎝⎭,设OB 与OC 的夹角为β()0πβ≤≤,则cos OB OC OB OC β⋅= 23342==,又0πβ≤≤,故OB 与OC 的夹角为π6,【小问2详解】由⊥ AC BC 得0AC BC ⋅= ,又()cos 4,sin AC αα=- ,()cos ,sin 4BC αα=- ,所以()()cos 4cos sin sin 40αααα-+-=,所以1sin cos 4αα+=,所以152sin cos 016αα-=<,又0πα<<,所以ππ2α<<,所以()21531sin cos 11616αα--=-=,所以sin cos 4αα-=.19.已知函数()()πsin 0,0,2f x A x A ωϕωϕ⎛⎫=+>><⎪⎝⎭,且()f x 图像的相邻两条对称轴之间的距离为π2,再从条件①、条件②、条件③中选择两个作为一组已知条件.(1)确定()f x 的解析式;(2)设函数()π24g x x ⎛⎫=+ ⎪⎝⎭,则是否存在实数m ,使得对于任意1π0,2x ⎡⎤∈⎢⎥⎣⎦,存在2π0,2x ⎡⎤∈⎢⎥⎣⎦,()()12m g x f x =-成立?若存在,求实数m 的取值范围:若不存在,请说明理由.条件①:()f x 的最小值为2-;条件②:()f x 图像的一个对称中心为5π,012⎛⎫ ⎪⎝⎭;条件③:()f x 的图像经过点5π,16⎛⎫- ⎪⎝⎭.注:如果选择多组条件分别解答,按第一个解答计分.【答案】(1)选①②,②③,①③答案都为()2sin(2)6f x x π=+,(2)存在m 满足条件,m 的取值范围为2,0⎤⎦.【解析】【分析】(1)先根据已知求出()f x 的最小正周期,即可求解ω,选条件①②:可得()f x 的最小值为A -,可求A .根据对称中心可求ϕ,即可得解函数解析式;选条件①③:可得()f x 的最小值为A -,可求A .根据函数()f x 的图象过点5π,16⎛⎫⎪⎝⎭,可求ϕ,可得函数解析式;选条件②③:根据对称中心可求ϕ,再根据函数()f x 的图象过点5π,16⎛⎫⎪⎝⎭,可求A 的值,即可得解函数解析式.(2)求出函数()f x ,()g x 在π0,2⎡⎤⎢⎥⎣⎦上的值域,再结合恒成立、能成立列式求解作答.【小问1详解】由于函数()f x 图像上两相邻对称轴之间的距离为π2,所以()f x 的最小正周期π2π2T =⨯=,所以2π2T ω==,此时()()sin 2f x A x ϕ=+.选条件①②:因为()f x 的最小值为A -,所以2A =.因为()f x 图象的一个对称中心为5π,012⎛⎫⎪⎝⎭,所以5π2π(Z)12k k ϕ⨯+=∈,所以56k ϕπ=π-,()k ∈Z ,因为||2ϕπ<,所以π6ϕ=,此时1k =,所以()2sin(2)6f x x π=+.选条件①③:因为()f x 的最小值为A -,所以2A =.因为函数()f x 的图象过点5π,16⎛⎫-⎪⎝⎭,则5π()16f =-,所以5π2sin()13ϕ+=-,即5π1sin()32ϕ+=-.因为||2ϕπ<,所以7π5π13π636ϕ<+<,所以5π11π36ϕ+=,所以π6ϕ=,所以()2sin(2)6f x x π=+.选条件②③:因为函数()f x 的一个对称中心为5π,012⎛⎫⎪⎝⎭,所以5π2π(Z)12k k ϕ⨯+=∈,所以5ππ(Z)6k k ϕ=-∈.因为||2ϕπ<,所以π6ϕ=,此时1k =.所以π()sin(26f x A x =+.因为函数()f x 的图象过点5π,16⎛⎫-⎪⎝⎭,所以5π(16f =-,所以5ππsin 136A ⎛⎫+=-⎪⎝⎭,11πsin 16A =-,所以2A =,所以()2sin(2)6f x x π=+.综上,不论选哪两个条件,()2sin(2)6f x x π=+.【小问2详解】由(1)知,()2sin(2)6f x x π=+,由20,2x π⎡⎤∈⎢⎥⎣⎦得:2ππ7π2,666x ⎡⎤+∈⎢⎥⎣⎦,2π1sin 2,162x ⎛⎫⎡⎤+∈- ⎪⎢⎥⎝⎭⎣⎦,因此[]2()1,2f x ∈-,由10,2x π⎡⎤∈⎢⎥⎣⎦得:1ππ5π2,444x ⎡⎤+∈⎢⎥⎣⎦,1πsin 2,142x ⎡⎤⎛⎫+∈-⎢⎥ ⎪⎝⎭⎣⎦,因此1()g x ⎡∈-⎣,从而1()1,g x m m m ⎡-∈---+⎣,由()()12m g x f x =-得:()()21f x g x m =-,假定存在实数m ,使得对1π0,2x ⎡⎤∀∈⎢⎥⎣⎦,2π0,2x ⎡⎤∃∈⎢⎥⎣⎦,()()12m g x f x =-成立,即存在实数m ,使得对1π0,2x ⎡⎤∀∈⎢⎥⎣⎦,2π0,2x ⎡⎤∃∈⎢⎥⎣⎦,()()21f x g x m =-成立,则[]1,1,2m m ⎡---+⊆-⎣,于是得112m m --≥-⎧⎪⎨-+≤⎪⎩,解得20m -≤≤,因此存在实数m ,使得对1π0,2x ⎡⎤∀∈⎢⎥⎣⎦,2π0,2x ⎡⎤∃∈⎢⎥⎣⎦,()()12m g x f x =-成立,所以实数m的取值范围是2,0⎤⎦.20.对于定义在R 上的函数()f x 和正实数T 若对任意x ∈R ,有()()f x T f x T +-=,则()f x 为T -阶梯函数.(1)分别判断下列函数是否为1-阶梯函数(直接写出结论):①()2f x x =;②()1f x x =+.(2)若()sin f x x x =+为T -阶梯函数,求T 的所有可能取值;(3)已知()f x 为T -阶梯函数,满足:()f x 在,2T T ⎡⎤⎢⎥⎣⎦上单调递减,且对任意x ∈R ,有()()2f T x f x T x --=-.若函数()()F x f x ax b =--有无穷多个零点,记其中正的零点从小到大依次为123,,,x x x ⋅⋅⋅;若1a =时,证明:存在b ∈R ,使得()F x 在[]0,2023T 上有4046个零点,且213240464045x x x x x x -=-=⋅⋅⋅=-.【答案】(1)①否;②是(2)2πT k =,*k ∈N (3)证明见解析【解析】【分析】(1)利用T -阶梯函数的定义进行检验即可判断;(2)利用T -阶梯函数的定义,结合正弦函数的性质即可得解;(3)根据题意得到()()F x T F x +=,()()F T x F x -=,从而取3344TT b f ⎛⎫=- ⎪⎝⎭,结合零点存在定理可知()F x 在(),1mT m T +⎡⎤⎣⎦上有且仅有两个零点:4T mT +,34T mT +,从而得解.【小问1详解】()2f x x =,则22(1)()(1)211f x f x x x x +-=+-=+≠;()1f x x =+,则(1)()11f x f x x x +-=+-=,故①否;②是.【小问2详解】因为()f x 为T -阶梯函数,所以对任意x ∈R 有:()()()()()sin sin sin sin f x T f x x T x T x x x T x T T +-=+++-+=+-+=⎡⎤⎣⎦.所以对任意x ∈R ,()sin sin x T x +=,因为sin y x =是最小正周期为2π的周期函数,又因为0T >,所以2πT k =,*k ∈N .【小问3详解】因为1a =,所以函数()()F x f x x b =--,则()()()()()()()F x T f x T x T b f x T x T b f x x b F x +=+-+-=+-+-=--=,()()()()()()()2F T x f T x T x b f x T x T x b f x x b F x -=----=+----=--=.取3344TT b f ⎛⎫=- ⎪⎝⎭,则有3330444TT T F f b ⎛⎫⎛⎫=--= ⎪ ⎪⎝⎭⎝⎭,30444T T T F F T F ⎛⎫⎛⎫⎛⎫=-== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,由于()f x 在,2T T ⎡⎤⎢⎥⎣⎦上单调递减,因此()()F x f x x b =--在,2T T ⎡⎤⎢⎥⎣⎦上单调递减,结合()()F T x F x -=,则有()F x 在0,2T ⎡⎤⎢⎥⎣⎦上有唯一零点4T ,在,2T T ⎡⎤⎢⎥⎣⎦上有唯一零点34T .又由于()()F x T F x +=,则对任意k ∈Ζ,有044T T F kT F ⎛⎫⎛⎫+== ⎪ ⎪⎝⎭⎝⎭,33044T T F kT F ⎛⎫⎛⎫+== ⎪ ⎪⎝⎭⎝⎭,因此,对任意m ∈Z ,()F x 在(),1mT m T +⎡⎤⎣⎦上有且仅有两个零点:4T mT +,34T mT +.综上所述,存在3344TT b f ⎛⎫=- ⎪⎝⎭,使得()F x 在[]0,2023T 上有4046个零点,且14T x =,234T x =,354T x =,474T x =,L ,404580894T x =,404680914T x =,其中,2132404640452T x x x x x x -=-=⋅⋅⋅=-=.【点睛】关键点睛:本题解决的关键是充分理解新定义T -阶梯函数,从而在第3小问推得()()F x T F x +=,()()F T x F x -=,由此得解.。

高一期中考试试卷及答案

高一期中考试试卷及答案

高一期中考试试卷及答案一、选择题(每题2分,共20分)1. 请根据题目所给的数学公式,选择正确的答案。

- A. x + y = z- B. x * y = z- C. x / y = z- D. x - y = z2. 以下哪个选项是英语中“图书馆”的正确翻译?- A. School- B. Library- C. Hospital- D. Museum3. 根据题目所给的历史事件,选择正确的时间顺序。

- A. 工业革命 - 第一次世界大战 - 第二次世界大战 - B. 第一次世界大战 - 工业革命 - 第二次世界大战 - C. 第二次世界大战 - 工业革命 - 第一次世界大战 - D. 工业革命 - 第二次世界大战 - 第一次世界大战4. 题目中提到的化学反应方程式,正确的平衡方程式是: - A. 2H2 + O2 → 2H2O- B. 2H2 + O2 → H2O- C. H2 + O2 → 2H2O- D. H2 + O2 → H2O5. 题目中描述的物理现象,正确的解释是:- A. 物体在不受外力作用时,将保持静止或匀速直线运动- B. 物体在受力作用时,将立即改变运动状态- C. 物体在受力作用时,将保持静止或匀速直线运动- D. 物体在不受外力作用时,将立即改变运动状态二、填空题(每空1分,共10分)1. 请写出牛顿第二定律的表达式:_______________________。

2. 根据题目所给的化学式,写出该化合物的名称:NaCl。

3. 英语中“独立日”的表达是:_______________________。

4. 题目中提到的历史人物,他的主要贡献是:_______________________。

5. 根据题目所给的生物分类,写出该生物的分类等级:_______________________。

三、简答题(每题10分,共20分)1. 请简述细胞的结构和功能。

2. 请解释什么是光合作用,并简述其过程。

北京市2023-2024学年高一下学期期中考试数学试卷含答案

北京市2023-2024学年高一下学期期中考试数学试卷含答案

北京市2023-2024学年高一(下)期中数学试卷一、选择题(每题5分,共50分)(答案在最后)1.若复数2i z =-+,则复数z 在复平面内对应的点位于()A .第一象限B.第二象限C.第三象限D.第四象限【答案】B 【解析】【分析】运用复数的几何意义求解即可.【详解】复数2i z =-+,则复数z 在复平面内对应的点(2,1)-位于第二象限.故选:B .2.已知向量(2,1)a = ,(4,)b x = ,且a b∥,则x 的值为()A.-2B.2C.-8D.8【答案】B 【解析】【分析】运用平面向量共线的坐标公式计算即可.【详解】(2,1)a =rQ ,(4,)b x =,且a b∥,240x ∴-=,即2x =.故选:B .3.在三角形ABC 中,角,,A B C 对应的边分别为,,a b c ,若0120A ∠=,2a =,3b =,则B =()A.3πB.56π C.566ππ或 D.6π【答案】D 【解析】【详解】试题分析:由于0120A ∠=为钝角,所以只有一解.由正弦定理得:21sin sin1203sin 2B B =⇒=,选D.考点:解三角形.4.已知圆锥的轴截面是一个边长为2的等边三角形,则该圆锥的体积为()A.B.πC.D.2π【答案】A 【解析】【分析】根据圆锥轴截面的定义结合正三角形的性质,可得圆锥底面半径长和高的大小,由此结合圆锥的体积公式,即可求解.【详解】由题知,如图,PAB 为圆锥的轴截面,边长均为2,则圆锥的高322PO =⨯=底面半径1212r =⨯=,故圆锥体积2211ππ1π333V r PO =⋅=⨯=.故选:A5.已知P 为ABC 所在平面内一点,2BC CP =uu u r uur,则()A.1322AP AB AC =-+uu u r uu u r uuu r B.1233AP AB AC=+C.3122AP AB AC=-uu u r uu u r uuu r D.2133AP AB AC=+uu u r uu u r uuu r【答案】A 【解析】【分析】根据题意作出图形,利用向量线性运算即可得到答案.【详解】由题意作出图形,如图,则11()22AP AC CP AC BC AC AC AB =+=+=+- 1322AB AC =-+,故选:A.6.已知非零向量a ,b,则“a b b -= ”是“20a b -= ”成立的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B 【解析】【分析】根据充分条件和必要条件的定义,结合向量的模的定义,数量积的性质和运算律判断.【详解】若20a b -= ,则a b b -=,a b b -= ,所以“a b b -= ”是“20a b -=”成立的必要条件,若a b b -= ,则220a a b -⋅=,()20a a b ⋅-= ,当()1,0a = ,11,22b ⎛⎫=- ⎪⎝⎭时,()20,1a b -= ,()20a a b ⋅-= 成立,但20a b -≠.所以,“a b b -= ”不是“20a b -=”成立的充分条件,所以“a b b -= ”是“20a b -= ”成立的必要不充分条件,故选:B.7.在ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且2cos a B c =,则ABC 的形状一定是()A.等边三角形B.等腰三角形C.等腰直角三角形D.直角三角形【答案】B 【解析】【分析】由正弦定理可得2sin cos sin A B C =,再由()C A B π=-+,可得2sin cos sin()sin cos cos sin A B A B A B A B =+=+,从而可得in 0()s A B -=,进而可得结论【详解】解:因为2cos a B c =,所以由正弦定理可得2sin cos sin A B C =,因为A B C π++=,所以()C A B π=-+,所以()()sin sin sin C A B A B π⎡⎤=-+=+⎣⎦,所以2sin cos sin()sin cos cos sin A B A B A B A B =+=+,所以sin cos cos sin 0A B A B -=,所以in 0()s A B -=,因为A B ππ-<-<,所以0A B -=,所以A B =,所以ABC 为等腰三角形,故选:B8.对于非零向量,m n ,定义运算“⨯”:sin m n m n θ⨯=,其中θ为,m n 的夹角.设,,a b c 为非零向量,则下列说法错误..的是A.a b b a⨯=⨯ B.()a b c a c b c+⨯=⨯+⨯C.若0a b ⨯=,则//a bD.()a b a b⨯=-⨯【答案】B 【解析】【详解】由运算定义,sin ,sin a b a b b a b a θθ⨯=⨯=,所以a b b a⨯=⨯正确;()sin ,sin sin a b c a b c a c b c a c b c θαβ+⨯=+⨯+⨯=+ ,所以()a b c a c b c +⨯≠⨯+⨯,故B错误;C 、sin 0a b a b θ⨯== ,则0,θπ=,所以//a b 正确;D 、()()sin ,sin sin a b a b a b a b a b θπθθ⨯=-⨯=--= ,所以()a b a b ⨯=-⨯正确.故选B .点睛:本题考查向量的新定义运算,关键就是理解新定义.本题采取排除法,通过逐个验证,我们可以发现A 、C 、D 都是正确的,所以错误的就是B .9.如图,直三棱柱111ABC A B C -中,1,,AB BC AA AB P ⊥=为棱11A B 的中点,Q 为线段1AC 上的动点.以下结论中正确的是()A.存在点Q ,使BQ AC ∥B.不存在点Q ,使11BQ B C ⊥C.对任意点Q ,都有1BQ AB ⊥D.存在点Q ,使BQ 平面1PCC 【答案】C 【解析】【分析】A 选项,根据异面直线的定义可以判断;B 选项,容易发现1,A Q 重合时符合题意;C 选项,利用线面垂直得到线面垂直;D 选项,先找出平面1PCC 的一条垂线,问题转化为判断这条垂线是否和BQ 垂直的问题.【详解】A 选项,由于BQ ⋂平面ABCB =,B AC ∉,AC ⊂平面ABC ,则,BQ AC 一定异面,A 选项错误;B 选项,根据直三棱柱性质,1BB ⊥平面ABC ,BC ⊂平面ABC ,故1BB BC ⊥,又AB BC ⊥,1AB BB B Ç=,1,AB BB ⊂平面11ABB A ,故BC ⊥平面11ABB A ,又1BA ⊂平面11ABB A ,故1BC BA ⊥,显然11BC B C ∥,即111B C BA ⊥,故1,A Q 重合时,11BQ B C ⊥,B 选项错误;C 选项,直棱柱的侧面11ABB A 必是矩形,而1AA AB =,故矩形11ABB A 成为正方形,则11AB BA ⊥,B 选项已经分析过,BC ⊥平面11ABB A ,由1AB ⊂平面11ABB A ,故1AB BC ⊥,又1BC BA B ⋂=,1,BC BA ⊂平面1BCA ,故1AB ⊥平面1BCA ,又BQ ⊂平面1BCA ,则1BQ AB ⊥必然成立,C 选项正确;D 选项,取AB 中点M ,连接,CM PM ,根据棱柱性质可知,CM 和1C P 平行且相等,故平面1PCC 可扩展成平面1CMPC ,过B 作BN CM ⊥,垂足为N ,根据1BB ⊥平面ABC ,BN ⊂平面ABC ,故1BB BN ⊥,显然11BB CC ∥,故1BN CC ⊥,由BN CM ⊥,1CC CM C = ,1,CC CM ⊂平面1CMPC ,故BN ⊥平面1CMPC ,若BQ 平面1PCC ,则BQ BN ⊥,过Q 作QO //1BB ,交11A C 于O ,连接1B O ,于是1BQOB 共面,又1BQ BB B = ,1,BQ BB ⊂平面1BQOB ,故BN ⊥平面1BQOB ,由于1B O ⊂平面1BQOB ,故1BN B O ⊥,延长OQ 交AC 于J ,易得1B O //BJ ,则BJ BN ⊥,而J 在线段AC 上,这是不可能的,D 选项错误.故选:C10.圭表(如图1)是我国古代一种通过测量正午日影长度来推定节气的天文仪器,它包括一根直立的标竿(称为“表”)和一把呈南北方向水平固定摆放的与标竿垂直的长尺(称为“圭”).当正午太阳照射在表上时,日影便会投影在圭面上,圭面上日影长度最长的那一天定为冬至,日影长度最短的那一天定为夏至.图2是一个根据北京的地理位置设计的圭表的示意图,已知北京冬至正午太阳高度角(即ABC ∠)为26.5 ,夏至正午太阳高度角(即ADC ∠)为73.5 ,圭面上冬至线与夏至线之间的距离(即DB 的长)为a ,则表高(即AC 的长)为()A.sin532sin 47a ︒︒B.2sin 47sin53a ︒︒C.tan 26.5tan 73.5tan 47a ︒︒︒D.sin 26.5sin 73.5sin 47a ︒︒︒【答案】D 【解析】【分析】先求BAD ∠,在BAD 中利用正弦定理求AD ,在Rt ACD 中即可求AC .【详解】73.526.547BAD ∠=-= ,在BAD 中由正弦定理得:sin sin BD AD BAD ABD=∠∠,即sin 47sin 26.5a AD= ,所以sin 26.5sin 47a AD =,又因为在Rt ACD 中,sin sin 73.5ACADC AD=∠= ,所以sin 26.5sin 73.5sin 73.5sin 47a AC AD =⨯=,故选:D【点睛】本题主要考查了解三角形应用举例,考查了正弦定理,属于中档题.二、填空题(每题5分,共30分)11.已知复数i(1i)z =+,则z =________;||z =________.【答案】①.1i--②.【解析】【分析】运用共轭复数、复数乘法及复数的模的公式计算即可.【详解】因为i(1i)1i z =+=-+,则1i z =--,||z ==.故答案为:1i --.12.已知向量(1,1)a =-r ,(2,1)b =- ,则2a b += ________;向量a 在b上的投影向量的坐标为________.【答案】①.(0,1)-②.63(,)55-【解析】【分析】运用平面向量加法、向量数量积、向量的模、投影向量公式计算即可.【详解】解:(1,1)a =-r,(2,1)b =-,则2(2,2)(2,1)(0,1)a b +=-+-=-;()()12113a b ⋅=⨯-+-⨯=-,||b == 故向量a 在b上的投影向量的坐标为:363,555a b b b b b⋅⎛⎫⨯=-=- ⎪⎝⎭ .故答案为:(0,1)-;63(,55-.13.在正四面体A -BCD 中,二面角A -BC -D 的余弦值是_______.【答案】13【解析】【分析】根据二面角平面角的定义,结合正四面体的性质,找出该角,由余弦定理,可得答案.【详解】如图,取BC 的中点F ,连接AF,DF,则AF BC ⊥,DF BC ⊥,即AFD ∠为二面角A BC D --的平面角,设正四面体D ABC -的棱长为6,在正ABC中,sin 60AF AB ==sin 60DF BD ==由余弦定理2221cos 23FD FA AD AFD FD FA +-∠===⋅⋅.故答案为:13.14.已知点(0,0)O ,(1,2)A ,(,0)(0)B m m >,则cos ,OA OB <>=___________;若B 是以OA 为边的矩形的顶点,则m =___________.【答案】①.②.5【解析】【分析】①根据向量的夹角公式,直接求解即可;②根据已知可得0OA AB ⋅=,求出相应的坐标代入即可求出m 的值.【详解】①因为(0,0)O ,(1,2)A ,(,0)(0)B m m >,所以(1,2)OA = ,(,0)OB m =,所以5cos ,5||||OA OB OA OB OA OB ⋅<>===;②(1,2)AB m =-- ,若B 是以OA 为边的矩形的顶点,则0OA AB ⋅=,即140OA AB m ⋅=--=,所以5m =.故答案为:5;515.若ABC 的面积为2223()4a cb +-,且∠C 为钝角,则∠B =_________;c a 的取值范围是_________.【答案】①.60②.(2,)+∞【解析】【分析】根据题干结合三角形面积公式及余弦定理可得tan B =,可求得3B π∠=;再利用()sin sin C A B =+,将问题转化为求函数()f A 的取值范围问题.【详解】()2221sin 42ABC S a c b ac B ∆=+-=,2222a c b ac +-∴=,即cos B =,sin cos 3B B B π∴=∠=,则21sin cos sin sin 11322sin sin sin 2tan 2A A Ac C a A A A A π⎛⎫⎛⎫-⋅--⋅ ⎪ ⎪⎝⎭⎝⎭====⋅+,C ∴∠为钝角,,036B A ππ∠=∴<∠<,)1tan 0,,3tan A A ⎛∴∈∈+∞ ⎝⎭,故()2,ca∈+∞.故答案为3π,()2,∞+.【点睛】此题考查解三角形的综合应用,能够根据题干给出的信息选用合适的余弦定理公式是解题的第一个关键;根据三角形内角A B C π++=的隐含条件,结合诱导公式及正弦定理,将问题转化为求解含A ∠的表达式的最值问题是解题的第二个关键.16.如图矩形ABCD 中,22AB BC ==,E 为边AB 的中点,将ADE V 沿直线DE 翻转成1A DE △.若M 为线段1AC 的中点,则在ADE V 翻转过程中,下列叙述正确的有________(写出所有序号).①BM 是定值;②一定存在某个位置,使1CE DA ⊥;③一定存在某个位置,使1DE A C ⊥;④一定存在某个位置,使1MB A DE 平面∥.【答案】①②④【解析】【分析】运用等角定理及余弦定理可判断①;运用勾股定理证得1A E CE ⊥、DE EC ⊥,结合线面垂直的判定定理及性质可判断②;运用反证法证及线面垂直判定定理证得DE ⊥平面1A EC ,结合线面垂直性质可得1DE A E ⊥得出矛盾可判断③;运用面面平行判定定理证得平面//MBF 平面1A DE ,结合面面平行性质可判断④.【详解】对于①,取CD 中点F ,连接MF ,BF ,如图所示,则1MF DA ∥,BF DE ,11122MF A D ==,FB DE ==由等角定理知,1π4A DE MFB ∠=∠=,所以由余弦定理可得22252cos 4MB MF FB MF FB MFB =+-⋅⋅∠=,所以52MB =是定值,故①正确;对于④,由①知,1MF DA ∥,BF DE ,又FB 、MF ⊄平面1A DE ,1DA 、DE ⊂平面1A DE ,所以//FB 平面1A DE ,//MF 平面1A DE ,又FB MF F = ,FB 、MF ⊂平面MBF ,所以平面//MBF 平面1A DE ,又因为MB ⊂平面MBF ,所以//MB 平面1A DE ,故④正确,对于②,连接EC ,如图所示,当1A C =时,因为11A E =,CE =22211A C A E CE =+,所以1A E CE ⊥,因为矩形ABCD 中,D E C E ==,2DC =,所以222DE CE DC +=,即DE EC ⊥,又因为1A E DE E ⋂=,1A E 、DE ⊂平面1A DE ,所以CE ⊥平面1A DE ,又1A D ⊂平面1A DE ,所以1CE DA ⊥,故②正确;对于③,假设③正确,即在某个位置,使1DE A C ⊥,又因为矩形ABCD 中,D E C E ==2DC =,所以222DE CE DC +=,即DE EC ⊥,又因为1A C EC C ⋂=,1AC 、EC ⊂平面1A EC ,所以DE ⊥平面1A EC ,又1A E ⊂平面1A EC ,所以1DE A E ⊥,这与1π4DEA ∠=矛盾,所以不存在某个位置,使1DE A C ⊥,故③错误.故答案为:①②④.三、解答题(每题14分,共70分)17.如图,在四棱锥P ABCD -中,PD ⊥平面ABCD ,底面ABCD 为正方形,E ,F 分别是AB ,PB 的中点.(1)求证://EF 平面PAD ;(2)求证:EF CD ⊥.【答案】(1)证明见解析(2)证明见解析【解析】【分析】(1)由三角形中位线证得EF PA ∥,结合线面平行的判定定理证明即可.(2)由线面垂直性质可得PD CD ⊥,结合线面垂直判定定理可得CD ⊥平面PAD ,再结合线面垂直性质、线线垂直性质证明即可.【小问1详解】因为E ,F 分别是AB ,PB 的中点,所以EF PA ∥,又EF ⊄平面PAD ,PA ⊂平面PAD ,所以//EF 平面PAD ;【小问2详解】因为PD ⊥平面ABCD ,CD ⊂平面ABCD ,所以PD CD ⊥,又因为底面ABCD 为正方形,CD AD ⊥,=PD AD D ⋂,PD 、AD ⊂平面PAD ,所以CD ⊥平面PAD ,又PA ⊂平面PAD ,所以CD PA ⊥,由(1)知,EF PA ∥,所以EF CD ⊥.18.已知2()22cos f x x x =+.(1)求()f x 的最小正周期及单调递减区间;(2)求函数()f x 在区间π[0,]2上的最大值和最小值.【答案】(1)π,π2π[π,π]63k k ++,Z k ∈(2)max ()3f x =,min ()0f x =【解析】【分析】(1)结合二倍角公式及辅助角公式化简函数()f x ,结合sin y t =图象与性质求解即可.(2)先求出π26x +的范围,结合sin y t =图象与性质即可求得最值.【小问1详解】因为2π()22cos 2cos 212sin(216f x x x x x x =+=++=++,所以()f x 的最小正周期2ππ2T ==,令ππ3π2π22π262k x k +≤+≤,Z k ∈,解得π2πππ63k x k +≤≤+,Z k ∈,所以()f x 单调递减区间为π2π[π,π]63k k ++,Z k ∈.【小问2详解】因为π[0,]2x ∈,所以ππ7π2[,]666x +∈,所以由函数图象性质知,当ππ262x +=,即π6x =时,max ()3f x =;当π7π266x +=,即π2x =时,min ()0f x =.19.如图,四边形ABCD 是菱形,DE ⊥平面ABCD ,//AF DE ,3DE AF =.(1)求证:平面//BAF 平面CDE ;(2)求证:平面EAC ⊥平面EBD ;(3)设点M 是线段BD 上一个动点,试确定点M 的位置,使得//AM 平面BEF ,并证明你的结论.【答案】(1)证明见解析(2)证明见解析(3)13BM BD =,证明见解析【解析】【分析】(1)利用线面平行的判定定理得到//AF 平面CDE ,//AB 平面CDE ,再利用面面平行的判定定理,即可证明结果;(2)根据条件得到AC ⊥平面EBD ,再由面面垂直的判定定理,即可证明结果;(3)构造平行四边形,利用线面平行的判定定理,即可证明结果.【小问1详解】因为//AF DE ,AF ⊄面CDE ,DE ⊂面CDE ,所以//AF 平面CDE ,同理,//AB 平面CDE ,又AF AB A ⋂=,,AF AB ⊂面BAF ,所以平面//BAF 平面CDE .【小问2详解】因为四边形ABCD 是菱形,所以AC BD ⊥,DE ⊥ 平面ABCD ,AC ⊂平面ABCD ,AC DE ∴⊥,BD DE D = ,,BD DE ⊂平面EBD ,AC ∴⊥平面EBD ,AC ⊂ 平面EAC ,所以平面EAC ⊥平面EBD .【小问3详解】当13BM BD =时,//AM 平面BEF ,理由如下:作MN ED ∥,则MN 平行且等于13BD ,//AF DE ,3DE AF =,∴AF 平行且等于MN ,∴AMNF 是平行四边形,//AM FN ∴,AM ⊄ 平面BEF ,FN ⊂平面BEF ,//AM ∴平面BEF .20.在ABC ∆中,2sin sin sin A B C =.(Ⅰ)若π3A ∠=,求B ∠的大小;(Ⅱ)若1bc =,求ABC ∆的面积的最大值.【答案】(1)π3B ∠=,(2).【解析】【详解】【分析】试题分析:(Ⅰ)因为2sin sin sin ,A B C =由正弦定理可得2a bc =,再利用余弦定理得所以22222122a b c bc b c bc =+-⨯=+-即b c =,所以为等边三角形.所以π3B ∠=(注:当然也可用化角来处理);(Ⅱ)由已知可得21a bc ==.所以222221cos 22b c a b c A bc +-+-==21122bc -≥=,又sin (0,]2A ∈.所以11sin sin 224ABC S bc A A ∆==≤11sin sin 224ABC S bc A A ∆==≤试题解析:(Ⅰ)方法一:因为2sin sin sin ,A B C =且,所以2a bc =.又因为π3A ∠=,所以22222122a b c bc b c bc =+-⨯=+-.所以2()0b c -=.所以b c =.因为π3A ∠=,所以为等边三角形.所以π3B ∠=.方法二:因为πA BC ++=,所以sin sin()C A B =+.因为2sin sin sin B C A =,π3A ∠=,所以2ππsin sin()sin 33B B +=.所以13sin cos sin )224B B B +=.所以11cos 23sin 24224B B -+⨯=.所以12cos 2122B B -=.所以πsin(2)16B -=.因为(0,π)B ∈,所以ππ112(,π)666B -∈-.所以ππ262B -=,即π3B ∠=.(Ⅱ)因为2sin sin sin ,A B C =1bc =,且,所以21a bc ==.所以222221cos 22b c a b c A bc +-+-==21122bc -≥=(当且仅当时,等号成立).因为(0,π)A ∈,所以π(0,]3A ∈.所以sin (0,]2A ∈.所以11sin sin 224ABC S bc A A ∆==≤.所以当是边长为1的等边三角形时,其面积取得最大值.考点:三角函数的性质与解三角形21.对于数集{}12,,1,n X x x x =- ,其中120n x x x <<<⋅⋅⋅<,2n ≥,定义向量集(){},,,Y a a s t s X t X ==∈∈ ,若对任意1a Y ∈ ,存在2a Y ∈ 使得120a a ⋅= ,则称X 具有性质P .(1)判断{}1,1,2-是否具有性质P ;(2)若2x >,且{}1,1,2,X x =-具有性质P ,求x 的值;(3)若X 具有性质P ,求证:1X ∈且当1n x >时,11x =.【答案】(1)具有性质P(2)4(3)证明见解析【解析】【分析】(1)根据集合新定义判断即可;(2)在Y 中取()1,2a x = ,根据数量积的坐标表示,求出可能的2a ,再根据2x >求出符合条件的值即可;(3)取()111,a x x Y =∈ ,()2,a s t Y =∈ ,由120a a ⋅= ,化简可得0s t +=,所以,s t 异号,而1-是X 中的唯一的负数,所以,s t 中之一为1-,另一个为1,从而得到1X ∈,最后通过反证法得出1n x >时,11x =.【小问1详解】{}1,1,2-具有性质P .因为{}1,1,2X =-,所以()()()()()()()()(){}1,1,1,1,1,2,1,1,1,1,1,2,2,1,2,1,2,2Y =------,若对任意1a Y ∈ ,存在2a Y ∈ 使得120a a ⋅= ,所以X 具有性质P .【小问2详解】因为2x >,且{}1,1,2,X x =-具有性质P ,所以可取()1,2a x = ,又Y 中与()1,2a x = 垂直的元素必有形式()()()1,1,1,2,1,x ---中的一个,当()21,1a =- 时,由120a a ⋅= ,可得202x x -+=Þ=,不符合题意;当()21,2a =- 时,由120a a ⋅= ,可得404x x -+=Þ=,符合题意;当()21,a x =- 时,由120a a ⋅= ,可得200x x x -+=Þ=,不符合题意;所以4x =.【小问3详解】证明:取()111,a x x Y =∈ ,设()2,a s t Y =∈ ,满足120a a ⋅= ,所以()100s t x s t +=⇒+=,所以,s t 异号,因为1-是X 中的唯一的负数,所以,s t 中之一为1-,另一个为1,所以1X ∈,假设1k x =,其中1k n <<,则101n x x <<<,选取()11,n b x x = ,并设()2,b p q = ,满足120b b ⋅= ,所以10n px qx +=,则,p q 异号,从而,p q 之中恰有一个为1-,若1p =-,则1n x qx =,显然矛盾;若1q =-,则1n n x px p x =<<,矛盾,所以当1n x >时,11x =,综上,得证.【点睛】关键点点睛:本题的关键在于理解集合的新定义,并用向量的数量积为零时坐标表示出所求的参数值.。

北京市2023-2024学年高一下学期期中考试数学试题含答案

北京市2023-2024学年高一下学期期中考试数学试题含答案

2023—2024学年度第二学期北京市高一数学期中考试试卷(答案在最后)一、选择题(本大题共10小题,每小题4分,共40分)1.11πsin3的值为()A.2B.2-C.2D.2【答案】A 【解析】【分析】利用诱导公式及特殊角的三角函数值计算可得.【详解】11πππsin sin 4πsin 3332⎛⎫=-=-=-⎪⎝⎭.故选:A2.下列函数中,最小正周期为π且是偶函数的是()A.πsin 4y x ⎛⎫=+ ⎪⎝⎭B.tan y x =C.cos 2y x =D.sin 2y x=【答案】C 【解析】【分析】由三角函数的最小正周期公式和函数奇偶性对选项一一判断即可得出答案.【详解】对于A ,πsin 4y x ⎛⎫=+⎪⎝⎭的最小正周期为:2π2π1T ==,故A 不正确;对于B ,tan y x =的最小正周期为:ππ1T ==,tan y x =的定义域为ππ,Z 2x x k k ⎧⎫≠+∈⎨⎬⎩⎭,关于原点对称,令()tan f x x =,则()()()tan tan f x x x f x -=-=-=-,所以tan y x =为奇函数,故B 不正确;对于C ,cos 2y x =的最小正周期为:2ππ2T ==,令()cos 2g x x =的定义域为R 关于原点对称,则()()()cos 2cos 2g x x x g x -=-==,所以cos 2y x =为偶函数,故C 正确;对于D ,sin 2y x =的最小正周期为:2ππ2T ==,sin 2y x =的定义域为R ,关于原点对称,令()sin 2h x x =,则()()()sin 2sin 2h x x x h x -=-=-=-,所以sin 2y x =为奇函数,故D 不正确.故选:C .3.设向量()()3,4,1,2a b ==- ,则cos ,a b 〈〉=()A.5-B.5C.5-D.5【答案】D 【解析】【分析】根据给定条件,利用向量夹角的坐标表示求解即得.【详解】向量()()3,4,1,2a b ==-,则cos ,5||||a b a b a b ⋅〈〉==.故选:D4.在△ABC 中,已知1cos 3A =,a =,3b =,则c =()A.1B.C.2D.3【答案】D 【解析】【分析】直接利用余弦定理求解即可【详解】因为在△ABC 中,1cos 3A =,a =,3b =,所以由余弦定理得2222cos a b c bc A =+-,2112963c c =+-⨯,得2230c c --=,解得3c =,或1c =-(舍去),故选:D5.函数()()sin f x A x =+ωϕ(其中0A >,0ω>,0ϕπ<<)的图像的一部分如图所示,则此函数的解析式是()A.()3sin 42f x x ππ⎛⎫=+⎪⎝⎭ B.3()3sin 44f x x ππ⎛⎫=+⎪⎝⎭C.()3sin 84f x x ππ⎛⎫=+ ⎪⎝⎭ D.3()3sin 84f x x ππ⎛⎫=+⎪⎝⎭【答案】C 【解析】【分析】根据图象可以求出最大值,结合函数的零点,根据正弦型函数的最小正周期公式,结合特殊值法进行求解即可.【详解】由函数图象可知函数的最大值为3,所以3A =,由函数图象可知函数的最小正周期为4(62)16⨯-=,因为0ω>,所以24(62)168ππωω⨯-==⇒=,所以()3sin 8f x x πϕ⎛⎫=+ ⎪⎝⎭,由图象可知:(2)3f =,即3sin 32()2()4424k k Z k k Z ππππϕϕπϕπ⎛⎫+=⇒+=+∈⇒=+∈ ⎪⎝⎭,因为0ϕπ<<,所以令0k =,所以4πϕ=,因此()3sin 84f x x ππ⎛⎫=+ ⎪⎝⎭,故选:C6.函数ππ()sin(2),[0,]62f x x x =+∈的最大值和最小值分别为()A.11,2-B.31,2-C.1,12- D.1,1-【答案】A 【解析】【分析】根据给定条件,求出相位的范围,再利用正弦函数的性质求解即得.【详解】由π[0,2x ∈,得ππ7π2[,666x +∈,则当ππ262x +=,即π6x =时,max ()1f x =,当π7π266x +=,即π2x =时,min 1()2f x =-,所以所求最大值、最小值分别为11,2-.故选:A7.已知向量,,a b c在正方形网格中的位置如图所示.若网格纸上小正方形的边长为1,则()a b c +⋅= ()A.2B.2- C.1 D.1-【答案】B 【解析】【分析】根据给定信息,利用向量数量的运算律,结合数量积的定义计算得解.【详解】依题意,π3π|||2,||2,,,,,44a b c a b b c a c ===〈〉=⊥〈〉= ,因此3π||||cos2(242a c a c ⋅==⨯-=-,0b c ⋅= ,所以()2a b c a c b c +⋅=⋅+⋅=-.故选:B8.在ABC 中,已知cos cos 2cos a B b A c A +=,则A =()A.π6B.π4C.π3 D.π2【答案】C 【解析】【分析】根据给定条件,利用正弦定理边化角,再逆用和角的正弦求出即得.【详解】在ABC 中,由cos cos 2cos a B b A c A +=及正弦定理,得sin cos sin cos 2sin cos A B B A C A +=,则sin()2sin cos A B C A +=,即sin 2sin cos C C A =,而sin 0C >,因此1cos 2A =,而0πA <<,所以π3A =.故选:C9.已知函数()()π2sin 03⎛⎫=+> ⎪⎝⎭f x x ωω,则“()f x 在π0,3⎡⎤⎢⎥⎣⎦上既不是增函数也不是减函数”是“1ω>”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B 【解析】【分析】以π3x ω+为整体结合正弦函数的性质可得12ω>,进而根据充分、必要条件分析判断.【详解】因为π0,3x ⎡⎤∈⎢⎥⎣⎦且0ω>,则ππππ,3333x ωω⎡⎤+∈+⎢⎥⎣⎦,若()f x 在π0,3⎡⎤⎢⎣⎦上既不是增函数也不是减函数,则2πππ33ω+>,解得12ω>,又因为()1,+∞1,2⎛⎫+∞ ⎪⎝⎭,所以“()f x 在π0,3⎡⎤⎢⎥⎣⎦上既不是增函数也不是减函数”是“1ω>”的必要不充分条件.故选:B.10.如图,正方形ABCD 的边长为2,P 为正方形ABCD 四条边上的一个动点,则PA PB ⋅的取值范围是()A.[]1,2-B.[]0,2 C.[]0,4 D.[]1,4-【答案】D 【解析】【分析】建立平面直角坐标系,分点P 在CD 上,点P 在BC 上,点P 在AB 上,点P 在AD 上,利用数量积的坐标运算求解.【详解】解:建立如图所示平面直角坐标系:则()()0,2,2,2A B ,当点P 在CD 上时,设()(),002Px x ≤≤,则()(),2,2,2PA x PB x =-=--,所以()()224133,4PA PB x x x ⎡⎤⋅=-+=-+∈⎣⎦ ;当点P 在BC 上时,设()()2,02P yy ≤≤,则()()2,2,0,2PA y PB y =-=-,所以()220,4PA PB y ⎡⎤⋅=-∈⎣⎦ ;当点P 在AB 上时,设()(),202Px x ≤≤,则()(),0,2,0PA x PB x ==-,所以()()22111,0PA PB x x x ⎡⎤⋅=-=--∈-⎣⎦ ;当点P 在AD 上时,设()()0,02P y y ≤≤,则()()0,2,2,2PA y PB y=-=--,所以()220,4PA PB y ⎡⎤⋅=-∈⎣⎦ ;综上:PA PB ⋅的取值范围是[]1,4-.故选:D二、填空题(本大题共5小题,每小题5分,共25分)11.已知圆的半径为2,则60 的圆心角的弧度数为__________;所对的弧长为__________.【答案】①.π3##1π3②.2π3##2π3【解析】【分析】利用度与弧度的互化关系,弧长计算公式求解即可.【详解】60 的圆心角的弧度数为ππ601803⨯=;所对的弧长为π2π233⨯=.故答案为:π3;2π312.已知向量()2,3a =- ,(),6b x =- .若//a b ,则a =r __________,x =__________.【答案】①.②.4【解析】【分析】利用坐标法求出向量的模,再根据向量共线的坐标表示求出x .【详解】因为向量()2,3a =- ,所以a == ,又(),6b x =- 且//a b ,所以()326x =-⨯-,解得4x =.;4.13.若函数()sin f x A x x =的一个零点为π3,则A =__________;将函数()f x 的图象向左至少平移__________个单位,得到函数2sin y x =的图象.【答案】①.1②.π3##1π3【解析】【分析】利用零点的意义求出A ;利用辅助角公式化简函数()f x ,再借助平移变换求解即得.【详解】函数()sin f x A x x =的一个零点为π3,得ππsin 033A =,解得1A =;则π()sin 2sin()3f x x x x =-=-,显然πππ(2sin[()]2sin 333f x x x +=+-=,所以()f x 的图象向左至少平移π3个单位,得到函数2sin y x =的图象.故答案为:1;π314.设平面向量,,a b c 为非零向量,且(1,0)a = .能够说明“若a b a c ⋅=⋅ ,则b c = ”是假命题的一组向量,b c的坐标依次为__________.【答案】(0,1),(0,1)-(答案不唯一)【解析】【分析】令向量,b c 与向量a 都垂直,且b c ≠即可得解.【详解】令(0,1),(0,1)b c ==- ,显然0a b a c ⋅==⋅,而b c ≠ ,因此(0,1),(0,1)b c ==- 能说明“若a b a c ⋅=⋅ ,则b c = ”是假命题,所以向量,b c的坐标依次为(0,1),(0,1)-.故答案为:(0,1),(0,1)-15.已知函数()2cosπ1xf x x =+,给出下列四个结论:①函数()f x 是奇函数;②函数()f x 有无数个零点;③函数()f x 的最大值为1;④函数()f x 没有最小值.其中,所有正确结论的序号为__________.【答案】②③【解析】【分析】根据偶函数的定义判断①,令()0f x =求出函数的零点,即可判断②,求出函数的最大值即可判断③,根据函数值的特征判断④.【详解】函数()2cosπ1xf x x =+的定义域为R ,又22cos(π)cos π()()()11x x f x f x x x --===-++,所以()2cosπ1xf x x =+为偶函数,故①错误;令2cos ππ1()0cos π0ππ(Z)(Z)122x f x x x k k x k k x ==⇒=⇒=+∈⇒=+∈+,所以函数()f x 有无数个零点,故②正确;因为cos π1x ≤,当ππ(Z)x k k =∈,即(Z)x k k =∈时取等号,又因为211x +≥,当且仅当0x =时取等号,所以有21011x <≤+,当且仅当0x =时取等号,所以有2cos π11x x ≤+,当且仅当0x =时取等号,因此有()2cos π11xf x x =≤+,即()()max 01f x f ==,故③正确;因为()2cosπ1xf x x =+为偶函数,函数图象关于y 轴对称,只需研究函数在()0,∞+上的情况即可,当x →+∞时2101x →+,又1cosπ1x -≤≤,所以当x →+∞时()0f x →,又()()max 01f x f ==,当102x <<时cos π0x >,210x +>,所以()0f x >,当1322x <<时1cos π0x -≤<,210x +>,所以()0f x <,当1x >时212x +>,0cos π1x ≤≤,所以()12f x <,又()112f =-,102f ⎛⎫= ⎪⎝⎭,302f ⎛⎫= ⎪⎝⎭,且()f x 为连续函数,所以()f x 存在最小值,事实上()f x 的图象如下所示:由图可知()f x 存在最小值,故④错误.故答案为:②③三、解答题(本大题共6小题,共85分)16.在平面直角坐标系xOy 中,角θ以Ox 为始边,终边经过点()1,2--.(1)求tan θ,tan2θ的值;(2)求πsin ,cos ,cos 4θθθ⎛⎫+⎪⎝⎭的值.【答案】(1)tan 2θ=,4tan 23θ=-(2)sin 5θ-=,cos 5θ=,π10cos 410θ⎛⎫+=⎪⎝⎭【解析】【分析】(1)由三角函数的定义求出tan θ,再由二倍角正切公式求出tan 2θ;(2)由三角函数的定义求出sin θ,cos θ,再由两角和的余弦公式计算可得.【小问1详解】因为角θ以Ox 为始边,终边经过点()1,2--,所以2tan 21θ-==-,则222tan 224tan 21tan 123θθθ⨯===---.【小问2详解】因为角θ以Ox 为始边,终边经过点()1,2--,所以sin 5θ-==,cos 5θ==,所以πππcos cos cos sin sin 444θθθ⎛⎫+=- ⎪⎝⎭2520555210221⎛⎫- =⨯-⨯=⎪ ⎪⎝⎭.17.已知平面向量,,2,3,a b a b a == 与b的夹角为60 ,(1)求22,,a b a b ⋅;(2)求(2)(3)a b a b -⋅+的值:(3)当x 为何值时,xa b -与3a b +rr 垂直.【答案】(1)4,9,3;(2)4-;(3)3013x =.【解析】【分析】(1)利用数量积的定义计算即得.(2)利用数量积的运算律计算即得.(3)利用垂直关系的向量表示,数量积的运算律求解即得.【小问1详解】向量,,2,3,a b a b a == 与b 的夹角为60 ,所以2222|4,|9,3||||c |os 0|6a a b b a b a b ===⋅=== .【小问2详解】依题意,2222(2)(3)2352233534a b a b a b a b -⋅+=-+⋅=⨯-⨯+⨯=- .【小问3详解】由()(3)0xa b a b -⋅+= ,得223(31)4273(31)13300xa b x a b x x x -+-⋅=-+-=-= ,解得3013x =,所以当3013x =时,xa b - 与3a b +r r 垂直.18.已知函数()sin2cos2f x x x =+.(1)求(0)f ;(2)求函数()f x 的最小正周期及对称轴方程;(3)求函数()f x 的单调递增区间.【答案】(1)1;(2)π,ππ,Z 82k x k =+∈;(3)()3πππ,πZ 88k k k ⎡⎤-++∈⎢⎥⎣⎦.【解析】【分析】(1)代入计算求出函数值.(2)(3)利用辅助角公式化简函数()f x ,再结合正弦函数的图象与性质求解即得.【小问1详解】函数()sin2cos2f x x x =+,所以(0)sin0cos01f =+=.【小问2详解】函数π())4f x x =+,所以函数()f x 的最小正周期2ππ2T ==;由ππ2π,Z 42x k k +=+∈,解得ππ,Z 82k x k =+∈,所以函数()f x 图象的对称轴方程为ππ,Z 82k x k =+∈.【小问3详解】由πππ2π22π,Z 242k x k k -+≤+≤+∈,得3ππππ,Z 88k x k k -+≤≤+∈,所以函数()f x 的单调递增区间是()3πππ,πZ 88k k k ⎡⎤-++∈⎢⎥⎣⎦.19.在△ABC 中,7a =,8b =,再从条件①、条件②这两个条件中选择一个作为已知.(1)求A ∠;(2)求ABC 的面积.条件①:3c =;条件②:1cos 7B =-.注:如果选择条件①和条件②分别解答,按第一个解答计分.【答案】(1)选①②答案相同,3A π∠=;(2)选①②答案相同,ABC 的面积为【解析】【分析】(1)选①,用余弦定理得到cos A ,从而得到答案;选②:先用余弦定理求出3c =,再用余弦定理求出cos A ,得到答案;(2)选①,先求出sin 2A =,使用面积公式即可;选②:先用sin sin()C A B =+求出sin C ,再使用面积公式即可.【小问1详解】选条件①:3c =.在△ABC 中,因为7a =,8b =,3c =,由余弦定理,得222cos 2b c a A bc+-=64949283+-=⨯⨯12=.因为()0,πA ∈,所以π3A ∠=;选条件②:1cos 7B =-由余弦定理得:222249641cos 2147a cbc B ac c +-+-===-,解得:3c =或5-(舍去)由余弦定理,得222cos 2b c a A bc+-=64949283+-=⨯⨯12=.因为()0,πA ∈,所以π3A ∠=;【小问2详解】选条件①:3c =由(1)可得sin 2A =.所以ABC 的面积11sin 8322S bc A ==⨯⨯=选条件②:1cos 7B =-.由(1)可得1cos 2A =.因为sin sin[()]C A B =π-+sin()A B =+sin cos cos sin A B A B=+11()72=-+⨯3314=,所以ABC 的面积11sin 7822S ab C ==⨯⨯=..20.已知函数()2π2cos cos 213f x x x ⎛⎫=+-- ⎪⎝⎭.(1)求π6f ⎛⎫ ⎪⎝⎭的值;(2)求函数()f x 的在[]0,π上单调递减区间;(3)若函数()f x 在区间[]0,m 上有且只有两个零点,求m 的取值范围.【答案】(1)32(2)π7π,1212⎡⎤⎢⎥⎣⎦(3)3564π,π⎡⎫⎪⎢⎣⎭【解析】【分析】(1)利用二倍角公式及和差角公式化简函数解析式,再代入计算可得;(2)由x 的取值范围求出π23x +的范围,再根据正弦函数的性质得到ππ3π2232x ≤+≤,解得即可;(3)由x 的取值范围求出π23x +的范围,再根据正弦函数的性质得到不等式组,解得即可.【小问1详解】因为()2π2cos cos 213f x x x ⎛⎫=+-- ⎪⎝⎭ππcos2cos2cossin 2sin 33x x x =++3cos2sin 222x x =+1cos2sin 222x x ⎫=+⎪⎪⎭π23x ⎛⎫=+ ⎪⎝⎭,所以πππ2π3266332f ⎛⎫⎛⎫=⨯+== ⎪ ⎪⎝⎭⎝⎭.【小问2详解】当[]0,πx ∈时ππ7π2,333x ⎡⎤+∈⎢⎥⎣⎦,令ππ3π2232x ≤+≤,解得π7π1212x ≤≤,所以函数()f x 的在[]0,π上的单调递减区间为π7π,1212⎡⎤⎢⎥⎣⎦.【小问3详解】当[]0,x m ∈时,πππ2,2333x m ⎡⎤+∈+⎢⎥⎣⎦,又函数()f x 在区间[]0,m 上有且只有两个零点,所以π2π23π3m ≤<+,解得5π4π63m ≤<,即m 的取值范围为3564π,π⎡⎫⎪⎢⎣⎭.21.某地进行老旧小区改造,有半径为60米,圆心角为π3的一块扇形空置地(如图),现欲从中规划出一块三角形绿地PQR ,其中P 在 BC 上,PQ AB ⊥,垂足为Q ,PR AC ⊥,垂足为R ,设π0,3PAB α⎛⎫∠=∈ ⎪⎝⎭;(1)求PQ ,PR (用α表示);(2)当P 在BC 上运动时,这块三角形绿地的最大面积,以及取到最大面积时α的值.【答案】(1)60sin PQ α=,π60sin 3PR α⎛⎫=- ⎪⎝⎭(2)三角形绿地的最大面积是平方米,此时π6α=【解析】【分析】(1)利用锐角三角函数表示出PQ 、PR ;(2)依题意可得2π3QPR ∠=,则1sin 2PQR S PQ PR QPR =⋅⋅⋅∠ ,利用三角恒等变换公式化简,再结合正弦函数的性质求出最大值.【小问1详解】在Rt PAQ 中,π0,3PAB ∠α⎛⎫=∈ ⎪⎝⎭,60AP =,∴sin 60sin PQ AP αα==(米),又π3BAC ∠=,所以π3PAR α∠=-,在Rt PAR 中,可得πsin 60sin 3PR PAR AP α⎛⎫==-⎪⎝⎭∠(米).【小问2详解】由题可知2π3QPR ∠=,∴PQR 的面积1sin 2PQR S PQ PR QPR =⋅⋅⋅∠1π2π60sin 60sin sin 233αα⎛⎫=⨯⨯-⨯ ⎪⎝⎭πsin3αα⎛⎫=- ⎪⎝⎭ππsin cos cos sin 33ααα⎛⎫=- ⎪⎝⎭112cos 222αα⎫=+-⎪⎪⎭π1sin 262α⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦,又π0,3α⎛⎫∈ ⎪⎝⎭,526πππ,66α⎛⎫+∈ ⎪⎝⎭,∴当ππ262α+=,即π6α=时,PQR 的面积有最大值即三角形绿地的最大面积是π6α=.。

重庆市2023-2024学年高一下学期期中考试数学试卷含答案

重庆市2023-2024学年高一下学期期中考试数学试卷含答案

重庆市2023-2024学年高一(下)期中数学试卷(答案在最后)一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.(5分)已知复数,则的虚部是()A.﹣i B.﹣1C.i D.12.(5分)设m,n是两条不同的直线,α,β是两个不同的平面,则下列命题正确的是()A.若m∥n,m∥α,则n∥αB.若α∥β,m⊂α,n⊂β,则m∥nC.若m∥n,m⊥α,则n⊥αD.若α⊥β,m⊂α,n⊂β,则m⊥n3.(5分)在△ABC中,b=6,c=3,A=60°,则此三角形外接圆面积为()A.9B.9πC.36D.36π4.(5分)已知向量满足,向量与的夹角为,则在方向上的投影向量为()A.B.C.D.5.(5分)如图所示是古希腊数学家阿基米德的墓碑文,墓碑上刻着一个圆柱,圆柱内有一个内切球,这个球的直径恰好与圆柱的高相等,相传这个图形表达了阿基米德最引以为自豪的发现,我们来重温这个伟大发现,圆柱的表面积与球的表面积之比为()A.B.2C.D.6.(5分)如图,在矩形ABCD中,AB=2AD,E,F分别为BC,CD的中点,G为EF中点,则=()A.B.C.D.7.(5分)嵩岳寺塔位于河南郑州登封市嵩岳寺内,历经1400多年风雨侵蚀,仍巍然屹立,是中国现存最早的砖塔.如图,为测量塔的总高度AB,选取与塔底B在同一水平面内的两个测量基点C与D,现测得∠BCD=30°,∠BDC=45°,CD=32m,在C点测得塔顶A的仰角为60°,则塔的总高度为()A.B.C.D.8.(5分)在正四棱台ABCD﹣A1B1C1D1中,AB=2A1B1=4,侧棱,若P为B1C1的中点,则过B,D,P三点截面的面积为()A.B.C.D.二、多选题:本题共3小题,共18分。

在每小题给出的选项中,有多项符合题目要求。

(多选)9.(3分)已知复数z=2﹣3i,其中i是虚数单位,则下列结论正确的是()A.z的模等于13B.z在复平面内对应的点位于第四象限C.z的共轭复数为﹣2﹣3iD.若z(m+4i)是纯虚数,则m=﹣6(多选)10.(3分)设向量,,则下列叙述错误的是()A.若与的夹角为钝角,则k<2且k≠﹣2B.的最小值为2C.与共线的单位向量只有一个为D.若,则或(多选)11.(3分)在长方体ABCD﹣A1B1C1D1中,BC=2AB=2BB1=6,点E为棱BC上靠近点C的三等分点,点F是长方形ADD1A1内一动点(含边界),且直线B1F,EF与平面ADD1A1所成角的大小相等,则()A.A1F∥平面BCC1B1B.三棱锥F﹣BB1E的体积为4C.存在点F,使得A1F∥B1ED.线段A1F的长度的取值范围为[,]三、填空题:本题共3小题,每小题5分,共15分。

高一语文下册中考试卷答案

高一语文下册中考试卷答案

一、选择题(每题2分,共20分)1. 下列词语中字形、字音、词义完全正确的一项是()A. 纷至沓来(tà)B. 恍若隔世(huǎng)C. 神采奕奕(yì)D. 毕恭毕敬(bì)2. 下列句子中,没有语病的一项是()A. 随着社会的发展,科技的进步,我国社会主义现代化建设取得了辉煌的成就。

B. 通过这次社会实践,使我明白了理论知识的重要性。

C. 他的发言,引起了与会代表的强烈反响。

D. 他在会上发表了长篇讲话,内容丰富,言辞生动。

3. 下列各句中,没有语序不当的一项是()A. 看到这幅画,我仿佛看到了那激动人心的时刻。

B. 他在这次比赛中取得了优异的成绩,这与他平时刻苦训练是分不开的。

C. 我国的科技水平在许多方面已经达到了世界先进水平。

D. 这本书不仅内容丰富,而且插图精美。

4. 下列各句中,没有使用修辞手法的一项是()A. 皎皎白兔,东走西顾。

B. 人生如梦,恍若隔世。

C. 春风又绿江南岸,明月何时照我还?D. 他的眼神中充满了期待。

5. 下列关于文学常识的表述,不正确的一项是()A. 《红楼梦》是我国古典小说四大名著之一。

B. 《呐喊》是鲁迅的第一部短篇小说集。

C. 《围城》是钱钟书的长篇小说。

D. 《钢铁是怎样炼成的》是苏联作家奥斯特洛夫斯基的作品。

6. 下列关于古诗词的赏析,不正确的一项是()A. “春眠不觉晓,处处闻啼鸟。

”表现了春天的生机勃勃。

B. “月落乌啼霜满天,江枫渔火对愁眠。

”描绘了秋夜的凄凉。

C. “床前明月光,疑是地上霜。

”反映了诗人对家乡的思念。

D. “山重水复疑无路,柳暗花明又一村。

”表现了诗人坚定的信念。

7. 下列关于文言文的断句,正确的一项是()A. 阿母无大儿,何患无儿哉B. 夫妻反目,父子相疑C. 吾尝终日而思矣,不如须臾之所学也D. 阿母舍汝而归,汝岂得汝所欲耶8. 下列关于名著的表述,不正确的一项是()A. 《三国演义》中,诸葛亮是智慧的化身。

北京市高一下学期期中考试试卷(解析版)

北京市高一下学期期中考试试卷(解析版)

北京市高一 数学(时间: 120 分钟满分: 150 分 为必修三模块结业考试)一、选择题共10小题,每小题4分,共40分. 每小题均有四个选项,其中只有一个符合题意.1. ( ) sin330︒=A. B. C. D.12-1-【答案】A 【解析】【分析】利用诱导公式及特殊角的三角函数值计算可得. 【详解】. ()1sin330sin 36030sin 302︒=︒-︒=-︒=-故选:A2. 若,且,则角α的终边在( ) cos 0α<tan 0α>A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限【答案】C 【解析】【分析】根据角的象限与余弦函数的函数值和正切函数的函数值的正负的关系判断. 【详解】因为,所以角α的终边在第二象限或轴的负半轴或第三象限, cos 0α<x 因为,所以角α的终边在第一象限或第三象限, tan 0α>所以角α的终边在第三象限, 故选:C.3. 在四边形中,( ) ABCD AB AD CD -+=A. B.C.D.BCCB ADDA 【答案】B 【解析】【分析】根据平面向量加减运算法则计算.【详解】.AB AD CD CD DB CB -+=+=故选:B4. 若角的终边经过点,则的值为( )α()1,2P -tan αA. B. C. D. 2-12-【答案】A 【解析】【分析】利用正切函数的定义求解即可.【详解】因为角的终边上有一点,所以, α()1,2P -2tan 21α-==-故选:A5. 在半径为的扇形中,圆心角为,则扇形的面积是( ) 5cm 2rad A. B.C.D.250cm 225cm 220cm 210cm 【答案】B 【解析】【分析】根据扇形的面积公式即可求解. 【详解】由扇形面积可得,, ()22211=2525cm 22S r α=⨯⨯=故选:B.6. 如图,△中,,,为中点,为中点,用和表示为ABC AB a =AC b = D BC E AD CE a b,则( ) CE a bλμ=+ λμ=A. B.C.D.33-1313-【答案】D 【解析】【分析】根据平面向量线性运算法则及平面向量基本定理求出、,即可得解. λμ【详解】因为为中点,为中点,D BCE AD 所以 12A C CA E AC AD E =+=-+ ()1122AC AB AC =-+⨯+,3144AC AB =-+ 3144b a =-+所以,则. 1434λμ⎧=⎪⎪⎨⎪=-⎪⎩13λμ=-故选:D7. 把函数的图像上所有的点向左平行移动个单位长度,再把所得图像上所有点的横坐标缩短sin y x =3π到原来的(纵坐标不变),得到的图像所表示的函数是 12A.B. sin 23y x π⎛⎫=-⎪⎝⎭sin 26x y π⎛⎫=+⎪⎝⎭C . D. sin 23y x π⎛⎫=+ ⎪⎝⎭2sin 23y x π⎛⎫=+⎪⎝⎭【答案】C 【解析】【分析】根据左右平移和周期变换原则变换即可得到结果. 【详解】向左平移个单位得: sin y x =3πsin 3y x π⎛⎫=+ ⎪⎝⎭将横坐标缩短为原来的得: sin 3y x π⎛⎫=+⎪⎝⎭12sin 23y x π⎛⎫=+⎪⎝⎭本题正确选项:C 【点睛】本题考查三角函数的左右平移变换和周期变换的问题,属于基础题. 8. 已知,是单位向量,. 若,则与的夹角为( )ab2c a b =+a c ⊥a bA.B.C.D.π6π32π35π6【答案】C 【解析】【分析】依题意可得,根据数量积的运算律求出,最后根据夹角公式计算可得.0a c ⋅=a b ⋅【详解】因为,是单位向量,所以,又且,a b 1==a b r r 2c a b =+ a c ⊥ 所以,即,所以,()220a b c a a a b a a ⋅=⋅=⋅+⋅+= 220a a b +⋅=12a b ⋅=-r r所以,因为, 1cos ,2a b a b a b⋅==-⋅[],0,π∈ a b 所以. 2π,3a b =故选:C9. 已知函数,则“函数的图象经过点(,1)”是“函数的图象经过()sin (0)f x x ωω=>()f x 4π()f x 点()”的,02πA. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A 【解析】 【分析】先由的图象经过点求出;再由的图象经过点求出,根据充分条件与必要()f x π14⎛⎫ ⎪⎝⎭ω()f x ,02π⎛⎫⎪⎝⎭ω条件的概念,即可得出结果. 【详解】函数的图象经过点(,1)时,有,所以,,()f x 4πsin14πω=242k k Z ,ππωπ=+∈因为所以,函数为:, 0ω>,28k ω=+,k N ∈()()sin 28f x k x =+k N ∈当时,,所以,充分性成立; 2x π=()()sin 28sin 4022f k k ππππ⎛⎫=+⨯=+=⎪⎝⎭当函数的图象经过点()时,,所以,,即,,()f x ,02πsin02πω=,2k k Z πωπ=∈2k ω=k Z ∈,()sin2(0,)f x kx k k Z =>∈当时,不一定等于1,所以,必要性不成立. 4x π=sin 2sin 442k f k πππ⎛⎫⎛⎫=⨯=⎪ ⎪⎝⎭⎝⎭故选A【点睛】本题主要考查充分条件与必要条件的判定,熟记概念即可,属于常考题型.10. 已知点, , .若平面区域由所有满足(,(0,0)O (2,1)A (1,2)B D OP OA OB λμ=+12λ≤≤)的点组成,则的面积为( )12μ≤≤P D A .B. C. D.323612【答案】B【解析】【分析】以,为邻边作平行四边形,延长到,使,延长到,使OA OB OACB BC D CD BC =AC E ,以,为邻边作平行四边形,平行四边形及内部便是区域,可求出CE AC =CD CE CDFE CDFE D 的坐标,然后求出平行四边形的面积即可.,CD CECDFE 【详解】如图,以,为邻边作平行四边形,延长到,使, OA OB OACB BC D CD BC =延长到,使,以,为邻边作平行四边形,AC E CE AC =CD CE CDFE因为(, ),OP OA OB λμ=+12λ≤≤12μ≤≤则平行四边形为区域,且,,CDFE D ()2,1CD OA == ()1,2CE OB ==所以,,, 4CD CE ⋅= CD == CE == ,且,, ∴4cos 5CD CE DCE CD CE ⋅∠==(0,π)DCE ∠∈∴3sin 5DCE ∠=区域的面积为.∴D 3sin 35S CD CE DCE =∠== 故选:B .二、填空题共5小题,每小题5分,共25分.11.cos15°=________. 12【解析】【详解】 cos15°12=cos60°cos15°+sin60°sin15°=cos(60°-15°)=cos45°.12. 已知向量,,若,则实数的值为______.(1,2)a = (2,3)b = ()a ta b ⊥+t 【答案】 85-【解析】【分析】根据向量垂直的坐标表示列方程求解.【详解】因为向量,,所以, (1,2)a = (2,3)b = (2,23)ta b t t +=++又,所以,解得,()a ta b ⊥+1(2)2(23)0t t ⨯++⨯+=85t =-故答案为:.85-13. 如图,网格纸上小正方形的边长为.从四点中任取两个点作为向量的始点和终点,则1,,,A B C D b的最大值为____________a b ⋅v v【答案】 3【解析】【分析】由图可知,要使取到最大值,即要求向量在向量上的投影最大,然后再根据图形即可求a b ⋅ b a出结果.【详解】由题意可知:则,cos cos ,a b a b a b b a b ⋅=⋅<⋅>=<>所以要使取到最大值,即要求向量在向量上的投影最大,a b ⋅ b a由图形可知:当向量时,向量在向量上的投影最大, b AC = b a即 cos ,a b b a b ⋅=<> 即的最大值为. a b ⋅3故答案为:3.【点睛】本题考查向量的数量积几何意义的应用,考查数形结合以及计算能力.14. 用“五点法”作函数的图象时,列表如下:()sin()f x A x ωϕ=+x 16- 13 5643116x ωϕ+0 π2π 3π22π ()f x 022-0则______;______.(23f -=1(0)(3f f +-=【答案】 ①. ②. 02-【解析】【分析】根据表格中的数据求出、、的值,可得出函数的解析式,然后代值计算可得出A ωϕ()y f x =和的值.2(3f -1(0)(3f f +-【详解】由表格中的数据可知,, ()max 2A f x ==函数的最小正周期为,所以,()y f x =111266T ⎛⎫=--= ⎪⎝⎭2π2ππ2T ω===则,当时,则,解得, ()()2sin πf x x ϕ=+13x =1ππ32ϕ⨯+=π6ϕ=则,所以,()π2sin π6f x x ⎛⎫=+⎪⎝⎭2π2ππ(2sin 2sin 23632f ⎛⎫⎛⎫-=-=-=- ⎪ ⎪⎝⎭⎝⎭.1ππ(0)()2sin 2sin 0366f f ⎛⎫+-=+-= ⎪⎝⎭故答案为:;.2-015. 已知函数,,其中,是这两个函数图象的交点,且不共()sin f x x ω=()cos g x x ω=0ω>,,A B C 线.①当时,面积的最小值为_____; 1ω=ABC A ②若存在是等边三角形,则的最小值为_____. ABC A ω【答案】 ①.②.【解析】【分析】画出两函数图象,数形结合得到面积最小值;当相邻三个交点构成等边三角形时,取ABC A ω得最小值,结合列出方程,求出答案. CD AB =【详解】当时,,, 1ω=()sin f x x =()cos g x x =画出两函数图象,如下:过点作⊥于点,C CD ABD当为如图所示的三个相邻的交点时,面积最小,,,A B C ABC A 其中,π9π5π,,,444A B C ⎛⎛⎛ ⎝⎝⎝故,, 9ππ2π44AB =-=2CD ==所以;112π22ABC S AB CD AB =⋅==⨯=A 因为,函数最小正周期,0ω>2πT ω=故当相邻三个交点构成等边三角形时,两函数的最小正周期最大,则取得最小值, ω则,, 2πAB ω=2CD ==因为,解得,即为最小值. CD AB=2πω=ω=三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16. 已知角是第三象限角,且. αsin()cos()tan()()sin()tan()2f ααααααπ-π+π-=π+π+(1)化简; ()f α(2)若,求的值. 1(2)f α=-cos(2π)α-【答案】(1)sin α(2)【解析】【分析】(1)利用诱导公式化简即可;(2)由同角三角函数的基本关系求出,再利用诱导公式计算可得. cos α【小问1详解】 sin()cos()tan()()sin()tan()2f ααααααπ-π+π-=π+π+.()()sin cos tan sin cos tan αααααα⋅-⋅-==⋅【小问2详解】 因为,即,又是第三象限角,1(2)f α=-1sin 2α=-α所以,cos α==所以. cos(2π)cos αα-==17. 已知向量,(,2)a x x =(3,2)b x =- (1)若与共线,求实数的值;a bx (2)若与的夹角是钝角,求实数的取值范围.abx 【答案】(1)或013-(2) 114(,)(,0)(,)333-∞--+∞ 【解析】【分析】(1)根据向量共线的坐标运算公式,列出方程,即可求解;(2)根据题意,利用且与不共线,结合向量的坐标表示和数量积的运算,即可求解. 0a b ⋅< a b【小问1详解】因为与共线,且向量,, ab (,2)a x x =(3,2)b x =-所以,即,解得或. 22(3)x x x =⋅-2620x x +=0x =13x =-【小问2详解】因为与的夹角是钝角,所以,解得或.a b 2340a b x x ⋅=-+< 0x <43x >又由向量与不共线,可得,解得且, a b22(3)x x x ≠⋅-0x ≠13x ≠-所以实数的取值范围是. x 114(,)(,0)(,)333-∞--+∞ 18. 已知函数()cos tan f x x x =⋅(1)求函数的定义域及的值; ()f x π()3f (2)若,求的值. π1()()25f f αα+-=-tan α【答案】(1)π{|π,Z}2x x k k ≠+∈(2)或 34-43-【解析】【分析】(1)根据有意义求解定义域,化简函数代入求值即可解答; tan y x =(2)由题意,.,再利用同角函数的基本关系求解即可. 1sin cos 5αα+=-【小问1详解】由题意,函数有意义,只需有意义即可, ()f x tan y x =所以函数的定义域为, ()f x π{|π,Z}2x x k k ≠+∈因为,所以. sin ()cos tancos sin cos x f x x x x x x =⋅=⋅=ππ(sin 33f ==【小问2详解】 因为,且, π1()()25f f αα+-=-ππsin cos 22f ααα⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭所以. 1sin cos 5αα+=-又因为,所以, 22sin cos 1αα+=21(sin cos )12sin cos 25αααα+=+=所以. 12sin cos 25αα=-解方程组,得或,1sin cos 512sin cos 25αααα⎧+=-⎪⎪⎨⎪=-⎪⎩3sin 54cos 5αα⎧=⎪⎪⎨⎪=-⎪⎩4sin 53cos 5αα⎧=-⎪⎪⎨⎪=⎪⎩则或. 3tan 4α=-4tan 3α=-19. 已知函数 π()sin(2)6f x x =-(1)求函数的单调递增区间及最小正周期;()f x (2)当时,的取值范围为,求的最大值. [0,]x m ∈()f x 1[,1]2-m 【答案】(1); ππ[π,π],Z 63k k k -++∈π(2) 2π3【解析】【分析】(1)代入正弦函数的单调递增区间结论计算即可,利用周期公式计算即可;(2)先求出整体变量的范围,然后利用正弦函数性质解答即可.【小问1详解】令,因为的单调递增区间是, π26t x =-sin y t =ππ2π,2π,Z 22k k k ⎡⎤-++∈⎢⎥⎣⎦所以令,即, πππ2π22π,Z 262k x k k -+≤-≤+∈π2π2π22π,Z 33k x k k -+≤≤+∈解得, ππππ,Z 63k x k k -+≤≤+∈所以函数的单调递增区间为 ()f x ππ[π,π],Z 63k k k -++∈最小正周期为; 2ππ2T ==【小问2详解】当时,, [0,]x m ∈πππ2,2666x m ⎡⎤-∈--⎢⎥⎣⎦令,则,所以的取值范围为, π26t x =-ππ,266t m ⎡⎤∈--⎢⎥⎣⎦sin t 1[,1]2-由的性质可知,,解得,所以的最大值为. sin y t =ππ7π2266m ≤-≤π2π33m ≤≤m 2π320. 已知函数的部分图象如图所示. ()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭(1)直接写出的值;ω(2)再从条件①、条件②中选择一个作为已知,求函数在区间上的最小值.条件①:()f x ,124ππ⎡⎤-⎢⎥⎣⎦直线为函数的图象的一条对称轴;条件②:为函数的图象的一个对712x π=()y f x =,03π⎛⎫ ⎪⎝⎭()y f x =称中心 【答案】(1);(2)条件选择见解析,在区间上的最小值为. 2ω=()f x 124ππ⎡⎤-⎢⎥⎣⎦,1【解析】【分析】(1)求出函数的最小正周期,由此可求得的值;()f x ω(2)根据所选条件求得的表达式,结合的取值范围可求得的值,再由求得的值,由ϕϕϕ()0f =A 求出的取值范围,利用正弦型函数的基本性质可求得的最小值. ,124x ππ⎡⎤∈-⎢⎥⎣⎦23x π+()f x 【详解】(1)由图象可知,函数的最小正周期满足,,则; ()f x T 22T π=T π∴=22T πω==(2)选择条件①:因为直线为函数的图象的一条对称轴, 712x π=()y f x =所以,,即, ()7322122k k Z ππϕπ⨯+=+∈()23k k Z πϕπ=+∈,,则,,, 22ππϕ-<< 3πϕ∴=()0sin 3f A A π===2A ∴=()2sin 23f x x π⎛⎫=+ ⎪⎝⎭当时,, ,124x ππ⎡⎤∈-⎢⎥⎣⎦52636x πππ≤+≤所以当或时,即当或时,函数取得最小值,即;236x ππ+=56π12x π=-4π()f x ()min 1f x =选择条件②:因为是函数图象的一个对称中心, ,03π⎛⎫⎪⎝⎭()y f x =则,解得,()223k k Z πϕππ⨯+=+∈()23k k Z πϕπ=+∈,,则,,, 22ππϕ-<< 3πϕ∴=()0sin 3f A A π===2A ∴=()2sin 23f x x π⎛⎫=+ ⎪⎝⎭当时,, ,124x ππ⎡⎤∈-⎢⎥⎣⎦52636x πππ≤+≤所以当或时,即当或时,函数取得最小值,即.236x ππ+=56π12x π=-4π()f x ()min 1f x =【点睛】方法点睛:求函数在区间上最值的一般步骤:()()sin f x A x =+ωϕ[],a b 第一步:三角函数式的化简,一般化成形如的形式或的形()sin y A x k ωϕ=++()cos y A x k ωϕ=++式;第二步:由的取值范围确定的取值范围,再确定(或)的取值范围; x x ωϕ+()sin x ωϕ+()cos x ωϕ+第三步:求出所求函数的值域(或最值).21. 对于正整数,如果个整数满足,n ()*k k N ∈12k a a a ⋯,,,121k a a a n ≤≤≤⋯≤≤且,则称数组为的一个“正整数分拆”.记均为偶数12k a a a n ++⋯+=()12k a a a ⋯,,,n 12k a a a ⋯,,,的“正整数分拆”的个数为均为奇数的“正整数分拆”的个数为. 12n k f a a a ⋯,,,,n g (Ⅰ)写出整数4的所有“正整数分拆”;(Ⅱ)对于给定的整数,设是的一个“正整数分拆”,且,求的最大值; ()4n n ≥()12k a a a ⋯,,,n 12a =k (Ⅲ)对所有的正整数,证明:;并求出使得等号成立的的值.n n n f g ≤n (注:对于的两个“正整数分拆”与,当且仅当且n ()12k a a a ⋯,,,()12m b b b ⋯,,,k m =时,称这两个“正整数分拆”是相同的.)1122k m a b a b a b ==⋯=,,,【答案】(Ⅰ) ,,,,;(Ⅱ) 为偶数时,,为奇数时,()1,1,1,1()1,1,2()1,3()2,2()4n 2n k =n ;(Ⅲ)证明见解析,, 12n k -=2n =4n =【解析】【分析】(Ⅰ)根据题意直接写出答案.(Ⅱ)讨论当为偶数时,最大为,当为奇数时,最大为,得到答案. n k 2n k =n k 12n k -=(Ⅲ) 讨论当为奇数时,,至少存在一个全为1的拆分,故,当为偶数时, n 0n f =n n f g <n 根据对应关系得到,再计算,,得到答案.n n f g ≤221f g ==442f g ==【详解】(Ⅰ)整数4的所有“正整数分拆”为:,,,,.()1,1,1,1()1,1,2()1,3()2,2()4(Ⅱ)当为偶数时,时,最大为; n 123...2k a a a a =====k 2n k =当为奇数时,时,最大为; n 1231...2,3k k a a a a a -======k 12n k -=综上所述:为偶数,最大为,为奇数时,最大为. n k 2n k =n k 12n k -=(Ⅲ)当为奇数时,,至少存在一个全为1的拆分,故;n 0n f =n n f g <当为偶数时,设是每个数均为偶数的“正整数分拆”,n ()12,,...,k a a a 则它至少对应了和的均为奇数的“正整数分拆”,()1,1,...,1()121,1,...,1,1,...,1k a a a ---故.n n f g ≤综上所述:.n n f g ≤当时,偶数“正整数分拆”为,奇数“正整数分拆”为,;2n =()2()1,1221f g ==当时,偶数“正整数分拆”为,,奇数“正整数分拆”为,4n =()2,2()4()1,1,1,1()1,3故;442f g ==当时,对于偶数“正整数分拆”,除了各项不全为的奇数拆分外,至少多出一项各项均为的“正整6n ≥11数分拆”,故.n n f g <综上所述:使成立的为:或.n n f g =n 2n =4n =【点睛】本土考查了数列的新定义问题,意在考查学生的计算能力和综合应用能力.。

高一语文下册中考试卷答案

高一语文下册中考试卷答案

1. 下列词语中,字形、字音完全正确的是()A. 赤壁之战破釜沉舟雕梁画栋B. 惊涛骇浪赴汤蹈火遥相呼应C. 悬梁刺股草长莺飞破釜沉舟D. 水落石出狐假虎威跃然纸上答案:B2. 下列句子中,没有语病的一句是()A. 随着社会的发展,科技的进步,我们的生活方式发生了翻天覆地的变化。

B. 我们必须认真对待每一个细节,才能把工作做好。

C. 在这次比赛中,他充分发挥了自己的水平,最终取得了第一名的好成绩。

D. 由于天气原因,比赛被迫推迟,使得观众们感到非常失望。

答案:B3. 下列各句中,没有错别字的一句是()A. 她把家里打扫得干干净净,一尘不染。

B. 他的学习成绩一直名列前茅,深得老师的好评。

C. 在这次活动中,他表现出了卓越的领导才能。

D. 她凭借着自己的聪明才智,成功地解决了这个难题。

答案:B4. 下列各句中,修辞手法运用不恰当的一句是()A. 那只小鸟在枝头欢快地歌唱,仿佛在向世界宣告自己的存在。

B. 那个山洞里黑洞洞的,就像一个无底深渊。

C. 他的眼睛像星星一样明亮,闪烁着智慧的光芒。

D. 那个小孩儿就像一只猴子,一会儿爬树,一会儿跳墙。

答案:D5. 下列各句中,标点符号使用不正确的一句是()A. 他问我:“你知道那个故事吗?”B. 我喜欢的书有很多,比如《红楼梦》、《西游记》和《三国演义》。

C. 这本书的内容非常丰富,有历史、地理、生物等多个方面。

D. 我觉得这个观点很有道理,值得我们深思。

答案:B二、填空题(每题2分,共20分)1. 下列诗句中,描写自然景色的是()A. 独在异乡为异客,每逢佳节倍思亲。

B. 春风又绿江南岸,明月何时照我还?C. 水调歌头·明月几时有D. 春风得意马蹄疾,一日看尽长安花。

答案:B2. 下列句子中,运用了比喻修辞手法的是()A. 那个山洞就像一个无底深渊。

B. 他的眼睛像星星一样明亮。

C. 那只小鸟在枝头欢快地歌唱。

D. 我觉得这个观点很有道理。

答案:B3. 下列各句中,表示并列关系的是()A. 那个山洞里黑洞洞的,就像一个无底深渊。

2023-2024学年上海闵行区高一语文(下)期中考试卷附答案解析

2023-2024学年上海闵行区高一语文(下)期中考试卷附答案解析

2023-2024学年上海闵行区高一语文(下)期中考试卷一、名篇名句默写1.默写填空。

(1),不尽长江滚滚来。

(杜甫《登高》)(2)寄蜉蝣于天地,。

(苏轼《》)(3)曾皙在侍坐时说的“莫春者,春服既成,冠者五六人,童子六七人,,,咏而归”,既是孔子之“志”,也常是后世文人所追求的。

二、语言文字运用2.下列句子用语得体的一项是()A.小闵参加演讲比赛,发言结束时说:“我的演讲到此结束,感谢各位同学聆听。

”B.球赛结束后,观赛的小闵对运动员说:“大家胜利归来,我内心感到心悦诚服。

”C.收到同桌送的生日礼物,小闵开心地说:“我实在是却之不恭,就只好笑纳了。

”D.读书交流会上,小闵说:“我对作者的创作意图不太理解,请同学们不吝赐教。

”3.填入下列语段空白处的句子,排序正确的一项是()不流动是从人和空间的关系上说的,从人和人在空间的排列关系上说就是孤立和隔膜。

______,______,______。

孤立和隔膜并不是绝对的,但是人口的流动率小,社区间的往来也必然疏少。

我想我们可以说,乡土社会的生活是富于地方性的。

地方性是指他们活动范围有地域上的限制,在区域间接触少,生活隔离,各自保持着孤立的社会圈子。

①孤立、隔膜是就村和村之间的关系而说的②中国乡土社区的单位是村落,从三家村起可以到几千户的大村③孤立和隔膜并不是以个人为单位的,而是以住在一处的集团为单位的A.①②③B.③②①C.②①③D.①③②三、现代文阅读阅读下文,完成下面小题①随着技术发展的速度越来越快,一些人开始将现代社会出现的诸多问题归咎于技术,批评它给人类带来惰化和异化,似乎技术成了一种泯灭“人性”、弱化心智的异己力量。

然而,他们压根儿没有认识到这样一个关于技术本质的命题,即技术恰恰就是展现人的本质的主要方式之一。

②我们往往认为,人之所以能够区别于其他动物,是因为人可以制造工具。

但事实上,一些灵长类动物似乎也有“制造工具”的能力,只不过动物制造工具的本质只是利用一些实物在外力作用下自然生成的状态,来完成一些出于生物本能的动作,可人就不同了——石器时代的人已经会按照事先已有的意图来“拣”“砸”或“磨”石块,以赋予其特定的功能,这才是所谓的“技术”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档