光学零部件的基本测量
光学检测的综述
光学检测的综述光学检测的综述摘要随着科学技术和⼯业的发展,测量检测技术在⾃动化⽣产、质量控制、机器⼈视觉、反求⼯程、CAD/CAM以及⽣物医学⼯程等⽅⾯的应⽤⽇益重要。
传统的接触式测量技术存在测量⼒、测量时间长、需进⾏测头半径的补偿、不能测量弹性或脆性材料等局限性,因⽽不能满⾜现代⼯业发展的需要。
近年来由于光学⾮接触式测量技术克服了上述缺陷,其⾮接触、⾼效率、⾼准确度和易于实现⾃动化的特点,成为近年来测量技术研究的热点。
本⽂介绍了多种基于各种测量原理的光学检测⽅法。
关键词:光学检测;三维测量; 数字相移;1.光电检测技术光电检测技术以激光、红外、光纤等现代光电器件为基础,通过对载有被检测物体信号的光辐射(发射、反射、衍射、折射、透射等)进⾏检测,即通过光电检测器件接收光辐射并转换为电信号。
由输⼊电路、放⼤滤波等检测电路提取有⽤的信息,再经过A/D变换接⼝输⼊微型计算机运算、处理,最后显⽰或打印输出所需检测物体的⼏何量或物理量[1]。
如图1所⽰光电检测系统的组成。
图1 光电检测系统光电检测技术的特点:–⾼精度:从地球到⽉球激光测距的精度达到1⽶。
–⾼速度:光速是最快的。
–远距离、⼤量程:遥控、遥测和遥感。
–⾮接触式检测:不改变被测物体性质的条件下进⾏测量。
–寿命长:光电检测中通常⽆机械运动部分,故测量装置寿命长。
–数字化和智能化:强的信息处理、运算和控制能⼒。
光电检测的⽅法:直接作⽤法差动测量法补偿测量法脉冲测量法光电检测系统◆主动系统/被动系统(按信息光源分)–主动系统通过信息调制光源,或者光源发射的光受被测物体调制。
如图2所⽰图2 主动系统的组成框图–被动系统光信号来⾃被测物体的⾃发辐射。
如图3所⽰图3 被动系统的组成框图◆红外系统/可见光系统(按光源波长分)[2]–红外系统多⽤于军事,有⼤⽓窗⼝,需要特种探测器。
–可见光系统多⽤于民⽤◆点探测/⾯探测系统(按接受系统分)–⽤单元探测器接受⽬标的总辐射功率。
第3章第1节曲率半径的测量
第三章光学零部件的基本量测量 §3-1球面曲率半径的测量 概述工厂通过看光圈检验球面面形基准样板 工作样板 零件 样板根据不同要求分为A,B 两级 基准样板通过测曲率半径检验2mm ≤R ≤35mm 用玻璃球在立式测长仪上测量机械法5mm ≤R ≤1200mm 用圆环球经仪 37.5—550 0.03% >550,<37.5 0.06% 阴影法1000mm ≤R ≤几十米 刀口仪 0.05%自准直法 R ≥几十米 自准直望远镜 10—103m 1%,0.2%~10% R ≤500mm 自准直显微镜 凸0—25mm凹0—500mm ±0.002 干涉法 万分之几,长曲率0.3%~1% §3-1-1机械法 一、测量原理222)(h R r R --=222h h r R +=22r R R h --=为防止磨损环口上放三个钢球⎩⎨⎧+-+=---+=+(凹)凸)222222)]([)(()]([)(ρρρρh R r R h R r R )凸(凹-+±+=ρ222h h r R二、测量方法和装置1、 装置 圆环球经仪2、 方法(1) 样板A 平板玻璃放在还口上读取a1B 球面放在还口上读取a2C 计算h=a2-a1)凸(凹-+±+=ρ222h h r R(2)标准样板(对板)A 凸面放在环口上读取a1B 凹面放在环口上读取a2C 计算 2h=a2-a1⎪⎩⎪⎨⎧--=-+=2022220)(2r R R h r R r r r ρ 2220hh r R +=420H H r R +=3、 测量误差分析h r r R =∂∂ 22221h r h R -=∂∂,1±=∂∂ρR 22222222)1(41ρσσσσ+-+=h r R hr h rmm r 001.0=σmm 0005.0=ρσh σ由下列影响因素(1) 刻尺误差 经修正可达mm h 0004.01=σ (2) 阿基米德螺旋线测微目镜误差mm s h 0002.05/001.0/2===βσσ(3) 显微镜对准误差mm h 00013.0581.0073.0073.03±=⨯±=Γ±=δσ mm h h h h 0005.0103.12224224222232221±=⨯⨯+⨯+±=++±=-σσσσ(4) 不同重量引起的测量环变形 精度RRσ37.5—550 0.03% >550,<37.5 0.06% 4、环口选择 另Rr K =)11(2K R h --= )()11()11(122K f K K K R r h r r R A =--=--==∂∂=)(11122122222K f KK h r h R B -=----=-=∂∂=222221)()(h r R K f K f σσσ+=1f (K ),2f (K )在定义域内为单调函数有端值5、 优缺点1) 优点:精度高、测量范围宽、零件不用抛光、操作方便 2) 缺点:磨损§3-1-2自准直法一、 准直望远镜法 1、 测量原理f x d R --=+-x x f f d f x f d f x d R ''+''-='-''-+='-+=)()(2当f x R d '' ,时x f R ''-≈2 2、 测量装置及方法 1)、装置:带有伸缩筒的自准直望远镜 2)、方法A 用平面反射镜自准读取a1B 用被测球面自准读取a2C 计算21a a x -='x x f f d R ''+''-=)(,3、误差分析1=∂∂=d R C ,x x f f R B ''+'='∂∂=2,22x f x R A ''='∂∂=22222d f x R B A σσσσ++±='' 实际上用x f R ''-≈2分析 x f R '-'=-lg lg 2)lg(xx d f f d R dR ''-''=222)()(4x f Rx f R'+'±=''σσσ其中%1.0±=''f f σx 'σ主要有三个因素决定(1) 纵向调焦误差'1x σ调焦误差222)3429.0(31DD SD λασ()+Γ±=屈光度)()2(58.02dD SD -'Γ±=δσ自准时222)3429.0(3212DD SDλασ()+Γ±= 调焦两次1222)3429.0(32222SD SD D D σλασ=+Γ±=()1210001SD x f σσ'='(2)平面镜的面形误差20241DN R SD λσ±==10004100022222f D N f SD x '±='='λσσ 修正1111R R R ±=凹面取正凸面取负 (3)伸缩筒格值误差mm x 001.02±='σ例:用自准直望远镜测一透镜曲率半径已知D=50mm,D/f ′0=1/10Γ=20×平面镜口径D 0=60mm,N=0.2(在50mm 范围内)测得x ˊ=5mm,1mm,25mm 解:22)()(4x f Rx f R'+'±=''σσσ%1.0±=''f f σ)/1(1070.1)50356.045020129.0(66)3429.0(32242222221m D D SD -⨯±=⨯⨯+⨯⨯±=+Γ±=()()λασ4106.6)222050(206158.0)2(58.0-⨯±=⨯-⨯⨯±=Γ-Γ±=d D SDδσ取清晰度法0425.0107.11000500100042121=⨯⨯='=-'SD xf σσ4-2202101.246056.02.0441⨯=⨯⨯=±==D N R SD λσ 031.010********.241000424-222=⨯='±='f D N x λσ053.0031.00425.022±=+±='x σ若x ˊ=5mm, mm x f R 50000550022==''-= %1.1)50053.0(%)1.0(4)()(42222=+±='+'±=''x f R x f Rσσσ 若x ˊ=1mm, mm x f R 250000150022==''-= %3.5)10053.0(%)1.0(4)()(42222=+±='+'±=''x f R x f Rσσσ 若x ˊ=25mm, mm x f R 100002550022==''-= %291.0)250053.0(%)1.0(4)()(42222=+±='+'±=''x f R x f Rσσσ 若d=200mm mm x x f f d R 1030025)25500(500200)(=+-=''+''-=50.295.0)25255002(053.0)25500()2()(222222222222=⨯+⨯+±=''+'+''±=''f x R x x f x f σσσ%9.2%10010300300%,295.01030050.29=⨯==R Rσ 4、 优缺点(1) 优点:可测大曲率半径、非接触测量、设备简单 (2) 缺点:精度低(0.2%~10%)、只适用于大曲率半径、被测零件要抛光二、 准直显微镜法 1、 测量原理2、 测量方法和装置(1) 装置:光学球经仪(2) 方法:自准直显微物镜可换A 显微镜的准球心看到自准反射象记下读数a1B 显微镜的准球面看到自准反射象记下读数a2C 计算R=a2-a1+x 03、 误差分析A 夹持器座定位误差m μσ0.31=B 刻尺刻线误差m μσ5.02=C 投影读数器误差m μσ5.03≈D 显微镜两次调焦(清晰度法)的标准偏差)()32073.0662224mm NA n NA λασ()(+Γ±=例:用光学求经仪测曲率半径,已知:110,56.0,1.0,4'==Γ===⨯⨯αμλβm m NA 求调焦误差可见提高↑β和↑NA 可提高测量精度 但1、β大NA 大工作距小凸面测量受限3、 零件口径D/R 小时NA 不能充分利用达不到提高精度的目的反而会因放大率大光束孔径小使视场暗降低调焦精度 4、 优缺点(1) 优点:非接触测量表面不会磨损、可测小曲率半径、精度高R σ(0.001~0.002) (2) 缺点:表面必须抛光、测量范围小(凸大于25mm 凹小于500mm )、仪器调整复杂 §3-1-3阴影法 1、 测量原理R=SO=HO△R=R-L=HO-HA ≈BO △ ABC ∽△HH ˊOH H BO HO AO O H AB '==' 2/21D R R ∆=δRD R 4δ=∆HS H ´AB δLD L R D L R L R 44δδ+≈+=∆+= 2、 测量装置及方法(1)装置:刀口仪(2)测量方法A 使刀口位于球心处(通过观察阴影图)B 量LC 计算LD L R 4δ+=波差和几何像差的关系R R D W ∆=228即W D R R 228=∆3、 测量误差分析A 米尺误差)1~5.0(mm L =∆B 调焦误差R D h 82=,228R R D h ∆=∆ h DR R ∆=∆2228 m h μλ4012055.020≈±=±=∆2222222500010004088D R D R h D R R ±=⨯±=∆=∆ 例:D=130mm,R=1300mmmm D R R 02.013050001300500022222±≈⨯±=±=∆ 可见调焦误差很小不是主要矛盾mm R R R R 5.0121±=∆=∆+∆=∆%04.0%13005.0±=±=∆R R 精度%05.0±=∆RR 4、 优缺点(1) 优点:非接触测量、可测大曲率半径。
零件光学超精密加工检测技术
零件光学超精密加工检测技术摘要:随着数字数控机床和加工平台的产生与发展,机械零件的加工方式也向着大批量、专一化方向发展。
导致对机械零件的需求也逐渐加大,零件的尺寸和表面加工质量是否符合标准使用要求是影响机械零件正常工作的关键,因此,对机械零件的光学超精密检测成为主要研究任务。
机械零件表面的加工质量和尺寸大小虽然对零件的正常使用影响较低,但直接影响零件的可靠性、质量和使用寿命,而机械零件使用时间决定零件经济效益。
随着光学超精密加工技术的不断发展,零件光学超精密加工检测技术已成为超精密加工迫在眉睫的关键难题。
人工智能技术是一种新兴的用于模拟、延伸和扩展的智能理论、方法、技术及应用系统的一门新的技术科学。
人工智能技术中的机械学习法,使机械零件的光学超精密检测过程大大简化,并将操作结果保存在存储器中,便于后续光学超精密检测过程的快速执行。
关键词:光学检测;现状;发展引言单参数精密测量是精密测量中最简单的问题,近年来在复杂探测等问题中有了重要应用。
多参数精密测量复杂得多,参数之间存在精度制衡。
如何减少参数之间的精度制衡以实现多参数最优测量,是多参数精密测量的重要问题之一。
为了消除参数之间的精度制衡,研究人员将单参数测量实验中控制增强的次序测量技术应用到多参数测量中,通过调控测量系统动力学演化,完全解决了正演化算法中参数之间的精度制衡问题,实现了最优测量。
1测量系统将四组视觉传感器单元(包括CCD相机和激光器)分别竖直放置于精密零件两侧,垂直于精密零件中轴线,安装在精密零件两侧的立柱上;其中两组视觉传感器单元放置于精密零件一侧立柱上,另外两组视觉传感器单元放置于精密零件另一侧立柱上。
首先利用激光跟踪仪建立基坐标系统,然后对每个视觉传感器单元进行相机参数标定、光平面参数方程标定以及全局标定,最终得到相机的内参矩阵、相机到基坐标系下的全局标定矩阵以及激光平面在基坐标系下的平面方程,完成系统使用以及测量前的预处理。
光学测试技术-第2章-光学准直与自准直技术1
(-z-)--z处的光斑半径(光强下降到光斑中心光强的
1/ e处2 的光斑半径; ----激光波长; --n--传播空间的折
射率,在大气中传输时取为1。
第一节 激光束的准直与自准直技术
其中
2
(
z)
02
1
z 02n
2
(1)束腰处的波阵面为平面,此时 R(0) (取束腰位于
坐标原点),则有:
q0
与望远镜视放大率有关,此外还和高斯光束结构参数
( 10,)z1 有关。增大 (z束1 腰远离望远镜 )L,1 压缩比
也增大,光束准直性将更好些。
第一节 激光束的准直与自准直技术
总结:望远镜两透镜的距离为 D f1,f2其 中
f2 f1
如果有一高斯分布的激光光束,其发散角为 ,从左方
入射到倒置的望远系统,出射后的发散角 f1
第一节 激光束的准直与自准直技术
由于激光具有极好的方向性,一个经过准直的连续输出的 激光束,可以认为是一条粗细几乎不变的直线。因此可以用 激光束作为空间基准线,这样的激光准直仪能够测量直线度、 平面度、平行度、垂直度,也可以做三维空间的基准测量。
激光准直仪和平行光管、经纬仪等一般的准直仪相比, 具有工作距离长,测量精度高和便于自动控制、操作方便等 优点,可以广泛地用于隧道开凿、管道铺设、高层建筑建造、 造桥、修路、开矿以及大型设备的安装、定位等。
(例如中心斑直径 70m , 保持约1m范围内光强分布基本不变)
这一特点,在测量上可有许多用途。
图示为用于测量物 体表面轮廓的一个
扫描反射镜
CCD相机
例子。准直激光束
通过轴锥镜成为近
似的零阶贝塞尔光 束,经扫描反射镜。 光束在被测表面扫 一条细亮线。
光学零件通用技术要求最新
平板零件的类型 不平行度
滤光镜 高精度 3″-1′
保护镜 一般精度 1′-10′
分划板
10′-15′
表面涂层的反射镜 10′-15′
背面涂层的反射镜 2″-30″
光楔精度 公差 高精度 ±(0.2″-10″) 中等精度 ±(10″-30″) 一般精度 ±(30″-1 ′)
十三、对光学部件的技术要求
方案之3:光圈检验
外表形状公差〔N 、ΔN〕
n 对光圈数N和局部光圈ΔN的要求
n 光波在被检光学外表与参考光学外 表间由于干预所形成的条纹。它表 示被检光学零件外表曲率半径误差。
R
4NR2
D2
n 被检光学零件外表与参考光学外表由干 预所形成的干预条纹的不规那么程度, 它表示面形精度。
n ΔN应由光学设计确定。
第二节 对光学零件的要求
n 透镜
曲率半径及面形精度 中心误差 外圆直径及公差 厚度及公差 外表粗糙度 外表疵病 气泡度
棱镜
角度及直线尺寸误差 屋脊棱镜误差 非圆形零件的保护性倒角 平面度 分辨率 研磨外表的粗糙度 抛光外表的疵病 气泡度
一、气泡度q
n 限定气泡大小,可以不限制也可以限制数量
n q=0.01 n q=0.01×3
n N和ΔN的取值应协调一致。一般ΔN= 〔0.2~0.1〕N
曲率半径及面形精度
三、标准样板精度等级△R
n 标准样板的精度ΔR分为A、B两级。
精
标准样板的曲率半径R
度 0.5~5 >5~10 >10~35 >35~350 >350~1000 >1000~4000
等
半径允差
级
ΔR(µm)
相对R名义尺寸的百分比
十五、光学零件图
第章光学零件通用技术要求
第章光学零件通用技术要求1.1光学零件的基本要求光学零件的基本要求,包括以下几个方面:(1)光学性能:光学零件应具备良好的光学性能,包括透射率、反射率、折射率等指标,以保证光学系统的正常工作。
(2)精度要求:光学零件的制造精度应满足系统设计的要求,包括平面度、直线度、圆度、公差等指标,以保证光线的准确传输。
(3)光洁度:光学零件的表面应具备良好的光洁度,避免表面光滑度降低导致的光学传输损耗。
(4)耐用性:光学零件应具备良好的耐用性,以确保在长期使用中不会发生光学性能的衰减或破损。
1.2表面加工技术要求光学零件的加工技术要求,包括以下几个方面:(1)表面精加工:光学零件的表面需要进行精加工,以满足设计精度的要求,主要包括磨削、抛光、镀膜等工艺。
(2)表面光洁度:光学零件的表面应具备良好的光洁度,通常要求表面粗糙度小于0.05μm。
(3)表面形状:光学零件的表面形状应满足设计要求,包括平面度、直线度、圆度等指标。
(4)表面平整度:光学零件的表面应保持平整,以确保光线传输的准确性。
1.3镀膜技术要求镀膜技术是光学零件制造过程中的重要环节,其技术要求包括以下几个方面:(1)膜层性能:镀膜膜层应具备良好的透射、反射和抗反射特性,以满足光学系统的设计要求。
(2)膜层均匀性:镀膜膜层应均匀附着在光学零件表面,避免膜层厚度不均匀导致的光学性能差异。
(3)膜层硬度:镀膜膜层应具备一定的硬度,以防止膜层在使用过程中因受力而变形或损坏。
(4)膜层附着力:镀膜膜层应具备良好的附着力,以确保在使用过程中不会轻易脱落或剥离。
1.4检测技术要求光学零件的检测技术是保证产品质量的重要环节,其技术要求包括以下几个方面:(1)表面检测:通过光学显微镜、扫描电子显微镜等设备对光学零件的表面进行检测,以确保几何形状和光洁度的满足设计要求。
(2)光学性能检测:通过光学测试仪器对光学零件的透射、反射、折射等性能进行测试,以确保性能指标符合设计要求。
(整理)光学零件检验方法
光学零件加工技术实验讲义实验一 光学零件毛坯的成型一、实验目的:1、了解古典法加工块料毛坯粗磨成型的工艺过程;2、熟悉所用设备、材辅料等相关知识。
二、实验设备及用品切割机、粗磨机、滚圆机、K9玻璃、金刚砂 三、实验步骤1、 取块料玻璃,在切割机上按30x30x20mm 切割;2、 在平面粗磨机上,分别用100#,240#金刚砂磨平第一面;3、 将磨平的一面用胶粘在平的垫板上,排列均匀;4、 在粗磨机上,手持垫板,用100#,240#金刚砂整盘研磨第二面,要不断更换垫板位置,使之研磨均匀。
同时要用卡尺测量,保证厚度和平行度; 5、 将两面磨平的平行玻璃板粘成条,宽:长=1:8~1:10;6、 在滚圆机上,将玻璃条滚圆成棒,∆Φ+Φ=Φ0;7、 将玻璃棒在电热板上加热,使粘胶熔化并逐一拆开玻璃板; 8、 用酒精等有机溶剂清洗玻璃;9、 用粗磨盘开球面,手持比例移动,更换位置,开出具有一定曲率半径的球面零件; 10、检验,用铁样板或试擦贴度的方法。
四、讨论1、在粗磨平面时,为什么第一面磨平单块加工,而第二面磨平可成盘加工?2、检验时,铁样板或试擦贴度为何从边缘接触密切?实验二金刚石磨轮铣磨球面一、实验目的1、验证光学零件铣磨原理;2、了解粗磨铣磨工艺过程;3、熟悉铣磨机工作原理和调整方法;4、要求铣磨如图1所示的透镜。
二、实验设备与用具透镜铣磨机QM08A 、金刚石磨轮(M D =20mm ,r=2mm ,粒度#100,浓度100%)、千分尺、扳手、透镜毛胚 (mm 010.025-φ,d15mm )、擦镜盘等。
三、铣磨原理球面零件的铣磨原理如图2、图3所示。
磨轮轴轴线与工作轴轴线相交于0点,两轴线的交角为α,筒形磨轮1绕自身轴线作高速旋转,工件2绕工件轴转动。
磨轮断面在工件表图3-2凸球面铣磨原理 图3-3凹球面铣磨原理 按图2与图3,有以下关系式:)(2sin r R D M±=α (1)式中 α——磨轮轴与工作轴夹角;M D ——磨轮中径;R ——工件被加工面的曲率半径; r ——磨轮端面圆弧半径(凸面取“+”号,凹面取“-”号)上式也可以写成r D R Mαsin 2=(2)当磨轮选定后,M D 与r 均为,调节不同的α角,既可加不同曲率半径的球面零件。
光学测量技术及应用
光学测量技术及应用
光学测量技术是一种利用光学仪器测量物体大小、形状、位置、速度、色彩等特征的
技术。
光学测量技术具有高精度、高速度、无接触、非破坏等特点,被广泛应用于机械制造、航空航天、医疗保健、环境监测等领域。
本文将对光学测量技术的原理和应用进行介绍。
光学测量技术的原理主要是利用光的散射、反射、折射、干涉、衍射等现象来测量物
体的各种特性。
其中,散射对于粗糙的表面、均匀介质等进行检测;反射用于光滑的表面
检测,如平面、曲面、球面等形状;折射则可以测量透明物体的各种特性;干涉与衍射用
于精密测量,如形状、位置、波长等。
光学测量技术的应用十分广泛。
机械制造领域常常使用光学测量技术来检测零件的几
何形状、尺寸误差和表面质量等,以确保生产零部件的精度和质量。
航空航天领域利用光
学测量技术测量飞行器及卫星的姿态、速度、位置等参数,评估其稳定性、安全性和性能。
医疗保健领域则使用光学测量技术测量人体特征,如血液压力、血流速度、视力等。
环境
监测方面使用光学测量技术测量空气质量、水质污染、地震预警等。
总之,光学测量技术的现代化发展已经成为推动产业升级和技术进步的重要支撑力量,带动了许多领域的发展和改革。
未来,随着技术的不断革新和创新,光学测量技术将会有
更加广泛和深入的应用,为人类的生产和生活带来更多的便利和福利。
常用的光学测量技术
常用的光学测量技术光学测量技术是一种利用光传播特性进行测量的技术,广泛应用于工业、科研和生活中各个领域。
本文将介绍一些常用的光学测量技术,包括激光测距、光学投影测量、干涉测量和光学显微镜。
一、激光测距技术激光测距技术是利用激光束的传输特性进行距离测量的一种技术。
通过测量激光束从发射到接收所需的时间,并结合光速的已知值,可以计算出测量目标与测量器之间的距离。
激光测距技术具有测量精度高、测量范围广、测量速度快等优点,广泛应用于建筑、地质勘探、工业制造等领域。
二、光学投影测量技术光学投影测量技术是利用光的折射、反射和散射等特性进行尺寸测量的一种技术。
通过将被测物体放置在光学投影仪下方,利用光的投影特性在屏幕上形成被测物体的放大影像,通过测量影像在屏幕上的尺寸,可以计算出被测物体的实际尺寸。
光学投影测量技术具有测量精度高、测量速度快、适用于复杂形状的物体等优点,广泛应用于制造业中的零部件尺寸测量。
三、干涉测量技术干涉测量技术是利用光的波动性进行测量的一种技术。
通过将光束分为两束并使其相交,通过干涉现象观察到光的干涉条纹,通过分析干涉条纹的变化来测量被测物体的形状、表面粗糙度等参数。
干涉测量技术具有测量精度高、非接触式测量、适用于光滑表面的物体等优点,广泛应用于光学元件的检测、表面质量评估等领域。
四、光学显微镜技术光学显微镜技术是利用光的折射、反射和散射等特性进行显微观察的一种技术。
通过利用透镜和物镜等光学元件对被观察样品进行放大,通过目镜观察样品的细节。
光学显微镜技术具有放大倍数高、分辨率高、操作简便等优点,广泛应用于生物学、物理学、化学等领域的实验室研究和教学。
激光测距、光学投影测量、干涉测量和光学显微镜是常用的光学测量技术。
它们分别利用光的传播、投影、干涉和放大特性进行测量,具有测量精度高、测量范围广、测量速度快等优点,广泛应用于工业、科研和生活中的各个领域。
这些光学测量技术的应用不仅提高了测量的准确性和效率,也推动了科学技术的发展。
光学零件检验方法
光学零件检验方法光学零件的检验方法是确保光学零件质量和性能的重要步骤。
以下是常见的光学零件检验方法:1.外观检验:外观检验是最简单和最常见的检验方法之一、它涉及对光学零件表面的检查,以确保没有明显的缺陷、瑕疵或污染。
常用的外观检查仪器有放大镜、显微镜和光谱仪等。
2.尺寸检验:尺寸检验是测量光学零件尺寸和形状的方法。
常用的尺寸测量仪器有投影仪、坐标测量机和光学分光计等。
这些仪器可以精确测量光学零件的长度、宽度、直径、圆度和平面度等。
3.表面粗糙度检验:表面粗糙度是表面微小不规则性的度量标准,对光学零件的性能具有重要影响。
常用的表面粗糙度检测仪器有光学轮廓仪、表面粗糙度仪和压电表面粗糙度仪等。
4.平整度检验:平整度是表面平坦性的度量标准,对光学零件的质量和性能有着重要影响。
常用的平整度测量仪器有检测平台和激光干涉仪等。
5.光学性能检验:光学性能检验涉及到对光学零件传输、透射、反射、折射、散射等光学性能的测量和评估。
常用的光学性能测量仪器有光谱仪、干涉仪、激光测距仪和分光光度计等。
6.工作环境检验:在一些特殊应用中,光学零件需要在特定的环境条件下工作,比如高温、低温、高湿度或低湿度等。
在这种情况下,光学零件的工作环境稳定性也需要进行检验。
7.强度检验:一些光学零件可能会经受较大的外力作用,因此需要进行强度检验。
常用的强度检验方法包括拉伸测试、弯曲测试、冲击测试和疲劳测试等。
总之,光学零件的检验方法是多样的,根据具体需要选择合适的检验方法进行检验,以确保光学器件的质量和性能符合要求。
光学测量系统的标定与精度分析
光学测量系统的标定与精度分析1. 背景光学测量技术是一种重要的非接触式测量手段,广泛应用于精密工程、制造业、质量控制等领域光学测量系统通过测量被测物体表面的光学特性来获取其几何信息,具有高精度、高分辨率、快速测量等优点然而,为了确保光学测量结果的准确性和可靠性,必须对光学测量系统进行严格的标定和精度分析本文将介绍光学测量系统的标定方法和精度分析过程2. 光学测量系统的组成及原理光学测量系统主要由光源、光学传感器、光学系统、数据采集与处理系统等组成光学测量原理示意图如下:光源–> 光学系统–> 被测物体–> 光学传感器–> 数据采集与处理系统光学系统将光源发出的光线投射到被测物体表面,物体表面反射的光线进入光学传感器,传感器将光信号转换为电信号,经过数据采集与处理系统处理后,得到被测物体的几何信息3. 光学测量系统的标定光学测量系统的标定是为了确定光学系统的参数,以及消除系统误差,提高测量精度标定过程主要包括以下几个步骤:3.1 选择标定对象标定对象应具有明显的几何特征,如棋盘格、圆点等本文以棋盘格为例进行标定3.2 采集标定图像将被测物体(棋盘格)放置在光学测量系统的测量范围内,调整光学系统,使被测物体在传感器上获得清晰的图像3.3 特征提取与匹配通过图像处理算法,提取标定对象的特征点,如角点、边缘点等然后,利用特征点匹配算法,将不同图像的特征点进行匹配,得到特征点之间的对应关系3.4 参数估计与优化利用对应关系,采用最小二乘法等优化算法,求解光学系统的参数,如内参、外参等同时,通过迭代优化算法,进一步提高参数估计的精度3.5 误差评估与补偿分析标定结果的误差,如镜头畸变、光强不均匀等针对这些误差,采用相应的补偿算法,提高光学测量系统的测量精度4. 光学测量系统的精度分析光学测量系统的精度分析主要涉及以下几个方面:4.1 系统分辨率光学测量系统的分辨率取决于光学传感器的像素尺寸像素尺寸越小,系统的分辨率越高此外,光学系统的光学畸变也会影响系统分辨率4.2 系统误差系统误差主要包括镜头畸变、光强不均匀等通过标定过程,可以消除或减小这些误差此外,光学测量系统的稳定性也是影响精度的关键因素4.3 环境因素光学测量系统的精度受到环境因素的影响,如温度、湿度、振动等在实际测量过程中,应尽量控制环境条件,减小环境因素对测量精度的影响4.4 测量方法与算法光学测量方法与算法的选择也会影响系统的精度针对不同的测量对象和需求,选择合适的测量方法与算法,可以提高光学测量系统的精度5. 总结光学测量系统的标定与精度分析是确保测量结果准确可靠的关键环节通过对光学测量系统的组成、原理、标定方法和精度分析进行详细介绍,有助于深入理解和应用光学测量技术在实际应用中,还需根据具体情况,优化系统参数、改进测量方法,以提高光学测量系统的性能光学测量系统的标定与精度提升1. 背景光学测量技术是一种基于光学原理的非接触式测量方法,被广泛应用于精密工程、制造业、质量控制等领域光学测量系统通过捕捉被测物体表面的光学信息来获取其几何特性,具有高精度、高分辨率、快速测量等优点然而,为了确保光学测量结果的准确性和可靠性,必须对光学测量系统进行严格的标定和精度分析本文将重点讨论光学测量系统的标定方法和精度提升策略2. 光学测量系统的组成及原理光学测量系统主要由光源、光学传感器、光学系统、数据采集与处理系统等组成光学测量原理示意图如下:光源–> 光学系统–> 被测物体–> 光学传感器–> 数据采集与处理系统光学系统将光源发出的光线投射到被测物体表面,物体表面反射的光线进入光学传感器,传感器将光信号转换为电信号,经过数据采集与处理系统处理后,得到被测物体的几何信息3. 光学测量系统的标定光学测量系统的标定是为了确定光学系统的参数,以及消除系统误差,提高测量精度标定过程主要包括以下几个步骤:3.1 选择标定对象标定对象应具有明显的几何特征,如棋盘格、圆点等本文以圆点为例进行标定3.2 采集标定图像将被测物体(圆点)放置在光学测量系统的测量范围内,调整光学系统,使被测物体在传感器上获得清晰的图像3.3 特征提取与匹配通过图像处理算法,提取标定对象的特征点,如圆心、边缘点等然后,利用特征点匹配算法,将不同图像的特征点进行匹配,得到特征点之间的对应关系3.4 参数估计与优化利用对应关系,采用最小二乘法等优化算法,求解光学系统的参数,如内参、外参等同时,通过迭代优化算法,进一步提高参数估计的精度3.5 误差评估与补偿分析标定结果的误差,如镜头畸变、光强不均匀等针对这些误差,采用相应的补偿算法,提高光学测量系统的测量精度4. 光学测量系统的精度提升光学测量系统的精度提升主要涉及以下几个方面:4.1 系统分辨率光学测量系统的分辨率取决于光学传感器的像素尺寸像素尺寸越小,系统的分辨率越高此外,光学系统的光学畸变也会影响系统分辨率4.2 系统误差系统误差主要包括镜头畸变、光强不均匀等通过标定过程,可以消除或减小这些误差此外,光学测量系统的稳定性也是影响精度的关键因素4.3 环境因素光学测量系统的精度受到环境因素的影响,如温度、湿度、振动等在实际测量过程中,应尽量控制环境条件,减小环境因素对测量精度的影响4.4 测量方法与算法光学测量方法与算法的选择也会影响系统的精度针对不同的测量对象和需求,选择合适的测量方法与算法,可以提高光学测量系统的精度4.5 系统优化与调整根据实际测量需求,对光学测量系统进行优化与调整例如,通过调整光源亮度、改变光学系统参数等,使系统在最佳状态下工作,提高测量精度5. 总结光学测量系统的标定与精度提升是确保测量结果准确可靠的关键环节通过对光学测量系统的组成、原理、标定方法和精度提升策略进行详细介绍,有助于深入理解和应用光学测量技术在实际应用中,还需根据具体情况,优化系统参数、改进测量方法,以提高光学测量系统的性能应用场合光学测量系统的应用场合非常广泛,包括但不限于以下几个领域:1. 精密工程在精密工程领域,光学测量系统可用于零件加工、装配过程中的尺寸检测、形状误差测量等例如,在汽车、航空、电子等行业,光学测量系统可以帮助工程师准确地检测零部件的尺寸和形状,确保产品质量和性能2. 制造业在制造业中,光学测量系统可用于生产线的在线检测,实时监控产品尺寸、形状等几何特性,提高产品质量,减少废品率此外,光学测量系统还可以用于成品检验,确保产品符合设计要求3. 质量控制光学测量系统在质量控制领域具有重要作用通过定期对产品进行光学测量,可以及时发现质量问题,采取措施进行改进,保证产品质量4. 科研与教育在科研和教育领域,光学测量系统可用于各种实验和研究项目,如光学、物理、材料科学等同时,光学测量系统也是高校、研究所等教育机构进行实验教学的重要工具5. 医疗与生物工程在医疗和生物工程领域,光学测量系统可用于对人体组织、细胞等微小结构的尺寸、形状等进行精确测量,为疾病诊断、治疗和研究提供有力支持注意事项在使用光学测量系统时,需要注意以下几点:1. 环境条件光学测量系统对环境条件较为敏感,应尽量避免在温度、湿度、灰尘等条件变化较大的环境中使用如无法避免,需对环境进行控制,确保测量过程中环境条件稳定2. 设备维护与校准定期对光学测量系统进行维护和校准,确保设备性能稳定对于光学镜头、传感器等易损部件,需特别注意保护3. 操作规范操作光学测量系统时,应遵循操作规程,避免用力过猛、碰撞等可能导致设备损坏的行为同时,确保操作人员具备相关知识和技能4. 数据处理与分析光学测量系统获取的数据需经过专业软件进行处理和分析在数据处理过程中,应注意检查数据的一致性、有效性,避免因数据问题导致测量结果错误5. 标定与精度分析为确保光学测量系统的测量精度,需定期进行标定和精度分析在标定过程中,注意选择合适的标定对象和方法,确保标定结果的准确性6. 软件选择与更新选择适合光学测量系统的数据处理软件,并根据需要进行更新新版本的软件可能包含更多的功能和改进,有助于提高测量精度和效率7. 安全防护在使用光学测量系统时,应注意安全防护措施,避免激光、高温等对操作人员造成伤害为防止意外情况,可在设备周围设置防护罩、警示标志等8. 培训与交流定期对操作人员进行光学测量技术的培训,提高其技能水平同时,加强与其他领域专家的交流与合作,不断优化光学测量系统的应用光学测量系统在各种应用场合中具有重要作用为确保测量结果的准确性和可靠性,需注意以上几点,并根据实际情况进行调整和改进通过合理的操作和维护,光学测量系统将为各领域的研发和生产提供有力支持。
光学测量-长春理工大学精品课
开[尔文] 克耳文 摩[尔] 莫耳
坎[德拉] 燭光
3
导出物理量
时间:三十万年差一秒 长度:氪86同位素波长λ=605.78nm,Δλ=4.7×10-4nm,相干长 度L=λ2/Δλ=0.78m;氦氖激光器λ=632.8nm,Δλ=6×109nm,L=60km
辅助物理量:平面角rad,球面角 sr 导出物理量 国际200多种,我国120种. 与光学测量有关的光学量导出单位: 光通量 流明 lm 1lm=1cd.sr 辐射能中能引起人眼光刺激的那部分辐通 量 光照度 勒(克斯)lx 1 lx=1 lm/m2单位面积上所接收的光通量大小 辐透(ph)1ph=1 lm/cm2。 计量单位:有明确定义和名称并命其数值为1的固定的量 量值:数值和计量单位的乘积
测量结果也应包含测量误差的说明及其优劣的评价 Y=N±ΔN
20
第一节 测量误差与数据处理
真值就是与给定的特定量的定义相一致的量值。客观存在 的、但不可测得的(测量的不完善造成)。
可知的真值: a. 理论真值----理论设计值、理论公式表达值等 如三角形内角和180度; b. 约定(实用)真值-----指定值,最佳值等, 如阿伏加德罗常数, 算术平均值当真值等。
如:测量单摆的振动周期T,用公式
T 2 l / g
求得g
6
例:空调机测量控制室温
被测对象: 室内空气
被测物理量: 温度 测量器具: 温度传感器 --- 热电阻、热电偶
电信号 处理 显示 操作过程:空气 热敏电阻
空调机
返回 7
计量、测量、测试的区别
计量:准确一致的测量 国际标准——国家计量局——地区计量站—— 工厂计量室——车间检验组。 测试:具有实验性质的测量。 检测:对产品以及成型仪器的测量。
光学测量原理
光学测量原理光学测量是一种利用光学原理进行测量的技术,它广泛应用于工程、科学和医学领域。
光学测量原理是基于光的传播和反射规律,通过测量光的传播路径和特性来实现对待测物体的测量。
本文将介绍光学测量的基本原理和常见的测量方法。
首先,光学测量的基本原理是利用光的传播规律进行测量。
光是一种电磁波,它在空间中传播时会遵循直线传播的规律,同时会发生折射、反射和散射等现象。
利用这些光的特性,可以实现对物体表面形貌、尺寸、位移、形变等参数的测量。
在光学测量中,常用的测量方法包括光学投影测量、干涉测量、衍射测量和激光测量等。
光学投影测量是利用光源对物体进行照射,通过成像设备观察物体的投影图像来实现测量。
干涉测量是利用光的干涉现象进行测量,通过干涉条纹的变化来获取物体表面的形貌信息。
衍射测量是利用光的衍射现象进行测量,通过衍射图样的变化来获取物体的尺寸和形状信息。
激光测量是利用激光束对物体进行照射,通过测量激光束的反射、折射或散射来获取物体的位置、形状和表面质量等信息。
除了以上常见的测量方法,光学测量还可以结合数字图像处理、计算机视觉和人工智能等技术,实现对复杂形貌和微小尺寸的物体进行精密测量。
例如,利用数字图像处理技术可以对光学投影图像进行数字化处理,实现对物体表面形貌和尺寸的精确测量。
利用计算机视觉和人工智能技术可以对大量的光学测量数据进行自动分析和处理,实现对物体形状、位移和变形等参数的快速获取和分析。
总之,光学测量是一种基于光学原理的测量技术,它具有非接触、高精度、快速测量等优点,广泛应用于工程、科学和医学领域。
通过对光学测量的基本原理和常见测量方法的介绍,可以帮助人们更好地理解光学测量技术的工作原理和应用范围,促进光学测量技术的进一步发展和应用。
光学零件技术要求
直角或钝角公差 锐角(45°)公差
尖塔差 屋脊角公差
3’-12’ 2’-10’ 2’-10’
2’-10’ 4’-10’ 2’-10’
0.5’-5’ 0.2’-3’
1’-5’
0.5’-6’ 1’-5’ 1’-5’ 1’-5″
光学零件加工的技术要求
八、平板零件平行度公差
平板零件的类型
滤光镜 保护镜
高精度 一般精度
(4)厚度和平行度修磨余量 1mm/面(棱镜、平面镜)
(5)粗磨余量 (6)精磨抛光余量 (7)定中心磨边余量
△c
光学零件加工的技术要求
四、确定加工余量的原则
破坏层n=凹凸层+裂纹层 抛光后,裂纹深度小于λ/4,否则发生反射或者折射现象。
△j
Φ
光学零件加工的技术要求
五、各工序余量的计算
1、锯切余量 锯切余量与锯片的厚度、侧向 振动、锯切深度等因素有关。 一般可按经验公式计算确定:
概念:为了获得所需的一定零件形状、尺寸和表面质量,在加 工过程中,必须从玻璃毛坯上磨去一定的玻璃层。此玻 璃层(或其它材料层),通常称为加工余量。
二、分类
(一)线性尺寸余量 (二)角度余量
三、组成
(1)锯切余量:依据金刚石锯片厚度确定余量。
光学零件加工的技术要求
(2)滚圆余量: 2~4mm
(3)整平余量: 0.5~1mm
280#
0.10mm。
光学零件加工的技术要求
3、研磨、抛光余量
当零件直径(边长)d<10mm,单面余量为0.15~0.20mm;
d>10mm,单面余量为0.20~0.25mm。
4、定心磨边余量
最少0.6mm,最多3.0mm。
光学零部件的基本测量
中,斐索型干涉测量法与在光学车间广泛应用的 法
牛顿型干涉测量法(样板法或牛顿型干涉法)相
比,属于非接触测量。
5
第一节 光学面形偏差的检测
现代干涉技术是物理学理论和当代技术有机结合的产物。
激光、光电探测技术和信号处理技术对于干涉技术的发
展起着重要的作用。
历史进程:
干
17世纪后半叶,玻意耳(Boyle)和胡克(Hooke)独立地观 察了两块玻璃板接触时出现的彩色条纹(后被称作牛顿
1818年,阿喇果和菲涅尔发现两个正交的偏振光不能
干涉,导致杨和菲涅尔得出光是横波的结论。
1860年,麦克斯韦(C.Maxwell)的电磁场理论为干涉技 干
术奠定了坚实的理论基础。
涉
1881年,迈克尔逊(A.Michelson)设计了著名的干涉实 法
验来测量“以太”漂移,导致“以太”说的破灭和相
尺寸,其干涉图关样系都,有形很成好的的干对涉比条度纹。也有固定的分
杨氏干涉实验只布在,限而制与狭光缝源宽的度尺的寸情无况关下。,激才光能光源 看清干涉图样。的大小不受限制,激光的空间相干性
由楔形板产生的比等普厚通干光涉源图好样得,多则。是介于以上两
种情况之间。
如取对比度为0.9,可得光源的许可半径
图4-3
光阑干孔大涉小对图干样涉条的纹对照比度度的寸,影的响在措很施,大固程然度可上以取提决高条于纹光的源对比 的尺寸,而光源度的,尺但寸干涉大场小的图又4亮-会2 度等对也厚各干随涉类之仪中减干的弱扩涉展。光源
干 涉
图样对比度有不当同采的用影激光响作: 为光源时,因为光源上 法
由平行平板产生各的点等所倾发干出涉的,光无束论之多间么有宽固的定光的源相位
平面光学零件不平行度测量实验报告
平面光学零件不平行度测量实验报告本实验旨在通过利用Michelson干涉仪测量平面反射镜、透镜的不平行度,通过数据处理得出实验结果。
实验中通过调整准直器和干涉条纹,最终得到平面反射镜、透镜的不平行度分别为0.038°、0.025°。
关键词Michelson干涉仪,平面反射镜,透镜,不平行度一、引言Michelson干涉仪是一种可以测量光学元件不平行度的仪器,广泛应用于光学制造、光学计量、光学实验等领域。
通过利用Michelson干涉仪的干涉条纹进行测量,可以得到待测光学元件的不平行度。
本实验中将利用Michelson干涉仪测量平面反射镜、透镜的不平行度,通过数据处理得出实验结果。
二、实验原理Michelson干涉仪的原理详见教材,本实验中需要掌握的是如何利用干涉条纹进行测量。
(1)平面反射镜当两个平面反射镜不相交且平行时,在Michelson干涉仪中,光经由两个光路传播,并在半透镜上产生干涉条纹。
设两个平面反射镜的不平行度为θ,则条纹移动的距离Δd与不平行度的关系为:Δd = Dtanθ其中,D为平面反射镜间距。
(2)透镜当透镜不垂直于光路时,在Michelson干涉仪中,光线在透镜前后走不同光程,产生干涉条纹。
设透镜的不垂直度为θ,则条纹移动的距离Δd与不垂直度的关系为:Δd = nlθ其中,n为透镜的折射率,l为透镜厚度。
三、实验内容(1)观察Michelson干涉仪的干涉条纹,调整光路,使干涉条纹清晰。
(2)测量平面反射镜的不平行度:将两个平面反射镜安装在干涉仪光路上,并通过调节干涉条纹,得到平面反射镜的不平行度。
(3)测量透镜的不垂直度:将透镜安装在干涉仪光路上,并通过调节干涉条纹,得到透镜的不垂直度。
四、实验数据和结果分析(1)实验数据记录实验中采用的平面反射镜间距D为15cm,透镜厚度l为2cm,透镜折射率n 为1.5。
测量平面反射镜的不平行度:调整准直器,使光路通过两个平面反射镜后尽可能重合。
曲轴圆度和圆柱度的测量方法
曲轴圆度和圆柱度的测量方法曲轴圆度和圆柱度是测量零件加工精度的重要指标,对于提高零部件的质量和性能非常关键。
接下来我将介绍曲轴圆度和圆柱度的测量方法,包括测量设备、测量原理和测量步骤等方面的内容。
一、曲轴圆度测量方法曲轴圆度是指曲轴主油道和支承部位轴线的偏心距,它是一个衡量曲轴加工精度的重要指标。
常用的曲轴圆度测量方法有以下几种:1.摇摆曲轴圆度测量法这种方法是利用摇摆测量仪或摇摆测量臂,将测量仪与曲轴相接触,并通过测量测得的触点的偏差来计算曲轴的圆度。
2.光学曲轴圆度测量法光学曲轴圆度测量方法是利用光学仪器,如干涉仪、激光干涉仪等,通过测量曲轴表面的形态来计算曲轴的圆度。
3.探测曲轴圆度测量法探测曲轴圆度测量法是利用探测仪或传感器,将测量仪与曲轴相接触,并通过传感器测得的曲轴表面的形态来计算曲轴的圆度。
二、圆柱度测量方法圆柱度是指与旋转曲轴主轴线相切的截面内每对直线外表面点的距离差异。
常用的圆柱度测量方法有以下几种:1.光学圆柱度测量法光学圆柱度测量方法是利用光学仪器,如干涉仪、投影仪等,通过测量圆柱表面的形态来计算圆柱度。
2.探测圆柱度测量法探测圆柱度测量法是利用探测仪或测量头,将测量仪与圆柱相接触,并通过传感器测得的圆柱表面的形态来计算圆柱度。
3.三点法圆柱度测量法三点法圆柱度测量方法是将圆柱表面分别与三个测量点相接触,并通过测量点的偏差来计算圆柱度。
三、测量步骤无论是曲轴圆度还是圆柱度的测量,都需要进行相应的测量步骤,以下是一般的测量步骤:1.选择合适的测量仪器和设备,根据曲轴或圆柱的尺寸和形状,选择相应的测量仪器和设备。
2.将测量仪器和设备与曲轴或圆柱相接触,确保测量仪器和设备与测量对象的表面充分接触。
3.进行测量并记录数据,根据测量仪器和设备的要求,进行准确的测量并记录测量数据。
4.分析测量数据并计算结果,根据测量数据进行分析并计算曲轴的圆度或圆柱的圆柱度。
5.判断测量结果的合格性,根据曲轴或圆柱的要求,判断测量结果是否合格。
【光电集成】光学零件的面形偏差 检验方法(光圈识别)-概述说明以及解释
【光电集成】光学零件的面形偏差检验方法(光圈识别)-概述说明以及解释1.引言1.1 概述概述:在光电集成领域,光学零件的面形偏差是一个重要的参数,它直接影响到光学元件的光学性能和品质。
因此,准确地检验光学零件的面形偏差是非常关键的。
本文将针对光学零件的面形偏差进行检验方法的探讨,特别是使用光圈识别技术来实现更精确的检测。
通过本文的研究和分析,希望能为光学零件的制造和检验提供一定的参考和指导,提高光学元件的质量和性能。
1.2文章结构1.2 文章结构本文主要由引言、正文和结论三部分组成。
在引言部分,首先对光学零件的面形偏差进行了概述,然后介绍了文章的结构和目的。
接下来在正文部分,详细探讨了光学零件的面形偏差和检验方法,并重点介绍了光圈识别技术的应用。
最后在结论部分,对整篇文章进行了总结,展望了未来可能的研究方向,并得出了结论。
整篇文章通过逐步展开的结构,层层深入地探讨了光电集成中光学零件面形偏差的检验方法,并提供了一种新的检验技术,为相关研究提供了新的思路和方法。
1.3 目的本文旨在探讨光学零件的面形偏差检验方法中的一种新技术——光圈识别。
通过详细介绍光学零件的面形偏差和当前常用的检验方法,结合光圈识别技术的原理和应用,旨在提供一种更精准、高效的面形偏差检验手段。
通过本文的研究,希望能够为光学零件制造和质量控制领域提供有益的参考,推动光电集成技术的发展和应用,提高光学零件加工的精度和质量。
2.正文2.1 光学零件的面形偏差光学零件的面形偏差是指光学元件的表面与理想形状之间的偏差。
在实际生产过程中,光学零件的制造往往会受到各种因素的影响,导致表面形状的偏差,从而影响光学设备的性能和精度。
光学零件的面形偏差通常包括以下几种类型:1. 曲率偏差:表面的曲率与理想曲率之间的偏差。
2. 相位偏差:表面的相位与理想相位之间的偏差。
3. 波面偏差:表面的波面与理想波面之间的偏差。
这些面形偏差会导致光学元件在光学系统中的成像质量下降,影响设备的分辨率和成像清晰度。
光学测量仪
光学测量仪光学测量仪是一种广泛应用于科学研究和工业生产领域的仪器设备。
它利用光学原理对被测目标进行测量和分析,具有高精度、非接触、非破坏等特点。
光学测量仪的应用范围非常广泛,涵盖了物理、化学、生物、医学、机械制造等多个领域。
光学测量仪的原理是基于光的传播和散射特性进行测量。
它利用光源发出的光线照射到被测目标上,并通过接收光线的变化来判断被测目标的相关参数。
光学测量仪可以测量的参数包括长度、角度、形状、表面粗糙度、光学透过率等。
在实际应用中,光学测量仪有多种不同的类型和配置。
常见的光学测量仪包括激光测距仪、光谱仪、显微镜、投影仪等。
这些仪器可以根据测量要求的不同,在测量方法、光源类型、检测器类型等方面进行选择和配置。
光学测量仪具有许多优点。
首先,光学测量仪可以实现高精度的测量,其测量精度可以达到亚微米甚至纳米级别。
其次,光学测量仪是一种非接触测量方法,不会对被测目标造成破坏。
这一点在对于脆弱或高温等特殊材料的测量中尤为重要。
另外,光学测量仪具有快速测量的能力,可以实现高效率的数据采集和处理。
在科学研究领域,光学测量仪在材料研究、电子器件研发、生物医学研究等方面发挥着关键作用。
例如,在材料研究中,光学测量仪可以用于对材料表面粗糙度、形貌、光学透过率等参数的测量和分析,为材料性能的研究提供重要数据。
在电子器件研发中,光学测量仪可以用于对微观器件尺寸、形状、线宽等参数的测量,为器件工艺的优化和性能的提升提供支持。
在生物医学研究中,光学测量仪可以用于对细胞、组织等生物样品的形态、结构、荧光等参数的测量,为生物学研究提供有力的工具。
在工业生产领域,光学测量仪被广泛应用于质量检测、产品测量、工艺控制等方面。
例如,在汽车制造业中,光学测量仪可以用于测量汽车车体的尺寸、形状、表面质量等参数,保证汽车的质量和外观。
在电子制造业中,光学测量仪可以用于测量电子元器件的引脚间距、焊接质量等参数,辅助生产工艺的控制和优化。
比较测角仪测光学零件不平行度实验
(3)在工作台上旋转被测平板玻璃,此时在视场中见到两亮刻线象相对移动。 2 n (3)在工作台上旋转被测平板玻璃,此时在视场中见到两亮刻线象相对移动。
a)装置简图 b)测量原理 c)视场 掌握光学测角仪的使用和测量平板玻璃不平行度的原理和方法。
❖ 1—自准直目镜 2—分划板 3—自准直望远镜
❖ 4—被测平板玻璃 5—半透半反板
❖ 光源以出的光束经半透半反镜5后照亮分划板。来自分划板 ((13) )将在上被工测作一平台板上点玻旋璃转的放 被在测光工平作板束台玻上璃经。,此自时在准视场直中见望到两远亮刻镜线象3相的对移物动。镜后成为平行光束,并 1图—6工 -2作光入台学测2射—角自仪到准测直量被望不远平测镜行度平3、5板、7—玻锁紧璃手柄上4—。立柱由6—前夹金后箍 表面分别反射回来,得到两 a实)验装六置束简比图较夹测角b角)仪测测为量光原学φ理零件的不c)平平视行场度行光,如图1-6-2b所示。最后自准直望远镜 aa) )装装置置的简简图图视bb场))测测里量量原原见理理 到cc))视视两场场组互相分开的分划象,如图1-6-2c所示。如 4如—平被板测玻平平璃板的板玻不璃平玻行5—度璃半为透θ的,半自反不准板直平望远行镜视度场中为对应θ的,角值自为φ,准则有直: 望远镜视场中对应的角值 为φ,则有: (1)不得用手触摸仪器的光学元件及其测量附件的表面;
❖ (1)将被测平板玻璃放在工作台上。为防止 滑动,可在工作台上垫一张镜头纸。
❖ (2)将自准直望远镜调节到使光轴与平板玻 璃表面垂直。由于存在不平行度,在视场中 可见到两组分开的亮刻线象。
❖ (3)在工作台上旋转被测平板玻璃,此时在 视场中见到两亮刻线象相对移动。直到水平 暗刻线分划与两亮刻线相交在相同的亮刻线 的刻线值处,如图6-3所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
干 涉 法
8
第一节 光学面形偏差的检测
特点:
具有更高的测试灵敏度和准确度; 绝大部分的干涉测试都是非接触式的,不会 对被测件带来表面损伤和附加误差;
较大的量程范围;
抗干扰能力强;
干 涉 法
操作方便;
在精密测量、精密加工和实时测控的诸多领 域获得广泛应用。
9
第一节 光学面形偏差的检测
分类:
干涉测试技术
按光波 分光方式
按相干光束 传播路径
按用途
干 涉 法
动 态 干 涉
10
分 振 幅 式
分 波 阵 面 式
共 程 干 涉
非 共 程 干 涉
静 态 干 涉
第一节 光学面形偏差的检测
1、干涉的概念
1)相干光 (1)频率相同 (2)位相差恒定 (3)光矢量振动方向相同 (4)光程差小于波列长度
θ
影响干涉条纹对比度的因素 -f 在干涉测量中,采取尽量减小光源尺 a) ②光源大小与空间相干性 b) c) 寸的措施,固然可以提高条纹的对比 图4-3 光阑孔大小对干涉条纹对比度的影响 干涉图样的照度,在很大程度上取决于光源 干 图 4-2 等厚干涉仪中的扩展光源 度,但干涉场的亮度也随之减弱。 的尺寸,而光源的尺寸大小又会对各类干涉 涉 图样对比度有不同的影响 : 当采用激光作为光源时,因为光源上 法
12
1 §4-1 激光干涉测试技术基础 第一节 光学面形偏差的检测
K
在波动光学中,把光通过相干 x 长度所需要的时间称为相干时 1.2 影响干涉条纹对比度的因素 I 间,其实质就是可以产生干涉 ①光源的单色性与时间相干性 的波列持续时间,(其对应产 生干涉的两列波的光程差)。 如图,干涉场中实际见到的条纹是 λ到λ+Δλλ干 λ+Δλ 因此,激光光源的时间相干性 中间所有波长的光干涉条纹叠加的结果。 涉 比普通光源好得多,一般在激 m 0 1 2 3 4 5 6 当λ+Δ λ 的第m 级亮0 1 2 3 4 5 6 法 光干涉仪的设计和使用时不用 λ+Δ 图4-1 各种波长干涉条纹的叠加 考虑其时间相干性。 纹与λ的第m+1级亮纹重
由平行平板产生的等倾干涉,无论多么宽的光源 各点所发出的光束之间有固定的相位 尺寸,其干涉图样都有很好的对比度。 关系,形成的干涉条纹也有固定的分 布,而与光源的尺寸无关。激光光源 杨氏干涉实验只在限制狭缝宽度的情况下,才能 的大小不受限制,激光的空间相干性 看清干涉图样。 比普通光源好得多。 由楔形板产生的等厚干涉图样,则是介于以上两 种情况之间。
干 涉 法
7
第一节 光学面形偏差的检测
历史进程: 1905年,爱因斯坦(Albert Einstein)提出相对论原 理。 1924年,Louis de Broglie推导出de Broglie波方程, 认为所有的运动粒子都具有相应的波长,为隧道显微镜、 原子力显微镜的诞生做了理论准备。 1960年,梅曼(Maiman)研制成功第一台红宝石激光器, 以及微电子技术和计算机技术的飞速发展,使光学干涉 技术的发展进入了快速增长时期。 1982年,G.Binning和H.Rohrer研制成功扫描隧道显微 镜,1986年发明原子力显微镜,从此开始了干涉技术向 纳米、亚纳米分辨率和准确度前进的新时代。
2 2L
干 涉 法
因此,必须用单色光源,使同一光源发出的光束分成两束,且 光程差不能太大。钠光 (100 ~ 200) mm , 激光 (10 ~ 几十米)
11
第一节 光学面形偏差的检测
影响干涉条纹对比度的因素 干涉条纹对比度可定义为 K I max I min
干 涉 法
5
第一节 光学面形偏差的检测
现代干涉技术是物理学理论和当代技术有机结合的产物。 激光、光电探测技术和信号处理技术对于干涉技术的发 展起着重要的作用。 历史进程:
17世纪后半叶,玻意耳(Boyle)和纹(后被称作牛顿 环),人类从此开始注意到了干涉现象。 1690年,惠更斯出版《论光》,提出“波动”说。
光学测量
第三章 光学零部件的基本测量
光学测量
第三章 光学零部件的基本测量
第三章 光学零部件的基本测量
第一节 光学面形偏差的检测
光学测量
第一节 光学面形偏差的检测
4
第一节 光学面形偏差的检测
概述: 光学干涉测试技术最初在光学零件和光学系统 的检验中获得广泛应用。 在光学零件面型、平行度、曲率半径等的测量 中,斐索型干涉测量法与在光学车间广泛应用的 牛顿型干涉测量法(样板法或牛顿型干涉法)相 比,属于非接触测量。
合后,所有亮纹开始重 (m 1) m( ) 合,而在此之前则是彼此分开的。则尚能分辨干 由此得最大干涉级 涉条纹的限度为m = λ/Δλ ,与此相应的尚能产生干涉
条纹的两支相干光的最大光程差(或称光源的相干长度)为
LM
2
13
第一节 光学面形偏差的检测 S r
S0
1704年,牛顿出版《光学》,提出了“微粒”说。 1801年,托马斯· 杨(Thomas Young)完成了著名的杨氏双 缝实验,人们可以有计划、有目的地控制干涉现象。
干 涉 法
6
第一节 光学面形偏差的检测
历史进程: 1818年,阿喇果和菲涅尔发现两个正交的偏振光不能 干涉,导致杨和菲涅尔得出光是横波的结论。 1860年,麦克斯韦(C.Maxwell)的电磁场理论为干涉技 术奠定了坚实的理论基础。 1881年,迈克尔逊(A.Michelson)设计了著名的干涉实 验来测量“以太”漂移,导致“以太”说的破灭和相 对论的诞生。他还首次用干涉仪以镉红谱线与国际米 原器作比对,导致后来用光波长定义“米”。 1900年,普朗克(Max Planck)提出辐射的量子理论, 成为近代物理学的起点。
I max I min
式中,Imax、Imin 分别为静态干涉场中光强的最大值和最小值, 也可以理解为动态干涉场中某点的光强最大值和最小值。
干 涉 法
当 Imin = 0时K=1,对比度有最大值;而当 Imax= Imin时K= 0,条纹消失。在实际应用中,对比度一般都小于1。 对目视干涉仪可以认为:当 K > 0.75 时,对比度就算是好的; 而当K>0.5时,可以算是满意的;当K=0.1时,条纹尚可辨 认,但是已经相当困难的了。 对动态干涉测试系统,对条纹对比度的要求就比较低。