2020学年高二数学上学期第五次月考试题 理人教版

合集下载

江苏省盐城市五校联考2024-2025学年高二上学期10月月考试题 数学含答案

江苏省盐城市五校联考2024-2025学年高二上学期10月月考试题 数学含答案

2024/2025学年第一学期联盟校第一次学情调研检测高二年级数学试题(答案在最后)(总分150分考试时间120分钟)注意事项:1.本试卷中所有试题必须作答在答题纸上规定的位置,否则不给分.2.答题前,务必将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题纸上.3.作答非选择题时必须用黑色字迹0.5毫米签字笔书写在答题纸的指定位置上,作答选择题必须用2B 铅笔在答题纸上将对应题目的选项涂黑。

如需改动,请用橡皮擦干净后,再选涂其它答案,请保持答题纸清洁,不折叠、不破损。

第I 卷(选择题共58分)一、单项选择题:(本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项2.若直线20ax y +=与直线2(1)(1)0x a y a +++-=平行,则a 的值是()A.1或-2B.-1C.-2D.2或-13.已知圆1C :()()()222120x y r r -++=>与圆2C :()()224216x y -+-=外切,则r 的值为()A.1B.5C.9D.2110=的化简结果是()A.22153x y += B.22135x y += C.221259x y += D.221925x y +=5.已知直线l 方程:()220kx y k k R -+-=∈,若l 不经过第四象限,则k 的取值范围为()A.1k ≤B.1k ≥C.0k ≤D.0k ≥6.直线220x y +-=与曲线(10x y +-=的交点个数为()A.1个B.2个C.3个D.4个7.已知圆C 经过点()()3,5,1,3M N --,且圆心C 在直线350x y ++=上,若P 为圆C 上的动点,则线段(OP O 为坐标原点)长度的最大值为()A. B.5+ C.10D.108.实数x ,y 满足224690x x y y -+-+=,则11y x -+的取值范围是()A.5,12⎡⎫+∞⎪⎢⎣⎭B.12,5⎡⎫+∞⎪⎢⎣⎭C.50,12⎡⎤⎢⎥⎣⎦D .120,5⎡⎤⎢⎣⎦二、多项选择题:(本大题共3个小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分,请在答题纸的指定位置填涂答案选项.)9.已知直线l 过点()1,3,若l 与x ,y 轴的正半轴围成的三角形的面积为S ,则S 的值可以是()A.3 B.6 C.7 D.910.下列四个命题中正确的是()A.过点(3,1),且在x 轴和y 轴上的截距互为相反数的直线方程为20x y --=B.若直线10kx y k ---=和以(3,1),(3,2)M N -为端点的线段相交,则实数k 的取值范围为12k ≤-或32k ≥C.若三条直线0,0,3x y x y x ay a +=-=+=-不能构成三角形,则实数a 所有可能的取值组成的集合为{1,1}-D.若直线l 沿x 轴向左平移3个单位长度,再沿y 轴向上平移2个单位长度后,回到原来的位置,则该直线l 的斜率为23-11.已知圆221:20x y x O +-=和圆222:240O x y x y ++-=的交点为A ,B ,则下列结论中正确的是()A.公共弦AB 所在的直线方程为0x y -=B.公共弦AB 的长为22C.线段AB 的中垂线方程为10x y +-=D.若P 为圆1O 上的一个动点,则三角形PAB +第II 卷(非选择题共92分)三、填空题:(本大题共3小题,每小题5分,计15分.不需要写出解答过程,请把答案写在答题纸的指定位置上.)12.两条平行直线1l :3450x y +-=与2l :6850x y +-=之间的距离是.13.已知圆22:4210C x y x y +--+=,圆C 的弦AB 被点()1,0Q 平分,则弦AB 所在的直线方程是.14.古希腊著名数学家阿波罗尼斯发现了平面内到两个定点A B ,的距离之比为定值(1)λλ≠的点的轨迹是圆,此圆被称为“阿波罗尼斯圆”.在平面直角坐标系中,已知()1,0A ,()4,0B ,若动点P 满足12PA PB =,设点P 的轨迹为C ,过点(1,2)作直线l ,C 上恰有三个点到直线l 的距离为1,则直线l 的方程为.四、解答题:(本大题共5小题,共77分,请在答题纸指定的区域内作答,解答时应写出文字说明、证明过程或演算步骤.)15.(本小题满分13分)分别求符合下列条件的椭圆的标准方程:(1)过点P (-3,2),且与椭圆22194x y +=有相同的焦点.(2)经过两点(2,,141,2⎛- ⎪⎝⎭.16.(本小题满分15分)已知直线:210l x y +-=和点()1,2A (1)求点A 关于直线l 的对称点的坐标;(2)求直线l 关于点A 对称的直线方程.17.(本小题满分15分)已知半径为4的圆C 与直线1:3480l x y -+=相切,圆心C 在y 轴的负半轴上.(1)求圆C 的方程;(2)已知直线2:30l kx y -+=与圆C 相交于,A B 两点,且△ABC 的面积为8,求直线2l 的方程.18.(本小题满分17分)如图,已知圆22:10100C x y x y +++=,点()0,6A .(1)求圆心在直线y x =上,经过点A ,且与圆C 相外切的圆N 的方程;(2)若过点A 的直线m 与圆C 交于,P Q 两点,且圆弧 PQ恰为圆C 周长的14,求直线m 的方程.19.(本小题满分17分)已知圆M :()2244x y +-=,点P 是直线l :20x y -=上的一动点,过点P 作圆M 的切线PB P A ,,切点为B A ,.(1)当切线P A 的长度为时,求点P 的坐标;(2)若P AM ∆的外接圆为圆N ,试问:当P 运动时,圆N 是否过定点?若存在,求出所有的定点的坐标;若不存在,说明理由;(3)求线段AB 长度的最小值.2024/2025学年第一学期联盟校第一次学情调研检测高二年级数学参考答案及评分标准一、单项选择题1.B2.C3.A4.C5.B6.B7.B8.D二、多项选择题9.BCD10.BD11.AC三、填空题12.1213.x+y-1=014.1x =或3450x y -+=四、解答题15.(1)因为所求的椭圆与椭圆22194x y +=的焦点相同,所以其焦点在x 轴上,且c 2=5.设所求椭圆的标准方程为()222210x y a b a b+=>>.因为所求椭圆过点P (-3,2),所以有22941a b+=①又a 2-b 2=c 2=5,②由①②解得a 2=15,b 2=10.故所求椭圆的标准方程为2211510x y +=.…………………………………………6分(2)设椭圆方程为22221x y m n +=,且(2,,141,2⎛- ⎪⎝⎭在椭圆上,所以222222421817412m m n n mn ⎧+=⎪⎧=⎪⇒⎨⎨=⎩⎪+=⎪⎩,则椭圆方程22184x y +=.………………………………13分16.(1)设(),A m n ',由题意可得211121221022n m m n ⎧-⎛⎫⨯-=- ⎪⎪⎪-⎝⎭⎨++⎪+⨯-=⎪⎩,…………………………4分解得3565m n ⎧=-⎪⎪⎨⎪=-⎪⎩,所以点A '的坐标为36,55⎛⎫-- ⎪⎝⎭.……………………………………………7分(2)在直线l 上任取一点(),P x y ,设(),P x y 关于点A 的对称点为()00,P x y ',则001222x xy y +⎧=⎪⎪⎨+⎪=⎪⎩,解得0024x x y y =-⎧⎨=-⎩,………………………………11分由于()2,4P x y '--在直线210x y +-=上,则()()22410x y -+--=,即290x y +-=,故直线l 关于点A 的对称直线l '的方程为290x y +-=.………………………………15分17.(1)由已知可设圆心()()0,0C b b <4=,解得3b =-或7b =(舍),所以圆C 的方程为22(3)16x y ++=.………………………………………6分(2)设圆心C 到直线2l 的距离为d,则182ABC AB S AB d d ==⨯= ,即4216640d d -+=,解得d =……………………………………………10分又d =272k =,解得142k =±,所以直线2l的方程为260y -+=260y +-=…………………………15分18.(1)由22:10100C x y x y +++=,化为标准方程:()()225550x y +++=.所以圆C 的圆心坐标为()5,5C --,又圆N 的圆心在直线y x =上,所以当两圆外切时,切点为O ,设圆N 的圆心坐标为(),a a ,=解得3a =,………………………………6分所以圆N 的圆心坐标为()3,3,半径r =故圆N 的方程为()()223318x y -+-=.………………………………………8分(2)因为圆弧PQ 恰为圆C 周长的14,所以CP CQ ⊥.所以点C 到直线m 的距离为5.……………………………………10分当直线m 的斜率不存在时,点C 到y 轴的距离为5,直线m 即为y 轴,所以此时直线m 的方程为0x =.………………………………………12分当直线m 的斜率存在时,设直线m 的方程为6y kx =+,即60kx y -+=.5=,解得4855k =.所以此时直线m 的方程为486055x y -+=,即48553300x y -+=,…………………16分故所求直线m 的方程为0x =或48553300x y -+=.………………………………17分19⑴由题可知,圆M 的半径2=r ,设()b b P ,2,因为P A 是圆M 的一条切线,所以︒=∠90MAP ,所以=MP 4==,解得580==b b 或,所以()⎪⎭⎫ ⎝⎛585160,0,或P P .………………………………5分⑵设()b b P ,2,因为︒=∠90MAP ,所以经过M P A ,,三点的圆N 以MP 为直径,其方程为:()()222244424b b b x b y +-+⎛⎫-+-=⎪⎝⎭,即()22(24)40x y b x y y +--+-=………………………………8分由2224040x y x y y +-=⎧⎨+-=⎩,解得04x y =⎧⎨=⎩或8545x y ⎧=⎪⎪⎨⎪=⎪⎩,所以圆过定点84(0,4),,55⎛⎫ ⎪⎝⎭.……11分⑶因为圆N 方程为()()222244424b b b x b y +-+⎛⎫-+-=⎪⎝⎭即222(4)40x y bx b y b +--++=.圆M :()2244x y +-=,即228120x y y +-+=.②-①得圆M 方程与圆N 相交弦AB 所在直线方程为:2(4)1240bx b y b +-+-=点M 到直线AB的距离d =,相交弦长即:AB ===…14分当45b =时,AB.……………………………………17分。

2021-2022年高二上学期第一次月考数学(理)试题 含答案

2021-2022年高二上学期第一次月考数学(理)试题 含答案

D CBAOyxxx 第一学期高二第一次月考2021-2022年高二上学期第一次月考数学(理)试题含答案一、选择题:(将你认为正确的答案填在答卷的表格内,每题有且只有一个正确选项)1.已知集合M={0,1,2,3,4},N={1,3,5},P=M ,则P 的子集共有:A .2个B .4个C .6个D .8个2.某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测。

若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是: (A )4(B )5(C )6(D )73.已知函数f (x )=。

若f(a)+f(1)=0,则实数a 的值等于: A. -3 B. -1 C. 1 D. 34.设向量则下列结论中正确的是: A. B. C. D. 垂直5、已知在上是减函数,在上是增函数,则的值是: A 、 B 、6 C 、 D 、12 6.如图所示,ABCD 是一平面图形的水平 放置的斜二侧直观图。

在斜二侧直观图中, ABCD 是一直角梯形,A B ∥CD ,, 且BC 与轴平行。

若 ,则这个平面图形的实际面积为: A . B . C . D .7.实数、满足不等式组⎪⎩⎪⎨⎧≥--≥-≥02200y x y x y 则的取值范围是:A .B .C .D .8.圆柱内有一个三棱柱,三棱柱的底面在圆柱底面内,三棱柱的底面是正三角形。

那么在圆柱内任取一点,该点落在三棱柱内的概率为: A. B. C. D.9.设,函数4sin()33ππω=+y x +2的图像向右平移个单位后与原图象重合, 的最小值是( ) A. B. C. D. 310. 数列的通项公式分别是 , ,则数列的前100项的和为: A . B . C . D .二、填空题:(将你认为正确的答案填在答卷对应题序的横线上) 11.右面的程序框图给出了计算数列的前8项 和S 的算法,算法执行完毕后,输出的S 为 .12.函数的定义域是13.已知等比数列中,前项和为 ,当 ,时,公比的值为14.下表是避风塘4天卖出冷饮的杯数与当天气温的对比气温 / 20 25 30 33 杯数20386070如果卖出冷饮的杯数与当天气温成线性相关关系,根据最小二阶乘法,求得回归直线方程是 ,则的值是 。

河北省邯郸市第二十四中学高二数学理月考试题含解析

河北省邯郸市第二十四中学高二数学理月考试题含解析

河北省邯郸市第二十四中学高二数学理月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 在棱长为a的正方体ABCD﹣A1B1C1D1中,M为AB的中点,则点C到平面A1DM的距离为()A. a B. a C. a D. a参考答案:A【考点】点、线、面间的距离计算.【专题】计算题.【分析】连接A1C、MC,三棱锥A1﹣DMC就是三棱锥C﹣A1MD,利用三棱锥的体积公式进行转换,即可求出点C到平面A1DM的距离.【解答】解:连接A1C、MC可得=△A1DM中,A1D=,A1M=MD=∴=三棱锥的体积:所以 d(设d是点C到平面A1DM的距离)∴=故选A.【点评】本题以正方体为载体,考查了立体几何中点、线、面的距离的计算,属于中档题.运用体积计算公式,进行等体积转换来求点到平面的距离,是解决本题的关键.2. 如果函数的导函数是偶函数,则曲线在原点处的切线方程是()A. B. C. D.参考答案:A试题分析:,因为函数的导数是偶函数,所以满足,即,,,所以在原点处的切线方程为,即,故选A.考点:导数的几何意义3. 若集合,,则是A.B.C.D.参考答案:B略4. 设,记,若则()A. B.- C. D.参考答案:B5. 下列命题正确的是( )A.若,则B.若,则C.若,则D.若,则参考答案:C6. 用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,假设正确的是()A.假设三内角都不大于60度 B.假设三内角都大于60度C.假设三内角至少有一个大于60度D.假设三内角至多有二个大于60度参考答案:B略7. 椭圆上的点到直线的最大距离是()A.3 B.C.D.参考答案:D8. 用反证法证明命题“三角形的内角中至少有一个大于60°,反证假设正确的是( )A. 假设三内角都大于60°B. 假设三内角都不大于60°C. 假设三内角至多有一个大于60°D. 假设三内角至多有两个大于60°参考答案:B【分析】反证法的第一步是假设命题的结论不成立,根据这个原则,选出正确的答案.【详解】假设命题的结论不成立,即假设三角形的内角中至少有一个大于60°不成立,即假设三内角都不大于60°,故本题选B.【点睛】本题考查了反证法的第一步的假设过程,理解至少有一个大于的否定是都不大于是解题的关键.9. 对于幂函数,若,则,大小关系是()A. B.C. D.无法确定参考答案:A10. 若f(x)是偶函数且在(0,+∞)上减函数,又,则不等式的解集为()A. 或B. 或C. 或D. 或参考答案:C∵是偶函数,,∴,∵,∴∵在上减函数,∴,∴或∴不等式的解集为或,故选C.二、填空题:本大题共7小题,每小题4分,共28分11. 设两个独立事件和都不发生的概率为,发生不发生的概率与发生不发生的概率相同,则事件发生的概率为____.参考答案:12. 若x 2dx=9,则常数T的值为 .参考答案:3【考点】定积分.【分析】利用微积分基本定理即可求得.【解答】解: ==9,解得T=3,故答案为:3.13. 给出下列3个命题:①若,则;②若,则;③若且,则,其中真命题的序号为 ▲ .参考答案:14. 甲、乙、丙人站到共有级的台阶上,若每级台阶最多站人,同一级台阶上的人不区分站的位置,则不同的站法种数是 (用数字作答).参考答案: 336 略15. 设变量满足约束条件则的最大值为________参考答案:4 16. 若在展开式中x 3的系数为-80,则a = .参考答案:-2;17. 已知,且是第二象限角,则____________参考答案:三、 解答题:本大题共5小题,共72分。

四川省成都2024-2025学年高二上学期10月月考试题 数学含答案

四川省成都2024-2025学年高二上学期10月月考试题 数学含答案

成都2024—2025学年度高二上期10月月考数学试卷(答案在最后)注意事项:1.本试卷分第I 卷和第II 卷两部分;2.本堂考试120分钟,满分150分;3.答题前,考生务必将自己的姓名、学号正确填写在答题卡上,并使用2B 铅笔填涂;4.考试结束后,将答题卡交回.第I 卷一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的选项中,只有一项符合题目要求.1.现须完成下列2项抽样调查:①从12瓶饮料中抽取4瓶进行食品卫生检查;②某生活小区共有540名居民,其中年龄不超过30岁的有180人,年龄在超过30岁不超过60岁的有270人,60岁以上的有90人,为了解居民对社区环境绿化方面的意见,拟抽取一个容量为30的样本.较为合理的抽样方法分别为()A .①随机数法,②抽签法B .①随机数法,②分层抽样C .①抽签法,②分层抽样D .①抽签法,②随机数法2.已知向量()1,2,1a =- ,()3,,b x y = ,且//a b r r,那么实数x y +等于()A .3B .-3C .9D .-93.若,l n 是两条不相同的直线,,αβ是两个不同的平面,则下列命题中为真命题的是()A .若l n ⊥,n β⊥,则l //βB .若αβ⊥,l α⊥,则l //βC .若//αβ,l α⊂,则l //βD .若//l α,//αβ,则l //β4.如图,空间四边形OABC 中,,,OA a OB b OC c ===,点M 为BC 中点,点N 在侧棱OA上,且2ON NA =,则MN =()A .121232a b c--+B .211322a b c-++C .211322a b c-- D .111222a b c+-5.为了养成良好的运动习惯,某人记录了自己一周内每天的运动时长(单位:分钟),分别为53,57,45,61,79,49,x ,若这组数据的第80百分位数与第60百分位数的差为3,则x =()A .58或64B .59或64C .58D .596.已知点D 在ABC V 确定的平面内,O 是平面ABC 外任意一点,正数,x y 满足23DO xOA yOB OC =+- ,则yx 21+的最小值为()A .25B .29C .1D .27.现有一段底面周长为12π厘米和高为12厘米的圆柱形水管,AB 是圆柱的母线,两只蜗牛分别在水管内壁爬行,一只从A 点沿上底部圆弧顺时针方向爬行π厘米后再向下爬行3厘米到达P 点,另一只从B 沿下底部圆弧逆时针方向爬行π厘米后再向上爬行3厘米爬行到达Q 点,则此时线段PQ 长(单位:厘米)为()A .B .C .6D .128.如图,四边形,4,ABCD AB BD DA BC CD =====ABD △沿BD 折起,当二面角A BD C --的大小在[,63ππ时,直线AB 和CD 所成角为α,则cos α的最大值为()A .16B C .16D .8二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列命题中,正确的是()A .两条不重合直线12,l l 的方向向量分别是()2,0,1a =-,()4,0,2b =- ,则12//l l B .直线l 的方向向量()1,1,2c =-,平面α的法向量是()6,4,1m =- ,则l α⊥C .两个不同的平面α,β的法向量分别是()2,2,1u =-,()3,4,2v =- ,则αβ⊥D .直线l 的方向向量()0,1,1d = ,平面α的法向量()1,0,1n =,则直线l 与平面α所成角的大小为π310.小刘一周的总开支分布如图①所示,该周的食品开支如图②所示,则以下说法正确的是()A .娱乐开支比通信开支多5元B .日常开支比食品中的肉类开支多100元C .娱乐开支金额为100元D .肉类开支占储蓄开支的1311.已知四面体OABC 的所有棱长都为1,,D E 分别是,OA BC 的中点.N M ,是该四面体内切球球面上的两点,P 是该四面体表面上的动点.则下列选项中正确的是()A.DE 的长为44B.D 到平面ABC 的距离为66C.当线段MN 最长时,PN PM ⋅的最大值为31D.直线OE 与直线AB 所成角的余弦值为33第II 卷三、填空题:本题共3小题,每小题5分,共15分.12.某校高一年级共有学生200人,其中1班60人,2班50人,3班50人,4班40人.该校要了解高一学生对食堂菜品的看法,准备从高一年级学生中随机抽取40人进行访谈,若采取按比例分配的分层抽样,则应从高一2班抽取的人数是.13.已知(2,1,3),(1,4,2)a b =-=-- ,c (4,5,)λ=,若,,a b c 三向量不能构成空间向量的一组基底,则实数λ的值为.14.在正方体ABCD A B C D -''''中,点P 是AA '上的动点,Q 是平面BB C C ''内的一点,且满足A D BQ '⊥,则平面BDP 与平面BDQ 所成角余弦值的最大值为.四、解答题:本题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.(满分13分)15.已知向量()6a m = ,,()1,0,2=b ,()()2R c m =∈ (1)求()a b c ⋅-的值;(2)求cos b c ,;(3)求a b - 的最小值.(满分15分)16.成都市政府委托市电视台进行“创建文明城市”知识问答活动,市电视台随机对该市1565~岁的人群抽取了n人,绘制出如图所示的频率分布直方图,回答问题的统计结果如表所示.组号分组回答正确的人数回答正确的人数占本组的频率第一组[15,25)500.5第二组[25,35)180a第三组[35,45)x0.9第四组[45,55)90b第五组[55,65)y0.6a b x y的值;(1)分别求出,,,(2)从第二、三、四、五组回答正确的人中用分层抽样的方法抽取7人,则从第二、三、四、五组每组回答正确的人中应各抽取多少人.-中,ABCD是边长为2的正方形,平面PBC⊥(满分15分)17.如图,在四棱锥P ABCDPC=.平面ABCD,直线PA与平面PBC所成的角为45︒,2(1)若E,F分别为BC,CD的中点,求证:直线AC⊥平面PEF;(2)求二面角D PA B--的正弦值.(满分17分)18.随着时代不断地进步,人们的生活条件也越来越好,越来越多的人注重自己的身材,其中体脂率是一个很重要的衡量标准.根据一般的成人体准,女性体脂率的正常范围是20%至25%,男性的正常范围是15%至18%.这一范围适用于大多数成年人,可以帮助判断个体是否存在肥胖的风险.某市有关部门对全市100万名成年女性的体脂率进行一次抽样调查统计,抽取了1000名成年女性的体脂率作为样本绘制频率分布直方图,如图.(1)求a ;(2)如果女性体脂率为25%至30%属“偏胖”,体脂率超过30%属“过胖”,那么全市女性“偏胖”,“过胖”各约有多少人?(3)小王说:“我的体脂率是调查所得数据的中位数.”小张说:“我的体脂率是调查所得数据的平均数.”那么谁的体脂率更低?(精确到小数点后2位)(满分17分)19.如图,四面体ABCD 中,2,AB BC BD AC AD DC ======(1)求证:平面ADC ⊥平面ABC ;(2)若(01)DP DB λλ=<<,①若直线AD 与平面APC 所成角为30°,求λ的值;②若PH ⊥平面,ABC H 为垂足,直线DH 与平面APC 的交点为G .当三棱锥CHP A -体积最大时,求DGGH的值.高二上10月月考数学答案一、单选题:C D C C A B A B二、多选题:AC;BCD;BC3三、填空题:10;5;318:(1)由频率直方图可得,(2)由频率分布直方图可得样本中女性⨯=,所以全市女性50.020.1⨯=,10000000.1100000。

高二数学上学期月考试题含解析 (2)

高二数学上学期月考试题含解析 (2)

三林中学2021-2021学年高二数学上学期10月月考试题〔含解析〕一、填空题〔本大题一一共12题,满分是36分,每一小题对得3分,否那么一律不得分〕 1.数1与9的等差中项是_____. 【答案】5 【解析】 【分析】假设a 、b 、c 成等差数列,那么2b a c =+,称b 为a 、c 的等差中项,由题,故192b +=,解出b 即可【详解】设等差中项为b ,那么192b +=,5b ∴= 故答案为:5【点睛】此题考察等差中项的概念,属于根底题{}n a 满足1111n n a n a a n +=⎧⎪⎨=⎪+⎩,那么6a =__________ 【答案】16【解析】 【分析】递推公式为11n n na a n +=+,故用累乘法求得数列{}n a 的通项公式,令6n =,即可求解 【详解】由题,当2n ≥时,11n n n a a n --=,∴2112a a =,3223a a =,…, 11n n n a a n --= ∴用累乘法可得2312112123n n n a a a a a a n--⋅⋅⋅=⋅⋅⋅,即()2312112123n n n a a a a a a n --⎛⎫⋅⋅⋅=⋅⋅⋅⋅⋅⋅ ⎪⎝⎭,∴111n a a n n== ∴当6n =时,616a =故答案为:16【点睛】此题考察数列的递推公式,考察累乘法求通项公式,考察求数列的某一项{}n a 的前四项为072663,,,14916--,那么该数列的一个通项公式为_______ 【答案】()31211n n n a n+-=- 【解析】 【分析】观察数列,奇数项为非负数,偶数项为负数;分母为2n ,分子为31n -,将这些特征整理即可【详解】由题,31201111a -==,32272142a -=-=-,332263193a -==,3426341164a -=-=-,会发现奇数项为非负,偶数项为负,故用()11n +-来处理,即该数列的通项公式为()31211n n n a n+-=- 故答案为:()31211n n n a n+-=- 【点睛】此题考察归纳、猜测的应用问题,解题时应观察数列各项的特征,通过归纳猜测,即可得出该数列的一个通项公式{}n a 中,11a =-,33a =,9n a =,那么n =_____【答案】6 【解析】 【分析】将33a =代入等差数列通项公式()11n a a n d +-=中,求得d ,即得到通项公式,再将9n a =代入通项,求得n 即可【详解】设()11n a a n d +-=,()3131123a a d d ∴=+-=-+=,2d ∴=,∴通项公式为()12123n a n n =-+-=-,当9n a =时,即239n -=,6n ∴=故答案为:6【点睛】此题考察定义法求等差数列通项公式,考察等差数列的某一项,属于根底题{}n a 满足1113n n a a a +=⎧⎨=⎩,那么其通项公式n a =________【答案】13n - 【解析】 【分析】由递推公式可得数列{}n a 是以1为首项,3为公比的等比数列,根据等比数列定义求出通项公式即可【详解】由题知,数列{}n a 是以1为首项,3为公比的等比数列,1113n n n a a q --∴=⋅=故答案为:13n -【点睛】此题考察定义法求等比数列通项公式,属于根底题{}n a 中,n S 表示其前n 项和,假设121,4S S ==,那么3S=___________【答案】9 【解析】 【分析】根据等差数列前n 项和的性质,n S 、2n n S S -、32n n S S -仍成等差数列,将值代入即可求解【详解】{}n a 是等差数列,∴1S 、21S S -、32S S -仍成等差数列,∴根据等差中项可得,()()211322S S S S S -=+-,即()324114S -=+-,39S ∴=故答案为:9【点睛】此题考察等差数列前n 项和的性质的应用,考察等差中项,属于根底题{}n a 的前n 项为22nSn n =+,那么此数列的通项公式为_____【答案】21n a n =+ 【解析】 【分析】用公式法求数列的通项公式,分别讨论当1n =和当2n ≥的情况,最后要检验【详解】当1n =时,2111213a S ==+⨯=;当2n ≥时,()()()221212121n n n a S S n n n n n -⎡⎤=-=+--+-=+⎣⎦,检验,当1n =时,12113a =⨯+=,符合21n a n ∴=+故答案为:21n a n =+【点睛】此题考察公式法求数列的通项公式,方法如下: 〔1〕当1n =时,11a S =; 〔2〕当2n ≥时,1n n n a S S -=-;〔3〕检验,当1n =时,代入〔2〕中的n a 后判断是否与〔1〕中值一致,假设符合,那么1n n n a S S -=-;假设不符合,那么11,1,2n nn a n a S S n -=⎧=⎨-≥⎩{}n a 中,2a ,3a ,6a 成等比数列,那么其公比q 为____________【答案】3 【解析】 【分析】由等比中项可得2263a a a ⋅=,且等差数列{}n a ,故为()()()211152a d a d a d ++=+,可得到12d a =-,那么2a ,3a 均用1a 来表示,进一步求得公比q【详解】由题,可得2263a a a ⋅=等差数列{}n a ,∴()()()211152a d a d a d ++=+,即()120d a d -+=,0d ≠,120a d ∴+=,即12d a =-211112a a d a a a ∴=+=-=-,31111243a a d a a a =+=-=-312133a a q a a -∴===- 故答案为:3【点睛】此题考察求等比数列的公比,等比中项,考察等差数列通项公式的应用{}n a 中,其公差0d <,且满足24248,12a a a a +=⋅=,那么该数列的通项公式为____________. 【答案】210n a n =-+ 【解析】 【分析】根据2424812a a a a +=⎧⎨⋅=⎩且0d <得到2462a a =⎧⎨=⎩,代入()11n a a n d +-=中求1a 与d 后整理即可【详解】248a a +=且2412a a ⋅=∴2462a a =⎧⎨=⎩或者2626a a =⎧⎨=⎩又0d <,∴{}n a 是递减数列,24a a ∴>,∴2462a a =⎧⎨=⎩()11n a a n d +-=2141632a a d a a d =+=⎧∴⎨=+=⎩ ,182a d =⎧∴⎨=-⎩()821210n a n n ∴=--=-+故答案为:210n a n =-+【点睛】此题考察定义法求等差数列通项公式,考察由公差判断等差数列的单调性,考察解二元一次方程组{}n a 中,n S 表示其前n 项和,72450S S -=那么9S =____________【答案】810 【解析】 【分析】由等差数列的前n 项和公式为()112n n n dS na -=+,将7S 、2S 分别用其表示代入等式中,整理可得590a =,根据等差数列的性质959S a =,即得结果 【详解】等差数列{}n a ,n S 表示其前n 项和∴()112n n n dS na -=+, 7211176217252045022S S a d a d a d ⨯⨯⎛⎫⎛⎫∴-=---=+= ⎪ ⎪⎝⎭⎝⎭,1490a d ∴+=,即590a =19595299981022a a aS a +∴=⨯=⨯== 故答案为:810【点睛】此题考察等差数列前n 项和公式的两种形式,考察等差数列的性质,考察运算才能{}n a 满足12213,5n n n a a a a a ++==⎧⎨=-⎩,那么2019a =_____【答案】2 【解析】【分析】根据递推公式,得到32a =,43a =-,55a =-,62a =-,713a a ==,故周期为6,由周期性可得20193a a =,即可得到结果 【详解】由题, 321532a a a =-=-=,432253a a a =-=-=-,543325a a a =-=--=-,654532a a a =-=-+=-,7651253a a a a =-=-+==,6T ∴=,20196=336∴÷余3,即201932a a ==故答案为:2【点睛】此题考察数列周期性,考察数列的递推公式,考察运算才能 12.设数列{a n }的前n 项和为S n 〔n ∈N *〕,关于数列{a n }有以下三个命题: ①假设数列{a n }既是等差数列又是等比数列,那么a n =a n +1; ②假设S n =an 2+bn +c 〔a 、b 、c ∈R〕,那么数列{a n }是等差数列; ③假设S n =1﹣〔﹣2〕n ,那么数列{a n }是等比数列. 其中,真命题的序号是_____ 【答案】①③ 【解析】 【分析】①易得既是等差数列又是等比数列的是非0常数列;②③利用公式法证明其结论的正确性 【详解】①既是等差数列又是等比数列的是一个非0常数列,那么有1n n a a +=,故是真命题;②当2n ≥时,()()()()221112n n n a S S an bn c a n b n c an b a -⎡⎤=-=++--+-+=+-⎣⎦那么()()()1212n a a n b a an b a +=++-=++,()()()22223n a a n b a an b a +=++-=++()()212322n n a a an b a an b a a ++∴-=++-++=⎡⎤⎡⎤⎣⎦⎣⎦,()()1222n n a a an b a an b a a +-=++-+-=⎡⎤⎡⎤⎣⎦⎣⎦,211n n n n a a a a +++∴-=-当1n =时,11a S a b c ==++,()()221423a S S a b c a b c a b =-=++-++=+,()()33293425a S S a b c a b c a b =-=++-++=+,()()32532a a a b a b a ∴-=+-+=,()()2132a a a b a b c a c -=+-++=-∴假设3221a a a a -=-,那么当且仅当0c 时,数列{}n a 为等差数列,题中R c ∈,故为假命题; ③当2n ≥时,()()()111121232n n n n n n a S S ---⎡⎤⎡⎤=-=-----=⋅-⎣⎦⎣⎦,()132n n a +=⋅-,()1232n n a ++=⋅-,那么()()()()11211323223232n n n n n n n n a a a a +++-+⋅-⋅-==-==⋅-⋅-; 当1n =时,()111123a S ==--=,()()2122112126a S S ⎡⎤⎡⎤=-=-----=-⎣⎦⎣⎦,()()32332121212a S S ⎡⎤⎡⎤=-=-----=⎣⎦⎣⎦,3221126263a a a a -∴==-==-, ∴数列{}n a 是以3为首项,2-为公比的等比数列,故为真命题故答案为:①③【点睛】此题考察对常数列的认知,考察等差数列,等比数列的证明二、选择题〔本大题一一共4题,满分是12分,每一小题有且只有一个正确答案,选对得3分,否那么一律不得分〕{}n a 中,n S 表示其前n 项和,假设1020100,110S S ==,那么30S =〔 〕A. 210B. 120C. 121D. 111【答案】D【分析】根据等比数列前n 项和的性质,n S 、2n n S S -、32n n S S -仍成等比数列,将值代入即可求解 【详解】由题, 等比数列{}n a ,那么有10S 、1200S S -、3020S S -仍成等比数列,∴由等比中项可得()()21030202010S S S S S ⋅-=-,即()()230100110110100S ⨯-=-30111S ∴=应选:D【点睛】此题考察等比数列前n 项和的性质的应用,属于根底题135...(21)2019246...(2)2020n n ++++-=++++的正整数n =〔 〕A. 2021B. 2021C. 2021D. 2021【答案】B 【解析】 【分析】通过观察可得,等式左侧分式的分母为连续偶数求和,分子为连续奇数求和,利用等差数列前n 项和公式整理分式,求解n 即可【详解】由题,等式左侧分式的分子为()21212n n S n n +-==;分母为2222n n T n n n +==+,∴原式22201912020n n n n n ===++,2019n ∴= 应选:B【点睛】此题考察等差数列前n 项和的公式的应用,属于根底题a ,假设该厂产量月平均增长率为P ,那么今年12月份的月产量比去年同期增加的比率为〔 〕A. 12(1)p +B. 12(1)1p +-C. 11(1)p +D. 12P【解析】 【分析】今年12月份的月产量为()121a p +,增加比率应为:〔今年产量-去年产量〕÷去年产量,将式子代入整理即可【详解】由题,今年12月份的月产量为()121a p +,那么增加的比率为()()1212111a p a p a+-=+-应选:B【点睛】此题考察等比数列在实际生活中的应用,属于根底题16.某个命题与正整数有关,假设当()n k k N *=∈时该命题成立,那么可推得当1n k =+时该命题也成立,现当4n =时该命题不成立,那么可推得〔 〕 A. 当5n =时,该命题不成立 B. 当5n =时,该命题成立 C. 当3n =时,该命题成立 D. 当3n =时,该命题不成立【答案】D 【解析】试题分析:“当()n k k N *=∈时该命题成立,那么可推得当1n k =+时该命题也成立〞它的逆否命题为“当1n k =+时该命题不成立,那么当()n k k N *=∈时该命题也不成立〞,因为它们同真,所以当4n =时该命题不成立,那么可推得当3n =时,该命题也不成立,应选择D.考点:四种命题和数学归纳法.三、解答题:〔本大题一一共有6题,满分是52分,每一小题必须写出必要的解题步骤〕 17.在1,x ,9,y 四个数中,前三个数成等比数列,后三个数成等差数列,求x ,y 的值【答案】3x =,15y =或者3x =-,21y = 【解析】 【分析】根据等比中项可得219x ⨯=;根据等差数列可得29x y +=⨯,求解即可【详解】由题, 21929x x y ⎧⨯=⎨+=⨯⎩,315x y =⎧∴⎨=⎩或者321x y =-⎧⎨=⎩即当3x =时,15y =;当3x =-时,21y =【点睛】此题考察等差中项、等比中项的应用,考察运算才能18.用数学归纳法证明:()()()2232*1211236n n n n n N ++++++=∈… 【答案】证明见解析. 【解析】 【分析】利用数学归纳法证明分两步进展:①当1n =时证明不等式左右两边相等;②假设当n k =时等式成立,应用此结论证明当1n k =+时等式也成立即可. 【详解】①当1n =时左边1=,右边()()1112116⨯++==所以左边=右边,等式成立.②假设当n k =时等式成立,即()()22321211236k k k k ++++++=…那么当1n k =+时,()222321231k k ++++++…()()()212116k k k k ++=++()()()()()()12211122366k k k k k k ++++⎡⎤+++⎣⎦==即当1n k =+时等式也成立 由①②可知, ()()22321211236n n n n ++++++=…对任意正整数都成立【点睛】此题考察了数学归纳法在证明等式中的应用,注意证明的格式和步骤,对假设成立等式的应用是关键,属于中档题.19.在正数数列{a n }中,前n 项和S n 满足:S n =2a n ﹣1, 〔1〕求a 1的值; 〔2〕求{a n }的通项公式. 【答案】〔1〕1〔2〕12n n a【解析】 【分析】〔1〕当1n =时,11a S =;〔2〕当2n ≥时,1n n n a S S -=-,即用公式法求解通项公式 【详解】〔1〕当1n =时,11121a S a ==-,11a ∴=〔2〕当2n ≥时,()()111212122n n n n n n n a S S a a a a ---=-=---=-,即12n n a a -={}∴n a 是首项为1,公比为2的等比数列,12n na【点睛】此题考察求数列首项,考察公式法求通项公式,考察等比数列通项公式{}n a 为等差数列,设12na nb ⎛⎫= ⎪⎝⎭〔1〕证明数列{}n b 为等比数列;〔2〕假设123123121,88b b b b b b ⋅⋅=++=,求数列{}n a 的通项公式; 〔3〕在〔2〕的条件下,当数列{}n a 的公差0d <时,求数列{}n a 的前n 项和n S 的最大值 【答案】〔1〕证明见解析;〔2〕23n a n =-或者25n a n =-+;〔3〕4 【解析】 【分析】〔1〕借助等差数列{}n a 的定义来证明121n n n n b b b b +++=即可; 〔2〕利用等比中项先求得2b ,代入123218b b b ++=得到关于q 的方程,解出q ,由q 得到d ,再将q 代回2b 中求得1a ,整理后即得到数列{}n a 的通项公式〔3〕由题, 25n a n =-+,找到符合0n a ≥时的n 值,即找到n S 最大时的n 值,再代入等差数列的前n 项和公式即可求解 【详解】〔1〕证明:数列{}n a 为等差数列,设()11n a a n d +-=又12na nb ⎛⎫= ⎪⎝⎭1112n a n b ++⎛⎫∴= ⎪⎝⎭,2212n a n b ++⎛⎫= ⎪⎝⎭11111122212n n n n aa a d n a nb b ++-+⎛⎫ ⎪⎛⎫⎛⎫⎝⎭∴=== ⎪ ⎪⎝⎭⎝⎭⎛⎫ ⎪⎝⎭,22112111122212n n n n aa a d n a nb b ++++-++⎛⎫⎪⎛⎫⎛⎫⎝⎭=== ⎪ ⎪⎝⎭⎝⎭⎛⎫ ⎪⎝⎭∴121n n n n b b b b +++=, 当1n =时,1112ab ⎛⎫= ⎪⎝⎭,即数列{}n b 是以112a⎛⎫ ⎪⎝⎭为首项,12d⎛⎫ ⎪⎝⎭为公比的等比数列〔2〕解:由〔1〕可知3123218b b b b ⋅⋅==,212b ∴=123218b b b ++=,即222111212228b b b q q q q ++=++=,14q ∴=或者4q = 当14q =时,即1124d⎛⎫= ⎪⎝⎭,2d ∴=,此时1211122124a b b q ⎛⎫==== ⎪⎝⎭,11a ∴=-, ()()1112123n a a n d n n ∴=+-=-+-=-当4q =时,即142d⎛⎫= ⎪⎝⎭,2d ∴=-,此时1211112482a b b q ⎛⎫==== ⎪⎝⎭,13a ∴=, ()()1132125n a a n d n n ∴=+-=--=-+综上,23n a n =-或者25n a n =-+ 〔3〕0d <,∴25n a n =-+令0n a ≥,即250n -+≥,52n ∴≤, n N +∈,20a ∴>,30a <()()212max 32254n S S a a ∴==+=+-⨯+=【点睛】此题考察等比数列的证明,等差数列的通项公式以及等差数列前n 项和的最值问题{}n a 的前n 项和为n S ,其满足:12()n n nS a a =+〔1〕试求1S 的值;〔2〕利用:当2n ≥时,1n n n a S S -=-证明:数列{}2n S 为等差数列;〔3〕求数列{}n a 的通项公式。

四川省成都市2024-2025学年高二上学期月考(一)数学试题含答案

四川省成都市2024-2025学年高二上学期月考(一)数学试题含答案

高二上数学月考(一)(答案在最后)一、单项选择题:本题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.某高校对中文系新生进行体测,利用随机数表对650名学生进行抽样,先将650名学生进行编号,001,002,…,649,650.从中抽取50个样本,下图提供随机数表的第4行到第6行,若从表中第5行第6列开始向右读取数据,则得到的第6个样本编号是()32211834297864540732524206443812234356773578905642 84421253313457860736253007328623457889072368960804 32567808436789535577348994837522535578324577892345A.623B.328C.072D.457【答案】A【解析】【分析】按照随机数表提供的数据,三位一组的读数,并取001到650内的数,重复的只取一次即可【详解】从第5行第6列开始向右读取数据,第一个数为253,第二个数是313,第三个数是457,下一个数是860,不符合要求,下一个数是736,不符合要求,下一个是253,重复,第四个是007,第五个是328,第六个数是623,,故A正确.故选:A.2.某校高一共有10个班,编号1至10,某项调查要从中抽取三个班作为样本,现用抽签法抽取样本,每次抽取一个号码,共抽3次,设五班第二次被抽到的可能性为b,则()A.19b= B.29b= C.310b= D.110b=【答案】D【解析】【分析】根据题意,在抽样过程中每个个体被抽到的概率相等即可求解.【详解】因为总体中共有10个个体,所以五班第一次没被抽到,第二次被抽到的可能性为91110910b=⨯=.故选:D.3.已知向量1,22AB ⎛⎫=- ⎪ ⎪⎝⎭,122BC ⎛⎫=- ⎪ ⎪⎝⎭,则ABC ∠=()A.30°B.150°C.60°D.120°【答案】B 【解析】【分析】根据向量夹角的坐标表示求出向量夹角,进而求解几何角.【详解】因为向量13,22AB ⎛⎫=- ⎪ ⎪⎝⎭ ,31,22BC ⎛⎫=- ⎪ ⎪⎝⎭,所以13312222cos ,2AB BC AB BC AB BC⎛⎫⎛⎫⨯+-⨯- ⎪ ⎪⋅==⋅,又0,180AB BC ≤≤,所以,30AB BC =,所以,18030150BA BC =-= ,所以150ABC ∠=o .故选:B.4.已知,a b 为两条不同的直线,,αβ为两个不同的平面,则下列说法错误的是()A.若//a b ,,b a αα⊂⊄,则//a αB.若,a b αα⊥⊥,则//a bC.若,,b a b αβαβ⊥⋂=⊥,则a β⊥D.若,a b 为异面直线,,a b αβ⊂⊂,//a β,//b α,则//αβ【答案】C 【解析】【分析】根据线面平行的判定定理判断A ,根据线面垂直的性质判断B ,当a α⊄时即可判断C ,根据异面直线的定义及线面平行的性质定理判断D.【详解】对于A :若//a b ,,b a αα⊂⊄,根据线面平行的判定定理可知//a α,故A 正确;对于B :若,a b αα⊥⊥,则//a b ,故B 正确;对于C :当a α⊂时,,,b a b αβαβ⊥⋂=⊥,由面面垂直的性质定理可得a β⊥,当a α⊄时,,,b a b αβαβ⊥⋂=⊥,则//a β或a β⊂或a 与β相交,故C 错误;对于D :因为a α⊂,//b α,所以存在b α'⊂使得//b b ',又b β⊂,b β'⊄,所以//b β',又//a β且,a b 为异面直线,所以平面α内的两直线b '、a 必相交,所以//αβ,故D 正确.故选:C5.下列说法正确的是()A.互斥的事件一定是对立事件,对立事件不一定是互斥事件B.若()()1P A P B +=,则事件A 与事件B 是对立事件C.从长度为1,3,5,7,9的5条线段中任取3条,则这三条线段能构成一个三角形的概率为25D.事件A 与事件B 中至少有一个发生的概率不一定比A 与B 中恰有一个发生的概率大【答案】D 【解析】【分析】根据互斥事件、对立事件和古典概型及其计算逐一判定即可.【详解】对于A ,由互斥事件和对立事件的关系可判断,对立事件一定是互斥事件,互斥事件不一定是对立事件,故A 错误;对于B ,由()()1P A P B +=,并不能得出A 与B 是对立事件,举例说明:现从a ,b ,c ,d 四个小球中选取一个小球,已知选中每个小球的概率是相同的,设事件A 表示选中a 球或b 球,则1()2P A =,事件B 表示选中b 球或c 球,则1()2P B =,所以()()1P A P B +=,但A ,B 不是对立事件,故B 错误;对于C ,该试验的样本空间可表示为:{(1,3,5),(1,3,7),(1,3,9),(1,5,7),(1,5,9),(1,7,9),(3,5,7),(3,5,9),(3,7,9)(5,7,9)}Ω=,共有10个样本点,其中能构成三角形的样本点有(3,5,7),(3,7,9),(5,7,9),共3个,故所求概率310P =,故C 错误;对于D ,若A ,B 是互斥事件,事件A ,B 中至少有一个发生的概率等于A ,B 中恰有一个发生的概率,故D 正确.故选:D.6.一组数据:53,57,45,61,79,49,x ,若这组数据的第80百分位数与第60百分位数的差为3,则x =().A.58或64B.58C.59或64D.59【答案】A 【解析】【分析】先对数据从小到大排序,分57x ≤,79x ≥,5779x <<三种情况,舍去不合要求的情况,列出方程,求出答案,【详解】将已知的6个数从小到大排序为45,49,53,57,61,79.若57x ≤,则这组数据的第80百分位数与第60百分位数分别为61和57,他们的差为4,不符合条件;若79x ≥,则这组数据的第80百分位数与第60百分位数分别为79和61,它们的差为18,不符合条件;若5779x <<,则这组数据的第80百分位数与第60百分位数分别为x 和61(或61和x ),则613x -=,解得58x =或64x =故选:A7.如图,四边形ABCD 为正方形,ED ⊥平面,,2ABCD FB ED AB ED FB ==∥,记三棱锥,,E ACD F ABC F ACE ---的体积分别为123,,V V V ,则()A.322V V =B.31V V =C.3123V V V =-D.3123V V =【答案】D 【解析】【分析】结合线面垂直的性质,确定相应三棱锥的高,求出123,,V V V 的值,结合选项,即可判断出答案.【详解】连接BD 交AC 于O ,连接,OE OF ,设22AB ED FB ===,由于ED ⊥平面,ABCD FB ED ∥,则FB ⊥平面ABCD ,则1211141112222,22133233323ACD ABC V S ED V S FB =⨯⨯=⨯⨯⨯⨯==⨯⨯=⨯⨯⨯⨯= ;ED ⊥平面,ABCD AC Ì平面ABCD ,故ED AC ⊥,又四边形ABCD 为正方形,则AC BD ⊥,而,,ED BD D ED BD =⊂ 平面BDEF ,故AC ⊥平面BDEF ,OF ⊂平面BDEF ,故AC OF ⊥,又ED ⊥平面ABCD ,FB ⊥平面ABCD ,BD ⊂平面ABCD ,故,ED BD FB BD ⊥⊥,222222,26,3,BD OD OB OE OD ED OF OB BF =∴===+==+=而()223EF BD ED FB =+-=,所以222EF OF OE +=,即得OE OF ⊥,而,,OE AC O OE AC =⊂ 平面ACE ,故OF ⊥平面ACE ,又22222AC AE CE ===+=,故(2231131323233434F ACE V V ACE S OF AC OF =-=⋅=⨯⋅=⨯= ,故323131231,2,,233V V V V V V V V V ≠≠≠-=,故ABC 错误,D 正确,故选:D8.已知平面向量a ,b ,e ,且1e = ,2a = .已知向量b 与e所成的角为60°,且b te b e -≥- 对任意实数t 恒成立,则12a e ab ++-的最小值为()A.31+ B.23C.35 D.25【答案】B【解析】【分析】b te b e -≥-对任意实数t 恒成立,两边平方,转化为二次函数的恒成立问题,用判别式来解,算出||2b =r ,借助2a =,得到122a e a e +=+ ,12a e a b ++- 的最小值转化为11222a e a b++- 的最小值,最后用绝对值的三角不等式来解即可【详解】根据题意,1cos 602b e b e b ⋅=⋅︒=,b te b e -≥- ,两边平方22222||2||2b t e tb e b e b e +-⋅≥+-⋅ ,整理得到210t b t b --+≥ ,对任意实数t 恒成立,则()2Δ||410b b =--+≤ ,解得2(2)0b -≤ ,则||2b =r .由于2a =,如上图,122a e a e +=+ ,则111112(2)()22222a e a b a e a b a e a b ++-=++-≥+--222843e b e b b e =+=++⋅12a e ab ++- 的最小值为23当且仅当12,,2e b a -终点在同一直线上时取等号.故选:B .二、多项选择题.本题共3个小题,每小题6分,共18分.在每个小题给出的选项中,有多项符合题目要求,部分选对的得部分,有选错的得0分.9.某保险公司为客户定制了5个险种:甲,一年期短期;乙,两全保险;丙,理财类保险;丁,定期寿险;戊,重大疾病保险.各种保险按相关约定进行参保与理赔.该保险公司对5个险种参保客户进行抽样调查,得到如图所示的统计图表.则()A.丁险种参保人数超过五成B.41岁以上参保人数超过总参保人数的五成C.18-29周岁人群参保的总费用最少D.人均参保费用不超过5000元【答案】ACD 【解析】【分析】根据统计图表逐个选项进行验证即可.【详解】由参保险种比例图可知,丁险种参保人数比例10.020.040.10.30.54----=,故A 正确;由参保人数比例图可知,41岁以上参保人数超过总参保人数的45%不到五成,B 错误;由不同年龄段人均参保费用图可知,1829~周岁人群人均参保费用最少()3000,4000,但是这类人所占比例为15%,54周岁以上参保人数最少比例为10%,54周岁以上人群人均参保费用6000,所以18-29周岁人群参保的总费用最少,故C 正确.由不同年龄段人均参保费用图可知,人均参保费用不超过5000元,故D 正确;故选:ACD .10.在发生公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”过去10日,甲、乙、丙、丁四地新增疑似病例数据信息如下:甲地:中位数为2,极差为5;乙地:总体平均数为2,众数为2;丙地:总体平均数为1,总体方差大于0;丁地:总体平均数为2,总体方差为3.则甲、乙、丙、丁四地中,一定没有发生大规模群体感染的有()A.甲地B.乙地C.丙地D.丁地【答案】AD 【解析】【分析】假设最多一天疑似病例超过7人,根据极差可判断AD ;根据平均数可算出10天疑似病例总人数,可判断BC .【详解】解:假设甲地最多一天疑似病例超过7人,甲地中位数为2,说明有一天疑似病例小于2,极差会超过5,∴甲地每天疑似病例不会超过7,∴选A .根据乙、丙两地疑似病例平均数可算出10天疑似病例总人数,可推断最多一天疑似病例可能超过7人,由此不能断定一定没有发生大规模群体感染,∴不选BC ;假设丁地最多一天疑似病例超过7人,丁地总体平均数为2,说明极差会超过3,∴丁地每天疑似病例不会超过7,∴选D .故选:AD .11.勒洛四面体是一个非常神奇的“四面体”,它能像球一样来回滚动.勒洛四面体是以正四面体的四个顶点为球心,以正四面体的棱长为半径的四个球的相交部分围成的几何体.如图所示,设正四面体ABCD 的棱长为2,则下列说法正确的是()A.勒洛四面体能够容纳的最大球的半径为22-B.勒洛四面体被平面ABC 截得的截面面积是(2π-C.勒洛四面体表面上交线AC 的长度为2π3D.勒洛四面体表面上任意两点间的距离可能大于2【答案】ABD 【解析】【分析】A 选项:求出正四面体ABCD 的外接球半径,进而得到勒洛四面体的内切球半径,得到答案;B 选项,作出截面图形,求出截面面积;C 选项,根据对称性得到交线AC 所在圆的圆心和半径,求出长度;D 选项,作出正四面体对棱中点连线,在C 选项的基础上求出长度.【详解】A 选项,先求解出正四面体ABCD 的外接球,如图所示:取CD 的中点G ,连接,BG AG ,过点A 作AF BG ⊥于点F ,则F 为等边ABC V 的中心,外接球球心为O ,连接OB ,则,OA OB 为外接球半径,设OA OB R ==,由正四面体的棱长为2,则1CG DG ==,BG AG ==133FG BG ==,233BF BG ==3AF ===,3OF AF R R =-=-,由勾股定理得:222OF BF OB +=,即22233R R ⎛⎫⎛-+= ⎪ ⎪ ⎪⎝⎭⎝⎭,解得:2R =,此时我们再次完整的抽取部分勒洛四面体,如图所示:图中取正四面体ABCD 中心为O ,连接BO 交平面ACD 于点E ,交 AD 于点F ,其中 AD 与ABD △共面,其中BO 即为正四面体外接球半径2R =,设勒洛四面体内切球半径为r ,则22r OF BF BO ==-=-,故A 正确;B 选项,勒洛四面体截面面积的最大值为经过正四面体某三个顶点的截面,如图所示:面积为(2221π333322222344⎛⎫⨯⨯⨯-⨯+⨯= ⎪ ⎪⎭⎝,B 正确;C 选项,由对称性可知:勒洛四面体表面上交线AC 所在圆的圆心为BD 的中点M ,故3MA MC ==2AC =,由余弦定理得:2221cos 23233AM MC AC AMC AM MC +-∠===⋅⨯⨯,故1arccos3AMC ∠=3AC 133,C 错误;D 选项,将正四面体对棱所在的弧中点连接,此时连线长度最大,如图所示:连接GH ,交AB 于中点S ,交CD 于中点T ,连接AT ,则22312ST AT AS =-=-=则由C 选项的分析知:3TG SH ==,所以323322GH =+=,故勒洛四面体表面上两点间的距离可能大于2,D 正确.故选:ABD.【点睛】结论点睛:勒洛四面体考试中经常考查,下面是一些它的性质:①勒洛四面体上两点间的最大距离比四面体的棱长大,是对棱弧中点连线,最大长度为232a a ⎫->⎪⎪⎭,②表面6个弧长之和不是6个圆心角为60︒的扇形弧长之和,其圆心角为1arccos 3,半径为32a .三、填空题:本题共3个小题,每小题5分,共15分.12.某工厂生产A 、B 、C 三种不同型号的产品,产品数量之比依次为3:4:7,现在用分层抽样的方法抽出容量为n 的样本,样本中的A 型号产品有15件,那么样本容量n 为________.【答案】70【解析】【分析】利用分层抽样的定义得到方程,求出70n =.【详解】由题意得315347n=++,解得70n =.故答案为:7013.平面四边形ABCD 中,AB =AD =CD =1,BD =BD ⊥CD ,将其沿对角线BD 折成四面体A ′﹣BCD ,使平面A ′BD ⊥平面BCD ,若四面体A ′﹣BCD 顶点在同一个球面上,则该球的表面积_____.【答案】3π【解析】【分析】根据BD ⊥CD ,BA ⊥AC ,BC 的中点就是球心,求出球的半径,即可得到球的表面积.【详解】因为平面A′BD ⊥平面BCD ,BD ⊥CD ,所以CD ⊥平面ABD ,∴CD ⊥BA ,又BA ⊥AD ,∴BA ⊥面ADC ,所以BA ⊥AC ,所以△BCD 和△ABC 都是直角三角形,由题意,四面体A ﹣BCD 顶点在同一个球面上,所以BC 的中点就是球心,所以BC =2所以球的表面积为:242π⋅=3π.故答案为:3π.【点睛】本题主要考查面面垂直的性质定理和球的外接问题,还考查空间想象和运算求解的能力,属于中档题.14.若一组样本数据12,,n x x x 的平均数为10,另一组样本数据1224,24,,24n x x x +++ 的方差为8,则两组样本数据合并为一组样本数据后的方差是__________.【答案】54【解析】【分析】计算出1n ii x =∑、21nii x=∑的值,再利用平均数和方差公式可求得合并后的新数据的方差.【详解】由题意可知,数据12,n x x x 的平均数为10,所以12)101(n x x x x n =+++= ,则110ni i x n ==∑,所以数据1224,24,,24n x x x +++ 的平均数为121(242424)210424n x x x x n'=++++++=⨯+= ,方差为()(()222221111444[24241010n n n i i i i i i s x x x x n n n n n ===⎤⎡⎤=+-+=-=-⨯⨯⎦⎣⎦∑∑∑2144008n i i x n ==-=∑,所以21102nii xn ==∑,将两组数据合并后,得到新数据1212,24,24,,24,n n x x x x x x +++ ,,则其平均数为11114)4)11113]4)[(2(3(222n i nn n i i i i i i i x x x x x n n n ====''=+=⨯+=⨯++∑∑∑∑()13104172=⨯⨯+=,方差为()()2222111111172417(586458)22n n n ni i i i i i i i s x x x x n n n ====⎡⎤=-++-=-+⎢⎥⎣⎦'∑∑∑∑1(51028610458)542n n n n=⨯-⨯+=.故答案为:54.四、解答题:本题共5个小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.袋中有形状、大小都相同的4个小球,标号分别为1,2,3,4.(1)从袋中一次随机摸出2个球,求标号和为奇数的概率;(2)从袋中每次摸出一球,有放回地摸两次.甲、乙约定:若摸出的两个球标号和为奇数,则甲胜,反之,则乙胜.你认为此游戏是否公平?说明你的理由.【答案】(1)23(2)是公平的,理由见解析【解析】【分析】(1)利用列举法写出样本空间及事件的样本点,结合古典概型的计算公式即可求解;(2)利用列举法写出样本空间及事件的样本点,结合古典概型的计算公式及概率进行比较即可求解.【小问1详解】试验的样本空间{(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)}Ω=,共6个样本点,设标号和为奇数为事件B ,则B 包含的样本点为(1,2),(1,4),(2,3),(3,4),共4个,所以42().63P B ==【小问2详解】试验的样本空间Ω{(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)}=,共有16个,设标号和为奇数为事件C ,事件C 包含的样本点为(1,2),(1,4),(2,1),(2,3),(3,2),(3,4),(4,1),(4,3),共8个,故所求概率为81()162P C ==,即甲胜的概率为12,则乙胜的概率为12,所以甲、乙获胜的概率是公平的.16.(1)请利用已经学过的方差公式:()2211ni i s x xn ==-∑来证明方差第二公式22211n i i s x x n ==-∑;(2)如果事件A 与B 相互独立,那么A 与B 相互独立吗?请给予证明.【答案】(1)证明见解析;(2)独立,证明见解析【解析】【分析】(1)根据题意,对方差公式恒等变形,分析可得结论;(2)根据相互独立事件的定义,只需证明()()()P AB P A P B =即可.【详解】(1)()()()()2222212111n i n i s x xx x x x x x n n =⎡⎤=-=-+-++-⎢⎥⎣⎦∑ ()()2222121212n n x x x x x x x nx n ⎡⎤=+++-+++⎢⎥⎣⎦ ()22221212n x x x x nx nx n ⎡⎤=+++-⨯+⎢⎥⎣⎦ ()222121n x x x nx n ⎡⎤=+++-⎢⎥⎣⎦ 2211n i i x x n ==-∑;(2)因为事件A 与B 相互独立,所以()()()P AB P A P B =,因为()()()P AB P AB P A +=,所以()()()()()()P AB P A P AB P A P A P B =-=-()()()()()1P A P B P A P B =-=,所以事件A 与B 相互独立.17.如图,四棱锥P ABCD -的侧面PAD 是边长为2的正三角形,底面ABCD 为矩形,且平面PAD ⊥平面ABCD ,M ,N 分别为AB ,AD 的中点,二面角D PN C --的正切值为2.(1)求四棱锥P ABCD -的体积;(2)证明:DM PC⊥(3)求直线PM 与平面PNC 所成角的正弦值.【答案】(1)3(2)证明见解析(3)35【解析】【分析】(1)先证明DNC ∠为二面角D PN C --的平面角,可得底面ABCD 为正方形,利用锥体的体积公式计算即可;(2)利用线面垂直的判定定理证明DM ⊥平面PNC ,即可证明DM PC ⊥;(3)由DM⊥平面PNC 可得MPO ∠为直线PM 与平面PNC 所成的角,计算其正弦值即可.【小问1详解】解:∵PAD △是边长为2的正三角形,N 为AD 中点,∴PN AD ^,PN =又∵平面PAD ⊥平面ABCD ,平面PAD ⋂平面ABCD AD =∴PN ^平面ABCD又NC ⊂平面ABCD ,∴PN NC ⊥∴DNC ∠为二面角D PN C --的平面角,∴tan 2DC DNC DN∠==又1DN =,∴2DC =∴底面ABCD 为正方形.∴四棱P ABCD -的体积12233V =⨯⨯=.【小问2详解】证明:由(1)知,PN ^平面ABCD ,DM ⊂平面ABCD ,∴PN DM⊥在正方形ABCD 中,易知DAM CDN ≌△△∴ADM DCN ∠=∠而90ADM MDC ∠+∠=︒,∴90DCN MDC ∠+∠=︒∴DM CN ⊥∵PN CN N = ,∴DM ⊥平面PNC∵PC ⊂平面PNC ,∴DM PC ⊥.【小问3详解】设DM CN O ⋂=,连接PO ,MN .∵DM⊥平面PNC .∴MPO ∠为直线PM 与平面PNC 所成的角∵2,1AD AM ==,∴DM =5DO ==∴55MO ==又MN =PM ==∴35sin 5MO MPO PM ∠===∴直线PM 与平面PNC 所成角的正弦值为35.18.某市根据居民的月用电量实行三档阶梯电价,为了深入了解该市第二档居民用户的用电情况,该市统计局用比例分配的分层随机抽样方法,从该市所辖A ,B ,C 三个区域的第二档居民用户中按2:2:1的比例分配抽取了100户后,统计其去年一年的月均用电量(单位:kW h ⋅),进行适当分组后(每组为左闭右开的区间),频率分布直方图如下图所示.(1)求m 的值;(2)若去年小明家的月均用电量为234kW h ⋅,小明估计自己家的月均用电量超出了该市第二档用户中85%的用户,请判断小明的估计是否正确?(3)通过进一步计算抽样的样本数据,得到A 区样本数据的均值为213,方差为24.2;B 区样本数据的均值为223,方差为12.3;C 区样本数据的均值为233,方差为38.5,试估计该市去年第二档居民用户月均用电量的方差.(需先推导总样本方差计算公式,再利用数据计算)【答案】(1)0.016m =(2)不正确(3)78.26【解析】【分析】(1)利用频率和为1列式即可得解;(2)求出85%分位数后判断即可;(3)利用方差公式推导总样本方差计算公式,从而得解.【小问1详解】根据频率和为1,可知()0.0090.0220.0250.028101m ++++⨯=,可得0.016m =.【小问2详解】由题意,需要确定月均用电量的85%分位数,因为()0.0280.0220.025100.75++⨯=,()0.0280.0220.0250.016100.91+++⨯=,所以85%分位数位于[)230,240内,从而85%分位数为0.850.7523010236.252340.910.75-+⨯=>-.所以小明的估计不正确.【小问3详解】由题意,A 区的样本数为1000.440⨯=,样本记为1x ,2x ,L ,40x ,平均数记为x ;B 区的样本数1000.440⨯=,样本记为1y ,2y ,L ,40y ,平均数记为y ;C 区样本数为1000.220⨯=,样本记为1z ,2z ,L ,20z ,平均数记为z .记抽取的样本均值为ω,0.42130.42230.2233221ω=⨯+⨯+⨯=.设该市第二档用户的月均用电量方差为2s ,则根据方差定义,总体样本方差为()()()40402022221111100i j k i i i s x y z ωωω===⎡⎤=-+-+-⎢⎥⎣⎦∑∑∑()()()4040202221111100i j k i i i x x x y y y z z z ωωω===⎡⎤=-+-+-+-+-+-⎢⎥⎣⎦∑∑∑因为()4010ii x x =-=∑,所以()()()()404011220iii i x x x x x x ωω==--=--=∑∑,同理()()()()404011220jji i yyy y yy ωω==--=--=∑∑,()()()()202011220kki i zz z z zz ωω==--=--=∑∑,因此()()()()4040404022222111111100100i j i i i i s x x x y y y ωω====⎡⎤⎡⎤=-+-+-+-⎢⎥⎢⎥⎣⎦⎣⎦∑∑∑∑()()202022111100k i i z z z ω==⎡⎤+-+-⎢⎥⎣⎦∑∑,代入数据得()()222114024.2402132214012.340223221100100s ⎡⎤⎡⎤⎣⎦⎦=⨯+⨯-+⨯-⎣+⨯()212038.32023322178.26100⎡⎤+⨯+⨯-=⎣⎦.19.在世界杯小组赛阶段,每个小组内的四支球队进行循环比赛,共打6场,每场比赛中,胜、平、负分别积3,1,0分.每个小组积分的前两名球队出线,进入淘汰赛.若出现积分相同的情况,则需要通过净胜球数等规则决出前两名,每个小组前两名球队出线,进入淘汰赛.假定积分相同的球队,通过净胜球数等规则出线的概率相同(例如:若B ,C ,D 三支积分相同的球队同时争夺第二名,则每个球队夺得第二名的概率相同).已知某小组内的A ,B ,C ,D 四支球队实力相当,且每支球队在每场比赛中胜、平、负的概率都是13,每场比赛的结果相互独立.(1)求A 球队在小组赛的3场比赛中只积3分的概率;(2)已知在已结束的小组赛的3场比赛中,A 球队胜2场,负1场,求A 球队最终小组出线的概率.【答案】(1)427(2)7981【解析】【分析】(1)分类讨论只积3分的可能情况,结合独立事件概率乘法公式运算求解;(2)由题意,若A 球队参与的3场比赛中胜2场,负1场,根据获胜的三队通过净胜球数等规则决出前两名,分情况讨论结合独立事件概率乘法公式运算求解.【小问1详解】A 球队在小组赛的3场比赛中只积3分,有两种情况.第一种情况:A 球队在3场比赛中都是平局,其概率为111133327⨯⨯=.第二种情况:A球队在3场比赛中胜1场,负2场,其概率为11113 3339⨯⨯⨯=.故所求概率为114 27927+=.【小问2详解】不妨假设A球队参与的3场比赛的结果为A与B比赛,B胜;A与C比赛,A胜;A与D比赛,A胜.此情况下,A积6分,B积3分,C,D各积0分.在剩下的3场比赛中:若C与D比赛平局,则C,D每队最多只能加4分,此时C,D的积分都低于A的积分,A可以出线;若B与C比赛平局,后面2场比赛的结果无论如何,都有两队的积分低于A,A可以出线;若B与D比赛平局,同理可得A可以出线.故当剩下的3场比赛中有平局时,A一定可以出线.若剩下的3场比赛中没有平局,则当B,C,D各赢1场比赛时,A可以出线.当B,C,D中有一支队伍胜2场时,若C胜2场,B胜1场,A,B,C争夺第一、二名,则A淘汰的概率为11111 333381⨯⨯⨯=;若D胜2场,B胜1场,A,B,D争夺第一、二名,则A淘汰的概率为11111 333381⨯⨯⨯=.其他情况A均可以出线.综上,A球队最终小组出线的概率为1179 1818181⎛⎫-+=⎪⎝⎭.【点睛】关键点点睛:解题的关键在于分类讨论获胜的三队通过净胜球数等规则决出前两名,讨论要恰当划分,做到不重不漏,从而即可顺利得解.。

福建省龙岩市武平县第一中学2020-2021学年高二上学期月考数学试题(解析版)

福建省龙岩市武平县第一中学2020-2021学年高二上学期月考数学试题(解析版)

公式可得所求事件的概率为 P B
A
P AB P A
.
【详解】记事件 A :甲获得冠军,事件 B :比赛进行三局,
事件 AB : 甲获得冠军,且比赛进行了三局,则第三局甲胜,前三局甲胜了两局,
由独立事件的概率乘法公式得
P
AB
C21
3 4
1 4
3 4
9 32

对于事件 A ,甲获得冠军,包含两种情况:前两局甲胜和事件 AB ,
5
3
4
不能破译出密码”发生的概率为 4 2 3 2 ,所以此密码被破译的概率为1 2 3 ,故 B 不正确;
534 5
55
对于 C,设“从甲袋中取到白球”为事件 A,则 P( A)
8
2
,设“从乙袋中取到白球”为事件 B,则
12 3
P(B) 6 1 ,故取到同色球的概率为 2 1 1 1 1 ,故 C 正确;
故选 A.
【点睛】本题考查了排列问题,不相邻一般采用插空法,同时要注意特殊优先原则.
3.
若二项式
x
2 x
n
的展开式中各项的系数和为
243,则该展开式中含
x
项的系数为(

A. 1
B. 5
C. 10
D. 20
【答案】C
【解析】
【分析】

x
2 xn Fra bibliotek令x
1
,结合展开式中各项的系数和为
243 列方程,由此求得
C62C
C2 2
42
A33

将三组书本分给甲、乙、丙三人的方法数: A33 ,
所以总的分法数为:
C62C24C22 A33

高二上学期2020级第一次月考数学试题(秋招理科)(带答案)

高二上学期2020级第一次月考数学试题(秋招理科)(带答案)

阆中中学2021年秋高2020级第一学月教学质量检测数学试题(理科)(总分:150分 时间:120分钟 命题教师:王小利)一、单项选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.直线30x +-=的倾斜角等于.6A π .3B π2.3C π 5.6D π 2. 已知三角形的三个顶点(5,0),(3,3),(0,2),A B C --则BC 边上的中线所在直线的方程为.5360A x y +-=.35150B x y -+= .1350C x y ++=.38150D x y ++=3. 直线01)12()1(=+---y a x a 恒过一定点,则此定点为.A )12(,- .B )10(, .C )21(, .D )12(,4. 已知三条直线280ax y ++=、4310x y +=和2100x y --=中没有任何两条平行,但它们不能构成三角形的三边,则实数a 的值为.A 1- .B 0.C 1.D 25. 已知方程222230x y x k +-++=表示圆,则k 的取值范围是.A (-∞,-1).B (3,+∞) .C (-∞,-1)∪(3,+∞).D (-32,+∞)6.点与圆上任一点连结的线段的中点的轨迹方程.A .B .C.D7. 若圆心在)23(,的圆与y 轴相切,则该圆与直线0243=-+y x 的位置关系是.A 相离.B 相切 .C 相交 .D 不确定8. 已知圆C :22((1x y +=和两点(,0),(,0),(0)A t B t t ->,若圆C 上存在点P ,使得090APB ∠=,则t 的最小值为.A 1 .B 2.C 3.D 4224x y +=()()22211x y -++=()()22214x y -++=()()22424x y ++-=()()22211x y ++-=9. 若点00(,)P x y 是直线l :0Ax By C ++=外一点,则方程00()0Ax By C Ax By C +++++=表示.A 过点P 且与l 平行的直线 .B 过点P 且与l 垂直的直线 .C 不过点P 且与l 平行的直线 .D 不过点P 且与l 垂直的直线10.设点(2,3)(3,2),A B -、若直线20ax y ++=与线段AB 没有交点,则a 的取值范围是.A )34()25(∞+--∞,, .B )2534(,-.C ]3425[,-.D )25()34(∞+--∞,, 11.已知圆1C :1)1()1(22=++-y x ,圆2C :9)5()4(22=-+-y x ,点M 、N 分别是圆1C 、圆2C 上的动点,P 为x 轴上的动点,则||||PM PN -的最大值是.A 252+.B 452+.C 7.D 912.过点)(y x P ,作圆1C :122=+y x与圆2C :1)2()2(22=-+-y x 的切线,切点分别为A 、B ,若=||PA ||PB ,则22y x +的最小值为.A 2.B 2.C 22.D 8二、填空题(本题共4小题,每小题5分,共20分)13.若直线(m +1)x -y -(m +5)=0与直线2x -my -6=0平行,则m =________. 14. 已知圆C 的圆心与点)12(,-P 关于直线1+=x y 对称,直线01143=-+y x 与圆C相交于A 、B 两点,且6||=AB ,则圆C 的方程为 .15.如图所示,P 为平行四边形ABCD 所在平面外一点,E 为AD 的中点,F 为PC上一点,若//PA 平面EBF ,则=FCPF.16.已知x ,y ()()22221293y x x y +-+-+______.三、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(10分)根据下列条件,求直线的方程:(1)求经过点)25(,-A ,且在x 轴上的截距等于在y 轴上截距的2倍的直线方程.(5分) (2)求过)12(,A ,)3(,m B 两点的直线l 的方程.(5分)18.(12分)(1)已知直线1:220l x y ++=,2:40mx y l n ++=,若12l l //,,求,m n 的值.(6分)(2)已知圆C ,圆心在直线2y x =上,且被直线0x y -=截得的弦长为求圆C 的方程。

山西省太原市第五中学2023-2024学年高二下学期5月月考数学试题(含解析)

山西省太原市第五中学2023-2024学年高二下学期5月月考数学试题(含解析)

太原五中2023—2024学年度第二学期月考高二数学时间:2024年5月一、单选题(本大题共8小题,每小题5分,共40.0分.在每小题列出的选项中,选出符合题目的一项)1.某城市新修建的一条道路上有12盏路灯,为了节省用电而又不能影响正常的照明,可以熄灭其中的4盏灯,但两端的灯不能熄灭,也不能熄灭相邻的两盏灯,则熄灯的方法有( )A.B.C.D.2.十进制计数法简单易懂,方便人们进行计算.也可以用其他进制表示数,如十进制下,,用七进制表示68这个数就是125,个位数为5,那么用七进制表示十进制的,其个位数是( )A.1B.2C.5D.63.五人相约到电影院观看电影《第二十条》,恰好买到了五张连号的电影票.若甲、乙两人必须坐在丙的同一侧,则不同的坐法种数为( )A.60B.80C.100D.1204.用5种不同颜色的粉笔写黑板报,板报设计如图所示,要求相邻区域不能用同一种颜色的粉笔,则该板报共有多少种不同的书写方案?()A.240B.480C.120D.2005.有一枚质地均匀点数为1到4的特制骰子,投掷时得到每种点数的概率均等,现在进行三次独立投掷,记X 为得到最大点数与最小点数之差,则X 的数学期望( )A.B. C. D.6.如图所示,已知一质点在外力的作用下,从原点出发,每次向左移动的概率为,向右移动的概率为.若该质点每次移动一个单位长度,设经过5次移动后,该质点位于的位置,则( )47C 48C 49C 49A 26817275=⨯+⨯+116()E X =21163274158O 2313X (0)P X >=A.B. C. D.7.身高各不同的六位同学、、、、、站成一排照相,说法不正确的是( )A.、、三位同学从左到右按照由高到矮的顺序站,共有120种站法B.与同学不相邻,共有种站法C.、、三位同学必须站在一起,且只能在与的中间,共144种站法D.不在排头,不在排尾,共有504种站法8.概率论起源于博弈游戏17世纪,曾有一个“赌金分配”的问题:博弈水平相当的甲、乙两人进行博弈游戏每局比赛都能分出胜负,没有平局.双方约定,各出赌金150枚金币,先赢3局者可获得全部赎金;但比赛中途因故终止了,此时甲赢了2局,乙赢了1局.向这300枚金币的赌金该如何分配?数学家费马和帕斯卡都用了现在称之为“概率”的知识,合理地给出了赌金分配方案.该分配方案是( )A.甲150枚,乙150枚B.甲225枚,乙75枚C.甲200枚,乙100枚D.甲240枚,乙60枚二、多选题(本大题共3小题,每小题6分,共18.0分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分)9.下列说法中,正确的是( )A.用简单随机抽样的方法从含有50个个体的总体中抽取一个容量为5的样本,则个体被抽到的概率是0.1B.一组数据的第75百分位数为17C.若样本数据的方差为8,则数据的方差为2D.将总体划分为2层,通过分层抽样,得到两层的样本平均数和样本方差分别为和,若,则总体方差10.某工厂生产的200个零件中,有198件合格品,2件不合格品,从这200个零件中任意抽出3件,则抽出的3个零件中()A.至多有1件不合格品的抽法种数为B.都是合格品的抽法种数为C.至少有1件不合格品的抽法种数为D.至少有1件不合格品的抽法种数为11.甲乙两人参加三局两胜制比赛(谁先赢满两局则获得最终胜利).已知在每局比赛中,甲赢的概率为0.6,乙赢的概率为0.4,且每局比赛的输赢相互独立.若用M 表示事件“甲最终获胜”,N 表示事件“比赛共进行了两局且有人获得了最终胜利”,Q 为“甲赢下第三局时获得了最终胜利”.则下列说法正确的有5024352243291781A B C D E F A C D A C 5424A A ⋅A C D A C D A B m 10,11,11,12,13,14,16,18,20,22121021,21,...,21x x x ++⋯+1210,,,x x x ⋯12,x x 2212,s s 12x x =()2221212s s s =+122198C C 3200C 122121982198C C C C +33200198C C -( )A. B. C.N 与Q 互斥 D.N 与Q 独立三、填空题(本题共3小题,每小题5分,共15.0分)12.某智能手机的开机密码是六位数字,现甲准备将六位数202403中的6个数字打乱顺序设为开机密码,若要求两个2不相邻,两个0相邻,则不同的开机密码总个数为___________.(答案用数字表示)13.已知多项式展开式中所有项的系数之和为32,则该展开式中的常数项为___________.14.中国空间站的主体结构包括天和核心舱、问天实验舱和梦天实验舱.假设空间站要安排甲、乙等6名航天员开展实验,三个实验舱每个至少一人至多三人,则不同的安排方法有___________种.四、解答题(本大题共5小题,共77.0分.解答应写出文字说明,证明过程或演算步骤)15.(本小题13.0分)某运动队为评估短跑运动员在接力赛中的作用,对运动员进行数据分析.运动员甲在接力赛中跑第一棒、第二棒、第三棒、第四棒四个位置,统计以往多场比赛,其出场率与出场时比赛获胜率如下表所示.比赛位置第一棒第二棒第三棒第四棒出场率0.30.20.2.0.3比赛胜率0.60.80.70.7(1)当甲出场比赛时,求该运动队获胜的概率.(2)当甲出场比赛时,在该运动队获胜的条件下,求甲跑第一棒的概率.16.(本小题15.0分)已知关于的二项式的二项式系数之和为32,其中.(1)若,求展开式中二项式系数最大的项;(2)若,求展开式中系数最大的项;(3)若展开式中含项系数为40,求展开式中所有有理项的系数之和.17.(本小题15.0分)某高校对参加军训的4000名学生进行射击、体能、伤病自救等项目的综合测试,现随机抽取200名军训学生,对其测试成绩(满分:100分)进行统计,得到样本频率分布直方图,如图.()913P M N =()1P N Q =12nx x ⎛⎫-+ ⎪⎝⎭x nx ⎛⎝0m >1m =2m =2x(1)根据频率分布直方图,求出的值并估计这200名学生测试成绩的平均数(单位:分).(2)现该高校为了激励学生,举行了一场军训比赛,共有三个比赛项目,依次为“10千米拉练”“实弹射击”“伤病救援”,规则如下:三个环节均参与,三个项目通过各奖励200元、300元、500元,不通过则不奖励.学生甲在每个环节中通过的概率依次为,,,假设学生甲在各环节中是否通过是相互独立的.记学生甲在这次比赛中累计所获奖励的金额为随机变量,求的分布列和数学期望.(3)若该高校军训学生的综合成绩近似服从正态分布,其中近似为样本平均数,规定军训成绩不低于98分的为“优秀标兵”,据此估计该高校军训学生中优秀标兵的人数(结果取整数).参考数据:若,则,,.18.(本小题17.0分)长跑可提高呼吸系统和心血管系统机能,较长时间有节奏的深长呼吸,能使人体呼吸大量的氧气,吸收氧气量若超过平时的7—8倍,就可以抑制人体癌细胞的生长和繁殖.其次长跑锻炼还改善了心肌供氧状态,加快了心肌代谢,同时还使心肌肌纤维变粗,心收缩力增强,从而提高了心脏工作能力.某学校对男、女学生是否喜欢长跑进行了调查,调查男、女生人数均为200,统计得到以下列联表:喜欢不喜欢合计男生12080200女生100100200合计220180400(1)试根据小概率值的独立性检验,能否认为学生对长跑的喜欢情况与性别有关联?(2)为弄清学生不喜欢长跑的原因,从调查的不喜欢长跑的学生中按性别采用分层抽样的方法随机抽取9人,再从这9人中抽取3人进行面对面交流,记随机变量X 表示抽到的3人中女生的人数,求X 的分布列以及数学期望;(3)将频率视为概率,用样本估计总体,从该校全体学生中随机抽取12人,记其中喜欢长跑的人数为Y ,求Y 的数学期望.附:,其中.0.1000.0500.0250.0100.0012.7063.8415.0246.63510.82819.(本小题17.0分)台州是全国三大电动车生产基地之一,拥有完整的产业链和突出的设计优势.某电动车公司为了抢占更多的a 231225ξξ()E ξX (),100N μμ()2,X Nμσ~()0.6827P X μσμσ-≤≤+≈()220.9545P X μσμσ-≤≤+≈()330.9973P X μσμσ-≤≤+≈22⨯0.050α=22()()()()()n ad bc a b c d a c b d χ-=++++n a b c d =+++αx α市场份额,计划加大广告投入、该公司近5年的年广告费(单位:百万元)和年销售量(单位:百万辆)关系如图所示:令,数据经过初步处理得:44 4.81040.3 1.61219.58.06现有①和②两种方案作为年销售量y 关于年广告费x 的回归分析模型,其中a ,b ,m ,n 均为常数.(1)请从相关系数的角度,分析哪一个模型拟合程度更好?(2)根据(1)的分析选取拟合程度更好的回归分析模型及表中数据,求出y 关于x 的回归方程,并预测年广告费为6(百万元)时,产品的年销售量是多少?(3)该公司生产的电动车毛利润为每辆200元(不含广告费、研发经费).该公司在加大广告投入的同时也加大研发经费的投入,年研发经费为年广告费的199倍.电动车的年净利润受年广告费和年研发经费影响外还受随机变量影响,设随机变量服从正态分布,且满足.在(2)的条件下,求该公司年净利润的最大值大于1000(百万元)的概率.(年净利润=毛利润×年销售量-年广告费-年研发经费-随机变量).附:①相关系数,回归直线中公式分别为,;②,,.i x i y ()ln 1,2,,5i i v x i ==⋅⋅⋅51ii y =∑51ii v =∑()521ii x x =-∑()521ii y y =-∑()521ii v v =-∑()()51iii x x y y =--∑()()51iii y y v v =--∑y bx a =+ln y n x m =+ξξ()2600,N σ()8000.3P ξ>=r =y abx =+ ()()()121ˆniii ni i x x y y b x x ==--=-∑∑ ay bx =- 8.06=20.1≈ln 5 1.6≈ln 6 1.8≈太原五中2023—2024学年度第二学期月考高二数学答案1.A【分析】从插空的角度考虑,有8盏灯亮着,4盏灯熄灭,4盏熄灭的灯不相邻插空且不能在两端.【详解】先将8盏灯排成一排,由于两端的灯不能熄灭,则有7个符合条件的空位,进而在7个空位中任取4个插入熄灭的4盏灯,则有种方法,故选:A.2.D【分析】由题意将题目转化成除以7的余数问题,用二项式知识求解即可.【详解】由题意知个位数应为除以的余数,因为,除以的余数为.故选:D.3.B【分析】先求得五人的全排列数,再由定序排列法代入计算,即可得到结果.【详解】由题意,五人全排列共有种不同的排法,其中甲乙丙三人全排列共有种不同的排法,其中甲乙在丙的同侧有:甲乙丙,乙甲丙,丙甲乙,丙乙甲共4种排法,所以甲、乙两人必须坐在丙的同一侧,则不同的坐法种数为.故选:B 4.A【分析】利用分步乘法计数原理与排列的知识即可得解.【详解】根据题意,“英语角”、“语文学苑”和“理综世界”两两相邻,有种方案,而“数学天地”只和“理综世界”相邻,只要和“理综世界”的颜色不同即可,故有4种方案,总共有种方法.故选:A 5.D【分析】由题意得的所有可能取值为,用古典概型算出相应的概率,进而即可求解.【详解】的所有可能取值为,记三次得到的数组成数组,满足的数组有:47C 1161167()()()()111101111111101011116717C 71C 711=-=+⋅⋅-+⋅⋅⋅+⋅⋅-+-7655A 120=33A 6=4120806⨯=35A 54360=⨯⨯=604240⨯=X 0,1,2,3X 0,1,2,3(),,a b c 0X =,共4个,所以,满足的数组有:,,共18个,所以,满足的数组有:,,,,共24个,所以,满足的数组有:,,,,,,共18个,所以,所以X 的数学期望.故选:D.6.D【分析】由题意当时,的可能取值为1,3,5,且,根据二项分布的概率公式计算即可求解.()()()()1,1,1,2,2,2,3,3,3,4,4,4()3410416P X ===1X =()()()()()()()()()1,1,2,1,2,1,2,1,1,2,2,3,2,3,2,3,2,2,3,3,4,3,4,3,4,3,3()()()()()()()()()2,2,1,2,1,2,1,2,2,3,3,2,3,2,3,2,3,3,4,4,3,4,3,4,3,4,4()31891432P X ===2X =()()()()()()1,1,3,1,3,1,3,1,1,2,2,4,2,4,2,4,2,2()()()()()()3,3,1,3,1,3,1,3,3,4,4,2,4,2,4,2,4,4()()()()()()1,2,3,1,3,2,2,1,3,2,3,1,3,1,2,3,2,1()()()()()()4,2,3,4,3,2,2,4,3,2,3,4,3,4,2,3,2,4()3243248P X ===3X =()()()1,2,4,1,3,4,1,4,4()()()1,4,1,1,4,2,1,4,3()()()1,1,4,2,1,4,3,1,4()()()4,1,1,4,2,1,4,3,1()()()4,1,2,4,1,3,4,1,4()()()2,4,1,3,4,1,4,4,1()31893432P X ===()193915012316328328E X =⨯+⨯+⨯+⨯=0X >X 2(5,3X B【详解】依题意,当时,的可能取值为1,3,5,且,所以.故选:D.7.C【分析】利用全排列和定序可判断A ;利用插空法可判断B ;利用捆绑法可判断C ;利用间接法可判断D.【详解】对于A ,6个人的全排列共有种方法,、、全排列有种方法,所以、、三位同学从左到右按照由高到矮的排列有种方法,故A 正确;对于B ,先排其余4个人,有种方法,4个人有5个空,利用插空法将、插入5个空中,有种方法,则共有种站法,故B 正确;对于C ,、、三位同学必须站在一起,且只能在与的中间的排法共有2种,将这3人捆绑在一起,与其余3人进行全排列,共有种方法,则共有种方法,故C 错误;对于D ,6个人全排列共有种方法,当在排头时,共有种方法,当在排尾时,共有种方法,当在排头且在排尾时,共有种方法,则不在排头,不在排尾的情况共有种方法,故D 正确,故选:C.8.B【分析】列举出若游戏继续进行到结束的所有情况,计算出甲乙各自胜出的概率,从而决定他们各自赌金的份额.【详解】由题可知,对单独每一局游戏,甲乙获胜的概率均为.0X >X 2(5,)3X B ()()()()0531P X P X P X P X >==+=+=5432125511212C C 33333⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭1781=66A A C D 33A A C D 6633A 120A =44A A C 25A 4245A A A C D A C D 44A 442A 48=66A A 55A B 55A A B 44A A B 654654A 2A A 504-+=12若游戏继续进行,最多再进行2局即可分出胜负:①第四局甲赢,比赛结束,甲胜出,概率为;②第四局乙赢,第五局甲赢,比赛结束,甲胜出,概率为;③第四局乙赢,第五局乙赢,比赛结束,乙胜出,概率为;则甲胜出的概率为+=,则甲应该分得赌金的,即300×=225枚,乙分得赌金75枚.故选:B.9.AC 【分析】根据简单随机抽样中每个个体被抽到的可能性是一样的,可判断A ;根据百分位数的求法可判断B ;根据一组数据加上或乘以同一个数后的平均数以及方差的性质可判断C ;根据分层抽样中的平均数以及方差的性质,可判断D.【详解】选项A :由题意知个体被抽到的概率为,故A 正确;选项B :数据从小到大排列为:,由于,找第8个数据18,即第75百分位数为18,故B 错误;选项C :设数据的平均数为,方差为,则数据的平均数为,方差为,12111224⨯=111224⨯=1214343434m 50.150=10,11,11,12,13,14,16,18,20,221075%7.5⨯=1210,,,x x x ⋯121010x x x x +++=()()()22221210110s x x x x x x ⎡⎤=-+-++-⎣⎦ 121021,21,,21x x x ++⋯⋯+()()()()12101210212121210211010x x x x x x x x ++++++++++===+ 222211210121212110s x x x x x x ⎡⎤⎛⎫⎛⎫⎛⎫''=+-++-+++-⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦()()()()()()22222212101210142222221010x x x x x x x x x x x x ⎡⎤⎡⎤=-+-++-=-+-++-⎢⎥⎢⎥⎣⎦⎣⎦ 248s ==所以,故C 正确;选项D :设第一层数据为,第二层数据为,则,所以,,总体平均数,总体方差因为,则,所以,,故D 错误.故选:AC.10.CD【分析】对于A :分只有1件不合格品,没有不合格品两种情况解答;对于B :都是合格品相当于从198件合格品抽取3件合格品;对于C :分只有1件不合格品,有2件不合格品两种情况解答;对于D :利用间接法从反面解答.【详解】对于A :至多有1件不合格品分两种,一种是只有1件不合格品,一种是没有不合格品,故抽法种数为,A 错误;对于B :都是合格品的抽法种数为,B 错误;对于C :至少有1件不合格品分两种,一种是只有1件不合格品,一种是有2件不合格品,故抽法种数为,C 正确;对于D :至少有1件不合格品的抽法种数为,D 正确.故选:CD.22s =12,,,n x x x ⋯12,,,m y y y ⋯211122,n mx x x y y y x n x m++++++== 112212,n n x x x n x y y y m x +++=⋅+++=⋅ ()()()()()()2111222222221121222211,n m s x x x x x x s y x y x y x n m ⎡⎤⎡⎤=-+-++-=-+-++-⎢⎥⎢⎥⎣⎦⎣⎦11n mx x y y x n m+++++=+ ()()()()22222111n m s x x x x y x y x n m ⎡⎤=-++-+-++-⎢⎥⎣⎦+ 12x x =()111n m x x y y n m x +++++=+⋅ ()11112n m n m x x x y y x x x n m n m++++++====++ ()()()()222221122111n m s x x x x y x y x n m ⎡⎤=-++-+-++-⎢⎥⎣⎦+ 22121ns ms n m⎡⎤=+⎣⎦+1219818329C C C +3198C 122121982198C C C C +33200198C C -11.ABC【分析】对于AB :用条件概率计算;对于C :利用互斥的概念来判断;对于D :利用相互独立的条件来判断.【详解】对于A :,则,A 正确;对于B :,则,B 正确;对于C :N 与Q 不可能同时发生,故N 与Q 互斥,C 正确;对于D :,,,故,故D 错误.故选:ABC.12.【分析】将两个0捆绑,与3,4混排,再将两个2插入,即可求得开机密码总个数,得到答案.【详解】由题意,将两个0捆绑,视为1个元素,再与3,4混排,有种不同的排法,再将两个2插入,有种排法,所以不同的开机密码总个数为.故答案为:.13.【分析】先用展开式中所有项的系数之和为32求出,再将化为进行求解.【详解】由题意可得,解得,则,故该展开式中的常数项为.故答案为:14.450【分析】依据分类加法计数原理和平均及不平均分组问题处理方法求解即可.【详解】若6名航天员三个实验舱,三个实验舱每个至少一人至多三人,若每组人数分别为,共有种,()()2220.60.36,0.60.40.52P MN P N ===+=()()()0.3690.5213P MN P M N P N ===()()1122C 0.60.40.6,C 0.60.40.6P NQ P Q =⨯⨯⨯=⨯⨯⨯()()()1P NQ P N Q P Q ==()0.52P N =()12C 0.60.40.6P Q =⨯⨯⨯()0P NQ =()()()P N P Q P NQ ≠3633A 24C 3234A C N =36=3668-5n =12n x x ⎛⎫-+ ⎪⎝⎭512x x ⎡⎤⎛⎫-+ ⎪⎢⎥⎝⎭⎣⎦232n =5n =5540155555111122C 2C 2C n x x x x x x x x ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-+=-+=-+-+⋅⋅⋅+ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦()1233155545252C C 2C C 12C 68+⋅-+=-68-1,2,312336533C C C A 360⋅=若每组人数分别为,共有种,综上所有不同的安排方法共有.故答案为:45015.(1)(2)【分析】(1)根据全概率公式即可得出答案.(2)根据条件概率的计算公式即可求解.【详解】(1)记“甲跑第一棒”为事件,“甲跑第二棒”为事件,“甲跑第三棒”为事件,“甲跑第四棒”为事件,“运动队获胜”为事件,则,所以当甲出场比赛时,求该运动队获胜的概率为;(2),所以当甲出场比赛时,在该运动队获胜的条件下,甲跑第一棒的概率为.16.(1)和(2)和(3)12117.(1),(2)分布列见解析,(3)人【分析】(1)借助概率和为可得,借助平均数定义可得平均数;(2)得出的所有可能取值及其对应概率,即可得分布列,借助期望定义即可得其期望;(3)借助正态分布的性质可得军训成绩不低于98分的概率,即可估计该高校军训学生中优秀标兵的人数.【详解】(1)有图可得,解得,;2,2,22223642333C C C A 90A ⋅=36090450+=0.696231A 2A 3A 4A B ()()()()()()()()()11223344P B P A P B A P A P B A P A P B A P A P B A =+++0.30.60.20.80.20.70.30.70.69=⨯+⨯+⨯+⨯=0.69()()()()()()11110.30.660.6923P A P B A P A B P A B P B P B ⨯====623210x 180x -0.015a =78x =()14503E ξ=911a ξ()100.0100.0250.0351a a ++++=0.015a =()0.010550.015650.025750.035850.015951078x =⨯+⨯+⨯+⨯+⨯⨯=(2)的可能取值为、、、、、、,,,,,,,,则其分布列为:;(3),,则,又,故,,故可估计该高校军训学生中优秀标兵的人数为人.18.(1)可以认为学生对长跑的喜欢情况与性别有关联.(2)分布列见解析,(3)ξ02003005007008001000()2121111325001P ξ⎛⎫⎛⎫⎛⎫=---= ⎪⎪⎪⎝⎭⎝⎭⎝⎭=()2121113255200P ξ⎛⎫⎛⎫=⋅--= ⎪⎪⎝⎭⎝⎭=()21211132500013P ξ⎛⎫⎛⎫=-⨯⨯-= ⎪ ⎪⎝⎭⎝⎭=()212212411132505325105P ξ⎛⎫⎛⎫⎛⎫=--⨯+⨯⨯-= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭=()2122132515700P ξ⎛⎫=⨯-⨯= =⎪⎝⎭()2121138002515P ξ⎛⎫=-⨯⨯= ⎪⎝⎭=()2122325151000P ξ=⨯⨯==ξ02003005007008001000P 11015110415215115215()111421214500200300500700800100010510151515153E ξ=⨯+⨯+⨯+⨯+⨯+⨯+⨯=78x μ==10σ==()()982P X P X μσ≥=≥+()220.9545P X μσμσ-≤≤+≈()10.9545980.022752P X -≥≈=40000.0227591⨯=9153335【分析】(1)根据列联表中的数据,求得,结合附表,即可求解;(2)求得男生的人数为人,女生的人数为人,根据题意,得到的可能取值为,求得相应的概率,列出分布列;(2)根据题意,求得任抽1人喜欢长跑的概率为,结合服从二项分布,即可求解.【详解】(1)解:零假设学生对长跑的喜欢情况与性别无关联,根据题意,由列联表中的数据,可得,所以在的独立性检验中,可以推断不成立,即认为学生对长跑的喜欢情况与性别有关联.(2)从调查的不喜欢长跑的学生中按性别采用分层抽样的方法随机抽取9人,其中男生的人数为人,女生的人数为人,从9人中随机抽取3人,所以随机变量的可能取值为,可得,,则随机变量的分布列为:0123(3)解:由题意知,任抽1人喜欢长跑的概率为,所以随机变量服从二项分布,即,所以.22⨯240099χ=45X 0,1,2,31120p =Y 0:H 22⨯22400(12010080100)400 4.040 3.84120020022018099χ⨯⨯-⨯==≈>⨯⨯⨯0.050α=0H 809480100⨯=+1009580100⨯=+X 0,1,2,32134543399C C C 15(0),(0)C 21C 14P X P X ======1234553399C C C 105(2),(3)C 21C 42P X P X ======X XP 12151410215425()3E X =1120p =Y 11(12,)20Y B ()113312205E Y =⨯=19.(1)模型②的拟合程度更好(2),当年广告费为6(百万元)时,产品的销售量大概是13(百万辆)(3)0.3【分析】(1)分别求得模型①和②的相关系数,,然后比较得出结论;(2)利用最小二乘法求解;(3)由净利润为,求解.【详解】(1)解:设模型①和②的相关系数分别为,.由题意可得:,.所以,由相关系数的相关性质可得,模型②的拟合程度更好.(2)因为,又由,,得,所以,即回归方程为.当时,,因此当年广告费为6(百万元)时,产品的销售量大概是13(百万辆).(3)净利润为,,令,所以.5ln 4y x =+1r 2r ()2005ln 4200x x ξ⨯+--()0x >1r 2r 5119.50.9720.1x y r ===≈528.0618.06y v r ====12r r < ()()()1218.0651.612i s i i sii v v y y n v v ==--===-∑∑5110.965i i v v ===∑5118.85i i y y ===∑58.80.9654m y v =-=-⨯=54y v =+5ln 4y x =+6x =5ln 6413y =+≈()2005ln 4200x x ξ⨯+--()0x >()()2005ln 4200g x x x ξ=⨯+--()1000200g x x'=-可得在上为增函数,在上为减函数.所以,由题意得:,即,,即该公司年净利润大于1000(百万元)的概率为0.3.()y g x =()0,5()5,+∞()()()max 52005ln 5451400g x g ξξ==⨯+--≈-14001000ξ->400ξ<()()4008000.3P P ξξ<=>=。

高二数学上学期10月月考试卷 理含解析 试题

高二数学上学期10月月考试卷 理含解析 试题

第一中学2021-2021学年高二数学上学期10月月考试卷理〔含解析〕创作单位:*XXX创作时间:2022年4月12日创作编者:聂明景〔考试时间是是:120分钟满分是:150分〕第一卷〔选择题一共60分〕一、选择题〔此题一共12个小题,每一小题5分,一共60分,在每一小题给出的四个选项里面只有一个是符合题目要求的〕∥平面,,那么直线与的位置关系是( )A. 平行或者异面B. 相交C. 异面D. 平行【答案】A【解析】【分析】利用平面∥平面,可得平面与平面没有公一共点,根据,可得直线,没有公一共点,即可得到结论.【详解】∵平面平面,∴平面与平面没有公一共点∵,,∴直线,没有公一共点∴直线,的位置关系是平行或者异面,应选A.【点睛】此题考察面面、线线、线面的位置关系,考察学生分析解决问题的才能以及空间想象力,属于根底题.和的直线与直线平行,那么实数的值是( )A. B. C. D.【答案】B【解析】试题分析:两直线平行斜率相等,的斜率为-2,直线的斜率为,解方程得.考点:直线平行.的边长为,是程度放置的一个平面图形的直观图,那么原图的面积为( )A. B. C. D.【答案】C【解析】【分析】根据斜二测画法的规那么可复原出原来的图形,得原图为一个底为1,高为的平行四边形,求出它的面积即可.【详解】如下图,由斜二测画法的规那么知与轴平行的线段其长度不变与横轴平行的性质不变,正方形的对角线在轴上,可求得其长度为,故在平面图中其在轴上,且其长度变为原来的2倍长度为,其原来的图形是平行四边形,所以它的面积是,应选C.【点睛】此题考察了斜二测画法的规那么与应用问题,解题时应复原出原来的图形,是根底题.斜二测画法画平面图形直观图的步骤:〔1〕在图形中取互相垂直的轴和轴,两轴相交于点,画直观图时,把它画成对应的轴、轴,使〔或者〕,它确定的平面表示程度平面;〔2〕图形中平行于轴或者轴的线段,在直观图中分别画成平行于或者轴的线段;〔3〕图形中平行于轴的线段,在直观图中保持原长度不变;平行于轴的线段,长度为原来的一半.的倾斜角的取值范围是( )A. B.C. D.【答案】B【解析】【分析】根据题意,求出直线的斜率,分析可得,由直线的倾斜角与斜率的关系,计算可得答案.【详解】根据题意,直线变形为,其斜率,那么有,由正切函数的性质可得倾斜角的范围为;应选B.【点睛】此题考察直线的倾斜角,关键是掌握直线的斜率与倾斜角的关系以及正切函数的性质,属于根底题.5.且关于的方程有两相等实根,那么向量与的夹角是( )A. -B.-C.D.【答案】D【解析】【分析】根据关于的方程有两个相等的实根便可得到,而由,便可得到,从而便可得出与夹角的大小.【详解】方程有两个相等的实根,∴,∵,∴,∴,∴与的夹角为,应选D.【点睛】考察一元二次方程实根的情况和判别式取值的关系,以及向量数量积的计算公式,向量夹角的范围,三角函数值求角.,母线,互相垂直,与圆锥底面所成角为.假设的面积为,那么该圆锥的体积为( )A. B. C. D.【答案】A【解析】【分析】利用条件求出母线长度,然后求解底面半径为,以及圆锥的高为2,然后求解体积即可.【详解】圆锥的顶点为,母线,互相垂直,的面积为8,可得,解得,与圆锥底面所成角为,可得圆锥的底面半径为,圆锥的高为2,那么该圆锥的体积为,应选A.【点睛】此题考察圆锥的体积的求法,母线以及底面所成角的应用,考察转化思想以及计算才能,属于根底题.7.某四棱锥的三视图如下图,在此四棱锥的侧面中,直角三角形的个数为A. 1B. 2C. 3D. 4【答案】C【解析】分析:根据三视图复原几何体,利用勾股定理求出棱长,再利用勾股定理逆定理判断直角三角形的个数.详解:由三视图可得四棱锥,在四棱锥中,,由勾股定理可知:,那么在四棱锥中,直角三角形有:一共三个,应选C.点睛:此题考察三视图相关知识,解题时可将简单几何体放在正方体或者长方体中进展复原,分析线面、线线垂直关系,利用勾股定理求出每条棱长,进而可进展棱长、外表积、体积等相关问题的求解.满足约束条件,求的取值范围( )A. B.C. D.【答案】D【解析】【分析】作出不等式组对应的平面区域,ω=的几何意义为动点〔x,y〕到点〔﹣1,1〕的斜率,利用数形结合即可得到结论.【详解】由不等式组作出可行域如图,ω=的几何意义为动点P〔x,y〕到点D〔﹣1,1〕的斜率,由图象可知当P位于点C〔4,2〕时,CD的斜率最大,此时ω===,由图象可知当P位于点A〔1,-1〕斜率最小.此时ω===-1,应选:D【点睛】此题主要考察线性规划的根本应用,利用目的函数的几何意义以及斜率公式ω=是解决问题的关键,利用数形结合是解决问题的根本方法.9.把三个半径都是1的球放在桌面上,使它两两外切,然后在它们上面放上第四个球,使它与下边的三个都相切,那么第四个球的最高点与桌面的间隔为〔〕A. B. C. D. 4【答案】C【解析】【分析】先求四个球心连线是正三棱锥的高,而第四个球的最高点与桌面的间隔即为高加上两个半径,从而求出所求.【详解】四个球心连线是正三棱锥.棱长均为2.∴ED=,OD=ED=,∴AO==∴第四个球的最高点与桌面的间隔为OA加上两个半径即+2.应选:C.【点睛】此题主要考察了由4个一样球外切时的球心连线构成一个正四面体,顶点到底面的间隔,同时考察了转化与划归的思想,以及计算才能,属于中档题.10.两个一样的正四棱锥组成如下图的几何体,可放在棱长为1的正方体内,各顶点均在正方体的面上,且正四棱锥的底面与正方体的某一面平行,那么该几何体体积不可能的值是( )A. B. C. D.【答案】A【解析】【分析】正四棱锥的底面是正方形ABCD,过ABCD的平面与正方体的某一个平面平行的截面也是正方形,当ABCD在截面内转动时,会有无数个正方形,所以几何体有无数个.【详解】如下图:显然两个正四棱锥的高均为,考察放入正方体后,面ABCD所在的截面,显然其面积是不固定的,取值范围是:[,1〕,所以该几何体的体积取值范围是:[,].应选:A.【点睛】正方体是大家熟悉的几何体,它的一些内接图形需要一定的空间想象才能,要学会将空间问题向平面问题转化,考察空间想象才能,此题主要考察学生能否迅速构出一些常见的几何模型,并不是以计算为主.11.如图,在正方体中,假设是线段上的动点,那么以下结论不正确的选项是( )A. 三棱锥的正视图面积是定值B. 异面直线,所成的角可为C. 异面直线,所成的角为D. 直线与平面所成的角可为【答案】D【解析】【分析】判断主视图的底与高是否发生变化来判断,利用几何法以及建立空间坐标系将线线角以及线面角的关系转化为向量的关系来判断,和.【详解】对于,三棱锥的主视图为三角形,底边为的长,高为正方体的高,故棱锥的主视图面积不变,故正确;对于,分别以,,为坐标轴,以为原点建立空间直角坐标系,设正方体边长为1,,,,,∴,,∴,当时,方程有解,∴异面直线,所成的角可为,故B正确.对于,连结,,,那么,∵,∴,又∵,于是平面,∵平面,∴,故C正确;对于,结合B中的坐标系,可得面的法向量为,,所以,令,方程无解,即直线与平面所成的角可为是错误的,应选D.【点睛】此题考察了棱锥的三视图,异面直线所成的角,线面角,使用向量法可快速计算空间角的问题,异面直线所的角与两直线的方向向量所成的角相等或者互补,主要通过异面直线角的范围来确定的,直线与平面所成的角满足,属于常规题.中,过其中心作边的平行线,分别交,与,,将沿折起到的位置,使点在平面上的射影恰是线段的中点,那么二面角的平面角的大小是( )A. B. C. D.【答案】C【解析】【分析】连接A1G,MG,由G为三角形ABC的中心可得B1C1⊥A1G,GM⊥B1C1,故而∠A1GM为二面角A1﹣B1C1﹣M的平面角,在Rt△A1GM中,根据A1G和GM的数量关系得出∠A1GM.【详解】连接A1G,MG,∵G是正三角形ABC的中心,B1C1∥BC,∴B1C1⊥A1G,GM⊥B1C1,∴∠A1GM为二面角A1﹣B1C1﹣M的平面角,∵G是正三角形ABC的中心,∴A1G=2GM,又A1M⊥平面BB1C1C,∴cos∠A1GM==,∴∠A1GM=.应选:C.【点睛】此题考察了利用二面角的定义来求二面角的平面角是关键,在直角三角形中有数量关系的计算,求出二面角的平面角,属于中档题.第二卷〔非选择题一共90分〕二、填空题〔此题一共4个小题,每一小题5分,一共20分,把正确答案填在题中横线上〕,那么直线在轴上的截距为_________.【答案】【解析】【分析】直线l:3x﹣2y-2=0中,令x=0,求出的y的值是直线l在y轴上的截距.【详解】∵直线l的方程为3x﹣2y-2=0,∴当x=0时,解得y=-1,∴直线l在y轴上的截距是-1.故答案为:﹣1.【点睛】此题考察直线方程的纵截距的求法,是根底题,令x=0,求出的y的值是直线l 在y轴上的截距.中,,,那么异面直线与所成角的余弦值为_________.【答案】【解析】分析:以为坐标原点,为轴,为轴,为轴建立空间坐标系,求出,利用空间向量夹角余弦公式可得结果.详解:如图,为坐标原点,为轴,为轴,为轴建立空间坐标系,,,,设异面直线与成角为,,故答案为.点睛:此题主要考察异面直线所成的角立体几何解题的“补型法〞,属于难题.求异面直线所成的角主要方法有两种:一是向量法,根据几何体的特殊性质建立空间直角坐标系后,分别求出两直线的方向向量,再利用空间向量夹角的余弦公式求解;二是传统法,利用平行四边形、三角形中位线等方法找出两直线成的角,再利用平面几何性质求解.15.如下图,是一个正方体的外表展开图,假设把它再折回成正方体后,有以下命题:①点与点重合;②与垂直;③与所成角度是;④与平行.其中正确命题的序号是_________.〔注:把你认为正确的命题的序号都填上〕【答案】①④【解析】【分析】把展开图,折叠为正方体如图,即可得到正确选项.【详解】把展开图,折叠为正方体如图,①正确②AE与BF成60③与所成角度是60④正确;故答案为:①④【点睛】此题是根底题,考察几何体的折叠与展开,注意折叠前后,字母随平面而动.16.如图,在三棱锥中,、、两两垂直, 且.设是底面内一点,定义,其中、、,且恒成立,那么正实数的最小值为___ ___.【答案】1【解析】试题分析:∵PA、PB、PC两两垂直,且PA=3.PB=2,PC=1.,即,解得,所以正实数a的最小值为1。

高二数学上学期月考试卷(含解析)-人教版高二全册数学试题

高二数学上学期月考试卷(含解析)-人教版高二全册数学试题

市鲁迅中学2014-2015学年高二上学期月考数学试卷一、选择题:本大题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合要求的.1.(4分)点A(﹣1,5),B(3,﹣3)的中点坐标为()A.(1,﹣1)B.(1,1)C.(2,﹣4)D.(﹣2,1)2.(4分)点(1,﹣1)到直线x﹣y+1=0的距离是()A.B.C.D.3.(4分)已知过点A(﹣2,m)和B(m,4)的直线与直线2x+y﹣1=0平行,则m的值为()A.0 B.﹣8 C.2 D.104.(4分)两直线3x+y﹣3=0与6x+my+1=0平行,则它们之间的距离为()A.4 B.C.D.5.(4分)在同一直角坐标系中,表示直线y=ax与y=x+a正确的是()A.B. C. D.6.(4分)以点(2,﹣1)为圆心且与直线3x﹣4y+5=0相切的圆的方程为()A.(x﹣2)2+(y+1)2=3 B.(x+2)2+(y﹣1)2=3 C.(x﹣2)2+(y+1)2=9 D.(x+2)2+(y﹣1)2=37.(4分)圆x2+y2﹣2x=3与直线y=ax+1的交点的个数是()A.0个B.1个C.2个D.随a值变化而变化8.(4分)直线y=kx+3与圆(x﹣3)2+(y﹣2)2=4相交于M,N两点,若|MN|≥2,则k 的取值X围是()A.[﹣,0] B.C.[﹣] D.[﹣,0]二、填空题(共6小题,每小题4分,满分24分)9.(4分)直线x+y+1=0的倾斜角的大小为.10.(4分)圆x2+y2﹣4x=0在点P(1,)处的切线方程为.11.(4分)经过两条直线3x+4y﹣5=0和3x﹣4y﹣13=0的交点,且斜率为2的直线方程是.12.(4分)从原点向圆x2+y2﹣12y+27=0作两条切线,则这两条切线的夹角的大小为.13.(4分)已知点A(1,﹣1),点B(3,5),点P是直线y=x上动点,当|PA|+|PB|的值最小时,点P的坐标是.14.(4分)集合A={(x,y)|x2+y2=4},B={(x,y)|(x﹣3)2+(y﹣4)2=r2},其中r>0,若A∩B中有且仅有一个元素,则r的值是.三、解答题,本大题共4小题,共44分,解答应写出文字说明,证明过程或演算步骤.15.(12分)已知两条直线l1:2x﹣y+1=0,l2:ax+y+2=0,点P(3,1).(Ⅰ)直线l过点P,且与直线l1垂直,求直线l的方程;(Ⅱ)若直线l1与直线l2平行,求a的值;(Ⅲ)点P到直线l2距离为3,求a的值.16.(10分)已知圆M的圆心为(5,0),且经过点(3,),过坐标原点作圆M的切线l.(1)求圆M的方程;(2)求直线l的方程.17.(10分)已知圆x2+y2+x﹣6y+m=0和直线x+2y﹣3=0交于P、Q两点,且OP⊥OQ(O为坐标原点),求该圆的圆心坐标及半径.18.(12分)已知半径为5的圆的圆心在x轴上,圆心的横坐标是整数,且与直线4x+3y﹣29=0相切.求:(Ⅰ)求圆的方程;(Ⅱ)设直线ax﹣y+5=0与圆相交于A,B两点,某某数a的取值X围;(Ⅲ)在(2)的条件下,是否存在实数a,使得过点P(﹣2,4)的直线l垂直平分弦AB?若存在,求出实数a的值;若不存在,请说明理由.市鲁迅中学2014-2015学年高二上学期月考数学试卷参考答案与试题解析一、选择题:本大题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合要求的.1.(4分)点A(﹣1,5),B(3,﹣3)的中点坐标为()A.(1,﹣1)B.(1,1)C.(2,﹣4)D.(﹣2,1)考点:中点坐标公式.专题:直线与圆.分析:利用中点坐标公式即可得出.解答:解:∵点A(﹣1,5),B(3,﹣3),∴线段AB的中点坐标为,即为(1,1).故选:B.点评:本题考查了中点坐标公式,属于基础题.2.(4分)点(1,﹣1)到直线x﹣y+1=0的距离是()A.B.C.D.考点:点到直线的距离公式.专题:计算题.分析:应用到直线的距离公式直接求解即可.解答:解:点(1,﹣1)到直线x﹣y+1=0的距离是:=故选D.点评:本题考查点到直线的距离公式,是基础题.3.(4分)已知过点A(﹣2,m)和B(m,4)的直线与直线2x+y﹣1=0平行,则m的值为()A.0 B.﹣8 C.2 D.10考点:斜率的计算公式.专题:计算题.分析:因为过点A(﹣2,m)和B(m,4)的直线与直线2x+y﹣1=0平行,所以,两直线的斜率相等.解答:解:∵直线2x+y﹣1=0的斜率等于﹣2,∴过点A(﹣2,m)和B(m,4)的直线的斜率K也是﹣2,∴=﹣2,解得,故选 B.点评:本题考查两斜率存在的直线平行的条件是斜率相等,以及斜率公式的应用.4.(4分)两直线3x+y﹣3=0与6x+my+1=0平行,则它们之间的距离为()A.4 B.C.D.考点:两条平行直线间的距离.专题:计算题;直线与圆.分析:根据两条直线平行的条件,建立关于m的等式解出m=2.再将两条直线化成x、y 的系数相同,利用两条平行直线间的距离公式加以计算,可得答案.解答:解:∵直线3x+y﹣3=0与6x+my+1=0平行,∴,解得m=2.因此,两条直线分别为3x+y﹣3=0与6x+2y+1=0,即6x+2y﹣6=0与6x+2y+1=0.∴两条直线之间的距离为d===.故选:D点评:本题已知两条直线互相平行,求参数m的值并求两条直线的距离.着重考查了直线的位置关系、平行线之间的距离公式等知识,属于基础题.5.(4分)在同一直角坐标系中,表示直线y=ax与y=x+a正确的是()A.B. C. D.考点:确定直线位置的几何要素.专题:数形结合.分析:本题是一个选择题,按照选择题的解法来做题,由y=x+a得斜率为1排除B、D,由y=ax与y=x+a中a同号知若y=ax递增,则y=x+a与y轴的交点在y轴的正半轴上;若y=ax递减,则y=x+a与y轴的交点在y轴的负半轴上,得到结果.解答:解:由y=x+a得斜率为1排除B、D,由y=ax与y=x+a中a同号知若y=ax递增,则y=x+a与y轴的交点在y轴的正半轴上;若y=ax递减,则y=x+a与y轴的交点在y轴的负半轴上;故选C.点评:本题考查确定直线为主的几何要素,考查斜率和截距对于一条直线的影响,是一个基础题,这种题目也可以出现在直线与圆锥曲线之间的图形的确定.6.(4分)以点(2,﹣1)为圆心且与直线3x﹣4y+5=0相切的圆的方程为()A.(x﹣2)2+(y+1)2=3 B.(x+2)2+(y﹣1)2=3 C.(x﹣2)2+(y+1)2=9 D.(x+2)2+(y﹣1)2=3考点:直线与圆的位置关系.分析:求出半径即可求得圆的方程.解答:解:r==3,所求圆的方程为(x﹣2)2+(y+1)2=9故选C.点评:本题考查直线与圆的位置关系,求圆的方程,是基础题.7.(4分)圆x2+y2﹣2x=3与直线y=ax+1的交点的个数是()A.0个B.1个C.2个D.随a值变化而变化考点:直线与圆相交的性质.专题:计算题;转化思想.分析:把圆的方程整理成标准方程,求得圆心和半径,进而利用点到直线的距离求得圆心到直线的距离的表达式,利用不等式的性质可比较出<2,进而推断出直线与圆相交,故可知交点为2个.解答:解:整理圆的方程为(x﹣1)2+y2=4,圆心为(1,0),半径为2,圆心到直线的距离为()2﹣4=,对于y=3a2﹣2a+3,△=4﹣36<0∴3a2﹣2a+3>0,∴()2﹣4<0∴()2<4即<2∴直线与圆相交,即交点有2个.故选C点评:本题主要考查了直线与圆相交的性质.判断直线与圆的位置关系时,一般是看圆心到直线的距离与半径的大小的比较.8.(4分)直线y=kx+3与圆(x﹣3)2+(y﹣2)2=4相交于M,N两点,若|MN|≥2,则k 的取值X围是()A.[﹣,0] B.C.[﹣] D.[﹣,0]考点:直线与圆的位置关系;点到直线的距离公式;直线和圆的方程的应用.专题:压轴题.分析:先求圆心坐标和半径,求出最大弦心距,利用圆心到直线的距离不大于最大弦心距,求出k的X围.解答:解:解法1:圆心的坐标为(3,2),且圆与x轴相切.当,弦心距最大,由点到直线距离公式得解得k∈;故选A.解法2:数形结合,如图由垂径定理得夹在两直线之间即可,不取+∞,排除B,考虑区间不对称,排除C,利用斜率估值,故选A.点评:考查直线与圆的位置关系、点到直线距离公式,重点考查数形结合的运用.解法2是一种间接解法,选择题中常用.二、填空题(共6小题,每小题4分,满分24分)9.(4分)直线x+y+1=0的倾斜角的大小为.考点:直线的倾斜角.专题:直线与圆.分析:化直线的一般式方程为斜截式,求出直线的斜率,由倾斜角的正切值等于斜率求倾斜角.解答:解:由x+y+1=0,得,∴直线x+y+1=0的斜率为,设其倾斜角为θ(0≤θ<π),则,∴θ=.故答案为:.点评:本题考查直线的倾斜角,考查直线倾斜角与斜率的关系,是基础题.10.(4分)圆x2+y2﹣4x=0在点P(1,)处的切线方程为x﹣y+2=0.考点:圆的切线方程.专题:计算题.分析:求出圆的圆心坐标,求出切点与圆心连线的斜率,然后求出切线的斜率,解出切线方程.解答:解:圆x2+y2﹣4x=0的圆心坐标是(2,0),所以切点与圆心连线的斜率:=﹣,所以切线的斜率为:,切线方程为:y﹣=(x﹣1),即x﹣y+2=0.故答案为:x﹣y+2=0.点评:本题是基础题,考查圆的切线方程的求法,求出切线的斜率解题的关键,考查计算能力.11.(4分)经过两条直线3x+4y﹣5=0和3x﹣4y﹣13=0的交点,且斜率为2的直线方程是2x﹣y﹣7=0.考点:直线的两点式方程;直线的点斜式方程.专题:计算题;直线与圆.分析:联立两直线方程,求解交点坐标,然后代入直线方程的点斜式得答案.解答:解:联立,解得.∴两条直线3x+4y﹣5=0和3x﹣4y﹣13=0的交点为(3,﹣1),∴经过两条直线3x+4y﹣5=0和3x﹣4y﹣13=0的交点,且斜率为2的直线方程是y+1=2(x ﹣3),即2x﹣y﹣7=0.故答案为:2x﹣y﹣7=0.点评:本题考查了直线方程的点斜式,考查了二元一次方程组的解法,是基础题.12.(4分)从原点向圆x2+y2﹣12y+27=0作两条切线,则这两条切线的夹角的大小为.考点:圆的切线方程.专题:直线与圆.分析:根据圆的标准方程求出圆心C的坐标和半径r,设这两条切线的夹角的大小为2θ,利用直线和圆相切的性质求得sinθ=的值,从而求得θ的值,由此可得结论.解答:解:圆x2+y2﹣12y+27=0,即 x2+(y﹣6)2=9,表示以C(0,6)为圆心,半径r=3的圆.设这两条切线的夹角的大小为2θ,其中θ为锐角,则由圆的切线性质可得sinθ==,所以θ=,故这两条切线的夹角的大小为2×=,故答案为:.点评:本题主要考查圆的标准方程,直线和圆相切的性质,直角三角形中的边角关系,根据三角函数的值求角,属于基础题.13.(4分)已知点A(1,﹣1),点B(3,5),点P是直线y=x上动点,当|PA|+|PB|的值最小时,点P的坐标是(2,2).考点:两条直线的交点坐标.专题:计算题.分析:根据图形可知,当P运动到直线y=x与直线AB的交点Q时,|PA|+|PB|的值最小时,所以利用A和B的坐标求出直线AB的方程,与y=x联立即可求出交点的坐标即为P的坐标.解答:解:连接AB与直线y=x交于点Q,则当P点移动到Q点位置时,|PA|+|PB|的值最小.直线AB的方程为y﹣5=(x﹣3),即3x﹣y﹣4=0.解方程组,得.于是当|PA|+|PB|的值最小时,点P的坐标为(2,2).故答案为:(2,2)点评:此题考查学生会根据两点坐标写出直线的方程,会求两直线的交点坐标,是一道中档题.14.(4分)集合A={(x,y)|x2+y2=4},B={(x,y)|(x﹣3)2+(y﹣4)2=r2},其中r>0,若A∩B中有且仅有一个元素,则r的值是3或7.考点:集合的包含关系判断及应用.专题:计算题.分析:集合A中的元素其实是圆心为坐标原点,半径为2的圆上的任一点坐标,而集合B 的元素是以(3,4)为圆心,r为半径的圆上点的坐标,因为r>0,若A∩B中有且仅有一个元素等价与这两圆只有一个公共点即两圆相切,则圆心距等于两个半径相加得到r的值即可.解答:解:据题知集合A中的元素是圆心为坐标原点,半径为2的圆上的任一点坐标,集合B的元素是以(3,4)为圆心,r为半径的圆上任一点的坐标,因为r>0,若A∩B中有且仅有一个元素,则集合A和集合B只有一个公共元素即两圆有且只有一个交点,则两圆相切,圆心距d=R+r或d=R﹣r;根据勾股定理求出两个圆心的距离为5,一圆半径为2,则r=3或7故答案为3或7点评:考查学生运用两圆位置关系的能力,理解集合交集的能力,集合的包含关系的判断即应用能力.三、解答题,本大题共4小题,共44分,解答应写出文字说明,证明过程或演算步骤.15.(12分)已知两条直线l1:2x﹣y+1=0,l2:ax+y+2=0,点P(3,1).(Ⅰ)直线l过点P,且与直线l1垂直,求直线l的方程;(Ⅱ)若直线l1与直线l2平行,求a的值;(Ⅲ)点P到直线l2距离为3,求a的值.考点:直线的一般式方程与直线的垂直关系;直线的一般式方程与直线的平行关系;点到直线的距离公式.专题:直线与圆.分析:(Ⅰ)利用直线与直线垂直的性质求解.(Ⅱ)利用直线与直线平行的性质求解.(Ⅲ)利用点到直线的距离公式求解.解答:解:(Ⅰ)∵直线l过点P,且与直线l1垂直,∴设直线l的方程为x+2y+c=0,把P(3,1)代入,得:3+2+c=0,解得c=﹣5,∴直线l的方程为:x+2y﹣5=0.(Ⅱ)∵直线l1与直线l2平行,∴,解得a=﹣2.(Ⅲ)∵点P到直线l2距离为3,∴=3,解得a=1.点评:本题考查直线方程和实数值的求法,是基础题,解题时要认真审题,注意直线的位置关系和点到直线的距离公式的合理运用.16.(10分)已知圆M的圆心为(5,0),且经过点(3,),过坐标原点作圆M的切线l.(1)求圆M的方程;(2)求直线l的方程.考点:圆的切线方程.专题:计算题;直线与圆.分析:(1)求出半径,然后求出圆M的标准方程;(2)设出直线方程,利用直线与圆相切求出k即可求出直线方程.解答:解:(1)点(3,)到圆心(5,0)的距离为圆的半径R,所以R==3..(2分)所以圆的标准方程为(x﹣5)2+y2=9..(4分)(2)设切线方程为y=kx,与圆M方程联立方程组有唯一解,即:(1+k2)x2﹣10x+16=0有唯一解..(6分)所以:△=100﹣64(1+k2)=0,即:k=±所以所求切线方程为y=±x.点评:本题是基础题,考查直线的切线方程,圆的标准方程,考查计算能力,常考题型.17.(10分)已知圆x2+y2+x﹣6y+m=0和直线x+2y﹣3=0交于P、Q两点,且OP⊥OQ(O为坐标原点),求该圆的圆心坐标及半径.考点:直线和圆的方程的应用.分析:联立方程,设出交点,利用韦达定理,表示出P、Q的坐标关系,由于OP⊥OQ,所以k OP•k OQ=﹣1,问题可解.解答:解:将x=3﹣2y代入方程x2+y2+x﹣6y+m=0,得5y2﹣20y+12+m=0.设P(x1,y1)、Q(x2,y2),则y1、y2满足条件y1+y2=4,y1y2=.∵OP⊥OQ,∴x1x2+y1y2=0.而x1=3﹣2y1,x2=3﹣2y2,∴x1x2=9﹣6(y1+y2)+4y1y2.∴m=3,此时△>0,圆心坐标为(﹣,3),半径r=.点评:本题考查直线和圆的方程的应用,解题方法是设而不求,简化运算,是常考点.18.(12分)已知半径为5的圆的圆心在x轴上,圆心的横坐标是整数,且与直线4x+3y﹣29=0相切.求:(Ⅰ)求圆的方程;(Ⅱ)设直线ax﹣y+5=0与圆相交于A,B两点,某某数a的取值X围;word(Ⅲ)在(2)的条件下,是否存在实数a,使得过点P(﹣2,4)的直线l垂直平分弦AB?若存在,求出实数a的值;若不存在,请说明理由.考点:直线和圆的方程的应用.专题:直线与圆.分析:(Ⅰ)利用点到直线的距离求出半径,从而求圆的方程;(Ⅱ)利用圆心到直线的距离小于半径可求出实数a的取值X围;(Ⅲ)假设存在利用直线与圆的位置关系性质解决.解答:解:(Ⅰ)设圆心为M(m,0)(m∈Z).由于圆与直线4x+3y﹣29=0相切,且半径为5,所以,,即|4m﹣29|=25.因为m为整数,故m=1.故所求的圆的方程是(x﹣1)2+y2=25.(Ⅱ)直线ax﹣y+5=0即y=ax+5.代入圆的方程,消去y整理,得(a2+1)x2+2(5a﹣1)x+1=0.由于直线ax﹣y+5=0交圆于A,B两点,故△=4(5a﹣1)2﹣4(a2+1)>0,即12a2﹣5a>0,解得 a<0,或.所以实数a的取值X围是.(Ⅲ)设符合条件的实数a存在,由(2)得a≠0,则直线l的斜率为,l的方程为,即x+ay+2﹣4a=0.由于l垂直平分弦AB,故圆心M(1,0)必在l上.所以1+0+2﹣4a=0,解得.由于,故存在实数a=,使得过点P(﹣2,4)的直线l垂直平分弦AB.点评:本题主要考查了圆的标准方程,点到直线的距离公式,直线与圆的位置关系等知识的综合应用,以及存在性问题的解决技巧,属于难题.11 / 11。

广东省广州市番禺中学2024-2025学年高二上学期9月月考数学试卷(含答案)

广东省广州市番禺中学2024-2025学年高二上学期9月月考数学试卷(含答案)

高二数学9月月考试题一、单选题(每小题5分)1.已知,则( )A. B.C.D.2.函数)A. B. C. D.3.函数是( )A.最小正周期为的奇函数 B.最小正周期为的偶函数C.最小正周期为的奇函数 D.最小正周期为的偶函数4.若函数是定义在上的奇函数,,,则( )A.2B.0C.60D.625.已知空间向量,,则在上的投影向量坐标是( )A. B. C. D.6.在正四面体中,过点作平面的垂线,垂足为点,点满足,则( )A. B.C. D.7.在空间直角坐标系中,若直线的方向向量为,平面的法向量为,则( )A B. C.或 D.与斜交8.已知向量,,且平面,平面,若平面与平面的夹角的余弦的值为( )A.或 B.或1 C.或2D.二、多选题(每小题6分)9.三棱锥中,平面与平面的法向量分别为,,若,则二面角2i z =+izz =+3i 4-1i 4-3i4+1i 4+y =[3,4)(,3]-∞[3,)+∞(,4]-∞2π2cos 14y x ⎛⎫=-- ⎪⎝⎭πππ2π2()f x R (2)()f x f x -=(1)2f =(1)(2)(30)f f f ++⋅⋅⋅+=(3,4,0)a =(3,1,4)b =- b a (3,4,0)--34,,055⎛⎫--⎪⎝⎭314,,555⎛⎫--⎪⎝⎭(3,1,4)--P ABC -A PBC H M 34AM AH = PM =131444PA PB PC -+111444PA PB PC ++111424PA PB PC -+113444PA PB PC -+l (1,2,1)a =-α(2,3,4)n =//l αl α⊥l α⊂//l αl α(1,2,1)m =- (,1,)n t t =- m ⊥ αn ⊥βαβt 121-151-12-A BCD -ABD BCD 1n 2n 12π,3n n =的大小可能为( )A. B. C.D.10.随机抽取8位同学对2024年数学新高考|卷的平均分进行预估,得到一组样本数据如下:97,98,99,100,101,103,104,106,则下列关于该样本的说法正确的有( )A.均值为101 B.极差为9C.方差为8D.第60百分位数为10111.已知空间中三点,,,则( )A.与是共线向量B.与向量方向相同的单位向量坐标是C.与D.在三、填空题(每小题5分)12.已知是定义在上的奇函数,当时,,当时,,则_______.13.已知向量,,,若,,共面,则_______.14已知向量,,若与的夹角为钝角,则实数的取值范围是_______.四、解答题(五个大题共77分)15.(本题13分)(2024年新课标全国Ⅱ卷数学真题)记的内角,,的对边分别为,,,已知.(1)求.(2)若,求的周长.16(本题15分)某中学根据学生的兴趣爱好,分别创建了“书法”、“诗词”、“理学”三个社团,据资料统计新生通过考核选拔进入这三个社团成功与否相互独立.2015年某新生入学,假设他通过考核选拔进入该校的“书法”、“诗词”、“理学”三个社团的概率依次为、、,已知三个社团他都能进入的概率为,至少进入一个社团的概率为,且.(1)求与的值;(2)该校根据三个社团活动安排情况,对进入“书法”社的同学增加校本选修学分1分,对进入“诗词”A BD C --π6π32π35π6(0,1,0)A (2,2,0)B (1,3,1)C -AB AC AB ⎫⎪⎪⎭AB BC BC AB ()f x R 0x >2()22xxf x -=+0x <()22x x f x m n -=⋅+⋅m n +=(2,3,4)a x = (0,1,2)b = (1,0,0)c =a b c x =(2,,1)a t =--(2,1,1)b = a b t ABC △A B C a b c sin 2A A +=A 2a =sin sin 2C c B =ABC △m 13n 12434m n >m n社的同学增加校本选修学分2分,对进入“理学”社的同学增加校本选修学分3分.求该新同学在社团方面获得校本选修课学分分数不低于4分的概率.17.(本题15分)如图,在以,,,,,为顶点的六面体中(其中平面),四边形是正方形,平面,,且平面平面.(1)设为棱的中点,证明:,,,四点共面;(2)若,求六面体的体积.18.(本题17分)一家水果店为了解本店苹果的日销售情况,记录了过去200天的日销售量(单位:kg ),将全部数据按区间,,,分成5组,得到图所示的频率分布直方图.(1)求图中的值;并估计该水果店过去200天苹果日销售量的平均数(同一组中的数据用该组区间的中点值为代表);(2)若一次进货太多,水果不新鲜,进货太少,又不能满足顾客的需求.店长希望每天的苹果尽量新鲜,又能地满足顾客的需要(在100天中,大约有85天可以满足顾客的需求).请问,每天应该进多少水果?(3)在日销售量为苹果中用分层抽样方式随机抽6个苹果,再从这6苹果中随机抽取2个苹果,求抽取2个苹果都来自日销售量在的概率.19(本题17分)(2022年新高考天津数学高考真题)直三棱柱中,,,为的中点,为的中点,为的中点.A B C D E F F ∈EDC ABCD ED ⊥ABCD BF FE =FEB ⊥EDB M EB A C F M 24ED AB ==EFABCD [50,60)[60,70)⋅⋅⋅[90,100]a 85%[70,90]kg [80,90]111ABC A B C -12AA AB AC ===AC AB ⊥D 11A B E 1AA F CD(1)求证:平面;(2)求直线与平面所成角的正弦值;(3)求平面与平面夹角的余弦值.//EF ABC BE 1CC D 1ACD 1CC D高二数学9月月考试题参考答案一、单选题(每小题5分共40分)1.A2.A3.A4.A【详解】由题意,所以的周期为4,且关于直线对称,而,所以.5.B【详解】因为空间向量,,所以,,,则在上的投影向量坐标是:.6.B【详解】在正四面体中,因为平面,所以是的中心,连接,则,所以.7.C【解析】由可得,所以或,即可得正确选项.【详解】直线的方向向量为,平面的法向量为,因为,所以,所以或.8.B【详解】因为,所以,,,因为平面,平面,若平面与平面,,解得或1.二、多选题(每小题6分共18分)9.BC【详解】二面角的大小与法向量的夹角相等或互补,二面角的大小可能为或.10.ABD【详解】A选项,均值为,A正确;(2)()()(2)f x f x f x f x-==--=--()f x()f x1x=(1)(2)(3)(4)(0)(1)(1)(2)(2)(0)0f f f f f f f f f f+++=++-+===(1)(2)(30)(29)(30)(1)(2)(0)(1)022f f f f f f f f f++⋅⋅⋅+=+=+=+=+=(3,4,0)a=(3,1,4)b=-9405a b⋅=-++=-5a==b==ba 5134(3,4,0),,05555a b aa a⋅-⎛⎫⋅=⨯=--⎪⎝⎭P ABC-AH⊥PBC H PBC△PH()()211323PH PB PC PB PC=⨯+=+()33334444PM PA AM PA AH PA PH PA PA PH PA=+=+=+-=+-()3331311144434444PA PH PA PA PB PC PA PA PB PC=+-=+⨯+-=++a n⋅=a n⊥lα⊂//lαl(1,2,1)a=-α(2,3,4)n=(2,3,4)(1,2,1)2640a n⋅=⋅-=-+=a n⊥lα⊂//lα(1,2,1)m=-(,1,)n t t=-22m n t⋅=+m=n=m⊥αn⊥βαβ=25610t t-+=15t=∴A BD C--π3π2ππ33-=9798991001011031041061018+++++++=B 选项,极差为,B 正确;C 选项,方差为,C 错;D 选项,因为,故从小到大,选择第5个数作为第60百分位数,即101.11.BD 【详解】由已知,,,,因此与不共线,A 错;,所以与向量,B 正确;,,,C 错;在上的投影是,D 正确.三、填空题(每小题5分共15分)12.【详解】令,则,所以.因为是定义在上的奇函数,所以,所以,所以,,所以.13.【详解】由题意得,存在,使得,即,故解得,.14.【详解】由,得,解得,又,得,解得,所以与夹角为钝角,实数的取值范围为且.四、解答题(五个大题共77分)15.(本题13分)【解析】(1)由可得,即,由于,故,解得.(2)由题设条件和正弦定理,106979-=222(97101)(98101)(106101)169410492517882-+-+⋅⋅⋅+-+++++++==60%8 4.8⨯=(2,1,0)AB = (1,2,1)AC =- (3,1,1)BC =-1221-≠AB AC AB = AB ⎫=⎪⎪⎭6105AB BC ⋅=-++=- BC = cos ,AB BC AB BC AB BC⋅〈〉===BC AB BC AB AB⋅==5-0x <0x ->2()22xx f x -+-=+()f x R ()()f x f x -=-2()22422xx x x f x +--=--=-⨯-4m =-1n =-5m n +=-23m n a mb nc =+ (2,3,4)(0,1,2)(1,0,0)x m n =+2342nx m m=⎧⎪=⎨⎪=⎩2m =23x =(,1)(1,5)-∞-- 0a b ⋅<(2)2(1)10t -⨯++-⨯<5t <//a b 21211t --==1t =-a b t 5t <1t ≠-67=+sin 2A A +=1sin 12A A +=πsin 13A ⎛⎫+= ⎪⎝⎭ππ4π(0,π),333A A ⎛⎫∈⇒+∈ ⎪⎝⎭ππ32A +=π6A =sin sin 2sin 2sin sin cos C c B B C C B B =⇔=又,,则,进而,于是,,由正弦定理可得,,即,解得,,故的周长为.16.(本题15分)【详解】(1)依题,解得.(2)由题令该新同学在社团方面获得本选修课学分的分数为,获得本选修课学分分数不低于4分为事件A ,则;;.故.17.(本题15分)【详解】(1)连接,由四边形是正方形,故,又平面,平面,故,由,,平面,故平面,又为棱的中点,,故,又平面平面,平面平面,平面,故平面,故,所以,,,四点共面;(2)设与交于点,连接,则,又平面,平面,则平面,又因为六面体,则平面平面,又平面,故,则四边形为矩形,则,且平面,又,故,则.18(本题17分)【详解】(1)由直方图可得,样本落在,,,的频率分别为,,0.2,0.4,0.3,由,解得.B (0,π)C ∈sin sin 0B C ≠cos B =π4B =7π12C A B π=--=sin sin(π)sin()sin cos sin cos C A B A B A B B A =--=+=+=sin sin sin a b c A B C ==2ππ7πsin sin sin 6412b c==b =c =+ABC △2++78=+11324131(1)1(1)34mn m n m n ⎧=⎪⎪⎪⎛⎫----=⎨ ⎪⎝⎭⎪⎪>⎪⎩1214m n ⎧=⎪⎪⎨⎪=⎪⎩i X ()4121123412P X =⨯⨯=()5111123424P X =⨯⨯=()6111123424P X =⨯⨯=1111()1224246P A =++=78+AC ABCD AC DB ⊥ED ⊥ABCD AC ⊂ABCD ED AC ⊥DE BD D = DE BD ⊂EDB AC ⊥EDB M EB BF FE =FM EB ⊥FEB ⊥EDB FEB EDB EB =FM ⊂EFB FM ⊥EDB //FM AC A C F M AC BD O OM //OM DE OM ⊂ACFM DE ⊂/ACFM //DE ACFM EFABCD CDEF ACFM CF =DE ⊂CDEF //DE CF OCFM 1CF =CF ⊥ABCD BF FE =122CF DE ==11204422333EFABCD E ABCD B EFC V V V --=+=⨯⨯+⨯⨯=557=++[50,60)[60,70)⋅⋅⋅[90,100]10a 10a 10100.20.40.31a a ++++=0.005a =则样本落在,,,频率分别为0.05,0.05,0.2,0.4,0.3,所以,该苹果日销售量的平均值为:.(2)为了能地满足顾客的需要,即估计该店苹果日销售量的分位数.依题意,日销售量不超过90kg 的频率为,则该店苹果日销售量的分位数在,所以日销售量的分位数为.所以,每天应该进95kg 苹果.(3)由日销售量为,的频率分别为0.2,0.4知,抽取的苹果来自日销售量中的有2个,不妨记为,,来自日销售量为的苹果有4个,不妨记为,,,,任意抽取2个苹果,有,,,,,,,,,,,,,,,共有15个基本事件,其中2个苹果都来自日销售中的有6个基本事件,由古典概型可得.19.(本题17分)【解析】(1)证明:在直三棱柱中,平面,且,则以点为坐标原点,、、所在直线分别为、、轴建立如下图所示的空间直角坐标系,则、、、、、、、、,则,易知平面的一个法向量为,则,故,平面,故平面.[50,60)[60,70)⋅⋅⋅[90,100]5060607070808090901000.050.050.20.40.383.5(kg)22222+++++⨯+⨯+⨯+⨯+⨯=85%85%10.03100.7-⨯=85%[90,100]85%0.850.7901095(kg)10.7-+⨯=-[70,80)[80,90][70,80)1a 2a [80,90]1b 2b 3b 4b ()12,a a ()11,a b ()12,a b ()13,a b ()14,a b ()21,a b ()22,a b ()23,a b ()24,a b ()12,b b ()13,b b ()14,b b ()23,b b ()24,b b ()34,b b [80,90]62155P ==557++111ABC A B C -1AA ⊥111A B C AC AB ⊥1111A C A B ⊥1A 1A A 11A B 11A C x y z (2,0,0)A (2,2,0)B (2,0,2)C 1(0,0,0)A 1(0,2,0)B 1(0,0,2)C (0,1,0)D (1,0,0)E 11,,12F ⎛⎫⎪⎝⎭10,,12EF ⎛⎫= ⎪⎝⎭ABC (1,0,0)m =0EF m ⋅= EF m ⊥ EF ⊂/ ABC //EF ABC(2),,,设平面的法向量为,则,取,可得,.因此,直线与平面夹角的正弦值为.(3),,设平面的法向量为,则,取,可得,则因此,平面与平面.1(2,0,0)C C = 1(0,1,2)C D =- (1,2,0)EB =1CC D ()111,,u x y z = 111112020u C C x u C D y z ⎧⋅==⎪⎨⋅=-=⎪⎩ 12y =(0,2,1)u =4cos ,5EB u EB u EB u ⋅==⋅BE 1CC D 451(2,0,2)AC = 1(0,1,0)A D =1ACD ()222,,v x y z = 122122200v A C x z v A D y ⎧⋅=+=⎪⎨⋅==⎪⎩ 21x =(1,0,1)v =-cos ,u v u v u v ⋅〈〉===⋅ 1ACD 1CC D。

2019-2020年高二上学期第一次月考模拟数学理试卷 含答案

2019-2020年高二上学期第一次月考模拟数学理试卷 含答案

2019-2020年高二上学期第一次月考模拟数学理试卷 含答案一、选择题(每小题5分,共60分)1. 某单位有老年人28 人,中年人54人,青年人81人,为了调查他们身体状况的某项指标, 需从他们中间抽取一个容量为36样本,则老年人、中年人、青年人各抽取的人数是( ) A. 7;12;17 B. 7;11;19 C.6;13;17 D. 6;12;182. 双曲线:1422=-y x 的渐近线方程和离心率分别是 ( ) A.3;2=±=e x y B. 5;2=±=e x yC.3;21=±=e x y D. 5;21=±=e x y 3.有四个游戏盘面积相等,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是( )4. 盒中有10个铁钉,其中8个是合格的,2个是不合格的,从中任取一个恰为合格铁钉的概率是( ) A .51 B .41 C .54 D . 101 5.若命题2:20p x x a ++=有实根,命题:q 函数2()()f x a a x =-是增函数,若p q ∨为真,p q ∧为假,则a 的取值范围是 ( )A .0a >B .0a ≥C .1a >D .1a ≥6.设a ,b 是平面α内两条不同的直线,l 是平面α外的一条直线,则“l ⊥a ,l ⊥b ”是“l ⊥α”的( )A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件7.一个样本容量为10的样本数据,它们组成一个公差不为0的等差数列{}n a ,若3a =8且137,,a a a 成等比数列,则此样本的平均数和中位数分别是( )A.13,12B.13,13C.12,13D.13,148.阅读程序框图,如果输出的函数值在区间11[,]42内,那么输入的实数x 的取值范围是( )A.(-∞,-2]B.[-2,-1]C.[-1,2]D.[2,+∞)9.抛物线的顶点在坐标原点,焦点与双曲线22154y x -=的一个焦点重合,则该抛物线的标准方程可能是( ) A.2x =4yB.2x =-4y C.2y =-12xD.2x =-12y10.数列{}n a 中,1a =1,对所有的n ≥2,都有2123n a a a a n =,则35a a +等于( )A..B.C.D.11.双曲线22221x y a b-=的渐近线与圆22(2)1x y +-=相切,则双曲线离心率为( )C.2D.312.已知a>b>0,12,e e 分别为圆锥曲线22221x y a b +=和22221x y a b-=的离心率,则12lg lg e e +的值( )A.大于0且小于1B.大于1C.小于0D.等于0二、填空题(每小题5分,共20分)13. 已知F 1、F 2为椭圆192522=+y x 的两个焦点,过F 1的直线交椭圆于A 、B 两点,若1222=+B F A F ,则AB = _____________14. 已知下列四个命题: ①命题“若α=4π,则tan α=1”的逆否命题为假命题; ②命题p :∀x ∈R ,sinx ≤1,则p :∃0x ∈R ,使sin 0x >1;③“φ=2π+k π(k ∈Z)”是“函数y=sin(2x+φ)为偶函数”的充要条件; ④命题p :“∃0x ∈R ,使sin 0x +cos 0x =32”;命题q :“若sin α>sin β,则α>β”,那么(p)∧q 为真命题.其中正确命题的序号是_____________ 15.已知区域D 是由不等式组20{30x y x y -≥+≥所确定的,则圆224x y +=在区域D 内的面积等于_____________16. 双曲线12222=-b y a x 的离心率为1e ,双曲线12222=-ay b x 的离心率为2e ,则21e e +的最小值为三、解答题(本大题6个小题,满分70分)17.(本题满分10分)设p :实数x 满足22430x ax a -+<, :q 实数x 满足31x -<.(1)若1,a =且p q ∧为真,求实数x 的取值范围;(2)若其中0a >且p ⌝是⌝q 的充分不必要条件,求实数a 的取值范围.18.(本题满分12分)袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.(1)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率; (2)现袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.19.(本题满分12分) 数列{}n a 的前n 项和为122n n s +=-,数列{}n b 是首项为1a ,公差为d(d ≠0)的等差数列,且139,,b b b 成等比数列.(1)求数列{}n a 与{}n b 的通项公式. (2)若2(1)n nc n b =+ (n ∈N*),求数列{}n c 的前n 项和n T20.(本题满分12分)某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:该兴趣小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.(1)求选取的2组数据恰好是相邻两个月的概率.(2)若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出y关于x的线性回归方程=x+.(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?(参考公式:==,=-).21.(本题满分12分)设椭圆22221x ya b+=(a>b>0)的左、右焦点分别为F1、F2.点P(a,b)满足|PF2|=|F1F2|.(1)求椭圆的离心率e;(2)设直线PF2与椭圆相交于A,B两点,若直线PF2与圆(x+1)2+(y-3)2=16相交于M,N两点,且|MN|=58|AB|,求椭圆的方程.22.(本题满分12分)已知抛物线C:2x =2py(p>0)的焦点为F,抛物线上一点A 的横坐标为11(0)x x >,过点A 作抛物线C 的切线1l 交x 轴于点D,交y 轴于点Q,交直线:2pl y =于点M,当|FD|=2时,∠AFD=60°.(1)求证:△AFQ 为等腰三角形,并求抛物线C 的方程.(2)若B 位于y 轴左侧的抛物线C 上,过点B 作抛物线C 的切线2l 交直线1l 于点P,交直线l 于点N,求△PMN 面积的最小值,并求取到最小值时1x 的值.理数模拟题参考答案 一、DBACB CBBDC CC 二、13.8 14.②③ 15.2π16.22 三、17.解:(1) 由22430x ax a -+<得(3)()0x a x a --<当1a =时,13x <<,即p 为真时实数x 的取值范围是13x <<.……………2分 由31x -<, 得131x -<-<, 得24x <<即q 为真时实数x 的取值范围是24x <<,……………4分 若p q ∧为真,则p 真且q 真,所以实数x 的取值范围是23x <<. ……………6分(2) 由22430x ax a -+<得(3)()0x a x a --< p ⌝是q ⌝的充分不必要条件,即p ⌝⇒q ⌝,且q ⌝⇒/p ⌝, ……………8分设A ={|}x p ⌝,B ={|}x q ⌝,则A B ,又A ={|}x p ⌝={|3}x x a x a ≤≥或, B ={|}x q ⌝={x|x ≥4或x ≤2},……………10分则02a <≤,且34a ≥ 所以实数a 的取值范围是423a ≤≤……………12分 18.【解】(1)从五张卡片中任取两张的所有可能情况有如下10种:红1红2,红1红3,红1蓝1,红1蓝2,红2红3,红2蓝1,红2蓝2,红3蓝1,红3蓝2,蓝1蓝2.其中两张卡片的颜色不同且标号之和小于4的有3种情况,故所求的概率为310P =. (6分) (2)加入一张标号为0的绿色卡片后,从六张卡片中任取两张,除上面的10种情况外,多出5种情况:红1绿0,红2绿0,红3绿0,蓝1绿0,蓝2绿0,即共有15种情况,其中颜色不同且标号之和小于4的有8种情况,所以概率为815P =. (12分) 19.(1)当n ≥2时,a n =S n -S n-1=2n+1-2n =2n , 又a 1=S 1=21+1-2=2=21,也满足上式, 所以数列{a n }的通项公式为a n =2n . b 1=a 1=2,则由b 1,b 3,b 9成等比数列, 得(2+2d)2=2×(2+8d),解得d=0(舍去)或d=2,所以数列{b n }的通项公式为b n =2n. (2)c n ==,数列{c n }的前n 项和T n =+++…+=1-+-+…+-=1-=.20.(1)设抽到相邻两个月的数据为事件A.因为从6组数据中选取2组数据共有15种情况,每种情况都是等可能出现的. 其中,抽到相邻两个月的数据的情况有5种, 所以P(A)==.(2)由数据求得=11,=24.由公式求得=, 再由=-=-.所以关于x 的线性回归方程为=x-. (3)当x=10时,=,<2,同样,当x=6时,=,<2,所以,该小组所得线性回归方程是理想的.21. (1)设F 1(-c,0),F 2(c,0)(c >0),因为|PF 2|=|F 1F 2|,所以(a -c )2+b 2=2c .整理得2⎝⎛⎭⎫c a 2+c a -1=0,得c a =-1(舍),或c a =12.所以e =12.(5分) (2)由(1)知a =2c ,b =3c ,可得椭圆方程为3x 2+4y 2=12c 2,直线PF 2的方程为y =3(x -c ).A 、B 两点的坐标满足方程组⎩⎨⎧3x 2+4y 2=12c 2,y =3(x -c ).消去y 并整理,得5x 2-8cx =0.解得x 1=0,x 2=85c .得方程组的解为⎩⎨⎧x 1=0,y 1=-3c ,⎩⎨⎧x 2=85c ,y 2=335c .不妨设A ⎝⎛⎭⎫85c ,335c ,B (0,-3c ),所以|AB |=⎝⎛⎭⎫85c 2+⎝⎛⎭⎫335c +3c 2=165c . 于是|MN |=58|AB |=2c .圆心(-1,3)到直线PF 2的距离d =|-3-3-3c |2=3|2+c |2.因为d 2+⎝⎛⎭⎫|MN |22=42,所以34(2+c )2+c 2=16. 整理得7c 2+12c -52=0. 得c =-267(舍),或c =2.所以椭圆方程为x 216+y 212=1.22.(1)设A ,则A 处的切线方程为l 1:y=x-,所以D ,Q,F ,所以|AF|=.所以|FQ|=+=|AF|,即△AFQ 为等腰三角形. 又D 为线段AQ 的中点,所以|AF|=4,得:所以p=2,C:x 2=4y.(2)设B(x 2,y 2)(x 2<0),则B 处的切线方程为y= x-, 由⇒P,由⇒M,同理N,所以面积S==①,设AB的方程为y=kx+b,则b>0,由⇒x2-4kx-4b=0,得代入①得:S==,使面积最小,则k=0,得到S=②,令=t,则由②得S(t)==t3+2t+,S′(t)=,所以当t∈时S(t)单调递减;当t∈时S(t)单调递增,所以当t=时,S取到最小值为,此时b=t2=,k=0,所以y1=,即x1=.。

山西省太原市第五十六中学2020-2021学年高二数学下学期5月月考试题 理

山西省太原市第五十六中学2020-2021学年高二数学下学期5月月考试题 理

山西省太原市第五十六中学2020-2021学年高二数学下学期5月月考试题 理考试时间 90分钟 分值 100分一、选择题:(共12小题,每小题3分,总分36分)1.从甲地到乙地一天有汽车8班,火车3班,轮船2班,某人从甲地到乙地,他共有不同的走法数为( )A .13种B .16种C .24种D .48种 2.甲、乙两人从4门课程中各选修1门,则甲、乙所选的课程不相同的选法共有( )A .6种B .12种C .30种D .36种 3.下列各式中与排列数相等的是( D ) A . B .n (n -1)(n -2)…(n -m )C .4.2017年的3月25日,中国国家队在2018俄罗斯世界杯亚洲区预选赛12强战小组赛中,在长沙以1比0力克韩国国家队,赛后有六名队员打算排成一排照相,其中队长主动要求排在排头或排尾,甲、乙两人必须相邻,则满足要求的排法有( ) A . 34种B . 48种C . 96种D . 144种5.一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的坐法种数为( )A . 3×3!B . 3×(3!)3C . (3!)4D . 9!6.12233101010101010190C 90C 90C 90C -+-++除以88的余数是( )A .2B .1C .86D .877.若)10210012102x a a x a x a x =+++,则()20210a a a +++-()2139a a a +++=( )A .1B .1-C .2D .2-8.在()()10311x x -+的展开式中5x 的系数是( ) A .297-B .252-C .297D .2079.函数21)(--=x x x f 的定义域为( ) A .[1,2)∪(2,+∞) B .(1,+∞) C .[1,2) D .[1,+∞)10.函数f (x )= 2(1)xx x ⎧⎨+⎩,0,0x x ≥< ,则(2)f -=( )A. 1 B .2 C. 3 D.411.下列说法错误的是( )A.42y x x =+是偶函数 B. 偶函数的图象关于y 轴成轴对称 C. 32y x x =+是奇函数 D. 奇函数的图象关于原点成中心对称12.函数()f x 是定义域为R 的奇函数,当0>x 时,1)(+-=x x f ,则当0<x 时,()f x 的表达式为 ( )A .1+-xB .1--xC .1+xD . 1-x二、填空题(共4小题,每小题3分,总分12分)13.从6台原装计算机和5台组装计算机中任意选5台,其中至少有原装与组装计算机各两台,则不同的取法有___350___种.14.有8本不相同的书,其中数学书3本,外文书2本,其它书3本,若将这些书排列放在书架上,则数学书恰好排在一起,外文书也恰好排在一起的排法共有_1440_______种(用数字作答).15.已知集合A ={m +2,2m 2+m },若3∈A ,则m 的值为___-2/3_____.16.已知集合A ={x |x <},B ={x |x 2-3x +2<0},若A ∩B =B ,则实数a 的取值范围是______三解答题(共5小题总分52分)17(10分)已知集合A={x|a ≤x ≤a+3},B={x|x<-1或x>5}.(1) 若A∩B=Φ,求a 的取值范围; (2) 若A∪B=B ,求a 的取值范围.17.(10分)(1)解不等式:32213A 2A 6A x x x +≤+;(2)解方程:4321A 140A x x +=. 20.(12分)已知(31)nx -的展开式中第2项与第5项的二项式系数相等,求212nx x ⎛⎫- ⎪⎝⎭的展开式中:(1)所有二项式系数之和; (2)二项式系数最大的项; (3)系数的绝对值最大的项.18.(10分)在100件产品中,有98件合格品,2件次品.从这100件产品中任意抽出3件.(1)有多少种不同的抽法?(2)抽出的3件中恰好有1件是次品的抽法有多少种? (3)抽出的3件中至少有1件是次品的抽法有多少种?21(10分)定义在R 上的函数)(x f ,对任意的R y x ∈,,有)()(2)()(y f x f y x f y x f =-++,且0)0(≠f 。

高二数学上学期月考试题含解析试题

高二数学上学期月考试题含解析试题

实验中学东戴河分校2021-2021学年高二数学上学期10月月考试题〔含解析〕说明:1、本套试卷分第一卷〔选择题〕和第二卷〔非选择题〕两局部,第一卷第〔1〕页至第〔4〕页,第二卷第〔4〕页至第〔8〕页。

2、本套试卷一共150分,考试时间是是120分钟。

第一卷〔选择题,一共60分〕考前须知:1、答第一卷前,所有考生必须将本人的姓名、班级填涂在答题卡上,贴好条形码。

答题卡不要折叠2、每一小题在选出答案以后,需要用2B铅笔把答题卡上对应的题目的号涂黑。

答在试卷上无效。

3、在在考试完毕之后以后,监考人员将试卷答题卡收回。

一.选择题1112,,,6323的一个通项公式为( )A. 1nB.6nC.3nD.4n【答案】B 【解析】【分析】把数列1112,,,6323,化简为1234,,,6666,利用归纳法,即可得到数列的一个通项公式,得到答案.【详解】由题意,数列1112,,,6323,可化为1234,,,6666,所以数列的一个通项公式为6n,应选B.【点睛】此题主要考察了利用归纳法求解数列的通项公式,其中解答中把数列1112,,,6323,化简为1234,,,6666,合理归纳是解答的关键,着重考察了运算与求解才能,属于根底题.{}n a 中,12a =,3510a a +=,那么7a =〔 〕A. 5B. 6C. 7D. 8【答案】D 【解析】 【分析】根据等差中项性质求得4a ,进而得到3d ;利用743a a d =+求得结果. 【详解】由题意知:354210a a a +== 45a ∴= 4133d a a ∴=-=743538a a d ∴=+=+=此题正确选项:D【点睛】此题考察等差数列性质和通项公式的应用,属于根底题.12,l l 的倾斜角分别为12,αα,那么以下四个命题中正确的选项是〔 〕A. 假设12αα<,那么两直线的斜率:12k k <B. 假设12αα=,那么两直线的斜率:12k k =C. 假设两直线的斜率:12k k <,那么12αα<D. 假设两直线的斜率:12k k =,那么12αα= 【答案】D 【解析】 【分析】由题意逐一分析所给的选项是否正确即可.【详解】当130α=,2120α=,满足12αα<,但是两直线的斜率12k k >,选项A 说法错误;当1290αα==时,直线的斜率不存在,无法满足12k k =,选项B 说法错误;假设直线的斜率11k =-,21k =,满足12k k <,但是1135α=,245α=,不满足12αα<,选项C 说法错误;假设两直线的斜率12k k =,结合正切函数的单调性可知12αα=,选项D 说法正确. 此题选择D 选项.【点睛】此题主要考察直线的斜率与倾斜角之间的关系,正切函数的单调性及其应用等知识,意在考察学生的转化才能和计算求解才能.{}n a 是首项为1a ,公差为2-的等差数列,n S 为其前n 项和,假设124,,S S S 成等比数列,那么1a =〔 〕 A. 8 B. 8- C. 1D. 1-【答案】D 【解析】因为124,,S S S 成等比数列,所以2214s s s =⋅,即()()211122412a a a -=-,解得:11a =-,应选D.试题点睛:此题涉及等差数列的通项公式,等差数列的前n 项和公式以及等比中项的概念,是中档题.解决这类问题主要是利用方程思想,根据量,求出未知量,此题可将各项表示为首项与公差的形式,利用等差数列n 项和公式结合等比中项,建立方程,从而求解.{}n a 中,611a a =,且公差0d >,那么其前n 项和取最小值时的n 的值是( )A. 6B. 7C. 8D. 9【答案】C【解析】因为等差数列{}n a 中,611 a a =,所以6116111150,0,,2a a a a a d =-=-,有2[(8)64]2n dS n =--, 所以当8n =时前n 项和取最小值.应选C. 6.{}n a 是各项都为正数的等比数列,n S 是它的前n 项和,假设46S =,818S =,那么16S =( )A. 48B. 54C. 72D. 90【答案】D 【解析】 【分析】根据等比数列前n 项和性质,即可求出结果.【详解】因为{}n a 是各项都为正数的等比数列,n S 是它的前n 项和,所以4841281612,,,S S S S S S S ---也成等比数列,且公比为8442S S S -=, 所以128842()24S S S S -=-=,所以1242S =, 因此16121282()48S S S S -=-=,所以1690S =. 应选D【点睛】此题主要考察等比数列前n 项和性质,熟记性质即可,属于根底题型.{}n a 的前n 项和为n S ,且14254,8a a a a +=+=,那么20192019S = ( ) A. 2021 B. 2021C. 2021D. 2021【答案】B 【解析】 【分析】根据等差数列通项公式求得1a 和d ;代入等差数列前n 项和公式即可得到结果. 【详解】设等差数列公差为d那么:141251234258a a a d a a a d +=+=⎧⎨+=+=⎩,解得:112a d =-⎧⎨=⎩12019120192018201922201812018201720192019a S a ⨯+⨯∴==+=-+= 此题正确选项:B【点睛】此题考察等差数列根本量的求解、等差数列前n 项和公式的应用,属于根底题. 8.下面四个判断中,正确的选项是( ) A. 式子()2*1n k k k n ++++∈N ,当1n =时为1 B. 式子()21*1n k k k n -++++∈N ,当1n =时为1k +C. 式子()*111112321n n ++++∈-N ,当2n =时为111123++ D. 设()*111()1231f n n n n n =++∈+++N ,那么111(1)()323334f k f k k k k +=++++++【答案】C 【解析】 【分析】由题意结合数学归纳法逐一考察所给的选项是否正确即可. 【详解】逐一考察所给的结论:A . 式子()2*1n k k k n ++++∈N ,当1n =时为:1k +,题中的说法错误; B . 式子()21*1n k k k n -++++∈N ,当1n =时为1,题中的说法错误;C . 式子()*111112321n n ++++∈-N ,当2n =时为111123++,题中的说法正确; D . 设()*111()1231f n n n n n =++∈+++N ,那么111()1231f k k k k =+++++,111(1)2334f k k k k +=+++++, 1111(1)()334131f k f k k k k k +=++--++++,题中的说法错误;应选:C .【点睛】此题主要考察数学归纳法中的根本概念与运算,属于根底题.{}n a 中,()22212111,2,22n n n a a a a a n +-===+≥,那么6a =〔 〕A. 16B. 4C. D. 45【答案】B 【解析】试题分析:由22121,4a a ==,那么22213d a a =-=,且()2221122n n n a a a n +-=+≥,那么数列{}2na 表示首项为1,公差为3的等差数列,所以221(1)1(1)332n a a n d n n =+-=+-⨯=-,所以ka-,所以64a =,应选B. 考点:等差数列的概念及性质.{}n a 满足0,1,2,n a n >=,且25252(3)nn a a n -⋅=≥,那么当1n ≥时,2123221log log log n a a a -+++=〔 〕A. (21)n n -B. 2(1)n +C. 2nD.2(1)n -【答案】C 【解析】 试题分析:因为{}n a 为等比数列,所以21212225252nn n n a a a a a a ---⋅=⋅==⋅=,()()22222212322121212log log log log log 2log 2n n n n n n a a a a a n --∴+++====.故C 正确.考点:1等比比数列的性质;2对数的运算法那么.{}n a 中12a =,公比2q =-,记12nn a a a =⨯⨯⨯∏〔即n∏表示数列{}n a 的前n 项之积〕,那么891011,,,∏∏∏∏中值最大的是〔 〕A.8∏B.9∏C.10∏D.11∏【答案】B 【解析】试题分析:等比数列{}n a 中1a >0,公比q <0,故奇数项为正数,偶数项为负数, ∴11∏<0,10∏<0,9∏>0,8∏>0,∵9∏8∏=9a>1,∴9∏>8∏.所以最大值为9∏考点:等比数列的性质{}n a 的前n 项和为n S ,且满足2111,0,441n n n a a a S n +=>=++,假设不等式2483(5)2n n n n m a -+<-⋅对任意的正整数n 恒成立,那么整数m 的最大值为( )A. 3B. 4C. 5D. 6【答案】B 【解析】 【分析】由题意首先求得数列{}n a 的通项公式,然后结合通项公式和恒成立的结论别离参数,讨论数列函数的单调性即可确定整数m 的最大值. 【详解】2111,0,441n n n a a a S n +=>=++,①可得n ⩾2时,214441n n a S n -=+-+,② ①−②可得221144444n n n n n a a S S a +--=-+=+,即有()2221442n n n n a a a a +=++=+,由a n >0可得12n n a a +=+, 即有12(1)21n a n n =+-=-;不等式2483(5)2nn n n m a -+<-⋅即()2483(5)221nn n m n +<-⋅--,很明显()1220nn ->⋅,那么:2483235(21)22n nn n n m n -+-->=-⋅,设12321(),(1)()22n n n n f n f n f n +--=+-=1232522n n n n +--+-=. 据此可得f (1)<f (2)<f (3)>f (4)>f (5)>…, 即有f (3)为f (n )的最大值,且为38,即有538m ->,即378m <,可得m 的最大值为4. 应选:B .【点睛】此题主要考察由递推关系式求解数列通项公式的方法,数列中恒成立问题的处理等知识,意在考察学生的转化才能和计算求解才能.第二卷〔非选择题,一共90分〕二、填空题10x ++=的倾斜角的大小是_________.【答案】56π【解析】试题分析:由题意k =,即tan θ=,∴56πθ=。

2020-2021学年高二数学下学期第一次月考试题理[1]

2020-2021学年高二数学下学期第一次月考试题理[1]

2020-2021学年高二数学下学期第一次月考试题理本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是 符合题目要求的.(1)已知集合{1,2,}M zi =,i 为虚数单位,{3,4}N =,{4}MN =,则复数z =(A )2i - (B )2i (C )4i - (D )4i (2)已知函数()y f x =的图象在点(1,(1))M f 处的切线方程是122y x =+,则()()11f f +'的值等于(A )1 (B )52 (C )3 (D )0 (3)已知函数52()ln 33f x x x =-,则0(1)(1)limx f f x x∆→-+∆=∆ (A )1 (B )1- (C )43- (D )53-(4)某班数学课代表给全班同学出了一道证明题.甲说:“丙会证明.”乙说:“我不会证明.”丙说:“丁会证明.”丁说:“我不会证明.”以上四人中只有一人说了真话,只有一人会证明此题.根据以上条件,可以判定会证明此题的人是 (A )甲 (B )乙 (C )丙 (D )丁 (5)已知,x y R ∈, i 为虚数单位,若()123xi y i +=--,则x yi +=(A )10 (B )3 (C )5 (D )2 (6)函数()()3e xf x x =-的单调递增区间是(A )()0,3 (B )()1,4 (C )()2,+∞ (D )(),2-∞(7)函数32()23f x x x a =-+的极大值为6,那么a 的值是(A )6 (B )5 (C )1 (D )0(8)以正弦曲线sin y x =上一点P 为切点得切线为直线l ,则直线l 的倾斜角的范围是(A )30,,424πππ⎡⎤⎡⎫⋃⎪⎢⎥⎢⎣⎦⎣⎭ (B )[)0,π (C )3,44ππ⎡⎤⎢⎥⎣⎦(D )30,,44πππ⎡⎤⎡⎫⋃⎪⎢⎥⎢⎣⎦⎣⎭(9)在复平面内,若2(1)(4)6z m i m i i =+-+-所对应的点位于第二象限,则实数m 的取值范围是(A )(0,3) (B )(,2)-∞- (C )(2,0)- (D )(3,4)(10)设()f x '是函数()f x 的导函数,将()y f x =和()y f x '=的图象画在同一个直角坐标系中,错误..的是(11)若函数()2(0)xf x a x a=>+在[)1,+∞上的最大值为33,则a = (A )31- (B )34 (C )43(D )31+ (12)已知()f x 是定义在区间(0)+∞,上的函数,其导函数为()f x ',且不等式()2()x f x f x '<恒成立,则(A )4(1)(2)f f < (B )4(1)(2)f f > (C )(1)4(2)f f < (D )(1)4(2)f f '<第II 卷二、填空题:本题共4小题,每小题5分. (13)若函数321()(1)3f x x f x x '=-⋅+,则(1)f '=__________. (14)由曲线xy e x =+与直线0,1,0x x y ===所围成图形的面积等于__________. (15)观察下列各式: 1a b +=, 223a b +=, 334a b +=, 447a b +=, 5511a b +=,…,则1010a b +=(16)若直线y kx b =+是曲线ln 1y x =+的切线,也是曲线ln(2)y x =+的切线,则k =_______.三、解答题:解答应写出文字说明、证明过程或演算步骤. (17)(本小题满分12分)已知复数()()227656z a a a a i a R =-++--∈,求a 分别为何值时,(1)z 是实数; (2)z 是纯虚数; (3)当106za =-时,求z 的共轭复数.(18)(本小题满分10分) 已知数列{}n a 满足)(1,111++∈+==N n a a a a nnn (1)分别求234,,a a a 的值;(2)猜想{}n a 的通项公式n a ,并用数学归纳法证明.(19)(本小题满分12分)已知函数32()f x x ax bx =++在23x =-与1x =处都取得极值. (1)求函数()f x 的解析式;(2)求函数()f x 在区间[2,2]-的最大值与最小值.(20)(本小题满分12分)已知函数f (x )=ln xx.(1)判断函数()f x 的单调性;(2)若y =xf (x )+1x的图象总在直线y =a 的上方,求实数a 的取值范围.(21)(本小题满分12分)某商场为了获得更大的利润,每年要投入一定的资金用于广告促销.经调查,每年投入广告费t (百万元),可增加的销售额为25t t -+(百万元)03t ≤≤(). (1)若该商场将当年的广告费控制在三百万元以内,则应投入多少广告费,才能使公司由广告费而产生的收益最大?(注:收益=销售额-投入费用)(2)现在该商场准备投入三百万元,分别用于广告促销和技术改造.经预算,每投入技术改造费x (百万元),可增加的销售额约为32133x x x -++(百万元),请设计一个资金分配方案,使该商场由这两项共同产生的收益最大.(22)(本小题满分12分) 已知函数()ln m f x x x=+(其中m R ∈),()161x g x e x +=-+(其中e 为自然对数的底数).(1)若曲线()y f x =在1x =处的切线与直线2450x y -+=垂直,求()f x 的单调区间和极值;(2)若对任意11,22x ⎡⎤∈⎢⎥⎣⎦,总存在[]22,3x ∈使得()()312120f x g x e -+-≥成立,求实数m 的取值范围.xx 第二学期第一次考试 高二年级理科数学试题参考答案一、 选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案CCBBACADDDAB(1)【答案】C 【解析】由M ∩N ={4},知4∈M ,故z i =4,故z =4i =4i i 2=-4i.(2)【答案】C 【解析】由导数的几何意义得()()1151,112.222k f f ===⨯+=' 所以()()11f f +'=15+=322,故选C. (3)【答案】B(4)【答案】B 【解析】如果甲会证明,乙与丁都说了真话,与四人中只有一人说了真话相矛盾,不合题意;排除选项A ;如果丙会证明,甲乙丁都说了真话,与四人中只有一人说了真话相矛盾,不合题意,排除选项C ;如果丁会证明,丙乙都说了真话,与四人中只有一人说了真话相矛盾,不合题意,排除选项D ,故选B. (5)【答案】A 【解析】()123xi y i +=-- 21{3y x -=⇒=- 3{1x y =-⇒=,则10x yi +=. (6)【答案】C 【解析】()()()e 3e e2xxxf x x x '=+-=-,令()()e 20x f x x '=->,解得2x >,所以函数()f x 的单调增区间为()2,+∞.故选C . (7)【答案】A 【解析】()()322()23,6661f x x x a f x x x x x '=-+∴=-=-,令()0,f x '=可得0,1x =,容易判断极大值为()06f a ==.故选A. (8)【答案】D 【解析】由题得cos y x '=,设切线的倾斜角为α,则][3tan cos 1tan 10,,44k x ππαααπ⎡⎫==∴-≤≤∴∈⋃⎪⎢⎣⎭,故选D.(9)【答案】D 【解析】整理得22(4)(6)z m m m m i =-+--对应的点位于第二象限,则224060m m m m ⎧-<⎪⎨-->⎪⎩,解得34m <<. (10)【答案】D 【解析】经检验,A :若曲线为原函数图象,先减后增,则其导函数先负后正,正确;B :若一直上升的函数为原函数图象,单调递增,则其导函数始终为正,正确;C:若下方的图象为原函数图象,单调递增,则其导函数始终为正,正确;D :若下方的函数为原函数,则其导函数为正,可知原函数应单调递增,矛盾;若上方的函数图象为原函数图象,则由导函数可知原函数应先减后增,矛盾.故选D. (11)【答案】A②当1a ≤,即1a ≤时, ()f x 在[)1,+∞上单调递减,故()()max 111f x f a ==+. 令1313a =+,解得31a =-,符合题意. 综上31a =-.(12)【答案】B 【解析】设函数2()()f x g x x=(0)x >, 则243()2()()2()()0x f x xf x xf x f x g x x x''--'==<, 所以函数()g x 在(0,)+∞上为减函数,所以(1)(2)g g >,即22(1)(2)12f f >, 所以4(1)(2)f f >,故选B. 二、填空题 (13)【答案】23【解析】∵f (x )=13x 3-f ′(1)·x 2+x ,∴f ′(x )=x 2-2f ′(1)·x +1, ∴f ′(1)=1-2f ′(1)+1,∴f′(1)=23. (14)【答案】e -12 【解析】由已知面积S =10⎰(e x+x )d x =⎝⎛⎭⎪⎫e x +12x 210|=e +12-1=e -12.(15)123(16)【答案】12【解析】设直线y kx b =+与曲线ln 1y x =+和ln(2)y x =+的切点分别为()11,x kx b +,()22,x kx b +.由导数的几何意义可得12112k x x ==+,得122x x =+,再由切点也在各自的曲线上,可得1122ln 1,(),ln 2kx b x kx b x +=++=+⎧⎨⎩联立上述式子解得12k =. 三、解答题(17)解:(1)Z 是实数, 2560a a --=,得61a a ==-或(2)Z 是纯虚数, 2760a a -+=,且2560a a --≠,得1a = (3)当106za =-时, ()()1110a a i -++=, 得()()221110a a -++=,得2a =± 当2a =时, 412z i =--,得412Z i =-+; 当2a =-时, 248z i =+,得248Z i =-(18) 解: (1)3111,2112121223112=+=+==+=a a a a a a ,41113131334=+=+=a a a (2)猜想)(1+∈=N n na n ①当n =1时命题显然成立②假设)(+∈=N k k n 命题成立,即ka k 1= 当11111111+=+=+=+=+k a a ,ak n kk k k k 时 1+=∴k n 时命题成立综合①②,当+∈N n 时命题成立(19)解:(1) 2()32f x x ax b '=++,由题意2()03(1)0f f ⎧'-=⎪⎨⎪'=⎩即44033320ab a b ⎧-+=⎪⎨⎪++=⎩ 解得122a b ⎧=-⎪⎨⎪=-⎩,经检验符合题意,321()22f x x x x ∴=--(2)由(1)知2()3()(1)3f x x x '∴=+-, 令()0f x '=,得122,13x x =-=, 当x 变化时,f ′(x ),f (x )的变化情况如下表:x -2⎝⎛⎭⎪⎫-2,-23 -23 ⎝ ⎛⎭⎪⎫-23,1 1 (1,2) 2f ′(x )+0 -0 +f (x ) -6极大值2227极小值-322由上表知f max (x )=f (2)=2,f min (x )=f (-2)=-6. (20)解:(I) 21ln ()xf x x-'=当0x e << 时,()0f x '>,()f x 为增函数; 当x e >时,()0f x '<,()f x 为减函数. (2)依题意得,不等式1ln a x x<+对于0x >恒成立.令1()ln g x x x =+,则22111()x g x x x x-'=-=. 当(1,)x ∈+∞时,21()0x g x x -'=>,则()g x 是(1,)+∞上的增函数; 当(0,1)x ∈时,()0g x '<,则()g x 是(0,1)上的减函数. 所以()g x 的最小值是(1)1g =, 从而a 的取值范围是(,1)-∞.(21)解:(1)设投入广告费t (百万元)后由此增加的收益为()f t (百万元),则()2254f t t t t t t =-+-=-+ ()224t =--+, 03t ≤≤.所以当2t =时, ()max 4f t =,即当商场投入两百万元广告费时,才能使商场由广告费而产生的收益最大.(2)设用于技术改造的资金为x (百万元),则用于广告促销的费用为()3x -(百万元),则由此两项所增加的收益为()()23213[33g x x x x x =-+++-- ()3153]3433x x x +--=-++.()2'4g x x =-+,令()2'40g x x =-+=,得2x =或2x =-(舍去).当02x <<时, ()'0g x >,即()g x 在[)0,2上单调递增; 当23x <<时, ()'0g x <,即()g x 在(]2,3上单调递减, ∴当2x =时, ()()max 2523g x g ==. 故在三百万资金中,两百万元用于技术改造,一百万元用于广告促销,这样商场由此所增加的收益最大,最大收益为253百万元. (22)(2)由()161x g x ex +=-+, ()1'6x g x e +=-,当[]2,3x ∈时, ()'0g x >, ()g x 单调递增,故()g x 有最小值()3211g e =-,因为对任意11,22x ⎡⎤∈⎢⎥⎣⎦,总存在[]22,3x ∈使得()()312120f x g x e -+-≥,即()()31212f x e g x +-≥成立,所以对任意11,22x ⎡⎤∈⎢⎥⎣⎦,都有()3311211f x e e +-≥-,即()11f x ≥, 也即11ln 1m x x +>成立,从而对任意11,22x ⎡⎤∈⎢⎥⎣⎦,都有111ln m x x x ≥-成立, 构造函数()ln x x x x ϕ=- 1,22x ⎛⎫⎡⎤∈ ⎪⎢⎥⎣⎦⎝⎭,则()'ln x x ϕ=-,令()'0x ϕ=,得1x =,当1,12x ⎛⎫∈ ⎪⎝⎭时, ()'0x ϕ>, ()x ϕ单调递增;当()1,2x ∈时, ()'0x ϕ<, ()x ϕ单调递减,∴()x ϕ的最大值为()11ϕ=,∴1m ≥,综上,实数m 的取值范围为[)1,+∞.【感谢您的阅览,下载后可自由编辑和修改,关注我 每天更新】。

湖北省襄阳市第五中学2023-2024学年高二上学期10月月考数学试题

湖北省襄阳市第五中学2023-2024学年高二上学期10月月考数学试题

x2 8
+
y2 4
= 1 外一点 P
x0, y0
作椭圆 C 的两条切线,切点分别为 A, B ,若直线
PA, PB 的斜率之积为 m ( m 为大于 0 的常数),则点 P 的轨迹可能是( )
A.两条直线的一部分 C.椭圆的一部分
B.圆的一部分 D.双曲线的一部分
三、填空题 13.已知圆 C1 : x2 + y2 = 1 ,圆 C2 : (x - 4)2 + y2 = 25 ,则两圆公切线的方程为 .
则直线 l 的斜率为 k = tana =
1= 3
3, 3
因为 0π£ a <
,所以a
=
π 6
.
故选:A. 2.D 【分析】根据平均数与方差的含义即可求解. 【详解】方差反映的是一组数据的波动情况,方差越大说明数据偏离平均水平的程度越大, 平均数是整体的平均水平,是一组数据的集中程度的刻画,所以最能体现共同富裕要求的 是平均数大,方差小. 故选:D 3.B
5 分,部分选对的得 2 分,有选错的得 0 分.”已知某选择题的正确答案是 CD ,且甲、乙、 丙、丁四位同学都不会做,下列表述正确的是( )
A.甲同学仅随机选一个选项,能得
2
分的概率是
1 2
B.乙同学仅随机选两个选项,能得 5 分的概率是 1 6
C.丙同学随机选择选项(即随机选 1 个、2 个、3 个或者 4 个选项),能得分的概率
,若对每一个确定的实数 k ,记
PQ
的最大值为 dmax ,则当 k 变化时, dmax
的最小值是( )
A.1
B. 2
C.2
D. 2 2
二、多选题 9.下列说法错误的是( )

重庆市2024-2025学年高二上学期第1次月考数学试题(无答案)

重庆市2024-2025学年高二上学期第1次月考数学试题(无答案)

重庆2024-2025学年度上期高二年级数学月考测试题(时间:120分钟 满分:150分)一、单选题(本题共8题小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.若,则a 的值为( )A .或1或2B .或1C .或2D .22.已知复数z 满足(i 为虚数单位),则z 的虚部为( )A .B .C .D .3.已知向量,满足,,则在方向上的投影向量为( )A .2B .C .D .4.已知点P 在椭圆上,点,分别为椭圆C 的左、右焦点,满足,的面积为12,椭圆C 的焦距为8,则椭圆C 的标准方程为( )A .B .C .D .5.设三棱柱的侧棱垂直于底面,所有棱的长都为a ,顶点都在一个球面上,则该球的表面积为( )A .B .C .D .6.已知圆与直线,过l 上任意一点P 向圆C 引切线,切点为A 和B ,若线段ABm 的值为( )A BCD7.已知两个不同的圆,均过定点,且圆,均与x 轴、y 轴相切,则圆与圆的半径之积为( )A .B .C .D .{}221,3,a a +∈1-1-1-2024(1i)iz +⋅=1212-12ii 12-a b||1b = a b ⊥ 2a b - b 2a2b- 2-2222:1(0)x y C a b a b+=>>1F 2F 12PF PF ⊥12PF F △2218824x y +=2217612x y +=2214024x y +=2212812x y +=243aπ273aπ283aπ2163a π22:20C x x y -+=:2(0)l y mx m m =+>1C 2C (,)A a b 1C 2C 1C 2C 22a b+2||ab 222a b +||ab8.已知直线与圆交于A,B两点,过A,B分别作x轴的垂线,垂足分别为C,D两点,若,则m为()A.B.CD二、多选题(本题共3小题,每小题6分,共18分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019学年高二年级第五次月考试题理科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.方程221102x y m m +=--表示焦点在x 轴上的椭圆,则m 的取值范围为( ) A .()2,+∞ B .()()2,66,10U C .()2,10 D .()2,6 2.命题“对任意x ∈R ,都有20x ≥”的否定为( )A .对任意x ∈R ,都有20x <B .不存在x ∈R ,都有20x <C .存在0x ∈R ,使得200x ≥D .存在0x ∈R ,使得200x <3.设x ∈R ,则“12x -<”是“2450x x --<”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件4.椭圆22143x y +=的左、右焦点分别为12F F 、,过2F 作x 轴的垂线交椭圆于点P ,过P 与原点O 的直线交椭圆于另一点Q ,则1F PQ ∆的周长为( )A .4B .8C .4D .25.某种商品的广告费支出x 与销售额y (单位:万元)之间有如下对应数据,根据表中提供的全部数据,用最小二乘法得出ˆy 与x 的线性回归方程为ˆ 6.517.5y x =+,则表中的m 的值为( )A .45B .50C .55D .606.《九章算术》中有如下问题:“今有勾八步,股一十五步,问勾中容圆,径几何?”其大意:“已知直角三角形两直角边长分别为8步和15步,问其内切圆的直径为多少步?”现若向此三角形内随机投一粒豆子,则豆子落在其内切圆外的概率是( ) A .310π B .320π C .3110π- D .3120π- 7.已知双曲线()222210,0x y a b a b-=>>的两条渐近线与抛物线28y x =-的准线分别交于,A B 两点,O 为坐标原点,若ABO ∆的面积为 )A B .2 C .4 8.执行如图的程序框图,则输出K 的值为( )A .98B .99C .100D .1019.如下图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积为( )A .96B .80+C .)9641π+ D .()9641π+-10.如下图,在三棱柱111ABC A B C -中,底面为正三角形,侧棱垂直底面,4AB =,16AA =.若,E F 分别是棱11,BB CC 上的点,且1BE B E =,1113C F CC =,则异面直线1A E 与AF 所成角的余弦值为( )A .6-B .6C .10-D .1011.定义方程()()f x f x '=的实数根0x 叫做函数()f x 的“新驻点”,若函数()g x x =,()()ln 1h x x =+,()31x x ϕ=-的“新驻点”分别为,,αβγ,则,,αβγ的大小关系为( )A .αβγ>>B .βαγ>>C .γαβ>>D .βγα>> 12.设过抛物线24y x =的焦点F 的直线l 交抛物线于点,A B ,若以AB 为直径的圆过点()1,2P -,且与x 轴交于(),0M m ,(),0N n 两点,则mn =( )A .3B .2C .-3D .-2第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.如果函数()()324f x x ax a x =++-,()a R ∈的导函数()f x '是偶函数,则曲线()y f x =在原点处的切线方程是 .14.已知12,F F 是双曲线()2222:10,0x y C a b a b-=>>的左、右焦点,过1F 的直线l 与C 的左、右两支分别交于,A B 两点.若22::3:4:5AB BF AF =,则双曲线的离心率为 .15.点P 是曲线2ln y x x =-上任意一点,则点P 到直线2y x =-的距离的最小值是 .16.已知抛物线()2:20C y px p =>的焦点为F ,过点F 的直线l 与抛物线C 及其准线分别交于,P Q 两点,3QF FP =uu u r uu r,则直线l 的斜率为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知中心在坐标原点的椭圆E 的长轴的一个端点是抛物线2y =的焦点,且椭圆E 的离心率是3(1)求椭圆E 的方程;(2)过点()1,0C -的动直线与椭圆E 相交于,A B 两点.若线段AB 的中点的横坐标是12-,求直线AB 的方程. 18. 如图,ABCD 是边长为3的正方形,DE ⊥平面ABCD ,AF DE ∥,3DE AF =,BE 与平面ABCD 所成角为60°.(Ⅰ)求证:AC ⊥平面BDE . (Ⅱ)求锐二面角F BE D --的余弦值.(Ⅲ)设点M 是线段BD 上一个动点,试确定点M 的位置,使得AM ∥面BEF ,并证明你的结论.19. 已知椭圆方程C 为:()22221,0x y a b a b +=>>椭圆的右焦点为()1,0,离心率为12e =,直线:l y kx m =+与椭圆C 相交于A B 、两点,且34OA OB k k ⋅=- (1)椭圆的方程 (2)求AOB ∆的面积;20. 为增强市民的节能环保意识,某市面向全市征召义务宣传志愿者.从符合条件的500名志愿者中随机抽取100名志愿者,其年龄频率分布直方图如图所示,(1)求图中x 的值并根据频率分布直方图估计这500名志愿者中年龄在[)35,40岁的人数; (2)在抽出的100名志愿者中按年龄采用分层抽样的方法抽取20名参加中心广场的宣传活动,再从这20名中采用简单随机抽样方法选取3名志愿者担任主要负责人.记这3名志愿者中“年龄低于35岁”的人数为X ,求X 的分布列及均值.21. 已知椭圆()2222:10x y C a b a b +=>>的离心率为12,且过点(,,A B 是椭圆C 上异于长轴端点的两点. (1)求椭圆C 的方程;(2)已知直线:8l x =,且1A A l ⊥,垂足为1A ,1BB l ⊥,垂足为1B ,若()3,0D ,且11A B D ∆的面积是ABD ∆面积的5倍,求ABD ∆面积的最大值.22.已知椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为12F F 、,椭圆C 过点1,2P ⎛⎫⎪ ⎪⎝⎭,直线1PF 交y 轴于Q ,且22PF QO =u u u r u u u r ,O 为坐标原点. (1)求椭圆C 的方程;(2)设M 是椭圆C 的上顶点,过点M 分别作直线,MA MB 交椭圆C 于,A B 两点,设这两条直线的斜率分别为12,k k ,且122k k +=,证明:直线AB 过定点.2019学年高二年级第五次月考理科数学试题参考答案一、选择题1-5:DDACD 6-10:DBCCD 11、12:CC 二、填空题13.4y x =- 1416.三、解答题17.解:(1)由题知椭圆E 的焦点在x轴上,且a =又c ea ===,故b === 故椭圆E 的方程为221553x y +=,即2235x y +=. (2)依题意,直线AB 的斜率存在,设直线AB 的方程为()1y k x =+,将其代入2235x y +=,消去y ,整理得()2222316350k x k x k +++-=. 设,A B 两点坐标分别为()11,x y ,()22,x y .则()()422212236431350,*631k k k k x x k ⎧∆=-⋅+⋅->⎪⎨+=-⎪+⎩由线段AB 中点的横坐标是12-,得2122312312x x k k +=-=-+,解得k =±,符合(*)式. 所以直线AB的方程为10x +=或10x +=.18.解析:(Ⅰ)证明:∵DE ⊥平面ABCD ,AC ⊂平面ABCD ,∴DE AC ⊥, 又∵ABCD 是正方形,∴AC BD ⊥, ∵BD DE D =I ,∴AC ⊥平面BDE .(Ⅱ)∵,,DA DC DE 两两垂直,所以建立如图空间直角坐标系D xyz -, ∵BE 与平面ABCD 所成角为60°,即60DBE ∠=︒,∴EDDB=, 由3AD =,可知:DE =AF =则()3,0,0A,(F,(E ,()3,3,0B ,()0,3,0C ,∴(0,BE =-uur,(3,0,EF =-uu u r,设平面BEF 的法向量为(),,n x y z =r,则 0n BF n EF ⎧⋅=⎪⎨⋅=⎪⎩r uu u r r uu ur,即3030y x ⎧-+=⎪⎨-=⎪⎩,令z =(4,n =r . 因为AC ⊥平面BDE ,所以CA 为平面BDE 的法向量,∴()3,3,0CA =-su u,所以cos ,13n CA n CA n CA ⋅===r uu rr uu r r uu r .因为二面角为锐角, 故二面角F BE D --(Ⅲ)依题意得,设()(),,00M t t t >,则()3,,0AM t t =-,∵AM ∥平面BEF ,∴0AM n ⋅=uuu r r,即()4020t t -+=,解得:2t =,∴点M 的坐标为()2,2,0, 此时23DM DB =,∴点M 是线段BD 靠近B 点的三等分点.19.解:(1)由已知11,2c c a ==,∴2a =,∴2223b a c =-= 椭圆方程为:22143x y += (2)设()11,A x y ,()22,B x y ,则,A B 的坐标满足22143x y y kx m ⎧+=⎪⎨⎪=+⎩消去y 化简得,()2223484120k x kmx m +++-=,122834kmx x k+=-+ 2122412034m x x k-=->+,得22430k m -+> ()()1212y y kx m kx m =++=()21212k x x km x x m +++,222222224128312343434m km m k k km m k k k --⎛⎫=+-+= ⎪+++⎝⎭. 34OA OB K K ⋅=-,121234y y x x -=,即121234y y x x -= ∴22222312341234434m k m k k ---=++22243m k -=,AB ====O 到直线ykx m =+的距离d =∴12AOBS d AB ∆=====.20.解:(1)∵小矩形的面积等于频率, ∴除[)35,40外的频率和为0.70, ∴10.700.065x -==. 故500名志愿者中,年龄在[)35,40岁的人数为0.065500150⨯⨯=(人).(2)用分层抽样的方法,从中选取20名,则其中年龄“低于35岁”的人有12名,“年龄不低于35岁”的人有8名. 故X 的可能取值为0,1,2,3,()38320140285C P X C ===,()1212832028195C C P X C ===, ()2112832044295C C P X C ===,()31232011357C P X C ===, 故X 的分布列为∴()14012328595955795E X =⨯+⨯+⨯+⨯=. 21.解:(1)依题意222221231,,a b a b c ⎧+=⎪⎨⎪=+⎩解得4,2,a b c =⎧⎪=⎨⎪=⎩故椭圆C 的方程为2211612x y +=. (2)设直线AB 与x 轴相交于点(),0R r132ABD A B S r y y ∆=-⋅-,1111152A B D A B S y y ∆=⨯⨯-, 由于115A B D ABD S S ∆∆=且11A B A B y y y y -=-, 得553r =⨯-,4r =(舍去)或2r =, 即直线AB 经过点()2,0F ,设()11,A x y ,()22,B x y ,AB 的直线方程为:2x my =+,由222,3448,x my x y =+⎧⎨+=⎩即()223412360m y my ++-=,1221234m y y m -+=+,1223634y y m -=+,1212ABDS y y ∆=-==()212311m =++, 令1t =≥,所以212121313ABD t S t t t∆==++, 因为11333t t t t ⎛⎫ ⎪+=+ ⎪ ⎪⎝⎭,所以13t t+在⎫+∞⎪⎪⎭上单调递增,所以在[)1,t ∈+∞上单调递增,所以134t t+≥,所以3ABDS ∆≤(当且仅当1t ==,即0m =时“=”成立), 故ABD S ∆的最大值为3. 22.解:(1)∵椭圆C 过点1,2P ⎛ ⎝⎭,∴221112a b+=①, ∵22PF QO =,∴212PF F F ⊥,则1c =,∴221a b -=②,由①②得22a =,21b =,∴椭圆C 的方程为2212x y += (2)当直线AB 的斜率不存在时,设()00,A x y ,则()00,B x y -, 由122k k +=得0000112y y x x ---+= 得01x =-,当直线AB 的斜率存在时,设AB 的方程为()1y kx m m =+≠,()11,A x y ,()22,B x y ,()22221122x y k x y kx m ⎧+=⎪⇒+⎨⎪=+⎩24220kmx m ++-=,得122412kmx x k -+=+,21222212m x x k -⋅=+,1212121122y y k k x x --+=⇒+=()()211221112kx m x kx m x x x +-++-⇒=,即()()()2121221k x x m x x -=-+⇒()()()()2222214k m m km --=--, 由1m ≠,()()111k m km k m -+=-⇒=+, 即()1y kx m m x m =+=++()1m x y x ⇒+=-. 故直线AB 过定点()1,1--.2019学年高二年级第五次月考理科数学试题参考答案二、填空题13、4y x =- 1415、、三、解答题17、解析:(1)由题知椭圆E 的焦点在x 轴上,且a =5,又c =ea =63×5=303,故b =a 2-c 2=5-103=53,故椭圆E 的方程为x 25+y 253=1,即x 2+3y 2=5。

相关文档
最新文档