江苏专用版高考数学大一轮复习第十二章推理与证明算法复数123算法与流程图教师用书文苏教版04270139
(江苏专用)高考数学大一轮复习 第十二章 推理与证明、算法、复数 12.4 复数教师用书 文 苏教版
12.4 复数1.复数的有关概念(1)定义:形如a +b i(a ,b ∈R )的数叫做复数,其中a 叫做复数z 的实部,b 叫做复数z 的虚部.(i 为虚数单位) (2)分类:满足条件(a ,b 为实数)复数的分类a +b i 为实数⇔b =0a +b i 为虚数⇔b ≠0 a +b i 为纯虚数⇔a =0且b ≠0(3)复数相等:a +b i =c +d i ⇔a =c 且b =d (a ,b ,c ,d ∈R ). (4)共轭复数:a +b i 与c +d i 共轭⇔a =c ,b =-d (a ,b ,c ,d ∈R ).(5)模:向量OZ →的模叫做复数z =a +b i 的模,记作|a +b i|或|z |,即|z |=|a +b i|=a 2+b 2(a ,b ∈R ). 2.复数的几何意义复数z =a +b i 与复平面内的点Z (a ,b )及平面向量OZ →=(a ,b )(a ,b ∈R )是一一对应关系. 3.复数的运算(1)运算法则:设z 1=a +b i ,z 2=c +d i ,a ,b ,c ,d ∈R(2)几何意义:复数加减法可按向量的平行四边形或三角形法则进行.如图给出的平行四边形OZ 1ZZ 2可以直观地反映出复数加减法的几何意义,即OZ →=OZ 1→+OZ 2→,Z 1Z 2→=OZ 2→-OZ 1→. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)方程x 2+x +1=0没有解.( × )(2)复数z =a +b i(a ,b ∈R )中,虚部为b i.( × )(3)复数中有相等复数的概念,因此复数可以比较大小.( × ) (4)原点是实轴与虚轴的交点.( √ )(5)复数的模实质上就是复平面内复数对应的点到原点的距离,也就是复数对应的向量的模.( √ )1.(2016·全国乙卷改编)设(1+2i)(a +i)的实部与虚部相等,其中a 为实数,则a =________. 答案 -3解析 ∵(1+2i)(a +i)=a -2+(2a +1)i , ∴a -2=2a +1,解得a =-3.2.(2016·某某模拟)已知复数z 满足(3+i)z =10i(i 为虚数单位),则复数z 的共轭复数是__________. 答案 1-3i解析 复数z =10i 3+i =10i 3-i10=1+3i ,则复数z 的共轭复数是z =1-3i.3.在复平面内,复数6+5i ,-2+3i 对应的点分别为A ,B .若C 为线段AB 的中点,则点C 对应的复数是______. 答案 2+4i解析 ∵A (6,5),B (-2,3),∴线段AB 的中点C (2,4), 则点C 对应的复数为z =2+4i. 4.i2 011+i2 012+i2 013+i2 014+i2 015+i2 016+i2 017=________.答案 1解析 原式=i 3+i 4+i 1+i 2+i 3+i 4+i =1.5.(教材改编)在复平面内,向量AB →对应的复数是2+i ,向量CB →对应的复数是-1-3i ,则向量CA →对应的复数是____________. 答案 -3-4i解析 CA →=CB →+BA →=-1-3i +(-2-i)=-3-4i.题型一 复数的概念例1 (1)(2016·某某模拟)若复数z =(1-i)(m +2i)(i 为虚数单位)是纯虚数,则实数m 的值为________.(2)若z 1=(m 2+m +1)+(m 2+m -4)i(m ∈R ),z 2=3-2i ,则“m =1”是“z 1=z 2”的____________条件.(3)(2016·某某)i 是虚数单位,复数z 满足(1+i)z =2,则z 的实部为________. 答案 (1)-2 (2)充分不必要 (3)1解析 (1)z =m -m i +2i +2=(m +2)+(2-m )i. ∵z 为纯虚数,∴m =-2.(2)由⎩⎪⎨⎪⎧m 2+m +1=3,m 2+m -4=-2,解得m =-2或m =1,所以“m =1”是“z 1=z 2”的充分不必要条件. (3)∵(1+i)z =2,∴z =21+i=1-i , ∴其实部为1. 引申探究将本例(3)中的条件“(1+i)z =2”改为“(1+i)3z =2”,求z 的实部. 解 z =21+i3=2-2+2i=-12-12i ,∴z 的实部为-12.思维升华 解决复数概念问题的方法及注意事项(1)复数的分类及对应点的位置都可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式)组即可.(2)解题时一定要先看复数是否为a +b i(a ,b ∈R )的形式,以确定实部和虚部.(1)(2016·某某模拟)若复数z 满足(3-4i)z =|4+3i|,则z 的虚部为________.(2)如果复数m 2+i 1-m i是实数,则实数m =________.答案 (1)45(2)-1解析 (1)∵|4+3i|=42+32=5, ∴z =53-4i =53+4i 25=35+45i ,虚部为45.(2)因为m 2+i 1-m i =m 2+i 1+m i1+m 2=m 2-m +1+m 3i1+m2是实数, 所以1+m 31+m 2=0,所以m =-1. 题型二 复数的运算 命题点1 复数的乘法运算例2 (1)(2016·某某改编)设i 为虚数单位,则复数(1+i)2=________.(2)(2016·全国乙卷改编)设(1+i)x =1+y i ,其中x ,y 是实数,则|x +y i|=________. (3)(2015·课标全国Ⅱ改编)若a 为实数,且(2+a i)(a -2i)=-4i ,则a =________. 答案 (1)2i (2) 2 (3)0解析 (1)(1+i)2=12+i 2+2i =1-1+2i =2i.(2)由(1+i)x =1+y i ,得x +x i =1+y i ⇒⎩⎪⎨⎪⎧x =1,x =y ⇒⎩⎪⎨⎪⎧x =1,y =1.所以|x +y i|=x 2+y 2=2.(3)因为a 为实数,且(2+a i)(a -2i)=4a +(a 2-4)i =-4i ,得4a =0且a 2-4=-4,解得a =0.命题点2 复数的除法运算例3 (1)(2016·全国丙卷改编)若z =1+2i ,则4iz z -1=________.(2)(2016·改编)复数1+2i2-i =________.(3)(1+i 1-i )6+2+3i 3-2i =________.答案 (1)i (2)i (3)-1+i 解析 (1)z =1+2i ,z z =5,4iz z -1=i.(2)1+2i 2-i =1+2i 2+i 2-i 2+i =5i5=i.(3)原式=[1+i 22]6+2+3i3+2i 32+22=i 6+6+2i +3i -65=-1+i.命题点3 复数的综合运算例4 (1)(2016·某某改编)若复数z 满足2z +z =3-2i ,其中i 为虚数单位,则z =________.(2)(2016·全国丙卷改编)若z =4+3i ,则z|z |=______.答案 (1)1-2i (2)45-35i解析 (1)设z =a +b i(a ,b ∈R ),则z =a -b i ,∴2(a +b i)+(a -b i)=3-2i ,整理得3a +b i =3-2i ,∴⎩⎪⎨⎪⎧3a =3,b =-2,解得⎩⎪⎨⎪⎧a =1,b =-2,∴z =1-2i.(2)z =4-3i ,|z |=5,z|z |=45-35i. 思维升华 复数代数形式运算问题的常见类型及解题策略(1)复数的乘法.复数的乘法类似于多项式的四则运算,可将含有虚数单位i 的看作一类同类项,不含i 的看作另一类同类项,分别合并即可.(2)复数的除法.除法的关键是分子分母同乘以分母的共轭复数,解题中要注意把i 的幂写成最简形式.(3)复数的运算与复数概念的综合题.先利用复数的运算法则化简,一般化为a +b i(a ,b ∈R )的形式,再结合相关定义解答.(4)复数的运算与复数几何意义的综合题.先利用复数的运算法则化简,一般化为a +b i(a ,b ∈R )的形式,再结合复数的几何意义解答.(5)复数的综合运算.分别运用复数的乘法、除法法则进行运算,要注意运算顺序,要先算乘除,后算加减,有括号要先算括号里面的.(1)(2016·某某模拟)若i 为虚数单位,复数z =1+2i ,则z 2|z |2=________.(2)⎝⎛⎭⎪⎫1+i 1-i 2 017=________.(3)-23+i 1+23i +⎝ ⎛⎭⎪⎫21-i 2 017=________.答案 (1)-35+45i (2)i (3)22+(22+1)i解析 (1)因为z =1+2i ,所以z 2=(1+2i)2=-3+4i ,|z |=5,所以z 2|z |2=-3+4i 5=-35+45i.(2)(1+i 1-i )2 017=[1+i 21-i 1+i ]2 017=i 2 017=i.(3)-23+i 1+23i +(21-i )2 017=i 1+23i 1+23i+(21-i )[(21-i)2]1 008 =i +i 1 008·22(1+i)=22+(22+1)i. 题型三 复数的几何意义例5 (1)△ABC 的三个顶点对应的复数分别为z 1,z 2,z 3,若复数z 满足|z -z 1|=|z -z 2|=|z -z 3|,则z 对应的点为△ABC 的________. 答案 外心解析 由几何意义知,复数z 对应的点到△ABC 三个顶点距离都相等,z 对应的点是△ABC 的外心.(2)如图所示,平行四边形OABC ,顶点O ,A ,C 分别表示0,3+2i ,-2+4i ,试求:①AO →,BC →所表示的复数; ②对角线CA →所表示的复数; ③B 点对应的复数.解 ①AO →=-OA →,∴AO →所表示的复数为-3-2i. ∵BC →=AO →,∴BC →所表示的复数为-3-2i. ②CA →=OA →-OC →,∴CA →所表示的复数为 (3+2i)-(-2+4i)=5-2i.③OB →=OA →+AB →=OA →+OC →,∴OB →所表示的复数为(3+2i)+(-2+4i)=1+6i , 即B 点对应的复数为1+6i.思维升华 因为复平面内的点、向量及向量对应的复数是一一对应的,要求某个向量对应的复数时,只要找出所求向量的始点和终点,或者用向量相等直接给出结论即可.已知z 是复数,z +2i ,z2-i均为实数(i 为虚数单位),且复数(z +a i)2在复平面内对应的点在第一象限,某某数a 的取值X 围. 解 设z =x +y i(x ,y ∈R ),∴z +2i =x +(y +2)i ,由题意得y =-2. ∵z2-i =x -2i 2-i =15(x -2i)(2+i) =15(2x +2)+15(x -4)i , 由题意得x =4,∴z =4-2i.∵(z +a i)2=(12+4a -a 2)+8(a -2)i ,根据条件,可知⎩⎪⎨⎪⎧12+4a -a 2>0,8a -2>0,解得2<a <6,∴实数a 的取值X 围是(2,6).23.解决复数问题的实数化思想典例 (14分)已知x ,y 为共轭复数,且(x +y )2-3xy i =4-6i ,求x ,y .思想方法指导 (1)复数问题要把握一点,即复数问题实数化,这是解决复数问题最基本的思想方法.(2)本题求解的关键是先把x 、y 用复数的基本形式表示出来,再用待定系数法求解,这是常用的数学方法.(3)本题的易错原因为想不到利用待定系数法,或不能将复数问题转化为实数方程求解. 规X 解答解 设x =a +b i (a ,b ∈R ),则y =a -b i ,x +y =2a ,xy =a 2+b 2,[3分] 代入原式,得(2a )2-3(a 2+b 2)i =4-6i ,[5分]根据复数相等得⎩⎪⎨⎪⎧4a 2=4,-3a 2+b 2=-6,[7分]解得⎩⎪⎨⎪⎧a =1,b =1或⎩⎪⎨⎪⎧a =1,b =-1或⎩⎪⎨⎪⎧a =-1,b =1或⎩⎪⎨⎪⎧a =-1,b =-1.[10分]故所求复数为⎩⎪⎨⎪⎧x =1+i ,y =1-i或⎩⎪⎨⎪⎧x =1-i ,y =1+i或⎩⎪⎨⎪⎧x =-1+i ,y =-1-i或⎩⎪⎨⎪⎧x =-1-i ,y =-1+i.[14分]1.若复数z =(x 2-1)+(x -1)i 为纯虚数,则实数x 的值为________. 答案 -1解析 由复数z 为纯虚数,得⎩⎪⎨⎪⎧x 2-1=0,x -1≠0,解得x =-1.2.(2016·苏北联考)如果复数1,a +i,3+a 2i(a ∈R )成等比数列,那么a 的值为________. 答案 2解析 由题意知,(a +i)2=1×(3+a 2i), 即a 2-1+2a i =3+a 2i ,∴⎩⎪⎨⎪⎧a 2-1=3,2a =a 2, 解得a =2.3.若i 为虚数单位,图中复平面内点Z 表示复数z ,则表示复数z1+i的点是________.答案 H解析 由题图知复数z =3+i , ∴z1+i =3+i 1+i =3+i 1-i 1+i1-i =4-2i2=2-i. ∴表示复数z1+i的点为H .4.(2017·某某月考)z 是z 的共轭复数,若z +z =2,(z -z )i =2(i 为虚数单位),则z =________.答案 1-i解析 方法一 设z =a +b i ,a ,b 为实数,则z =a -b i.∵z +z =2a =2,∴a =1.又(z -z )i =2b i 2=-2b =2,∴b =-1.故z =1-i. 方法二 ∵(z -z )i =2,∴z -z =2i =-2i.又z +z =2,∴(z -z )+(z +z )=-2i +2, ∴2z =-2i +2,∴z =1-i. 5.设f (n )=⎝ ⎛⎭⎪⎫1+i 1-i n +⎝ ⎛⎭⎪⎫1-i 1+i n (n ∈N *),则集合{f (n )}中元素的个数为________.答案 3 解析 f (n )=⎝⎛⎭⎪⎫1+i 1-i n +⎝ ⎛⎭⎪⎫1-i 1+i n =i n +(-i)n ,f (1)=0,f (2)=-2,f (3)=0,f (4)=2,f (5)=0,…,∴集合中共有3个元素.6.集合M ={4,-3m +(m -3)i}(其中i 为虚数单位),N ={-9,3},若M ∩N ≠∅,则实数m 的值为________. 答案 3解析 由题意可知-3m +(m -3)i 必为实数,则m =3,经检验符合题意.7.(2016·某某模拟)设复数z =-1-i(i 为虚数单位),z 的共轭复数为z ,则|(1-z )·z |=________. 答案10解析 因为(1-z )z =(2+i)(-1+i)=-3+i , 所以|(1-z )z |=10.8.复数(3+i)m -(2+i)对应的点在第三象限内,则实数m 的取值X 围是________. 答案 (-∞,23)解析 z =(3m -2)+(m -1)i ,其对应点(3m -2,m -1)在第三象限内,故3m -2<0且m -1<0,∴m <23.9.已知集合M ={1,m,3+(m 2-5m -6)i},N ={-1,3},若M ∩N ={3},则实数m 的值为________. 答案 3或6解析 ∵M ∩N ={3},∴3∈M 且-1∉M , ∴m ≠-1,3+(m 2-5m -6)i =3或m =3,∴m 2-5m -6=0且m ≠-1或m =3, 解得m =6或m =3,经检验符合题意.10.已知i 是虚数单位,m 和n 都是实数,且m (1+i)=1+n i ,则(m +n i m -n i)2 017=________. 答案 i解析 由m (1+i)=1+n i ,得m =n =1, 所以(m +n i m -n i )2 017=(1+i 1-i)2 017=i 2 017=i. 11.若1+2i 是关于x 的实系数方程x 2+bx +c =0的一个复数根,则b =________,c =________. 答案 -2 3解析 ∵实系数一元二次方程x 2+bx +c =0的一个虚根为1+2i ,∴其共轭复数1-2i 也是方程的根. 由根与系数的关系知,⎩⎨⎧1+2i +1-2i =-b ,1+2i 1-2i =c ,∴b =-2,c =3. 12.给出下列命题: ①若z ∈C ,则z 2≥0;②若a ,b ∈R ,且a >b ,则a +i>b +i ; ③若a ∈R ,则(a +1)i 是纯虚数;④若z =-i ,则z 3+1在复平面内对应的点位于第一象限. 其中正确的命题是______.(填上所有正确命题的序号) 答案 ④解析 由复数的概念及性质知,①错误;②错误;若a =-1,则(a +1)i =0,③错误;z 3+1=(-i)3+1=i +1,④正确. 13.计算:(1)-1+i2+ii3;(2)1+2i 2+31-i2+i;(3)1-i1+i2+1+i 1-i2;(4)1-3i 3+i2.word 11 / 11 解 (1)-1+i 2+i i 3=-3+i -i =-1-3i. (2)1+2i 2+31-i 2+i =-3+4i +3-3i 2+i =i 2+i =i 2-i 5=15+25i. (3)1-i 1+i 2+1+i 1-i 2=1-i 2i +1+i -2i =1+i -2+-1+i 2=-1. (4)1-3i3+i 2=3+i -i 3+i 2=-i 3+i =-i 3-i 4 =-14-34i. 14.若虚数z 同时满足下列两个条件:①z +5z是实数; ②z +3的实部与虚部互为相反数.这样的虚数是否存在?若存在,求出z ;若不存在,请说明理由. 解 这样的虚数存在,z =-1-2i 或z =-2-i.设z =a +b i(a ,b ∈R 且b ≠0),z +5z =a +b i +5a +b i=a +b i +5a -b i a 2+b 2 =⎝ ⎛⎭⎪⎫a +5a a 2+b 2+⎝ ⎛⎭⎪⎫b -5b a 2+b 2i. ∵z +5z 是实数,∴b -5b a 2+b2=0. 又∵b ≠0,∴a 2+b 2=5.①又z +3=(a +3)+b i 的实部与虚部互为相反数,∴a +3+b =0.②由①②得⎩⎪⎨⎪⎧ a +b +3=0,a 2+b 2=5, 解得⎩⎪⎨⎪⎧ a =-1,b =-2或⎩⎪⎨⎪⎧ a =-2,b =-1,故存在虚数z ,z =-1-2i 或z =-2-i.。
高考数学大一轮复习 第十二章 推理与证明、算法、复数 12.1 合情推理与演绎推理教师用书 文 苏教
(江苏专用)2018版高考数学大一轮复习第十二章推理与证明、算法、复数12.1 合情推理与演绎推理教师用书文苏教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((江苏专用)2018版高考数学大一轮复习第十二章推理与证明、算法、复数12.1 合情推理与演绎推理教师用书文苏教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(江苏专用)2018版高考数学大一轮复习第十二章推理与证明、算法、复数12.1 合情推理与演绎推理教师用书文苏教版的全部内容。
12。
1 合情推理与演绎推理1.合情推理(1)归纳推理①定义:从个别事实中推演出一般性的结论,称为归纳推理(简称归纳法).②特点:归纳推理是由部分到整体、由个别到一般的推理.(2)类比推理①定义:根据两个(或两类)对象之间在某些方面的相似或相同,推演出它们在其他方面也相似或相同,像这样的推理通常称为类比推理(简称类比法).②特点:类比推理是由特殊到特殊的推理.(3)合情推理合情推理是根据已有的事实、正确的结论、实验和实践的结果,以及个人的经验和直觉等推测某些结果的推理过程.归纳推理和类比推理都是数学活动中常用的合情推理.2.演绎推理(1)演绎推理一种由一般性的命题推演出特殊性命题的推理方法称为演绎推理.简言之,演绎推理是由一般到特殊的推理.(2)“三段论”是演绎推理的一般模式,包括:①大前提—-一般性的原理;②小前提-—特殊对象;③结论--揭示了一般原理与特殊对象的内在联系.【思考辨析】判断下列结论是否正确(请在括号中打“√"或“×”)(1)归纳推理得到的结论不一定正确,类比推理得到的结论一定正确.(×)(2)由平面三角形的性质推测空间四面体的性质,这是一种合情推理.(√)(3)在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适.( ×) (4)“所有3的倍数都是9的倍数,某数m是3的倍数,则m一定是9的倍数",这是三段论推理,但其结论是错误的.( √)(5)一个数列的前三项是1,2,3,那么这个数列的通项公式是a n=n(n∈N*).(×)(6)在演绎推理中,只要符合演绎推理的形式,结论就一定正确.(×)1.观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10=________.答案123解析从给出的式子特点观察可推知,等式右端的值,从第三项开始,后一个式子的右端值等于它前面两个式子右端值的和,依据此规律,a10+b10=123。
高考数学大一轮复习第十二章推理与证明算法复数第三节算法与程序框图复数课件理
经第二次循环得到的结果是Sn= =612+ ,14, i=3;
经第三次循环得到的结果是Sn= =812+ ,14+16, i=4.
据观察 S 中最后一项的分母与 i 的关系是分母=2(i-1), 令 2(i-1)=100,解得 i=51,即需要 i=51 时输出. 故图中判断框内(1)处和执行框中的(2)处应填的语句分别 是 i>50,n=n+2. [答案] C
的结果为 3,则可输入的实数 x 值的个数为
()
A.1
B.2
C.3
D.4
[解析] 当 x>2 时,由 log2x=3 得 x=8;当 x≤2 时,由 x2-1 =3 得 x=2 或 x=-2.∴可输入的实数 x 值的个数为 3. [答案] C
(2)(2016·福州五校联考)定义[x]为不超过 x 的最大整数,例
[方法技巧] (2)条件语句必须以 IF 开始,以 END IF 结束,一个 IF 必须和一个 END IF 对应,尤其对条件语句的嵌套问题, 应注意每一层结构的完整性,不能漏掉 END IF. (3)循环语句的格式要正确,要保证有结束循环的语句, 不要出现死循环.
能力练通
抓应用体验的“得”与“失”
[答案] D
(2)若(1+i)+(2-3i)=a+bi(a,b∈R,i 是虚数单位),则 a,
b 的值分别等于
()
A.3,-2
B.3,2
C.3,-3 D.-1,4
(3)(2016·山东高考)若复数 z 满足 2z+ z =3-2i,其中 i 为虚
数单位,则 z=
()
A.1+2i
B.1-2i C.-1+2i
2.程序框图 程序框图又称流程图,是一种用程__序__框__、流程线及_文__字__说__明__ 来表示算法的图形.
届数学一轮复习第十二章推理与证明算法复数第三节算法初步学案理含解析
第三节算法初步[最新考纲][考情分析][核心素养]1.了解算法的含义,了解算法的思想。
2.理解程序框图的三种基本逻辑结构:顺序结构、条件结构、循环结构.3。
理解几种基本算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句的含义。
依据程序框图直接得出结论,填写部分内容以及程序框图与其他知识交汇是2021年高考考查的热点,题型为选择题或填空题,分值为5分.1.逻辑推理2。
数学运算‖知识梳理‖1.算法(1)算法通常是指按照错误!一定规则解决某一类问题的错误!明确和错误!有限的步骤.(2)应用:算法通常可以编成计算机错误!程序,让计算机执行并解决问题.2.程序框图定义:程序框图又称流程图,是一种用5程序框、流程线及6文字说明来表示算法的图形.3.三种基本逻辑结构名称内容顺序结构条件结构循环结构定义由若干个错误!依次执行的步骤组成,这是任何一个算法都离不开的错误!基本结构算法的流程根据9条件是否成立有不同的流向,条件结构就是处理这种过程的结构从某处开始,按照一定的条件错误!反复执行某些步骤的情况,反复执行的步骤称为错误!循环体程序框图‖基础自测‖一、疑误辨析1.判断下列结论是否正确(请在括号中打“√"或“×”).(1)算法的每一步都有确定的意义,且可以无限地运算.()(2)一个程序框图一定包含顺序结构,也包含条件结构和循环结构.()(3)一个循环结构一定包含条件结构.()(4)当型循环是给定条件不成立时,执行循环体,反复进行,直到条件成立为止.()答案:(1)×(2)×(3)√(4)×二、走进教材2.(必修3P25例5改编)给出如图程序框图,其功能是()A.求a-b的值B.求b-a的值C.求|a-b|的值D.以上都不对答案:C3.(必修3P33B3改编)执行如图所示的程序框图,若输出的S 为4,则输入的x应为()A.-2 B.16C.-2或8 D.-2或16答案:D三、易错自纠4.如图给出的是计算错误!+错误!+错误!+错误!+…+错误!的一个程序框图,其中判断框内应填入的条件是()A.i<50? B.i>50?C.i〈25?D.i>25?解析:选B因为该循环体需要运行50次,i的初始值是1,间隔是1,所以i=50时不满足判断框内的条件,而i=51时满足判断框内条件,所以判断框内的条件可以填入i>50?故选B.5.阅读如图所示的程序框图,运行相应的程序,输出s的值等于()A.-3 B.-10C.0 D.-2解析:选A第一次循环:k=0+1=1,满足k<4,s=2×1-1=1;第二次循环:k=1+1=2,满足k<4,s=2×1-2=0;第三次循环:k=2+1=3,满足k<4,s=2×0-3=-3;第四次循环:k =3+1=4,不满足k<4,故输出的s=-3.故选A.错误!|题组突破|1.(2019年全国卷Ⅲ)执行如图所示的程序框图,如果输入的ε为0。
2019版高考数学大一轮复习第十二章推理与证明算法复数12.3算法与流程图教师用书文苏教版
12.3 算法与流程图1.算法通常是指对一类问题的机械的、统一的求解方法.2.流程图是由一些图框和流程线组成的,其中图框表示各种操作的类型,图框中的文字和符号表示操作的内容,流程线表示操作的先后次序.3.三种基本逻辑结构(1)依次进行多个处理的结构称为顺序结构,是任何一个算法都离不开的基本结构. 其结构形式为(2)选择结构是先根据条件作出判断,再决定执行哪一种操作的结构.其结构形式为循环循环体.循环结构是指需要重复执行同一操作的结构,需要重复执行的同一操作称为(3)直到型.和型当结构又分为 其结构形式为4.赋值语句、输入语句、输出语句,其作用是对程序中的变)或变量(表达式←变量表示,其一般格式是“←”赋值语句用符号表示”x “Print ,输出语句b ,a 输入的数据依次送给表示”b ,a “Read 量赋值;输入语句.x 输出运算结果AIf 语句,其一般形式是Else —Then —If 来表达,一般是条件语句.算法的选择结构由5(1)当循环的次数已经确定,可用“For”语句表示“For”语句的一般形式为步长”,那么重复循环时,I每次增加1.(2)不论循环次数是否确定都可以用下面循环语句来实现循环结构当型和直到型两种语句结构.当型语句的一般格式是直到型语句的一般格式是【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)算法只能解决一个问题,不能重复使用.( ×)(2)流程图中的图形符号可以由个人来确定.( ×)(3)输入框只能紧接开始框,输出框只能紧接结束框.( ×)(4)选择结构的出口有两个,但在执行时,只有一个出口是有效的.( √)(5)5=x是赋值语句.( ×)。
近年高考数学大一轮复习 第十二章 推理与证明、算法、复数教师用书 理(2021年整理)
2018高考数学大一轮复习第十二章推理与证明、算法、复数教师用书理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018高考数学大一轮复习第十二章推理与证明、算法、复数教师用书理)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018高考数学大一轮复习第十二章推理与证明、算法、复数教师用书理的全部内容。
第十二章错误!推理与证明、算法、复数第一节合情推理与演绎推理突破点(一) 合情推理基础联通 抓主干知识的“源”与“流”类型 定义特点归纳推理根据某类事物的部分对象具有某种特征,推出这类事物的全部对象都具有这种特征的推理由部分到整体、由个别到一般类比推理由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理由特殊到特殊考点贯通 抓高考命题的“形"与“神”归纳推理运用归纳推理时的一般步骤(1)通过观察特例发现某些相似性(特例的共性或一般规律); (2)把这种相似性推广到一个明确表述的一般命题(猜想); (3)对所得出的一般性命题进行检验. 类型(一) 与数字有关的推理 [例1] 给出以下数对序列: (1,1)(1,2)(2,1)本节主要包括2个知识点:1.合情推理; 2。
演绎推理.(1,3)(2,2)(3,1)(1,4)(2,3)(3,2)(4,1)……记第i行的第j个数对为a ij,如a43=(3,2),则a nm=()A.(m,n-m+1) B.(m-1,n-m)C.(m-1,n-m+1) D.(m,n-m)[解析]由前4行的特点,归纳可得:若a nm=(a,b),则a=m,b=n-m+1,∴a nm=(m,n-m+1).[答案]A[易错提醒]解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等.类型(二) 与式子有关的推理[例2](1)(2016·山东高考)观察下列等式:错误!-2+错误!-2=错误!×1×2;错误!-2+错误!-2+错误!-2+错误!-2=错误!×2×3;错误!-2+错误!-2+错误!-2+…+错误!-2=错误!×3×4;错误!-2+错误!-2+错误!-2+…+错误!-2=错误!×4×5;……照此规律,错误!-2+错误!-2+…+错误!-2=________。
高考数学一轮复习 第十二章 算法初步、推理与证明、复数12.1算法与程序框图教学案 理
第十二章 算法初步、推理与证明、复数12.1 算法与程序框图考纲要求1.了解算法的含义,了解算法的思想.2.理解算法的三种基本逻辑结构:顺序结构、条件结构、循环结构.1.算法通常是指按照一定规则解决某一类问题的____和____的步骤.2.程序框图又称________,是一种用______、________及文字说明来表示算法的图形.3.顺序结构是由______________________组成的,这是任何一个算法都离不开的基本结构. 其结构形式为:4.条件结构是指算法的流程根据给定的条件是否成立而选择执行不同的流向的结构形式.其结构形式为:5.循环结构是指从某处开始,按照一定的条件反复执行某些步骤的情况.反复执行的步骤称为________.循环结构又分为______________和________________.其结构形式为:当型循环结构直到型循环结构1.下列关于算法的说法正确的个数是( ).①求解某一类问题的算法是唯一的;②算法必须在有限步操作之后停止;③算法的每一步操作必须是明确的,不能有歧义或模糊; ④算法执行后产生确定的结果.A .1B .2C .3D .42. 如果执行下边的程序框图,输入x =-12,那么其输出的结果是( ).A .9B .3C . 3D .193.(2012广东高考)执行如图所示的程序框图,若输入n 的值为6,则输出s 的值为( ).A .105B .16C .15D .14.给出如下程序框图,其功能是( ).A .求a -b 的值B .求b -a 的值C .求|a -b |的值D .以上都不对5.某程序框图如图所示,若输入的x 的值为12,则执行该程序后,输出的y 值为__________.一、算法的基本结构【例1】执行如图所示的程序框图,如果输入的N 是6,那么输出的p 是( ).A .120B .720C .1 440D .5 040 方法提炼1.解决程序框图问题要注意几个常用变量.(1)计数变量:用来记录某个事件发生的次数,如i =i +1;(2)累加变量:用来计算数据之和,如s =s +i ;(3)累乘变量:用来计算数据之积,如p =p ×i .2.处理循环结构的框图问题,关键是理解并认清终止循环结构的条件及循环次数.请做演练巩固提升1二、循环结构设计【例2-1】 执行下图所示的程序框图,输入l =2,m =3,n =5,则输出的y 的值是__________.【例2-2】 如图是一个程序框图,运行这个程序,则输出的结果为( ).A.1321B.2113C.813D.138方法提炼1.循环结构主要用在一些有规律的重复计算的算法中,如累加求和、累乘求积等问题.用循环结构表达算法,在画出算法的程序框图之前就应该分析清楚循环结构的三要素:①确定循环变量和初始值;②确定算法中反复执行的部分,即循环体;③确定循环的终止条件.2.运行程序框图和完善程序框图是高考的热点.解答这一类问题,首先,要明确程序框图的顺序结构、条件结构和循环结构;第二,要运行程序框图,理解程序框图所解决的实际问题;第三,按照题目的要求完成解答,对程序框图的考查常与数列和函数等知识相结合,进一步强化程序框图问题的实际背景.请做演练巩固提升2,3加强框图中对逻辑顺序的理解【典例】 (2012天津高考)阅读右边的程序框图,运行相应的程序,则输出S 的值为( ).A .8B .18C .26D .80解析:n =1,S =0+31-30=2,n =2;n =2<4,S =2+32-31=8,n =3;n =3<4,S =8+33-32=26,n =4;4≥4,输出S =26.答案:C答题指导:1.本题条件较多,读不懂程序框图的逻辑顺序,盲目作答而导致错误.因此,在解决循环结构问题时,一定要弄明白计数变量和累加变量.2.读程序框图时,要注意循环结构的终止条件.1.对于如图所示的程序框图,输入a =ln 0.8,b =12e ,c =2-e ,经过程序运算后,输出a ,b 的值分别是( ).A .2-e ,ln 0.8B .ln 0.8,2-eC .12e ,2-eD .12e ,ln 0.82.(2012合肥模拟)执行下面的程序框图,则输出的n =( ).A .6B .5C .8D .73.(2012福建高考)阅读下图所示的程序框图,运行相应的程序,输出的s 值等于( ).A .-3B .-10C .0D .-24.如图所示,程序框图(算法流程图)的输出结果是__________.5.(2012山东潍坊模拟)运行如图所示的程序框图,当输入m =-4时,输出的结果为n .若变量x ,y 满足⎩⎪⎨⎪⎧ x +y ≤3,x -y ≥-1,y ≥n .则目标函数:z =2x +y 的最大值为__________.参考答案基础梳理自测知识梳理1.明确 有限2.流程图 程序框 流程线3.若干个依次执行的步骤5.循环体 当型循环结构 直到型循环结构基础自测1.C 解析:①是不正确的,②③④正确.2.C 解析:依题意得,执行完第1次循环后,x =-12+3=-9≤0;执行完第2次循环后,x =-9+3=-6≤0;执行完第3次循环后,x =-6+3=-3≤0;执行完第4次循环后,x =-3+3=0≤0;执行完第5次循环后,x =0+3=3>0.结合题中的程序框图可知,最后输出的结果是 3.3.C 解析:i =1,s =1;i =3,s =3;i =5,s =15;i =7时,输出s =15.4.C 解析:求|a -b |的值.5.2 解析:∵12<1, ∴当x =12时,y =124=2. 考点探究突破【例1】 B 解析:当输入的N 是6时,由于k =1,p =1, 因此p =p ·k =1,此时k =1<6;第一次循环,k =1+1=2,p =1×2=2,k =2<6;第二次循环,k =2+1=3,p =2×3=6,k =3<6;第三次循环,k =3+1=4,p =6×4=24,k =4<6;第四次循环,k =4+1=5,p =24×5=120,k =5<6;第五次循环,k =5+1=6,p =120×6=720,k =6<6不成立. 因此输出p =720.【例2-1】 68 解析:由程序框图可知,y 的变化情况为y =70×2+21×3+15×5=278,进入循环,显然278>105,因此y =278-105=173;此时173>105,故y =173-105=68.经判断68>105不成立,输出此时y 的值68.【例2-2】 D 解析:由程序框图可得,第一次循环:x =1,y =2;第二次循环:x =2,y =3;第三次循环:x =3,y =5;第四次循环:x =5,y =8;第五次循环:x =8,y =13;z =21>20,此时退出循环,输出y x =138. 演练巩固提升1.C 解析:该程序框图的设计目的是将a ,b ,c 按照由大到小的顺序排列,即输出的a ,b ,c 满足a ≥b ≥c ,而ln 0.8<0,12e>1,0<2-e <1,即12e >2-e >ln 0.8,故输出的a =12e ,b =2-e.2.D 解析:此程序框图的功能是计算a 1=12,q =12的等比数列的前n -1项和S >3132时,n 的最小值. ∵S =a 1(1-q n -1)1-q =1-⎝ ⎛⎭⎪⎫12n -1>3132, ∴n >6,∴n =7.3.A 解析:(1)k =1,1<4,s =2×1-1=1;(2)k =2,2<4,s =2×1-2=0;(3)k =3,3<4,s =2×0-3=-3;(4)k =4,直接输出s =-3.4.15 解析:由题意可得T 为求1+2+3+…+k 的值. 由于1+2+3+…+14=105,1+2+3+…+15=120, 所以输出k 的值为15.5.5 解析:由程序框图可知,当输入m =-4时,输出的结果为n =1, ∴变量x ,y 满足⎩⎪⎨⎪⎧ x +y ≤3,x -y ≥-1,y ≥1.此不等式组表示的可行域如图中的阴影部分所示.由图可知目标函数z =2x +y 在点A (2,1)处取得最大值2×2+1=5.。
高考数学大一轮复习 第十二章 复数、算法、推理与证明 2 第2讲 算法与程序框图课件 理
12/13/2021
第三十一页,共五十一页。
【解析】 (1)初始值 k=1,S=0,第 1 次进入循环体时,S=1 +20,k=2;当第 2 次进入循环体时,S=1+20+2+21,k=3,…; 给定正整数 n,当 k=n 时,最后一次进入循环体,则有 S=1 +20+2+21+…+n+2n-1,k=n+1,终止循环体,输出 S=(1 +2+3+…+n)+(20+21+22+…+2n-1),故选 C. (2)由程序框图可得 S=1+5+9+…+4 033,故该算法的功能 是求首项为 1,公差为 4 的等差数列的前 1 009 项和.故选 C. 【答案】 (1)C (2)C
12/13/2021
第二十四页,共五十一页。
角度二 由输出结果判断输入量的值 (1)(2019·贵阳模拟)某算法的程序框图如图所示,若输出
的 y=12,则输入的 x 的最大值为( )
A.-1 C.2
12/13/2021
B.1 D.0
第二十五页,共五十一页。
(2)执行如图的程序框图,为使输出 S 的值小于 91,则输入的正 整数 N 的最小值为( )
A.A>1 000 和 n=n+1 B.A>1 000 和 n=n+2 C.A≤1 000 和 n=n+1 D.A≤1 12/13/2021 000 和 n=n+2
第三十四页,共五十一页。
【解析】 (1)A=12,k=1,1≤2 成立,执行循环体;A=2+1 12, k=2,2≤2 成立,执行循环体;A=2+12+1 12,k=3,3≤2 不 成立,结束循环,输出 A.故空白框中应填入 A=2+1 A.故选 A. (2)因为要求的是最小偶数 n, 所以执行框中应填入 n=n+2,排除 A,C; 判断框中填入 A≤1 000 时, 才能循环,排除 B,故选 D. 【答案】 12/13/2021 (1)A (2)D
高考数学大一轮复习 第十二章 推理与证明、算法、复数 12.3 算法与程序框图教师用书 文 新人教版
2018版高考数学大一轮复习第十二章推理与证明、算法、复数 12.3 算法与程序框图教师用书文新人教版1.算法与程序框图(1)算法①算法通常是指按照一定规则解决某一类问题的明确和有限的步骤.②应用:算法通常可以编成计算机程序,让计算机执行并解决问题.(2)程序框图定义:程序框图又称流程图,是一种用程序框、流程线及文字说明来表示算法的图形.2.三种基本逻辑结构3.算法语句(1)输入语句、输出语句、赋值语句的格式与功能(2)条件语句①程序框图中的条件结构与条件语句相对应.②条件语句的格式a.IF—THEN格式b.IF—THEN—ELSE格式(3)循环语句①程序框图中的循环结构与循环语句相对应.②循环语句的格式a.UNTIL语句b.WHILE语句【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)算法只能解决一个问题,不能重复使用.( ×)(2)程序框图中的图形符号可以由个人来确定.( ×)(3)输入框只能紧接开始框,输出框只能紧接结束框.( ×)(4)条件结构的出口有两个,但在执行时,只有一个出口是有效的.( √)(5)5=x是赋值语句.( ×)(6)输入语句可以同时给多个变量赋值.( √)1.已知一个算法:(1)m=a.(2)如果b<m,则m=b,输出m;否则执行第(3)步.(3)如果c<m,则m=c,输出m.否则执行第(4)步.(4)输出m.如果a=3,b=6,c=2,那么执行这个算法的结果是( )A.3 B.6C.2 D.m答案 C解析当a=3,b=6,c=2时,依据算法设计,本算法是求a、b、c三个数的最小值,故输出m的值为2,故选C.2.(2016·全国甲卷)中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图,执行该程序框图,若输入的x=2,n=2,依次输入的a为2,2,5,则输出的s等于( )A.7 B.12C.17 D.34答案 C解析由框图可知,输入x=2,n=2,a=2,s=2,k=1,不满足条件;a=2,s=4+2=6,k=2,不满足条件;a=5,s=12+5=17,k=3,满足条件,输出s=17,故选C. 3.(2017·广州调研)下列赋值能使y的值为4的是( )A.y-2=6 B.2*3-2=yC.4=yD.y=2*3-2答案 D解析赋值时把“=”右边的值赋给左边的变量.4.(2017·太原月考)如图是一算法的程序框图,若输出结果为S=720,则在判断框中应填入的条件是( )A.k≤6? B.k≤7?C.k≤8? D.k≤9?答案 B解析第一次执行循环,得到S=10,k=9;第二次执行循环,得到S=90,k=8;第三次执行循环,得到S =720,k =7,此时满足条件.5.执行下面的程序框图,若输入的ε的值为0.25,则输出的n 的值为________.答案 3解析 第一次循环:F 1=3,F 0=2,n =2; 第二次循环:F 1=5,F 0=3,n =3.此时1F 1=15=0.2满足1F 1≤ε=0.25,故输出n =3.题型一 顺序结构与条件结构 命题点1 顺序结构例1 如图所示的程序框图,根据该图和下列各小题的条件回答下面的几个小题.(1)该程序框图解决的是一个什么问题?(2)当输入的x 的值为0和4时,输出的值相等,问当输入的x 的值为3时,输出的值为多大? (3)在(2)的条件下要想使输出的值最大,输入的x 的值应为多大? 解 (1)该程序框图解决的是求二次函数f (x )=-x 2+mx 的函数值的问题. (2)当输入的x 的值为0和4时,输出的值相等, 即f (0)=f (4).因为f (0)=0,f (4)=-16+4m , 所以-16+4m =0, 所以m =4,f (x )=-x 2+4x . 则f (3)=-32+4×3=3,所以当输入的x 的值为3时,输出的f (x )的值为3. (3)因为f (x )=-x 2+4x =-(x -2)2+4, 当x =2时,f (x )最大值=4,所以要想使输出的值最大,输入的x 的值应为2. 命题点2 条件结构例2 执行如图所示的程序框图,如果输入的t ∈[-1,3],则输出的s 属于( )A .[-3,4]B .[-5,2]C .[-4,3]D .[-2,5]答案 A解析 根据程序框图可以得到分段函数s =⎩⎪⎨⎪⎧3t ,t <1,4t -t 2,t ≥1,进而在函数的定义域[-1,3]内分段求出函数的值域.所以当-1≤t <1时,s =3t ∈[-3,3);当1≤t ≤3时,s =4t -t2=-(t -2)2+4,所以此时3≤s ≤4.综上可知,函数的值域为[-3,4],即输出的s 属于[-3,4]. 引申探究若将本例中判断框的条件改为“t ≥1”,则输出的s 的范围是什么?解 根据程序框图可以得到,当-1≤t <1时,s =4t -t 2=-(t -2)2+4,此时-5≤s <3;当1≤t ≤3时,s =3t ∈[3,9].综上可知,函数的值域为[-5,9],即输出的s 属于[-5,9]. 思维升华 应用顺序结构与条件结构的注意点 (1)顺序结构顺序结构是最简单的算法结构,语句与语句之间、框与框之间是按从上到下的顺序进行的. (2)条件结构利用条件结构解决算法问题时,重点是判断框,判断框内的条件不同,对应的下一框中的内容和操作要相应地进行变化,故要重点分析判断框内的条件是否满足.执行如图所示的程序框图,如果输入的x ,y ∈R ,那么输出的S 的最大值为________.答案 2解析 当条件x ≥0,y ≥0,x +y ≤1不成立时输出S 的值为1;当条件x ≥0,y ≥0,x +y ≤1成立时S =2x +y ,下面用线性规划的方法求此时S 的最大值.作出不等式组⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≤1表示的平面区域如图中阴影部分(含边界),由图可知当直线S =2x +y 经过点M (1,0)时S 最大,其最大值为2×1+0=2,故输出S 的最大值为2.题型二 循环结构命题点1 由程序框图求输出结果例3 (2016·全国乙卷)执行下面的程序框图,如果输入的x =0,y =1,n =1,则输出x ,y 的值满足( )A .y =2xB .y =3xC .y =4xD .y =5x答案 C解析 执行题中的程序框图,知 第一次进入循环体:x =0+1-12=0,y =1×1=1,x 2+y 2<36; 第二次执行循环体:n =1+1=2,x =0+2-12=12,y =2×1=2,x 2+y 2<36;第三次执行循环体:n =2+1=3,x =12+3-12=32,y =3×2=6,x 2+y 2>36,满足x 2+y 2≥36,故退出循环,输出x =32,y =6,满足y =4x ,故选C.命题点2 完善程序框图例4 (2017·保定质检)如图给出的是计算12+14+16+…+120的值的一个框图,其中菱形判断框内应填入的条件是( )A .i >10?B .i <10?C .i >11?D .i <11?答案 A解析 经过第一次循环得到s =12,i =2,此时的i 不满足判断框中的条件;经过第二次循环得到s =12+14,i =3,此时的i 不满足判断框中的条件;经过第三次循环得到s =12+14+16,i =4,此时的i 不满足判断框中的条件;…;经过第十次循环得到s =12+14+16+…+120,i =11,此时的i 满足判断框中的条件,执行输出,故判断框中的条件是“i >10?”. 命题点3 辨析程序框图的功能例5 根据下面框图,对大于2的整数N ,输出的数列的通项公式是( )A.a n=2n B.a n=2(n-1)C.a n=2n D.a n=2n-1答案 C解析由程序框图可知,第一次运行:i=1,a1=2,S=2;第二次运行:i=2,a2=4,S=4;第三次运行:i=3,a3=8,S=8;第四次运行:i=4,a4=16,S=16.故选C.思维升华与循环结构有关问题的常见类型及解题策略(1)已知程序框图,求输出的结果,可按程序框图的流程依次执行,最后得出结果.(2)完善程序框图问题,结合初始条件和输出结果,分析控制循环的变量应满足的条件或累加、累乘的变量的表达式.(3)对于辨析程序框图功能问题,可将程序执行几次,即可根据结果作出判断.(2016·四川)秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入n,x的值分别为3,2,则输出v的值为( )A.9 B.18 C.20 D.35答案 B解析初始值n=3,x=2,程序运行过程如下:v=1i=2 v=1×2+2=4i=1 v=4×2+1=9i=0 v=9×2+0=18i=-1 跳出循环,输出v=18,故选B.题型三基本算法语句例6 阅读下面两个算法语句:WHILE+图1LOOP UNTIL +图2执行图1中语句的结果是输出________;执行图2中语句的结果是输出________.答案i=4 i=2解析执行图1中语句,得到(i,i·(i+1))的结果依次为(1,2),(2,6),(3,12),(4,20),故输出i=4.执行图2中语句的情况如下:i=1,i=i+1=2,i·(i+1)=6<20(是),结束循环,输出i=2.思维升华解决算法语句有三个步骤:首先通读全部语句,把它翻译成数学问题;其次领悟该语句的功能;最后根据语句的功能运行程序,解决问题.(2015·江苏改编)根据如图所示的语句,可知输出的结果S=________.答案7解析I=1,S=1;S=1+2=3,I=1+3=4<8;S=3+2=5,I=4+3=7<8;S=5+2=7,I=7+3=10>8.退出循环,故输出S=7.13.程序框图中变量的取值典例执行如图所示的程序框图所表示的程序,则输出的A等于( )A.2 047 B.2 049C.1 023 D.1 025错解展示解析将每次运算的A值用数列{a n}表示,将开始的A=1看作a0,则a1=2a0+1=1,a2=2a1+1=3,…∴a10=2a9+1=210-1=1 023.答案 C现场纠错解析本题计算的是递推数列a0=1,a n+1=2a n+1(n=0,1,2,…)的第11项,{a n+1}是首项为2,公比为2的等比数列,故a10+1=211,故a10=2 047.答案 A纠错心得程序框图对计数变量及求和变量取值时,要注意两个变量的先后顺序.于( )A.3 B.4 C.5 D.6答案 B解析第一次循环a=6-4=2,b=6-2=4,a=4+2=6,s=6,n=1;第二次循环a=4-6=-2,b=4-(-2)=6,a=6-2=4,s=10,n=2;第三次循环a=6-4=2,b=6-2=4,a=4+2=6,s=16,n=3;第四次循环a=4-6=-2,b=4-(-2)=6,a=6-2=4,s=20,n=4,满足题意,结束循环.2.(2016·北京)执行如图所示的程序框图,输出的S值为( )A.8 B.9 C.27 D.36答案 B解析①S=0+03=0,k=0+1=1,满足k≤2;②S=0+13=1,k=1+1=2,满足k≤2;③S=1+23=9,k=2+1=3,不满足k≤2,输出S=9.3.(2015·天津)阅读下边的程序框图,运行相应的程序,则输出S的值为( )A .-10B .6C .14D .18答案 B解析 运行相应的程序,第一次循环:i =2,S =20-2=18;第二次循环:i =4,S =18-4=14;第三次循环:i =8,S =14-8=6;8>5,终止循环,输出S =6,故选B. 4.阅读程序框图,运行相应的程序,则程序运行后输出的结果为( )A .7B .9C .10D .11 答案 B解析 i =1,S =0,第一次循环:S =0+lg 13=-lg 3>-1;第二次循环:i =3,S =lg 13+lg35=lg 15=-lg 5>-1;第三次循环:i =5,S =lg 15+lg 57=lg 17=-lg 7>-1;第四次循环:i=7,S =lg 17+lg 79=lg 19=-lg 9>-1;第五次循环:i =9,S =lg 19+lg 911=lg 111=-lg 11<-1.故输出i =9.5.(2017·成都调研)定义某种运算,ab 的运算原理如图所示.设S =1x ,x ∈[-2,2],则输出的S 的最大值与最小值的差为( )A .2B .-1C .4D .3 答案 A解析 由题意可得,S (x )=⎩⎪⎨⎪⎧|x |,-2≤x ≤1,1,1<x ≤2,∴S (x )max =2,S (x )min =0, ∴S (x )max -S (x )min =2.6.给出一个算法的程序框图(如图所示),该程序框图的功能是( )A .输出a ,b ,c 三数中的最大数B .输出a ,b ,c 三数中的最小数C .将a ,b ,c 按从小到大排列D .将a ,b ,c 按从大到小排列 答案 B解析 先比较a ,b 的值,把较小的值赋值给a ;再比较a ,c 的值,把较小的值赋值给a ,输出a .7.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”,利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出n 的值为________.(参考数据:sin 15°≈0.258 8,sin 7.5°≈0.130 5)答案 24解析 n =6,S =12×6×sin 60°=332≈2.598<3.1,不满足条件,进入循环;n =12,S =12×12×sin 30°=3<3.1,不满足条件,继续循环;n =24,S =12×24×sin 15°≈12×0.258 8=3.105 6>3.1,满足条件,退出循环,输出n的值为24.8.以下给出了一个程序,根据该程序回答:(1)若输入4,则输出的结果是________;(2)该程序的功能所表达的函数解析式为________. 答案 (1)15 (2)y =⎩⎪⎨⎪⎧2x ,x <3,2,x =3,x 2-1,x >3解析 (1)x =4不满足x <3,∴y =x 2-1=42-1=15.输出15. (2)当x <3时,y =2x ,当x >3时,y =x 2-1;否则, 即x =3,y =2. ∴y =⎩⎪⎨⎪⎧2x ,x <3,2,x =3,x 2-1,x >3.9.对一个作直线运动的质点的运动过程观测了8次,第i 次观测得到的数据为a i ,具体如下表所示:在对上述统计数据的分析中,一部分计算见如图所示的程序框图(其中a 是这8个数据的平均数),则输出的S 的值是________.答案 7解析 本题计算的是这8个数的方差,因为a =40+41+43+43+44+46+47+488=44,所以S =-2+-2+-2+-2+02+22+32+428=7.10.如图(1)(2)所示,它们都表示的是输出所有立方小于1 000的正整数的程序框图,那么应分别补充的条件为:(1)____________; (2)______________. 答案 (1)n 3<1 000 (2)n 3≥1 000解析 第一个图中,n 不能取10,否则会把立方等于1 000的正整数也输出了,所以应该填写n 3<1 000;第二个图中,当n ≥10时,循环应该结束,所以填写n 3≥1 000.11.给出一个如图所示的程序框图,若要使输入的x 值与输出的y 值相等,则这样的x 值是________.答案 0,1,3解析 根据题意,本程序框图表示分段函数:y =⎩⎪⎨⎪⎧x 2,x ≤2,2x -3,2<x ≤5,1x ,x >5,由于输入的x 值与输出的y 值相等, 由x 2=x 解得x =0或x =1,都满足x ≤2;由x =2x -3解得x =3,也满足2<x ≤5; 由1x=x 解得x =±1,都不在x >5内,舍去.可见满足条件的x 共三个:0,1,3.12.(2016·抚州质检)某框图所给的程序运行结果为S =20,那么判断框中应填入的关于k 的条件是________.答案 k >8?解析 由题意可知输出结果为S =20,第1次循环,S =11,k =9,第2次循环,S =20,k =8,此时S 满足输出结果,退出循环,所以判断框中的条件为“k >8?”.13.(2016·长沙模拟)运行如图所示的程序框图,若输出的y 值的范围是[0,10],则输入的x 值的范围是________.答案 [-7,9]解析 该程序的功能是计算分段函数的值, y =⎩⎪⎨⎪⎧3-x ,x <-1,x 2,-1≤x ≤1,x +1,x >1.当x <-1时,由0≤3-x ≤10可得-7≤x <-1; 当-1≤x ≤1时,0≤x 2≤10恒成立; 当x >1时,由0≤x +1≤10可得1<x ≤9. 综上,输入的x 值的范围是[-7,9].*14.(2016·宣城模拟)已知函数f (x )=ax 3+12x 2在x =-1处取得极大值,记g (x )=1f x .程序框图如图所示,若输出的结果S >2 015 2 016,则判断框中可以填入的关于n 的判断条件是________.(填序号)①n ≤2 015?②n ≤2 016? ③n >2 015?④n >2 016? 答案 ②解析 由题意得f ′(x )=3ax 2+x ,由f ′(-1)=0,得a =13,∴f ′(x )=x 2+x , 即g (x )=1x 2+x =1x x +=1x -1x +1. 由程序框图可知S =0+g (1)+g (2)+…+g (n )=0+1-12+12-13+…+1n -1n +1=1-1n +1, 由1-1n +1>2 0152 016,得n >2 015. 故可填入②.。
2018版高考数学大一轮复习第十二章推理与证明算法复数12.3算法与程序框图教师用书文新人教版
2018版高考数学大一轮复习第十二章推理与证明、算法、复数 12.3 算法与程序框图教师用书文新人教版1.算法与程序框图(1)算法①算法通常是指按照一定规则解决某一类问题的明确和有限的步骤.②应用:算法通常可以编成计算机程序,让计算机执行并解决问题.(2)程序框图定义:程序框图又称流程图,是一种用程序框、流程线及文字说明来表示算法的图形.2.三种基本逻辑结构3.算法语句(1)输入语句、输出语句、赋值语句的格式与功能(2)条件语句①程序框图中的条件结构与条件语句相对应.②条件语句的格式a.IF—THEN格式b.IF—THEN—ELSE格式(3)循环语句①程序框图中的循环结构与循环语句相对应.②循环语句的格式a.UNTIL语句b.WHILE语句【思考辨析】判断下列结论是否正确(请在括号中打“√”或“³”)(1)算法只能解决一个问题,不能重复使用.( ³)(2)程序框图中的图形符号可以由个人来确定.( ³)(3)输入框只能紧接开始框,输出框只能紧接结束框.( ³)(4)条件结构的出口有两个,但在执行时,只有一个出口是有效的.( √)(5)5=x是赋值语句.( ³)(6)输入语句可以同时给多个变量赋值.( √)1.已知一个算法:(1)m=a.(2)如果b<m,则m=b,输出m;否则执行第(3)步.(3)如果c<m,则m=c,输出m.否则执行第(4)步.(4)输出m.如果a=3,b=6,c=2,那么执行这个算法的结果是( )A.3 B.6C.2 D.m答案 C解析当a=3,b=6,c=2时,依据算法设计,本算法是求a、b、c三个数的最小值,故输出m的值为2,故选C.2.(2016²全国甲卷)中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图,执行该程序框图,若输入的x=2,n=2,依次输入的a为2,2,5,则输出的s等于( )A.7 B.12C.17 D.34答案 C解析由框图可知,输入x=2,n=2,a=2,s=2,k=1,不满足条件;a=2,s=4+2=6,k=2,不满足条件;a=5,s=12+5=17,k=3,满足条件,输出s=17,故选C. 3.(2017²广州调研)下列赋值能使y的值为4的是( )A.y-2=6 B.2*3-2=yC.4=yD.y=2*3-2答案 D解析赋值时把“=”右边的值赋给左边的变量.4.(2017²太原月考)如图是一算法的程序框图,若输出结果为S=720,则在判断框中应填入的条件是( )A.k≤6? B.k≤7?C.k≤8? D.k≤9?答案 B解析第一次执行循环,得到S=10,k=9;第二次执行循环,得到S=90,k=8;第三次执行循环,得到S =720,k =7,此时满足条件.5.执行下面的程序框图,若输入的ε的值为0.25,则输出的n 的值为________.答案 3解析 第一次循环:F 1=3,F 0=2,n =2; 第二次循环:F 1=5,F 0=3,n =3.此时1F 1=15=0.2满足1F 1≤ε=0.25,故输出n =3.题型一 顺序结构与条件结构 命题点1 顺序结构例1 如图所示的程序框图,根据该图和下列各小题的条件回答下面的几个小题.(1)该程序框图解决的是一个什么问题?(2)当输入的x 的值为0和4时,输出的值相等,问当输入的x 的值为3时,输出的值为多大? (3)在(2)的条件下要想使输出的值最大,输入的x 的值应为多大? 解 (1)该程序框图解决的是求二次函数f (x )=-x 2+mx 的函数值的问题. (2)当输入的x 的值为0和4时,输出的值相等, 即f (0)=f (4).因为f (0)=0,f (4)=-16+4m , 所以-16+4m =0, 所以m =4,f (x )=-x 2+4x . 则f (3)=-32+4³3=3,所以当输入的x 的值为3时,输出的f (x )的值为3. (3)因为f (x )=-x 2+4x =-(x -2)2+4, 当x =2时,f (x )最大值=4,所以要想使输出的值最大,输入的x 的值应为2. 命题点2 条件结构例2 执行如图所示的程序框图,如果输入的t ∈[-1,3],则输出的s 属于( )A .[-3,4]B .[-5,2]C .[-4,3]D .[-2,5]答案 A解析 根据程序框图可以得到分段函数s =⎩⎪⎨⎪⎧3t ,t <1,4t -t 2,t ≥1,进而在函数的定义域[-1,3]内分段求出函数的值域.所以当-1≤t <1时,s =3t ∈[-3,3);当1≤t ≤3时,s =4t -t2=-(t -2)2+4,所以此时3≤s ≤4.综上可知,函数的值域为[-3,4],即输出的s 属于[-3,4]. 引申探究若将本例中判断框的条件改为“t ≥1”,则输出的s 的范围是什么?解 根据程序框图可以得到,当-1≤t <1时,s =4t -t 2=-(t -2)2+4,此时-5≤s <3;当1≤t ≤3时,s =3t ∈[3,9].综上可知,函数的值域为[-5,9],即输出的s 属于[-5,9]. 思维升华 应用顺序结构与条件结构的注意点 (1)顺序结构顺序结构是最简单的算法结构,语句与语句之间、框与框之间是按从上到下的顺序进行的. (2)条件结构利用条件结构解决算法问题时,重点是判断框,判断框内的条件不同,对应的下一框中的内容和操作要相应地进行变化,故要重点分析判断框内的条件是否满足.执行如图所示的程序框图,如果输入的x ,y ∈R ,那么输出的S 的最大值为________.答案 2解析 当条件x ≥0,y ≥0,x +y ≤1不成立时输出S 的值为1;当条件x ≥0,y ≥0,x +y ≤1成立时S =2x +y ,下面用线性规划的方法求此时S 的最大值.作出不等式组⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≤1表示的平面区域如图中阴影部分(含边界),由图可知当直线S =2x +y 经过点M (1,0)时S 最大,其最大值为2³1+0=2,故输出S 的最大值为2.题型二 循环结构命题点1 由程序框图求输出结果例3 (2016²全国乙卷)执行下面的程序框图,如果输入的x =0,y =1,n =1,则输出x ,y 的值满足( )A .y =2xB .y =3xC .y =4xD .y =5x答案 C解析 执行题中的程序框图,知 第一次进入循环体:x =0+1-12=0,y =1³1=1,x 2+y 2<36; 第二次执行循环体:n =1+1=2,x =0+2-12=12,y =2³1=2,x 2+y 2<36;第三次执行循环体:n =2+1=3,x =12+3-12=32,y =3³2=6,x 2+y 2>36,满足x 2+y 2≥36,故退出循环,输出x =32,y =6,满足y =4x ,故选C.命题点2 完善程序框图例4 (2017²保定质检)如图给出的是计算12+14+16+…+120的值的一个框图,其中菱形判断框内应填入的条件是( )A .i >10?B .i <10?C .i >11?D .i <11?答案 A解析 经过第一次循环得到s =12,i =2,此时的i 不满足判断框中的条件;经过第二次循环得到s =12+14,i =3,此时的i 不满足判断框中的条件;经过第三次循环得到s =12+14+16,i =4,此时的i 不满足判断框中的条件;…;经过第十次循环得到s =12+14+16+…+120,i =11,此时的i 满足判断框中的条件,执行输出,故判断框中的条件是“i >10?”. 命题点3 辨析程序框图的功能例5 根据下面框图,对大于2的整数N ,输出的数列的通项公式是( )A.a n=2n B.a n=2(n-1)C.a n=2n D.a n=2n-1答案 C解析由程序框图可知,第一次运行:i=1,a1=2,S=2;第二次运行:i=2,a2=4,S=4;第三次运行:i=3,a3=8,S=8;第四次运行:i=4,a4=16,S=16.故选C.思维升华与循环结构有关问题的常见类型及解题策略(1)已知程序框图,求输出的结果,可按程序框图的流程依次执行,最后得出结果.(2)完善程序框图问题,结合初始条件和输出结果,分析控制循环的变量应满足的条件或累加、累乘的变量的表达式.(3)对于辨析程序框图功能问题,可将程序执行几次,即可根据结果作出判断.(2016²四川)秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入n,x的值分别为3,2,则输出v的值为( )A.9 B.18 C.20 D.35答案 B解析初始值n=3,x=2,程序运行过程如下:v=1i=2 v=1³2+2=4i=1 v=4³2+1=9i=0 v=9³2+0=18i=-1 跳出循环,输出v=18,故选B.题型三基本算法语句例6 阅读下面两个算法语句:图1图2执行图1中语句的结果是输出________;执行图2中语句的结果是输出________.答案i=4 i=2解析执行图1中语句,得到(i,i²(i+1))的结果依次为(1,2),(2,6),(3,12),(4,20),故输出i=4.执行图2中语句的情况如下:i=1,i=i+1=2,i²(i+1)=6<20(是),结束循环,输出i=2.思维升华解决算法语句有三个步骤:首先通读全部语句,把它翻译成数学问题;其次领悟该语句的功能;最后根据语句的功能运行程序,解决问题.(2015²江苏改编)根据如图所示的语句,可知输出的结果S=________.答案7解析I=1,S=1;S=1+2=3,I=1+3=4<8;S=3+2=5,I=4+3=7<8;S=5+2=7,I=7+3=10>8.退出循环,故输出S=7.13.程序框图中变量的取值典例执行如图所示的程序框图所表示的程序,则输出的A等于( )A.2 047 B.2 049C.1 023 D.1 025错解展示解析将每次运算的A值用数列{a n}表示,将开始的A=1看作a0,则a1=2a0+1=1,a2=2a1+1=3,…∴a10=2a9+1=210-1=1 023.答案 C现场纠错解析本题计算的是递推数列a0=1,a n+1=2a n+1(n=0,1,2,…)的第11项,{a n+1}是首项为2,公比为2的等比数列,故a10+1=211,故a10=2 047.答案 A纠错心得程序框图对计数变量及求和变量取值时,要注意两个变量的先后顺序.于( )A.3 B.4 C.5 D.6答案 B解析第一次循环a=6-4=2,b=6-2=4,a=4+2=6,s=6,n=1;第二次循环a=4-6=-2,b=4-(-2)=6,a=6-2=4,s=10,n=2;第三次循环a=6-4=2,b=6-2=4,a=4+2=6,s=16,n=3;第四次循环a=4-6=-2,b=4-(-2)=6,a=6-2=4,s=20,n=4,满足题意,结束循环.2.(2016²北京)执行如图所示的程序框图,输出的S值为( )A.8 B.9 C.27 D.36答案 B解析①S=0+03=0,k=0+1=1,满足k≤2;②S=0+13=1,k=1+1=2,满足k≤2;③S=1+23=9,k=2+1=3,不满足k≤2,输出S=9.3.(2015²天津)阅读下边的程序框图,运行相应的程序,则输出S的值为( )A .-10B .6C .14D .18答案 B解析 运行相应的程序,第一次循环:i =2,S =20-2=18;第二次循环:i =4,S =18-4=14;第三次循环:i =8,S =14-8=6;8>5,终止循环,输出S =6,故选B. 4.阅读程序框图,运行相应的程序,则程序运行后输出的结果为( )A .7B .9C .10D .11 答案 B解析 i =1,S =0,第一次循环:S =0+lg 13=-lg 3>-1;第二次循环:i =3,S =lg 13+lg35=lg 15=-lg 5>-1;第三次循环:i =5,S =lg 15+lg 57=lg 17=-lg 7>-1;第四次循环:i=7,S =lg 17+lg 79=lg 19=-lg 9>-1;第五次循环:i =9,S =lg 19+lg 911=lg 111=-lg 11<-1.故输出i =9.5.(2017²成都调研)定义某种运算 ,a b 的运算原理如图所示.设S =1 x ,x ∈[-2,2],则输出的S 的最大值与最小值的差为( )A .2B .-1C .4D .3 答案 A解析 由题意可得,S (x )=⎩⎪⎨⎪⎧|x |,-2≤x ≤1,1,1<x ≤2,∴S (x )max =2,S (x )min =0, ∴S (x )max -S (x )min =2.6.给出一个算法的程序框图(如图所示),该程序框图的功能是( )A .输出a ,b ,c 三数中的最大数B .输出a ,b ,c 三数中的最小数C .将a ,b ,c 按从小到大排列D .将a ,b ,c 按从大到小排列 答案 B解析 先比较a ,b 的值,把较小的值赋值给a ;再比较a ,c 的值,把较小的值赋值给a ,输出a .7.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”,利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出n 的值为________.(参考数据:sin 15°≈0.258 8,sin 7.5°≈0.130 5)答案 24解析 n =6,S =12³6³sin 60°=332≈2.598<3.1,不满足条件,进入循环;n =12,S =12³12³sin 30°=3<3.1,不满足条件,继续循环;n =24,S =12³24³sin 15°≈12³0.258 8=3.105 6>3.1,满足条件,退出循环,输出n的值为24.8.以下给出了一个程序,根据该程序回答:(1)若输入4,则输出的结果是________;(2)该程序的功能所表达的函数解析式为________. 答案 (1)15 (2)y =⎩⎪⎨⎪⎧2x ,x <3,2,x =3,x 2-1,x >3解析 (1)x =4不满足x <3,∴y =x 2-1=42-1=15.输出15. (2)当x <3时,y =2x ,当x >3时,y =x 2-1;否则, 即x =3,y =2. ∴y =⎩⎪⎨⎪⎧2x ,x <3,2,x =3,x 2-1,x >3.9.对一个作直线运动的质点的运动过程观测了8次,第i 次观测得到的数据为a i ,具体如下表所示:在对上述统计数据的分析中,一部分计算见如图所示的程序框图(其中a 是这8个数据的平均数),则输出的S 的值是________.答案 7解析 本题计算的是这8个数的方差,因为a =40+41+43+43+44+46+47+488=44,所以S = -4 2+ -3 2+ -1 2+ -1 2+02+22+32+428=7.10.如图(1)(2)所示,它们都表示的是输出所有立方小于1 000的正整数的程序框图,那么应分别补充的条件为:(1)____________; (2)______________. 答案 (1)n 3<1 000 (2)n 3≥1 000解析 第一个图中,n 不能取10,否则会把立方等于1 000的正整数也输出了,所以应该填写n 3<1 000;第二个图中,当n ≥10时,循环应该结束,所以填写n 3≥1 000.11.给出一个如图所示的程序框图,若要使输入的x 值与输出的y 值相等,则这样的x 值是________.答案 0,1,3解析 根据题意,本程序框图表示分段函数:y =⎩⎪⎨⎪⎧x 2,x ≤2,2x -3,2<x ≤5,1x ,x >5,由于输入的x 值与输出的y 值相等, 由x 2=x 解得x =0或x =1,都满足x ≤2;由x =2x -3解得x =3,也满足2<x ≤5; 由1x=x 解得x =±1,都不在x >5内,舍去.可见满足条件的x 共三个:0,1,3.12.(2016²抚州质检)某框图所给的程序运行结果为S =20,那么判断框中应填入的关于k 的条件是________.答案 k >8?解析 由题意可知输出结果为S =20,第1次循环,S =11,k =9,第2次循环,S =20,k =8,此时S 满足输出结果,退出循环,所以判断框中的条件为“k >8?”.13.(2016²长沙模拟)运行如图所示的程序框图,若输出的y 值的范围是[0,10],则输入的x 值的范围是________.答案 [-7,9]解析 该程序的功能是计算分段函数的值, y =⎩⎪⎨⎪⎧3-x ,x <-1,x 2,-1≤x ≤1,x +1,x >1.当x <-1时,由0≤3-x ≤10可得-7≤x <-1; 当-1≤x ≤1时,0≤x 2≤10恒成立; 当x >1时,由0≤x +1≤10可得1<x ≤9. 综上,输入的x 值的范围是[-7,9].21 *14.(2016²宣城模拟)已知函数f (x )=ax 3+12x 2在x =-1处取得极大值,记g (x )=1f ′ x .程序框图如图所示,若输出的结果S >2 0152 016,则判断框中可以填入的关于n 的判断条件是________.(填序号)①n ≤2 015? ②n ≤2 016?③n >2 015? ④n >2 016?答案 ②解析 由题意得f ′(x )=3ax 2+x ,由f ′(-1)=0,得a =13,∴f ′(x )=x 2+x ,即g (x )=1x 2+x =1x x +1 =1x -1x +1.由程序框图可知S =0+g (1)+g (2)+…+g (n )=0+1-12+12-13+…+1n -1n +1=1-1n +1,由1-1n +1>2 0152 016,得n >2 015.故可填入②.。
(江苏专用)高考数学大一轮复习 第十二章 推理与证明、算法、复数 12.2 直接证明与间接证明教师用
12.2 直接证明与间接证明1.直接证明(1)综合法①定义:从已知条件出发,以已知的定义、公理、定理为依据,逐步下推,直到推出要证明的结论为止,这种证明方法常称为综合法.②框图表示:已知条件⇒…⇒…⇒结论③思维过程:由因导果.(2)分析法①定义:从问题的结论出发,追溯导致结论成立的条件,逐步上溯,直到使结论成立的条件和已知条件或已知事实吻合为止.这种证明方法常称为分析法.②框图表示:结论⇐…⇐…⇐已知条件③思维过程:执果索因.2.间接证明反证法:要从否定结论开始,经过正确的推理,导致逻辑矛盾,从而达到新的否定(即肯定原命题).这个过程包括下面3个步骤:(1)反设——假设命题的结论不成立,即假定原结论的反面为真;(2)归谬——从反设和已知条件出发,经过一系列正确的逻辑推理,得出矛盾结果;(3)存真——由矛盾结果,断定反设不真,从而肯定原结论成立.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)综合法是直接证明,分析法是间接证明.( ×)(2)分析法是从要证明的结论出发,逐步寻找使结论成立的充要条件.( ×)(3)用反证法证明结论“a>b”时,应假设“a<b”.( ×)(4)反证法是指将结论和条件同时否定,推出矛盾.( ×)(5)在解决问题时,常常用分析法寻找解题的思路与方法,再用综合法展现解决问题的过程.( √ )(6)证明不等式2+7<3+6最合适的方法是分析法.( √ )1.(2016·某某质检)已知点A n (n ,a n )为函数y =x 2+1图象上的点,B n (n ,b n )为函数y =x 图象上的点,其中n ∈N *,设=a n -b n ,则与+1的大小关系为______________________. 答案+1<解析 由条件得 =a n -b n =n 2+1-n =1n 2+1+n,则随n 的增大而减小,∴+1<.2.用反证法证明命题:“a ,b ∈N ,若ab 不能被5整除,则a 与b 都不能被5整除”时,假设的内容应为____________________________. 答案 a ,b 至少有一个能被5整除解析 “都不能”的否定为“至少有一个能”,故假设的内容应为“a ,b 至少有一个能被5整除”.3.要证a 2+b 2-1-a 2b 2≤0只要证明________(填正确的序号). ①2ab -1-a 2b 2≤0; ②a 2+b 2-1-a 4+b 42≤0;③a +b22-1-a 2b 2≤0;④(a 2-1)(b 2-1)≥0. 答案 ④解析 a 2+b 2-1-a 2b 2≤0⇔(a 2-1)(b 2-1)≥0.4.如果a a +b b >a b +b a ,则a 、b 应满足的条件是__________________________. 答案 a ≥0,b ≥0且a ≠b 解析 ∵a a +b b -(a b +b a ) =a (a -b )+b (b -a ) =(a -b )(a -b ) =(a -b )2(a +b ).∴当a ≥0,b ≥0且a ≠b 时,(a -b )2(a +b )>0. ∴a a +b b >a b +b a 成立的条件是a ≥0,b ≥0且a ≠b .5.(2016·某某模拟)如果函数f (x )在区间D 上是凸函数,则对于区间D 内的任意x 1,x 2,…,x n ,有f x 1+f x 2+…+f x n n ≤f (x 1+x 2+…+x n n),已知函数y =sin x 在区间(0,π)上是凸函数,则在△ABC 中,sin A +sin B +sin C 的最大值为________. 答案332解析 ∵f (x )=sin x 在区间(0,π)上是凸函数, 且A ,B ,C ∈(0,π). ∴f A +f B +f C3≤f (A +B +C3)=f (π3),即sin A +sin B +sin C ≤3sin π3=332,∴sin A +sin B +sin C 的最大值为332.题型一 综合法的应用 例1 数列{a n }满足a n +1=a n2a n +1,a 1=1. (1)证明:数列{1a n}是等差数列;(2)求数列{1a n }的前n 项和S n ,并证明1S 1+1S 2+…+1S n >nn +1.(1)证明 ∵a n +1=a n2a n +1,∴1a n +1=2a n +1a n ,化简得1a n +1=2+1a n,即1a n +1-1a n=2,故数列{1a n}是以1为首项,2为公差的等差数列.(2)解 由(1)知1a n=2n -1,∴S n =n 1+2n -12=n 2.方法一1S 1+1S 2+…+1S n =112+122+…+1n 2>11×2+12×3+…+1n n +1=(1-12)+(12-13)+…+(1n -1n +1)=1-1n +1=n n +1.方法二1S 1+1S 2+…+1S n =112+122+…+1n 2>1,又∵1>nn +1,∴1S 1+1S 2+…+1S n >n n +1. 思维升华 (1)综合法是“由因导果”的证明方法,它是一种从已知到未知(从题设到结论)的逻辑推理方法,即从题设中的已知条件或已证的真实判断(命题)出发,经过一系列中间推理,最后导出所要求证结论的真实性.(2)综合法的逻辑依据是三段论式的演绎推理.若a ,b ,c 是不全相等的正数,求证:lga +b2+lgb +c2+lgc +a2>lg a +lg b +lg c .证明 ∵a ,b ,c ∈(0,+∞), ∴a +b2≥ab >0,b +c2≥bc >0,a +c2≥ac >0.由于a ,b ,c 是不全相等的正数, ∴上述三个不等式中等号不能同时成立, ∴a +b 2·b +c 2·c +a2>abc >0成立.上式两边同时取常用对数,得 lg(a +b 2·b +c 2·c +a2)>lg abc ,∴lga +b2+lgb +c2+lgc +a2>lg a +lg b +lg c .题型二 分析法的应用例2 已知函数f (x )=tan x ,x ∈⎝ ⎛⎭⎪⎫0,π2,若x 1,x 2∈⎝ ⎛⎭⎪⎫0,π2,且x 1≠x 2,求证:12[f (x 1)+f (x 2)]>f ⎝⎛⎭⎪⎫x 1+x 22.证明 要证12[f (x 1)+f (x 2)]>f ⎝ ⎛⎭⎪⎫x 1+x 22,即证明12(tan x 1+tan x 2)>tan x 1+x 22,只需证明12⎝ ⎛⎭⎪⎫sin x 1cos x 1+sin x 2cos x 2>tan x 1+x 22, 只需证明sin x 1+x 22cos x 1cos x 2>sin x 1+x 21+cos x 1+x 2.由于x 1,x 2∈⎝⎛⎭⎪⎫0,π2,故x 1+x 2∈(0,π).所以cos x 1cos x 2>0,sin(x 1+x 2)>0,1+cos(x 1+x 2)>0, 故只需证明1+cos(x 1+x 2)>2cos x 1cos x 2,即证1+cos x 1cos x 2-sin x 1sin x 2>2cos x 1cos x 2, 即证cos(x 1-x 2)<1.由x 1,x 2∈⎝⎛⎭⎪⎫0,π2,x 1≠x 2知上式显然成立,因此12[f (x 1)+f (x 2)]>f ⎝ ⎛⎭⎪⎫x 1+x 22.引申探究若本例中f (x )变为f (x )=3x-2x ,试证:对于任意的x 1,x 2∈R ,均有f x 1+f x 22≥f ⎝⎛⎭⎪⎫x 1+x 22.证明 要证明f x 1+f x 22≥f ⎝⎛⎭⎪⎫x 1+x 22,即证明3x 1-2x 1+3x 2-2x 22≥1223x x+-2·x 1+x 22,因此只要证明3x 1+3x 22-(x 1+x 2)≥1223x x+-(x 1+x 2),即证明3x 1+3x 22≥1223x x+,因此只要证明3x 1+3x 22≥3x 1·3x 2,由于x 1,x 2∈R 时,3x 1>0,3x 2>0,由基本不等式知3x 1+3x 22≥3x 1·3x 2显然成立,故原结论成立.思维升华 (1)逆向思考是用分析法证题的主要思想,通过反推,逐步寻找使结论成立的充分条件.正确把握转化方向是使问题顺利获解的关键.(2)证明较复杂的问题时,可以采用两头凑的办法,即通过分析法找出某个与结论等价(或充分)的中间结论,然后通过综合法证明这个中间结论,从而使原命题得证.(2016·某某模拟)下列各式:1+0.12+0.1>12,0.2+30.5+3>0.20.5,2+73+7>23,72+π101+π>72101. 请你根据上述特点,提炼出一个一般性命题(写出已知,求证),并用分析法加以证明. 解 已知a >b >0,m >0,求证:b +m a +m >ba.证明如下:∵a >b >0,m >0,欲证b +m a +m >ba, 只需证a (b +m )>b (a +m ),只需证am >bm , 只需证a >b ,由已知得a >b 成立, 所以b +m a +m >ba成立. 题型三 反证法的应用 命题点1 证明否定性命题例3 (2016·某某模拟)设{a n }是公比为q 的等比数列. (1)推导{a n }的前n 项和公式;(2)设q ≠1,证明:数列{a n +1}不是等比数列. (1)解 设{a n }的前n 项和为S n , 当q =1时,S n =a 1+a 1+…+a 1=na 1; 当q ≠1时,S n =a 1+a 1q +a 1q 2+…+a 1qn -1,①qS n =a 1q +a 1q 2+…+a 1q n ,②①-②得,(1-q )S n =a 1-a 1q n,∴S n =a 11-q n1-q ,∴S n =⎩⎪⎨⎪⎧na 1,q =1,a 11-q n1-q,q ≠1.(2)证明 假设{a n +1}是等比数列,则对任意的k ∈N *, (a k +1+1)2=(a k +1)(a k +2+1),a 2k +1+2a k +1+1=a k a k +2+a k +a k +2+1,a 21q 2k +2a 1q k =a 1qk -1·a 1q k +1+a 1q k -1+a 1q k +1, ∵a 1≠0,∴2q k =qk -1+qk +1.∵q ≠0,∴q 2-2q +1=0, ∴q =1,这与已知矛盾.∴假设不成立,故{a n +1}不是等比数列. 命题点2 证明存在性问题例4 已知四棱锥S -ABCD 中,底面是边长为1的正方形,又SB =SD =2,SA =1. (1)求证:SA ⊥平面ABCD ;(2)在棱SC 上是否存在异于S ,C 的点F ,使得BF ∥平面SAD ?若存在,确定F 点的位置;若不存在,请说明理由.(1)证明 由已知得SA 2+AD 2=SD 2,∴SA ⊥AD . 同理SA ⊥AB .又AB ∩AD =A ,AB ⊂平面ABCD ,AD ⊂平面ABCD , ∴SA ⊥平面ABCD .(2)解 假设在棱SC 上存在异于S ,C 的点F ,使得BF ∥平面SAD .∵BC ∥AD ,BC ⊄平面SAD . ∴BC ∥平面SAD .而BC ∩BF =B , ∴平面FBC ∥平面SAD .这与平面SBC 和平面SAD 有公共点S 矛盾, ∴假设不成立.∴不存在这样的点F ,使得BF ∥平面SAD . 命题点3 证明唯一性命题例5 已知a ≠0,证明关于x 的方程ax =b 有且只有一个根. 证明 由于a ≠0,因此方程至少有一个根x =b a. 假设x 1,x 2是它的两个不同的根, 即ax 1=b ,①ax 2=b ,②由①-②得a (x 1-x 2)=0, 因为x 1≠x 2,所以x 1-x 2≠0,所以a =0,这与已知矛盾,故假设错误. 所以当a ≠0时,方程ax =b 有且只有一个根.思维升华 应用反证法证明数学命题,一般有以下几个步骤 第一步:分清命题“p ⇒q ”的条件和结论; 第二步:作出与命题结论q 相反的假设綈q ;第三步:由p 和綈q 出发,应用正确的推理方法,推出矛盾结果;第四步:断定产生矛盾结果的原因在于开始所作的假设綈q 不真,于是原结论q 成立,从而间接地证明了命题p ⇒q 为真.所说的矛盾结果,通常是指推出的结果与已知公理、已知定义、已知定理或已知事实矛盾,与临时假设矛盾以及自相矛盾等都是矛盾结果.已知二次函数f (x )=ax 2+bx +c (a >0)的图象与x 轴有两个不同的交点,若f (c )=0,且0<x <c 时,f (x )>0.(1)证明:1a是函数f (x )的一个零点;(2)试用反证法证明1a>c .证明 (1)∵f (x )的图象与x 轴有两个不同的交点, ∴f (x )=0有两个不等实根x 1,x 2, ∵f (c )=0,∴x 1=c 是f (x )=0的根,又x 1x 2=c a,∴x 2=1a (1a≠c ),∴1a 是f (x )=0的一个根.即1a是函数f (x )的一个零点.(2)假设1a <c ,又1a>0,由0<x <c 时,f (x )>0,知f (1a )>0,与f (1a )=0矛盾,∴1a≥c ,又∵1a ≠c ,∴1a>c .22.反证法在证明题中的应用典例 (14分)直线y =kx +m (m ≠0)与椭圆W :x 24+y 2=1相交于A 、C 两点,O 是坐标原点.(1)当点B 的坐标为(0,1),且四边形OABC 为菱形时,求AC 的长; (2)当点B 在W 上且不是W 的顶点时,证明:四边形OABC 不可能为菱形.思想方法指导 在证明否定性问题,存在性问题,唯一性问题时常考虑用反证法证明,应用反证法需注意:(1)掌握反证法的证明思路及证题步骤,正确作出假设是反证法的基础,应用假设是反证法的基本手段,得到矛盾是反证法的目的.(2)当证明的结论和条件联系不明显、直接证明不清晰或正面证明分类较多、而反面情况只有一种或较少时,常采用反证法.(3)利用反证法证明时,一定要回到结论上去. 规X 解答(1)解 因为四边形OABC 为菱形, 则AC 与OB 相互垂直平分. 由于O (0,0),B (0,1),所以设点A ⎝ ⎛⎭⎪⎫t ,12,代入椭圆方程得t 24+14=1,则t =±3,故|AC |=2 3.[4分] (2)证明 假设四边形OABC 为菱形, 因为点B 不是W 的顶点,且AC ⊥OB , 所以k ≠0.由⎩⎪⎨⎪⎧x 2+4y 2=4,y =kx +m ,消y 并整理得(1+4k 2)x 2+8kmx +4m 2-4=0.[7分] 设A (x 1,y 1),C (x 2,y 2),则x 1+x 22=-4km 1+4k 2,y 2+y 22 =k ·x 1+x 22+m =m1+4k2.所以AC 的中点为M ⎝⎛⎭⎪⎫-4km 1+4k 2,m 1+4k 2.[10分]因为M 为AC 和OB 的交点,且m ≠0,k ≠0, 所以直线OB 的斜率为-14k ,因为k ·⎝ ⎛⎭⎪⎫-14k =-14≠-1, 所以AC 与OB 不垂直.[13分] 所以OABC 不是菱形,与假设矛盾.所以当点B 不是W 的顶点时,四边形OABC 不可能是菱形.[14分]1.(2017·某某月考)用反证法证明命题“设a ,b 为实数,则方程x 2+ax +b =0至少有一个实根”时,要做的假设是__________________________. 答案 方程x 2+ax +b =0没有实根解析 因为“方程x 2+ax +b =0至少有一个实根”等价于“方程x 2+ax +b =0有一个实根或两个实根”,所以该命题的否定是“方程x 2+ax +b =0没有实根”.2.若一元二次不等式2kx 2+kx -38<0对一切实数x 都成立,则k 的取值X 围为__________.答案 (-3,0]解析 若2kx 2+kx -38<0对一切实数x 都成立,则必有⎩⎪⎨⎪⎧2k <0,Δ=k 2-4×2k ×-38<0或k =0.解得-3<k ≤0.3.设x ,y ,z >0,则关于三个数y x +y z ,z x +z y ,x z +xy的叙述正确的是________. ①都大于2 ②至少有一个大于2③至少有一个不小于2 ④至少有一个不大于2 答案 ③解析 因为(y x +y z )+(z x +z y )+(x z +x y) =(y x +x y )+(y z +z y)+(z x +x z)≥6, 当且仅当x =y =z 时等号成立.所以三个数中至少有一个不小于2,③正确.4.(2016·某某模拟)若P =a +a +7,Q =a +3+a +4(a ≥0),则P ,Q 的大小关系是____________. 答案 P <Q解析 ∵P 2=2a +7+2a ·a +7=2a +7+2a 2+7a , Q 2=2a +7+2a +3·a +4=2a +7+2a 2+7a +12,∴P 2<Q 2,∴P <Q .5.(2016·某某模拟)下列条件:①ab >0,②ab <0,③a >0,b >0,④a <0,b <0,其中能使b a +a b ≥2成立的条件的序号是________. 答案 ①③④解析 要使b a +a b ≥2,只需b a >0且a b >0成立,即a ,b 不为0且同号即可,故①③④能使b a +a b≥2成立.6.用反证法证明:若整系数一元二次方程ax 2+bx +c =0 (a ≠0)有有理数根,那么a ,b ,c 中至少有一个是偶数.用反证法证明时,下列假设正确的是________.①假设a ,b ,c 都是偶数;②假设a ,b ,c 都不是偶数;③假设a ,b ,c 至多有一个偶数;④假设a ,b ,c 至多有两个偶数.答案 ②解析 “至少有一个”的否定为“都不是”,故②正确.7.(2016·全国甲卷)有三X 卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一X 卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.答案 1和3解析 由丙说:“我的卡片上的数字之和不是5”可知,丙为“1和2”或“1和3”,又乙说“我与丙的卡片上相同的数字不是1”,所以乙只可能为“2和3”,又甲说“我与乙的卡片上相同的数字不是2”,所以甲只能为“1和3”.8.若二次函数f (x )=4x 2-2(p -2)x -2p 2-p +1,在区间[-1,1]内至少存在一点c ,使f (c )>0,则实数p 的取值X 围是____________.答案 ⎝ ⎛⎭⎪⎫-3,32 解析 若二次函数f (x )≤0在区间[-1,1]内恒成立,则⎩⎪⎨⎪⎧ f -1=-2p 2+p +1≤0,f 1=-2p 2-3p +9≤0,解得p ≤-3或p ≥32, 故满足题干条件的p 的取值X 围为⎝⎛⎭⎪⎫-3,32. 9.已知m >0,a ,b ∈R ,求证:(a +mb 1+m )2≤a 2+mb 21+m. 证明 因为m >0,所以1+m >0.所以要证原不等式成立,只需证(a +mb )2≤(1+m )(a 2+mb 2),即证m (a 2-2ab +b 2)≥0,即证(a -b )2≥0,而(a -b )2≥0显然成立,故原不等式得证.10.设f (x )=ax 2+bx +c (a ≠0),若函数f (x +1)与f (x )的图象关于y 轴对称,求证:f (x +12)为偶函数. 证明 由函数f (x +1)与f (x )的图象关于y 轴对称,可知f (x +1)=f (-x ).将x 换成x -12代入上式可得 f (x -12+1)=f [-(x -12)],即f (x +12)=f (-x +12), 由偶函数的定义可知f (x +12)为偶函数. 11.(2016·某某模拟)已知函数f (x )=a x +x -2x +1(a >1). (1)证明:函数f (x )在(-1,+∞)上为增函数;(2)用反证法证明方程f (x )=0没有负数根.证明 (1)任取x 1,x 2∈(-1,+∞),不妨设x 1<x 2,则x 2-x 1>0.∵a >1,∴ax 2-x 1>1且ax 1>0,∴ax 2-ax 1=ax 1(ax 2-x 1-1)>0.又∵x 1+1>0,x 2+1>0,∴x 2-2x 2+1-x 1-2x 1+1=x 2-2x 1+1-x 1-2x 2+1x 1+1x 2+1=3x 2-x 1x 1+1x 2+1>0. 于是f (x 2)-f (x 1)=ax 2-ax 1+x 2-2x 2+1-x 1-2x 1+1>0, 故函数f (x )在(-1,+∞)上为增函数.(2)假设存在x 0<0(x 0≠-1)满足f (x 0)=0,则ax 0=-x 0-2x 0+1. ∵a >1,∴0<ax 0<1,∴0<-x 0-2x 0+1<1,即12<x 0<2,与假设x 0<0相矛盾, 故方程f (x )=0没有负数根.12.(2016·某某)设函数f (x )=x 3+11+x,x ∈[0,1],证明: (1)f (x )≥1-x +x 2;(2)34<f (x )≤32. 证明 (1)因为1-x +x 2-x 3=1--x 41--x =1-x 41+x , 由于x ∈[0,1],有1-x 41+x ≤1x +1, 即1-x +x 2-x 3≤1x +1, 所以f (x )≥1-x +x 2.(2)由0≤x ≤1得x 3≤x ,故f (x )=x 3+1x +1≤x +1x +1=x +1x +1-32+32=x -12x +12x +1+32≤32, 所以f (x )≤32. 由(1)得f (x )≥1-x +x 2=⎝ ⎛⎭⎪⎫x -122+34≥34, 又因为f ⎝ ⎛⎭⎪⎫12=1924>34,所以f (x )>34. 综上,34<f (x )≤32. 13.(2015·课标全国Ⅱ)设a ,b ,c ,d 均为正数,且a +b =c +d ,证明:(1)若ab >cd ,则a +b >c +d ;(2)a+b>c+d是|a-b|<|c-d|的充要条件.证明(1)因为(a+b)2=a+b+2ab,(c+d)2=c+d+2cd,由题设a+b=c+d,ab>cd得(a+b)2>(c+d)2. 因此a+b>c+d.(2)①若|a-b|<|c-d|,则(a-b)2<(c-d)2,即(a+b)2-4ab<(c+d)2-4cd.因为a+b=c+d,所以ab>cd.由(1)得a+b>c+d.②若a+b>c+d,则(a+b)2>(c+d)2,即a+b+2ab>c+d+2cd.因为a+b=c+d,所以ab>cd,于是(a-b)2=(a+b)2-4ab<(c+d)2-4cd=(c-d)2.因此|a-b|<|c-d|.综上,a+b>c+d是|a-b|<|c-d|的充要条件.。
高考数学一轮复习 第十二章算法初步与框图、推理与证明、复数12.2基本算法语句、算法案例教学案
12.2 基本算法语句、算法案例考纲要求了解几种基本算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句的含义.1.输入语句不同的程序语言都有自己的输入指令和方法,在Scilab中的输入语句之一是“input”,不仅可输入数值,也可输入单个或多个字符.2.输出语句(1)“print”语句程序中的print的参数______表示在屏幕上输出.(2)“disp”语句disp也是Scilab的输出语句,运行后在界面窗口上显示______中间的文字.3.赋值语句(1)赋值语句的一般格式:____________.(2)在研究问题的过程中可以取不同数值的量称为______,把一个值a赋给变量b的过程称为______,“____”为赋值符号.注意事项:赋值号“=”左边只能是变量名,右边是表达式,左右边不能交换;每一个赋值语句只能出现一次“=”,只能给一个变量赋值.赋值号“=”的理解:把右边的数值赋给左边的变量或计算右边表达式的值并把计算结果赋给左边的变量.4.条件语句5.(1)for循环格式为for循环变量=初值:步长:终值循环体;end(2)while语句格式为while表达式循环体;end6.更相减损术第一步:任意给定两个正整数,判断它们是否都是______.若是,用2约简;若不是,执行第二步.第二步:以__________减去__________,接着把所得的差与较小的数比较,并以大数减小数.继续这个操作,直到______________为止,则相等的数就是所求的__________.7.秦九韶算法把一个n 次多项式函数f (x )=a n x n +a n -1x n -1+…+a 1x +a 0改写成如下形式:f (x )=____________________________________.求多项式的值时,首先计算最内层括号内一次多项式的值,即________,然后由内向外逐层计算一次多项式的值,即v 2=v 1x +a n -2, v 3=v 2x +a n -3, ……v n =v n -1x +a 0.1.已知变量a ,b 已被赋值,要交换a ,b 的值,采用的算法是( ). A .a =b ,b =a B .a =c ,b =a ,c =b C .a =c ,b =a ,c =a D .c =a ,a =b ,b =c 2.运行下面的程序时,while 循环语句的执行次数是( ). n =0;while n<20 n =n +1; n =;end,;A . 3B .4C .15D .193.运行下面的程序,若输入5,则输出的值是( ). a ==;a =-a +15;,;A .-10B .10C .20D .-204.下列关于利用更相减损之术求156和72的最大公约数的说法中正确的是( ). A .第一步必须是约简B .第一步可以约简,也可以不约简C .第一步作差为156-72=84;第二步作差为72-84=-12 D .以上都不对5.2012年某地森林面积为1 000 km 2,且每年增长5%,到哪一年该地森林面积超过2 000 km 2?请设计一个程序,并画出程序框图.一、输入、输出和赋值语句【例1】 设计一个可以输入圆柱的底面半径r 和高h ,再计算出圆柱的体积和表面积的算法,画出程序框图,并写出程序.(π取3.14)方法提炼1.输入、 输出、赋值语句是任何一个算法中必不可少的语句.一个输出语句可以输出多个表达式的值.在赋值语句中,变量的值始终等于最近一次赋给它的值,先前的值将被替换.2.一个赋值语句只给一个变量赋值,但一个语句行可以写多个赋值语句. 3.不能利用赋值语句进行代数式的演算(如化简、分解因式、解方程等).4.编写程序的关键在于搞清问题的算法,特别是算法的结构,然后确定采取哪一种算法语句.5.编写程序时,要注意常见运算符号的书写方式如a ^b (a b);a*b (a ×b );a /b (a b);sqrt(x )(x );a \b (a 除以b 的整数商,如5\2);a mod b (a 除以b 的余数,如5mod2=1)等,还要明确它们的运算规则:先乘除、后加减;乘幂优于乘除;函数优于乘幂;同级运算从左向右按顺序进行;括号内最优先,多层括号则从内到外依次进行运算[注意表达式中的括号一律用小括号“()”].请做演练巩固提升2 二、条件语句【例2】 已知函数y =⎩⎪⎨⎪⎧2x 2-1,x >0,2x +1,x =0,-2x 2+4x ,x <0,试输入x 的值计算y 的值,画出程序框图,并写出程序.方法提炼1.条件语句一般用在需要对条件进行判断的算法设计中,如求分段函数的函数值往往用条件语句编写程序.2.条件语句可以嵌套,即条件语句的then 或else 后面还可以跟条件语句. 请做演练巩固提升1,4 三、循环语句【例3】已知如下图所示程序框图.(1)指出该框图的算法功能; (2)试写出该框图对应的程序. 方法提炼在解决一些需要反复执行的运算任务,如累加求和、累乘求积等问题时,应考虑利用循环语句来实现.请做演练巩固提升3 四、秦九韶算法【例4】用秦九韶算法计算多项式f(x)=x 5+3x 3-2x 2+1当x =2时的函数值. 方法提炼用秦九韶算法计算多项式的值时,先将所给的多项式进行改写,再由内到外逐次计算.若多项式中有系数为0的项,则应把它补上.请做演练巩固提升5不理解算法语句的功能及格式易致误【典例】 (2012湖南衡阳模拟)下面程序运行后输出的结果为( ).a =0;j =1;while j<=5 a =+; j =j +1;end aA .0B .1C .2D .4 解析:当j =1时,余数a =1;当j =2时,余数a =3;当j =3时,余数a =1; 当j =4时,余数a =0;当j =5时,余数a =0; 当j =6时,不满足条件,此时退出循环. 答案:A答题指导:1.在解答本题时,易错选D 而导致错误,错误原因是:对循环过程不理解,误认为j =1时,余数a =0,即j =1时,没有执行第一次循环.其错误过程如下:当j =1时,余数a =0;当j =2时,余数a =2;当j =3时,余数a =0;当j =4时,余数a =4;当j =5时,余数a =4.2.解决算法语句的有关问题时,还有以下几点易造成失误,备考时要高度关注: (1)对基本算法语句的功能及格式要求不熟悉.(2)条件语句中的嵌套结构混乱,不能用分段函数的形式直观描述. (3)对循环结构的循环过程把握不准.1.给出以下四个问题:①输入一个数x ,输出它的绝对值;②求函数f (x )=⎩⎪⎨⎪⎧x 2-1 x ,x 2+2x x 的函数值;③求面积为6的正方形的周长;④求三个数a ,b ,c 中的最大数.其中不需要用条件语句来描述其算法的有( ).A .1个B .2个C .3个D .4个 2.计算机执行下面的程序段后,输出的结果是( ).a =1;b =3;a =a +b ;b =a -b ;,a ,;A .1,3B .4,1C .0,0D .6,03.读下面的甲、乙两个程序:i =1;S =0;while i<=1 000S =S +i ;i =i +1;endi =1 000;S =0;for i =1 000:-1:1 S =S +i ;end甲 乙对甲、乙两个程序和输出的结果判断正确的是( ). A .程序不同,结果不同 B .程序不同,结果相同 C .程序相同,结果不同D.程序相同,结果相同4.执行下列程序,变量y的值为( ).x=20;if x>=30y=;elsey=;endA.100 B.80 C.90 D.405.用秦九韶算法计算多项式f(x)=2x7+x6-3x3+2x当x=2时的函数值,需要做加法和乘法的次数分别为( ).A.7,4 B.4,7 C.6,7 D.4,4参考答案基础梳理自测知识梳理2.(1)%io(2) (2)双引号3.(1)变量名=表达式(2)变量赋值=6.偶数较大的数较小的数所得的数相等最大公约数7.(…((a n x+a n-1)x+a n-2)x+…+a1)x+a0v1=a n x+a n-1基础自测1.D2.A 解析:解读程序时,可采用一一列举的形式:(1)n=0+1=1;n=1×1=1;(2)n=1+1=2;n=2×2=4;(3)n=4+1=5;n=5×5=25.共执行了3次.3.B 解析:该程序采用列举的方式:a=-5+15=10,可知输出的值是10.4.B 解析:约简是为了使运算更加简捷,并不一定要约简,故A错;C中第二步应为84-72=12.5.解:需要一个累加变量和一个计数变量,将累加变量的初值设为1 000,计数变量从0开始取值.程序框图:程序如下:考点探究突破【例1】解:算法如下:第一步,输入半径r和高h.第二步,计算底面积S=πr2.第三步,计算体积V=hS.第四步,计算侧面积C=2πrh.第五步,计算表面积B=2S+C.第六步,输出V和B.程序框图如下图.程序如下:【例2】解:程序框图如图所示.程序如下:【例3】解:(1)算法功能为求满足1×3×5×…×n >10 000的最小正奇数n . (2)与该框图对应的程序为【例4】解:∵f (x )=x 5+3x 3-2x 2+1=((((x +0)x +3)x -2)x +0)x +1, 按照由内到外的顺序,依次计算一次多项式当x =2时的函数值如下: v 0=1,v 1=1×2+0=2, v 2=2×2+3=7, v 3=7×2-2=12, v 4=12×2+0=24, v 5=24×2+1=49, 故f (2)=49. 演练巩固提升1.A 解析:③不需要用条件语句来描述. 2.B3.B 解析:程序甲实现的功能是1+2+3+…+1 000; 程序乙实现的功能是1 000+999+…+3+2+1. 4.B 解析:本程序实际是对应函数模型 y =⎩⎪⎨⎪⎧5x ,x ≥30,4x ,x <30,故x =20时,y =80. 5.C。
江苏2018版高考数学复习第十二章推理与证明算法复数12.2直接证明与间接证明教师用书文苏教版
12.2 直接证明与间接证明1.直接证明(1)综合法①定义:从已知条件出发,以已知的定义、公理、定理为依据,逐步下推,直到推出要证明的结论为止,这种证明方法常称为综合法.②框图表示:已知条件⇒…⇒…⇒结论③思维过程:由因导果.(2)分析法①定义:从问题的结论出发,追溯导致结论成立的条件,逐步上溯,直到使结论成立的条件和已知条件或已知事实吻合为止.这种证明方法常称为分析法.②框图表示:结论⇐…⇐…⇐已知条件③思维过程:执果索因.2.间接证明反证法:要从否定结论开始,经过正确的推理,导致逻辑矛盾,从而达到新的否定(即肯定原命题).这个过程包括下面3个步骤:(1)反设——假设命题的结论不成立,即假定原结论的反面为真;(2)归谬——从反设和已知条件出发,经过一系列正确的逻辑推理,得出矛盾结果;(3)存真——由矛盾结果,断定反设不真,从而肯定原结论成立.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)综合法是直接证明,分析法是间接证明.( ×)(2)分析法是从要证明的结论出发,逐步寻找使结论成立的充要条件.( ×)(3)用反证法证明结论“a>b”时,应假设“a<b”.( ×)(4)反证法是指将结论和条件同时否定,推出矛盾.( ×)(5)在解决问题时,常常用分析法寻找解题的思路与方法,再用综合法展现解决问题的过程.( √ )(6)证明不等式2+7<3+6最合适的方法是分析法.( √ )1.(2016·扬州质检)已知点A n (n ,a n )为函数y =x 2+1图象上的点,B n (n ,b n )为函数y =x 图象上的点,其中n ∈N *,设c n =a n -b n ,则c n 与c n +1的大小关系为______________________. 答案 c n +1<c n 解析 由条件得c n =a n -b n =n 2+1-n =1n 2+1+n,则c n 随n 的增大而减小,∴c n +1<c n .2.用反证法证明命题:“a ,b ∈N ,若ab 不能被5整除,则a 与b 都不能被5整除”时,假设的内容应为____________________________. 答案 a ,b 至少有一个能被5整除解析 “都不能”的否定为“至少有一个能”,故假设的内容应为“a ,b 至少有一个能被5整除”.3.要证a 2+b 2-1-a 2b 2≤0只要证明________(填正确的序号). ①2ab -1-a 2b 2≤0; ②a 2+b 2-1-a 4+b 42≤0;③a +b22-1-a 2b 2≤0;④(a 2-1)(b 2-1)≥0. 答案 ④解析 a 2+b 2-1-a 2b 2≤0⇔(a 2-1)(b 2-1)≥0.4.如果a a +b b >a b +b a ,则a 、b 应满足的条件是__________________________. 答案 a ≥0,b ≥0且a ≠b 解析 ∵a a +b b -(a b +b a ) =a (a -b )+b (b -a ) =(a -b )(a -b ) =(a -b )2(a +b ).∴当a ≥0,b ≥0且a ≠b 时,(a -b )2(a +b )>0. ∴a a +b b >a b +b a 成立的条件是a ≥0,b ≥0且a ≠b .5.(2016·盐城模拟)如果函数f (x )在区间D 上是凸函数,则对于区间D 内的任意x 1,x 2,…,x n ,有f x 1+f x 2+…+f x n n ≤f (x 1+x 2+…+x n n),已知函数y =sin x 在区间(0,π)上是凸函数,则在△ABC 中,sin A +sin B +sin C 的最大值为________. 答案332解析 ∵f (x )=sin x 在区间(0,π)上是凸函数, 且A ,B ,C ∈(0,π). ∴f A +f B +f C3≤f (A +B +C3)=f (π3),即sin A +sin B +sin C ≤3sin π3=332,∴sin A +sin B +sin C 的最大值为332.题型一 综合法的应用 例1 数列{a n }满足a n +1=a n2a n +1,a 1=1. (1)证明:数列{1a n}是等差数列;(2)求数列{1a n }的前n 项和S n ,并证明1S 1+1S 2+…+1S n >nn +1.(1)证明 ∵a n +1=a n2a n +1,∴1a n +1=2a n +1a n ,化简得1a n +1=2+1a n,即1a n +1-1a n=2,故数列{1a n}是以1为首项,2为公差的等差数列.(2)解 由(1)知1a n=2n -1,∴S n =n+2n -2=n 2.方法一1S 1+1S 2+…+1S n =112+122+…+1n 2>11×2+12×3+…+1n n +=(1-12)+(12-13)+…+(1n -1n +1)=1-1n +1=n n +1.方法二1S 1+1S 2+…+1S n =112+122+…+1n 2>1,又∵1>nn +1,∴1S 1+1S 2+…+1S n >n n +1. 思维升华 (1)综合法是“由因导果”的证明方法,它是一种从已知到未知(从题设到结论)的逻辑推理方法,即从题设中的已知条件或已证的真实判断(命题)出发,经过一系列中间推理,最后导出所要求证结论的真实性.(2)综合法的逻辑依据是三段论式的演绎推理.若a ,b ,c 是不全相等的正数,求证:lga +b2+lgb +c2+lgc +a2>lg a +lg b +lg c .证明 ∵a ,b ,c ∈(0,+∞), ∴a +b2≥ab >0,b +c2≥bc >0,a +c2≥ac >0.由于a ,b ,c 是不全相等的正数, ∴上述三个不等式中等号不能同时成立, ∴a +b 2·b +c 2·c +a2>abc >0成立.上式两边同时取常用对数,得 lg(a +b 2·b +c 2·c +a2)>lg abc ,∴lga +b2+lgb +c2+lgc +a2>lg a +lg b +lg c .题型二 分析法的应用例2 已知函数f (x )=tan x ,x ∈⎝ ⎛⎭⎪⎫0,π2,若x 1,x 2∈⎝ ⎛⎭⎪⎫0,π2,且x 1≠x 2,求证:12[f (x 1)+f (x 2)]>f ⎝⎛⎭⎪⎫x 1+x 22.证明 要证12[f (x 1)+f (x 2)]>f ⎝ ⎛⎭⎪⎫x 1+x 22,即证明12(tan x 1+tan x 2)>tan x 1+x 22,只需证明12⎝ ⎛⎭⎪⎫sin x 1cos x 1+sin x 2cos x 2>tan x 1+x 22, 只需证明x 1+x 22cos x 1cos x 2>x 1+x 21+x 1+x 2.由于x 1,x 2∈⎝⎛⎭⎪⎫0,π2,故x 1+x 2∈(0,π).所以cos x 1cos x 2>0,sin(x 1+x 2)>0,1+cos(x 1+x 2)>0, 故只需证明1+cos(x 1+x 2)>2cos x 1cos x 2,即证1+cos x 1cos x 2-sin x 1sin x 2>2cos x 1cos x 2, 即证cos(x 1-x 2)<1.由x 1,x 2∈⎝⎛⎭⎪⎫0,π2,x 1≠x 2知上式显然成立,因此12[f (x 1)+f (x 2)]>f ⎝ ⎛⎭⎪⎫x 1+x 22.引申探究若本例中f (x )变为f (x )=3x-2x ,试证:对于任意的x 1,x 2∈R ,均有f x 1+f x 22≥f ⎝⎛⎭⎪⎫x 1+x 22.证明 要证明f x 1+f x 22≥f ⎝⎛⎭⎪⎫x 1+x 22,即证明x 1-2x 1+x 2-2x 22≥1223x x +-2·x 1+x 22,因此只要证明3x 1+3x 22-(x 1+x 2)≥1223x x+-(x 1+x 2),即证明3x 1+3x 22≥1223x x+,因此只要证明3x 1+3x 22≥3x 1·3x 2,由于x 1,x 2∈R 时,3x 1>0,3x 2>0,由基本不等式知3x 1+3x 22≥3x 1·3x 2显然成立,故原结论成立.思维升华 (1)逆向思考是用分析法证题的主要思想,通过反推,逐步寻找使结论成立的充分条件.正确把握转化方向是使问题顺利获解的关键.(2)证明较复杂的问题时,可以采用两头凑的办法,即通过分析法找出某个与结论等价(或充分)的中间结论,然后通过综合法证明这个中间结论,从而使原命题得证.(2016·苏州模拟)下列各式:1+0.12+0.1>12,0.2+30.5+3>0.20.5,2+73+7>23,72+π101+π>72101. 请你根据上述特点,提炼出一个一般性命题(写出已知,求证),并用分析法加以证明. 解 已知a >b >0,m >0,求证:b +m a +m >ba.证明如下:∵a >b >0,m >0,欲证b +m a +m >ba, 只需证a (b +m )>b (a +m ),只需证am >bm , 只需证a >b ,由已知得a >b 成立, 所以b +m a +m >ba成立. 题型三 反证法的应用 命题点1 证明否定性命题例3 (2016·连云港模拟)设{a n }是公比为q 的等比数列. (1)推导{a n }的前n 项和公式;(2)设q ≠1,证明:数列{a n +1}不是等比数列. (1)解 设{a n }的前n 项和为S n , 当q =1时,S n =a 1+a 1+…+a 1=na 1; 当q ≠1时,S n =a 1+a 1q +a 1q 2+…+a 1qn -1,①qS n =a 1q +a 1q 2+…+a 1q n ,②①-②得,(1-q )S n =a 1-a 1q n, ∴S n =a 1-q n1-q,∴S n =⎩⎪⎨⎪⎧na 1,q =1,a 1-q n1-q,q ≠1.(2)证明 假设{a n +1}是等比数列,则对任意的k ∈N *, (a k +1+1)2=(a k +1)(a k +2+1),a 2k +1+2a k +1+1=a k a k +2+a k +a k +2+1,a 21q 2k +2a 1q k =a 1qk -1·a 1q k +1+a 1q k -1+a 1q k +1, ∵a 1≠0,∴2q k =qk -1+qk +1.∵q ≠0,∴q 2-2q +1=0, ∴q =1,这与已知矛盾.∴假设不成立,故{a n +1}不是等比数列. 命题点2 证明存在性问题例4 已知四棱锥S -ABCD 中,底面是边长为1的正方形,又SB =SD =2,SA =1. (1)求证:SA ⊥平面ABCD ;(2)在棱SC 上是否存在异于S ,C 的点F ,使得BF ∥平面SAD ?若存在,确定F 点的位置;若不存在,请说明理由.(1)证明 由已知得SA 2+AD 2=SD 2,∴SA ⊥AD . 同理SA ⊥AB .又AB ∩AD =A ,AB ⊂平面ABCD ,AD ⊂平面ABCD , ∴SA ⊥平面ABCD .(2)解 假设在棱SC 上存在异于S ,C 的点F ,使得BF ∥平面SAD .∵BC ∥AD ,BC ⊄平面SAD . ∴BC ∥平面SAD .而BC ∩BF =B , ∴平面FBC ∥平面SAD .这与平面SBC 和平面SAD 有公共点S 矛盾, ∴假设不成立.∴不存在这样的点F ,使得BF ∥平面SAD . 命题点3 证明唯一性命题例5 已知a ≠0,证明关于x 的方程ax =b 有且只有一个根. 证明 由于a ≠0,因此方程至少有一个根x =b a. 假设x 1,x 2是它的两个不同的根, 即ax 1=b ,① ax 2=b ,②由①-②得a (x 1-x 2)=0, 因为x 1≠x 2,所以x 1-x 2≠0,所以a =0,这与已知矛盾,故假设错误. 所以当a ≠0时,方程ax =b 有且只有一个根.思维升华 应用反证法证明数学命题,一般有以下几个步骤 第一步:分清命题“p ⇒q ”的条件和结论; 第二步:作出与命题结论q 相反的假设綈q ;第三步:由p 和綈q 出发,应用正确的推理方法,推出矛盾结果;第四步:断定产生矛盾结果的原因在于开始所作的假设綈q 不真,于是原结论q 成立,从而间接地证明了命题p ⇒q 为真.所说的矛盾结果,通常是指推出的结果与已知公理、已知定义、已知定理或已知事实矛盾,与临时假设矛盾以及自相矛盾等都是矛盾结果.已知二次函数f (x )=ax 2+bx +c (a >0)的图象与x 轴有两个不同的交点,若f (c )=0,且0<x <c 时,f (x )>0.(1)证明:1a是函数f (x )的一个零点;(2)试用反证法证明1a>c .证明 (1)∵f (x )的图象与x 轴有两个不同的交点, ∴f (x )=0有两个不等实根x 1,x 2, ∵f (c )=0,∴x 1=c 是f (x )=0的根,又x 1x 2=c a,∴x 2=1a (1a≠c ),∴1a 是f (x )=0的一个根.即1a是函数f (x )的一个零点.(2)假设1a <c ,又1a>0,由0<x <c 时,f (x )>0,知f (1a )>0,与f (1a )=0矛盾,∴1a≥c ,又∵1a ≠c ,∴1a>c .22.反证法在证明题中的应用典例 (14分)直线y =kx +m (m ≠0)与椭圆W :x 24+y 2=1相交于A 、C 两点,O 是坐标原点.(1)当点B 的坐标为(0,1),且四边形OABC 为菱形时,求AC 的长; (2)当点B 在W 上且不是W 的顶点时,证明:四边形OABC 不可能为菱形.思想方法指导 在证明否定性问题,存在性问题,唯一性问题时常考虑用反证法证明,应用反证法需注意:(1)掌握反证法的证明思路及证题步骤,正确作出假设是反证法的基础,应用假设是反证法的基本手段,得到矛盾是反证法的目的.(2)当证明的结论和条件联系不明显、直接证明不清晰或正面证明分类较多、而反面情况只有一种或较少时,常采用反证法.(3)利用反证法证明时,一定要回到结论上去. 规范解答(1)解 因为四边形OABC 为菱形, 则AC 与OB 相互垂直平分. 由于O (0,0),B (0,1),所以设点A ⎝ ⎛⎭⎪⎫t ,12,代入椭圆方程得t 24+14=1,则t =±3,故|AC |=2 3.[4分] (2)证明 假设四边形OABC 为菱形, 因为点B 不是W 的顶点,且AC ⊥OB , 所以k ≠0.由⎩⎪⎨⎪⎧x 2+4y 2=4,y =kx +m ,消y 并整理得(1+4k 2)x 2+8kmx +4m 2-4=0.[7分] 设A (x 1,y 1),C (x 2,y 2),则x 1+x 22=-4km 1+4k 2,y 2+y 22 =k ·x 1+x 22+m =m1+4k2.所以AC 的中点为M ⎝⎛⎭⎪⎫-4km 1+4k 2,m 1+4k 2.[10分]因为M 为AC 和OB 的交点,且m ≠0,k ≠0, 所以直线OB 的斜率为-14k ,因为k ·⎝ ⎛⎭⎪⎫-14k =-14≠-1, 所以AC 与OB 不垂直.[13分] 所以OABC 不是菱形,与假设矛盾.所以当点B 不是W 的顶点时,四边形OABC 不可能是菱形.[14分]1.(2017·泰州月考)用反证法证明命题“设a ,b 为实数,则方程x 2+ax +b =0至少有一个实根”时,要做的假设是__________________________. 答案 方程x 2+ax +b =0没有实根解析 因为“方程x 2+ax +b =0至少有一个实根”等价于“方程x 2+ax +b =0有一个实根或两个实根”,所以该命题的否定是“方程x 2+ax +b =0没有实根”.2.若一元二次不等式2kx 2+kx -38<0对一切实数x 都成立,则k 的取值范围为__________.答案 (-3,0]解析 若2kx 2+kx -38<0对一切实数x 都成立,则必有⎩⎪⎨⎪⎧2k <0,Δ=k 2-4×2k -38或k =0.解得-3<k ≤0.3.设x ,y ,z >0,则关于三个数y x +y z ,z x +z y ,x z +x y的叙述正确的是________. ①都大于2②至少有一个大于2 ③至少有一个不小于2④至少有一个不大于2答案 ③解析 因为(y x +y z )+(z x +z y )+(x z +x y) =(y x +x y )+(y z +z y)+(z x +x z)≥6, 当且仅当x =y =z 时等号成立.所以三个数中至少有一个不小于2,③正确.4.(2016·镇江模拟)若P =a +a +7,Q =a +3+a +4(a ≥0),则P ,Q 的大小关系是____________. 答案 P <Q解析 ∵P 2=2a +7+2a ·a +7=2a +7+2a 2+7a , Q 2=2a +7+2a +3·a +4=2a +7+2a 2+7a +12,∴P 2<Q 2,∴P <Q .5.(2016·苏州模拟)下列条件:①ab >0,②ab <0,③a >0,b >0,④a <0,b <0,其中能使b a +a b ≥2成立的条件的序号是________. 答案 ①③④解析 要使b a +a b ≥2,只需b a >0且a b >0成立,即a ,b 不为0且同号即可,故①③④能使b a +a b≥2成立.6.用反证法证明:若整系数一元二次方程ax 2+bx +c =0 (a ≠0)有有理数根,那么a ,b ,c 中至少有一个是偶数.用反证法证明时,下列假设正确的是________.①假设a ,b ,c 都是偶数;②假设a ,b ,c 都不是偶数;③假设a ,b ,c 至多有一个偶数;④假设a ,b ,c 至多有两个偶数.答案 ②解析 “至少有一个”的否定为“都不是”,故②正确.7.(2016·全国甲卷)有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.答案 1和3解析 由丙说:“我的卡片上的数字之和不是5”可知,丙为“1和2”或“1和3”,又乙说“我与丙的卡片上相同的数字不是1”,所以乙只可能为“2和3”,又甲说“我与乙的卡片上相同的数字不是2”,所以甲只能为“1和3”.8.若二次函数f (x )=4x 2-2(p -2)x -2p 2-p +1,在区间[-1,1]内至少存在一点c ,使f (c )>0,则实数p 的取值范围是____________.答案 ⎝ ⎛⎭⎪⎫-3,32 解析 若二次函数f (x )≤0在区间[-1,1]内恒成立,则⎩⎪⎨⎪⎧ f -=-2p 2+p +1≤0,f =-2p 2-3p +9≤0,解得p ≤-3或p ≥32, 故满足题干条件的p 的取值范围为⎝⎛⎭⎪⎫-3,32. 9.已知m >0,a ,b ∈R ,求证:(a +mb 1+m )2≤a 2+mb 21+m. 证明 因为m >0,所以1+m >0.所以要证原不等式成立,只需证(a +mb )2≤(1+m )(a 2+mb 2),即证m (a 2-2ab +b 2)≥0,即证(a -b )2≥0,而(a -b )2≥0显然成立,故原不等式得证.10.设f (x )=ax 2+bx +c (a ≠0),若函数f (x +1)与f (x )的图象关于y 轴对称,求证:f (x +12)为偶函数. 证明 由函数f (x +1)与f (x )的图象关于y 轴对称,可知f (x +1)=f (-x ).将x 换成x -12代入上式可得 f (x -12+1)=f [-(x -12)],即f (x +12)=f (-x +12), 由偶函数的定义可知f (x +12)为偶函数. 11.(2016·苏州模拟)已知函数f (x )=a x +x -2x +1(a >1). (1)证明:函数f (x )在(-1,+∞)上为增函数;(2)用反证法证明方程f (x )=0没有负数根.证明 (1)任取x 1,x 2∈(-1,+∞),不妨设x 1<x 2,则x 2-x 1>0.∵a >1,∴ax 2-x 1>1且ax 1>0,∴ax 2-ax 1=ax 1(ax 2-x 1-1)>0.又∵x 1+1>0,x 2+1>0,∴x 2-2x 2+1-x 1-2x 1+1=x 2-x 1+-x 1-x 2+x 1+x 2+=x 2-x 1x 1+x 2+>0. 于是f (x 2)-f (x 1)=ax 2-ax 1+x 2-2x 2+1-x 1-2x 1+1>0, 故函数f (x )在(-1,+∞)上为增函数.(2)假设存在x 0<0(x 0≠-1)满足f (x 0)=0,则ax 0=-x 0-2x 0+1. ∵a >1,∴0<ax 0<1,∴0<-x 0-2x 0+1<1,即12<x 0<2,与假设x 0<0相矛盾, 故方程f (x )=0没有负数根.12.(2016·浙江)设函数f (x )=x 3+11+x,x ∈[0,1],证明: (1)f (x )≥1-x +x 2;(2)34<f (x )≤32. 证明 (1)因为1-x +x 2-x 3=1--x 41--x =1-x 41+x , 由于x ∈[0,1],有1-x 41+x ≤1x +1, 即1-x +x 2-x 3≤1x +1, 所以f (x )≥1-x +x 2.(2)由0≤x ≤1得x 3≤x ,故f (x )=x 3+1x +1≤x +1x +1=x +1x +1-32+32=x -x +x ++32≤32, 所以f (x )≤32. 由(1)得f (x )≥1-x +x 2=⎝ ⎛⎭⎪⎫x -122+34≥34, 又因为f ⎝ ⎛⎭⎪⎫12=1924>34,所以f (x )>34. 综上,34<f (x )≤32. 13.(2015·课标全国Ⅱ)设a ,b ,c ,d 均为正数,且a +b =c +d ,证明:(1)若ab >cd ,则a +b >c +d ;(2)a+b>c+d是|a-b|<|c-d|的充要条件.证明(1)因为(a+b)2=a+b+2ab,(c+d)2=c+d+2cd,由题设a+b=c+d,ab>cd得(a+b)2>(c+d)2. 因此a+b>c+d.(2)①若|a-b|<|c-d|,则(a-b)2<(c-d)2,即(a+b)2-4ab<(c+d)2-4cd.因为a+b=c+d,所以ab>cd.由(1)得a+b>c+d.②若a+b>c+d,则(a+b)2>(c+d)2,即a+b+2ab>c+d+2cd.因为a+b=c+d,所以ab>cd,于是(a-b)2=(a+b)2-4ab<(c+d)2-4cd=(c-d)2.因此|a-b|<|c-d|.综上,a+b>c+d是|a-b|<|c-d|的充要条件.。
2016届 数学一轮 苏教版 江苏专用 配套课件 第十二章 推理与证明、算法初步、复数-3
• 【训练3】 设数列{an}的前n项和为Sn,且方程 x2-anx-an=0有一根为Sn-1(n∈N*).
• (1)求a1,a2; • 解 (2(1))猜当想n=数1 时列,{方Sn程}的x2通-a项1x-公a1式=0,有并一给根为出S证1-明1=.a1
-1,∴(a1-1)2-a1(a1-1)-a1=0, 解得 a1=12.
• 则f(k+1)≥f(k)+1≥k+2
• 由已知可得f(2)f(n)=f(2n)+f(n+1),
• 而f(2)=3,f(2n)≥2n+1,
• 所以3f(n)≥f(n+1)+2n+1,即f(n+1)≤3f(n)- 2n-1.
• 下面证明:f(n)=n+1. 基础诊断
基础诊断
考点突破 课堂总结 第二十五页,编辑于星期五:十八点 三十四分。
• [思想方法]
• 1.数学归纳法证明中的两个步骤体现了递推 思想,第一步是递推的基础,第二步是递推的 依据,两个步骤缺一不可,否则就会导致错误 .
• 有一无二,是不完全归纳法,结论不一定可
靠;有二无一,第二步就失去了递推的基础.
基础诊断
考点突破第十七页,编辑课于星堂期五总:十结八点 三十四分。
1+13
1+15
·…·1+2k-1 1
[1
+
1 2k+1-1
]>
2k+1 2
2k+2 ·2k+1
=
2k+2 2 2k+1
=
4k2+8k+4 2 2k+1 >
4k2+8k+3 2 2k+1
=
2k2+23k+2k1+1=
2k+1+1
2
.
=4k+k+11k+2 2=4kk++12=4k+k+11+1.
所以当 n=k+1 时,等式也成立,
2016届 数学一轮 苏教版 江苏专用 配套课件 第十二章 推理与证明、算法初步、复数-2
框图 P⇒Q1→Q1⇒Q2→ 表示 …→Qn⇒Q 文字 因为……所以…… 语言 或由……得……
• 续表
Q⇐P1→P1⇐P2→…→得 到一个明显成立的条件 要证……只需证…… 即证……
基础诊断
考点突破第四页,编辑于课星期堂五:总十八结点 三十四分。
• 2. 间接证明
• 间接证明是不同于直接证明的又一类证明
【训练 2】 已知 m>0,a,b∈R,求证:a1++mmb2≤a21++mmb2. 证明 ∵m>0,∴1+m>0.所以要证原不等式成立, 只需证(a+mb)2≤(1+m)(a2+mb2) 即证 m(a2-2ab+b2)≥0,即证(a-b)2≥0, 而(a-b)2≥0 显然成立,故原不等式得证.
基础诊断
• 诊断自测
• 1.思考辨析(在括号内打“√”或“×”) ×
• (1)综合法是直接证明,分析法是间接证明
.
()
×
×
• (2)分析法是从要证明的结论出发,逐×步寻
找使结论成立的充要条件.
()
基础诊断
考点突破第六页,编辑于课星期堂五:总十八结点 三十四分。
• 2.(2014·山东卷改编)用反证法证明命题“设a ,b为实数,则方程x3+ax+b=0至少有一个 实根”时,要做的假设是________.
推导出的矛盾必须是明显的.
基础诊断
考点突破 课堂总结 第二十二页,编辑证明关于x的方程ax=b 有证且明只由有于一a≠个0根,因.此方程至少有一个根 x=ba.
假设 x1,x2 是它的两个不同的根,即 ax1=b, ①
ax2=b,
②
由①-②得 a(x1-x2)=0,
• 分析法的特点是:从“未知”看“需知”
,逐步靠拢“已知”,逐步寻找结论成立的充
(江苏专用)2017版高考数学一轮复习 第十二章 推理与证明、算法初步、复数 第4讲 算法与流程图练习 理
【创新设计】(江苏专用)2017版高考数学一轮复习 第十二章 推理与证明、算法初步、复数 第4讲 算法与流程图练习 理基础巩固题组 (建议用时:30分钟)1.(2015·福建卷改编)阅读如图所示的流程图,运行相应的程序.若输入x 的值为1,则输出y 的值为________.解析 当x =1时,执行y =9-1=8.输出y 的值为8. 答案 82.(2015·四川卷改编)执行如图所示的流程图,输出S 的值为________.解析 根据题中流程图,可知k =1,k =1+1=2时,k >4不成立;k =2+1=3 时,k >4不成立;k =3+1=4时,k >4不成立;k =4+1=5时,k >4成立,所以S =sin 5π6=12,故输出S 的值为12.答案 123.(2016·南京调研)执行如图所示的流程图,若a =7,则输出的S =________.解析 由流程图知,该算法为求S =1+11×2+12×3+…+1k (k +1)=1+1-12+12-13+…+1k -1k +1=2-1k +1.又a =7,∴当k =8时,退出循环,此时S =2-17+1=158. 答案1584.(2015·苏、锡、常、镇四市调研)如图是一个算法流程图,则输出的y 的值是________.解析 逐次写出运行结果,该流程图运行5次,y 的值分别是3,7,15,31,63,所以输出的y =63. 答案 635.(2015·湖北七市(州)联考)某流程图如图所示,判断框内为“k ≥n ”,n 为正整数,若输出的S =26,则判断框内的n =________.解析 依题意,执行题中的流程图,进行第一次循环时,k =1+1=2,S =2×1+2=4;进行第二次循环时,k=2+1=3,S=2×4+3=11;进行第三次循环时,k=3+1=4,S =2×11+4=26,因此当输出的S=26时,判断框内的n=4.答案 46.(2015·南京模拟)执行的如图的伪代码,输出的结果是________.解析该循环语句共循环43和5、15和7、105和9、945和11,故输出的I=11.答案117.(2016·常州期末)下图是一个算法流程图,则输出的a的值是________.解析进入循环体,得到的数依次为3,7,15,31,63,127.因为127>64,所以输出的数为127.答案1278.(2015·苏北四市期末)如图是一个算法的流程图,若输入x的值为2,则输出y的值为________.解析 x =2时,y =3,此时|y -x |=1<4,得x =3,y =7,此时|y -x |=4,满足要求,输出y 的值为7. 答案 79.(2016·盐城一模)根据如图所示的伪代码,可知输出的结果S =________.解析 I =1<10,I =3,S I =3<10,I =5,S =2×5+3=13; I =5<10,I =7,S =2×7+3=17; I =7<10,I =9,S =2×9+3=21;I =9<10,I =11,S =2×11+3=25,I =11>10,故输出的结果S =25.答案 2510.(2015·南通调研)如图是一个算法的流程图.若输入x 的值为2,则输出y 的值是________.解析 该流程图共运行3次,第1次,y =0;第2次,y =-1;第3次,y =-32,结束循环,故输出的y =-32.答案 -32能力提升题组 (建议用时:15分钟)11.(2015·陕西卷改编)根据如图所示的框图,当输入x 为6时,输出的y 等于________.解析 输入x =6,则x =3,满足条件;x =0,满足条件;x =-3,不满足条件,退出循环,y =(-3)2+1=10,输出y . 答案 1012.(2015·全国Ⅱ卷改编)下边流程图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该流程图,若输入的a ,b 分别为14,18,则输出的a 等于________.解析 执行流程图:当a =14,b =18时,a <b ,则b =18-14=4;当a =14,b =4时,a >b ,则a =14-4=10;当a =10时,b =4时,a >b ,则a =10-4=6;当a =6,b =4时,a >b ,则a =6-4=2;当a =2,b =4时,a <b ,则b =4-2=2,此时a =b =2,输出a为2. 答案 213.(2015·盐城模拟)根据如图所示的伪代码,最后输出的S 的值为________.解析 项和,即输出的S 的值是10×(1+10)2=55.答案 5514.(2016·扬州质量预测)利用如图所示算法在平面直角坐标系上打印一系列点,则打印的点在圆x2+y2=10内的个数为________.解析执行题中的流程图,打印的点的坐标依次为(-3,6),(-2,5),(-1,4),(0,3),(1,2),(2,1),其中点(0,3),(1,2),(2,1)位于圆x2+y2=10内,因此打印的点位于圆x2+y2=10内的共有3个.答案 3。
高考数学大一轮复习 13.4算法与流程图教师用书 理 苏教版-苏教版高三全册数学试题
§13.4算法与流程图1.算法通常是指对一类问题的机械的、统一的求解方法.2.流程图是由一些图框和流程线组成的,其中图框表示各种操作的类型,图框中的文字和符号表示操作的内容,流程线表示操作的先后次序.3.三种基本逻辑结构(1)顺序结构是由若干个依次执行的步骤组成的,这是任何一个算法都离不开的基本结构.其结构形式为(2)选择结构是先根据条件作出判断,再决定执行哪一种操作的结构.其结构形式为(3)循环结构是指从某处开始,按照一定条件反复执行某些步骤的情况.反复执行的处理步骤称为循环体.循环结构又分为当型和直到型.其结构形式为4.赋值语句、输入语句、输出语句赋值语句用符号“←”表示,其一般格式是变量←表达式(或变量),其作用是对程序中的变量赋值;输入语句“Read a,b”表示输入的数据依次送给a,b,输出语句“Print x”表示输出运算结果x.5.算法的选择结构由条件语句来表达,一般是If—Then—Else语句,其一般形式是.6.算法中的循环结构,可以运用循环语句来实现(1)当循环的次数已经确定,可用“For”语句表示“For”语句的一般形式为For I From“初值”To“终值”Step“步长”循环体End For说明:上面“For”和“End For”之间缩进的步骤称为循环体,如果省略“Step步长”,那么重复循环时,I每次增加1.(2)不论循环次数是否确定都可以用下面循环语句来实现循环结构当型和直到型两种语句结构.当型语句的一般格式是While p循环体End While直到型语句的一般格式是Do循环体Until pEnd Do【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)算法只能解决一个问题,不能重复使用.( ×)(2)流程图中的图形符号可以由个人来确定.( ×)(3)输入框只能紧接开始框,输出框只能紧接结束框.( × )(4)选择结构的出口有两个,但在执行时,只有一个出口是有效的.( √ ) (5)5←x 是赋值语句.( × )(6)输入语句可以同时给多个变量赋值.( √ )1.已知一个算法: (1)m ←a .(2)如果b <m ,则m ←b ,输出m ;否则执行第(3)步. (3)如果c <m ,则m ←c ,输出m .如果a =3,b =6,c =2,那么执行这个算法的结果是________. 答案 2解析 当a =3,b =6,c =2时,依据算法设计, 本算法是求a 、b 、c 三个数的最小值, 故输出m 的值为2.2.(2014·课标全国Ⅰ改编)执行下面的流程图,若输入的a ,b ,k 分别为1,2,3,则输出的M 为________.答案158解析 当n =1时,M =1+12=32,a =2,b =32;当n =2时,M =2+23=83,a =32,b =83;当n =3时,M =32+38=158,a =83,b =158;当n =4时,终止循环.输出M =158.3.如图,是某某数x 的绝对值的流程图,则判断框①中可填________________.答案 x >0(或x ≥0)解析 由于|x |=⎩⎪⎨⎪⎧x , x ≥0,-x ,x <0或|x |=⎩⎪⎨⎪⎧x ,x >0,-x ,x ≤0,故根据所给的流程图,易知可填“x >0”或“x ≥0”.4.(2013·某某)执行下面的流程图,若输入的ε的值为0.25,则输出的n 的值为________.答案 3解析 第一次循环:F 1=3,F 0=2,n =2; 第二次循环:F 1=5,F 0=3,n =3. 此时1F 1=15=0.2满足1F 1≤ε=0.25,故输出n=3.题型一算法的顺序结构例1 f(x)=x2-2x-3.求f(3)、f(-5)、f(5),并计算f(3)+f(-5)+f(5)的值.设计出解决该问题的一个算法,并画出流程图.解算法如下:第一步,令x=3.第二步,把x=3代入y1=x2-2x-3.第三步,令x=-5.第四步,把x=-5代入y2=x2-2x-3.第五步,令x=5.第六步,把x=5代入y3=x2-2x-3.第七步,把y1,y2,y3的值代入y=y1+y2+y3.第八步,输出y1,y2,y3,y的值.该算法对应的流程图如图所示:思维升华(1)顺序结构是最简单的算法结构,语句与语句之间、框与框之间是按从上到下的顺序进行的.(2)解决此类问题,只需分清运算步骤,赋值量及其X围进行逐步运算即可.如图所示的流程图,根据该图和下列各小题的条件回答下面的几个小题.(1)该流程图解决的是一个什么问题?(2)当输入的x的值为0和4时,输出的值相等,问当输入的x的值为3时,输出的值为多大?(3)在(2)的条件下要想使输出的值最大,输入的x的值应为多大?解(1)该流程图解决的是求二次函数f(x)=-x2+mx的函数值的问题;(2)当输入的x的值为0和4时,输出的值相等,即f(0)=f(4).因为f(0)=0,f(4)=-16+4m,所以-16+4m=0,所以m=4,f(x)=-x2+4x.则f(3)=-32+4×3=3,所以当输入的x的值为3时,输出的f(x)的值为3;(3)因为f(x)=-x2+4x=-(x-2)2+4,当x=2时,f(x)最大值=4,所以要想使输出的值最大,输入的x的值应为2.题型二算法的选择结构例2 如图中x1,x2,x3为某次考试三个评阅人对同一道题的独立评分,p为该题的最终得分.当x1=6,x2=9,p=8.5时,x3=________.思维点拨依据第二个判断框的条件关系,判断是利用“x2←x3”,还是利用“x1←x3”,从而验证p是否为8.5.答案8解析x1=6,x2=9,|x1-x2|=3<2不成立,即为“N”,所以再输入x3;由绝对值的意义(一个点到另一个点的距离)和不等式|x 3-x 1|<|x 3-x 2|知,点x 3到点x 1的距离小于点x 3到点x 2的距离,所以当x 3<7.5时,|x 3-x 1|<|x 3-x 2|成立,即为“Y”,此时“x 2←x 3”,所以p =x 1+x 32,即6+x 32=8.5,解得x 3=11>7.5,不合题意;当x 3>7.5时,|x 3-x 1|<|x 3-x 2|不成立,即为“N”,此时“x 1←x 3”,所以p =x 3+x 22,即x 3+92=8.5,解得x 3=8>7.5,符合题意.思维升华 (1)选择结构中条件的判断关键是明确条件结构的功能,然后根据“Y”的分支成立的条件进行判断;(2)对选择结构,无论判断框中的条件是否成立,都只能执行两个分支中的一个,不能同时执行两个分支.(2014·某某改编)执行如图所示的流程图,如果输入的x ,y ∈R ,那么输出的S的最大值为________.答案 2解析 当条件x ≥0,y ≥0,x +y ≤1不成立时输出S 的值为1;当条件x ≥0,y ≥0,x +y ≤1成立时S =2x +y ,下面用线性规划的方法求此时S 的最大值.作出不等式组⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≤1表示的平面区域如图中阴影部分,由图可知当直线S =2x +y 经过点M (1,0)时S 最大,其最大值为2×1+0=2,故输出S 的最大值为2. 题型三 算法的循环结构例3 (2014·某某改编)执行如图所示的流程图,则输出s 的值为________.思维点拨弄清循环顺序,分别计算第一,二,三次…循环所得s,k值.答案19解析开始s=0,k=2;第一次循环s=2,k=3;第二次循环s=5,k=5;第三次循环s=10,k=9;第四次循环s=19,k=17,不满足条件,退出循环,输出s=19.思维升华利用循环结构表示算法,第一要确定是利用当型还是直到型循环结构;第二准确表示累计变量;第三要注意从哪一步开始循环.弄清进入或终止的循环条件、循环次数是做题的关键.(2014·改编)当m=7,n=3时,执行如图所示的流程图,输出的S值为________.答案210解析流程图的执行过程如下:m=7,n=3时,m-n+1=5,k=m=7,S=1,S=1×7=7;k=k-1=6>5,S=6×7=42;k=k-1=5=5,S=5×42=210;k =k -1=4<5,输出S =210.题型四 基本算法语句 例4 某算法的语句如下:S ←0 i ←1While i ≤100S ←S +1i i +2i ←i +2End While Print S则输出的结果是________. 答案50101解析 语句所示的算法是一个求和运算: 11×3+13×5+15×7+…+199×101=[⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+⎝ ⎛⎭⎪⎫15-17+…+⎝ ⎛⎭⎪⎫199-1101]×12 =⎝ ⎛⎭⎪⎫1-1101×12=50101. 思维升华 解决算法语句有三个步骤:首先通读全部语句,把它翻译成数学问题;其次领悟该语句的功能;最后根据语句的功能运行程序,解决问题.(2013·某某改编)根据下列算法语句,当输入x 为60时,输出y 的值为________.Read xIf x ≤50 Theny ←0.5×xElsey ←25+0.6×(x -50)End If Print y 答案 31解析 由题意,得y =⎩⎪⎨⎪⎧0.5x ,x ≤50,25+0.6x -50,x >50.当x =60时,y =25+0.6×(60-50)=31. 所以输出y 的值为31.变量的含义理解不准致误典例:执行如图所示的流程图,输出的S 值为________.易错分析 (1)读不懂流程图把执行循环体的次数n 误认为是变量k 的值,没有注意到k 的初始值为0.(2)对循环结构:①判断条件把握不准;②循环次数搞不清楚;③初始条件容易代错. 解析 当k =0时,满足k <3,因此S =1×20=1; 当k =1时,满足k <3,则S =1×21=2; 当k =2时,满足k <3,则S =2×22=8; 当k =3时,不满足k <3,输出S =8. 答案 8温馨提醒 (1)要分清是当型循环结构还是直到型循环结构;要理解循环结构中各变量的具体含义以及变化规律;(2)在处理含有循环结构的算法问题时,关键是确定循环的次数,循环中有哪些变量,且每一次循环之后的变量S 、k 值都要被新的S 、k 值所替换.方法与技巧1.在设计一个算法的过程中要牢记它的五个特征:概括性、逻辑性、有穷性、不唯一性、普遍性.2.在画流程图时首先要进行结构的选择.若所要解决的问题不需要分情况讨论,只用顺序结构就能解决;若所要解决的问题要分若干种情况讨论时,就必须引入选择结构;若所要解决的问题要进行许多重复的步骤,且这些步骤之间又有相同的规律时,就必须引入变量,应用循环结构.失误与防X1.注意起、止框与处理框、判断框与循环框的不同.2.注意选择结构与循环结构的联系:对于循环结构有重复性,选择结构具有选择性没有重复性,并且循环结构中必定包含一个选择结构,用于确定何时终止循环体.3.循环语句有“直到型”与“当型”两种,要区别两者的异同,主要解决需要反复执行的任务,用循环语句来编写程序.4.关于赋值语句,有以下几点需要注意:(1)赋值号左边只能是变量名字,而不是表达式,例如3←m是错误的.(2)赋值号左右不能对换,赋值语句是将赋值号右边的表达式的值赋给赋值号左边的变量,例如Y←x,表示用x的值替代变量Y的原先的取值,不能改写为x←Y.因为后者表示用Y的值替代变量x的值.(3)在一个赋值语句中只能给一个变量赋值,不能出现多个“←”.A组专项基础训练(时间:30分钟)1.(2014·某某改编)阅读如图所示的流程图,运行相应的程序,输出的S的值为________.答案 20解析 由题意,得S =0,n =1;S =0+2+1=3<15,n =2;S =3+22+2=9<15,n =3;S =9+23+3=20,n =4,因为20≥15,因此输出S 的值20.2.(2013·某某改编)执行如图所示的流程图,如果输出s =3,那么判断框内应填入的条件是________.答案 k ≤7解析 当k =2时,s =log 23,当k =3时,s =log 23·log 34,当k =4时,s =log 23·log 34·log 45.由s =3,得lg 3lg 2×lg 4lg 3×lg 5lg 4×…×lg k +1lg k =3,即lg(k +1)=3lg 2,所以k =7.再循环时,k =7+1=8,此时输出s ,因此判断框内应填入“k ≤7”. 3.(2013·某某改编)如图所示,流程图的输出结果为________.答案1112解析 当S =0,n =2时 进入循环体:检验n =2<8,S =0+12=12,n =2+2=4;检验n <8,S =12+14=34, n =4+2=6;检验n <8,S =34+16=1112, n =6+2=8,检验n =8,脱离循环体, 输出S =1112.4.(2014·某某改编)执行如图所示的流程图,如果输入的t ∈[-2,2],则输出的S 属于________(填序号).①[-6,-2] ②[-5,-1] ③[-4,5] ④[-3,6]答案 ④解析 由流程图知,当0≤t ≤2时,输出S =t -3,此时S ∈[-3,-1];当-2≤t <0时,执行t =2t 2+1后1<t ≤9,执行1<t ≤9时,输出S =t -3,此时S ∈(-2,6].因此输出S 的值属于[-3,6].5.如图是一个算法的语句,则输出的i 的值为________.S ←9 i ←1While S ≥0S ←S -i i ←i +1End WhilePrint i 答案 5解析 由算法语句知:算法的功能是求满足S =9-(1+2+3+…+i )<0的最小正整数i 加上1的值,∵S =9-(1+2+3)=3>0,S =9-(1+2+3+4)=-1<0,∴输出的i 值为5. 6.(2013·某某)若某流程图如图所示,则该程序运行后输出的值等于________.答案 95解析 当k =5时,输出S .此时,S =1+11×2+12×3+13×4+14×5=1+1-12+12-13+13-14+14-15=2-15=95.7.给出一个如图所示的流程图,若要使输入的x 值与输出的y 值相等,则这样的x 值是________.答案 0,1,3解析 根据题意,本流程图表示分段函数:y =⎩⎪⎨⎪⎧x 2,x ≤2,2x -3,2<x ≤5,1x ,x >5,由于输入的x 值与输出的y 值相等, 由x 2=x 解得x =0或x =1,都满足x ≤2; 由x =2x -3解得x =3,也满足2<x ≤5; 由1x=x 解得x =±1,不在x >5内,舍去.可见满足条件的x 共三个:0,1,3.8.执行如图的流程图,若p =0.8,则输出的n =________.答案 4解析 第一次,S =12,n =2;第二次,S =12+14,n =3;第三次,S =12+14+18,n =4.因为S =12+14+18>0.8,所以输出的n =4.B 组 专项能力提升 (时间:20分钟)1.(2013·课标全国Ⅱ改编)执行下面的流程图,如果输入的N =4,那么输出的S =________(用式子表示).答案 1+12+13×2+14×3×2解析 第一次循环,T =1,S =1,k =2;第二次循环,T =12,S =1+12,k =3;第三次循环,T =12×3,S =1+12+12×3,k =4,第四次循环,T =12×3×4,S =1+12+12×3+12×3×4,k =5,此时满足条件输出S =1+12+12×3+12×3×4.2.如图所示的流程图中,令a =tan θ,b =sin θ,c =cos θ,若在集合{θ|-π4<θ<3π4且θ≠0,π4,π2}中,给θ取一个值,输出的结果是sin θ,则θ的值所在的X 围是________(填序号).①(-π4,0) ②(0,π4) ③(π4,π2) ④(π2,3π4)答案 ④解析 依题意该程序为求解a =tan θ,b =sin θ,c =cos θ的最大值,令⎩⎪⎨⎪⎧sin θ>cos θ,sin θ>tan θ,所以θ的值所在X 围是(π2,3π4).3.如图是求12+22+32+…+1002的值的流程图,则正整数n =________.答案 100解析 第一次判断执行后,i =2,s =12;第二次判断执行后,i =3,s =12+22,而题目要求计算12+22+…+1002,故n =100.4.如图所示,已知底角为45°的等腰梯形ABCD ,底边BC 长为7 cm ,腰长为22cm ,当一条垂直于底边BC (垂足为F )的直线l 从B 点开始由左至右移动(与梯形ABCD 有公共点)时,直线l 把梯形分成两部分,令BF =x (0≤x ≤7),左边部分的面积为y ,求y 与x 之间的函数关系式,画出流程图,并写出算法语句.解 过点A ,D 分别作AG ⊥BC ,DH ⊥BC ,垂足分别是G ,H . ∵四边形ABCD 是等腰梯形, 底角是45°,AB =2 2 cm , ∴BG =AG =DH =HC =2 cm. 又BC =7 cm ,∴AD =GH =3 cm , ∴y =⎩⎪⎨⎪⎧12x 20≤x ≤2,2x -2 2<x ≤5,-12x -72+10 5<x ≤7.流程图如下:程序:Read xIf 0≤x≤2Theny=0.5x2ElseIf x≤5Theny=2x-2Elsey=-\f(1,2)x-72+10End IfPrint y。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
12.3 算法与流程图1.算法通常是指对一类问题的机械的、统一的求解方法.2.流程图是由一些图框和流程线组成的,其中图框表示各种操作的类型,图框中的文字和符号表示操作的内容,流程线表示操作的先后次序.3.三种基本逻辑结构(1)依次进行多个处理的结构称为顺序结构,是任何一个算法都离不开的基本结构.其结构形式为(2)选择结构是先根据条件作出判断,再决定执行哪一种操作的结构.其结构形式为(3)循环结构是指需要重复执行同一操作的结构,需要重复执行的同一操作称为循环体.循环结构又分为当型和直到型.其结构形式为4.赋值语句、输入语句、输出语句赋值语句用符号“←”表示,其一般格式是变量←表达式(或变量),其作用是对程序中的变量赋值;输入语句“Read a,b”表示输入的数据依次送给a,b,输出语句“Print x”表示输出运算结果x.5.算法的选择结构由条件语句来表达,一般是If—Then—Else语句,其一般形式是If A(1)当循环的次数已经确定,可用“For”语句表示“For”语句的一般形式为步长”,那么重复循环时,I每次增加1.(2)不论循环次数是否确定都可以用下面循环语句来实现循环结构当型和直到型两种语句结构.当型语句的一般格式是直到型语句的一般格式是【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)算法只能解决一个问题,不能重复使用.( ×)(2)流程图中的图形符号可以由个人来确定.( ×)(3)输入框只能紧接开始框,输出框只能紧接结束框.( ×)(4)选择结构的出口有两个,但在执行时,只有一个出口是有效的.( √)(5)5=x是赋值语句.( ×)(6)输入语句可以同时给多个变量赋值.( √)1.已知一个算法:(1)m=a.(2)如果b<m,则m←b,输出m;否则执行第(3)步.(3)如果c<m,则m←c,输出m.否则执行第(4)步.(4)输出m.如果a=3,b=6,c=2,那么执行这个算法的结果是____________.答案 2解析当a=3,b=6,c=2时,依据算法设计,本算法是求a、b、c三个数的最小值,故输出m的值为2.2.(2016·全国甲卷改编)中国古代有计算多项式值的秦九韶算法,如图是实现该算法的流程图,执行该流程图,若输入的x=2,n=2,依次输入的a为2,2,5,则输出的s=________.答案17解析由流程图可知,输入x=2,n=2,a=2,s=2,k=1,不满足条件;a=2,s=4+2=6,k=2,不满足条件;a=5,s=12+5=17,k=3,满足条件,输出s=17. 3.(2016·扬州模拟)执行如图所示的伪代码,输出的结果是________.答案8解析该伪代码运行三次,第一次,I=4,S=4;第二次,I=6,S=24;第三次,I=8,S =192>100,退出循环,故输出的结果为8.4.执行如图所示的流程图,输出的x值为________.答案 6解析该流程图运行三次,第一次,x=4,y=16;第二次,x=5,y=32;第三次,x=6,y=64>10×6+3=63,退出循环,故输出的x值为6.5.执行下面的流程图,若输入的ε的值为0.25,则输出的n的值为________.答案 3解析第一次循环:F1=3,F0=2,n=2;第二次循环:F1=5,F0=3,n=3.此时1F1=15=0.2满足1F1≤ε=0.25,故输出n=3.题型一顺序结构与选择结构命题点1 顺序结构例1 如图所示的流程图,根据该图和下列各小题的条件回答下面的几个小题.(1)该流程图解决的是一个什么问题?(2)当输入的x的值为0和4时,输出的值相等,问当输入的x的值为3时,输出的值为多大?(3)在(2)的条件下要想使输出的值最大,输入的x的值应为多大?解(1)该流程图解决的是求二次函数f(x)=-x2+mx的函数值的问题.(2)当输入的x的值为0和4时,输出的值相等,即f(0)=f(4).因为f(0)=0,f(4)=-16+4m,所以-16+4m=0,所以m=4,f(x)=-x2+4x.则f(3)=-32+4×3=3,所以当输入的x的值为3时,输出的f(x)的值为3.(3)因为f(x)=-x2+4x=-(x-2)2+4,当x=2时,f(x)最大值=4,所以要想使输出的值最大,输入的x的值应为2.命题点2 选择结构例2 执行如图所示的流程图,如果输入的t∈[-1,3],则输出的s属于________.(填正确序号)①[-3,4] ②[-5,2] ③[-4,3]④[-2,5]答案 ①解析 根据流程图可以得到分段函数s =⎩⎪⎨⎪⎧3t ,t <1,4t -t 2,t ≥1, 进而在函数的定义域[-1,3]内分段求出函数的值域.所以当-1≤t <1时,s =3t ∈[-3,3);当1≤t ≤3时,s =4t -t2=-(t -2)2+4,所以此时3≤s ≤4.综上可知,函数的值域为[-3,4],即输出的s 属于[-3,4]. 引申探究若将本例中判断框的条件改为“t ≥1”,则输出的s 的范围是什么?解 根据流程图可以得到,当-1≤t <1时,s =4t -t 2=-(t -2)2+4,此时-5≤s <3; 当1≤t ≤3时,s =3t ∈[3,9].综上可知,函数的值域为[-5,9],即输出的s 属于[-5,9]. 思维升华 应用顺序结构与选择结构的注意点 (1)顺序结构顺序结构是最简单的算法结构,语句与语句之间、框与框之间是按从上到下的顺序进行的. (2)选择结构利用选择结构解决算法问题时,重点是判断框,判断框内的条件不同,对应的下一框中的内容和操作要相应地进行变化,故要重点分析判断框内的条件是否满足.执行如图所示的流程图,如果输入的x ,y ∈R ,那么输出的S 的最大值为________.答案 2解析 当条件x ≥0,y ≥0,x +y ≤1不成立时输出S 的值为1;当条件x ≥0,y ≥0,x +y ≤1成立时S =2x +y ,下面用线性规划的方法求此时S 的最大值.作出不等式组⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≤1表示的平面区域如图中阴影部分(含边界),由图可知当直线S=2x +y 经过点M (1,0)时S 最大,其最大值为2×1+0=2,故输出S 的最大值为2.题型二 循环结构命题点1 由流程图求输出结果例3 (2016·全国乙卷改编)执行如图所示的流程图,如果输入的x =0,y =1,n =1,则输出x ,y 的值满足________.答案 y =4x解析 执行题中的流程图,知 第一次进入循环体:x =0+1-12=0,y =1×1=1,x 2+y 2<36; 第二次执行循环体:n =1+1=2,x =0+2-12=12,y =2×1=2,x 2+y 2<36;第三次执行循环体:n =2+1=3,x =12+3-12=32,y =3×2=6,x 2+y 2>36,满足x 2+y 2≥36,故退出循环,输出x =32,y =6,满足y =4x .命题点2 完善流程图例4 (2017·南京月考)如图给出的是计算12+14+16+…+120的值的一个流程图,其中菱形判断框内应填入的条件是________.答案 i >10或i ≥11解析 经过第一次循环得到s =12,i =2,此时的i 不满足判断框中的条件;经过第二次循环得到s =12+14,i =3,此时的i 不满足判断框中的条件;经过第三次循环得到s =12+14+16,i =4,此时的i 不满足判断框中的条件;…;经过第十次循环得到s =12+14+16+…+120,i =11,此时的i 满足判断框中的条件,执行输出,故判断框中的条件是“i >10”或“i ≥11”. 命题点3 辨析流程图的功能例5 根据下面流程图,对大于2的整数n ,输出的数列的通项公式是____________.答案a n=2n解析由流程图可知,第一次运行:i=1,a1=2,S=2;第二次运行:i=2,a2=4,S=4;第三次运行:i=3,a3=8,S=8;第四次运行:i=4,a4=16,S=16.故a n=2n.思维升华与循环结构有关问题的常见类型及解题策略(1)已知流程图,求输出的结果,可按流程图的流程依次执行,最后得出结果.(2)完善流程图问题,结合初始条件和输出结果,分析控制循环的变量应满足的条件或累加、累乘的变量的表达式.(3)对于辨析流程图功能问题,可将程序执行几次,即可根据结果作出判断.人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的流程图给出了利用秦九韶算法求某多项式值的一个实例,若输入n,x的值分别为3,2,则输出v的值为________.答案18解析初始值n=3,x=2,程序运行过程如下:v=1i=2 v=1×2+2=4i=1 v=4×2+1=9i=0 v=9×2+0=18i=-1 跳出循环,输出v=18.题型三基本算法语句例6 阅读下面两个算法的伪代码:While i i+Until i i+执行图1中伪代码的i的结果是________;执行图2中伪代码的i的结果是________.答案 4 2解析执行图1中伪代码,得到(i,i(i+1))的结果依次为(1,2),(2,6),(3,12),(4,20),故输出4.执行图2中伪代码的情况如下:i=1,i=i+1=2,i·(i+1)=6<20(是),结束循环,输出2.思维升华解决算法语句有三个步骤:首先通读全部语句,把它翻译成数学问题;其次领悟该语句的功能;最后根据语句的功能运行程序,解决问题.(2015·江苏)根据如图所示的伪代码,可知输出的结果S为________.答案7解析I=1,S=1;S=1+2=3,I=1+3=4<8;S=3+2=5,I=4+3=7<8;S=5+2=7,I=7+3=10>8.退出循环,故输出7.12.流程图中变量的取值典例执行如图所示的流程图所表示的程序,则输出的A=________.错解展示解析将每次运算的A值用数列{a n}表示,将开始的A=1看作a0,则a1=2a0+1=1,a2=2a1+1=3,…∴a10=2a9+1=210-1=1 023.答案 1 023现场纠错解析本题计算的是递推数列a0=1,a n+1=2a n+1(n=0,1,2,…)的第11项,{a n+1}是首项为2,公比为2的等比数列,故a10+1=211,故a10=2 047.答案 2 047纠错心得流程图对计数变量及求和变量取值时,要注意两个变量的先后顺序.=________.答案 4解析第一次循环:a=6-4=2,b=6-2=4,a=4+2=6,s=6,n=1;第二次循环:a=4-6=-2,b=4-(-2)=6,a=6-2=4,s=10,n=2;第三次循环:a=6-4=2,b=6-2=4,a=4+2=6,s=16,n=3;第四次循环:a=4-6=-2,b=4-(-2)=6,a=6-2=4,s=20,n=4,满足条件S>16,结束循环,输出4.2.(2016·北京改编)执行如图所示的流程图,输出的S值为________.答案9解析①S=0+03=0,k=0+1=1,满足k≤2;②S=0+13=1,k=1+1=2,满足k≤2;③S=1+23=9,k=2+1=3,不满足k≤2,输出9.3.(2015·天津改编)阅读流程图,运行相应的程序,则输出S的值为________.答案 6解析 运行相应的程序,第一次循环:i =2,S =20-2=18;第二次循环:i =4,S =18-4=14;第三次循环:i =8,S =14-8=6.8>5,终止循环,输出6.4.(2016·南京模拟)阅读流程图,运行相应的程序,则程序运行后输出的结果为__________.答案 9解析 i =1,S =0,第一次循环:S =0+lg 13=-lg 3>-1;第二次循环:i =3,S =lg 13+lg 35=lg 15=-lg 5>-1;第三次循环:i =5,S =lg 15+lg 57=lg 17=-lg 7>-1;第四次循环:i =7,S =lg 17+lg 79=lg 19=-lg 9>-1;第五次循环:i =9,S =lg 19+lg 911=lg 111=-lg 11<-1.故输出9.5.(2017·盐城月考)定义某种运算,a b 的运算原理如图所示.设S =x ,x ∈[-2,2],则输出的S 的最大值与最小值的差为________.答案 2解析 由题意可得,S (x )=⎩⎪⎨⎪⎧|x |,-2≤x ≤1,1,1<x ≤2,∴S (x )max =2,S (x )min =0, ∴S (x )max -S (x )min =2.6.给出一个算法的流程图(如图所示),该流程图的功能是________.①输出a ,b ,c 三数中的最大数 ②输出a ,b ,c 三数中的最小数 ③将a ,b ,c 按从小到大排列 ④将a ,b ,c 按从大到小排列 答案 ②解析 先比较a ,b 的值,把较小的值赋值给a ;再比较a ,c 的值,把较小的值赋值给a ,输出a .故②正确.7.(2016·南通模拟)如图是一个算法流程图,则输出的k 的值是________.答案 17解析 该算法流程图循环三次,k 的值依次是1,3,17,故输出的k 的值是17. 8.如图所示,该伪代码运行的结果为________.答案 11解析 该伪代码运行5次,依次为S =1,i =3;S =4,i =5;S =9,i =7;S =16,i =9;S =25,i =11,此时循环结束,故输出11.9.对一个作直线运动的质点的运动过程观测了8次,第i 次观测得到的数据为a i ,具体如下表所示:在对上述统计数据的分析中,一部分计算见如图所示的流程图(其中a 是这8个数据的平均数),则输出的S 的值是________.答案 7解析 本题计算的是这8个数的方差,因为a =40+41+43+43+44+46+47+488=44,所以S = -2+-2+-2+-2+02+22+32+428=7.10.如图(1)(2)所示,它们都表示的是输出所有立方小于1 000的正整数的流程图,那么应分别补充的条件为:(1)____________; (2)______________.答案 (1)n 3<1 000 (2)n 3≥1 000解析 第一个图中,n 不能取10,否则会把立方等于1 000的正整数也输出了,所以应该填写n 3<1 000;第二个图中,当n ≥10时,循环应该结束,所以填写n 3≥1 000.11.给出一个如图所示的流程图,若要使输入的x 值与输出的y 值相等,则这样的x 值是________.答案 0,1,3解析 根据题意,本流程图表示分段函数:y =⎩⎪⎨⎪⎧x 2,x ≤2,2x -3,2<x ≤5,1x ,x >5,由于输入的x 值与输出的y 值相等, 由x 2=x 解得x =0或x =1,都满足x ≤2; 由x =2x -3解得x =3,也满足2<x ≤5;由1x=x 解得x =±1,都不在x >5内,舍去.可见满足条件的x 共三个:0,1,3.12.(2016·泰州质检)某流程图所给的程序运行结果为20,那么判断框中应填入的关于k 的条件是________.答案 k >8解析 由题意可知输出结果为20,第1次循环,S =11,k =9,第2次循环,S =20,k =8,此时S 满足输出结果,退出循环,所以判断框中的条件为“k >8”. 13.(2016·扬州模拟)执行如图所示的流程图,则输出k 的值为________.答案 3解析 该流程图运行三次,第一次循环,n =6,k =1;第二次循环,n =3,k =2;第三次循环,n =1,k =3,结束循环,故输出的k 的值是3.14.已知函数f (x )=ax 3+12x 2在x =-1处取得极大值,记g (x )=1fx.流程图如图所示,若输出的结果S >2 0152 016,则判断框中可以填入的关于n 的判断条件是________.(填序号)①n ≤2 015 ②n ≤2 016 ③n >2 015 ④n >2 016 答案 ②解析 由题意得f ′(x )=3ax 2+x ,由f ′(-1)=0, 得a =13,∴f ′(x )=x 2+x ,即g (x )=1x 2+x =1x x +=1x -1x +1. 由流程图可知S =0+g (1)+g (2)+…+g (n ) =0+1-12+12-13+…+1n -1n +1=1-1n +1 =n n +1,由nn +1>2 0152 016,得n >2 015. 故可填入②.。