2015年吉林省长春市朝阳区初中毕业生学业考试模拟数学试题(一)【附答案】
初中毕业生学业考试模拟考数学试题及答案五
13题10题初中毕业生学业考试模拟考数学试题一、选择题1、下列计算中,正确的是( )A 、623x x x =⋅B 、x x x =-23C 、32)()(x x x -=-⋅- D 、326x x x =÷2、现给出四个命题:①等边三角形既是轴对称图形,又是中心对称图形;②相似三角形的面积比等于它们的相似比;③菱形的面积等于两条对角线的积;④三角形的三个内角中至少有一内角不小于600。
其中不正确的命题的个数是( )A 、1个B 、2个C 、3个D 、4个 3、已知点P (3,-2)与点Q 关于x 轴对称,则Q 点的坐标为( ) A .(-3,2) B .(-3,-2) C .(3,2) D .(3,-2)4、4的平方根是( ) A .±2B .2C .±2D .25、2009年3月5日,温家宝总理在《政府工作报告》中,讲述了六大民生新亮点,其中之一就是全部免除了西部地区和部分中部地区农村义务教育阶段约52000000名学生的学杂费。
这个数据保留两个有效数字用科学记数法表示为( ) A .52×107 B .5.2×107 C .5.2×108 D .52×1086、下图是由几个相同的小正方体搭成的一个几何体,它的俯视图是( )7、如图,已知a ∥b ,∠1=40︒,则∠2=( ). A .140︒B .120︒C .40︒D .50︒8、已知一个多边形的内角和等于900,则这个多边形的边数是( ) A .6B .7C .8D .99、不等式组152320x x -⎧>3⎪⎨⎪-<⎩的解集的情况为( ) A .x <-1 B .x <32 C .-1<x <32D .无解10、如图,图中正方形ABCD 的边长为4,则图中阴影部分的面积为( ) A .16-4π B .32-8π C .8π-16 D .无法确定二、填空题11、分解因式:=++a ax ax 22;12、五个正整数从小到大排列,若这组数据的中位数是4,唯一众数是5,则这五个正整数的和为 。
2015年长春市朝阳区毕业生学业考试模拟试题及解析
2015年初中毕业生学业考试模拟试题·数学一、选择题(每小题3分,共24分)1.在1-,0,3)(A )1-. (B )0. (C )3. (D2.由6个完全相同的小正方体搭成的几何体如右图所示,它的主视图是( )3.计算32(2)a 的结果是( )(A )52a . (B )54a (C )62a . (D )64a .4.不等式组20,26x x -≥⎧⎨>⎩的解集为( )(A )2x ≥. (B )3x >. (C )23x ≤<. (D )2x >.5.如图,直线a 与直线b 被直线c 所截,b c ⊥,垂足为点A ,170∠=︒.若使直线b 与直线a 平行,则可将直线b 绕着点A 顺时针旋转( )(A )70︒. (B )50︒. (C )30︒. (D )20︒.6.如图,AB 是⊙O 的直径,点C 在圆周上,点P 是线段OB 上任意一点,连结AC 、CP .若35BAC ∠=︒,则APC ∠的度数不可能...是( ) (A )90︒. (B )75︒. (C )60︒. (D )50°7.如图,在平面直角坐标系中,点(,2)A m 在第一象限.若点A 关于y 轴的对称点B 在反比例函数6y x=-的图象上,则m 的值为( )(A )3-. (B )3. (C )D )6-.8.将22⨯的正方形网格如图放置在平面直角坐标系中,每个小正方形的顶点称为格点,每个小正方形的边长都是1,正方形ABCD 的顶点都在格点上.若直线(0)y kx k =≠与正方形ABCD 有公共点,则k 的取值范围是( )第(A ) (B ) (C ) (D ) ba (第5题) (第6题) (第7题)(第13题) (第14题)二、填空题(每小题3分,共18分)9= .10.甲、乙二人一起加工零件.甲平均每小时加工a 个零件,加工2小时;乙平均每小时加工b 个零件,加工3小时.甲、乙二人共加工零件 个.11.如图,在ABC ∆中,80,60ACB ABC ∠=︒∠=︒.按以下步骤作图:①以点A 为圆心,小于AC 的长为半径画弧,分别交AB 、AC 于点E 、F ;②分别以点E 、F 为圆心,大于12EF 的长为半径画弧,两弧相交于点G ;③作射线AG 交BC 于点D .则ADB ∠的度数为 °.12.如图,在□ABCD 中,AC 与BD 交于点O ,点E 是BC 边的中点,1OE =,则AB 的长是 . 13.如图,正六边形ABCDEF 内接于⊙O ,连结对角线AC AE 、.若⊙O 的半径为2,则图中阴影部分图形的面积和是 (结果保留π).14.如图,在平面直角坐标系中,抛物线2(2)y x =-与x 轴交于点A ,与y 轴交于点B .过点B 作B C ∥x 轴,交抛物线于点C ,过点A 作A D ∥y 轴,交BC 于点D ,点P 在BC 下方的抛物线上(P 不与,B C 重合),连结,PC PD ,则PCD ∆面积的最大值是 .三、解答题(本大题10小题,共78分)15.(6分)先化简,再求值:22426933a a aa a a a --÷-++++,其中1a =-.16.(6分)甲、乙两个不透明的口袋中各装有3个小球,它们除所标数字不同外其余均相同.甲口袋中小球分别标有数字1,5,7,乙口袋中小球分别标有数字0,1,2.现从甲口袋中随机摸出1个小球,记下标号;再从乙口袋中随机摸出1个小球,记下标号.用画树状图(或列表)的方法,求两次摸出小球的标号之和是偶数的概率. (第11题) (第12题)O DCE B A GFE D CB A17.(6分)某市为了在冬季下雪时更好的清扫路面积雪,新购进一批清雪车.每辆新清雪车比每辆旧清雪车每小时多清扫路面2km ,每辆新清雪车清扫路面35km 与每辆旧清雪车清扫路面25km 所用的时间相同,求每辆旧清雪车每小时清扫路面多少km ? 18.(7分)如图,甲楼AB 的高度为35m ,经测得,甲楼的底端B 处与乙楼的底端D 处相距105m ,从甲楼顶部A 处看乙楼顶部C 处的仰角CAE ∠的度数为25︒.求乙楼CD 的高度(结果精确到0.1m ).【参考数据:sin 250.42cos 250.91tan 250.47︒=︒=︒=,,】19.(7分)我国从2011年1月1日起在公共场所实行“禁烟”,到2015年1月1日,实行了四年.某社区为进一步巩固“禁烟”成果,开展了“你支持哪种戒烟方式”的问卷调查,随机抽样调查了该社区部分居民的意见,并将调查结果整理后绘制成如下统计图. (1)该社区一共随机调查了多少人;(2)此次抽样调查的居民中,支持“替代品戒烟”的居民有 人,并补全条形统计图; (3)若该社区共有居民18000人,则该社区大约有多少人支持“警示戒烟”这种方式.(第19题)戒烟 戒烟 戒烟 戒烟 方式被调查的居民支持哪种戒烟 强制 戒烟 40% 警示戒烟药物戒烟被调查的居民支持哪种戒烟 方式人数的扇形统计图 25°ED CBA (第18题)20.(7分)如图,在正方形ABCD 中,以AD 为边作等边三角形ADE ,点E 在正方形内部,将AB 绕着点A 顺时针旋转30 得到线段AF ,连结EF .求证:四边形ADEF 是菱形.21.(8分)王先生开轿车从A 地出发,前往B 地,路过服务区休息一段时间后,继续以原速度行驶,到达B 地后,又休息了一段时间,然后开轿车按原路返回A 地,速度是原来的1.2倍.王先生距离A 地的路程(km)y 与行驶的时间(h)x 之间的函数图象如图所示. (1)王先生开轿车从A 地行驶到B 地的途中,休息了 h ;(2)求王先生开轿车从B 地返回A 地时y 与x 之间的函数关系式(不要求写出自变量x 的取值范围); (3)王先生从B 地返回A 地的途中,再次经过从A 地到B 地时休息的服务区,求此时的x 的值.(第20题) FE D C BAy22.(9分)探究:如图①,ABC ∆是等腰直角三角形,90ACB ∠=︒,AC BC =.点D 在边AB 上(D不与,A B 重合),连结CD ,过点C 作CE CD ⊥,且CE CD =,连结DE 、AE . 求证:BCD ∆≌ACE ∆.应用:如图②,在图①的基础上,点D 在BA 的延长线上,其他条件不变.若14AD AB =,4AB =,求DE 的长.23.(10分)如图,抛物线212y x bx c =-++与直线112y x =+交于A 、B 两点,点A 在x 轴上,点B 的横坐标是2.点P 在直线AB 上方的抛物线上,过点P 分别作PC y 轴、PD x 轴,与直线AB 交于点C D 、,以PC PD 、为边作矩形PCQD ,设点Q 的坐标为(,)m n . (1)点A 的坐标是 ,点B 的坐标是 ;(2)求这条抛物线所对应的函数关系式;(3)求m 与n 之间的函数关系式(不要求写出自变量n 的取值范围); (4)请直接写出矩形PCQD 的周长最大时n 的值.(第23题)(第22题)(图①)CDE(图②)ECBA24.(12分)如图,在矩形ABCD 中,3cm,4cm AB BC ==,点O 是对角线AC 的中点,连结BO .动点,P Q 从点B 同时出发,点P 沿B C B →→以2cm /s 的速度运动到终点B .点Q 沿B A →以1cm /s 的速度运动到终点A .以BP BQ 、为边作矩形BPMQ (点M 不与点A 重合).设矩形BPMQ 与OBC ∆重叠部分图形的面积为2(cm )y ,点P 的运动时间为(s)x . (1)当点M 在AC 上时,求x 的值;(2)直接写出点O 在矩形BPMQ 内部时x 的取值范围;(3)当矩形BPMQ 与OBC ∆重叠部分的图形是四边形时,求y 与x 之间的函数关系式. (4)直接写出直线AM 将矩形ABCD 的面积分成1:3的两部分时x 的值.(备用图)ODCBA(第24题)ABCDPQ OM2015年初中毕业生学业考试模拟试题(一)·数学答案阅卷说明:1.评卷采分最小单位为1分,每步标出的是累计分.2.考生若用本“参考答案”以外的解(证)法,可参照本“参考答案”的相应步骤给分. 一、选择题(每小题3分,共24分)1.A 2.B 3.D 4.B 5.D 6.D 7.B 8.C 二、填空题(每小题3分,共18分)9.1- 10.(23)a b + 11.100 12.2 13.43π 14.4 评分说明:第10题不加括号不扣分,第11题带单位不扣分. 三、解答题(本大题10小题,共78分)15.解:原式2(2)(2)3(3)23a a a aa a a +-+=-+-+ …………(3分) 233a a a a +=-++ 23a =+. …………(4分)当1a =-时,原式2113==-+. …………(6分)16.解:树状图如图所示:…………(4分)∴P (两次摸出的小球标号之和是偶数)3193== …………(6分) 评分说明:列树状图不写出结果不扣分.17.解:设每辆旧清雪车每小时清扫路面x km . …………(1分)由题意,得25352x x =+. …………(3分) 解得5x =. …………(5分) 经检验5x =是原方程的解,且符合题意.答:每辆旧清雪车每小时清扫路面5km . …………(6分)18.解:(1)如图,由题意,得35m DE AB ==,105m,25AE BD CAE ︒==∠=.在Rt ACE △中,90AEC ∠=︒,tan CE CAE AE∠=, …………(3分)∴tan 1050.4749.35m CE AE CAE =∙∠=⨯=. …………(5分) ∴84.3584.4m CD AB CE =+=≈. …………(7分) 答:乙楼CD 的高约为84.4m .25°ED C BA(第18题) 人5 2 0 1 7 2 0 1 1 2 0 1 甲 乙 结果 1 2 3 567 78 9或(2)计算过程加单位不扣分. (3)不答不扣分. 19.解:(1)12040%300÷=.…………(2分)答:一共调查了300人. (2)30 …………(3分)如图. …………(5分)(3)105180006300300⨯=(人). …………(7分) 答:该社区大约有6300人支持“警示戒烟”这种方式.评分说明:条形统计图画线不标30或只标30不画线,均可得分.20.证法一:证明:如图,∵ADE ∆是等边三角形,∴,60AD DE AE DAE ==∠=︒. …………(1分) ∵四边形ABCD 是正方形,∴,90AD AB BAD =∠=︒. …………(2分) ∴30BAE ∠=︒. …………(3分) ∵,30AB AF BAF =∠=︒,∴AF AE =,60EAF ∠=︒. …………(4分) ∴AEF ∆是等边三角形. …………(5分) ∴AF EF DE AD ===. …………(6分) ∴四边形ADEF 是菱形. …………(7分) 证法二: 证明:如图,∵ADE ∆是等边三角形,∴,60AD DE DAE =∠=︒. …………(1分) ∵四边形ABCD 是正方形,∴,90AD AB BAD =∠=︒. …………(2分) ∴30BAE ∠=︒. …………(3分) ∵,30AB AF BAF =∠=︒,∴AF DE =,60EAF AED ∠=∠=︒. …………(4分) ∴AF DE . …………(5分)∴四边形ADEF 是平行四边形. …………(6分) ∴AD DE =.∴平行四边形ADEF 是菱形. …………(7分)21.解:(1)0.4 …………(2分)(2)如图,王先生从B 地返回A 地的速度是2002 1.2120÷⨯=,所用时间为3601203÷=.(第20题)FEDBA(第19题)戒烟戒烟 戒烟 戒烟 方式 被调查的居民支持哪种戒烟 (第20题)FEDBA设y 与x 之间的函数关系式为(0)y kx b k =+≠.由题意,得5360,80.k b k b +=⎧⎨+=⎩5分)解得120,960.k b =-⎧⎨=⎩∴y 与x 之间的函数关系式为120960y x =-+. …………(6分) (3)当200y =时,200120960x =-+.解得193x =. …………(8分) 答:当193x =时,王先生再次经过从A 地到B 地时休息的服务区.22.探究:如图①,∵CE CD ⊥,90ACB ∠=︒,∴90DCE ACB ∠=∠=︒. …………(1分) ∴BCD ACE ∠=∠. …………(2分) ∵AC BC =,CE CD =, ∴BCD ∆≌ACE ∆. …………(3分)应用:如图②, ∵AC BC =,90ACB ∠=︒,∴45CAB ABC ∠=∠=︒, …………(4分)∵14AD AB =,∴1AD =,5BD =. …………(5分)∵BCD ∆≌ACE ∆, ∴5AE BD ==. …………(6分) ∴45CAE CBD ∠=∠=︒. …………(7分)∴90DAE ∠=︒. …………(8分)∴DE == …………(9分) 23.解:(1)(2,0)- …………(1分)(2,2) …………(2分)(2)由题意,得221(2)20,2122 2.2b c b c ⎧-⨯--+=⎪⎪⎨⎪-⨯++=⎪⎩ …………(3分)解得1,23.b c ⎧=⎪⎨⎪=⎩(图②)E D CB A (图①)C DE(第21题)y∴这条抛物线所对应的函数关系式为211322y x x =-++. …………(4分) (3)如图,∵点Q 的坐标为()m n ,,∴点C 的坐标为(22,)n n -,…………(5分)点D 的坐标为1(,1)2m m +. …………(6分)∴点P 的坐标为1(22,1)2n m -+. …………(7分)把1(22,1)2n m -+代入211322y x x =-++,得24102m n n =-+-. …………(9分)∴m n ,之间的函数关系式是24102m n n =-+-.(4)1n =. …………10分)24.解:(1)如图①,∵在矩形ABCD 中,∴90ABC ∠=︒.∵90MPC ABC ∠=∠=︒, ∴tan tan MCP ACB ∠=∠.∴MP ABPC BC =. ∴3424x x =-. ∴65x =. …………(2分)(2)如图②、③,x 的取值范围是332x <<. …………(4分) (3)∵在矩形ABCD 中,∴14362ABC S ∆=⨯⨯=. ∵点O 是对角线AC 的中点,∴132OBC ABC S S ∆∆==.①当605x <≤时,如图④,设OB 与QM 的交点为E . …………(5分)∵tan tan QBE CAB ∠=∠,QE BC(第23题)MOQ PDCA(图①)ABCDP(Q )OM(图③)MOQPDC BA(图②)∴43QE x =. ∴43QE x =.∴BEQ BPMQ y S S ∆=-矩形21442233x x x x x =∙-∙=. …………(6分) ②当322x ≤<时,如图⑤,设OC 与PM 的交点为F . …………(7分) ∵tan tan BCA PCF ∠=∠, ∴PF ABPC BC =. ∴3424PF x =-. ∴3(42)4PF x =-.∴BOC PCF y S S ∆∆=-221333(42)63242x x x =-∙-=-+-. ………… (8分)③当23x <<时,如图⑥,设OC 与PM 的交点为G . …………(9分) ∵tan tan BCA PCG ∠=∠, ∴PG ABPC BC =. ∴3244PG x =-. ∴3(24)4PG x =-.∴BOC PCG y S S ∆∆=-221333(24)63242x x x =-∙-=-+-. …………(10分)综合所述,y 与x 之间的函数关系式为22246(0),353363(2),22363(23).2x x y x x x x x x ⎧<≤⎪⎪⎪=-+-≤<⎨⎪⎪-+-<<⎪⎩(4)34x =或127x =. …………(12分) 评分说明:(1)第(1)问若答出4x =不扣分;(2)第(2)问答出332x ≤<或332x <≤均给1分,若答出332x ≤≤不得分;(3)第(3)问的第②、③种情况FE (图④) (图⑤) (图⑥)AC D P Q OMMOQP D CA A CDP QOMG函数关系式若写成23(2)32y x =--+不扣分; 若写成:当33,22x x ≤<≠时,23632y x x =-+-.则得4分;若写成:当332x ≤<时,23632y x x =-+-.则得3分.以下解题过程是第(4)问的解题过程:①当01x <≤时,如图⑦,此时直线AM 经过BC 的中点N . ∵PM AB ,∴PMN ∆∽BAN ∆.∴PM PN AB BN =.∴2232x x -=.∴34x =. ②当12x <≤时,如图⑧,此时直线AM 经过CD 的中点E .过点E 作EF AB ⊥,垂足为点F .∵EF QM ,∴AMQ ∆∽AEF ∆.∴AQ QM AF EF =.∴32342x x -=.∴127x =. 当24x <≤时,127PM >,直线AM 不在经过点E .N M OQ P DC B AFEMO Q P DCB A (图⑦) (图⑧)。
2015年吉林省长春市朝阳区中考数学二模试卷及参考答案
2015年吉林省长春市朝阳区中考数学二模试卷一、选择题(共8小题,每小题3分,满分24分)1.(3分)﹣11的倒数是()A.﹣B.﹣1 C.D.112.(3分)今年“五•一”期间,长影世纪城接待游客约为21300人次,数据21300用更科学记数法表示是()A.21.3×103B.2.13×104C.2.13×105D.0.213×1053.(3分)下列图形是正方体展开图的是()A.B.C.D.4.(3分)如图,不等式组中的两个不等式的解集在同一个数轴上表示正确的是()A.B.C.D.5.(3分)将一块含60°角的直角三角板和直尺如图放置,使三角板的直角顶点落在直尺的一边上,若∠1=40°,则∠2的度数是()A.90°B.80°C.75°D.70°6.(3分)如图,AD∥BE∥CF,直线l1、l2与这三条平行线分别交于点A、B、C 和点D、E、F.若AB=4.5,BC=3,EF=2,则DE的长度是()A.B.3 C.5 D.7.(3分)如图,OA,OB是⊙O的半径,且OA⊥OB,AO的延长线与弦BC交于点D,连结AC.若∠B=25°,则∠A的度数是()A.65°B.45°C.25°D.20°8.(3分)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(5,0),对称轴为直线x=2,则下列结论中正确的是()A.当x>2时,y随x增大而减小B.4a=bC.图象过点(﹣1,0)D.9a+3b+c>0二、填空题(共6小题,每小题3分,满分18分)9.(3分)计算:(2a)3•a2=.10.(3分)分式方程的解是.11.(3分)若一次函数y=(k﹣2)x+1(k是常数)中y随x的增大而增大,则k的取值范围是.12.(3分)如图,在△ABC中,AB=8,BC=6,AC=5,点D在AC上,连结BD,将△ABC沿BD翻折后,若点C恰好落在AB边上的点E处,则△ADE的周长为.13.(3分)如图,△ABC是等边三角形,点O在边AC上(不与A,C重合),以点O为圆心,以OC为半径的圆分别与AC、BC相交于点D、E,若OC=1,则的长是(结果保留π).14.(3分)如图,矩形ABCD的顶点A在x轴负半轴上,点B在x轴正半轴,点C在反比例函数y=第一象限的图象上,点D在反比例函数y=的图象上,CD 交y轴于点E.若DE:CE=1:2,则k的值是.三、解答题(共10小题,满分78分)15.(6分)先化简,再求值:,其中a=﹣3.16.(6分)从一副扑克牌中取出的两组牌如图所示,第一组牌是红桃1,2,3,第二组牌是方块1,2,3.将它们分别重新洗匀后,背面朝上放置,再从每组牌中各随机抽取1张.用画树状图(或列表)求抽出的两张牌的牌面数字之和是4的概率.17.(6分)春季来临,为了美化校园,某校计划购买甲、乙两种花卉共300盆.甲种花卉每盆24元,乙种花卉每盆30元.若购买这两种花卉共用去8400元,求甲、乙两种花卉各购买多少盆.18.(7分)如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,过点B作BE∥CD,过点C作CE∥AB,BE,CE相交于点E.求证:四边形BDCE是菱形.19.(7分)某校对新入学的七年级部分学生进行了一次视力抽样调查,根据调查的结果,绘制了不完整的频数分布表和频数分布直方图.请根据图表统计信息,解答下列问题:(1)在频数分布表中,a的值是,b的值是;并将频数分布直方图补充完整;(2)这些学生视力的中位数落在频数分布表中的哪个范围内;(3)若该校七年级共有800名学生,估计该校七年级学生中视力在4.9以上(包括4.9)的学生有多少名?七年级部分学生视力的频数分布表20.(7分)如图,在某次数学活动课中,小明为了测量校园内旗杆AB的高度,站在教学楼CD上的E处测得旗杆底端B的仰角∠BEF的度数为45°,测得旗杆顶端A的仰角∠AEF的度数为17°,旗杆底部B处与教学楼底部C处的水平距离BC 为9m,求旗杆的高度(结果精确到0.1m).【参考数据:sin17°=0.29,cos17°=0.96,tan17°=0.31】21.(8分)一个容器中有一个进水管和两个出水管,从某一时刻开始2min内只进水不出水,在随后的4min内开启了一个出水管,既进水又出水,每个出水管每分钟出水7.5L,每分钟的进水量和出水量保持不变,容器内的水量y(L)与时间x(min)之间的函数关系如图所示.(1)求a的值;(2)当2≤x≤6时,求y关于x的函数关系式;(3)若在6min之后,两个出水管均开启,进水管关闭,请在图中补全函数图象.22.(9分)探究:如图①,∠AOB=90°,点P是∠AOB的平分线上一点,以点P 为顶点作∠MPN=90°,分别交OA,OB于点M,N.求证:PM=PN.应用:如图②,在Rt△ABC中,∠ACB=90°,∠BAC,∠ABC的外角平分线交于点P,过点P分别作PE⊥AC,PF⊥BC,分别交CA,CB的延长线于点E,F.若BC=3,AC=4,则AE+BF的长度是.23.(10分)如图,抛物线y=x2﹣mx+n经过点A(﹣1,0),与x轴的另一个交点是B(B在A的右侧),与y轴交于点C,抛物线的对称轴EF交x轴于点E,点C关于EF的对称点是点D.(1)n=(用含m的代数式表示).(2)当点E是OA中点时,求该抛物线对应的函数关系式.(3)当以点A,C,D,E为顶点的四边形是平行四边形时,求m的值.(4)连结AC、CE,当△ACE的面积是时,直接写出m的值.24.(12分)如图,在菱形ABCD中,AB=5cm,AC=6cm,对角线AC、BD相交于点O.动点P从点B出发,沿折线BA﹣AD以1cm/s的速度向终点D运动,过点P作PQ∥AC交折线BC﹣CD于点Q,以PQ为边作正方形PQMN,且MN与AC 始终在PQ的同侧.设正方形PQMN与△ABC重叠部分图形的面积为S(cm2),点P运动的时间为t(s).(1)求点P在AB边上时PQ的长度(用含t的代数式表示).(2)当点N落在AC上时,求t的值.(3)当点P在AB边上时,求S与t之间的函数关系式.(4)当正方形PQMN与菱形ABCD重叠部分图形是六边形时,直接写出t的取值范围.2015年吉林省长春市朝阳区中考数学二模试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.(3分)﹣11的倒数是()A.﹣B.﹣1 C.D.11【分析】根据倒数的定义,即可解答.【解答】解:﹣11的倒数是﹣,故选:A.2.(3分)今年“五•一”期间,长影世纪城接待游客约为21300人次,数据21300用更科学记数法表示是()A.21.3×103B.2.13×104C.2.13×105D.0.213×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将21300用科学记数法表示为:2.13×104.故选:B.3.(3分)下列图形是正方体展开图的是()A.B.C.D.【分析】正方体的展开图有11种情况:1﹣4﹣1型共6种,1﹣3﹣2型共3种,2﹣2﹣2型一种,3﹣3型一种,由此判定找出答案即可.【解答】解:A、有田字格,不是正方体展开图,故选项错误;B、1﹣4﹣1型,是正方体展开图,故选项正确;C、不是正方体展开图,故选项错误;D、有田字格,不是正方体展开图,故选项错误.故选:B.4.(3分)如图,不等式组中的两个不等式的解集在同一个数轴上表示正确的是()A.B.C.D.【分析】先分别解两个不等式得到x≤3和x<﹣1,然后利用数轴分别表示出x ≤3和x<﹣1,于是可得到正确的选项.【解答】解:解不等式x﹣1≤2得x≤3,解不等式3+x<2得x<﹣1,所以不等式组的两个不等式的解集在同一个数轴上表示为:.故选:C.5.(3分)将一块含60°角的直角三角板和直尺如图放置,使三角板的直角顶点落在直尺的一边上,若∠1=40°,则∠2的度数是()A.90°B.80°C.75°D.70°【分析】根据平行线的性质得到∠3=∠1=40°,然后根据三角形的外角的性质即可得到结论.【解答】解:∵AB∥CD,∴∠3=∠1=40°,∴∠2=40°+30°=70°,故选:D.6.(3分)如图,AD∥BE∥CF,直线l1、l2与这三条平行线分别交于点A、B、C 和点D、E、F.若AB=4.5,BC=3,EF=2,则DE的长度是()A.B.3 C.5 D.【分析】根据平行线分线段成比例得到比例式,代入数据即可得到结论.【解答】解:∵AD∥BE∥CF,∴,即:,∴DE=3,故选:B.7.(3分)如图,OA,OB是⊙O的半径,且OA⊥OB,AO的延长线与弦BC交于点D,连结AC.若∠B=25°,则∠A的度数是()A.65°B.45°C.25°D.20°【分析】由OA⊥OB,利用圆周角定理,可求得∠C的度数,由三角形外角的性质,可求得∠ADB的度数,继而求得∠A的度数.【解答】解:∵OA⊥OB,∴∠AOB=90°,∴∠C=∠AOB=45°,∠ADB=∠AOB﹣∠B=90°﹣25°=65°,∴∠A=∠ADB﹣∠C=20°.故选:D.8.(3分)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(5,0),对称轴为直线x=2,则下列结论中正确的是()A.当x>2时,y随x增大而减小B.4a=bC.图象过点(﹣1,0)D.9a+3b+c>0【分析】根据二次函数的性质对A进行判断;根据抛物线的对称轴方程可对B 进行判断;根据抛物线与x轴的交点问题和抛物线的对称性可判断抛物线与x轴的另一个交点坐标为(﹣1,0),则可对C进行判断;利用x=3所对应的函数值为负数可对D进行判断.【解答】解:A、抛物线的对称轴为直线x=2,则x>2时,y随x增大而增大,所以A选项错误;B、抛物线的对称轴为直线x=﹣=2,则b=﹣4a,所以B选项错误;C、抛物线与x轴的一个交点坐标为(5,0),而对称轴为直线x=2,则抛物线与x轴的另一个交点坐标为(﹣1,0),所以C选项正确;D、当x=3时,y<0,即9a+3b+c<0,所以D选项错误.故选:C.二、填空题(共6小题,每小题3分,满分18分)9.(3分)计算:(2a)3•a2=8a5.【分析】首先利用积的乘方运算化简,再利用同底数幂的乘法计算得出即可.【解答】解:(2a)3•a2=8a3×a2=8a5.故答案为:8a5.10.(3分)分式方程的解是x=5.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x﹣2=3,解得:x=5,经检验x=5是分式方程的解.故答案为:x=511.(3分)若一次函数y=(k﹣2)x+1(k是常数)中y随x的增大而增大,则k的取值范围是k>2.【分析】根据一次函数的增减性可求得k的取值范围.【解答】解:∵一次函数y=(k﹣2)x+1(k是常数)中y随x的增大而增大,∴k﹣2>0,解得k>2,故答案为:k>2.12.(3分)如图,在△ABC中,AB=8,BC=6,AC=5,点D在AC上,连结BD,将△ABC沿BD翻折后,若点C恰好落在AB边上的点E处,则△ADE的周长为7.【分析】由翻折的性质可知:DC=DE,BC=EB,于是可得到AD+DE=5,AE=2,故此可求得△ADE的周长为7.【解答】解:∵由翻折的性质可知:DC=DE,BC=EB=6.∴AD+DE=AD+DC=AC=5,AE=AB﹣BE=AB﹣CB=8﹣6=2.∴△ADE的周长=5+2=7.故答案为:7.13.(3分)如图,△ABC是等边三角形,点O在边AC上(不与A,C重合),以点O为圆心,以OC为半径的圆分别与AC、BC相交于点D、E,若OC=1,则的长是(结果保留π).【分析】连结OE,先根据等边三角形的性质得出∠C=60°,再利用圆周角定理求出∠DOE=2∠C=120°,然后根据弧长公式解答即可.【解答】解:如图,连结OE.∵△ABC是等边三角形,∴∠C=60°,∴∠DOE=2∠C=120°,∵OC=1,∴的长是=.故答案为.14.(3分)如图,矩形ABCD的顶点A在x轴负半轴上,点B在x轴正半轴,点C在反比例函数y=第一象限的图象上,点D在反比例函数y=的图象上,CD 交y轴于点E.若DE:CE=1:2,则k的值是﹣2.【分析】设DE=a,则CE=2a,再由点C在反比例函数y=第一象限的图象上可得出2ay=4,故可得出ay的值,进而可得出结论.【解答】解:∵DE:CE=1:2,∴设DE=a,则CE=2a.∵点C在反比例函数y=第一象限的图象上,∴2ay=4,∴ay=2.∵点D在反比例函数y=的图象上,∴﹣ay=k,∴k=﹣2.故答案为:﹣2.三、解答题(共10小题,满分78分)15.(6分)先化简,再求值:,其中a=﹣3.【分析】先根据分式混合运算的法则把原式进行化简,再把a的值代入进行计算即可.【解答】解:原式=﹣==,当a=﹣3时,原式==﹣.16.(6分)从一副扑克牌中取出的两组牌如图所示,第一组牌是红桃1,2,3,第二组牌是方块1,2,3.将它们分别重新洗匀后,背面朝上放置,再从每组牌中各随机抽取1张.用画树状图(或列表)求抽出的两张牌的牌面数字之和是4的概率.【分析】先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率即可.【解答】解:列表如下:可得所有的结果有9种,两张牌的牌面数字之和是4的有3种,故P(摸出的两张牌的牌面数字之和是4)==.17.(6分)春季来临,为了美化校园,某校计划购买甲、乙两种花卉共300盆.甲种花卉每盆24元,乙种花卉每盆30元.若购买这两种花卉共用去8400元,求甲、乙两种花卉各购买多少盆.【分析】根据计划购买甲、乙两种花卉共300盆,以及购买这两种花卉共用去8400元,进而得出等式求出即可.【解答】解:设购买甲种花卉x盆,乙种花卉y盆.由题意,得,解得:,答:购买甲种花卉100盆,乙种花卉200盆.18.(7分)如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,过点B作BE∥CD,过点C作CE∥AB,BE,CE相交于点E.求证:四边形BDCE是菱形.【分析】根据平行四边形的判定得出四边形是平行四边形,根据直角三角形上的中线得出CD=BD,根据菱形的判定得出即可.【解答】证明:∵BE∥CD,CE∥AB,∴四边形BDCE是平行四边形.∵∠ACB=90°,CD是AB边上的中线,∴CD=BD,∴平行四边形BDCE是菱形.19.(7分)某校对新入学的七年级部分学生进行了一次视力抽样调查,根据调查的结果,绘制了不完整的频数分布表和频数分布直方图.请根据图表统计信息,解答下列问题:(1)在频数分布表中,a的值是30,b的值是0.05;并将频数分布直方图补充完整;(2)这些学生视力的中位数落在频数分布表中的哪个范围内;(3)若该校七年级共有800名学生,估计该校七年级学生中视力在4.9以上(包括4.9)的学生有多少名?七年级部分学生视力的频数分布表【分析】(1)由频数(率)分布表,根据频率之和为1求出b的值,进而求出总人数,得出a的值即可;(2)根据总人数,找出最中间的两个所在的区间,即为学生视力的中位数落在频数的范围;(3)找出学生中视力在4.9以上(包括4.9)的学生占的百分比,乘以800即可得到结果.【解答】解:(1)根据题意得:b=1﹣(0.1+0.2+0.35+0.3)=0.05;总人数为5÷0.05=100(人),则a=100﹣(10+20+35+5)=30;(2)100人数中最中间的两个为50,51,所在区间为4.6≤x<4.9,则这些学生视力的中位数落在频数分布表中的4.6≤x<4.9范围内;(3)根据题意得:800×=280(名),则该校七年级学生中视力在4.9以上(包括4.9)的学生有280名.故答案为:(1)30;0.0520.(7分)如图,在某次数学活动课中,小明为了测量校园内旗杆AB的高度,站在教学楼CD上的E处测得旗杆底端B的仰角∠BEF的度数为45°,测得旗杆顶端A的仰角∠AEF的度数为17°,旗杆底部B处与教学楼底部C处的水平距离BC 为9m,求旗杆的高度(结果精确到0.1m).【参考数据:sin17°=0.29,cos17°=0.96,tan17°=0.31】【分析】先根据锐角三角函数的定义求出BF及AF的长,再由AB=AF+BF即可得出结论.【解答】解:如图,由题意得EF=BC=9m,∠AEF=17°,∠BEF=45°,在Rt△BEF中,∵tan∠BEF=tan45°=,∴BF=EF=9m.在Rt△AEF中,∵tan17°=,∴AF=9×0.31=2.79m.∴AB=AF+BF=11.79≈11.8m.答:旗杆AB的高度约为11.8m.21.(8分)一个容器中有一个进水管和两个出水管,从某一时刻开始2min内只进水不出水,在随后的4min内开启了一个出水管,既进水又出水,每个出水管每分钟出水7.5L,每分钟的进水量和出水量保持不变,容器内的水量y(L)与时间x(min)之间的函数关系如图所示.(1)求a的值;(2)当2≤x≤6时,求y关于x的函数关系式;(3)若在6min之后,两个出水管均开启,进水管关闭,请在图中补全函数图象.【分析】(1)每分钟的进水量根据前2分钟的图象求出,根据后4分钟的水量变化即可求得a的值.(2)用待定系数法求对应的函数关系式;(3)根据每个出水管每分钟出水量,即可求得排完容器的水所有的时间,根据时间补全函数图象即可.【解答】解:(1)根据图象,每分钟进水20÷2=10L,在随后的4min内容器内的水量y=4(10﹣7.5)=10(L),∴a=20+10=30;(2)设y=kx+b.∵图象过(2,20)、(6,30),∴,解得:,∴y=x+15 (2≤x≤6);(3)∵30÷(2×7.5)=2;∴补全函数图象如图所示:22.(9分)探究:如图①,∠AOB=90°,点P是∠AOB的平分线上一点,以点P 为顶点作∠MPN=90°,分别交OA,OB于点M,N.求证:PM=PN.应用:如图②,在Rt△ABC中,∠ACB=90°,∠BAC,∠ABC的外角平分线交于点P,过点P分别作PE⊥AC,PF⊥BC,分别交CA,CB的延长线于点E,F.若BC=3,AC=4,则AE+BF的长度是5.【分析】探究:过P作PE⊥OA,PF⊥OB,由OC为∠AOB的平分线,利用角平分线定理得到PE=PF,利用同角的余角相等得到一对角相等,利用ASA得到△PME 与△PNF全等,利用全等三角形的对应边相等即可得证;应用:如图②,过点P作PG⊥AB,垂足点G.证明Rt△PEA≌Rt△PEA,Rt△PGB≌Rt△PFB,所以AE=AG,BF=BG,求出AB==5,所以AE+BF=5.【解答】解:探究:如图①,过P作PE⊥OA于E,PF⊥OB于F,∵OC是∠AOB的平分线,∴PE=PF,∠PEM=∠PFN=90°,∵∠MPE+∠MPF=90°,∠NPF+∠MPF=90°,∴∠MPE=∠NPF,在△PME和△PNF中,,∴△PME≌△PNF(ASA),∴PM=PN.应用:如图②,过点P作PG⊥AB,垂足点G.∵PE⊥AC,PF⊥BC,且∠BAC,∠ABC的外角平分线交于点P,∴PE=PG,PF=PG,∵PG=PG,在Rt△PEA和Rt△PEA中,∴Rt△PEA≌Rt△PEA,在Rt△PGB和Rt△PFB中,∴Rt△PGB≌Rt△PFB,∴AE=AG,BF=BG,∵∠ACB=90°,且BC=3,AC=4,∴AB==5,∴AE+BF=5.故答案为:5.23.(10分)如图,抛物线y=x2﹣mx+n经过点A(﹣1,0),与x轴的另一个交点是B(B在A的右侧),与y轴交于点C,抛物线的对称轴EF交x轴于点E,点C关于EF的对称点是点D.(1)n=﹣m﹣1(用含m的代数式表示).(2)当点E是OA中点时,求该抛物线对应的函数关系式.(3)当以点A,C,D,E为顶点的四边形是平行四边形时,求m的值.(4)连结AC、CE,当△ACE的面积是时,直接写出m的值.【分析】(1)把点A(﹣1,0)代入抛物线y=x2﹣mx+n,即可用含m的代数式表示n;(2)根据抛物线对称轴公式可得抛物线的对称轴是x=,再根据中点坐标公式可得gym的方程,解方程即可求得m的值,从而得到该抛物线对应的函数关系式;(3)分两种情况:①当m>0时,②当﹣2<m<0时,根据平行四边形的性质可求m的值;(4)分两种情况:①当m>﹣1时,②当﹣2<m<﹣1时,根据三角形面积公式可求m的值.【解答】解:(1)∵抛物线y=x2﹣mx+n经过点A(﹣1,0),∴1+m+n=0,∴n=﹣m﹣1;(2)抛物线y=x2﹣mx﹣m﹣1的对称轴是x=.AE=+1.∵点E是OA中点,∴AE=+1=.∴m=﹣1.∴抛物线对应的函数关系式为y=x2+x.(3)①当m>0时,如图①,∵抛物线y=x2﹣mx﹣m﹣1的对称轴是x=,∴CD=m,AE=+1.∵四边形ACDE是平行四边形,∴m=+1,∴m=2;②当﹣2<m<0时,如图②,CD=﹣m,AE=+1.∵四边形ADCE是平行四边形,∴﹣m=+1.∴m=﹣;(4)m=0.解题过程如下:①当m>﹣1时,如图③,S△ACE=AE•OC=(+1)(m+1)=m2+m+.∴m2+m+=,解得m1=0,m2=﹣3(不合题意,舍去).∴m=0.②当﹣2<m<﹣1时,如图④,S△ACE=AE•OC=(+1)(﹣m﹣1)=﹣m2﹣m﹣.∴﹣m2﹣m﹣=,即m2+3m+4=0,△=b2﹣4ac=9﹣16=﹣7<0,∴此方程没有实数根.综上所述,当m=0时,△ACE的面积是.故答案为:﹣m﹣1.24.(12分)如图,在菱形ABCD中,AB=5cm,AC=6cm,对角线AC、BD相交于点O.动点P从点B出发,沿折线BA﹣AD以1cm/s的速度向终点D运动,过点P作PQ∥AC交折线BC﹣CD于点Q,以PQ为边作正方形PQMN,且MN与AC 始终在PQ的同侧.设正方形PQMN与△ABC重叠部分图形的面积为S(cm2),点P运动的时间为t(s).(1)求点P在AB边上时PQ的长度(用含t的代数式表示).(2)当点N落在AC上时,求t的值.(3)当点P在AB边上时,求S与t之间的函数关系式.(4)当正方形PQMN与菱形ABCD重叠部分图形是六边形时,直接写出t的取值范围.【分析】(1)根据△BPQ∽△BAC,对应边成比例得出=,即=,即可求得PQ=t.(2)根据勾股定理求得OB,然后分两种情况分别讨论即可求得;(3)分两种情况,根据图形求得即可;(4)分别求得当P、Q、M、N四点都在菱形四条边上时和MN经过D点和B点时的t的值,即可求得正方形PQMN与菱形ABCD重叠部分图形是六边形时t的取值范围.【解答】解:(1)如图①,∵PQ∥AC,∴△BPQ∽△BAC.∴=.即=.∴PQ=t.(2)∵四边形ABCD是菱形,∴AC⊥BD.∴BO==4.①如图②,当0<t≤5时,∵cos∠APN=cos∠ABO,∴==,即=,∴t=2.②如图③,当5<t≤10时,PQ=(10﹣t).∵cos∠APN=cos∠ADO,∴==,即=∴t=8.(3)①如图①,当0<t≤2时,S=PQ2=(t)2=t2.②如图④,当2<t<5时,设PN、QM与AC分别交于点G、H.则PG=(5﹣t).∴S=PQ•PG=t•(5﹣t)=﹣t2+t.(4)如图⑤,当P、Q、M、N四点都在菱形四条边上时,则=,即=,∴t=,如图⑥,当MN经过D点时,则(8﹣t)2+(t)2=t2,∴t=4;∴当正方形PQMN与菱形ABCD重叠部分图形是六边形时,<t<4或6<t<.赠送初中数学几何模型【模型二】半角型:图形特征:AB正方形ABCD 中,∠EAF =45° ∠1=12∠BAD 推导说明:1.1在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且∠FAE =45°,求证:EF =BE +DFE-a1.2在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且EF =BE +DF ,求证:∠FAE =45°DEa +b-aa45°ABE挖掘图形特征:x-aa-a运用举例:1.正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°,得到△DCM.(1)求证:EF=FM(2)当AE=1时,求EF的长.DE3.如图,梯形ABCD中,AD∥BC,∠C=90°,BC=CD=2AD=4,E为线段CD上一点,∠ABE=45°.(1)求线段AB的长;(2)动点P从B出发,沿射线..BE运动,速度为1单位/秒,设运动时间为t,则t为何值时,△ABP为等腰三角形;(3)求AE-CE的值.A变式及结论:4.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图1),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图2),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图3),请你直接写出线段EF,BE,DF之间的数量关系.F。
2014-2015学年北京市朝阳区2015年初三数学一模试题(附答案)
北京市朝阳区九年级综合练习(一)数学试卷 2015.5学校 班级 姓名 考号一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1. 据亚洲开发银行统计数据,2010年至2020年,亚洲各经济体的基础设施如果要达到世界 平均水平,至少需要8 000 000 000 000美元基建投资.将8 000 000 000 000用科学记数法表示应为A .0.8×1013B .8×1012C .8×1013D .80×10112. 如图,下列关于数m 、n 的说法正确的是A .m >nB .m =nC .m >-nD .m =-n3.如图,直线a ,b 被直线c 所截,a ∥b ,∠2=∠3,若∠1=80°,则∠4等于 A .20° B .40° C .60° D .80°4.下列计算正确的是A .2a +3a =6a B. a 2+a 3=a 5 C. a 8÷a 2=a 6 D. (a 3)4= a 7 5.下列图形中,既是中心对称图形又是轴对称图形的是A B C D6.为筹备班级联欢会,班干部对全班同学最爱吃的水果进行了统计,最终决定买哪种水果时,班干部最关心的统计量是 A .平均数 B .中位数 C .众数 D .方差7为了保证抽奖的公平性,这些小球除了颜色外,其他都相同,而且每一个球被抽中的机会均相等,则该抽奖活动抽中一等奖的概率为 A.16 B. 51C. 310D. 12 8. 若正方形的周长为40,则其对角线长为A .100B .C .D .10 9.如图,为了估计河的宽度,在河的对岸选定一个目标点P ,在近岸取点Q 和S ,使点P ,Q ,S 在一条直线上,且直线PS 与河 垂直,在过点S 且与PS 垂直的直线a 上选择适当的点T ,PT 与过点Q 且与PS 垂直的直线b 的交点为R .如果QS =60 m , ST =120 m ,QR =80 m ,则河的宽度PQ 为A .40 mB .60 mC .120 mD .180 m10.甲、乙两人在一条长400米的直线跑道上同起点、同终点、同方向匀速跑步,先到终点的人原地休息.已知甲先出发 3秒,在跑步过程中,甲、乙两人的距离y (米)与乙出发的 时间t (秒)之间的关系如图所示,则下列结论正确的是 A. 乙的速度是4米/秒B. 离开起点后,甲、乙两人第一次相遇时,距离起点12米C. 甲从起点到终点共用时83秒D. 乙到达终点时,甲、乙两人相距68米二、填空题(本题共18分,每小题3分) 11.若分式21x 有意义,则x 的取值范围是 .12.分解因式:2236+3m mn n -= .13.如图,⊙O 的直径CD 垂直于弦AB ,∠AOC =40°,则∠CDB 的度数为 .14.请写出一个图象从左向右上升且经过点(-1,2)的函数,所写的函数表达式是 .15.为了缓解城市拥堵,某市对非居民区的公共停车场制定了不同的收费标准(见下表).如果小王某次停车3小时,缴费24元,请你判断小王该次停车所在地区的类别是 (填“一类、二类、三类”中的一个).16.一组按规律排列的式子:a 2,25a -,310a ,417a-,526a ,…,其中第7个式子是 ,第n 个式子是 (用含的n 式子表示,n 为正整数).三、解答题(本题共30分,每小题5分)17.已知:如图,E 是BC 上一点,AB =EC ,AB ∥CD , BC =CD .求证:AC =ED .18.计算:1012sin 45(2015)3-⎛⎫+--︒+- ⎪⎝⎭π.19.解不等式组:⎪⎩⎪⎨⎧>+->.31222x x x x ,20.已知250x x +-=,求代数式2(1)(3)(2)(2)x x x x x ---++-的值.21.已知关于x 的一元二次方程2630x x k -++=有两个不相等的实数根(1)求k 的取值范围;(2)若k 为大于3的整数,且该方程的根都是整数,求k 的值.22.列方程或方程组解应用题:为了迎接北京和张家口共同申办及举办2020年冬奥会,全长174千米的京张高铁 于2014年底开工. 按照设计,京张高铁列车从张家口到北京最快用时比最慢用时少18 分钟,最快列出时速是最慢列车时速的2920倍,求京张高铁最慢列车的速度是多少?四、解答题(本题共20分,每小题5分)23. 如图,菱形ABCD 的对角线AC 、BD 相交于点O ,过点D作DE ∥AC 且DE=12AC ,连接 CE 、OE ,连接AE 交OD 于点F .(1)求证:OE =CD ;(2)若菱形ABCD 的边长为2,∠ABC=60°,求AE 的长.24.为防治大气污染,依据北京市压减燃煤相关工作方案,2014年全市燃煤数量比2012年压减450万吨,到2015年、2017年要比2012年分别压减燃煤800万吨、1300万吨.以下是根据相关数据绘制的统计图的一部分:(1)据报道,2012年全市燃煤由四部分组成,其中电厂用煤920万吨,则2012年全市燃煤数量为 万吨;(2)请根据以上信息补全2012-2017年全市燃煤数量的折线统计图,并标明相应数据; (3)某地区积极倡导“清洁空气,绿色出行”,大力提升自行车出行比例,小颖收集了该地区近几年公共自行车的有关信息(如下表),发现利用公共自行车出行人数与 公共自行车投放数量之间近似成正比例关系.2012-2015年公共自行车投放数量与利用公共自行车出行人数统计表年份 公共自行车投放数量(万辆) 利用公共自行车出行人数(万人) 2012 1.4 约9.9 2013 2.5 约17.6 2014 4 约27.6 2015 5 约根据小颖的发现,请估计,该地区2015年利用公共自行车出行人数(直接写出结果, 精确到0.1)25.如图,△ABC 内接于⊙O ,AB 为直径,点D 在⊙O 上,过点D 作⊙O切线与AC 的延长线交于点E ,ED ∥BC ,连接AD 交BC 于点F . (1)求证:∠BAD =∠DAE ;(2)若AB =6,AD =5,求DF 的长.26.阅读下面材料:小昊遇到这样一个问题:如图1,在△ABC 中,∠ACB =90°, BE 是AC 边上的中线,点D 在BC 边上,CD :BD =1:2,AD 与BE 相交于点P ,求APPD的值. 小昊发现,过点A 作AF ∥BC ,交BE 的延长线于点F ,通过构造△AEF ,经过推理和 计算能够使问题得到解决(如图2).请回答:APPD的值为 .参考小昊思考问题的方法,解决问题:如图 3,在△ABC 中,∠ACB =90°,点D 在BC 的延长线上,AD 与AC 边上的中线BE 的延长线交于点P ,DC :BC :AC =1:2:3 . (1)求APPD的值; (2)若CD=2,则BP = .五、解答题(本题共22分,第27题7分,第28题7分,第29题8分) 27.如图,将抛物线M 1: x ax y 42+=向右平移3个单位,再向上平移3个单位,得到抛物线M 2,直线x y =与M 1 的一个交点记为A ,与M 2的一个交点记为B ,点A 的 横坐标是-3. (1)求a 的值及M 2的表达式;(2)点C 是线段AB 上的一个动点,过点C 作x 轴的垂线,垂足为D ,在CD 的右侧作正方形CDEF . ①当点C 的横坐标为2时,直线n x y +=恰好经过 正方形CDEF 的顶点F ,求此时n 的值;②在点C 的运动过程中,若直线n x y +=与正方形CDEF 始终没有公共点,求n 的 取值范围(直接写出结果).28.在△ABC 中,∠C =90°,AC =BC ,点D 在射线BC 上(不与点B 、C 重合),连接AD ,将AD 绕点D 顺时针旋转90°得到DE ,连接BE . (1)如图1,点D 在BC 边上.①依题意补全图1;②作DF ⊥BC 交AB 于点F ,若AC =8,DF =3,求BE 的长;(2)如图2,点D 在BC 边的延长线上,用等式表示线段AB 、BD 、BE 之间的数量关系(直接写出结论).图1图2图329.定义:对于平面直角坐标系xOy 中的线段PQ 和点M ,在△MPQ 中,当PQ 边上的高为2时,称M 为PQ 的“等高点”,称此时MP +MQ 为PQ 的“等高距离”. (1)若P (1,2),Q (4,2) .①在点A (1,0),B (25,4),C (0,3)中,PQ 的“等高点”是 ; ②若M (t ,0)为PQ 的“等高点”,求PQ 的“等高距离”的最小值及此时t 的值.(2)若P (0,0),PQ =2,当PQ 的“等高点”在y 轴正半轴上且“等高距离”最小时,直接写出点Q 的坐标.图1 图2北京市朝阳区九年级综合练习(一)数学试卷答案及评分参考 2015.5一、选择题(本题共30分,每小题3分)二、填空题 (本题共18分,每小题3分) 11. 2≠x12. 2)(3n m -13. 20°14. 3+=x y (答案不惟一)15. 二类16. 750a,nn a n 1)1-(21+⋅+(第一个空1分,第二个空2分)三、解答题(本题共30分,每小题5分) 17. 证明:∵AB ∥CD ,∴∠B=∠DCE . …………………………………………………………………1分 在△ABC 和△ECD 中,⎪⎩⎪⎨⎧=∠=∠=分分3-----------------------------------------------2-----------------------------------------------CD BC DCEB EC AB ∴△ABC ≌△ECD . ……………………………………………………………4分 ∴AC =ED . ……………………………………………………………………5分18. 解:原式 =122232+⨯--………………………………………………………4分 =2-.…………………………………………………………………………5分19. ⎪⎩⎪⎨⎧>+->.31222x x x x ,解:解不等式①,得2->x . ………………………………………………………………2分解不等式②,得x <1. ………………………………………………………………4分 ∴不等式组的解集是x <-2<1. …………………………………………………5分20. 解:)2)(2()3()1(2-++---x x x x x=4312222-++-+-x x x x x …………………………………………………3分 =32-+x x . ……………………………………………………………………4分 ∵052=-+x x , ∴52=+x x .∴原式=5-3=2. ……………………………………………………………………5分 21. 解:(1))3(4)6(2+--=∆k ………………………………………………………1分① ②12436--=k 244+-=k∵原方程有两个不相等的实数根, ∴0244>+-k .解得 6<k . ………………………………………………………………2分(2)∵6<k 且k 为大于3的整数,∴=k 4或5. ………………………………………………………………………3分 ① 当=k 4时,方程0762=+-x x 的根不是整数.∴=k 4不符合题意. ………………………………………………………… 4分 ② 当=k 5时,方程0862=+-x x 根为21=x ,42=x 均为整数. ∴=k 5符合题意. ……………………………………………………………5分 综上所述,k 的值是5.22. 解:设京张高铁最慢列车的速度是x 千米/时. …………………………………………1分由题意,得60182029174-174=x x . ……………………………………………2分 解得 180=x . ……………………………………………3分 经检验,180=x 是原方程的解,且符合题意. ………………………………4分答:京张高铁最慢列车的速度是180千米/时. ……………………………………5分四、解答题(本题共20分,每小题5分) 23. (1)证明:在菱形ABCD 中,OC=12AC . ∴DE=OC . ∵DE ∥AC ,∴四边形OCED 是平行四边形.…………………………………………1分 ∵AC ⊥BD ,∴平行四边形OCED 是矩形. …………………………………………2分 ∴OE =CD .…………………………………………………………………3分(2)在菱形ABCD 中,∠ABC=60°,∴AC=AB=2. ∴在矩形OCED 中,CE =………………4分 在Rt △ACE 中,.………………………………………………………5分24.(1)2300. ………………1分 (2)如图. …………… 3分(3)35.0±0.5. ……………5分25.解:(1)连接OD,∵ED为⊙O的切线,∴OD⊥ED.……………………………………………………………………………1分∵AB为⊙O的直径,∴∠ACB=90°. ……………………………………………………………… 2分∵BC∥ED,∴∠ACB=∠E=∠EDO.∴AE∥OD.∴∠DAE=∠ADO.∵OA=OD,∴∠BAD=∠ADO.∴∠BAD=∠DAE. ………………………………3分(2)连接BD,∴∠ADB=90°.∵AB=6,AD=5,∴BD=……………………………………………………………4分∵∠BAD=∠DAE=∠CBD ,∴tan∠CBD = tan∠BAD.在Rt△BDF中,∴DF=BD·tan∠CBD =115. ……………………………………………………………5分26. 解:PDAP 的值为23 . …………………………………………………………………1分 解决问题:(1)过点A 作AF ∥DB ,交BE 的延长线于点F ,……………………………………2分设DC =k ,∵DC ︰BC =1︰2,∴BC =2k .∴DB =DC +BC =3k .∵E 是AC 中点,∴AE =CE .∵AF ∥DB ,∴∠F =∠1.又∵∠2=∠3,∴△AEF ≌△CEB . ……………………………………………………………3分∴AF =BC =2k .∵AF ∥DB ,∴△AFP ∽△DBP . ∴DB AF PDAP =. ∴32=PD AP . …………………………………………………………………4分 (2) 6. ……………………………………………………………………………5分五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)27. 解:(1)∵ 点A 在直线x y =,且点A 的横坐标是-3,∴ A (-3,-3) . ………………………………………………………………1分把A (-3,-3)代入x ax y 42+=,解得a =1. … …………………………………………………………………2分∴M 1 : x x y 42+=,顶点为(-2,-4) .∴M 2的顶点为(1,-1) .∴M2的表达式为x x y 2-2=. …………3分(2)①由题意,C (2,2),∴F (4,2) . ………………………………4分∵直线n x y +=经过点F ,∴2=4+n .解得n =-2. ………………………5分② n >3,n <-6. …………… …7分28.解:(1)①补全图形,如图1所示. ………………………1分②由题意可知AD =DE ,∠ADE =90°.∵DF ⊥BC ,∴∠FDB =90°.∴∠ADF =∠EDB . ……………………………………2分∵∠C =90°,AC =BC ,∴∠ABC =∠DFB =90°.∴DB =DF .∴△ADF ≌△EDB . ……………………………………3分∴AF =EB .在△ABC 和△DFB 中,∵AC =8,DF =3,∴AC=,DF=. ………………………………………………………………4分AF =AB -BF=即BE= …………………………………………………………………………5分(2BD =BE +AB. ……………………………………………………………………7分29. 解:(1)A 、B ……………………………………………………………………………2分(2)如图,作点P 关于x 轴的对称点P ′,连接P ′Q ,P ′Q 与x 轴的交点即为“等高点”M ,此时“等高距离”最小,最小值为线段P ′Q 的长. ………………………3分∵P (1,2),∴ P ′ (1,-2).设直线P ′Q 的表达式为b kx y +=,根据题意,有 ⎩⎨⎧=+-=+242b k b k ,解得⎪⎩⎪⎨⎧-==31034b k . 图1∴直线P ′Q 的表达式为31034-=x y . ……………4分 当0=y 时,解得25=x . 即25=t . ………………………………………………………………………5分 根据题意,可知PP ′=4,P Q =3, P Q ⊥PP ′, ∴5''22=+=PQ PP Q P . ∴“等高距离”最小值为5. …………………………………………………6分(3)Q (554,552)或Q (554-,552). ………………………………8分。
2023-2024学年吉林省长春市朝阳区七年级(下)期末数学试卷+答案解析
2023-2024学年吉林省长春市朝阳区七年级(下)期末数学试卷一、选择题:本题共8小题,每小题3分,共24分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列各式中,属于一元一次方程的是()A. B. C. D.2.解二元一次方程组时,由①-②可得()A. B. C. D.3.2024年4月26日“吉林省第六届STEM教育发展大会”在长春召开是科学技术、工程、数学四门学科英文首字母的缩写.这四个英文字母中,可以看成是中心对称图形的是()A. B. C. D.4.三角形结构在生活中有着广泛的应用,如图所示,利用三角形支架固定手机,其蕴含的数学道理是A.两点之间,线段最短B.三角形的稳定性C.三角形的内角和等于D.三角形的任意两边之和大于第三边5.下列正多边形的组合中,能够铺满地面的是()A.正方形和正八边形B.正五边形和正六边形C.正方形和正五边形D.正三角形和正八边形6.某商品标价为x元,若打八折后再降价12元,售价为108元,则可列方程为()A. B.C. D.7.若,则下列不等式一定成立的是()A. B. C. D.8.如图,在直角三角形ABC中,,,将绕点A逆时针旋转得到,点E落在AB上,延长DE交BC于点给出下面四个结论:①≌;②;③;④若,,连结BD,则的面积是上述结论中,所有正确结论的序号是()A.①②③B.①②④C.①③④D.①②③④二、填空题:本题共6小题,每小题3分,共18分。
9.已知三角形两边长分别为1和4,则第三边长可以是______写出一个即可10.等边三角形绕着它的中心旋转一定角度后能与自身重合,则这个旋转角度的大小至少为______11.若中,,则此三角形是______三角形.12.甲、乙两人检修一条长180米的管道,甲每小时检修15米,乙每小时检修10米,若甲先检修2小时后,再由甲、乙两人合作完成整条管道检修,则甲共检修管道______小时.13.将长方形直尺与正五边形纸板按照如图位置摆放.若,则的大小为______.14.如图,在中,点D是BC边的中点,AE::若的面积为10,则的面积为______.三、解答题:本题共10小题,共78分。
2014年吉林省长春市朝阳区初中毕业生学业考试模拟数学试题(一)
长春市朝阳区2014年初中毕业生学业考试模拟(一)数学试题本试卷包括三道大题,共24小题,共6页.全卷满分120分.考试时间为120分钟.考试结束后,将本试卷和答题卡一并交回. 注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上,并将条形码准确粘贴在条形码区域内.2.答题时,考生务必按照考试要求在答题卡上的指定区域内作答,在草稿纸、试卷上答题无效. 一、选择题(每小题3分,共24分) 1.在0.1,3-,2和13这四个实数中,无理数是 (A )0.1. (B )3-. (C )2. (D )13. 2.2014年3月21日上午,我国新型导弹驱逐舰昆明舰举行入列仪式,正式加入人民海军战斗序列.昆明舰采用柴燃交替动力,配备2台QC208燃气轮机,单台功率37500马力.数据37500用科学记数表示为(A )43.7510⨯. (B )337.510⨯. (C )50.37510⨯. (D )33.7510⨯. 3.有一组数据:2,4,3,4,5,3,4,则这组数据的众数是(A )5. (B )4. (C )3. (D )2. 4.将“中国梦我的梦”六个字分别写在一个正方体的六个面上, 这个正方体的展开图如图所示,那么在这个正方体中, 和“我”字相对的字是(A )中. (B )国. (C )的. (D )梦.5.不等式组⎩⎨⎧≤>+1,022x x 的解集是(A )11≤<-x .(B )11<<-x .(C )1->x . (D )1≤x . 6.如图,直线 l 1∥l 2,且分别与△ABC 的两边AB 、AC 相交,若∠A =50°,∠1=35°,则∠2的度数为 (A )35°. (B )65°. (C )85°. (D )95°.7.如图,O ⊙是ABC △的外接圆,连结OA 、OB ,且点C 、O 在弦AB 的同侧,若50ABO ∠=°,则ACB ∠的度数为 (A )50°. (B )45°. (C )(第4题)BCAl 1 l 212(第6题)8.如图,在平面直角坐标系中,菱形ABCD 的顶点C 的坐标为(-1,0),点B 的坐标为(0,2),点A 在第二象限.直线521+-=x y 与x 轴、y 轴分别交于点N 、M .将菱形ABCD 沿x 轴向右平移m 个单位,当点D 落在△MON 的内部时(不包括三角形的边),则m 的值可能是(A )1. (B )2. (C )4. (D )8. 二、填空题(每小题3分,共18分) 9.计算:=-29 .10.某饭店在2014年春节年夜饭的预定工作中,第一天预定了a 桌,第二天预定的桌数比第一天多了4桌,则这两天该饭店一共预定了 桌年夜饭(用含a 的代数式表示). 11.一个正方形与一个正六边形如图放置,正方形的一条边与正六边形的一条边完全重合,则∠1的度数为 度.12.如图,MN 是⊙O 的直径,矩形ABCD 的顶点A 、D 在MN 上,顶点B 、C 在⊙O 上,若 ⊙O 的半径为5,AB = 4,则AD 边的长为 .13.如图,抛物线2y x bx c =-++的对称轴是直线x =1,与x 轴的一个交点为(3,0),则此抛物线的函数关系式为 . 14.如图,点A 在反比例函数ky x=(x>0)的图象上,过点A 作AD ⊥y 轴于点D ,延长AD 至点C ,使AD =DC ,过点A 作AB ⊥x 轴于点B ,连结BC 交y 轴于点E .若△ABC 的面积为4,则k 的值为 . 三、解答题(本大题10小题,共78分)15.(5分)化简:x x xx x 12122-÷+-.16.(6分)在一个不透明的盒子中放有三张卡片,分别标记为A 、B 、C ,每张卡片除了标记不同外,其余均相同. 某同学第一次从盒子中随机抽取一张卡片,卡片放回,第二次又随机抽取一张卡片.请用画树状图(或列表)的方法,求两次抽取的都是A 的概率.(第7题) (第8题)(第11题) (第12题)MABCDO ·N17.(6分)某车间接到加工200个零件的任务,在加工完40个后,由于改进了技术,每天加工的零件数量是原来的2.5倍,整个加工过程共用了13天完成.求原来每天加工零件的数量. 18.(7分)如图,在矩形ABCD 中,以点D 为圆心,DA 长为半径画弧,交CD 于点E ,以点A 为圆心,AE 长为半径画弧,恰好经过点B ,连结BE 、AE . 求∠EBC 的度数.19.(7分)周末,小强在文化广场放风筝.如图,小强为了计算风筝离地面的高度,他测得风筝的仰角为58°,已知风筝线BC 的长为10米,小强的身高AB 为1.55米.请你帮小强画出测量示意图,并计算出风筝离地面的高度(结果精确到0.1米). (参考数据:sin58°=0.85,cos58°=0.53,tan58°=1.60)20.(8分)为了了解某市初中学生上学的交通方式,从中随机调查了a 名学生的上学交通方式,统计结果如图所示. (1)求a 的值;(2)补全条形统计图并求出乘坐公共汽车上学占上学交通方式百分比的扇形圆心角的度数;(3)该市共有初中学生15000名,请估计其中坐校车上学的人数.页)(第20题)被调查学生上学采用交通方式扇形统计图 20%10%10% 公共汽车 私家车 校车步行 其它被调查学生上学采用交通方式条形统计图 0200400600800100012001400人数(第18题) A BDC E (第19题)A BC21.(8分)一辆轿车从甲地驶往乙地,到达乙地后返回甲地,速度是原来的1.5倍,共用t小时;一辆货车同时从甲地驶往乙地,到达乙地后停止.两车同时出发,匀速行驶.设轿车行驶的时间为x (h),两车到甲地的距离为y (km),两车行驶过程中y 与x 之间的函数图象如图所示.(1)求轿车从乙地返回甲地时的速度和t 的值;(2)求轿车从乙地返回甲地时y 与x 之间的函数关系式,并写出自变量x 的取值范围;(3)直接写出轿车从乙地返回甲地时与货车相遇的时间.结OA ,过点A 作AB ⊥OA ,交y 轴于点B ,设点A 的横坐标为n . 探究:(1)当n =1时,点B 的纵坐标是 ; (2)当n =2时,点B 的纵坐标是 ;(3)点B 的纵坐标是 (用含n 的代数式表示). 应用:如图②,将△OAB 绕着斜边OB 的中点顺时针旋转180°,得到△BCO . (1)求点C 的坐标(用含n 的代数式表示);(2)当点A 在抛物线上运动时,点C 也随之运动.当1≤n ≤5时,线段OC 扫过的图形的面积是 .(第23题)24.(12分)如图,在Rt ABC∆中,∠ACB=90°,AC=8cm,AB=10cm.点P从点A出发,以5cm/s的速度从点A运动到终点B;同时,点Q从点C出发,以3cm/s的速度从点C 运动到终点B,连结PQ;过点P作PD⊥AC交AC于点D,将APD∆沿PD翻折得到'A PD∆,以'A P和PB为邻边作□'A PBE,'A E交射线BC于点F,交射线PQ 于点G.设□'A PBE与四边形PDCQ重叠部分图形的面积为S cm2,点P的运动时间为t s.(1)当t为何值时,点'A与点C重合;(2)用含t的代数式表示QF的长;(3)求S与t的函数关系式;(4)请直接写出当射线PQ将□'A PBE分成的两部分图形的面积之比是1:3时t 的值.(第24题)E。
2015朝阳初三一模数学试题及答案
北京市朝阳区九年级综合练习(一)数学试卷2015.5一、选择题(本题共30分,每小题3分)1. 据亚洲开发银行统计数据,2010年至2020年,亚洲各经济体的基础设施如果要达到世界平均水平,至少需要8 000 000 000 000美元基建投资.将8 000 000 000 000用科学记数法表示应为A.0.8×1013B.8×1012C.8×1013D.80×10112. 如图,下列关于数m、n的说法正确的是A.m>n B.m=nC.m>-n D.m=-n3.如图,直线a,b被直线c所截,a∥b,∠2=∠3,若∠1=80°,则∠4等于A.20°B.40°C.60°D.80°4.下列计算正确的是A.2a+3a=6a B. a2+a3=a5 C. a8÷a2=a6 D. (a3)4= a7 5.下列图形中,既是中心对称图形又是轴对称图形的是A B C D6.为筹备班级联欢会,班干部对全班同学最爱吃的水果进行了统计,最终决定买哪种水果时,班干部最关心的统计量是A.平均数B.中位数C.众数D.方差7为了保证抽奖的公平性,这些小球除了颜色外,其他都相同,而且每一个球被抽中的机会均相等,则该抽奖活动抽中一等奖的概率为A. 16B.51C.310D.128. 若正方形的周长为40,则其对角线长为A .100 B. C. D .10 9.如图,为了估计河的宽度,在河的对岸选定一个目标点P ,在 近岸取点Q 和S ,使点P ,Q ,S 在一条直线上,且直线PS 与河 垂直,在过点S 且与PS 垂直的直线a 上选择适当的点T ,PT 与过点Q 且与PS 垂直的直线b 的交点为R .如果QS =60 m , ST =120 m ,QR =80 m ,则河的宽度PQ 为A .40 mB .60 mC .120 mD .180 m10.甲、乙两人在一条长400米的直线跑道上同起点、同终点、同方向匀速跑步,先到终点的人原地休息.已知甲先出发3秒,在跑步过程中,甲、乙两人的距离y (米)与乙出发的时间t (秒)之间的关系如图所示,则下列结论正确的是A. 乙的速度是4米/秒B. 离开起点后,甲、乙两人第一次相遇时,距离起点12米C. 甲从起点到终点共用时83秒D. 乙到达终点时,甲、乙两人相距68米二、填空题(本题共18分,每小题3分)11.若分式21-x 有意义,则x 的取值范围是 .12.分解因式:2236+3m mn n -= .13.如图,⊙O 的直径CD 垂直于弦AB ,∠AOC =40°,则∠CDB 的度数为 .14.请写出一个图象从左向右上升且经过点(-1,2)的函数,所写的函数表达式是 . 15.为了缓解城市拥堵,某市对非居民区的公共停车场制定了不同的收费标准(见下表).如果小王某次停车3小时,缴费24元,请你判断小王该次停车所在地区的类别是 (填“一类、二类、三类”中的一个).16.一组按规律排列的式子:a 2,25a -,310a,417a -,526a ,…,其中第7个式子是 ,第n 个式子是 (用含的n 式子表示,n 为正整数).三、解答题(本题共30分,每小题5分)17.已知:如图,E 是BC 上一点,AB =EC ,AB ∥CD , BC =CD .求证:AC =ED .18.计算:1012sin 45(2015)3-⎛⎫+--︒+- ⎪⎝⎭π.19.解不等式组:⎪⎩⎪⎨⎧>+->.31222x x x x ,20.已知250x x +-=,求代数式2(1)(3)(2)(2)x x x x x ---++-的值.21.已知关于x 的一元二次方程2630x x k -++=有两个不相等的实数根(1)求k 的取值范围;(2)若k 为大于3的整数,且该方程的根都是整数,求k 的值.22.列方程或方程组解应用题:为了迎接北京和张家口共同申办及举办2020年冬奥会,全长174千米的京张高铁 于2014年底开工. 按照设计,京张高铁列车从张家口到北京最快用时比最慢用时少18 分钟,最快列出时速是最慢列车时速的2920倍,求京张高铁最慢列车的速度是多少?四、解答题(本题共20分,每小题5分)23. 如图,菱形ABCD 的对角线AC 、BD 相交于点O ,过点D作DE ∥AC 且DE=12AC ,连接 CE 、OE ,连接AE 交OD 于点F .(1)求证:OE =CD ;(2)若菱形ABCD 的边长为2,∠ABC=60°,求AE 的长.24.为防治大气污染,依据北京市压减燃煤相关工作方案,2014年全市燃煤数量比2012年压减450万吨,到2015年、2017年要比2012年分别压减燃煤800万吨、1300万吨.以下是根据相关数据绘制的统计图的一部分:(1)据报道,2012年全市燃煤由四部分组成,其中电厂用煤920万吨,则2012年全市燃煤数量为万吨;(2)请根据以上信息补全2012-2017年全市燃煤数量的折线统计图,并标明相应数据;(3)某地区积极倡导“清洁空气,绿色出行”,大力提升自行车出行比例,小颖收集了该地区近几年公共自行车的有关信息(如下表),发现利用公共自行车出行人数与公共自行车投放数量之间近似成正比例关系.2012-2015年公共自行车投放数量与利用公共自行车出行人数统计表年份公共自行车投放数量(万辆)利用公共自行车出行人数(万人)2012 1.4 约9.92013 2.5 约17.62014 4 约27.62015 5 约根据小颖的发现,请估计,该地区2015年利用公共自行车出行人数(直接写出结果,精确到0.1)25.如图,△ABC内接于⊙O,AB为直径,点D在⊙O上,过点D作⊙O切线与AC的延长线交于点E,ED∥BC,连接AD交BC于点F.(1)求证:∠BAD=∠DAE;(2)若AB=6,AD=5,求DF的长.26.阅读下面材料:小昊遇到这样一个问题:如图1,在△ABC 中,∠ACB =90°, BE 是AC 边上的中线,点D 在BC 边上,CD :BD =1:2,AD 与BE 相交于点P ,求APPD的值. 小昊发现,过点A 作AF ∥BC ,交BE 的延长线于点F ,通过构造△AEF ,经过推理和 计算能够使问题得到解决(如图2). 请回答:APPD的值为 .参考小昊思考问题的方法,解决问题:如图 3,在△ABC 中,∠ACB =90°,点D 在BC 的延长线上,AD 与AC 边上的中线BE 的延长线交于点P ,DC :BC :AC =1:2:3 . (1)求APPD的值; (2)若CD=2,则BP = .五、解答题(本题共22分,第27题7分,第28题7分,第29题8分) 27.如图,将抛物线M 1: x ax y 42+=向右平移3个单位,再向上平移3个单位,得到抛物线M 2,直线x y =与M 1 的一个交点记为A ,与M 2的一个交点记为B ,点A 的 横坐标是-3. (1)求a 的值及M 2的表达式;(2)点C 是线段AB 上的一个动点,过点C 作x 轴的垂线,垂足为D ,在CD 的右侧作正方形CDEF . ①当点C 的横坐标为2时,直线n x y +=恰好经过 正方形CDEF 的顶点F ,求此时n 的值;②在点C 的运动过程中,若直线n x y +=与正方形CDEF 始终没有公共点,求n 的 取值范围(直接写出结果).图1图2图328.在△ABC 中,∠C =90°,AC =BC ,点D 在射线BC 上(不与点B 、C 重合),连接AD ,将AD 绕点D 顺时针旋转90°得到DE ,连接BE . (1)如图1,点D 在BC 边上.①依题意补全图1;②作DF ⊥BC 交AB 于点F ,若AC =8,DF =3,求BE 的长;(2)如图2,点D 在BC 边的延长线上,用等式表示线段AB 、BD 、BE 之间的数量关系(直接写出结论).29.定义:对于平面直角坐标系xOy 中的线段PQ 和点M ,在△MPQ 中,当PQ 边上的高为2时,称M 为PQ 的“等高点”,称此时MP +MQ 为PQ 的“等高距离”. (1)若P (1,2),Q (4,2) .①在点A (1,0),B (25,4),C (0,3)中,PQ 的“等高点”是 ;②若M (t ,0)为PQ 的“等高点”,求PQ 的“等高距离”的最小值及此时t 的值.(2)若P (0,0),PQ =2,当PQ 的“等高点”在y 轴正半轴上且“等高距离”最小时,直接写出点Q 的坐标.图1 图2北京市朝阳区九年级综合练习(一)数学试卷答案及评分参考 2015.5一、选择题(本题共30分,每小题3分)二、填空题 (本题共18分,每小题3分) 11. 2≠x12. 2)(3n m -13. 20°14. 3+=x y (答案不惟一)15. 二类16. 750a ,n n an 1)1-(21+⋅+(第一个空1分,第二个空2分)三、解答题(本题共30分,每小题5分) 17. 证明:∵AB ∥CD ,∴∠B=∠DCE . …………………………………………………………………1分 在△ABC 和△ECD 中,⎪⎩⎪⎨⎧=∠=∠=分分3-----------------------------------------------2-----------------------------------------------CD BC DCEB EC AB ∴△ABC ≌△ECD . ……………………………………………………………4分 ∴AC =ED . ……………………………………………………………………5分18. 解:原式 =122232+⨯--………………………………………………………4分 =2-.…………………………………………………………………………5分19. ⎪⎩⎪⎨⎧>+->.31222x x x x ,解:解不等式①,得2->x . ………………………………………………………………2分解不等式②,得x <1. ………………………………………………………………4分 ∴不等式组的解集是x <-2<1. …………………………………………………5分20. 解:)2)(2()3()1(2-++---x x x x x=4312222-++-+-x x x x x …………………………………………………3分 =32-+x x . ……………………………………………………………………4分 ∵052=-+x x , ∴52=+x x .∴原式=5-3=2. ……………………………………………………………………5分 21. 解:(1))3(4)6(2+--=∆k ………………………………………………………1分① ②12436--=k 244+-=k∵原方程有两个不相等的实数根, ∴0244>+-k .解得 6<k . ………………………………………………………………2分(2)∵6<k 且k 为大于3的整数,∴=k 4或5. ………………………………………………………………………3分① 当=k 4时,方程0762=+-x x 的根不是整数.∴=k 4不符合题意. ………………………………………………………… 4分② 当=k 5时,方程0862=+-x x 根为21=x ,42=x 均为整数.∴=k 5符合题意. ……………………………………………………………5分 综上所述,k 的值是5.22. 解:设京张高铁最慢列车的速度是x 千米/时. …………………………………………1分由题意,得60182029174-174=x x . ……………………………………………2分 解得 180=x . ……………………………………………3分 经检验,180=x 是原方程的解,且符合题意. ………………………………4分答:京张高铁最慢列车的速度是180千米/时. ……………………………………5分 四、解答题(本题共20分,每小题5分) 23. (1)证明:在菱形ABCD 中,OC=12AC . ∴DE=OC . ∵DE ∥AC ,∴四边形OCED 是平行四边形.…………………………………………1分 ∵AC ⊥BD ,∴平行四边形OCED 是矩形. …………………………………………2分 ∴OE =CD .…………………………………………………………………3分(2)在菱形ABCD 中,∠ABC=60°,∴AC=AB=2. ∴在矩形OCED 中,CE =………………4分 在Rt △ACE 中,=………………………………………………………5分24.(1)2300. ………………1分 (2)如图. …………… 3分 (3)35.0±0.5. ……………5分25.解:(1)连接OD ,∵ED 为⊙O 的切线,∴OD ⊥ED .……………………………………………………………………………1分 ∵AB 为⊙O 的直径,∴∠ACB =90°. ………………………………………………………………………… 2分 ∵BC ∥ED ,∴∠ACB =∠E =∠EDO . ∴AE ∥OD . ∴∠DAE =∠ADO . ∵OA =OD , ∴∠BAD =∠ADO .∴∠BAD =∠DAE . ………………………………3分 (2)连接BD , ∴∠ADB =90°. ∵AB =6,AD =5,∴BD =……………………………………………………………4分 ∵∠BAD =∠DAE =∠CBD ,∴tan ∠CBD = tan ∠BAD . 在Rt △BDF 中, ∴DF =BD ·tan ∠CBD =115. ……………………………………………………………5分 26. 解:PD AP 的值为23. …………………………………………………………………1分 解决问题:(1)过点A 作AF ∥DB ,交BE 的延长线于点F ,……………………………………2分设DC =k ,∵DC ︰BC =1︰2, ∴BC =2k .∴DB =DC +BC =3k . ∵E 是AC 中点, ∴AE =CE . ∵AF ∥DB , ∴∠F =∠1. 又∵∠2=∠3,∴△AEF ≌△CEB . ……………………………………………………………3分 ∴AF =BC =2k . ∵AF ∥DB , ∴△AFP ∽△DBP . ∴DBAFPD AP =.∴32=PD AP . …………………………………………………………………4分 (2) 6. ……………………………………………………………………………5分 五、解答题(本题共22分,第27题7分,第28题7分,第29题8分) 27. 解:(1)∵ 点A 在直线x y =,且点A 的横坐标是-3,∴ A (-3,-3) . ………………………………………………………………1分 把A (-3,-3)代入x ax y 42+=,解得a =1. … …………………………………………………………………2分 ∴M 1 : x x y 42+=,顶点为(-2,-4) . ∴M 2的顶点为(1,-1) .∴M 2的表达式为x x y 2-2=. …………3分(2)①由题意,C (2,2),∴F (4,2) . ………………………………4分 ∵直线n x y +=经过点F , ∴2=4+n .解得n =-2. ………………………5分② n >3,n <-6. …………… …7分 28.解:(1)①补全图形,如图1所示. ………………………1分②由题意可知AD =DE ,∠ADE =90°. ∵DF ⊥BC , ∴∠FDB =90°.∴∠ADF =∠EDB . ……………………………………2分 ∵∠C =90°,AC =BC , ∴∠ABC =∠DFB =90°. ∴DB =DF .∴△ADF ≌△EDB . ……………………………………3分 ∴AF =EB .在△ABC 和△DFB 中, ∵AC =8,DF =3,∴AC=,DF=. ………………………………………………………………4分 AF =AB -BF=即BE=. …………………………………………………………………………5分 (2=BE +AB. ……………………………………………………………………7分29. 解:(1)A 、B ……………………………………………………………………………2分(2)如图,作点P 关于x 轴的对称点P ′,连接P ′Q ,P ′Q 与x 轴的交点即为“等高点”图111 M ,此时“等高距离”最小,最小值为线段P ′Q 的长. ………………………3分 ∵P (1,2),∴ P ′ (1,-2).设直线P ′Q 的表达式为b kx y +=,根据题意,有⎩⎨⎧=+-=+242b k b k ,解得⎪⎩⎪⎨⎧-==31034b k .∴直线P ′Q 的表达式为31034-=x y . ……………4分当0=y 时,解得25=x . 即25=t . ………………………………………………………………………5分根据题意,可知PP ′=4,P Q =3, P Q ⊥PP ′, ∴5''22=+=PQ PP Q P .∴“等高距离”最小值为5. …………………………………………………6分(3)Q (554,552)或Q (554-,552). ………………………………8分。
2015年吉林省长春市中考数学一模试卷(解析版)
2015年吉林省长春市中考数学一模试卷一、选择题1.(3分)﹣2的倒数是()A.2 B.﹣2 C.D.﹣2.(3分)下列计算正确的是()A.a2+a2=a4 B.a6÷a2=a3C.a•a2=a3D.(a2)3=a53.(3分)下列水平放置的几何体中,俯视图是矩形的是()A.圆柱B.长方体C.三棱柱D.圆锥4.(3分)“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是210000000人一年的口粮.将210000000用科学记数法表示为()A.2.1×109B.0.21×109C.2.1×108D.21×1075.(3分)在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中黄球1个,红球1个,白球2个,“从中任意摸出2个球,它们的颜色相同”这一事件是()A.必然事件B.不可能事件C.随机事件D.确定事件6.(3分)如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.15°B.20°C.25°D.30°7.(3分)不等式组的解在数轴上表示为()A.B.C.D.8.(3分)下列函数:①y=﹣x;②y=2x;③y=﹣;④y=x2(x<0),y随x的增大而减小的函数有()A.1个 B.2个 C.3个 D.4个二、填空题9.(3分)分解因式:x2﹣9=.10.(3分)今年五.一假期,张老师一家四口开着一辆轿车去长春市净月潭森林公园度假.若门票每人a元,进入园区的轿车每辆收费20元,则张老师一家开车进入净月潭森林公园园区所需费用是元(用含a的代数式表示).11.(3分)如图,已知AB为⊙O的直径,∠CAB=30°,则∠D=.12.(3分)如图,在△ABC中,∠C=90°,∠CAB=50°.按以下步骤作图:①以点A为圆心,小于AC的长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于EF的长为半径画弧,两弧相交于点G;③作射线AG交BC边于点D.则∠ADC的度数为.13.(3分)如图(1),在宽为20m,长为32m的矩形耕地上修建同样宽的三条道路(横向与纵向垂直),把耕地分成若干小矩形块,作为小麦试验田,假设试验田面积为570m2,求道路宽为多少?设宽为x m,从图(2)的思考方式出发列出的方程是.14.(3分)如图,等腰直角三角形ABO的斜边OB在x轴正半轴上,点A在第一象限,反比例函数y=(x>0)的图象恰好经过AB边的中点,若OB=4,则k 的值为.三、解答题15.(6分)先化简,再求值:,其中a=﹣1.16.(6分)五•一期间,某商场开展购物抽奖活动,在不透明的抽奖箱中有4个分别标有数字1、2、3、4的小球,每个小球除数字外其余都相同.顾客随机抽取一个小球,不放回,再随机摸取一个小球,若两次摸出球的数字之和为“7”,则抽中一等奖,请用画树状图(或列表)的方法,求顾客抽中一等奖的概率.17.(6分)某文具厂计划加工3000套画图工具,为了尽快完成任务,实际每天加工画图工具的数量是原计划的1.2倍,结果提前4天完成任务,求该文具厂原计划每天加工这种画图工具的数量.18.(7分)如图,在平行四边形ABCD中,∠C=66°,点E为AD上一点,AB=BE,求∠EBC的度数.19.(7分)如图所示,课外活动中,小明在离旗杆AB的10米C处,用测角仪(精测得旗杆顶部A的仰角为40°,已知测角仪器的高CD=1.5米,求旗杆AB的高.确到0.1米)(供选用的数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)20.(6分)某大学生学生会社团部为了了解该校学生擅长乐器的情况,随机选取了n名学生进行问卷调查(要求每位学生只能填写一种自己最擅长的乐器),并将调查的结果绘制成如下的两幅不完整的统计图.请根据图中提供的信息,解答下面问题.(1)这次参加调查的学生人数n为;在扇形统计图中,表示“其他乐器”的扇形的圆心角为度.(2)将条形统计图补充完整.(3)若该校有2000名学生,则估计擅长“小提琴”的学生共有多少人.21.(10分)探究:如图①,△ABC是等边三角形,以点B为顶点作∠PBQ=60°,BQ交边AC于点D,过点A作AE∥BC,AE交BP于点E.求证:AD+AE=AB;应用:在图①的基础上,将∠PBQ绕着点B顺时针旋转,如图②,使BQ交AC 的延长线于点D,BP交边AC于点G.若AB=8,AE=2,则GD的长为.22.(10分)图①是小明家、学校和游泳馆之间的位置关系示意图,某天放学后,小亮和小明同时从学校出发,小亮匀速步行前往游泳馆,小明先匀速步行回家取游泳用品,然后骑自行车原路返回,沿与小亮相同的路线前往游泳馆,小明骑自行车的速度始终不变,小亮和小明各自与学校的距离s(米)与所用时间t(分)之间的函数图象的如图②所示.(1)小亮的速度为米/分,a=;(2)求小明骑自行车时s与t之间的函数关系式;(3)直接写出小明和小亮相距900米时t的值.23.(10分)如图,在平面直角坐标系中,点A时抛物线与x轴正半轴交点,点B在抛物线上,其横坐标为1,直线AB与y轴交于点C.点M、P 在线段AC上,点Q在抛物线上,且MQ平行于x轴,PQ平行于y轴.设点P 横坐标为m.(1)求直线AB所对应的函数表达式;(2)用含m的代数式表示线段PQ的长;(3)以PQ、QM为邻边作矩形PQMN,求矩形PQMN的周长为9时m的值.24.(10分)如图,在Rt△ABC中,∠C=90°,D为BC中点,AC=2,CD=2,若点P从点B出发,在BA上以每秒个单位的速度向点A运动(点P不与点B重合).在点P的运动过程中,过点P作PE⊥BC于点E,以PE为边向右作正方形PEFM,设点P的运动时间为t(秒).正方形PEFM与△ADB重叠部分面积为S(平方单位).(1)AB的长为;(2)当正方形PEFM有顶点落在AD上时t的值;(3)求S与t之间的函数关系式;(4)直接写出△PBE与△MFD全等时t的值.2015年吉林省长春市中考数学一模试卷参考答案与试题解析一、选择题1.(3分)﹣2的倒数是()A.2 B.﹣2 C.D.﹣【分析】根据倒数的定义,若两个数的乘积是1,我们就称这两个数互为倒数.【解答】解:∵﹣2×()=1,∴﹣2的倒数是﹣.故选:D.2.(3分)下列计算正确的是()A.a2+a2=a4 B.a6÷a2=a3C.a•a2=a3D.(a2)3=a5【分析】根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.【解答】解:A、a2+a2=2a2,故本选项错误;B、a6÷a2=a4,故本选项错误;C、a•a2=a3,故本选项正确;D、(a2)3=a6,故本选项错误.故选:C.3.(3分)下列水平放置的几何体中,俯视图是矩形的是()A.圆柱B.长方体C.三棱柱D.圆锥【分析】俯视图是分别从物体上面看,所得到的图形.【解答】解:A、圆柱俯视图是圆,故此选项错误;B、长方体俯视图是矩形,故此选项正确;C、三棱柱俯视图是三角形,故此选项错误;D、圆锥俯视图是圆,故此选项错误;故选:B.4.(3分)“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是210000000人一年的口粮.将210000000用科学记数法表示为()A.2.1×109B.0.21×109C.2.1×108D.21×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将210000000用科学记数法表示为:2.1×108.故选:C.5.(3分)在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中黄球1个,红球1个,白球2个,“从中任意摸出2个球,它们的颜色相同”这一事件是()A.必然事件B.不可能事件C.随机事件D.确定事件【分析】随机事件就是可能发生,也可能不发生的事件,根据定义即可判断.【解答】解:在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中黄球1个,红球1个,白球2个,从中任意摸出2个球,有红黄、红白、黄白、白白4种可能,从中任意摸出2个球,它们的颜色相同可能发生,也可能不发生,所以这一事件是随机事件.故选:C.6.(3分)如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.15°B.20°C.25°D.30°【分析】根据两直线平行,内错角相等求出∠3,再求解即可.【解答】解:∵直尺的两边平行,∠1=20°,∴∠3=∠1=20°,∴∠2=45°﹣20°=25°.故选:C.7.(3分)不等式组的解在数轴上表示为()A.B.C.D.【分析】先解每一个不等式,再根据结果判断数轴表示的正确方法.【解答】解:由不等式①,得2x>2,解得x>1,由不等式②,得﹣2x≤﹣4,解得x≥2,∴数轴表示的正确是C选项,故选:C.8.(3分)下列函数:①y=﹣x;②y=2x;③y=﹣;④y=x2(x<0),y随x的增大而减小的函数有()A.1个 B.2个 C.3个 D.4个【分析】本题综合运用了一次函数,反比例函数,二次函数的增减性,需要根据这些函数的性质及自变量的取值范围,逐一判断.【解答】解:根据函数的性质可知当x<0时,y随x的增大而减小的函数有:①y=﹣x;④y=x2(x<0).故选:B.二、填空题9.(3分)分解因式:x2﹣9=(x+3)(x﹣3).【分析】本题中两个平方项的符号相反,直接运用平方差公式分解因式.【解答】解:x2﹣9=(x+3)(x﹣3).故答案为:(x+3)(x﹣3).10.(3分)今年五.一假期,张老师一家四口开着一辆轿车去长春市净月潭森林公园度假.若门票每人a元,进入园区的轿车每辆收费20元,则张老师一家开车进入净月潭森林公园园区所需费用是(4a+20)元(用含a的代数式表示).【分析】所需的费用包括两个部分:门票每人a元,4人4a元;每辆车收费20元;由此合并得出答案即可.【解答】解:张老师一家开车进入净月潭森林公园园区所需费用是(4a+20)元.故答案为:4a+20.11.(3分)如图,已知AB为⊙O的直径,∠CAB=30°,则∠D=60°.【分析】首先利用直径所对的圆周角是直角得到直角三角形,然后求得另一锐角的度数,从而求得所求的角.【解答】解:∵AB为⊙O的直径,∴∠ACB=90°,∵∠CAB=30°,∴∠B=60°,∴∠D=60°,故答案为:60°.12.(3分)如图,在△ABC中,∠C=90°,∠CAB=50°.按以下步骤作图:①以点A为圆心,小于AC的长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于EF的长为半径画弧,两弧相交于点G;③作射线AG交BC边于点D.则∠ADC的度数为65°.【分析】根据已知条件中的作图步骤知,AG是∠CAB的平分线,根据角平分线的性质解答即可.【解答】解:解法一:连接EF.∵点E、F是以点A为圆心,小于AC的长为半径画弧,分别与AB、AC的交点,∴AF=AE;∴△AEF是等腰三角形;又∵分别以点E、F为圆心,大于EF的长为半径画弧,两弧相交于点G;∴AG是线段EF的垂直平分线,∴AG平分∠CAB,∵∠CAB=50°,∴∠CAD=25°;在△ADC中,∠C=90°,∠CAD=25°,∴∠ADC=65°(直角三角形中的两个锐角互余);解法二:根据已知条件中的作图步骤知,AG是∠CAB的平分线,∵∠CAB=50°,∴∠CAD=25°;在△ADC中,∠C=90°,∠CAD=25°,∴∠ADC=65°(直角三角形中的两个锐角互余);故答案是:65°.13.(3分)如图(1),在宽为20m,长为32m的矩形耕地上修建同样宽的三条道路(横向与纵向垂直),把耕地分成若干小矩形块,作为小麦试验田,假设试验田面积为570m2,求道路宽为多少?设宽为x m,从图(2)的思考方式出发列出的方程是(32﹣2x)(20﹣x)=570.【分析】设宽为xm,从图(2)可看出剩下的耕田面积可平移成长方形,且能表示出长和宽,从而根据面积可列出方程.【解答】解:设宽为xm,(32﹣2x)(20﹣x)=570.故答案为:(32﹣2x)(20﹣x)=570.14.(3分)如图,等腰直角三角形ABO的斜边OB在x轴正半轴上,点A在第一象限,反比例函数y=(x>0)的图象恰好经过AB边的中点,若OB=4,则k 的值为3.【分析】根据等腰直角三角形的性质求得点A的坐标,再根据三角形的中位线定理求得点C的坐标,从而求得反比例函数的解析式.【解答】解:分别作AE、CF垂直于x轴于点E、F.∵△AOB是等腰直角三角形,OB=4,∴AE=OE=BE=2,又∵点C是AB的中点,∴C(3,1).设反比例函数的解析式是y=,则k=xy=3,故答案为:3.三、解答题15.(6分)先化简,再求值:,其中a=﹣1.【分析】先根据分式混合运算的法则把原分式化为最简形式,再把a=﹣1代入进行计算即可.【解答】解:原式=•,=a+1,把a=﹣1代入得,原式=﹣1+1=.16.(6分)五•一期间,某商场开展购物抽奖活动,在不透明的抽奖箱中有4个分别标有数字1、2、3、4的小球,每个小球除数字外其余都相同.顾客随机抽取一个小球,不放回,再随机摸取一个小球,若两次摸出球的数字之和为“7”,则抽中一等奖,请用画树状图(或列表)的方法,求顾客抽中一等奖的概率.【分析】首先根据题意列出表格,然后由表格即可求得所有等可能的结果与顾客抽中一等奖的情况,再利用概率公式即可求得答案.【解答】解:列表得:∵共有12种等可能的结果,顾客抽中一等奖的有2种情况,∴P(顾客抽中一等奖)=.17.(6分)某文具厂计划加工3000套画图工具,为了尽快完成任务,实际每天加工画图工具的数量是原计划的1.2倍,结果提前4天完成任务,求该文具厂原计划每天加工这种画图工具的数量.【分析】根据题意设出该文具厂原计划每天加工x套这种画图工具,再根据已知条件列出方程即可求出答案.【解答】解:设文具厂原计划每天加工x套这种画图工具.根据题意,得﹣=4.解得x=125.经检验,x=125是原方程的解,且符合题意.答:文具厂原计划每天加工125套这种画图工具.18.(7分)如图,在平行四边形ABCD中,∠C=66°,点E为AD上一点,AB=BE,求∠EBC的度数.【分析】由于在平行四边形中对角相等,邻角互补,所以∠A=∠C=66°,再根据已知条件BE=AB得出∠AEB=66°,利用AD∥BC可求出∠EBC的度数.【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠C=66°,∵AB=AE,∵∠ABE=∠AEB=66°,∵AD∥BC,∴∠EBC=∠AEB=66°.19.(7分)如图所示,课外活动中,小明在离旗杆AB的10米C处,用测角仪(精测得旗杆顶部A的仰角为40°,已知测角仪器的高CD=1.5米,求旗杆AB的高.确到0.1米)(供选用的数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)【分析】由题可知,在直角三角形中,知道已知角和邻边,直接根据正切求出对边即可解决.【解答】解:∵CD⊥BC,AB⊥BC,DE⊥AB,∴四边形DCBE是矩形,∴DE=BC=10米,在Rt△ADE中,∵DE=10米,∠ADE=40°,∴AE=DE•tan40°≈10×0.84=8.4(米),∴AB=AE+BE=8.4+1.5=9.9(米).答:旗杆AB的高是9.9米.20.(6分)某大学生学生会社团部为了了解该校学生擅长乐器的情况,随机选取了n名学生进行问卷调查(要求每位学生只能填写一种自己最擅长的乐器),并将调查的结果绘制成如下的两幅不完整的统计图.请根据图中提供的信息,解答下面问题.(1)这次参加调查的学生人数n为200;在扇形统计图中,表示“其他乐器”的扇形的圆心角为54度.(2)将条形统计图补充完整.(3)若该校有2000名学生,则估计擅长“小提琴”的学生共有多少人.【分析】(1)根据参加小提琴的人数除以参加小提琴所占的比重等于参加的总人数,可得答案;根据圆周角乘以其他乐器所占的比重,可得答案;(2)根据总人数减去小提琴的人数,钢琴的人数,其他乐器的人数,可得答案;(3)根据总人数乘以小提琴人数所占的比重,可得答案.【解答】解:(1)这次参加调查的学生人数n为70÷35%=200人,表示“其他乐器”的扇形的圆心角为360°×=54°.故答案为:200,54;(2)参加古筝的人数为200﹣70﹣60﹣30=40.;(3)擅长“小提琴”的学生2000×35%=700人.答:若该校有2000名学生,则估计擅长“小提琴”的学生共有700人.21.(10分)探究:如图①,△ABC是等边三角形,以点B为顶点作∠PBQ=60°,BQ交边AC于点D,过点A作AE∥BC,AE交BP于点E.求证:AD+AE=AB;应用:在图①的基础上,将∠PBQ绕着点B顺时针旋转,如图②,使BQ交AC 的延长线于点D,BP交边AC于点G.若AB=8,AE=2,则GD的长为8.4.【分析】探究:证△ABE≌△CBD,然后根据等边三角形三边相等即可求得.应用:由探究可知AE=CD,然后平行线分线段成比例定理即可求得.【解答】解:(1)∵△ABC为等边三角形,∴AB=BC,∠ABC=∠C=60°,∵AE∥BC,∴∠EAB=∠ABC,∴∠EAB=∠C,∵∠EBD=60°,∴∠ABE=∠DBC,在△ABE与△CBD中,,∴△ABE≌△CBD,∴AE=CD,∵AC=AD+CD=AD+AE,∴AB=AD+AE;(2)由(1)证得:CD=AE=2,∵AE∥BC,∴===,∵AC=AB=8,∴AG=,CG=,∴DG=+2=8.4.故答案为:8.4.22.(10分)图①是小明家、学校和游泳馆之间的位置关系示意图,某天放学后,小亮和小明同时从学校出发,小亮匀速步行前往游泳馆,小明先匀速步行回家取游泳用品,然后骑自行车原路返回,沿与小亮相同的路线前往游泳馆,小明骑自行车的速度始终不变,小亮和小明各自与学校的距离s(米)与所用时间t(分)之间的函数图象的如图②所示.(1)小亮的速度为120米/分,a=3000;(2)求小明骑自行车时s与t之间的函数关系式;(3)直接写出小明和小亮相距900米时t的值.【分析】(1)根据时间、路程和速度关系得出小亮的速度,进而得出全路程即可;(2)根据路程和时间的关系得出小明骑自行车时s与t之间的函数关系式即可;(3)根据几种情况得出小明和小亮相距900米时t的值即可.【解答】解:(1)由图象可得:小亮的速度为:600÷5=120米/分钟;可得a的值为:25×120=3000米;故答案为:120;3000;(2)因为小明骑自行车的速度始终不变,所以可得其速度为:(600+3000)÷(17﹣5)=300米/分钟;所以可得小明骑自行车时s与t之间的函数关系式为:s=300t;(3)当小明回家的途中与小亮相距900米,可得:900=(120+120)t,解得:t=分;当小明从家回来时,小亮比小明多900米,可得:120t+600﹣300(t﹣5)=900,解得:t=分;当从家回来时,小明比小亮多900米,可得:120t+900+600=300(t﹣5),解得:t=分;小明到达游泳馆后,小亮与小明相距900米时,时间为17.5分;综上所述小明和小亮相距900米时t的值为,,,17.5分.23.(10分)如图,在平面直角坐标系中,点A时抛物线与x轴正半轴交点,点B在抛物线上,其横坐标为1,直线AB与y轴交于点C.点M、P 在线段AC上,点Q在抛物线上,且MQ平行于x轴,PQ平行于y轴.设点P 横坐标为m.(1)求直线AB所对应的函数表达式;(2)用含m的代数式表示线段PQ的长;(3)以PQ、QM为邻边作矩形PQMN,求矩形PQMN的周长为9时m的值.【分析】(1)由点A时抛物线与x轴正半轴交点,点B在抛物线上,其横坐标为1,即可求得点A与B的坐标,再利用待定系数法求得函数的解析式;(2)分别从当0≤m≤1时与当1<m≤4时,去分析求解即可求得答案;(3)首先可求得tan∠QMP==,即可得矩形PQMN的周长=6PQ,又由矩形PQMN的周长为9,即可得到方程,解此方程即可求得答案.【解答】解:(1)∵点A时抛物线与x轴正半轴交点,∴﹣x2+2x=﹣x(x﹣4)=0,解得:x1=0,x2=4,∴A(4,0),∵点B在抛物线上,其横坐标为1,∴y=﹣+2=,∴点B(1,),设直线y=kx+b,则,解得:,∴直线AB的解析式为:y=﹣x+2;(2)根据题意得:P(m,﹣m2+2m),Q(m,﹣m+2),∴当0≤m≤1时,PQ=(﹣m+2)﹣(﹣m2+2m)=m2﹣m+2;当1<m≤4时,PQ=(﹣m2+2m)﹣(﹣m+2)=﹣m2+m﹣2;(3)∵MQ平行于x轴,PQ平行于y轴,∴∠QMP=∠OAC,∵点C(0,2),A(4,0),∴tan∠OAC==,∴tan∠QMP==,∴MQ=2PQ,∵矩形PQMN的周长为9,∴当0<m≤1时,2(MQ+PQ)=6PQ=6(m2﹣m+2)=9,解得:m1=(舍去),∴m2=;∴2(MQ+PQ)=6PQ=6(﹣m2+m﹣2)=9,此时无解;综上,矩形PQMN的周长为9时,m=.24.(10分)如图,在Rt△ABC中,∠C=90°,D为BC中点,AC=2,CD=2,若点P从点B出发,在BA上以每秒个单位的速度向点A运动(点P不与点B重合).在点P的运动过程中,过点P作PE⊥BC于点E,以PE为边向右作正方形PEFM,设点P的运动时间为t(秒).正方形PEFM与△ADB重叠部分面积为S(平方单位).(1)AB的长为2;(2)当正方形PEFM有顶点落在AD上时t的值;(3)求S与t之间的函数关系式;(4)直接写出△PBE与△MFD全等时t的值.【分析】(1)求得BC,利用勾股定理求得AB;(2)分当点F与点D重合,点E与点D重合两种情况探讨得出答案即可;(3)分三种情况:①当0<t≤时,②当<t≤1时,③当1<t≤2,利用正方形和三角形的面积探讨得出答案即可;(4)当EB=DF时,△PBE与△MFD全等,由BE+FD+EF=BD求得t的数值即可.【解答】解:(1)∵D为BC中点,∴BC=2CD=4,∴AB==2;(2)①当点F与点D重合时,如图:∵PE⊥BC,AC⊥BC,∴PE∥AC,∴△PBE∽△ABC,∴==,即==,BE=2t,PE=t,∵四边形PEFM是正方形,∴EF=PE,即2﹣2t=t,解得:t=;②当点E与点D重合时,如图,PE是恰好是△ABC的中位线,则BP=,t=1;③当点P与点A重合时,如图,由(1)可知:AB==2;∴t==2;综上所知:当t=或1或2时,正方形PEFM有顶点落在AD上;(3)当0<t≤时,S=t2;当<t≤1时,∵DF=3t﹣2∴S=t2﹣(3t﹣2)2=﹣t2+6t﹣2当1<t≤2时∵BE=2t,BD=2∴DE=2t﹣2∴GE=2t﹣2∴PM=t﹣(2t﹣2)=2﹣t∴S=(2﹣t)2=t2﹣2t+2(4)当t<2时,∵EB=FD,∠PEB=∠MFD,PE=MF,∴△PBE≌△MDF,∴当EB=DF时,△PBE与△MFD全等.∴BE+FD+EF=2即t+2t+2t=2,t=.当t=2时,△PBE≌△MDF∴t=或2。
吉林省2015年初中毕业生学业考试数学试题(附答案)
吉林省2015年初中毕业生学业考试数学(本试卷满分120分,考试时间120分钟)第Ⅰ卷(选择题 共12分)一、选择题(本大题共6小题,每小题2分,共12分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若等式0□1=-1成立,则□内的运算符号为 ( ) A .+ B .- C .× D .÷答案:B 【解析】本题考查有理数的运算,难度较小.0-1=-1,故选B . 2.购买1个单价为a 元的面包和3瓶单价为b 元的饮料,所需钱数为 ( ) A .(a +b )元 B .3(a +b )元 C .(3a +b )元 D .(a +3b )元答案:D 【解析】本题考查整式的应用,难度较小.1个面包为a 元,3瓶饮料为3b 元,所以所需钱数为(a +3b )元,故选D . 3.下列计算正确的是 ( ) A .3a -2a =a B .2a ·3a =6a C .a 2·a 3=a 6 D .(3a )2=6a 2答案:A 【解析】本题考查整式的运算,难度较小.3a -2a =a ,A 正确;2a ·3a =6a 2,B 错误;a 2·a 3=a 2+3=a 5,C 错误;(3a )2=32a 2=9a 2,D 错误.综上所述,故选A .4.如图,有一个正方体纸巾盒,它的平面展开图是 ( )A B C D答案:B 【解析】本题考查正方体的平面展开图,难度较小.由正方体的平面展开图得B 选项正确,故选B .5.如图,AB ∥CD ,AD =CD ,∠1=70°,则∠2的度数是 ( )A.20°B.35°C.40°D.70°答案:C 【解析】本题考查平行线的性质、等腰三角形的性质,难度较小.因为AB∥CD,∠1=70°,所以∠ACD=∠1=70°,又因为AD=CD,所以∠2=180°-2∠ACD=40°,故选C.6.如图,在⊙O中,AB为直径,BC为弦,CD为切线,连接O C.若∠BCD=50°,则∠AOC的度数为()A.40°B.50°C.80°D.100°答案:C 【解析】本题考查圆的性质,难度中等.因为CD为圆O的切线,所以∠OCD=90°,又因为∠BCD=50°,所以∠OBC=∠OCB=∠OCD-∠BCD=40°,所以∠AOC =2∠OBC=80°,故选C.第Ⅱ卷(非选择题共108分)二、填空题(本大题共8小题,每小题3分,共24分.请把答案填在题中的横线上)7.不等式3+2x>5的解集为________.答案:x>1 【解析】本题考查解一元一次不等式,难度较小.对于不等式3+2x>5,移项得2x>5-3,合并同类项得2x>2,系数化1得x>1,即原不等式的解集为x>1.8.计算:__________.答案:x+y【解析】本题考查分式的化简,难度较小..9.若关于x的一元二次方程x2-x+m=0有两个不相等的实数根,则m的值可能是__________(写出一个即可).答案:0(答案不唯一,小于的任意实数皆可)【解析】本题考查一元二次方程根的判别式,难度较小.因为关于x的一元二次方程有两个不相等的实数根,所以(-1)2-4m>0,解得,所以m的值可以是小于的任意实数.10.图中是对顶角量角器,用它测量角的原理是________________________________.答案:对顶角相等【解析】本题考查平面角的关系,难度较小.由图易得对顶角量角器的测量角的原理为对顶角相等.11.如图,在矩形ABCD中,AB=6 cm,点E,F分别是边BC,AD上一点.将矩形ABCD沿EF折叠,使点C,D分别落在点C′,D′处.若C′E⊥AD,则EF的长为_________cm.答案:【解析】本题考查折叠的性质、勾股定理,难度中等.设C′E与AD交于点G,则由折叠的性质易知∠GEF=∠CEF,又因为C′E⊥AD,四边形ABCD为矩形,所以C′E⊥BC,∠GEF=∠CEF=45°,所以三角形GEF为等腰直角三角形,所以GE=GF,又因为GE=AB=6,所以.12.如图,在菱形ABCD中,点A在x轴上,点B的坐标为(8,2),点D的坐标为(0,2),则点C的坐标为________.答案:(4,4) 【解析】本题考查菱形的性质、位置与坐标,难度中等.连接AC,BD交于点O′,则AO′=CO′,BO′=DO′,AC⊥BD,因为点B与点D的坐标分别为(8,2),(0,2),所以直线BD平行于x轴,且BD=8,所以,AC垂直于x轴,所以AC=2AO′=4,所以点C的坐标为(4,4).13.如图,利用标杆BE测量建筑物的高度.若标杆BE的高为1.5 m,测得AB=2 m,BC=14 m,则楼高CD为________m.答案:12 【解析】本题考查相似三角形的应用,难度中等.由题意易得△ABE∽△ACD,所以,即,解得CD=12.14.如图,在Rt△ABC中,∠ACB=90°,AC=5 cm,BC=12 cm.将△ABC绕点B 顺时针旋转60°,得到△BDE,连接DC交AB于点F,则△ACF与△BDF的周长之和为_______cm.答案:42 【解析】本题考查勾股定理、等边三角形的判定、旋转的性质,难度中等.在Rt△ABC中,因为AC=5,BC=12,所以,由旋转的性质易得BD =BC=12,又因为∠CBD=60°,所以三角形BCD为等边三角形,所以CD=BC=12,所以△ACF与△BDF的周长之和等于AC+AB+CD+BD=5+13+12+12=42.三、解答题(本大题共12小题,共84分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分5分)先化简,再求值:(x+3)(x-3)+2(x2+4),其中.答案:本题考查整式的化简与求值,难度较小.解:原式=x2-9+2x2+8 (2分)=3x2-1.(3分)当时,.(5分)16.(本小题满分5分)根据图中的信息,求梅花鹿和长颈鹿现在的高度.答案:本题考查列一元一次方程或二元一次方程组解决实际问题,难度较小.解法一:设梅花鹿现在的高度为x m,长颈鹿现在的高度为y m.(1分)根据题意得(3分)解得答:梅花鹿现在的高度为1.5 m,长颈鹿现在的高度为5.5 m.(5分)解法二:设梅花鹿现在的高度为x m,则长颈鹿现在的高度为(x+4) m.(1分)根据题意得x+4-3x=1,(3分)解得x=1.5,∴x+4=5.5.答:梅花鹿现在的高度为1.5 m,长颈鹿现在的高度为5.5 m.(5分)17.(本小题满分5分)甲口袋中装有2个相同的小球,它们分别写有数字1和2;乙口袋中装有3个相同的小球,它们分别写有数字3,4和5.从两个口袋中各随机取出1个小球.用画树状图或列表的方法,求取出的2个小球上的数字之和为6的概率.答案:本题考查利用列表法或画树状图法求概率,难度中等.解法一:根据题意,可以画出如下树状图:(3分)从树状图可以看出,所有等可能出现的结果共有6个,其中和为6的结果有2个,∴.(5分)解法二:根据题意,列表如下:(3分)从表中可以看出,所有等可能出现的结果共有6个,其中和为6的结果有2个,∴.(5分)18.(本小题满分5分)如图,在□ABCD中,AE⊥BC,交边BC于点E,点F为边CD上一点,且DF=BE.过点F作FC⊥CD,交边AD于点G.求证:DG=DC.答案:本题考查平行四边形的性质、三角形全等的判定与性质,难度中等.证明:∵四边形ABCD是平行四边形,∴AB=CD,∠B=∠D.(1分)∵AE⊥BC,FG⊥CD,∴∠AEB=∠GFD=90°.(2分)又∵DF=BE,∴△ABE≌△GDF,(4分)∴AB=DG,∴DG=DC.(5分)19.(本小题满分7分)图1,图2,图3都是4×4的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1.在图1,图2中已画出线段AB,在图3中已画出点A.按下列要求画图:(1)在图1中,以格点为顶点,AB为一边画一个等腰三角形;(2)在图2中,以格点为顶点,AB为一边画一个正方形;(3)在图3中,以点A为一个顶点,另外三个顶点也在格点上,画一个面积最大的正方形.答案:本题考查勾股定理,考查考生的动手能力,难度中等.解:(1)答案不唯一,以下答案供参考:(2)(5分)(3)(7分)20.(本小题满分7分)要从甲、乙两名同学中选出一名,代表班级参加射击比赛.如图是两人最近10次射击训练成绩的折线统计图.(1)已求得甲的平均成绩为8环,求乙的平均成绩;(2)观察图形,直接写出甲、乙这10次射击成绩的方差s甲2,s乙2哪个大;(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选________参赛更适合;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选________参赛更适合.答案:本题考查折线统计图的识别、方差,难度中等.解:(1)=8(环).(2分)(2)s甲2>s乙2.(5分)(3)乙.(6分)甲.(7分)评分说明:直接写出平均数,不加单位,只要正确均不扣分.21.(本小题满分7分)如图,一艘海轮位于灯塔P的北偏东53°方向,距离灯塔100海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处.(1)在图中画出点B,并求出B处与灯塔P的距离(结果取整数);(2)用方向和距离描述灯塔P相对于B处的位置.(参考数据:sin53°=0.80,cos53°=0.60,tan53°=1.33,)答案:本题考查解直角三角形、方位角,难度中等.解:(1)点B的位置如图所示.(2分)根据题意得∠A=53°,∠B=45°.在Rt△APC中,∵,∴PC=PA·sin53°=100×0.80=80.(4分)解法一:在Rt△BPC中,∵,∴(海里).(6分)解法二:在Rt△BPC中,∵∠B=∠BPC=45°,∴PC=BC.∴(海里).∴B处距离灯塔P大约113海里.(6分)(2)灯塔P位于B处的西北(或北偏西45°)方向,距离B处大约113海里.(7分)评分说明:(1)只要正确画出B处位置即可.不画垂直符号,不标点C,不标45°,画实线,均不扣分.(2)计算过程与结果中写“≈”或“=”均不扣分.22.(本小题满分7分)一个有进水管与出水管的容器,从某时刻开始4 min内只进水不出水,在随后的8 min 内既进水又出水,每分的进水量和出水量是两个常数.容器内的水量y(单位:L)与时间x(单位:min)之间的关系如图所示.(1)当4≤x≤12时,求y关于x的函数解析式;(2)直接写出每分进水,出水各多少升.答案:本题考查一次函数的图象与性质、待定系数法求一次函数解析式,难度中等.解:(1)当4≤x≤12时,设y关于x的函数解析式为y=kx+b.∵点(4,20),(12,30)在其图象上,∴(3分)解得∴y关于x的函数解析式为.(5分)(2)每分进水5 L.(6分)每分出水3.75 L.(7分)评分说明:不写取值范围不扣分.23.(本小题满分8分)如图,点A(3,5)关于原点O的对称点为点C,分别过点A,C作y轴的平行线,与反比例函数(0<k<15)的图象交于点B,D,连接AD,BC,AD与x轴交于点E(-2,0).(1)求k的值;(2)直接写出阴影部分面积之和.答案:本题考查待定系数法求反比例函数解析式、反比例函数的性质,难度中等.解:(1)设直线AD的解析式为y=ax+b.∵直线AD过点A(3,5),E(-2,0),∴解得∴直线AD的解析式为y=x+2.(2分)∵点C与点A(3,5)关于原点对称,∴点C的坐标为(-3,-5).∵CD∥y轴,∴点D的横坐标为-3.把x=-3代入y=x+2得y=-1.∴点D的坐标为(-3,-1).(4分)∵点D在函数的图象上,∴k=(-3)×(-1)=3.(6分)(2)12.(8分)24.(本小题满分8分)如图1,半径为R,圆心角为n°的扇形面积是.由弧长得.通过观察,我们发现类似于.类比扇形,我们探索扇环(如图2,两个同心圆围成的圆环被扇形截得的一部分叫做扇环)的面积公式及其应用.(1)设扇环的面积为S扇环,的长为l1,的长为l2,线段AD的长为h(即两个同心圆半径R与r的差).类比,用含l1,l2,h的代数式表示S扇环,并证明;(2)用一段长为40 m的篱笆围成一个如图2所示的扇环形花园,线段AD的长h为多少时,花园的面积最大,最大面积是多少?答案:本题考查扇形的面积公式、二次函数的应用,难度中等.解:(1).(2分)证法一:S扇环=S扇形OAB-S扇形ODC.(5分)证法二:.(5分)(2)由l1+l2+2h=40得l1+l2=40-2h,∴=-(h-10)2+100(0<h<20),(7分)∴当h=10时,S扇环有最大值为100,∴当线段AD的长为10 m时,花园的面积最大,最大面积为100 m2.(8分)评分说明:不写取值范围不扣分.25.(本小题满分10分)两个三角板ABC,DEF,按如图所示的位置摆放,点B与点D重合,边AB与边DE在同一条直线上(假设图形中所有的点,线都在同一平面内).其中,∠C=∠DEF=90°,∠ABC=∠F=30°,AC=DE=6 cm.现固定三角板DEF,将三角板ABC沿射线DE方向平移,当点C落在边EF上时停止运动.设三角板平移的距离为x(cm),两个三角板重叠部分的面积为y(cm2).(1)当点C落在边EF上时,x=________cm;(2)求y关于x的函数解析式,并写出自变量x的取值范围;(3)设边BC的中点为点M,边DF的中点为点N.直接写出在三角板平移过程中,点M与点N之间距离的最小值.答案:本题通过动态问题考查考生的函数思想、分类讨论思想,难度较大.解:(1)15.(2分)(2)当0<x≤6时,如图1所示.∵,,∴;(4分)当6<x≤12时,如图2所示.∵BE=x-6,,,∴;(6分)当12<x≤15时,如图3所示.∵,∴,∴y=S△ABC-S△EBH综上所述,(8分)(3).(10分)评分说明:(1)写自变量取值范围时,用“<”或“≤”均不扣分.(2)结果正确,不画图或画图有误,不写单位均不扣分.26.(本小题满分10分)如图1,一次函数y=kx+b的图象与二次函数y=x2的图象相交于A,B两点,点A,B 的横坐标分别为m,n(m<0,n>0).(1)当m=-1,n=4时,k=________,b=________;当m=-2,n=3时,k=_________,b=________;(2)根据(1)中的结果,用含m,n的代数式分别表示k与b,并证明你的结论;(3)利用(2)中的结论,解答下列问题:如图2,直线AB与x轴、y轴分别交于点C,D,点A关于y轴的对称点为点E,连接AO,OE,E D.①当m=-3,n>3时,求的值(用含n的代数式表示);②当四边形AOED为菱形时,m与n满足的关系式为________;当四边形AOED为正方形时,m=__________,n=________.答案:本题是代数与几何的综合题,考查待定系数法求函数解析式、抛物线的性质、化归思想的应用,难度较大.解:(1)3,4,1,6.(4分)(2)k=m+n,b=-mn.(5分)证明:把x=m,x=n分别代入y=x2中,得y=m2,y=n2,∴点A的坐标为(m,m2),点B的坐标为(n,n2).∵直线y=kx+b过A,B两点,∴解得∴k=m+n,b=-mn.(6分)(3)①由m=-3得A(-3,9),E(3,9),直线AB的解析式为y=(n-3)x+3n.令x=0得y=3n.∴点D的坐标为(0,3n).∴OD=3n.令y=0得(n-3)x+3n=0.解得.∴点C的坐标为.∴.∴,.∴.(7分)②2m+n=0.(8分)-1,2.(10分)评分说明:只要k,b与m,n的关系证明正确,不先写出结论不扣分.综评:本套试卷难度不大,题目难度由易到难,有利于考生进入较好的答题状态.试题考查了初中数学知识的核心内容,加强了初、高中数学知识内容的衔接.如第22题:通过实际问题情景,对函数图象的意义给予高度关注,为考生高中的数学学习做了很好的铺垫;试题还体现了研究性学习、探究式学习的导向,如第24,25,26题较好地渗透了分类讨论、数形结合、转化与化归、数学建模等多种思想方法.。
2015年吉林省长春中考数学试题
2015年长春市初中毕业生学业考试数学试题一、选择题(本大题共8小题,每小题3分,共24分)1.3-的绝对值是 ( )(A )3 (B )3- (C )13 (D )13-2.在长春市“暖房子工程”实施过程中,某工程队做了面积为632000的外墙保暖,632000这个数用科学记数法表示为 ( )(A )463.210⨯ (B )56.3210⨯ (C )60.63210⨯ (D )66.3210⨯3.计算23()a 的结果是( ) (A )23a (B )5a (C )6a (D )3a4.图中的两个圆柱体底面半径相同而高度不同,关于这两个圆柱体的视图说法正确的是() (A )主视图相同 (B )俯视图相同(C )左视图相同 (D )主视图、俯视图、左视图都相同5.方程2230x x -+=的根的情况是 ( )(A )有两个相等的实数根 (B )只有一个实数根(C )没有实数根 (D )有两个不相等的实数根D B OB C DA第4题 第5题 第6题 第7题6.如图,在ABC △中,AB AC =,过A 点作//AD BC ,若170∠=︒,则BAC ∠的大小为( )(A )30︒ (B )40︒ (C )50︒ (D )70︒7.如图,四边形ABCD 内接于O ,若四边形ABCO 是平行四边形,则ADC ∠的大小为 ( )(A )45︒ (B )50︒ (C )60︒ (D )75︒8.如图,在平面直角坐标系中,点(1)A m -,在直线23y x =+上.连结OA ,将线段OA 绕点O 顺时针旋转90︒,点A 的对应点B 恰好落在直线y x b =-+上,则b 的值为 ( )(A )2- (B )1 (C )32 (D )2二、填空题(本大题共6小题,每小题3分,共18分)9 1.(填“>”,“<”或“=”)10.不等式3120x -≥的解集为 .11.如图,PA 为O 的切线,A 为切点,B 是OP 与O 的交点,若203P OA ∠=︒=,,则AB 的长为 (结果保留π) .B P OEA DC B第11题 第12题 第13题 第14题12.如图,在平面直角坐标系中,点P 在函数6(0)y x x=>的图象上,过点P 分别作x 轴、y 轴的垂线,垂足分别为A B 、,取线段OB 的中点C ,连结PC 并延长交x 轴于点D ,则APD △的面积为 .13.如图,点E 在正方形ABCD 的边CD 上,若ABE △的面积为83CE =,,则线段BE 的长为 .14.如图,在平面直角坐标系中,点A 在抛物线222y x x =-+上运动,过点A 作AC x ⊥轴于点C ,以AC 为对角线作矩形ABCD ,连结BD ,则对角线BD 的最小值为 .三、解答题(本大题共10小题,共78分)15.先化简,再求值:2(1)(2)x x x ++-.其中x16.在一个不透明的袋子里装有3张卡片,卡片上面分别标有字母a b c 、、,每张卡片除字母不同外其他都相同,小玲先从盒子中随机抽出一张卡片,记下字母后放回并摇匀,再从盒子中随机抽出一张卡片记下字母,用画树状图(或列表)的方法,求小玲两次抽出的卡片上的字母相同的概率.17.为了美化环境,某地政府计划对辖区内60km 2的土地进行绿化,为了尽快完成任务,实际平均每月的绿化面积是原计划的1.5倍,结果提前2个月完成任务,求原计划平均每月的绿化面积.18.如图,CE是ABCAF CD交于CE点交于点F,△外角ACD∠的平分线,//FG AC交于CD点交于点G,求证:四边形ACGF是菱形.//AF EB19.如图,海上B C、两岛分别位于A岛的正东和正北方向,一艘船从A岛出发,以18海里/时的速度向正北方向航行2小时到达C岛,此时测得B岛在C岛的南偏东43︒,求A B、两岛之间的距离.(结果精确到0.1海里)【参考数据:sin430.68cos430.73tan430.93,,】︒=︒=︒=B20.在“世界家庭日”前夕,某校团委随机抽取了n名本校学生,对“世界家庭日”当天所喜欢的家庭活动方式进行问卷调查,问卷中的家庭活动方式包括:A.在家里聚餐; B. 去影院看电影;C.到公园游玩D.进行其他活动.每位学生在问卷调查时都按要求只选择了其中一种喜欢的活动方式,该校团委收回全部调查问卷后,将收集到的数据整理并绘制成如下的统计图.根据统计图提供的信息,解答下列问题:(1)求n的值;(2)四种方式中最受学生喜欢的方式为 (用A 、B 、C 、D 作答);选择该种方式的学生人数占被调查的学生人数的百分比为 ;(3)根据统计结果,估计该校1800名学生中喜欢C 方式的学生比喜欢B 方式的学生多的人数.n 名学生喜欢的家庭活动人数21.甲、乙两台机器共同加工一批零件,在加工过程中两台机器均改变了一次工作效率,从工作开始到加工完这批零件两台机器恰好同时工作6小时,甲、乙两台机器各自加工的零件的个数y (个)与加工时间x (时)之间的函数图象分别为折线OA AB -与折线OC CD -,如图所示.(1)求甲机器改变工作效率前每小时加工零件的个数;(2)求乙机器改变工作效率后y 与x 之间的函数关系式;(3)求这批零件的总个数.乙甲)y22.在矩形ABCD 中,已知AD AB >,在边AD 上取点E ,使A E A B =,连结CE ,过点E 作EF CE ⊥,与边AB 或其延长线交于点F .猜想:如图①,当点F 在边AB 上时,线段AF 与DE 的大小关系为 .探究:如图②,当点F 在边AB 的延长线上时,EF 与边BC 交于点G .判断线段AF与DE 的大小关系,并加以证明.应用:如图②,若25AB AD==,,利用探究得到的结论,求线段BG 的长.图① 图②23.如图,在等边ABC △中,6AB AD BC =⊥,于点D ,点P 在边AB 上运动,过点P 作//PE BC ,与边AC 交于点E ,连结ED ,以PE ED 、为邻边作□PEDF ,设□PEDF 与ABC △重叠部分图形的面积为y ,线段AP 的长为(06)x x <<.(1)求线段PE 的长(用含x 的代数式表示);(2)当四边形PEDF 为菱形时,求x 的值;(3)求y 与x 之间的函数关系式;(4)设点A 关于直线PE 的对称点为点A ',当线段A B '的垂直平分线与直线AD 相交时,设其交点为Q ,当点P 与点Q 位于直线BC 同侧(不包括点Q 在直线BC 上)时,直接写出x 的取值范围.24.如图,在平面直角坐标系中,抛物线2(1)4y a x =-+与x 轴交于A B、两点,与y 轴交于点C ,且点B 的坐标为(30),,点P 在这条抛物线上,且不与B C 、两点重合,过点P 作y 轴的垂线与射线BC 交于点Q ,以PQ 为边作Rt PQF △,使90PQF ∠=︒,点F 在点Q 的下方,且1QF =,设线段PQ 的长度为d ,点P 的横坐标为m .(1)求这条抛物线所对应的函数表达式;(2)求d 与m 之间的函数关系式;(3)当Rt PQF △的边PF 被y 轴平分时,求d 的值;(4)以OB为边作等腰直角三角形OBD,当03<<时,直接写m出点F落在OBD△的边上时m的值.薄雾浓云愁永昼,瑞脑消金兽。
2015年吉林省长春市中考一模数学试卷(解析版)
2015年吉林省长春市中考数学一模试卷一、选择题1.(3分)﹣2的倒数是()A.2B.﹣2C.D.﹣2.(3分)下列计算正确的是()A.a2+a2=a4B.a6÷a2=a3C.a•a2=a3D.(a2)3=a5 3.(3分)下列水平放置的几何体中,俯视图是矩形的是()A.圆柱B.长方体C.三棱柱D.圆锥4.(3分)“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是210000000人一年的口粮.将210000000用科学记数法表示为()A.2.1×109B.0.21×109C.2.1×108D.21×107 5.(3分)在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中黄球1个,红球1个,白球2个,“从中任意摸出2个球,它们的颜色相同”这一事件是()A.必然事件B.不可能事件C.随机事件D.确定事件6.(3分)如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.15°B.20°C.25°D.30°7.(3分)不等式组的解在数轴上表示为()A.B.C.D.8.(3分)下列函数:①y=﹣x;②y=2x;③y=﹣;④y=x2(x<0),y随x的增大而减小的函数有()A.1个B.2个C.3个D.4个二、填空题9.(3分)分解因式:x2﹣9=.10.(3分)今年五.一假期,张老师一家四口开着一辆轿车去长春市净月潭森林公园度假.若门票每人a元,进入园区的轿车每辆收费20元,则张老师一家开车进入净月潭森林公园园区所需费用是元(用含a的代数式表示).11.(3分)如图,已知AB为⊙O的直径,∠CAB=30°,则∠D=.12.(3分)如图,在△ABC中,∠C=90°,∠CAB=50°.按以下步骤作图:①以点A为圆心,小于AC的长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于EF的长为半径画弧,两弧相交于点G;③作射线AG交BC边于点D.则∠ADC的度数为.13.(3分)如图(1),在宽为20m,长为32m的矩形耕地上修建同样宽的三条道路(横向与纵向垂直),把耕地分成若干小矩形块,作为小麦试验田,假设试验田面积为570m2,求道路宽为多少?设宽为x m,从图(2)的思考方式出发列出的方程是.14.(3分)如图,等腰直角三角形ABO的斜边OB在x轴正半轴上,点A在第一象限,反比例函数y=(x>0)的图象恰好经过AB边的中点,若OB=4,则k的值为.三、解答题15.(6分)先化简,再求值:,其中a=﹣1.16.(6分)五•一期间,某商场开展购物抽奖活动,在不透明的抽奖箱中有4个分别标有数字1、2、3、4的小球,每个小球除数字外其余都相同.顾客随机抽取一个小球,不放回,再随机摸取一个小球,若两次摸出球的数字之和为“7”,则抽中一等奖,请用画树状图(或列表)的方法,求顾客抽中一等奖的概率.17.(6分)某文具厂计划加工3000套画图工具,为了尽快完成任务,实际每天加工画图工具的数量是原计划的1.2倍,结果提前4天完成任务,求该文具厂原计划每天加工这种画图工具的数量.18.(7分)如图,在平行四边形ABCD中,∠C=66°,点E为AD上一点,AB =BE,求∠EBC的度数.19.(7分)如图所示,课外活动中,小明在离旗杆AB的10米C处,用测角仪测得旗杆顶部A的仰角为40°,已知测角仪器的高CD=1.5米,求旗杆AB的高.(精确到0.1米)(供选用的数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)20.(6分)某大学生学生会社团部为了了解该校学生擅长乐器的情况,随机选取了n名学生进行问卷调查(要求每位学生只能填写一种自己最擅长的乐器),并将调查的结果绘制成如下的两幅不完整的统计图.请根据图中提供的信息,解答下面问题.(1)这次参加调查的学生人数n为;在扇形统计图中,表示“其他乐器”的扇形的圆心角为度.(2)将条形统计图补充完整.(3)若该校有2000名学生,则估计擅长“小提琴”的学生共有多少人.21.(10分)探究:如图①,△ABC是等边三角形,以点B为顶点作∠PBQ=60°,BQ交边AC于点D,过点A作AE∥BC,AE交BP于点E.求证:AD+AE=AB;应用:在图①的基础上,将∠PBQ绕着点B顺时针旋转,如图②,使BQ交AC 的延长线于点D,BP交边AC于点G.若AB=8,AE=2,则GD的长为.22.(10分)图①是小明家、学校和游泳馆之间的位置关系示意图,某天放学后,小亮和小明同时从学校出发,小亮匀速步行前往游泳馆,小明先匀速步行回家取游泳用品,然后骑自行车原路返回,沿与小亮相同的路线前往游泳馆,小明骑自行车的速度始终不变,小亮和小明各自与学校的距离s(米)与所用时间t(分)之间的函数图象的如图②所示.(1)小亮的速度为米/分,a=;(2)求小明骑自行车时s与t之间的函数关系式;(3)直接写出小明和小亮相距900米时t的值.23.(10分)如图,在平面直角坐标系中,点A时抛物线与x轴正半轴交点,点B在抛物线上,其横坐标为1,直线AB与y轴交于点C.点M、P在线段AC上,点Q在抛物线上,且MQ平行于x轴,PQ平行于y轴.设点P横坐标为m.(1)求直线AB所对应的函数表达式;(2)用含m的代数式表示线段PQ的长;(3)以PQ、QM为邻边作矩形PQMN,求矩形PQMN的周长为9时m的值.24.(10分)如图,在Rt△ABC中,∠C=90°,D为BC中点,AC=2,CD=2,若点P从点B出发,在BA上以每秒个单位的速度向点A运动(点P 不与点B重合).在点P的运动过程中,过点P作PE⊥BC于点E,以PE为边向右作正方形PEFM,设点P的运动时间为t(秒).正方形PEFM与△ADB 重叠部分面积为S(平方单位).(1)AB的长为;(2)当正方形PEFM有顶点落在AD上时t的值;(3)求S与t之间的函数关系式;(4)直接写出△PBE与△MFD全等时t的值.2015年吉林省长春市中考数学一模试卷参考答案与试题解析一、选择题1.(3分)﹣2的倒数是()A.2B.﹣2C.D.﹣【解答】解:∵﹣2×()=1,∴﹣2的倒数是﹣.故选:D.2.(3分)下列计算正确的是()A.a2+a2=a4B.a6÷a2=a3C.a•a2=a3D.(a2)3=a5【解答】解:A、a2+a2=2a2,故本选项错误;B、a6÷a2=a4,故本选项错误;C、a•a2=a3,故本选项正确;D、(a2)3=a6,故本选项错误.故选:C.3.(3分)下列水平放置的几何体中,俯视图是矩形的是()A.圆柱B.长方体C.三棱柱D.圆锥【解答】解:A、圆柱俯视图是圆,故此选项错误;B、长方体俯视图是矩形,故此选项正确;C、三棱柱俯视图是三角形,故此选项错误;D、圆锥俯视图是圆,故此选项错误;故选:B.4.(3分)“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是210000000人一年的口粮.将210000000用科学记数法表示为()A.2.1×109B.0.21×109C.2.1×108D.21×107【解答】解:将210000000用科学记数法表示为:2.1×108.故选:C.5.(3分)在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中黄球1个,红球1个,白球2个,“从中任意摸出2个球,它们的颜色相同”这一事件是()A.必然事件B.不可能事件C.随机事件D.确定事件【解答】解:在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中黄球1个,红球1个,白球2个,从中任意摸出2个球,有红黄、红白、黄白、白白4种可能,从中任意摸出2个球,它们的颜色相同可能发生,也可能不发生,所以这一事件是随机事件.故选:C.6.(3分)如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.15°B.20°C.25°D.30°【解答】解:∵直尺的两边平行,∠1=20°,∴∠3=∠1=20°,∴∠2=45°﹣20°=25°.故选:C.7.(3分)不等式组的解在数轴上表示为()A.B.C.D.【解答】解:由不等式①,得2x>2,解得x>1,由不等式②,得﹣2x≤﹣4,解得x≥2,∴数轴表示的正确是C选项,故选:C.8.(3分)下列函数:①y=﹣x;②y=2x;③y=﹣;④y=x2(x<0),y随x的增大而减小的函数有()A.1个B.2个C.3个D.4个【解答】解:根据函数的性质可知当x<0时,y随x的增大而减小的函数有:①y=﹣x;④y=x2(x<0).故选:B.二、填空题9.(3分)分解因式:x2﹣9=(x+3)(x﹣3).【解答】解:x2﹣9=(x+3)(x﹣3).故答案为:(x+3)(x﹣3).10.(3分)今年五.一假期,张老师一家四口开着一辆轿车去长春市净月潭森林公园度假.若门票每人a元,进入园区的轿车每辆收费20元,则张老师一家开车进入净月潭森林公园园区所需费用是(4a+20)元(用含a的代数式表示).【解答】解:张老师一家开车进入净月潭森林公园园区所需费用是(4a+20)元.故答案为:4a+20.11.(3分)如图,已知AB为⊙O的直径,∠CAB=30°,则∠D=60°.【解答】解:∵AB为⊙O的直径,∴∠ACB=90°,∵∠CAB=30°,∴∠B=60°,∴∠D=60°,故答案为:60°.12.(3分)如图,在△ABC中,∠C=90°,∠CAB=50°.按以下步骤作图:①以点A为圆心,小于AC的长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于EF的长为半径画弧,两弧相交于点G;③作射线AG交BC边于点D.则∠ADC的度数为65°.【解答】解:解法一:连接EF.∵点E、F是以点A为圆心,小于AC的长为半径画弧,分别与AB、AC的交点,∴AF=AE;∴△AEF是等腰三角形;又∵分别以点E、F为圆心,大于EF的长为半径画弧,两弧相交于点G;∴AG是线段EF的垂直平分线,∴AG平分∠CAB,∵∠CAB=50°,∴∠CAD=25°;在△ADC中,∠C=90°,∠CAD=25°,∴∠ADC=65°(直角三角形中的两个锐角互余);解法二:根据已知条件中的作图步骤知,AG是∠CAB的平分线,∵∠CAB=50°,∴∠CAD=25°;在△ADC中,∠C=90°,∠CAD=25°,∴∠ADC=65°(直角三角形中的两个锐角互余);故答案是:65°.13.(3分)如图(1),在宽为20m,长为32m的矩形耕地上修建同样宽的三条道路(横向与纵向垂直),把耕地分成若干小矩形块,作为小麦试验田,假设试验田面积为570m2,求道路宽为多少?设宽为x m,从图(2)的思考方式出发列出的方程是(32﹣2x)(20﹣x)=570.【解答】解:设宽为xm,(32﹣2x)(20﹣x)=570.故答案为:(32﹣2x)(20﹣x)=570.14.(3分)如图,等腰直角三角形ABO的斜边OB在x轴正半轴上,点A在第一象限,反比例函数y=(x>0)的图象恰好经过AB边的中点,若OB=4,则k的值为3.【解答】解:分别作AE、CF垂直于x轴于点E、F.∵△AOB是等腰直角三角形,OB=4,∴AE=OE=BE=2,又∵点C是AB的中点,∴C(3,1).设反比例函数的解析式是y=,则k=xy=3,故答案为:3.三、解答题15.(6分)先化简,再求值:,其中a =﹣1.【解答】解:原式=•,=a+1,把a =﹣1代入得,原式=﹣1+1=.16.(6分)五•一期间,某商场开展购物抽奖活动,在不透明的抽奖箱中有4个分别标有数字1、2、3、4的小球,每个小球除数字外其余都相同.顾客随机抽取一个小球,不放回,再随机摸取一个小球,若两次摸出球的数字之和为“7”,则抽中一等奖,请用画树状图(或列表)的方法,求顾客抽中一等奖的概率.【解答】解:列表得:∵共有12种等可能的结果,顾客抽中一等奖的有2种情况,∴P(顾客抽中一等奖)=.17.(6分)某文具厂计划加工3000套画图工具,为了尽快完成任务,实际每天加工画图工具的数量是原计划的1.2倍,结果提前4天完成任务,求该文具厂原计划每天加工这种画图工具的数量.【解答】解:设文具厂原计划每天加工x套这种画图工具.根据题意,得﹣=4.解得x=125.经检验,x=125是原方程的解,且符合题意.答:文具厂原计划每天加工125套这种画图工具.18.(7分)如图,在平行四边形ABCD中,∠C=66°,点E为AD上一点,AB =BE,求∠EBC的度数.【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠C=66°,∵AB=AE,∵∠ABE=∠AEB=66°,∵AD∥BC,∴∠EBC=∠AEB=66°.19.(7分)如图所示,课外活动中,小明在离旗杆AB的10米C处,用测角仪测得旗杆顶部A的仰角为40°,已知测角仪器的高CD=1.5米,求旗杆AB 的高.(精确到0.1米)(供选用的数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)【解答】解:∵CD⊥BC,AB⊥BC,DE⊥AB,∴四边形DCBE是矩形,∴DE=BC=10米,在Rt△ADE中,∵DE=10米,∠ADE=40°,∴AE=DE•tan40°≈10×0.84=8.4(米),∴AB=AE+BE=8.4+1.5=9.9(米).答:旗杆AB的高是9.9米.20.(6分)某大学生学生会社团部为了了解该校学生擅长乐器的情况,随机选取了n名学生进行问卷调查(要求每位学生只能填写一种自己最擅长的乐器),并将调查的结果绘制成如下的两幅不完整的统计图.请根据图中提供的信息,解答下面问题.(1)这次参加调查的学生人数n为200;在扇形统计图中,表示“其他乐器”的扇形的圆心角为54度.(2)将条形统计图补充完整.(3)若该校有2000名学生,则估计擅长“小提琴”的学生共有多少人.【解答】解:(1)这次参加调查的学生人数n为70÷35%=200人,表示“其他乐器”的扇形的圆心角为360°×=54°.故答案为:200,54;(2)参加古筝的人数为200﹣70﹣60﹣30=40.;(3)擅长“小提琴”的学生2000×35%=700人.答:若该校有2000名学生,则估计擅长“小提琴”的学生共有700人.21.(10分)探究:如图①,△ABC是等边三角形,以点B为顶点作∠PBQ=60°,BQ交边AC于点D,过点A作AE∥BC,AE交BP于点E.求证:AD+AE=AB;应用:在图①的基础上,将∠PBQ绕着点B顺时针旋转,如图②,使BQ交AC 的延长线于点D,BP交边AC于点G.若AB=8,AE=2,则GD的长为8.4.【解答】解:(1)∵△ABC为等边三角形,∴AB=BC,∠ABC=∠C=60°,∵AE∥BC,∴∠EAB=∠ABC,∴∠EAB=∠C,∵∠EBD=60°,∴∠ABE=∠DBC,在△ABE与△CBD中,,∴△ABE≌△CBD,∴AE=CD,∵AC=AD+CD=AD+AE,∴AB=AD+AE;(2)由(1)证得:CD=AE=2,∵AE∥BC,∴===,∵AC=AB=8,∴AG=,CG=,∴DG=+2=8.4.故答案为:8.4.22.(10分)图①是小明家、学校和游泳馆之间的位置关系示意图,某天放学后,小亮和小明同时从学校出发,小亮匀速步行前往游泳馆,小明先匀速步行回家取游泳用品,然后骑自行车原路返回,沿与小亮相同的路线前往游泳馆,小明骑自行车的速度始终不变,小亮和小明各自与学校的距离s(米)与所用时间t(分)之间的函数图象的如图②所示.(1)小亮的速度为120米/分,a=3000;(2)求小明骑自行车时s与t之间的函数关系式;(3)直接写出小明和小亮相距900米时t的值.【解答】解:(1)由图象可得:小亮的速度为:600÷5=120米/分钟;可得a的值为:25×120=3000米;故答案为:120;3000;(2)小明骑自行车时s与t之间的函数关系式为:s=;(3)当小明回家的途中与小亮相距900米,可得:900=(120+120)t,解得:t=分;当小明从家回来时,小亮比小明多900米,可得:120t+600﹣300(t﹣5)=900,解得:t=分;当从家回来时,小明比小亮多900米,可得:120t+900+600=300(t﹣5),解得:t=分;小明到达游泳馆后,小亮与小明相距900米时,时间为17.5分;综上所述小明和小亮相距900米时t的值为,,,17.5分.23.(10分)如图,在平面直角坐标系中,点A时抛物线与x轴正半轴交点,点B在抛物线上,其横坐标为1,直线AB与y轴交于点C.点M、P在线段AC上,点Q在抛物线上,且MQ平行于x轴,PQ平行于y轴.设点P横坐标为m.(1)求直线AB所对应的函数表达式;(2)用含m的代数式表示线段PQ的长;(3)以PQ、QM为邻边作矩形PQMN,求矩形PQMN的周长为9时m的值.【解答】解:(1)∵点A时抛物线与x轴正半轴交点,∴﹣x2+2x=﹣x(x﹣4)=0,解得:x1=0,x2=4,∴A(4,0),∵点B在抛物线上,其横坐标为1,∴y=﹣+2=,∴点B(1,),设直线y=kx+b,则,解得:,∴直线AB的解析式为:y=﹣x+2;(2)根据题意得:P(m,﹣m2+2m),Q(m,﹣m+2),∴当0≤m≤1时,PQ=(﹣m+2)﹣(﹣m2+2m)=m2﹣m+2;当1<m≤4时,PQ=(﹣m2+2m)﹣(﹣m+2)=﹣m2+m﹣2;(3)∵MQ平行于x轴,PQ平行于y轴,∴∠QMP=∠OAC,∵点C(0,2),A(4,0),∴tan∠OAC==,∴tan∠QMP==,∴MQ=2PQ,∵矩形PQMN的周长为9,∴当0<m≤1时,2(MQ+PQ)=6PQ=6(m2﹣m+2)=9,解得:m1=(舍去),∴m2=;∴2(MQ+PQ)=6PQ=6(﹣m2+m﹣2)=9,此时无解;综上,矩形PQMN的周长为9时,m=.24.(10分)如图,在Rt△ABC中,∠C=90°,D为BC中点,AC=2,CD=2,若点P从点B出发,在BA上以每秒个单位的速度向点A运动(点P 不与点B重合).在点P的运动过程中,过点P作PE⊥BC于点E,以PE为边向右作正方形PEFM,设点P的运动时间为t(秒).正方形PEFM与△ADB 重叠部分面积为S(平方单位).(1)AB的长为2;(2)当正方形PEFM有顶点落在AD上时t的值;(3)求S与t之间的函数关系式;(4)直接写出△PBE与△MFD全等时t的值.【解答】解:(1)∵D为BC中点,∴BC=2CD=4,∴AB==2;(2)①当点F与点D重合时,如图:∵PE⊥BC,AC⊥BC,∴PE∥AC,∴△PBE∽△ABC,∴==,即==,BE=2t,PE=t,∵四边形PEFM是正方形,∴EF=PE,即2﹣2t=t,解得:t=;②当点E与点D重合时,如图,PE是恰好是△ABC的中位线,则BP=,t=1;③当点P与点A重合时,如图,由(1)可知:AB==2;∴t==2;综上所知:当t=或1或2时,正方形PEFM有顶点落在AD上;(3)当0<t≤时,S=t2;当<t≤1时,∵DF=3t﹣2∴S=t2﹣(3t﹣2)2=﹣t2+6t﹣2当1<t≤2时∵BE=2t,BD=2∴DE=2t﹣2∴GE=2t﹣2∴PM=t﹣(2t﹣2)=2﹣t∴S=(2﹣t)2=t2﹣2t+2(4)当t<2时,∵EB=FD,∠PEB=∠MFD,PE=MF,∴△PBE≌△MDF,∴当EB=DF时,△PBE与△MFD全等.∴BE+FD+EF=2即t+2t+2t=2,t=.当t=2时,△PBE≌△MDF∴t=或2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年初中毕业生学业考试模拟试题(一)·数学本试卷包括三道大题,共24小题,共6页.全卷满分120分.考试时间为120分钟.考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上,并将条形码准确粘贴在条形码区域内.2.答题时,考生务必按照考试要求在答题卡上的指定区域内作答,在草稿纸、试卷上答题无效.一、选择题(每小题3分,共24分)1.在1-,0,3(A )1-. (B )0. (C )3. (D2.由6个完全相同的小正方体搭成的几何体如右图所示,它的主视图是3.计算32(2)a 的结果是(A )52a . (B )54a (C )62a . (D )64a .4.不等式组20,26x x -≥⎧⎨>⎩的解集为(A )2x ≥. (B )3x >. (C )23x ≤<. (D )2x >.5.如图,直线a 与直线b 被直线c 所截,b c ⊥,垂足为点A ,170∠=︒.若使直线b 与直线a 平行,则可将直线b 绕着点A 顺时针旋转(A )70︒. (B )50︒. (C )30︒. (D )20︒.6.如图,AB 是O 的直径,点C 在圆周上,点P 是线段OB 上任意一点,连结AC 、CP .若35BAC ∠=︒,则APC ∠的度数不可能...是 (A )90︒. (B )75︒. (C )60︒. (D )50︒. 7.如图,在平面直角坐标系中,点(,2)A m 在第一象限.若点A 关于y 轴的对称点B 在反比例函数6y x=-的图象上,则m 的值为 (A )3-. (B )3. (C )6. (D )6-.九年级数学 第1页 (共6页)(A ) (B ) (C ) (D )ba (第5题) (第6题)(第13题) (第14题)8.将22⨯的正方形网格如图放置在平面直角坐标系中,每个小正方形的顶点称为格点,每个小正方形的边长都是1,正方形ABCD 的顶点都在格点上.若直线(0)y kx k =≠与正方形ABCD 有公共点,则k 的取值范围是(A )2k ≤. (B )12k ≥. (C )122k ≤≤. (D )122k <<.二、填空题(每小题3分,共18分) 9= .10.甲、乙二人一起加工零件.甲平均每小时加工a 个零件,加工2小时;乙平均每小时加工b 个零件,加工3小时.甲、乙二人共加工零件 个.11.如图,在ABC ∆中,80,60ACB ABC ∠=︒∠=︒.按以下步骤作图:①以点A 为圆心,小于AC 的长为半径画弧,分别交AB 、AC 于点E 、F ;②分别以点E 、F 为圆心,大于12EF 的长为半径画弧,两弧相交于点G ;③作射线AG 交BC 于点D .则A D B ∠的度数为 °.12.如图,在□ABCD 中,AC 与BD 交于点O ,点E 是BC 边的中点,1OE =,则AB的长是 .13.如图,正六边形ABCDEF 内接于O ,连结对角线AC AE 、.若O 的半径为2,则图中阴影部分图形的面积和是 (结果保留π).14.如图,在平面直角坐标系中,抛物线2(2)y x =-与x 轴交于点A ,与y 轴交于点B .过点B 作BCx 轴,交抛物线于点C ,过点A 作AD y 轴,交BC 于点D ,点P 在BC(第11题) (第12题)O D C E B A G FE DCB A下方的抛物线上(P 不与,B C 重合),连结,PC PD ,则P C D ∆面积的最大值是 .三、解答题(本大题10小题,共78分)15.(6分)先化简,再求值:22426933a a aa a a a --÷-++++,其中1a =-.16.(6分)甲、乙两个不透明的口袋中各装有3个小球,它们除所标数字不同外其余均相同.甲口袋中小球分别标有数字1,5,7,乙口袋中小球分别标有数字0,1,2.现从甲口袋中随机摸出1个小球,记下标号;再从乙口袋中随机摸出1个小球,记下标号.用画树状图(或列表)的方法,求两次摸出小球的标号之和是偶数的概率. 17.(6分)某市为了在冬季下雪时更好的清扫路面积雪,新购进一批清雪车.每辆新清雪车比每辆旧清雪车每小时多清扫路面2km ,每辆新清雪车清扫路面35km 与每辆旧清雪车清扫路面25km 所用的时间相同,求每辆旧清雪车每小时清扫路面多少km ?18.(7分)如图,甲楼AB 的高度为35m ,经测得,甲楼的底端B 处与乙楼的底端D 处相距105m ,从甲楼顶部A 处看乙楼顶部C 处的仰角CAE ∠的度数为25︒.求乙楼CD 的高度(结果精确到0.1m ).【参考数据:sin 250.42cos 250.91tan 250.47︒=︒=︒=,,】19.(7分)我国从2011年1月1日起在公共场所实行“禁烟”,到2015年1月1日,实行了四年.某社区为进一步巩固“禁烟”成果,开展了“你支持哪种戒烟方式”的问卷调查,随机抽样调查了该社区部分居民的意见,并将调查结果整理后绘制成如下统计图. (1)该社区一共随机调查了多少人;(2)此次抽样调查的居民中,支持“替代品戒烟”的居民有 人,并补全条形统计图;(3)若该社区共有居民18000人,则该社区大约有多少人支持“警示戒烟”这种方式.(第19题)戒烟 戒烟 戒烟 戒烟 方式被调查的居民支持哪种戒烟强制 戒烟 40%警示戒烟药物戒烟 被调查的居民支持哪种戒烟 方式人数的扇形统计图 25°E D CB A (第18题)20.(7分)如图,在正方形ABCD 中,以AD 为边作等边三角形ADE ,点E 在正方形内部,将AB 绕着点A 顺时针旋转30︒得到线段AF ,连结EF .求证:四边形ADEF 是菱形.21.(8分)王先生开轿车从A 地出发,前往B 地,路过服务区休息一段时间后,继续以原速度行驶,到达B 地后,又休息了一段时间,然后开轿车按原路返回A 地,速度是原来的1.2倍.王先生距离A 地的路程(km)y 与行驶的时间(h)x 之间的函数图象如图所示.(1)王先生开轿车从A 地行驶到B 地的途中,休息了 h ;(2)求王先生开轿车从B 地返回A 地时y 与x 之间的函数关系式(不要求写出自变量x 的取值范围); (3)王先生从B 地返回A 地的途中,再次经过从A 地到B 地时休息的服务区,求此时的x 的值.22.(9分)探究:如图①,ABC ∆是等腰直角三角形,90ACB ∠=︒,AC BC =.点D 在九年级数学(第20题)FE D C B A y边AB 上(D 不与,A B 重合),连结CD ,过点C 作CE CD ⊥,且C E C D =,连结DE 、AE .求证:BCD ∆≌ACE ∆.应用:如图②,在图①的基础上,点D 在BA 的延长线上,其他条件不变.若14AD AB =,4AB =,求DE 的长.23.(10分)如图,抛物线212y x bx c =-++与直线112y x =+交于A 、B 两点,点A 在x 轴上,点B 的横坐标是2.点P 在直线AB 上方的抛物线上,过点P 分别作PCy轴、PDx 轴,与直线AB 交于点C D 、,以PC PD 、为边作矩形PCQD ,设点Q的坐标为(,)m n .(1)点A 的坐标是 ,点B 的坐标是 ;(2)求这条抛物线所对应的函数关系式;(3)求m 与n 之间的函数关系式(不要求写出自变量n(4)请直接写出矩形PCQD 的周长最大时n 的值.24.(12分)如图,在矩形ABCD 中,3cm,4cm AB BC ==,点O 是对角线AC 的中点,连结BO .动点,P Q 从点B 同时出发,点P 沿B C B →→以2cm /s 的速度运动到终点B .点Q 沿B A →以1cm /s 的速度运动到终点A .以BP BQ 、为边作矩形BPMQ (点M 不与点A 重合).设矩形BPMQ 与OBC ∆重叠部分图形的面积为2(cm )y ,点P 的九年级数学 第5页 (共6页)(第23题)(第22题)(图①)CDE(图②)ED CBA运动时间为(s)x .(1)当点M 在AC 上时,求x 的值;(2)直接写出点O 在矩形BPMQ 内部时x 的取值范围;(3)当矩形BPMQ 与OBC ∆重叠部分的图形是四边形时,求y 与x 之间的函数关系式. (4)直接写出直线AM 将矩形ABCD 的面积分成1:3的两部分时x 的值.2015年初中毕业生学业考试模拟试题(一)·数学答案阅卷说明:1.评卷采分最小单位为1分,每步标出的是累计分.2.考生若用本“参考答案”以外的解(证)法,可参照本“参考答案”的相应步骤给分.一、选择题(每小题3分,共24分)1.A 2.B 3.D 4.B 5.D 6.D 7.B 8.C 二、填空题(每小题3分,共18分)9.1- 10.(23)a b + 11.100 12.2 13.43π 14.4 (第24题)ABCDPQ OM (备用图)ODCBA评分说明:第10题不加括号不扣分,第11题带单位不扣分. 三、解答题(本大题10小题,共78分) 15.解:原式2(2)(2)3(3)23a a a aa a a +-+=-+-+ …………(3分)233a aa a +=-++23a =+. …………(4分)当1a =-时,原式2113==-+. …………(6分)16.解:树状图如图所示:…………(4分)∴P (两次摸出的小球标号之和是偶数)3193== …………(6分) 评分说明:列树状图不写出结果不扣分.17.解:设每辆旧清雪车每小时清扫路面x km . …………(1分)由题意,得25352x x =+. …………(3分) 解得5x =. …………(5分)经检验5x =是原方程的解,且符合题意.答:每辆旧清雪车每小时清扫路面5km . …………(6分) 18.解:(1)如图,由题意,得35m DE AB ==, 105m,25AE BD CAE ︒==∠=.在Rt ACE △中,90AEC ∠=︒,tan CECAE AE∠=,25°E DC BA(第18题)5 2 0 1 7 2 0 1 1 2 0 1 甲 乙 结果 1 2 3 567 78 9…………(3分)∴tan 1050.4749.35m CE AE CAE =∙∠=⨯=.…………(5分)∴84.3584.4m CD AB CE =+=≈.…………(7分)答:乙楼CD 的高约为84.4m .评分说明:(1)计算过程和结果中写成“=”“≈”均不扣分.(2)计算过程加单位不扣分. (3)不答不扣分. 19.解:)12040%300÷=. 2分)答:一共调查了300人. (2)30 3分) 如图. …………(5分)(3)105180006300300⨯=(人). …………(7分) 答:该社区大约有6300人支持“警示戒烟”这种方式.评分说明:条形统计图画线不标30或只标30不画线,均可得分. 20.证法一:证明:如图,∵ADE ∆是等边三角形, ∴,60AD DE AE DAE ==∠=︒. …………(1分)∵四边形ABCD 是正方形, ∴,90AD AB BAD =∠=︒. …………(2分)∴30BAE ∠=︒. …………(3分)∵,30AB AF BAF =∠=︒, ∴AF AE=,60EAF ∠=︒. …………(4分)∴AEF ∆是等边三角形. …………(5分)(第19题)戒烟 戒烟 戒烟 戒烟 方式被调查的居民支持哪种戒烟 (第20题)FEDB A∴AF EF DE AD ===. …………(6分)∴四边形A 是菱形. …………(7分)证法二: 证明:如图,∵ADE ∆是等边三角形, ∴,60AD DE DAE =∠=︒. …………(1分)∵四边形ABCD 是正方形,∴,90AD AB BAD =∠=︒. …………(2分)∴30BAE ∠=︒.…………(3分)∵,30AB AF BAF =∠=︒, ∴AF DE=,60EAF AED ∠=∠=︒. …………(4分)∴AFDE . …………(5分)∴四边形A D 是平行四边形. …………(6分)∴AD DE =.∴平行四边形A D 是菱形. …………(7分) 21.解:(1)0.4 …………(2分)(2)如图,王先生从B 地返回A 地的速度是2002 1.2120÷⨯=,所用时间为3601203÷=.∴图象经过点(8,0). …………(3分)设y 与x 之间的函数关系式为(0)y kx b k =+≠. 由题5360,80.k b k b +=⎧⎨+=⎩解得120,960.k b =-⎧⎨=⎩(第20题)FEDBA(第21题)y∴y与x之间的函数关系式为120y x =-+. …………(6分)(3)当200y =时,200120960x =-+. 解得193x =. …………(8分) 答:当193x =时,王先生再次经过从A 地到B 地时休息的服务区.22.探究:如图①,∵CE CD ⊥,90ACB ∠=︒,∴90DCE ACB ∠=∠=︒.…………(1分)∴BCD ACE ∠=∠. …………(2分)∵AC BC =,CE CD =, ∴BCD ∆≌ACE ∆. …………(3分)应用:如图②,∵AC BC =,90ACB ∠=︒, ∴45CAB ABC ∠=∠=︒, …………(4分)∵14AD AB =, ∴1AD =,5BD =. …………(5分) ∵BCD ∆≌ACE ∆,∴5AE BD ==. …………(6分)∴45CAE CBD ∠=∠=︒. …………(7分)∴90DAE ∠=︒. …………(8分)∴DE = …………(9分) 23.解:(1)(2,0)- …………(1分)(2,2)…………(2分)(图②)E D CB A (图①)B CDE(2)由题意,得221(2)20,21222.2b c b c ⎧-⨯--+=⎪⎪⎨⎪-⨯++=⎪⎩ …………(3分)解得1,23.b c ⎧=⎪⎨⎪=⎩∴这条抛物线所对应的函数关系式为211322y x x =-++. …………(4分)(3)如图,∵点Q 的坐标为()m n ,,∴点C的为(22,)n n -, 点D的为1(,1)2mm +. ∴点P的坐标为1(22,1)2n m -+. …………(7分)把1(22,1)2n m -+代入211322y x x =-++,得24102m n n =-+-. …………(9分)∴m n ,之间的函数关系式是24102m n n =-+-.(4)1n =. …………10分) 24.解:(1)如图①,∵在矩形ABCD 中,∴90ABC ∠=︒.∵90MPC ABC ∠=∠=︒, ∴tan tan MCP ACB ∠=∠.∴MP ABPC BC =. ∴3424x x =-. ∴65x =. …………(2分) (第23题) MOQ PD CBA (图①)A CD P(Q )OM (图③)MOQPD C A (图②)(2)如图②、③,x的取值范围是332x <<. …………(4分) (3)∵在矩形ABCD 中,∴14362ABC S ∆=⨯⨯=.∵点O 是对角线AC 的中点,∴132OBC ABC S S ∆∆==.①当605x <≤时,如图④,设OB 与QM 的交点为E . …………(5分)∵tan tan QBE CAB ∠=∠,∴QE BCQB AB=. ∴43QE x =. ∴43QE x =.∴BEQ BPMQ y S S ∆=-矩形21442233x x x x x =∙-∙=. …………(6分)②当322x ≤<时,如图⑤,设OC 与PM 的交点为F . …………(7分)∵tan tan BCA PCF ∠=∠, ∴PF ABPC BC =. ∴3424PF x =-. ∴3(42)4PF x =-.∴BOC PCF y S S ∆∆=-221333(42)63242x x x =-∙-=-+-. ………… (8分)③当23x <<时,如图⑥,设OC 与PM 的交点为G . …………(9分)∵tan tan BCA PCG ∠=∠, ∴PG ABPC BC =. ∴3244PG x =-. ∴3(24)4PG x =-.∴BOC PCG y S S ∆∆=-221333(24)63242x x x =-∙-=-+-. …………(10分)综合所述,y 与x 之间的函数关系式为22246(0),353363(2),22363(23).2x x y x x x x x x ⎧<≤⎪⎪⎪=-+-≤<⎨⎪⎪-+-<<⎪⎩(4)34x =或127x =. …………(12分) 评分说明:(1)第(1)问若答出4x =不扣分;(2)第(2)问答出332x ≤<或332x <≤均给1分,若答出332x ≤≤不得分;(3)第(3)问的第②、③种情况 函数关系式若写成23(2)32y x =--+不扣分; 若写成:当33,22x x ≤<≠时,23632y x x =-+-.则得4分;若写成:当332x ≤<时,23632y x x =-+-.则得3分.以下解题过程是第(4)问的解题过程:①当01x <≤时,如图⑦,此时直线AM 经过BC 的中点N . ∵PMAB ,∴PMN ∆∽BAN ∆.FE (图④) (图⑤) (图⑥)ABC D P Q OMMOQP D CBA AB CDP QOMG∴PM PN AB BN =.∴2232x x -=.∴34x =. ②当12x <≤时,如图⑧,此时直线AM 经过CD 的中点E .过点E 作EF AB ⊥,垂足为点F .∵EF QM ,∴AMQ ∆∽AEF ∆.∴AQ QM AF EF =.∴32342x x -=.∴127x =. 当24x <≤时,127PM >,直线AM 不在经过点E .N M OQ P DC B AFEMO Q P D CB A (图⑦) (图⑧)。