第一章课后习题答案
复变函数论第三版课后习题答案 2
第一章习题解答(一)1.设z =z 及Arcz 。
解:由于3i z e π-==所以1z =,2,0,1,3Arcz k k ππ=-+=±。
2.设121z z =,试用指数形式表示12z z 及12z z 。
解:由于6412,2i i z e z i e ππ-==== 所以()64641212222i i iiz z e eee πππππ--===54()146122611222ii i i z e e e z e πππππ+-===。
3.解二项方程440,(0)z a a +=>。
解:12444(),0,1,2,3k ii z a e aek πππ+====。
4.证明2221212122()z z z z z z ++-=+,并说明其几何意义。
证明:由于2221212122Re()z z z z z z +=++2221212122Re()z z z z z z -=+-所以2221212122()z z z z z z ++-=+其几何意义是:平行四边形对角线长平方和等于于两边长的和的平方。
5.设z 1,z 2,z 3三点适合条件:0321=++z z z ,1321===z z z 。
证明z 1,z 2,z 3是内接于单位圆1=z 的一个正三角形的顶点。
证 由于1321===z z z,知321z z z ∆的三个顶点均在单位圆上。
因为33331z z z ==()[]()[]212322112121z z z z z z z z z z z z +++=+-+-=21212z z z z ++=所以, 12121-=+z z z z ,又)())((122122112121221z z z z z z z z z z z z z z +-+=--=-()322121=+-=z z z z故 321=-z z ,同理33231=-=-z z z z ,知321z z z ∆是内接于单位圆1=z 的一个正三角形。
《金融风险管理》课后习题答案
《金融风险管理》课后习题答案第一章课后习题答案一、重要名词答案略二、单项选择1-5 C B D A A 6-10 C A C C C 11-15 D A B D A 16-20 B C D D D21-25 B B B B三、多项选择1. BCD2. ACDE3. ADE4. ABCDE5. ABDE6. BCDE7. AD8. ABCE9. ABCDE 10. ACDE11. ACE 12. ABCDE 13. ACDE 14. AB 15.ABC16. ACE 17. ABC 18.ABCDE四、判断题1-5 ××××√6-10 ×√×××11-15 √√×××16-20×√√×√五、简答题答案略第二章课后习题答案一、重要名词答案略二、单项选择1-5 A C C AD 6-10 C B D D B 11-15 A A C C D 16-18 A D A三、多项选择1. A B C D2. A B C DE3. ABCDE4. ABCD5. ABCDE6. ABCDE7. ABCD8. ADE9. ACDE 10. ACE四、判断题1-5 ×√××× 6-8 ×√×五、简答题答案略第三章课后习题答案一、重要名词答案略二、单项选择1-5 ACBBB 6-10 ADBCD 11-15 DBBAC 16-21 DDABAB三、多项选择1. ABCE2. AD3. BCDE4. BDE5. BE6. CD7. BCDE8. ABCDE9. BDE 10. ABDE11. BCE 12. ABCE 13. ABCDE 14. ACE四、判断题1-5 √××√√ 6-10 ×√××× 11-15 ××××× 16-17 √×五、简答题答案略第四章课后习题答案二、单选1-5DCCAD 6-10AAABA 11-15DDCCB 15-20A ABBD三、多选1-5BCDE/CD / ABDE /ABCE /ABCDE 6-10ABCD/ ABCDE/ ABDE/CD/AC11-15ABCDE /ABCE/ACD/ABC/ABCD16-20ABCE/ABE/ABCDE/ABCDE/BCDE四、判断题1-5 错错错错错6-10对对错对对11-15对对对错对16-18错错对第五章课后习题答案一、重要名词答案略二、单项选择1-5 ACCBB 6-10 ADDCD 11-15 CCBCD 16-20 ACDCC 21-25 CDBAC 26-30 DABBD 31-35 ABCAB 36-40 DACAB 41-45 CDAAC 46-48 AAD三、多项选择1. ABC2. ABD3. BCE4. AC5. BC6. BCE7. DE8. ADE9. ABCD 10. ABCD11. ABD 12. ABCD 13. ABC 14. ABCD 15. BC16. AB 17. ABCD 18. AC 19. AD 20. BCD21. CD 22. CD 23. AB四、判断题1-5 √×××√ 6-10 ××√×× 11-15 ××××√ 16-20 √×××× 21-25 √×√××26-30 ×√××× 31-35 ×√××× 36-40 √×√√√ 41-45 ××√√√ 46-47 ×√五、简答题答案略第六章课后习题答案二、单选1-5DCCAD 6-10AAABA 11-15DDCCB 15-20A ABBD四、多选1-5BCDE/CD / ABDE /ABCE /ABCDE 6-10ABCD/ ABCDE/ ABDE/CD/AC11-15ABCDE /ABCE/ACD/ABC/ABCD16-20ABCE/ABE/ABCDE/ABCDE/BCDE五、判断题1-5 错错错错错6-10对对错对对11-15对对对错对16-18错错对第七章课后习题答案一、重要名词答案略二、单项选择1-5 BCDCA 6-10 BBDDD 11-15 CADCC三、多项选择1. ABCDE2. CDE3. ABCDE4. ABCDE5. BCE6. BDE7. ABCE8. BCE9. ABC 10. ABDE11. ABCDE 12. ABD 13. ABCD四、判断题1-10√××√××√×√五、案例分析题案例1:内部欺诈(未经授权交易导致资金损失)案例2:失职违规案例3:核心雇员流失案例4:违反用工发六、简答题答案略第八章课后习题答案一、重要名词答案略二、单项选择1-5 CDCCB 6-10 DCDAB 11-15 CADAA 16-20 DACCC三、多项选择1. ACE2. ABE3. ABCE4. ADE5. ABE6. ABCD7. ABCDE8.ABCD9. ABCD 10. ABC四、判断题1-11××√××√××√√五、简答题答案略第九章课后习题答案一、重要名词答案略二、单项选择1-5 ABDDD 6-10 AABBD 11-16 CCDDAB三、多项选择1. ABCD2. ABCD3. AC4. BCD5. ABCD6. ABCDE7. ACD8. ABCDE9. ABCDE 10. ABCDE四、判断题1-5 ×√××√ 6-10 √×√×× 11-14 √√√√五、简答题答案略第十章课后习题答案一、重要名词答案略二、单项选择1-5 ABBCB 6-10 CCBDA三、多项选择1. CD2. ADE3. AC4. BCDE5. CDE6.ABC7. ACE8. ABC9. ACDE 10.ABC四、判断题1-5×××√×五、简答题答案略第十一章课后习题答案二、单选题1-5DABCB 6-10DABDC 11-15DBAAB 16-20DCCAA三、多选题1-5ABD/ACD/AC/ABC/ACD 6-10 ABCD/ABD/ABCDE/ABCDE/ABCDE11-15ABCDE/ABCDE/ABCD/ABCDE/ABCDE16-20ACD/ ABCDE/ABCDE/ ACE/ADE四、1-5对错错对对6-10对错对对错11-15对对对对错16-20对错对错对。
货币金融学_朱新蓉__课后习题答案(修改后)
第一章课后习题答案三、思考题1.为什么说货币形式从实物货币到金属再到信用货币是必然规律?货币形式的演变过程体现着一个基本规律,即货币形式的发展必须适应生产力水平的发展。
在所有经济因素中,生产力因素是决定性的,货币同其他因素一样,都要适应生产力海水平。
不管是形式多样的实物货币,还是曾经发挥过巨大促进作用的金属货币,都不可避免地被淘汰,而信用货币则是适合当前生产力水平的货币形式。
2.支付手段职能导致货币危机性的原因何在?它与通货膨胀有何关系?⑴支付手段可能引发债务链条,从而导致货币流通和商品流通的不正常。
并且,货币具有相对独立运行的能力,在无发行信用保证时,可能引发货币的超量发行从而导致货币危机的发生。
⑵从表面上看,支付手段是货币进行单方面的转移,与商品脱离了关系,所以容易给人一种错觉,认为货币本身就是一种财富,货币越多财富就越多,导致货币量急剧增长,严重偏离商品和劳务总量,最终的结果只可能是物价上涨引致通货膨胀。
3.金属货币的贮藏手段职能为什么可以自发调节货币流通量,而信用货币不能?在金属货币条件下,当经济中出现一定的物价上涨时,人们会倾向于收藏货币等待物价回落,而金属货币“窖藏”的贮藏方式可以使流通中货币实实在在地减少,从而使物价回落;在信用货币的条件下,由于信用货币本身是价值符号,人们面对物价上涨就会尽可能地将货币换成商品,而且即便人们愿意贮藏,信用货币的主要贮藏方式是存款,存款不仅不会减少流通中货币量,相反还可能通过银行信用创造出更多货币,所以,自发调节货币流通量的功能就不存在了。
4.电子货币的发展会对货币层次和货币范围产生怎样的影响?在传统的货币理论中,根据金融资产流动性的高低,将货币划分为四个不同的层次,然而,对货币层次进行划分要具备两个基本的前提:一是要客观存在具有明显不同流动性和收益的金融资产;二是各种金融资产之间的界限十分明显并且在统计时点前后的一段时间内保持相对稳定性。
在电子货币条件下,传统货币层次的划分前提受到了挑战。
国际金融 (第6版)陈雨露 课后习题答案详解
表1-2外汇汇率第一章课后习题答案要点具体内容Key Terms1.外汇答:外汇是以外币表示的,用以清偿国际间债权债务的一种支付手段。
外汇买卖是债权的转移,而外汇支付则是完成国际间债权债务的清偿。
因此,外汇的主要特征有:①外汇是以外币表示的金融资产。
任何以本国货币表示的信用工具、支付手段、有价证券等对本国人来说都不能称其为外汇。
②外汇必须是可以自由兑换成其他形式的,或以其他货币表示的资产。
如果某种资产在国际间的自由兑换受到限制则不能称其为外汇。
比如,有些国家的货币当局实行外汇管制,禁止本币在境内外自由兑换成其他国家的货币,以这种货币表示的各种支付工具也不能随时转换成其他货币表示的支付手段,那么这种货币及其标识的支付工具在国际上就不能称作外汇。
根据外汇定义可知,可兑换的外国货币(包括纸币、硬辅币等)是一种外汇资产。
但这只是外汇资产中最基本的一种形式,也是最狭义的外汇形式。
随着信用制度的发展,产生了许多其他形式的外汇资产,它们包括:外币有价证券,如政府债券、公司债券、股票等:外汇支付凭证,如外国汇票、本票、支票等;外币存款凭证,如银行存款凭证、邮政储蓄凭证等等。
2.汇率答:外汇汇率又称外汇汇价,是不同货币之间兑换的比率或比价,即用一种货币表示的另一种货币的价格。
汇率一般有三个价:买入价、卖出价和中间价。
买入价是银行向同业或客户买入外汇时所使用的汇率。
在直接标价法下,外币折合本币数量较少的汇率为买入价:釆用间接标价法时,本币折合外币数量较多的汇率为买入价。
卖出价是银行向同业或客户卖出外汇时所使用的汇率,采用直接标价法时,外币折合本币数量较多的汇率为卖出价:采用间接标价法时,本币折合外币数量较少的汇率为卖出价。
卖出价与买入价之间的差额即为银行买卖外汇的收益,一般为0.5%左右。
中间价为核算成本的参考价,属参考汇率。
在外汇市场上,如只报一个汇率,即为中间汇率。
3.直接标价法答:直接标价法是指以一定单位的外国货币为标准(1, 10(), 1000()等)来计算折合多少单位的本国货币。
《统计学原理》课后习题答案
第一章练习题参考答案一.单项选择题1.B;2.A;3.B;4.C;5.D;6.A;7.C;8.C;9.C;10.A;11.C;12.C。
二.多项选择题1.ABDE;2.ACD;3.BCD;4.ACD;5.ACDE;6.ACE;7.AD;8.ABC;9.ACD;10.AD;11.BCDE;12.ABCDE;13.AC。
三.判断题1.×;2.×;3.×;4.×;5.√;6.×;7.×;8.√;9.×;10.√。
第二章练习题参考答案一.单项选择题1.C;2.C;3.D;4.B;5.D;6.D;7.B;8.D;9.B;10.B;11.A;12.C;13.D。
二.多项选择题1.CE;2.ACE;3.CE;4.BCD;5.ABCE;6.BC;7.BCD;8.ABD;9.ABD;10.ACDE;11.ABCE;12.ABE。
三.判断题1.×;2.√;3.×;4.×;5.×;6.×;7.√;8.×;9.×;10.×。
第三章练习题参考答案一.单项选择题1.B;2.C;3.C;4.C;5.D;6.B;7.B;8.B;9.D;10.B;11.A;12.B;13.D;14.A。
二.多项选择题1.AB;2.AC;3.AB;4.ABC;5.AB;6.ABD;7.ABC;8.ACE;9.BD;10.ABDE。
三.判断题1.√;2.×;3.×;4.×;5.√;6.×;7.√;8.√;9.×;10.×。
四.计算分析题1.解:(1)按职称编制的分配数列2.解:编制单项式变量数列3.解:(1)编制组距式变量数列。
(2直方图(略)第四章练习题参考答案一.单项选择题1.C;2.D;3.B;4.D;5.C;6.A;7.C;8.C;9.B;10.C;11.B;12.D;13.A;14.D;15.16.B;17.B;18.D;19.C;20.C;21.D;22.B;23.C;24.C;25.B。
电路理论习题解答 第一章
1.5
u /V
内阻不为零
+ us
R0
I
+
u
RL
−
伏安关系曲线
−
I/A 0.15
0
1.5
u /V
注:这里的伏安关系曲线只能在第一象限,原因也是,一旦出了第一象限, u 和 I 的比值就 变为负的了,反推出的 RL 就变为负值了,与题意不符。
V
V
1.5V
1.5V
R 内阻为零时 内阻不为零时
R
1-9 附图是两种受控源和电阻 RL 组成的电路。现以 RL 上电压作为输出信号,1)求两电路的电 压增益(A,gmRL);2)试以受控源的性质,扼要地说明计算得到的结果。
1) 如果不用并联分压(在中学就掌握的东西),当然也可以用两个回路的 KVL 方程和顶部 节点的 KCL 方程,得出上面的 H(jω)的表达式,但是显然这样做是低效的。 2) 事实上,本课程的目的是希望学习者能够根据不同的题目,尽可能采用多种方法中的一 种最简单的方法去解决问题。因此, a) 只要没有要求,任意的逻辑完整的解题思路都是可取的; b) 学习者可以视自己的练习目的选择一种简单熟悉的方法、或者一种较为系统的方法、 或者多种方法来完成习题。
第一章习题答案 1-1 已知电路中某节点如图,I1=-1A,I2=4A,I4=-5A,I5=6A,用 KCL 定律建立方程并求解 I3 ( 4A )
图 1-1 解:由 KCL 定律:任一集中参数电路中的任一节点,在任一时刻,流入该节点的电流之和与 流出该节点的电流之和相同。 即: I1+I3+I4+I5=I2 =〉-1+(-5)+6+I3=4 =〉I3=4(A)
1 2
(完整版)人教版高一化学必修一课后习题答案
《化学(必修)1》 课后习题参考答案第一章第一节 p101.C 2.C 3.CD 4.略5.乳化原理或萃取原理 6.利用和稀盐酸反应产生气体7.不可靠,因为碳酸钡也是白色沉淀,碳酸根干扰了硫酸根的检验。
由于硫酸钡是难溶的强酸盐,不溶于强酸,而碳酸钡是难溶弱酸盐,可溶于强酸,因此可先取样,再滴入氯化钡溶液和几滴稀硝酸或稀盐酸,如果出现白色沉淀,说明有硫酸根。
第一章第二节 p171.D 2.B 3.B 4.B5.65 mg/dL ~110mg/dL (1mmol=10-3mol )6.这种操作会使得结果偏低,因为倒出去的溶液中含有溶质,相当于容量瓶内的溶质有损失。
7.14mL8.n(Ca):n(Mg):n(Cu):n(Fe)=224:140:35:2 9.1)0.2mol 2)Cu2+:0.2mol Cl-:0.4mol 10.40 (M=40 g/mol ,该气体的相对分子质量为40。
)第一章复习题 p191.C 2.B 3.A 4.BC 5.C6.(1) 不正确。
(标况下或没有明确O2的状态)(2)不正确。
(溶液体积不为1L )或氢氧化钠加入水中后,形成溶液的体积不能确定 (3)不正确。
(水标况下不是气体)或水在常温下是液体(4)正确。
(同温同压下气体的体积比即为物质的量之比,也就是分子个数比) 7.(1)5% (2)0.28mol/L 8.9.1.42 g , 操作步骤 (1)计算所需硫酸钠的质量,m (硫酸钠)=0.2mol/L×0.05L×142g/mol=0.56g(2) 称量(3)溶解并冷却至室温(4)转移至50ml 容量瓶,并洗涤小烧杯2次~3次,将洗涤液转移到容量瓶中,轻轻摇动容量瓶,使溶液混合均匀铁 粉 过 滤Fe 、CuFeSO 4溶液稀硫酸过 滤FeSO 4溶液蒸发 结晶第二章第一节p291.②⑧①④⑤⑥⑦⑩⑨2.树状分类法略6.BD7.胶体区别于其他分散系得本质特征是胶体粒子的大小在1~100nm范围。
汽车理论课后习题答案
第一章 汽车的动力性与绪论1.3、确定一轻型货车的动力性能(货车可装用4档或5档变速器,任选其中的一种进行整车性能计算): 1)绘制汽车驱动力与行驶阻力平衡图。
2)求汽车的最高车速、最大爬坡度及克服该坡度时相应的附着率。
3)绘制汽车行驶加速倒数曲线,用图解积分法求汽车有Ⅱ档起步加速行驶至70km/h 的车速-时间曲线,或者用计算机求汽车用Ⅱ档起步加速至70km/h 的加速时间。
轻型货车的有关数据:汽油发动机使用外特性的Tq —n 曲线的拟合公式为432)1000(8445.3)1000(874.40)1000(44.165)1000(27.25913.19n n n n Tq -+-+-=式中, Tq 为发功机转矩(N ·m);n 为发动机转速(r /min)。
发动机的最低转速n min =600r/min ,最高转速n max =4000 r /min装载质量 2000kg 整车整备质量 1800kg 总质量 3880 kg 车轮半径 0.367 m传动系机械效率 ηт=0.85 波动阻力系数 f =0.013 空气阻力系数×迎风面积 C D A =2.772m 主减速器传动比 i0=5.83飞轮转功惯量 I f =0.218kg ·2m 二前轮转动惯量 I w1=1.798kg ·2m四后轮转功惯量 I w2=3.598kg ·2m 变速器传动比i g (数据如下表)轴距 L =3.2m质心至前铀距离(满载) α=1.947m质心高(满载) h g =0.9m解答:1)(取四档为例)由uF n u n Tq Tq F t t →⇒⎪⎭⎪⎬⎫→→→ 即ri i T F To g q t η=432)1000(8445.3)1000(874.40)1000(44.165)1000(27.25913.19n n n n Tq -+-+-= og i i rn u 377.0=行驶阻力为w fF F +:215.21a D w f U A C Gf F F +=+ 2131.0312.494aU +=由计算机作图有※本题也可采用描点法做图:由发动机转速在m in /600n min r =,m in /4000n max r =,取六个点分别代入公式:……………………………… 2)⑴最高车速:有w f tF F F +=⇒2131.0312.494a t U F += 分别代入a U 和t F 公式:2)09.6*83.53697.0*377.0(131.0312.494367.085.0*83.5*9.6*n T q +=把q T 的拟和公式也代入可得: n>4000而4000m ax =n r/min∴93.9483.5*0.14000*367.0*377.0max ==U Km/h⑵最大爬坡度:挂Ⅰ档时速度慢,Fw 可忽略:⇒)(max w f t i F F F F +-=⇒GfF Gi t -=max⇒013.08.9*388014400max max-=-=f G F i t=0.366(3)克服该坡度时相应的附着率 zxF F =ϕ忽略空气阻力和滚动阻力得:6.0947.12.3*366.0/=====a il l a i F Fi z ϕ 3)①绘制汽车行驶加速倒数曲线(已装货):40.0626)(1f D g du dt a -==δ(GFwFt D -=为动力因素)Ⅱ时,22022111r i i I m r ImTg f wηδ++=∑2222367.085.0*83.5*09.3*218.038001367.0598.3798.1380011+++= =1.128ri i T F To g q t η=432)1000(8445.3)1000(874.40)1000(44.165)1000(27.25913.19n n n n Tq -+-+-=215.21a D w U A C F =由以上关系可由计算机作出图为:②用计算机求汽车用Ⅳ档起步加速至70km/h 的加速时间。
有机化学课后习题答案
第一章习题(一) 用简单的文字解释下列术语:(1)键能:形成共价鍵的过程中体系释放出的能量,或共价鍵断裂过程中体系所吸收的能量。
(2)构造式:能够反映有机化合物中原子或原子团相互连接顺序的化学式。
(3)sp2杂化:由1 个s轨道和2个p轨道进行线性组合,形成的3个能量介于s轨道和p轨道之间的、能量完全相同的新的原子轨道。
sp2杂化轨道的形状也不同于s轨道或p轨道,而是“一头大,一头小”的形状,这种形状更有利于形成σ键。
(4)相转移催化剂:在非均相反应中能将反应物之一由一相转移到另一相的催化剂。
第二章饱和烃习题(一) 用系统命名法命名下列各化合物,并指出这些化合物中的伯、仲、叔、季碳原子。
(1) 1234567(2)123453-甲基-3-乙基庚烷2,3-二甲基-3-乙基戊烷(3)123456(4) 101234567892,5-二甲基-3,4-二乙基己烷1,1-二甲基-4-异丙基环癸烷(5) (6)1234乙基环丙烷2-环丙基丁烷(7)12345678910(8)123456789CH3 1,7-二甲基-4-异丙基双环[4.4.0]癸烷2-甲基螺[3.5]壬烷(9)1234567(10) (C H3)3C C H25-异丁基螺[2.4]庚烷新戊基(11)H3C (12)C H3C H2C H2C H2C H C H32-甲基环丙基2-己基or (1-甲基)戊基(十) 已知环烷烃的分子式为C5H10,根据氯化反应产物的不同,试推测各环烷烃的构造式。
(1) 一元氯代产物只有一种(2) 一元氯代产物可以有三种解:(1) (2)C H3C H3(十一) 等物质的量的乙烷和新戊烷的混合物与少量的氯反应,得到的乙基氯和新戊基氯的摩尔比是1∶2.3。
试比较乙烷和新戊烷中伯氢的相当活性。
解:设乙烷中伯氢的活性为1,新戊烷中伯氢的活性为x ,则有:x123.261=15.1=x ∴ 新戊烷中伯氢的活性是乙烷中伯氢活性的1.15倍。
Java语言程序设计 课后习题+答案
第一章课后习题1.编译Java程序的命令是什么?2.执行Java程序的命令是什么?3.Java应用程序和小程序的区别是什么?4.编写一个application ,实现在屏幕上打印自己名字的功能。
第一章课后习题答案1.编译Java程序的命令是什么?答案:javac 源文件名2.执行Java程序的命令是什么?java 主类名3.Java应用程序和小程序的区别是什么?Java application⏹由Java解释器独立运行字节码⏹由专门的命令行启动程序执行⏹程序中有定义了main()方法的主类Java applet⏹不能独立运行,字节码必须嵌入HTML文档⏹当浏览器调用含applet的Web页面时执行⏹程序中含有java. applet. Applet 类的子类4.编写一个application ,实现在屏幕上打印自己名字的功能。
class Test{public static void main(String[] args){System.out.println(“张三”);}}第二章课后习题(1)一、选择题1.下列变量定义错误的是。
A) int a; B) double b=4.5; C) boolean b=true; D)float f=9.8;2.下列数据类型的精度由高到低的顺序是:a)float,double,int,longb)double,float,int,bytec)byte,long,double,floatd)double,int,float,long3.执行完下列代码后,int a=3;char b='5';char c=(char)(a+b);c的值是?A)’8’ b)53 c)8 d)564.Unicode是一种_____________A) 数据类型 B)java包 C)字符编码 D)java类5.6+5%3+2的值是___________A)2 B)1 C) 9 D)106.下面的逻辑表达式中合法的是__________A)(7+8)&&(9-5) B)(9*5)||(9*7) C)9>6&&8<10 D)(9%4)&&(8*3) 7.java语言中,占用32位存储空间的是__________。
数据库技术与应用课后习题答案
第一章习题答案1.1 选择题1. A2. C3. C4. B5. C6. A7. C8. B9. D 10. A 11. D 12. A 13. A1.2 填空题数据数据的逻辑独立性数据的物理独立性层次数据模型,网状数据模型,关系数据模型能按照人们的要求真实地表示和模拟现实世界、容易被人们理解、容易在计算机上实现实体、记录属性、字段码域一对一、一对多、多对多E-R模型E-R模型层次模型、网状模型、关系模型数据操作、完整性约束矩形、菱形、椭圆形层次模型、一对多网状模型关系模型关系外模式、模式、内模式三级模式、两级映像外模式、模式、内模式数据、程序数据逻辑、数据物理DBMS数据库管理系统、DBA数据库管理员1.4 综合题2.注:各实体的属性省略了3.第二章习题答案1.1 单项选择题1. C2. A3. B4. C5. C6. D7. A8. B1.2 填空题集合2. 能唯一标识一个实体的属性系编号, 学号,系编号关系, 元组, 属性关系模型,关系, 实体, 实体间的联系投影1.4 综合题1. πsnoσcno=’2’SC2. πsnoσcname=’信息系统’SCCOURSE3. πsno,SNAME,SAGESTUDENT第三章习题答案1.1select from jobs1.2select emp_id,fname+'-'+lname as 'Name' from employee1.3select emp_id,fname+'-'+lname as 'Name',Yeargetdate-Yearhire_date as 'worke time' from employee order by 'worke time'2.1select from employee where fname like 'f%'2.2select from employee where job_id='11'2.3select emp_id,fname+'-'+lname as 'Name', Yeargetdate-Yearhire_date as worketime from employeewhere Yeargetdate-Yearhire_date >5order by worketime2.4select from employee where castjob_id as integer>=5 and castjob_id as integer<=8 2.5select from employee where fname='Maria'2.6select from employee where fname like '%sh%' or lname like '%sh%'3.1select from sales where ord_date <'1993-1-1'4.1select distinct bh, zyh from stu_info wherebh inselect bh from stu_infogroup by bhhaving count>30 and count<40order by bh或者是select bh,zyh from stu_infogroup by zyh,bhhaving countbh>30 and countbh<40order by bh4.2select from gbanwhere bh like '计%'4.3select from gfiedwhere zym like '%管理%'4.4select xh,xm,zym,stu_info.bh,rxsj from stu_info,gfied,gban where nl>23and stu_info.zyh=gfied.zyh and stu_info.bh=gban.bh4.5select zyh,count from gbanwhere xsh='03'group by zyh第四章习题答案4.1 单项选择题:B 2、A 3、C 4、A 5、A 6、C 7、C 8、D 9、B 10、A 11、C或B,即书上121页例题中from的写法12、A 13、C 14、C 15、C4.2 填空题:drop tablealter table add <列名或约束条件>with check option基本表基本表distinct group by roder by数据定义数据操纵数据控制distinctlike % _自含式嵌入式10、order by asc desc4.3 综合题1、SELECT XH, XM, ZYM, BH, RXSJFROM STU_INFO, GFIEDWHERE STU_INFO.ZYH = GFIED.ZYH AND NL > 23 AND XBM = '男'2、SELECT ZYM 专业名, count 人数 FROM STU_INFO, GFIEDWHERE STU_INFO.XSH = '03' AND STU_INFO.ZYH = GFIED.ZYHGROUP BY ZYM注意:该题目中给出的条件XSH = '03'中的03代表的是“控制科学与工程”学院,信息学院的代码是12,大家可根据具体情况来做该题;3、SELECT bh,count as 人数 FROM STU_INFO GROUP BY bh4、SELECT XH, XM, XBM, BH FROM STU_INFOWHERE ZYH INSELECT ZYHFROM STU_INFOWHERE XM = '李明'ORDER BY XH5、SELECT DISTINCT GCOURSE.KCH, KM FROM STU_INFO, XK, GCOURSEWHERE XK.KCH = GCOURSE.KCH AND STU_INFO.XSH = '12'AND STU_INFO.XH = XK.XH该题中设计到的课程名称只有在GCOURSE表中存在,所以在题目开始的几个表中还应填加该表;另外把信息学院的代码改为12;6、SELECT COUNTDISTINCT KCH AS 选课门数, AVGKSCJ AS 平均成绩FROM STU_INFO, XKWHERE STU_INFO.XH = XK.XH AND XSH = '12'7、SELECT DISTINCT STU_INFO.XH, XM, BH, ZYM, KMFROM STU_INFO, XK, GFIED, GCOURSEWHERE KSCJ > 85 AND STU_INFO.XH = XK.XH AND XK.KCH = GCOURSE.KCH AND STU_INFO.ZYH = GFIED.ZYHORDER BY ZYM, BH, STU_INFO.XH8、SELECT STU_INFO.XH, XM, XSM, ZYM, BH, PYCCMFROM STU_INFO, XK, GDEPT, GFIEDWHERE KKNY = '20011' AND STU_INFO.XH = XK.XH AND STU_INFO.XSH = GDEPT.XSH AND STU_INFO.ZYH = GFIED.ZYHGROUP BY STU_INFO.XH, XM, XSM, ZYM, BH, PYCCMHAVING COUNT > 109、SELECT DISTINCT bhFROM STU_INFO10、DELETE FROM STU_INFOWHERE XH LIKE '2000%'或DELETE FROM STU_INFOWHERE LEFTXH,4 = '2000'11、ALTER TABLE STU_INFOADD BYSJ varchar812、UPDATE XKSET KSCJ = 60WHERE KSCJ BETWEEN 55 AND 59 andXH inSELECT xhFROM stu_infoWHERE zyh = '0501'andKCH inSELECT kchFROM gcourseWHERE km = '大学英语'前面已经考虑到在该题目中应该加入学生课程信息表GCOURSE13、UPDATE GCOURSESET KCXF=6WHERE KCH = '090101'14、CREATE TABLE CCOURSEKCH char6,KM varchar30,KCYWM varchar3015、CREATE VIEW ISE ASSELECTFROM STU_INFOWHERE XSH=’12’第五章课后答案5.11~7 BABABCB5.21 使属性域变为简单域消除非主属性对主关键字的部分依赖消除非主属性对主关键字的传递依赖2 平凡函数依赖3 Y也相同唯一的Y值5.31 函数依赖:P136定义5.1部分函数依赖:P138定义5.4完全函数依赖:P138定义5.4传递函数依赖:P138定义5.51NF:P139定义5.62NF:P141定义5.73NF:P142定义5.8BCNF:P144定义5.9在全码关系中R〈U,F〉中若存在这样的码X,属性组Y及非主属性Z 使得X→Y, Y→Z成立,所以全码关系R〈U,F〉∈3NF;在全码关系R〈U,F〉中,对于R中的函数依赖,若X→Y且X必含有码,所以全码关系R∈BCNF 2 1 R的码是Sno,Cno,R是1NF,因为Teacher和Title属性部分函数依赖于码Sno,Cno,所以R∈1NF2SCSno,Cno,GradeCTCno,teacher TTTeacher,title3 D->B C->A4 需求分析需求分析是数据库设计的第一个阶段,从数据库设计的角度来看,需求分析的任务是对现实世界要处理的对象组织、部门、企业等进行详细的调查了解,通过对原系统的了解,收集支持新系统的基础数据并对其进行处理,在此基础上确定新系统的功能;概念结构设计阶段将需求分析得到的用户需求抽象为信息结构即概念模型的过程就是概念结构设计;简单地说数据库概念结构设计的任务就是根据需求分析所确定的信息需求,建立信息模型;如E-R模型;逻辑结构设计阶段数据库逻辑结构设计的任务是把概念结构设计阶段所得到的与DBMS无关的数据模式,转换成某一个DBMS所支持的数据模型表示的逻辑结构;数据库物理设计阶段数据库物理设计是对给定的关系数据库模式,根据计算机系统所提供的手段和施加的限制确定一个最适合应用环境的物理存储结构和存取方法数据库实施阶段在数据库实施阶段,设计人员运用DBMS提供的数据语言及其宿主语言,根据逻辑设计和物理设计的结果建立数据库,编制与调试应用程序,组织数据入库,并进行试运行数据库运行和维护阶段数据库应用系统经过试运行后即可投入正式运行;在数据库系统运行过程中必须不断地对其进行评价、调整与修改;包括:数据库的转储和恢复、数据库的安全性和完整性控制、数据库性能的监督、分析和改进、数据库的重组织和重构造;P149最后一段ER图是用来描述某一组织单位的概念模型,提供了表示实体、属性和联系的方法;构成ER图的基本要素是实体、属性和关系;实体是指客观存在并可相互区分的事特;属性指指实体所具有的每一个特性;商店商店编号,商店名,地址,电话码:商店编号顾客顾客编号,姓名,性别,家庭住址,出生年月码:顾客编号消费商店编号,顾客编号,消费金额码:商店编号,顾客编号第六章习题答案6.1 单项选择题1、A2、D3、D4、D5、B6、D7、C6.2 填空题1、原子性一致性隔离性持续性 ACID2、软故障硬故障3、静态动态4、丢失修改不可重复读读“脏”数据5、自主存取控制强制存取控制6、实体完整性约束参照完整性约束用户自定义完整性约束6.4 综合题create table 读者借书证号 char10 primary key,姓名 varchar10 not null,年龄 tinyint not null,所在院系 varchar20 not nullcreate 图书图书号 char8 primary key,书名 varchar20 not null,作者 varchar10 not null,出版社 varchar30 not null,价格 real not null check价格>0 and 价格<=120create 借阅借书证号 char10 not null,图书号 char8 not null,借阅日期 datetime not null,primary key借书证号, 图书号,foreign key借书证号 references 读者借书证号,foreign key图书号 references 图书图书号实验4 答案Select xh,xm,xbm from stu_info,gdept where stu_info.xsh=gdept.xsh and gdept.xsm=’信息科学与工程’或 Select xh,xm,xbm from stu_info where xsh=select xsh from gdept where xsm=’信息科学与工程’Select stu_info.xh,xm,km from stu_info,xk,gcourse where stu_info.xh=xk.xh and xk.kch=gcourse.kch and kscj>85Select xh,xm,xsm from stu_info,gdept where stu_info.xsh=gdept.xsh and xh like ‘2000%’Select xh, xm from stu_info where xh in select xh from xk where kch=’090101’ and kscj<60或 select stu_info.xh,xm from stu_info,xk where stu_info.xh=xk.xh and kch=’090101’ and kscj<605. select stu_info.xh,xm,km from stu_info,xk,gcourse where stu_info.xh=xk.xh and xk.kch=gcourse.kch and xsh=’12’ and kscj<606. select stu_info.xh,xm,xsm from stu_info,xk,gdept where stu_info.xsh=gdept.xsh and stu_info.xh=xk.xh and kkny=’20011’ group by stu_info.xh,xm,xsm having count>=10实验5 答案1、2题参考实验4答案3. Select xh,xm,xbm,bh from stu_info where zyh in select zyh from stu_info where xm=’李明’ order by xh实验6答案Create view num_ban as select countdistinct bh from stu_infoCreate view ban as select distinct bh from stu_infoCreate view is_stu as select xm,xbm,bh from stu_info where xsh=’01’ orxsh=’02’Create view zhang_stu as select from stu_info where xsh=’01’ and xm like ‘张%’或 Create view zhang_stu as select from stu_info,gdept where xsm=’材料科学与工程’ and xm like ‘张%’ and stu_info.xsh=gdept.xsh8. Create view 材0168 as select stu_info.,xk. from stu_info,xk where bh=’材0168’ and stu_info.xh=xk.xhCreate view gaoshu _stu as select xm from stu_info,xk,gcourse where stu_info.xh=xk.xh and gcourse.kch=xk.kch and km=’高等数学’或 Create view gaoshu _stu as select xm from stu_info where xh inselect xh from xk where kch =select kch from gcourse where km=’高等数学’。
地球概论课后习题答案
地球概论课后习题答案第一章(地理坐标与天球坐标)参考答案1.1地理坐标:纬线和经线、纬度和经度、整圆与半圆……1.2地球上的方向(地平面):南北极、南北半球、东西半球、东方西方2.1引出两个重要概念:天球周日运动、太阳周年运动2。
2天球坐标:天球大圆及其两极地平圈:Z、Z′;子午圈:E、W;天赤道:P、P′卯酉圈:S、N;黄道:K、K′;六时圈:Q、Q′2。
3天球坐标:天球大圆的交点:子午圈与地平圈:S、N;子午圈与天赤道:Q、Q′子午圈与卯酉圈:Z、Z′;子午圈与六时圈:P、P′天赤道与地平圈:E、W;天赤道与黄道:、黄赤交角(ε=23°26′)2。
4第一赤道坐标系:时角,右旋坐标系,与天球周日运动(地球自转)相联系, 天球周日运动方向向西,时角向西度量.第二赤道坐标系:赤经,属左旋坐标系,与太阳周年运动相联系,太阳周年运动方向向东(地球向西),赤经向东度量.2.5第二赤道坐标系(δ, )、黄道坐标系(,)均以为原点,所以有:(0°、0h)、(0°、0°)2.6在黄道坐标系中:P(90°-ε,90°);在第二赤道坐标系中:K(90°—ε,18h)2.7西南方半空(地平坐标系)2。
8当δs=hs,ts= As时,地处南、北两极(即地平坐标系与第一赤道坐标系完全重合在一起)2.9已知:S=t=Q=6h38m,t★=21h50m,故根据公式:S=t★+★有:★=-15h12m(8h48m)2。
10t=2h39m2.1190°—35°+ε=78°26′,90°—35°+ε=31°24′2。
12(答案顺序)太阳黄纬()、太阳黄经()、太阳赤纬(δ)、太阳赤经()春分():0°、0°、0°、0h;夏至():0°、90°、ε、6h秋分():0°、180°、0°、12h;冬至():0°、270°、—ε、18h2.13(答案顺序)高度(h)、方位(A)、赤纬(δ)、时角(t)、赤经()天顶Z:90°、任意、31。
(完整版)全套高中化学人教版课后习题答案
高一化学必修1 课后习题参考答案第一章第一节1.C 2.C 3.CD 4.略5.乳化原理或萃取原理6.利用和稀盐酸反应产生气体7.不可靠,因为碳酸钡也是白色沉淀,碳酸根干扰了硫酸根的检验。
由于硫酸钡是难溶的强酸盐,不溶于强酸,而碳酸钡是难溶弱酸盐,可溶于强酸,因此可先取样,再滴入氯化钡溶液和几滴稀硝酸或稀盐酸,如果出现白色沉淀,说明有硫酸根。
第一章第二节1.D 2.B 3.B 4.B5.65 mg/dL ~110mg/dL (1mmol=10-3mol)6.这种操作会使得结果偏低,因为倒出去的溶液中含有溶质,相当于容量瓶内的溶质有损失。
7.14mL8.n(Ca):n(Mg):n(Cu):n(Fe)=224:140:35:29.1)0.2mol 2)Cu2+:0.2mol Cl-:0.4mol10.40 (M=40 g/mol,该气体的相对分子质量为40。
)第一章复习题1.C 2.B 3.A 4.BC 5.C6.(1) 不正确。
(标况下)(2)不正确。
(溶液体积不为1L)(3)不正确。
(水标况下不是气体)(4)正确。
(同温同压下气体的体积比即为物质的量之比,也就是分子个数比)7.(1)5% (2)0.28mol/L8.铁粉过滤Fe、CuFeSO4溶液稀硫酸过滤FeSO4溶液蒸发结晶9.1.42 g,操作步骤略。
第二章第一节1.②⑧①④⑤⑥⑦⑩⑨ 2.树状分类法略5.7.胶体区别于其他分散系得本质特征是胶体粒子的大小在1~100nm范围。
胶体的应用,例如明矾净水、豆浆加石膏成豆腐、静电除尘、江河入海口易形成沙洲、血液透析、饱和氯化铁溶液用于应急性止血等。
第二章第二节1.水溶液熔融状态电离阴阳离子阳离子 H+ 阴离子 OH- 金属离子或铵根离子酸根离子 H+ + OH-=H2O2.两种电解质在溶液中相互交换离子的反应生成难溶物、易挥发物质、弱电解质3.C 4.C 5.C 6.B 7.D8.(1) NaOH=Na++OH- (2) CuCl2=Cu2++2Cl-(3) Fe2(SO4)3=2Fe3++3SO42- (4) Ba(NO3)2=Ba2++2NO3-9.(1) SO42-+Ba2+=BaSO4 (2) 2Al+3Hg2+=3Hg+2Al3+(3) CO32-+2H+=H2O+CO2 (4) 不反应。
《大学化学》课后习题答案大全
第一章课后作业答案1-4.判断下列几种说法是否正确,并说明理由。
(1)原子是化学变化中最小的微粒,它由原子核和核外电子组成;正确原子是化学变化中的最小粒子。
原子是由居于原子中心的原子核和核外电子构成,原子核又由质子和中子两种粒子构成的。
构成原子的基本粒子是电子、质子、中子。
(2)相对原子质量就是一个原子的质量;错误相对原子质量是指以一个碳-12原子质量的1/12作为标准,任何一个原子的真实质量与一个碳-12原子质量的1/12的比值。
(3)4g H2和4g O2所含分子数目相等;错误4g H2含有2mol氧气分子。
氢气相对分子质量2,4g/(2g/mol)=2mol。
4g O2含有0.125mol氧气分子。
氧气相对分子质量32,4g/(32g/mol)=0.125mol。
所以分子数目不相等。
(4)0.5mol的铁和0.5mol的铜所含原子数相等;正确铁和铜都是由原子构成的金属,摩尔是物质的量的单位,物质的量相同,即摩尔数相同,就表示原子数相同。
(5)物质的量就是物质的质量;错误物质的量:表示物质所含微粒数(N)(如:分子,原子等)与阿伏加德罗常数(NA)之比,即n=N/NA。
物质的量是一个物理量,它表示含有一定数目粒子的集体,符号为n。
物质的量的单位为摩尔,简称摩,符号为mol。
物质的质量:质量不随物体的形状和空间位置而改变,是物质的基本属性之一,通常用m表示物质的量=物质的质量/物质的摩尔质量(6)化合物的性质是元素性质的加合。
错误化合物的性质是由组成该化合物的微观结构决定的,例如CO和CO2,组成元素相同,性质却不同。
1-5.硫酸铵(NH4)2SO4、碳酸氢铵NH4HCO3和尿素CO(NH2)2三种化肥的含氮量各是多少?哪种肥效最高?答:①硫酸铵(NH4)2SO4,含氮量为(14*2)/(14*2+1*8+32*1+16*4)≈0.212②碳酸氢铵NH4HCO3,含氮量为14/(14+1*5+12+16*3)≈0.177③尿素CO(NH2)2,含氮量为(14*2)/(12+16+14*2+1*4)≈0.467综上,0.177<0.212<0.467,这三种肥料中,尿素的含氮量最高,所以尿素的肥效最高。
高中数学必修1课后习题答案完整版
高中数学必修1课后习题答案 第一章 集合与函数概念1.1集合1.1.1集合的含义与表示练习(第5页)1.用符号“∈”或“∉”填空:(1)设A 为所有亚洲国家组成的集合,则:中国_______A ,美国_______A ,印度_______A ,英国_______A ;(2)若2{|}A x x x ==,则1-_______A ; (3)若2{|60}B x x x =+-=,则3_______B ;(4)若{|110}C x N x =∈≤≤,则8_______C ,9.1_______C . 1.(1)中国∈A ,美国∉A ,印度∈A ,英国∉A ;中国和印度是属于亚洲的国家,美国在北美洲,英国在欧洲.(2)1-∉A 2{|}{0,1}A x x x ===.(3)3∉B 2{|60}{3,2}B x x x =+-==-. (4)8∈C ,9.1∉C 9.1N ∉. 2.试选择适当的方法表示下列集合:(1)由方程290x -=的所有实数根组成的集合; (2)由小于8的所有素数组成的集合;(3)一次函数3y x =+与26y x =-+的图象的交点组成的集合; (4)不等式453x -<的解集.2.解:(1)因为方程290x -=的实数根为123,3x x =-=,所以由方程290x -=的所有实数根组成的集合为{3,3}-; (2)因为小于8的素数为2,3,5,7,所以由小于8的所有素数组成的集合为{2,3,5,7};(3)由326y x y x =+⎧⎨=-+⎩,得14x y =⎧⎨=⎩,即一次函数3y x =+与26y x =-+的图象的交点为(1,4),所以一次函数3y x =+与26y x =-+的图象的交点组成的集合为{(1,4)};(4)由453x -<,得2x <,所以不等式453x -<的解集为{|2}x x <.1.1.2集合间的基本关系练习(第7页)1.写出集合{,,}a b c 的所有子集.1.解:按子集元素个数来分类,不取任何元素,得∅;取一个元素,得{},{},{}a b c ; 取两个元素,得{,},{,},{,}a b a c b c ; 取三个元素,得{,,}a b c ,即集合{,,}a b c 的所有子集为,{},{},{},{,},{,},{,},{,,}a b c a b a c b c a b c ∅.2.用适当的符号填空:(1)a ______{,,}a b c ; (2)0______2{|0}x x =; (3)∅______2{|10}x R x ∈+=; (4){0,1}______N ;(5){0}______2{|}x x x =; (6){2,1}______2{|320}x x x -+=.2.(1){,,}a a b c ∈ a 是集合{,,}a b c 中的一个元素;(2)20{|0}x x ∈= 2{|0}{0}x x ==;(3)2{|10}x R x ∅=∈+= 方程210x +=无实数根,2{|10}x R x ∈+==∅;(4){0,1}N (或{0,1}N ⊆) {0,1}是自然数集合N 的子集,也是真子集;(5){0}2{|}x x x = (或2{0}{|}x x x ⊆=) 2{|}{0,1}x x x ==;(6)2{2,1}{|320}x x x =-+= 方程2320x x -+=两根为121,2x x ==.3.判断下列两个集合之间的关系:(1){1,2,4}A =,{|8}B x x =是的约数;(2){|3,}A x x k k N ==∈,{|6,}B x x z z N ==∈;(3){|410}A x x x N +=∈是与的公倍数,,{|20,}B x x m m N +==∈.3.解:(1)因为{|8}{1,2,4,8}B x x ==是的约数,所以AB ;(2)当2k z =时,36k z =;当21k z =+时,363k z =+,即B 是A 的真子集,BA ;(3)因为4与10的最小公倍数是20,所以A B =.1.1.3集合的基本运算练习(第11页)1.设{3,5,6,8},{4,5,7,8}A B ==,求,A B A B .1.解:{3,5,6,8}{4,5,7,8}{5,8}A B ==, {3,5,6,8}{4,5,7,8}{3,4,5,6,7,8}AB ==.2.设22{|450},{|1}A x x x B x x =--===,求,AB A B .2.解:方程2450x x --=的两根为121,5x x =-=, 方程210x -=的两根为121,1x x =-=,得{1,5},{1,1}A B =-=-, 即{1},{1,1,5}AB A B =-=-.3.已知{|}A x x =是等腰三角形,{|}B x x =是直角三角形,求,A B A B .3.解:{|}A B x x =是等腰直角三角形,{|}AB x x =是等腰三角形或直角三角形.4.已知全集{1,2,3,4,5,6,7}U =,{2,4,5},{1,3,5,7}A B ==, 求(),()()U U U AB A B 痧?.4.解:显然{2,4,6}U B =ð,{1,3,6,7}U A =ð, 则(){2,4}U AB =ð,()(){6}U U A B =痧. 1.1集合习题1.1 (第11页) A 组1.用符号“∈”或“∉”填空:(1)237_______Q ; (2)23______N ; (3)π_______Q ;(4_______R ; (5Z ; (6)2_______N .1.(1)237Q ∈ 237是有理数; (2)23N ∈ 239=是个自然数;(3)Q π∉ π是个无理数,不是有理数; (4R(5Z3=是个整数; (6)2N ∈ 2)5=是个自然数.2.已知{|31,}A x x k k Z ==-∈,用 “∈”或“∉” 符号填空: (1)5_______A ; (2)7_______A ; (3)10-_______A . 2.(1)5A ∈; (2)7A ∉; (3)10A -∈. 当2k =时,315k -=;当3k =-时,3110k -=-; 3.用列举法表示下列给定的集合: (1)大于1且小于6的整数; (2){|(1)(2)0}A x x x =-+=; (3){|3213}B x Z x =∈-<-≤.3.解:(1)大于1且小于6的整数为2,3,4,5,即{2,3,4,5}为所求;(2)方程(1)(2)0x x -+=的两个实根为122,1x x =-=,即{2,1}-为所求; (3)由不等式3213x -<-≤,得12x -<≤,且x Z ∈,即{0,1,2}为所求. 4.试选择适当的方法表示下列集合:(1)二次函数24y x =-的函数值组成的集合; (2)反比例函数2y x=的自变量的值组成的集合;(3)不等式342x x ≥-的解集.4.解:(1)显然有20x ≥,得244x -≥-,即4y ≥-,得二次函数24y x =-的函数值组成的集合为{|4}y y ≥-;(2)显然有0x ≠,得反比例函数2y x =的自变量的值组成的集合为{|0}x x ≠; (3)由不等式342x x ≥-,得45x ≥,即不等式342x x ≥-的解集为4{|}5x x ≥.5.选用适当的符号填空:(1)已知集合{|233},{|2}A x x x B x x =-<=≥,则有:4-_______B ; 3-_______A ; {2}_______B ; B _______A ; (2)已知集合2{|10}A x x =-=,则有:1_______A ; {1}-_______A ; ∅_______A ; {1,1}-_______A ; (3){|}x x 是菱形_______{|}x x 是平行四边形; {|}x x 是等腰三角形_______{|}x x 是等边三角形.5.(1)4B -∉; 3A -∉; {2}B ; BA ;2333x x x -<⇒>-,即{|3},{|2}A x x B x x =>-=≥;(2)1A ∈; {1}-A ; ∅A ; {1,1}-=A ; 2{|10}{1,1}A x x =-==-;(3){|}x x 是菱形{|}x x 是平行四边形;菱形一定是平行四边形,是特殊的平行四边形,但是平行四边形不一定是菱形;{|}x x 是等边三角形{|}x x 是等腰三角形.等边三角形一定是等腰三角形,但是等腰三角形不一定是等边三角形.6.设集合{|24},{|3782}A x x B x x x =≤<=-≥-,求,AB A B .6.解:3782x x -≥-,即3x ≥,得{|24},{|3}A x x B x x =≤<=≥, 则{|2}AB x x =≥,{|34}A B x x =≤<.7.设集合{|9}A x x =是小于的正整数,{1,2,3},{3,4,5,6}B C ==,求A B ,AC ,()A B C ,()A B C .7.解:{|9}{1,2,3,4,5,6,7,8}A x x ==是小于的正整数, 则{1,2,3}AB =,{3,4,5,6}AC =, 而{1,2,3,4,5,6}B C =,{3}B C =, 则(){1,2,3,4,5,6}AB C =,(){1,2,3,4,5,6,7,8}A B C =.8.学校里开运动会,设{|}A x x =是参加一百米跑的同学,{|}B x x =是参加二百米跑的同学,{|}C x x =是参加四百米跑的同学,学校规定,每个参加上述的同学最多只能参加两项,请你用集合的语言说明这项规定, 并解释以下集合运算的含义:(1)AB ;(2)A C . 8.解:用集合的语言说明这项规定:每个参加上述的同学最多只能参加两项, 即为()A B C =∅.(1){|}A B x x =是参加一百米跑或参加二百米跑的同学; (2){|}AC x x =是既参加一百米跑又参加四百米跑的同学.9.设{|}S x x =是平行四边形或梯形,{|}A x x =是平行四边形,{|}B x x =是菱形,{|}C x x =是矩形,求BC ,A B ð,S A ð.9.解:同时满足菱形和矩形特征的是正方形,即{|}BC x x =是正方形,平行四边形按照邻边是否相等可以分为两类,而邻边相等的平行四边形就是菱形, 即{|}A B x x =是邻边不相等的平行四边形ð, {|}S A x x =是梯形ð.10.已知集合{|37},{|210}A x x B x x =≤<=<<,求()R AB ð,()R A B ð,()R A B ð,()R A B ð.10.解:{|210}A B x x =<<,{|37}A B x x =≤<,{|3,7}R A x x x =<≥或ð,{|2,10}R B x x x =≤≥或ð, 得(){|2,10}R A B x x x =≤≥或ð, (){|3,7}R A B x x x =<≥或ð, (){|23,710}R A B x x x =<<≤<或ð,(){|2,3710}R AB x x x x =≤≤<≥或或ð.B 组1.已知集合{1,2}A =,集合B 满足{1,2}A B =,则集合B 有 个.1.4 集合B 满足AB A =,则B A ⊆,即集合B 是集合A 的子集,得4个子集.2.在平面直角坐标系中,集合{(,)|}C x y y x ==表示直线y x =,从这个角度看,集合21(,)|45x y D x y x y ⎧-=⎫⎧=⎨⎨⎬+=⎩⎩⎭表示什么?集合,C D 之间有什么关系?2.解:集合21(,)|45x y D x y x y ⎧-=⎫⎧=⎨⎨⎬+=⎩⎩⎭表示两条直线21,45x y x y -=+=的交点的集合,即21(,)|{(1,1)}45x y D x y x y ⎧-=⎫⎧==⎨⎨⎬+=⎩⎩⎭,点(1,1)D 显然在直线y x =上,得D C .3.设集合{|(3)()0,}A x x x a a R =--=∈,{|(4)(1)0}B x x x =--=,求,A B A B .3.解:显然有集合{|(4)(1)0}{1,4}B x x x =--==, 当3a =时,集合{3}A =,则{1,3,4},A B A B ==∅; 当1a =时,集合{1,3}A =,则{1,3,4},{1}A B A B ==; 当4a =时,集合{3,4}A =,则{1,3,4},{4}AB A B ==;当1a ≠,且3a ≠,且4a ≠时,集合{3,}A a =,则{1,3,4,},AB a A B ==∅.4.已知全集{|010}U AB x N x ==∈≤≤,(){1,3,5,7}U A B =ð,试求集合B .4.解:显然{0,1,2,3,4,5,6,7,8,9,10}U =,由U AB =,得U B A ⊆ð,即()U UAB B =痧,而(){1,3,5,7}U A B =ð,得{1,3,5,7}U B =ð,而()U UB B =痧,即{0,2,4,6,8.9,10}B =.第一章 集合与函数概念1.2函数及其表示1.2.1函数的概念练习(第19页)1.求下列函数的定义域:(1)1()47f x x =+; (2)()1f x =.1.解:(1)要使原式有意义,则470x +≠,即74x ≠-,得该函数的定义域为7{|}4x x ≠-;(2)要使原式有意义,则1030x x -≥⎧⎨+≥⎩,即31x -≤≤,得该函数的定义域为{|31}x x -≤≤. 2.已知函数2()32f x x x =+,(1)求(2),(2),(2)(2)f f f f -+-的值; (2)求(),(),()()f a f a f a f a -+-的值.2.解:(1)由2()32f x x x =+,得2(2)322218f =⨯+⨯=,同理得2(2)3(2)2(2)8f -=⨯-+⨯-=,则(2)(2)18826f f +-=+=,即(2)18,(2)8,(2)(2)26f f f f =-=+-=;(2)由2()32f x x x =+,得22()3232f a a a a a =⨯+⨯=+,同理得22()3()2()32f a a a a a -=⨯-+⨯-=-, 则222()()(32)(32)6f a f a a a a a a +-=++-=,即222()32,()32,()()6f a a a f a a a f a f a a =+-=-+-=.3.判断下列各组中的函数是否相等,并说明理由:(1)表示炮弹飞行高度h 与时间t 关系的函数21305h t t =-和二次函数21305y x x =-; (2)()1f x =和0()g x x =.3.解:(1)不相等,因为定义域不同,时间0t >; (2)不相等,因为定义域不同,0()(0)g x x x =≠.1.2.2函数的表示法练习(第23页)1.如图,把截面半径为25cm 的圆形木头锯成矩形木料,如果矩形的一边长为xcm , 面积为2ycm ,把y 表示为x 的函数. 1,y ==,且050x <<,即(050)y x =<<.2.下图中哪几个图象与下述三件事分别吻合得最好?请你为剩下的那个图象写出一件事.(1)我离开家不久,发现自己把作业本忘在家里了,于是返回家里找到了作业本再上学;(2)我骑着车一路匀速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间; (3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速.2.解:图象(A )对应事件(2),在途中遇到一次交通堵塞表示离开家的距离不发生变化;(A )(B )(C )(D )图象(B )对应事件(3),刚刚开始缓缓行进,后来为了赶时间开始加速; 图象(D )对应事件(1),返回家里的时刻,离开家的距离又为零;图象(C )我出发后,以为要迟到,赶时间开始加速,后来心情轻松,缓缓行进. 3.画出函数|2|y x =-的图象.3.解:2,2|2|2,2x x y x x x -≥⎧=-=⎨-+<⎩,图象如下所示.{|},{0,1}A x x B ==是锐角,从A 到B 的映射是“求正弦”,4.设与A 中元素60相对应的B 中的元素是什么?与B 中的元素2相对应的A 中元素是什么?4.解:因为3sin 60=,所以与A 中元素60相对应的B ;因为2sin 452=,所以与B 中的元素2相对应的A 中元素是45. 1.2函数及其表示 习题1.2(第23页)1.求下列函数的定义域:(1)3()4xf x x =-; (2)()f x =(3)26()32f x x x =-+; (4)()1f x x =-.1.解:(1)要使原式有意义,则40x -≠,即4x ≠, 得该函数的定义域为{|4}x x ≠;(2)x R ∈,()f x =即该函数的定义域为R ;(3)要使原式有意义,则2320x x -+≠,即1x ≠且2x ≠,得该函数的定义域为{|12}x x x ≠≠且; (4)要使原式有意义,则4010x x -≥⎧⎨-≠⎩,即4x ≤且1x ≠, 得该函数的定义域为{|41}x x x ≤≠且.2.下列哪一组中的函数()f x 与()g x 相等?(1)2()1,()1x f x x g x x=-=-; (2)24(),()f x x g x ==;(3)2(),()f x x g x ==2.解:(1)()1f x x =-的定义域为R ,而2()1x g x x=-的定义域为{|0}x x ≠, 即两函数的定义域不同,得函数()f x 与()g x 不相等;(2)2()f x x =的定义域为R ,而4()g x =的定义域为{|0}x x ≥,即两函数的定义域不同,得函数()f x 与()g x 不相等;(32x =,即这两函数的定义域相同,切对应法则相同,得函数()f x 与()g x 相等.3.画出下列函数的图象,并说出函数的定义域和值域.(1)3y x =; (2)8y x=; (3)45y x =-+; (4)267y x x =-+. 3.解:(1)定义域是(,)-∞+∞,值域是(,)-∞+∞;(2)定义域是(,0)(0,)-∞+∞,值域是(,0)(0,)-∞+∞;(3)定义域是(,)-∞+∞,值域是(,)-∞+∞;(4)定义域是(,)-∞+∞,值域是[2,)-+∞.4.已知函数2()352f x x x =-+,求(f ,()f a -,(3)f a +,()(3)f a f +.4.解:因为2()352f x x x =-+,所以2(3(5(28f =⨯-⨯+=+即(8f =+同理,22()3()5()2352f a a a a a -=⨯--⨯-+=++,即2()352f a a a -=++;22(3)3(3)5(3)231314f a a a a a +=⨯+-⨯++=++,即2(3)31314f a a a +=++;22()(3)352(3)3516f a f a a f a a +=-++=-+,即2()(3)3516f a f a a +=-+.5.已知函数2()6x f x x +=-, (1)点(3,14)在()f x 的图象上吗?(2)当4x =时,求()f x 的值;(3)当()2f x =时,求x 的值.5.解:(1)当3x =时,325(3)14363f +==-≠-, 即点(3,14)不在()f x 的图象上;(2)当4x =时,42(4)346f +==--, 即当4x =时,求()f x 的值为3-;(3)2()26x f x x +==-,得22(6)x x +=-, 即14x =.6.若2()f x x bx c =++,且(1)0,(3)0f f ==,求(1)f -的值.6.解:由(1)0,(3)0f f ==,得1,3是方程20x bx c ++=的两个实数根,即13,13b c +=-⨯=,得4,3b c =-=,即2()43f x x x =-+,得2(1)(1)4(1)38f -=--⨯-+=, 即(1)f -的值为8.7.画出下列函数的图象:(1)0,0()1,0x F x x ≤⎧=⎨>⎩; (2)()31,{1,2,3}G n n n =+∈.7.图象如下:8.如图,矩形的面积为10,如果矩形的长为x ,宽为y ,对角线为d ,周长为l ,那么你能获得关于这些量的哪些函数?8.解:由矩形的面积为10,即10xy =,得10(0)y x x=>,10(0)x y y =>,由对角线为d ,即d =,得(0)d x =>, 由周长为l ,即22l x y =+,得202(0)l x x x =+>, 另外2()l x y =+,而22210,xy d x y ==+,得(0)l d ===>,即(0)l d =>.9.一个圆柱形容器的底部直径是dcm ,高是hcm ,现在以3/vcm s 的速度向容器内注入某种溶液.求溶液内溶液的高度xcm 关于注入溶液的时间ts 的函数解析式,并写出函数的定义域和值域.9.解:依题意,有2()2dx vt π=,即24v x t d π=,显然0x h ≤≤,即240v t h dπ≤≤,得204h d t v π≤≤, 得函数的定义域为2[0,]4h d vπ和值域为[0,]h . 10.设集合{,,},{0,1}A a b c B ==,试问:从A 到B 的映射共有几个?并将它们分别表示出来.10.解:从A 到B 的映射共有8个.分别是()0()0()0f a f b f c =⎧⎪=⎨⎪=⎩,()0()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()0()1()0f a f b f c =⎧⎪=⎨⎪=⎩,()0()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()0f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()1()1()0f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()1f a f b f c =⎧⎪=⎨⎪=⎩.B组1.函数()r f p =的图象如图所示.(1)函数()r f p =的定义域是什么?(2)函数()r f p =的值域是什么?(3)r 取何值时,只有唯一的p 值与之对应?1.解:(1)函数()r f p =的定义域是[5,0][2,6)-;(2)函数()r f p =的值域是[0,)+∞;(3)当5r >,或02r ≤<时,只有唯一的p 值与之对应.2.画出定义域为{|38,5}x x x -≤≤≠且,值域为{|12,0}y y y -≤≤≠的一个函数的图象.(1)如果平面直角坐标系中点(,)P x y 的坐标满足38x -≤≤,12y -≤≤,那么其中哪些点不能在图象上?(2)将你的图象和其他同学的相比较,有什么差别吗?2.解:图象如下,(1)点(,0)x 和点(5,)y 不能在图象上;(2)省略.3.函数()[]f x x =的函数值表示不超过x 的最大整数,例如,[ 3.5]4-=-,[2.1]2=.当( 2.5,3]x ∈-时,写出函数()f x 的解析式,并作出函数的图象.3.解:3, 2.522,211,10()[]0,011,122,233,3x x x f x x x x x x --<<-⎧⎪--≤<-⎪⎪--≤<⎪==≤<⎨⎪≤<⎪≤<⎪⎪=⎩图象如下4.如图所示,一座小岛距离海岸线上最近的点P的距离是2km,从点P沿海岸正东12km处有一个城镇.(1)假设一个人驾驶的小船的平均速度为3/km h ,步行的速度是5/km h ,t (单位:h )表示他从小岛到城镇的时间,x (单位:km )表示此人将船停在海岸处距P 点的距离.请将t 表示为x 的函数.(2)如果将船停在距点P 4km 处,那么从小岛到城镇要多长时间(精确到1h )?4.解:(112x -,得1235x t -=+,(012)x ≤≤,即1235x t -=+,(012)x ≤≤.(2)当4x =时,12483()355t h -=+=≈.第一章 集合与函数概念1.3函数的基本性质1.3.1单调性与最大(小)值练习(第32页)1.请根据下图描述某装配线的生产效率与生产线上工人数量间的关系.1.答:在一定的范围内,生产效率随着工人数量的增加而提高,当工人数量达到某个数量时,生产效率达到最大值,而超过这个数量时,生产效率随着工人数量的增加而降低.由此可见,并非是工人越多,生产效率就越高.2.整个上午(8:0012:00)天气越来越暖,中午时分(12:0013:00)一场暴风雨使天气骤然凉爽了许多.暴风雨过后,天气转暖,直到太阳落山(18:00)才又开始转凉.画出这一天8:0020:00期间气温作为时间函数的一个可能的图象,并说出所画函数的单调区间.2.解:图象如下[8,12]是递增区间,[12,13]是递减区间,[13,18]是递增区间,[18,20]是递减区间.3.根据下图说出函数的单调区间,以及在每一单调区间上,函数是增函数还是减函数.3.解:该函数在[1,0]-上是减函数,在[0,2]上是增函数,在[2,4]上是减函数,在[4,5]上是增函数.4.证明函数()21f x x =-+在R 上是减函数.4.证明:设12,x x R ∈,且12x x <,因为121221()()2()2()0f x f x x x x x -=--=->,即12()()f x f x >,所以函数()21f x x =-+在R 上是减函数.5.设()f x 是定义在区间[6,11]-上的函数.如果()f x 在区间[6,2]--上递减,在区间[2,11]-上递增,画出()f x 的一个大致的图象,从图象上可以发现(2)f -是函数()f x 的一个 .5.最小值.1.3.2单调性与最大(小)值练习(第36页)1.判断下列函数的奇偶性:(1)42()23f x x x =+; (2)3()2f x x x =- (3)21()x f x x+=; (4)2()1f x x =+. 1.解:(1)对于函数42()23f x x x =+,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有4242()2()3()23()f x x x x x f x -=-+-=+=,所以函数42()23f x x x =+为偶函数;(2)对于函数3()2f x x x =-,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有33()()2()(2)()f x x x x x f x -=---=--=-,所以函数3()2f x x x =-为奇函数;(3)对于函数21()x f x x+=,其定义域为(,0)(0,)-∞+∞,因为对定义域内 每一个x 都有22()11()()x x f x f x x x-++-==-=--, 所以函数21()x f x x+=为奇函数; (4)对于函数2()1f x x =+,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有22()()11()f x x x f x -=-+=+=,所以函数2()1f x x =+为偶函数.2.已知()f x 是偶函数,()g x 是奇函数,试将下图补充完整.2.解:()f x 是偶函数,其图象是关于y 轴对称的;()g x 是奇函数,其图象是关于原点对称的.习题1.3A 组1.画出下列函数的图象,并根据图象说出函数()y f x =的单调区间,以及在各单调区间上函数()y f x =是增函数还是减函数.(1)256y x x =--; (2)29y x =-. 1.解:(1)函数在5(,)2-∞上递减;函数在5[,)2+∞上递增;(2)函数在(,0)-∞上递增;函数在[0,)+∞上递减.2.证明:(1)函数2()1f x x =+在(,0)-∞上是减函数;(2)函数1()1f x x=-在(,0)-∞上是增函数. 2.证明:(1)设120x x <<,而2212121212()()()()f x f x x x x x x x -=-=+-,由12120,0x x x x +<-<,得12()()0f x f x ->,即12()()f x f x >,所以函数2()1f x x =+在(,0)-∞上是减函数;(2)设120x x <<,而1212211211()()x x f x f x x x x x --=-=, 由12120,0x x x x >-<,得12()()0f x f x -<,即12()()f x f x <,所以函数1()1f x x=-在(,0)-∞上是增函数. 3.探究一次函数()y mx b x R =+∈的单调性,并证明你的结论.3.解:当0m >时,一次函数y mx b =+在(,)-∞+∞上是增函数;当0m <时,一次函数y mx b =+在(,)-∞+∞上是减函数,令()f x mx b =+,设12x x <,而1212()()()f x f x m x x -=-,当0m >时,12()0m x x -<,即12()()f x f x <,得一次函数y mx b =+在(,)-∞+∞上是增函数;当0m <时,12()0m x x ->,即12()()f x f x >,得一次函数y mx b =+在(,)-∞+∞上是减函数.4.一名心率过速患者服用某种药物后心率立刻明显减慢,之后随着药力的减退,心率再次慢慢升高.画出自服药那一刻起,心率关于时间的一个可能的图象(示意图).4.解:自服药那一刻起,心率关于时间的一个可能的图象为5.某汽车租赁公司的月收益y 元与每辆车的月租金x 元间的关系为21622100050x y x =-+-,那么,每辆车的月租金多少元时,租赁公司的月收益最大?最大月收益是多少?5.解:对于函数21622100050x y x =-+-, 当162405012()50x =-=⨯-时,max 307050y =(元), 即每辆车的月租金为4050元时,租赁公司最大月收益为307050元.6.已知函数()f x 是定义在R 上的奇函数,当0x ≥时,()(1)f x x x =+.画出函数()f x的图象,并求出函数的解析式.6.解:当0x <时,0x ->,而当0x ≥时,()(1)f x x x =+,即()(1)f x x x -=--,而由已知函数是奇函数,得()()f x f x -=-,得()(1)f x x x -=--,即()(1)f x x x =-,所以函数的解析式为(1),0()(1),0x x x f x x x x +≥⎧=⎨-<⎩.B 组1.已知函数2()2f x x x =-,2()2([2,4])g x x x x =-∈.(1)求()f x ,()g x 的单调区间; (2)求()f x ,()g x 的最小值.1.解:(1)二次函数2()2f x x x =-的对称轴为1x =,则函数()f x 的单调区间为(,1),[1,)-∞+∞,且函数()f x 在(,1)-∞上为减函数,在[1,)+∞上为增函数,函数()g x 的单调区间为[2,4],且函数()g x 在[2,4]上为增函数;(2)当1x =时,min ()1f x =-,因为函数()g x 在[2,4]上为增函数,所以2min ()(2)2220g x g ==-⨯=.2.如图所示,动物园要建造一面靠墙的2间面积相同的矩形熊猫居室,如果可供建造围墙的材料总长是30m ,那么宽x (单位:m )为多少才能使建造的每间熊猫居室面积最大?每间熊猫居室的最大面积是多少?2.解:由矩形的宽为x m ,得矩形的长为3032x m -,设矩形的面积为S , 则23033(10)22x x x S x --==-, 当5x =时,2max 37.5S m =,即宽5x =m 才能使建造的每间熊猫居室面积最大,且每间熊猫居室的最大面积是18.75m^2.3.已知函数()f x 是偶函数,而且在(0,)+∞上是减函数,判断()f x 在(,0)-∞上是增函数还是减函数,并证明你的判断.3.判断()f x 在(,0)-∞上是增函数,证明如下:设120x x <<,则120x x ->->,因为函数()f x 在(0,)+∞上是减函数,得12()()f x f x -<-,又因为函数()f x 是偶函数,得12()()f x f x <,所以()f x 在(,0)-∞上是增函数.复习参考题A 组1.用列举法表示下列集合:(1)2{|9}A x x ==;(2){|12}B x N x =∈≤≤;(3)2{|320}C x x x =-+=.1.解:(1)方程29x =的解为123,3x x =-=,即集合{3,3}A =-; (2)12x ≤≤,且x N ∈,则1,2x =,即集合{1,2}B =;(3)方程2320x x -+=的解为121,2x x ==,即集合{1,2}C =.2.设P 表示平面内的动点,属于下列集合的点组成什么图形?(1){|}P PA PB =(,)A B 是两个定点;(2){|3}P PO cm =()O 是定点.2.解:(1)由PA PB =,得点P 到线段AB 的两个端点的距离相等,即{|}P PA PB =表示的点组成线段AB 的垂直平分线;(2){|3}P PO cm =表示的点组成以定点O 为圆心,半径为3cm 的圆.3.设平面内有ABC ∆,且P 表示这个平面内的动点,指出属于集合{|}{|}P PA PB P PA PC ==的点是什么.3.解:集合{|}P PA PB =表示的点组成线段AB 的垂直平分线,集合{|}P PA PC =表示的点组成线段AC 的垂直平分线,得{|}{|}P PA PB P PA PC ==的点是线段AB 的垂直平分线与线段AC 的垂直平分线的交点,即ABC ∆的外心.4.已知集合2{|1}A x x ==,{|1}B x ax ==.若B A ⊆,求实数a 的值.4.解:显然集合{1,1}A =-,对于集合{|1}B x ax ==,当0a =时,集合B =∅,满足B A ⊆,即0a =;当0a ≠时,集合1{}B a =,而B A ⊆,则11a =-,或11a =, 得1a =-,或1a =,综上得:实数a 的值为1,0-,或1.5.已知集合{(,)|20}A x y x y =-=,{(,)|30}B x y x y =+=,{(,)|23}C x y x y =-=,求A B ,A C ,()()A B B C .5.解:集合20(,)|{(0,0)}30x y A B x y x y ⎧-=⎫⎧==⎨⎨⎬+=⎩⎩⎭,即{(0,0)}A B =;集合20(,)|23x y AC x y x y ⎧-=⎫⎧==∅⎨⎨⎬-=⎩⎩⎭,即A C =∅; 集合3039(,)|{(,)}2355x y B C x y x y ⎧+=⎫⎧==-⎨⎨⎬-=⎩⎩⎭; 则39()(){(0,0),(,)}55A B B C =-. 6.求下列函数的定义域:(1)y =(2)||5y x =-. 6.解:(1)要使原式有意义,则2050x x -≥⎧⎨+≥⎩,即2x ≥, 得函数的定义域为[2,)+∞;(2)要使原式有意义,则40||50x x -≥⎧⎨-≠⎩,即4x ≥,且5x ≠,得函数的定义域为[4,5)(5,)+∞. 7.已知函数1()1x f x x-=+,求:(1)()1(1)f a a +≠-; (2)(1)(2)f a a +≠-.7.解:(1)因为1()1x f x x-=+, 所以1()1a f a a -=+,得12()1111a f a a a-+=+=++, 即2()11f a a+=+; (2)因为1()1x f x x-=+, 所以1(1)(1)112a a f a a a -++==-+++, 即(1)2a f a a +=-+. 8.设221()1x f x x+=-,求证:50 (1)()()f x f x -=; (2)1()()f f x x=-. 8.证明:(1)因为221()1x f x x+=-, 所以22221()1()()1()1x x f x f x x x+-+-===---, 即()()f x f x -=;(2)因为221()1x f x x+=-, 所以222211()11()()111()x x f f x x x x++===---, 即1()()f f x x=-. 9.已知函数2()48f x x kx =--在[5,20]上具有单调性,求实数k 的取值范围.9.解:该二次函数的对称轴为8k x =, 函数2()48f x x kx =--在[5,20]上具有单调性, 则208k ≥,或58k ≤,得160k ≥,或40k ≤, 即实数k 的取值范围为160k ≥,或40k ≤.10.已知函数2y x -=,(1)它是奇函数还是偶函数?(2)它的图象具有怎样的对称性?(3)它在(0,)+∞上是增函数还是减函数?(4)它在(,0)-∞上是增函数还是减函数?10.解:(1)令2()f x x -=,而22()()()f x x x f x ---=-==,即函数2y x -=是偶函数;(2)函数2y x -=的图象关于y 轴对称;(3)函数2y x -=在(0,)+∞上是减函数;(4)函数2y x -=在(,0)-∞上是增函数.B 组1.学校举办运动会时,高一(1)班共有28名同学参加比赛,有15人参加游泳比赛,有8人参加田径比赛,有14人参加球类比赛,同时参加游泳比赛和田径比赛的有3人,同时参加游泳比赛和球类比赛的有3人,没有人同时参加三项比赛.问同时参加田径和球类比赛的有多少人?只参加游泳一项比赛的有多少人?1.解:设同时参加田径和球类比赛的有x 人,则158143328x ++---=,得3x =,只参加游泳一项比赛的有15339--=(人),即同时参加田径和球类比赛的有3人,只参加游泳一项比赛的有9人.2.已知非空集合2{|}A x R x a =∈=,试求实数a 的取值范围.2.解:因为集合A ≠∅,且20x ≥,所以0a ≥.3.设全集{1,2,3,4,5,6,7,8,9}U =,(){1,3}U AB =ð,(){2,4}U A B =ð,求集合B . 3.解:由(){1,3}U AB =ð,得{2,4,5,6,7,8,9}A B =, 集合A B 里除去()U A B ð,得集合B ,所以集合{5,6,7,8,9}B =.4.已知函数(4),0()(4),0x x x f x x x x +≥⎧=⎨-<⎩.求(1)f ,(3)f -,(1)f a +的值. 4.解:当0x ≥时,()(4)f x x x =+,得(1)1(14)5f =⨯+=;当0x <时,()(4)f x x x =-,得(3)3(34)21f -=-⨯--=;(1)(5),1(1)(1)(3),1a a a f a a a a ++≥-⎧+=⎨+-<-⎩. 5.证明:(1)若()f x ax b =+,则1212()()()22x x f x f x f ++=; (2)若2()g x x ax b =++,则1212()()()22x x g x g x g ++≤. 5.证明:(1)因为()f x ax b =+,得121212()()222x x x x a f a b x x b ++=+=++, 121212()()()222f x f x ax b ax b a x x b ++++==++, 所以1212()()()22x x f x f x f ++=; (2)因为2()g x x ax b =++, 得22121212121()(2)()242x x x x g x x x x a b ++=++++, 22121122()()1[()()]22g x g x x ax b x ax b +=+++++ 2212121()()22x x x x a b +=+++, 因为2222212121212111(2)()()0424x x x x x x x x ++-+=--≤, 即222212121211(2)()42x x x x x x ++≤+, 所以1212()()()22x x g x g x g ++≤. 6.(1)已知奇函数()f x 在[,]a b 上是减函数,试问:它在[,]b a --上是增函数还是减函数?(2)已知偶函数()g x 在[,]a b 上是增函数,试问:它在[,]b a --上是增函数还是减函数?6.解:(1)函数()f x 在[,]b a --上也是减函数,证明如下:设12b x x a -<<<-,则21a x x b <-<-<,因为函数()f x 在[,]a b 上是减函数,则21()()f x f x ->-,又因为函数()f x 是奇函数,则21()()f x f x ->-,即12()()f x f x >,所以函数()f x 在[,]b a --上也是减函数;(2)函数()g x 在[,]b a --上是减函数,证明如下:设12b x x a -<<<-,则21a x x b <-<-<,因为函数()g x 在[,]a b 上是增函数,则21()()g x g x -<-,又因为函数()g x 是偶函数,则21()()g x g x <,即12()()g x g x >,所以函数()g x 在[,]b a --上是减函数. 7.《中华人民共和国个人所得税》规定,公民全月工资、薪金所得不超过2000元的部分不必纳税,超过2000元的部分为全月应纳税所得额.此项税款按下表分段累计计算:某人一月份应交纳此项税款为26.78元,那么他当月的工资、薪金所得是多少?7.解:设某人的全月工资、薪金所得为x 元,应纳此项税款为y 元,则0,02000(2000)5%,2000250025(2500)10%,25004000175(4000)15%,40005000x x x y x x x x ≤≤⎧⎪-⨯<≤⎪=⎨+-⨯<≤⎪⎪+-⨯<≤⎩由该人一月份应交纳此项税款为26.78元,得25004000x <≤,25(2500)10%26.78x +-⨯=,得2517.8x =,所以该人当月的工资、薪金所得是2517.8元.第三章函数的应用3.1函数与方程练习(P88)1.(1)令f(x)=-x2+3x+5,作出函数f(x)的图象(图3-1-2-7(1)),它与x轴有两个交点,所以方程-x2+3x+5=0有两个不相等的实数根.(2)2x(x-2)=-3可化为2x2-4x+3=0,令f(x)=2x2-4x+3,作出函数f(x)的图象(图3-1-2-7(2)),它与x轴没有交点,所以方程2x(x-2)=-3无实数根.(3)x2=4x-4可化为x2-4x+4=0,令f(x)=x2-4x+4,作出函数f(x)的图象(图3-1-2-7(3)),它与x轴只有一个交点(相切),所以方程x2=4x-4有两个相等的实数根.(4)5x2+2x=3x2+5可化为2x2+2x-5=0,令f(x)=2x2+2x-5,作出函数f(x)的图象(图3-1-2-7(4)),它与x轴有两个交点,所以方程5x2+2x=3x2+5有两个不相等的实数根.图3-1-2-72.(1)作出函数图象(图3-1-2-8(1)),因为f(1)=1>0,f(1.5)=-2.875<0,所以f(x)=-x3-3x+5在区间(1,1.5)上有一个零点.又因为f(x)是(-∞,+∞)上的减函数,所以f(x)=-x3-3x+5在区间(1,1.5)上有且只有一个零点.(2)作出函数图象(图3-1-2-8(2)),因为f(3)<0,f(4)>0,所以f(x)=2x·ln(x-2)-3在区间(3,4)上有一个零点.又因为f(x)=2x·ln(x-2)-3在(2,+∞)上是增函数,所以f(x)在(3,4)上有且仅有一个零点.(3)作出函数图象(图3-1-2-8(3)),因为f(0)<0,f(1)>0,所以f(x)=e x-1+4x-4在区间(0,1)上有一个零点.又因为f(x)=e x-1+4x-4在(-∞,+∞)上是增函数,所以f(x)在(0,1)上有且仅有一个零点.(4)作出函数图象(图3-1-2-8(4)),因为f(-4)<0,f(-3)>0,f(-2)<0,f(2)<0,f(3)>0,所以f(x)=3(x+2)(x-3)(x+4)+x在(-4,-3),(-3,-2),(2,3)上各有一个零点.图3-1-2-8练习(P91)1.由题设可知f(0)=-1.4<0,f(1)=1.6>0,于是f(0)·f(1)<0,所以函数f(x)在区间(0,1)内有一个零点x0.下面用二分法求函数f(x)=x3+1.1x2+0.9x-1.4在区间(0,1)内的零点.取区间(0,1)的中点x1=0.5,用计算器可算得f(0.5)=-0.55.因为f(0.5)·f(1)<0,所以x0∈(0.5,1).再取区间(0.5,1)的中点x2=0.75,用计算器可算得f(0.75)≈0.32.因为f(0.5)·f(0.75)<0,所以x0∈(0.5,0.75).同理,可得x0∈(0.625,0.75),x0∈(0.625,0.687 5),x0∈(0.656 25,0.687 5).由于|0.687 5-0.656 25|=0.031 25<0.1,所以原方程的近似解可取为0.656 25.2.原方程可化为x+lgx-3=0,令f(x)=x+lgx-3,用计算器可算得f(2)≈-0.70,f(3)≈0.48.于是f(2)·f(3)<0,所以这个方程在区间(2,3)内有一个解x0.下面用二分法求方程x=3-lgx在区间(2,3)的近似解.取区间(2,3)的中点x1=2.5,用计算器可算得f(2.5)≈-0.10.因为f(2.5)·f(3)<0,所以x0∈(2.5,3).再取区间(2.5,3)的中点x2=2.75,用计算器可算得f(2.75)≈0.19.因为f(2.5)·f(2.75)<0,所以x0∈(2.5,2.75).同理,可得x0∈(2.5,2.625),x0∈(2.562 5,2.625),x0∈(2.562 5,2.593 75),x0∈(2.578 125,2.593 75),x0∈(2.585 937 5,2.59 375).由于|2.585 937 5-2.593 75|=0.007 812 5<0.01,所以原方程的近似解可取为2.593 75.习题3.1 A组(P92)1.A,C 点评:需了解二分法求函数的近似零点的条件.2.由x,f(x)的对应值表可得f(2)·f(3)<0,f(3)·f(4)<0,f(4)·f(5)<0,又根据“如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且f(a)·f(b)<0,那么函数y=f(x)在区间(a,b)内有零点.”可知函数f(x)分别在区间(2,3),(3,4),(4,5)内有零点.3.原方程即(x+1)(x-2)(x-3)-1=0,令f(x)=(x+1)(x-2)(x-3)-1,可算得f(-1)=-1,f(0)=5.于是f(-1)·f(0)<0,所以这个方程在区间(-1,0)内有一个解. 下面用二分法求方程(x+1)(x-2)(x-3)=1在区间(-1,0)内的近似解.取区间(-1,0)的中点x1=-0.5,用计算器可算得f(-0.5)=3.375.因为f(-1)·f(-0.5)<0,所以x0∈(-1,-0.5).再取(-1,-0.5)的中点x2=-0.75,用计算器可算得f(-0.75)≈1.58.因为f(-1)·f(-0.75)<0,所以x0∈(-1,-0.75).同理,可得x0∈(-1,-0.875),x0∈(-0.937 5,-0.875).由于|(-0.875)-(-0.937 5)|=0.062 5<0.1,所以原方程的近似解可取为-0.937 5.4.原方程即0.8x-1-lnx=0,令f(x)=0.8x-1-lnx,f(0)没有意义,用计算器算得f(0.5)≈0.59,f(1)=-0.2.于是f(0.5)·f(1)<0,所以这个方程在区间(0.5,1)内有一个解.下面用二分法求方程0.8x-1=lnx在区间(0,1)内的近似解.取区间(0.5,1)的中点x1=0.75,用计算器可算得f(0.75)≈0.13.因为f (0.75)·f (1)<0,所以x 0∈(0.75,1).再取(0.75,1)的中点x 2=0.875,用计算器可算得f (0.875)≈-0.04.因为f (0.875)·f (0.75)<0,所以x 0∈(0.75,0.875).同理,可得x 0∈(0.812 5,0.875),x 0∈(0.812 5,0.843 75).由于|0.812 5-0.843 75|=0.031 25<0.1,所以原方程的近似解可取为0.843 75.5.由题设有f (2)≈-0.31<0,f (3)≈0.43>0,于是f (2)·f (3)<0,所以函数f (x )在区间(2,3)内有一个零点.下面用二分法求函数f (x )=lnx x2-在区间(2,3)内的近似解. 取区间(2,3)的中点x 1=2.5,用计算器可算得f (2.5)≈0.12.因为f (2)·f (2.5)<0,所以x 0∈(2,2.5).再取(2,2.5)的中点x 2=2.25,用计算器可算得f (2.25)≈-0.08.因为f (2.25)·f (2.5)<0,所以x 0∈(2.25,2.5).同理,可得x 0∈(2.25,2.375),x 0∈(2.312 5,2.375),x 0∈(2.343 75,2.375),x 0∈(2.343 75,2.359 375),x 0∈(2.343 75,2.351 562 5),x 0∈(2.343 75,2.347 656 25).由于|2.343 75-2.347 656 25|=0.003 906 25<0.01,所以原方程的近似解可取为2.347 656 25.B 组1.将系数代入求根公式x 得x =223(3)42(1)22±--⨯⨯-⨯=4173+, 所以方程的两个解分别为x 1=4173+,x 2=4173-.下面用二分法求方程的近似解.取区间(1.775,1.8)和(-0.3,-0.275),令f (x )=2x 2-3x -1.在区间(1.775,1.8)内用计算器可算得f (1.775)=-0.023 75,f (1.8)=0.08.于是f (1.775)·f (1.8)<0.所以这个方程在区间(1.775,1.8)内有一个解.由于|1.8-1.775|=0.025<0.1,所以原方程在区间(1.775,1.8)内的近似解可取为1.8.同理,可得方程在区间(-0.3,-0.275)内的近似解可取为-0.275.所以方程精确到0.1的近似解分别是1.8和-0.3.2.原方程即x3-6x2-3x+5=0,令f(x)=x3-6x2-3x+5,函数图象如下图所示.图3-1-2-9所以这个方程在区间(-2,0),(0,1),(6,7)内各有一个解.取区间(-2,0)的中点x1=-1,用计算器可算得f(-1)=1.因为f(-2)·f(-1)<0,所以x0∈(-2,-1).再取(-2,-1)的中点x2=-1.5,用计算器可算得f(-1.5)=-7.375.因为f(-1.5)·f(-1)<0,所以x0∈(-1.5,-1).同理,可得x0∈(-1.25,-1),x0∈(-1.125,-1),x0∈(-1.125,-1.062 5).由于|(-1.062 5)-(-1.125)|=0.062 5<0.1,所以原方程在区间(-2,0)内的近似解可取为-1.062 5.同理,可得原方程在区间(0,1)内的近似解可取为0.7,在区间(6,7)内的近似解可取为6.3.3.(1)由题设有g(x)=2-[f(x)]2=2-(x2+3x+2)2=-x4-6x3-13x2-12x-2.(2)函数图象如下图所示.图3-1-2-10(3)由图象可知,函数g(x)分别在区间(-3,-2)和区间(-1,0)内各有一个零点.取区间(-3,-2)的中点x1=-2.5,用计算器可算得g(-2.5)=0.187 5.因为g(-3)·g(-2.5)<0,所以x0∈(-3,-2.5).再取(-3,-2.5)的中点x2=-2.75,用计算器可算得g(-2.75)≈0.28.因为g(-3)·g(-2.75)<0,所以x0∈(-3,-2.75).同理,可得x0∈(-2.875,-2.75),x0∈(-2.812 5,-2.75).由于|-2.75-(-2.812 5)|=0.062 5<0.1,所以原方程在区间(-3,-2)内的近似解可取为-2.812 5.同样可求得函数在区间(-1,0)内的零点约为-0.2.所以函数g(x)精确到0.1的零点约为-2.8或-0.2.点评:第2、3题采用信息技术画出函数图象,并据此明确函数零点所在的区间.在教学中,如果没有信息技术条件,建议教师直接给出函数图象或零点所在区间.第三章复习参考题A组(P112)1.C2.C3.设经过时间t后列车离C地的距离为y,则y=200100,02,100200,2 5.t tt t-≤≤⎧⎨-<≤⎩图3-24.(1)圆柱形; (2)上底小、下底大的圆台形;(3)上底大、下底小的圆台形; (4)呈下大上小的两节圆柱形. 图略.图3-35.令f(x)=2x3-4x2-3x+1,函数图象如图3-3所示:函数分别在区间(-1,0)、(0,1)和区间(2,3)内各有一个零点,所以方程2x3-4x2-3x+1=0的最大的根应在区间(2,3)内.取区间(2,3)的中点x1=2.5,用计算器可算得f(2.5)=-0.25.因为f(2.5)·f(3)<0,所以x0∈(2.5,3). 再取(2.5,3)的中点x2=2.75,用计算器可算得f(2.75)≈4.09.因为f(2.5)·f(2.75)<0,所以x0∈(2.5,2.75).同理,可得x0∈(2.5,2.625),x0∈(2.5,2.5625),x0∈(2.5,2.53125),x0∈(2.515625,2.53125),x0∈(2.515625,2.5234375).由于|2.523 437 5-2.515 625|=0.007 812 5<0.01,所以原方程的最大根约为2.523 437 5.6.令lgx =x 1,即得方程lgx x 1-=0,再令g (x )=lgx x1-,用二分法求得交点的横坐标约为2.5.图3-47.如图,作DE ⊥AB,垂足为E.由已知可得∠ADB=90°.因为AD=x ,AB=4,于是AD 2=AE×AB,即AE=AB AD 2=42x . 所以CD=AB-2AE=4-2×42x =422x -. 于是y =AB+BC+CD+AD=4+x +422x -+x =22x -+2x +8. 由于AD>0,AE>0,CD>0,所以x >0,42x >0,422x ->0,解得0<x <22. 所以所求的函数为y =22x -+2x +8,0<x <22. 8.(1)由已知可得N=N 0(λe 1)t .因为λ是正常数,e >1,所以e λ>1,即0<λe1<1. 又N 0是正常数,所以N=N 0(λe1)t 是在于t 的减函数. (2)N=N 0e -λt ,因为e -λt =0N N ,所以-λt =ln 0N N ,即t =λ1-ln 0N N . (3)当N=20N 时,t =λ1-002N N =λ1-ln 2. 9.因为f (1)=-3+12+8=17>0,f (2)=-3×8+12×2+8=8>0,f (3)<0,所以,下次生产应在两个月后开始.B 组1.厂商希望的是甲曲线;客户希望的是乙曲线.2.函数的解析式为y=f(t)=22,01, 2(2)12,22.tt tt<≤⎪⎪⎪⎪--+<≤⎨>⎪⎩函数的图象为图3-5备课资料[备选例题]【例】对于函数f(x)=ax2+(b+1)x+b-2(a≠0),若存在实数x0,使f(x0)=x0成立,则称x0为f(x)的不动点.(1)当a=2,b=-2时,求f(x)的不动点;(2)若对于任何实数b,函数f(x)恒有两个相异的不动点,求实数a的取值范围.解:(1)f(x)=ax2+(b+1)x+b-2(a≠0),当a=2,b=-2时,f(x)=2x2-x-4,设x为其不动点,即2x2-x-4=x,则2x2-2x-4=0,解得x1=-1,x2=2,即f(x)的不动点为-1,2.(2)由f(x)=x,得ax2+bx+b-2=0.关于x的方程有相异实根,则b2-4a(b-2)>0,即b2-4ab+8a>0.又对所有的b∈R,b2-4ab+8a>0恒成立,故有(4a)2-4·8a<0,得0<a<2.。
《财政与金融》课后习题答案(朱明zhubob
一、名词解释1.财政P22.财政职能P53.资源配置职能P64.收入分配职能P75.经济稳定职能P8二、填空题1.历史,经济。
2.经济,社会。
3.征税。
4.政治权力。
5.国家公债,国家预算6.税收收入,专卖收入,债务收入7.国家8.剩余产品9.货币10.公共需要11.资源配置,收入分配,经济稳定三、单项选择题1.B2.B3.B4.A5.B6.A四、多项选择题1.ACE2.ABCDE3.ADE4.ABDE五、判断并改错1.错。
财政是国家凭借政治权力集中分配一部分社会产品。
2.错。
封建社会财政范畴得到延伸,产生了国家公债和国家预算。
3.对。
4.错。
市场机制不能提供公共财货。
5.错。
财政既参与国民收入的初次分配,也参与国民收入的再分配。
6.错。
市场经济中充分就业和物价稳定不能够自动出现。
六、问答题1.P42.P63.P74.P8 主讲:朱明高级工程师、高级技师、国家经济师高级国家职业技能鉴定考评员高级技能专业教师一、名词解释1.国债P432.国债规模P453.市场利率国债P474.保值国债P475.公募法P496.承受法P497.出卖法P49 8.偿债基金P51二、填空题1.有偿2.国内债务,国外债务3.货币国债,实物国债,折实国债4.短期国债,中期国债,长期国债5.固定利率国债,市场利率国债,保值国债6.强制国债,爱国国债,自由国债7.可转让国债,不可转让国债8.平价发行,折价发行,溢价发行9.人民胜利折实公债10.国家经济建设公债11.国库券12.金融市场利率、银行利率、政府信用状况,社会资金供给量13.按期分次支付法,到期一次支付法14.一级市场,二级市场15.实施国债的发行和偿还,调节社会资金的运行三、单项选择题1.C2.A3.C4.D5.C四、多项选择题1.CDE2.ACDE3.ABCDE4.ABCDE5.BCDE五、判断并改错1.错。
折实国债与自然经济有密切关系。
2.错。
保值国债的利率是随市场物价变动幅度而浮动的。
人工智能 (马少平 朱小燕 著) 清华大学出版社 课后答案 - 完整版(习题部分+答案部分)
人工智能(马少平朱小燕著) 清华大学出版社课后答案习题部分第一章课后习题1、对N=5、k≤3时,求解传教士和野人问题的产生式系统各组成部分进行描述(给出综合数据库、规则集合的形式化描述,给出初始状态和目标条件的描述),并画出状态空间图。
2、对量水问题给出产生式系统描述,并画出状态空间图。
有两个无刻度标志的水壶,分别可装5升和2升的水。
设另有一水缸,可用来向水壶灌水或倒出水,两个水壶之间,水也可以相互倾灌。
已知5升壶为满壶,2升壶为空壶,问如何通过倒水或灌水操作,使能在2升的壶中量出一升的水来。
3、对梵塔问题给出产生式系统描述,并讨论N为任意时状态空间的规模。
相传古代某处一庙宇中,有三根立柱,柱子上可套放直径不等的N个圆盘,开始时所有圆盘都放在第一根柱子上,且小盘处在大盘之上,即从下向上直径是递减的。
和尚们的任务是把所有圆盘一次一个地搬到另一个柱子上去(不许暂搁地上等),且小盘只许在大盘之上。
问和尚们如何搬法最后能完成将所有的盘子都移到第三根柱子上(其余两根柱子,有一根可作过渡盘子使用)。
求N=2时,求解该问题的产生式系统描述,给出其状态空间图。
讨论N为任意时,状态空间的规模。
4、对猴子摘香蕉问题,给出产生式系统描述。
一个房间里,天花板上挂有一串香蕉,有一只猴子可在房间里任意活动(到处走动,推移箱子,攀登箱子等)。
设房间里还有一只可被猴子移动的箱子,且猴子登上箱子时才能摘到香蕉,问猴子在某一状态下(设猴子位置为a,箱子位置为b,香蕉位置为c),如何行动可摘取到香蕉。
5、对三枚钱币问题给出产生式系统描述及状态空间图。
设有三枚钱币,其排列处在"正、正、反"状态,现允许每次可翻动其中任意一个钱币,问只许操作三次的情况下,如何翻动钱币使其变成"正、正、正"或"反、反、反"状态。
6、说明怎样才能用一个产生式系统把十进制数转换为二进制数,并通过转换141.125这个数为二进制数,阐明其运行过程。
应用电化学(杨辉_卢文庆编)课后习题答案
第一章习题解答:1试推导下列各电极反应的类型及电极反应的过程。
(1)++→+242Ce e Ce解:属于简单离子电迁移反应,指电极/溶液界面的溶液一侧的氧化态物种4Ce +借助于电极得到电子,生成还原态的物种2Ce +而溶解于溶液中,而电极在经历氧化-还原后其物理化学性质和表面状态等并未发生变化,(2)-→++OH e O H O 44222解:多孔气体扩散电极中的气体还原反应。
气相中的气体2O 溶解于溶液后,再扩散到电极表面,然后借助于气体扩散电极得到电子,气体扩散电极的使用提高了电极过程的电流效率。
(3)Ni e Ni →++22解:金属沉积反应。
溶液中的金属离子2Ni +从电极上得到电子还原为金属Ni ,附着于电极表面,此时电极表面状态与沉积前相比发生了变化。
(4)-+→++OH s MnOOH O H e s MnO )()(22解:表面膜的转移反应。
覆盖于电极表面的物种(电极一侧)经过氧化-还原形成另一种附着于电极表面的物种,它们可能是氧化物、氢氧化物、硫酸盐等。
(5)2)(22OH Zn e OHZn →-+-;--→+242])([2)(OH Zn OH OH Zn解:腐蚀反应:亦即金属的溶解反应,电极的重量不断减轻。
即金属锌在碱性介质中发生溶解形成二羟基合二价锌络合物,所形成的二羟基合二价锌络合物又和羟基进一步形成四羟基合二价锌络合物。
2.试说明参比电极应具有的性能和用途。
参比电极(reference electrode ,简称RE):是指一个已知电势的接近于理想不极化的电极,参比电极上基本没有电流通过,用于测定研究电极(相对于参比电极)的电极电势。
既然参比电极是理想不极化电极,它应具备下列性能:应是可逆电极,其电极电势符合Nernst 方程;参比电极反应应有较大的交换电流密度,流过微小的电流时电极电势能迅速恢复原状;应具有良好的电势稳定性和重现性等。
不同研究体系可以选择不同的参比电极,水溶液体系中常见的参比电极有:饱和甘汞电极(SCE)、Ag/AgCl 电极、标淮氢电极(SHE 或NHE)等。
软件工程导论第六版课后习题答案
软件工程导论第六版课后习题答案第一章课后习题答案习题1.1答案:软件工程是使用工程化思维和方法来开发、维护和管理软件的一门学科。
它涵盖了软件开发的全过程,包括需求分析、设计、编码、测试、维护等各个阶段,以及与软件开发相关的项目管理、质量保证等方面。
习题1.2答案:软件是由计算机程序和相关文档组成的,而计算机程序是一组指令的集合,用来描述计算机在某种语言中执行的操作。
因此,软件和计算机程序是密切相关的,但并不完全等同。
软件是包含程序和相关文档的更广泛的概念,它包括了程序的编写、测试、维护等全过程。
习题1.3答案:软件工程的目标是提高软件的质量、可靠性、可维护性和可重用性。
通过使用工程化的方法和技术,软件工程可以使软件开发过程更加系统化、规范化,从而提高软件开发的效率和质量。
软件工程还关注与软件开发相关的项目管理和质量保证等方面,以确保软件能够按时、按预算、按要求的开发和交付。
习题1.4答案:软件工程的主要内容包括需求分析、软件设计、软件编码、软件测试和软件维护等方面。
需求分析是确定软件的功能和性能需求,为后续的设计和编码工作提供基础。
软件设计是根据需求分析的结果,制定软件系统的结构和组织方式,以便于后续的编码和测试。
软件编码是实现软件设计的过程,将设计的概念转化为具体的程序代码。
软件测试是验证软件的正确性和完整性的过程,通过各种测试方法和工具,发现并纠正软件中的错误。
软件维护是对软件进行更新、修复、优化等操作,以确保软件能够长期稳定地运行。
习题1.5答案:软件工程的活动包括项目管理、需求管理、设计管理、配置管理、质量管理等方面。
项目管理是对软件开发项目进行计划、组织和控制的活动,包括项目目标的设定、进度的控制、资源的分配等。
需求管理是对软件需求进行跟踪、分析和管理的活动,包括需求变更的管理、需求优先级的确定等。
设计管理是对软件设计进行管理和控制的活动,包括设计文档的编写、设计评审的组织等。
配置管理是对软件配置进行管理的活动,包括配置项的标识、配置变更的控制等。
博迪莫顿版金融学(第二版)课后习题答案,DOC
金融学(第二版)答案博迪默顿第一章课后习题答案一.我的生活目标:●完成学业●退休3,当我结5,?2,现在消费更多为以后比如买房,买车或储蓄留置很少的钱还是现在消费很少,甚至少于我的许多朋友二.答案样例:净值=资产-负债$__________(很可能会被低估)资产包括:经常帐户余额储蓄存款帐户余额家具设备,首饰类(如表)车(如果有的话)负债包括:学生贷款信用卡结余的差额各种租用金的协定(不包括转租)应付车款在计算净值时学生会特别地排除了他们一生潜在的赚钱能力的价值三.一个单身汉之需要养活他自己,所以他可以独立自主的作出金融决策。
如果他不想购买健康保险(而愿意承担由这个决定而带来的金融风险)那么除了这个单身汉自身,没谁会受这个决定的影响。
另外,他不需要在家庭成员之间分配收入这件事上做任何决定。
单身汉是很灵活自由的,可以选择住在几乎任何地方。
他主要是在今天的消费(开支)和为明天储蓄之间做出权衡决策。
既然他只需要养活他自己,那么他储蓄的重要性就比对一家之主的重要性小。
有许多孩子的一家之长必须在这些家庭成员中分配资源[或者说是收入].他们必须随时准备着处理各种风险,比如说潜在财政危机的突然发生[诸如家庭成员经历的严重健康问题,或者因为火灾和其他疏忽导致的保险问题].因为在一般一个家庭里人会比较多,有些人生病或受伤的风险就会更大.并且因为家庭中有许多依赖性的个体,所以薪水收入者得认真地考虑生活和残疾保险.还有,家庭并不像个体那样富有机动性,这是因为有了适龄儿童的缘b.1银行借贷2汽车经销商借贷或租赁3个人储蓄C(略)d你应该从可选择的融资方式中选择成本最小的一种。
当你分析的时候,你应该考虑以下方面:1你是否有足够的现金储蓄去购买?为了买车,你必须放弃的利息?你付现金和贷款所付是否不同?2对于不同的贷款方式,首付金额是多少?月付多少?付多久?相关利息是多少?整个贷款是按月还清,还是期末一次还清?税收和保险费是否包括在月付款中?3对于不同的租赁方式,首付金额是多少?月付多少?付多久?在租赁期末你是否拥有车?如果不拥有,买车要花多少?在租赁期末你是否必须得买车?你是否拥有优先购买权?如果你不买车你是否得付钱?相关利息是多少?税收和保险费是否包括在月付款中?是否有里程限制?七.a为学生们提供个人服务可能是个低成本的选择。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1 题(宗传玉)从{1,2,……50}中找两个数{a ,b},使其满足 (1)|a-b|=5; (2)|a-b|≤5; 解:(1):由|a-b|=5⇒a-b=5或者a-b=-5,由列举法得出,当a-b=5时,两数的序列为(6,1)(7,2)……(50,45),共有45对。
当a-b=-5时,两数的序列为(1,6),(2,7)……(45,50)也有45对。
所以这样的序列有90对。
(2):由题意知,|a-b|≤5⇒|a-b|=1或|a-b|=2或|a-b|=3或|a-b|=4或|a-b|=5或|a-b|=0;由上题知当|a-b|=5时 有90对序列。
当|a-b|=1时,两数的序列有(1,2),(3,4),(2,1)(1,2)……(49,50),(50,49)这样的序列有49*2=98对。
当此类推当|a-b|=2,序列有48*2=96对,当|a-b|=3时,序列有47*2=94对,当|a-b|=4时,序列有46*2=92对,当|a-b|=0时有50对所以总的序列数=90+98+96+94+92+50=520 1.2题(王星) 解:(a )可将5个女生看作一个单位,共八个单位进行全排列得到排列数为: 8!×5!,(b )用x 表示男生,y 表示空缺,先将男生放置好,共有8个空缺, Y X Y X Y X Y X Y X Y X Y X Y 在其中任取5个得到女生两两不相邻的排列数: C (8,5)×7!×5!(c )先取两个男生和3个女生做排列,情况如下:6. 若A ,B 之间存在0个男生, A ,B 之间共有3个人,所有的排列应为 P6=C(5,3)*3!*8!*21.若A ,B 之间存在1个男生, A ,B 之间共有4个人,所有的排列应为 P1= C(5,1)*C(5,3)*4!*7!*22.若A ,B 之间存在2个男生,A ,B 之间共有5个人,所有的排列应为 P2=C(5,2)*C(5,3)*5!*6!*23.2.若A ,B 之间存在3个男生,A ,B 之间共有6个人,所有的排列应为 P3=C(5,3)*C(5,3)*6!*5!*24.若A ,B 之间存在4个男生,A ,B 之间共有7个人,所有的排列应为 P4=C(5,4)*C(5,3)*7!*4!*25.若A ,B 之间存在5个男生,A ,B 之间共有8个人,所有的排列应为 P5=C(5,5)*C(5,3)*8!*3!*2 所以总的排列数为上述6种情况之和。
1.3题(王丹竹)m 个男生,n 个女生,排成一行,其中m,n 都是正整数,若 (a) 男生不相邻)1(+≤n m ;(b) n 个女生形成一个整体; (c) 男生A 和女生B 排在一起; 分别讨论有多少种方案。
解:(a) 可以考虑插空的方法。
n 个女生先排成一排,形成n+1个空。
因为1+≤n m 正好m 个男生可以插在n+1个空中,形成不相邻的关系。
则男生不相邻的排列个数为pp n mnn1+⋅(b) n 个女生形成一个整体有n !种可能,把它看作一个整体和m 个男生排在一起,则排列数有(m+1)!种可能。
因此,共有)!1(!+⋅m n 种可能。
(c)男生A 和女生B 排在一起,因为男生和女生可以交换位置,因此有2!种可能,A 、B 组合在一起和剩下的学生组成排列有(m+n-1)!(这里实际上是m+n-2个学生和AB 的组合形成的)种可能。
共有组合数为)!1(!2-+⋅n m1.4题(孔令琦)26个英文字母进行排列,求x 和y 之间有5个字母的排列数 解C (24,5)*13! 1.5题(周英华)求3000到8000之间的奇整数的数目,而且没有相同的数字。
解:根据题意,千位可以从3,4,5,7,6中选取,个位可以从1,3,5,7,9中选取; 因此2*5*8*7+3*4*8*7=1232 1.6 题(翟聪)计算,1·1!+2·2!+3·3!+。
+n ·n ! 解:由序数法公式可知 1!+1=2!2·2!+1·1!+1=3!3·3!+2·2!+1·1!+1=4! n ·n!+(n-1)(n-1)!+。
+2·2!+1·1!+1= (n+1)! 所以1·1!+2·2!+3·3!+。
+n ·n !=(n+1)!-1 1.7题(王卓) 试证:)2()2)(1(n n n ++被2n 除尽。
证明:因!)!12(!2)!2(-=n n n n!)!12(2!)!2(2!)2()2)(1(!2)2()2)(1(-==++=++n n n n n n n n n n n nn n因为(2n-1)!!是整数所以)2()2)(1(n n n ++能被2n除尽。
1.8题(王振华)求4010和3020的公因数数目。
解: 因为1030404040405*5*25*210==3020403060305*2*25*220==它们最大公因子为30405*2转化为求 最大公因子 能除尽的整数个数,能除尽它的整数是300,400,5*2<=<=<=<=b a b a 根据乘法法则,能除尽它的数个数为 41*31=1271 1.9题(王居柱)试证2n 的正除数的数目是奇数。
证明:设有0a n << , 2n b n << , 则一定有表达式2n a b =⨯,则 可知符合范围的a 和b 必成对出现,所以为偶数。
又当a=b=n 时,表达式2n =a ⨯b 仍然成立。
所以2n 的正除数的数目是“偶数1+”为奇数。
1.10题(王健)证任一正整数n 可唯一地表成如下形式:,0≢a i ≢i,i =1,2,…。
证:对n 用归纳法。
先证可表示性:当n=0,1时,命题成立。
假设对小于n 的非负整数,命题成立。
对于n,设k!≢n <(k+1)!,即0≢n-k!<k ·k!由假设对n-k!,命题成立,设,其中a k ≢k-1,,命题成立。
再证表示的唯一性:设, 不妨设a j >b j ,令j=max{i|a i ≠b i }a j ·j!+a j-1·(j-1)!+…+a 1·1! =b j ·j!+b j-1·(j-1)!+…+b 1·1!,∑∑∑∑⋅-≥⋅-≥⋅>≥⋅-=⋅-!)(!!!!)(!)(i a b i a b i i j i a b j b a i i i i i i j j矛盾,命题成立。
1.11题(孙明柱)证明nC(n-1,r)= (r+1)C(n,r+1),并给予组合解释. 证:)1,()1()!1()!1(!)1()!1(!)1(!)1()!1(!)!1(),1(++=--⋅+⋅+=--⋅⋅+⋅+=--⋅-=-r n C r r n r n r r n r r n r r n r n nr n nC 所以左边等于右边 组合意义:等式左边:n 个不同的球,先任取出1个,再从余下的n-1个中取r 个; 等式右边:n 个不同球中任意取出r+1个,并指定其中任意一个为第一个。
所以两种方案数相同。
1.12题(李拂晓) 证明等式:112),(-==∑n nk n k n kC证明:右边等式左边==--++-+-=⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛--=--===∑∑∑110112)]1,1()1,1()0,1([11111n n s n k nk n n n C n C n C n s n n k n n k n n1.13题(高亮)有N 个不同的整数,从中间取出两组来,要求第1组的最小数大于另一组的最大数。
解题思路:(取法由大到小)第1步:从N 个数由大到小取一个数做为第一组,其它N-1个数为第二组,组合数为:c (n,1)*{c(n-1,1)+c(n-1,2)-…+c(n-1,n-1)}第2步:从N 个数由大到小取两个数做为第一组,其它N-2个数为第二组,组合数为:c (n,2)*{c(n-2,1)+c(n-2,2)-…+c(n-2,n-2)} …第n-2步:从N 个数由大到小取n-2个数做为第一组,其它2个数为第二组,组合数为:c (n,n-2)*{c(2,1)}第n-1步:从N 个数由大到小取n-1个数做为第一组,其它1个数为第二组,组合数为:c (n,n-1)*{c(1,1}总的组合数为:)}1,1()1,()1,2({)2,()}2,2()2,2()1,2({)2,()}1,1()2,1()1,1({)1,(C n n C C n n C n n C n C n C n C n n C n C n C n C ⋅-+⋅-++--++-+-⋅+--++-+-⋅1.14 题(顿绍坤)6个引擎分列两排,要求引擎的点火顺序两排交错开来,试求从特定一引擎开始有多少种方案? 解:第1步从特定引擎对面的3个中取1个有C(3,1)种取法,第2步从特定引擎一边的2个中取1个有C(2,1)种取法,第3步从特定引擎对面的2个中取1个有C(2,1)中取法,剩下的每边1个取法固定。
所以共有C(3,1)•C(2,1)•C(2,1)=12种方案。
1.15题(陈兴)求1至1000000中0出现的次数。
解:当第一位为0时,后面6位组成的数可以从1-100000,共100000个0;当第二位为0时,当第一位取0-9时,后面5位可以取1-9999,此外当第一位取0时,后面5位还可以取为10000,这样共有9999*10+1=99991个0;同理第三位为0时,共有99901个0; 第四位为0时,共有99001个0;第五位为0时,共有90001个0;第六位为0时,只有1个0;这样总共的0数为:100000+99991+99901+99001+90001+1=488895。
1.16题(陈兴)n 个相同的球放到r 个不同的盒子里,且每个盒子里不空的放法。
解:如果用“O ”表示球,用“|”表示分界线,就相当于用r-1个“|”把n 个“O ”分成r 份,要求是每份至少有一个球。
如下图所示:00|00000000|00000000|00000|000000……对于第一个分界线,它有n-1种选择,对于第二个分界线只有n-2个选择,(因为分界线不能相临,如果相临它们之间就没有了球,这不合要求),依次第r-1个分界线只有n-(r-1)种选择。
但是这样的分法中存在重复,重复度为(r-1)!,所以总得放法为:(n-1)*(n-2)*…*(n-r+1)/(r-1)!=C(n-1,r-1)。