两次相遇行程问题的基本解法知识讲解

合集下载

二次相遇问题的解题思路

二次相遇问题的解题思路

二次相遇问题的解题思路
二次相遇问题是指两个或多个人在不同的时间和地点出发,经过一段时间后再次相遇的问题。

这种问题在实际生活中很常见,例如两个人在不同的地点出发,要在某个地点同时到达,或者一个人在走回家的路上遇到了另一个人,然后在某个地方又再次相遇等等。

解决二次相遇问题的基本思路是利用两者行进的时间、速度、起点和终点等信息,结合一些基本的数学知识,进行推导和计算。

具体的解题思路如下:
1. 先确定二者的起点和终点,以及他们分别的出发时间和速度。

2. 利用速度、时间和路程之间的关系,计算出两者分别到达终点的时间。

3. 然后计算出他们在终点之前的相遇时间,即两者行程时间的差值。

4. 如果两者在终点之前只相遇了一次,那么计算完两者在终点之前相遇的时间后,再根据相遇时的路程、时间和速度等信息,计算出相遇点的位置。

5. 如果两者在终点之前多次相遇,那么需要用到循环的思路,即在计算出两者相遇的时间后,将其中一个人的出发时间更新为相遇时间,然后重新计算两者到达终点的时间。

6. 重复上述过程,直到两者都到达终点,或者达到某一个预设的相遇次数为止。

总之,解决二次相遇问题需要运用数学知识,并结合实际情况进
行推导和计算。

掌握了这种问题的解题思路和方法,可以帮助我们更好地解决实际生活中遇到的问题。

两次相遇行程问题的解法-

两次相遇行程问题的解法-

两次相遇行程问题的解法-LELE was finally revised on the morning of December 16, 2020两次相遇行程问题的解法在小学阶段关于行程的应用题是作为一种专项应用题出现的,简称“行程问题”。

有一种“行程问题”中出现了第二次相遇(即两次相遇)的情况,较难理解。

其实此类应题只要掌握正确的方法,解答起来也十分方便。

例1.甲、乙两车同时从A、B两地相向而行,在距A地80千米处相遇,相遇后两车继续前进,甲车到达B地、乙车到达A地后均立即按原路返回,第二次在距B地60千米处相遇。

求A、B两地间的路程。

[分析与解]根据题意可画出下面的线段图:由图中可知,甲、乙两车从同时出发到第二次相遇,共行驶了3个全程,第一次相遇距A地80千米,说明行完一个全程时,甲行了8O千米。

两车同时出发同时停止,共行了3个全程,说明两车第二次相遇时甲共行了8×3=240(千米),从图中可以看出来甲车实际行了一个全程多60千米,所以A、B两地间的路程就是:240-60=180(千米)例2.甲、乙两车同时从A、B两地相向而行,在距A地80千米处相遇,相遇后两车继续前进,甲车到达B地、乙车到达A地后均立即按原路返回,第二次在距A地60千米处相遇。

求A、B两地间的路程。

[分析与解]根据题意可画出线段图:由图中可知,甲、乙两车从同时出发到第二次相遇,共行驶了3个全程,第一次相遇距A地8O千米,说明行完一个全程时,甲行了8O千米。

两车同时出发同时停止,共行了3个全程。

说明两车第二次相遇时甲车共行了:80×3=24O(千米),从图中可以看出来甲车实际行了两个全程少60千米,所以A、B两地间的路程就是:(24O+6O)÷2=150(千米)可见,解答两次相遇的行程问题的关键就是抓住两次相遇共行三个全程,然后再根据题意抓住第一次相遇点与三个全程的关系即可解答出来。

例3 AB两城间有一条公路长240千米,甲乙两车同时从A、B两城出发,甲以每小时45千米的速度从A城到B城,乙以每小时35千米的速度从B城到A城,各自到达对方城市后立即以原速沿原路返回,几小时后,两车在途中第二次相遇相遇地点离A城多少千米分析:从图上可以看出,甲乙两人第一次相遇时,行了一个全程。

六年级奥数行程问题专题:二次相遇行程问题的要点及解题技巧

六年级奥数行程问题专题:二次相遇行程问题的要点及解题技巧

六年级奥数专题:二次相遇行程问题的要点及解题技巧一、概念:两个运动物体作相向运动或在环形跑道上作背向运动,随着时间的发展,必然面对面地相遇,这类问题叫做相遇问题。

二、特点:它的特点是两个运动物体共同走完整个路程。

小学数学教材中的行程问题,一般是指相遇问题。

三、类型:相遇问题根据数量关系可分成三种类型:求路程,求相遇时间,求速度。

四、三者的基本关系及公式:它们的基本关系式如下:总路程=(甲速+乙速)×相遇时间相遇时间=总路程÷(甲速+乙速)另一个速度=甲乙速度和-已知的一个速度奥数行程:二次相遇例题及答案(一)答题思路点拨:甲从A地出发,乙从B地出发相向而行,两人在C 地相遇,相遇后甲继续走到B地后返回,乙继续走到A地后返回,第二次在D地相遇。

一般知道AC和AD的距离,主要抓住第二次相遇时走的路程是第一次相遇时走的路程的两倍。

例1。

甲乙两车同时从A、B两地相向而行,在距B地54千米处相遇,它们各自到达对方车站后立即返回,在距A地42千米处相遇。

请问A、B两地相距多少千米?A。

120 B。

100 C。

90 D。

80【解答】A。

解析:设两地相距x千米,由题可知,第一次相遇两车共走了x,第二次相遇两车共走了2x,由于速度不变,所以,第一次相遇到第二次相遇走的路程分别为第一次相遇的二倍,即54×2=x-54+42,得出x=120。

例2。

两汽车同时从A、B两地相向而行,在离A城52千米处相遇,到达对方城市后立即以原速沿原路返回,在离A城44千米处相遇。

两城市相距()千米A。

200 B。

150 C。

120 D。

100【解答】D。

解析:第一次相遇时两车共走一个全程,第二次相遇时两车共走了两个全程,从A城出发的汽车在第二次相遇时走了52×2=104千米,从B城出发的汽车走了52+44=94千米,故两城间距离为(104+96)÷2=100千米。

绕圈问题:例3。

在一个圆形跑道上,甲从A点、乙从B点同时出发反向而行,8分钟后两人相遇,再过6分钟甲到B点,又过10分钟两人再次相遇,则甲环行一周需要()?A.24分钟B.26分钟C.28分钟D.30分钟【解答】C。

两次相遇行程问题的解法

两次相遇行程问题的解法

两次相遇行程问题的解法在小学阶段关于行程的应用题是作为一种专项应用题出现的,简称“行程问题”。

有一种“行程问题”中出现了第二次相遇(即两次相遇)的情况,较难理解。

其实此类应题只要掌握正确的方法,解答起来也十分方便。

例1.甲、乙两车同时从A、B两地相向而行,在距A地80千米处相遇,相遇后两车继续前进,甲车到达B地、乙车到达A地后均立即按原路返回,第二次在距B地60千米处相遇。

求A、B两地间的路程。

[分析与解]根据题意可画出下面的线段图:由图中可知,甲、乙两车从同时出发到第二次相遇,共行驶了3个全程,第一次相遇距A地80千米,说明行完一个全程时,甲行了8O千米。

两车同时出发同时停止,共行了3个全程,说明两车第二次相遇时甲共行了8×3=240(千米),从图中可以看出来甲车实际行了一个全程多60千米,所以A、B两地间的路程就是:240-60=180(千米)例2.甲、乙两车同时从A、B两地相向而行,在距A地80千米处相遇,相遇后两车继续前进,甲车到达B地、乙车到达A地后均立即按原路返回,第二次在距A地60千米处相遇。

求A、B两地间的路程。

[分析与解]根据题意可画出线段图:由图中可知,甲、乙两车从同时出发到第二次相遇,共行驶了3个全程,第一次相遇距A地8O千米,说明行完一个全程时,甲行了8O千米。

两车同时出发同时停止,共行了3个全程。

说明两车第二次相遇时甲车共行了:80×3=24O(千米),从图中可以看出来甲车实际行了两个全程少60千米,所以A、B两地间的路程就是:(24O+6O)÷2=150(千米)可见,解答两次相遇的行程问题的关键就是抓住两次相遇共行三个全程,然后再根据题意抓住第一次相遇点与三个全程的关系即可解答出来。

两次相遇行程问题的解法

两次相遇行程问题的解法

两次相遇行程问题的解法两次相遇行程问题的解法在小学阶段关于行程的应用题是作为一种专项应用题出现的,简称“行程问题”。

有一种“行程问题”中出现了第二次相遇(即两次相遇)的情况,较难理解。

其实此类应题只要掌握正确的方法,解答起来也十分方便。

例1.甲、乙两车同时从A、B两地相向而行,在距A地80千米处相遇,相遇后两车继续前进,甲车到达B地、乙车到达A地后均立即按原路返回,第二次在距B地60千米处相遇。

求A、B两地间的路程。

[分析与解]根据题意可画出下面的线段图:由图中可知,甲、乙两车从同时出发到第二次相遇,共行驶了3个全程,第一次相遇距A地80千米,说明行完一个全程时,甲行了8O千米。

两车同时出发同时停止,共行了3个全程,说明两车第二次相遇时甲共行了8×3=240(千米),从图中可以看出来甲车实际行了一个全程多60千米,所以A、B两地间的路程就是:240-60=180(千米)例2.甲、乙两车同时从A、B两地相向而行,在距A地80千米处相遇,相遇后两车继续前进,甲车到达B地、乙车到达A地后均立即按原路返回,第二次在距A地60千米处相遇。

求A、B两地间的路程。

[分析与解]根据题意可画出线段图:由图中可知,甲、乙两车从同时出发到第二次相遇,共行驶了3个全程,第一次相遇距A地8O千米,说明行完一个全程时,甲行了8O千米。

两车同时出发同时停止,共行了3个全程。

说明两车第二次相遇时甲车共行了:80×3=24O(千米),从图中可以看出来甲车实际行了两个全程少60千米,所以A、B两地间的路程就是:(24O+6O)÷2=150(千米)可见,解答两次相遇的行程问题的关键就是抓住两次相遇共行三个全程,然后再根据题意抓住第一次相遇点与三个全程的关系即可解答出来。

答:两城相距145千米。

【边学边练】甲、乙辆摩托车同时从A、B两地相对开出,两车在途中距A地80千米处第一次相遇,然后两车继续前进,卡车达到B地,摩托车到达A地后都立刻返回,两车又在途中距B地20千米处第二次相遇,A、B两地间的路程是多少千米?例3 客车和货车同时从甲、乙两地相对开出,客车每小时行54千米,货车每小时行48千米,两车相遇后又以原来的速度继续前进,客车到达乙站后立即返回,货车到达甲站后也立即返回,两车再次相遇时,客车比货车多行216千米。

二次相遇问题讲义

二次相遇问题讲义

一、教学目标:行程问题是研究物体运动规律的问题,它所涉及的是速度、时间、路程三量间的关系。

按物体运动路线可分为:直线运动和曲线运动两大类;按物体运动的方向分为:相向、反向、同向。

二、教学重难点两个物体运动中速度、时间和路程的数量关系,初步形成两个物体运动的空间观念。

三、教学内容:两次相遇【知识要点】“二次相遇”问题是相遇问题中的一个难点,当速度不变时,两人所走的全程为三个全程,每人所走的路程是在一个全程中所走路的3倍.【经典例题】例1 甲乙两队学生从相距18千米的两地同时出发,相向而行,一个同学骑自行车以每小时14千米的速度,在两队之间不停地往返联络,甲队每小时行5千米,乙队每小时行4千米.两队相遇时,骑自行车的同学共行多少千米?例2 佳佳从甲地向乙地走,彬彬同时从乙地向甲地走,当他两人各自到达终点时,又迅速返回.两人行走的过程,各自速度不变,两人第一次相遇在距甲地50米处,第二次相遇在距乙地19米处.甲乙两地相距多少千米?例3 明明和欢欢两人同时从学校和少年宫相向而行,在距学校50米处相遇,它们各自到达对方出发地后立即返回,途中又在距学校30千米处相遇,求学校和少年宫相距多少千米?例4 两辆汽车同时从东西两站相向开出,第一次离东站60千米的地方相遇之后,两车继续以原来的速度前进,各自到达对方车站后都立即返回,又在距中点西侧30千米处相遇,两站相距多少千米?【小试锋芒】1.屈屈和蚊子同时从相距3600米的两地相向而行,蚊子的速度为40米/分钟,屈屈的速度为50米/分钟,蚊子家的狗在屈屈和蚊子之间不停的往返速度为100米/分钟。

问当屈屈和蚊子相遇时,蚊子家的狗共行了多少米?2.甲乙两人同时从A、B两地相向而行,第一次在离A地75千米处相遇,相遇后继续前进到达目的地后又立即返回,第二次相遇在离B地55千米处,求A、B相距多远?3.甲乙两人分别从A、B两地同时出发,相向而行.往返于A、B之间,第一次相遇在距A地20千米处,第二次相遇在距A地40千米处,求A、B的距离.4.甲乙两人都要在游泳池游一个来回,两人分别从游泳池在左岸和右岸同时出发,相向而行,第一次相遇在距游泳池左岸20米,第二次相遇是距游泳池右岸10米,求游泳池左右两岸相距多少米?5.代代和珍珍同时从东西两站出发,相向而行.第一次在离东站150米的地方相遇之后,两人继续以原来的速度前进,各自到达对方出发点后都立即返回.又在距中点西侧300米处相遇,求东西两站相距多远?【大显身手】1.冬瓜和虾米同时从相距8100米的两地相向而行,虾米的速度为55米/分钟,冬瓜的速度为75米/分钟,小胖熊骑自行车在冬瓜和虾米之间不停的往返速度为400米/分钟。

两次相遇行程问题的解法

两次相遇行程问题的解法

两次相遇行程问题的解法郑桂元在小学阶段关于行程的应用题是作为一种专项应用题出现的,简称“行程问题”。

有一种“行程问题”中出现了第二次相遇(即两次相遇)的情况,较难理解。

其实此类应题只要掌握正确的方法,解答起来也十分方便。

例1.甲、乙两车同时从A、B两地相向而行,在距A地80千米处相遇,相遇后两车继续前进,甲车到达B地、乙车到达A地后均立即按原路返回,第二次在距B地60千米处相遇。

求A、B两地间的路程。

[分析与解]根据题意可画出下面的线段图:由图中可知,甲、乙两车从同时出发到第二次相遇,共行驶了3个全程,第一次相遇距A地80千米,说明行完一个全程时,甲行了8O千米。

两车同时出发同时停止,共行了3个全程,说明两车第二次相遇时甲共行了8×3=240(千米),从图中可以看出来甲车实际行了一个全程多60千米,所以A、B两地间的路程就是:240-60=180(千米)例2.甲、乙两车同时从A、B两地相向而行,在距A地80千米处相遇,相遇后两车继续前进,甲车到达B地、乙车到达A地后均立即按原路返回,第二次在距A地60千米处相遇。

求A、B两地间的路程。

[分析与解]根据题意可画出线段图:由图中可知,甲、乙两车从同时出发到第二次相遇,共行驶了3个全程,第一次相遇距A地8O千米,说明行完一个全程时,甲行了8O千米。

两车同时出发同时停止,共行了3个全程。

说明两车第二次相遇时甲车共行了:80×3=24O(千米),从图中可以看出来甲车实际行了两个全程少60千米,所以A、B两地间的路程就是:(24O+6O)÷2=150(千米)可见,解答两次相遇的行程问题的关键就是抓住两次相遇共行三个全程,然后再根据题意抓住第一次相遇点与三个全程的关系即可解答出来。

甲乙两辆车同时从A、B两地相对开出,第一次在离A地75千米处相遇,相遇后继续前进到达目的地后又立刻返回,第二次相遇在离B地55千米处,求两地的距离?甲先走了60米,后到B地,走了一个全程,又回到距A40米处,也就是说,甲再多走40米就走了两个全程了,乙走到A又往回走了40米,所以甲乙两个人总共走了3个全程。

第三讲两次相遇问题

第三讲两次相遇问题

第三讲两次相遇行程问题专题解析解“两次相遇的行程问题”时,要注意充分利用线段图把题中的情节形象的表示出来,帮助理解题意分析数量关系,迅速的找到解题思路。

例题精讲例1.甲、乙两车同时从A、B两地相向而行,在距A地80千米处相遇,相遇后两车继续前进,甲车到达B地、乙车到达A地后均立即按原路返回,第二次在距B地60千米处相遇。

求A、B两地间的路程。

[分析与解]根据题意可画出下面的线段图:由图中可知,甲、乙两车从同时出发到第二次相遇,共行驶了3个全程,240-60=180(千米)例2.甲、乙两车同时从A、B两地相向而行,在距A地80千米处相遇,相遇后两车继续前进,甲车到达B地、乙车到达A地后均立即按原路返回,第二次在距A地60千米处相遇。

求A、B两地间的路程。

[分析与解]根据题意可画出线段图:由图中可知,甲、乙两车从同时出发到第二次相遇,共行驶了3个全程,(24O+6O)÷2=150(千米)同步精炼1:两艘渡轮在同一时刻垂直驶离 H 河的甲、乙两岸相向而行,一艘从甲岸驶向乙岸,另一艘从乙岸开往甲岸,它们在距离较近的甲岸 720 米处相遇。

到达预定地点后,每艘船都要停留 10 分钟,以便让乘客上船下船,然后返航。

这两艘船在距离乙岸 400 米处又重新相遇。

问:该河的宽度是多少2、甲乙两车同时从两地相向出发,在距B地54千米处相遇,他们各自到达对方车站后立即原路返回,途中又在距离A地42千米处相遇,求2次相遇地点之间的距离3、甲村、乙村相距6千米,小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回).在出发后40分钟两人第一次相遇.小王到达甲村后返回,在离甲村2千米的地方两人第二次相遇.问小张和小王的速度各是多少(小张5千米/小时,小王4千米/小时).4、小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回),他们在离甲村千米处第一次相遇,在离乙村2千米处第二次相遇.问他们两人第四次相遇的地点离乙村多远(相遇指迎面相遇)5、甲、乙两车分别从A,B两地出发,并在A,B两地间不断往返行驶。

两次相遇行程问题的解法

两次相遇行程问题的解法

两次相遇行程问题的解法在小学阶段关于行程的应用题是作为一种专项应用题出现的,简称“行程问题”。

有一种“行程问题”中出现了第二次相遇(即两次相遇)的情况,较难理解。

其实此类应题只要掌握正确的方法,解答起来也十分方便。

例1.甲、乙两车同时从A、B两地相向而行,在距A地80千米处相遇,相遇后两车继续前进,甲车到达B地、乙车到达A地后均立即按原路返回,第二次在距B地60千米处相遇。

求A、B两地间的路程。

[分析与解]根据题意可画出下面的线段图:由图中可知,甲、乙两车从同时出发到第二次相遇,共行驶了3个全程,第一次相遇距A地80千米,说明行完一个全程时,甲行了8O千米。

两车同时出发同时停止,共行了3个全程,说明两车第二次相遇时甲共行了8×3=240(千米),从图中可以看出来甲车实际行了一个全程多60千米,所以A、B两地间的路程就是:240-60=180(千米)例2.甲、乙两车同时从A、B两地相向而行,在距A地80千米处相遇,相遇后两车继续前进,甲车到达B地、乙车到达A地后均立即按原路返回,第二次在距A地60千米处相遇。

求A、B两地间的路程。

[分析与解]根据题意可画出线段图:由图中可知,甲、乙两车从同时出发到第二次相遇,共行驶了3个全程,第一次相遇距A地8O千米,说明行完一个全程时,甲行了8O千米。

两车同时出发同时停止,共行了3个全程。

说明两车第二次相遇时甲车共行了:80×3=24O (千米),从图中可以看出来甲车实际行了两个全程少60千米,所以A、B两地间的路程就是:(24O+6O)÷2=150(千米)可见,解答两次相遇的行程问题的关键就是抓住两次相遇共行三个全程,然后再根据题意抓住第一次相遇点与三个全程的关系即可解答出来。

例3 AB两城间有一条公路长240千米,甲乙两车同时从A、B两城出发,甲以每小时45千米的速度从A城到B城,乙以每小时35千米的速度从B城到A城,各自到达对方城市后立即以原速沿原路返回,几小时后,两车在途中第二次相遇?相遇地点离A城多少千米?分析:从图上可以看出,甲乙两人第一次相遇时,行了一个全程。

行程问题-二次相遇问题讲义

行程问题-二次相遇问题讲义

二次相遇问题1.甲乙两车同时从A、B两地相向而行,在距B地54千米处相遇,它们各自到达对方车站后立即返回,在距A地42千米处相遇。

请问A、B两地相距多少千米?2.两汽车同时从A、B两地相向而行,在离A城52千米处相遇,到达对方城市后立即以原速沿原路返回,在离A城44千米处相遇。

两城市相距多少千米?3.甲乙两车分别从A、B两地同时相向而行,甲、乙两车的速度比是7:11,相遇后继续行使,分别到达A、B两地后立即返回,第二次相遇时甲车距B地80千米,A、B两地相距多少千米?4.甲乙两队学生从相隔18千米的两地同时出发相向而行.一个同学骑自行车以每小时15千米的速度在两队之间不停地往返联络.甲队每小时行5千米,乙队每小时行4千米.两队相遇时,骑自行车的同学共行多少千米?5.A,B两地相距540千米。

甲、乙两车往返行驶于A,B两地之间,都是到达一地之后立即返回,乙车较甲车快。

设两辆车同时从A地出发后第一次和第二次相遇都在途中P地。

那么两车第三次相遇为止,乙车共走了多少千米?6.小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回),他们在离甲村3.5千米处第一次相遇,在离乙村2千米处第二次相遇.问他们两人第四次相遇的地点离乙村多远(相遇指迎面相遇)?7.快车和慢车分别从A,B两地同时开出,相向而行.经过5小时两车相遇.已知慢车从B到A用了12.5小时,慢车到A停留半小时后返回.快车到B停留1小时后返回.问:两车从第一次相遇到再相遇共需多少时间?8.A、C两地相距2千米,C、B两地相距5千米。

甲、乙两人同时从C地出发,甲向B地走,到达B地后立即返回;乙向A地走,到达A地后立即返回。

如果甲速度是乙速度的1.5倍,那么在乙到达D地时,还未能与甲相遇,他们还相距0.5千米,这时甲距C地多少千米?9.张明和李军分别从甲、乙两地同时想向而行。

张明平均每小时行5千米;而李军第一小时行1千米,第二小时行3千米,第三小时行5千米,……(连续奇数)。

两次相遇行程问题的解法

两次相遇行程问题的解法

两次相遇行程问题的解法在小学阶段关于行程的应用题是作为一种专项应用题出现的,简称“行程问题”。

有一种“行程问题”中出现了第二次相遇(即两次相遇)的情况,较难理解。

其实此类应题只要掌握正确的方法,解答起来也十分方便。

例1.甲、乙两车同时从A、B两地相向而行,在距A地80千米处相遇,相遇后两车继续前进,甲车到达B地、乙车到达A地后均立即按原路返回,第二次在距B地60千米处相遇。

求A、B两地间的路程。

[分析与解]根据题意可画出下面的线段图:由图中可知,甲、乙两车从同时出发到第二次相遇,共行驶了3个全程,第一次相遇距A地80千米,说明行完一个全程时,甲行了8O千米。

两车同时出发同时停止,共行了3个全程,说明两车第二次相遇时甲共行了8×3=240(千米),从图中可以看出来甲车实际行了一个全程多60千米,所以A、B两地间的路程就是:240-60=180(千米)例2.甲、乙两车同时从A、B两地相向而行,在距A地80千米处相遇,相遇后两车继续前进,甲车到达B地、乙车到达A地后均立即按原路返回,第二次在距A地60千米处相遇。

求A、B两地间的路程。

[分析与解]根据题意可画出线段图:由图中可知,甲、乙两车从同时出发到第二次相遇,共行驶了3个全程,第一次相遇距A地8O千米,说明行完一个全程时,甲行了8O千米。

两车同时出发同时停止,共行了3个全程。

说明两车第二次相遇时甲车共行了:80×3=24O(千米),从图中可以看出来甲车实际行了两个全程少60千米,所以A、B两地间的路程就是:(24O+6O)÷2=150(千米)可见,解答两次相遇的行程问题的关键就是抓住两次相遇共行三个全程,然后再根据题意抓住第一次相遇点与三个全程的关系即可解答出来。

例1 AB两城间有一条公路长240千米,甲乙两车同时从A、B两城出发,甲以每小时45千米的速度从A 城到B城,乙以每小时35千米的速度从B城到A城,各自到达对方城市后立即以原速沿原路返回,几小时后,两车在途中第二次相遇相遇地点离A城多少千米分析:从图上可以看出,甲乙两人第一次相遇时,行了一个全程。

两次相遇行程问题的解法

两次相遇行程问题的解法

两次相遇行程问题的解法在小学阶段关于行程的应用题是作为一种专项应用题出现的,简称“行程问题”。

有一种“行程问题”中出现了第二次相遇(即两次相遇)的情况,较难理解。

其实此类应题只要掌握正确的方法,解答起来也十分方便。

例1.甲、乙两车同时从A、B两地相向而行,在距A地80千米处相遇,相遇后两车继续前进,甲车到达B地、乙车到达A地后均立即按原路返回,第二次在距B地60千米处相遇。

求A、B两地间的路程。

[分析与解]根据题意可画出下面的线段图:由图中可知,甲、乙两车从同时出发到第二次相遇,共行驶了3个全程,第一次相遇距A地80千米,说明行完一个全程时,甲行了8O千米。

两车同时出发同时停止,共行了3个全程,说明两车第二次相遇时甲共行了8×3=240(千米),从图中可以看出来甲车实际行了一个全程多60千米,所以A、B两地间的路程就是:240-60=180(千米)例2.甲、乙两车同时从A、B两地相向而行,在距A地80千米处相遇,相遇后两车继续前进,甲车到达B地、乙车到达A地后均立即按原路返回,第二次在距A地60千米处相遇。

求A、B两地间的路程。

[分析与解]根据题意可画出线段图:由图中可知,甲、乙两车从同时出发到第二次相遇,共行驶了3个全程,第一次相遇距A地8O千米,说明行完一个全程时,甲行了8O千米。

两车同时出发同时停止,共行了3个全程。

说明两车第二次相遇时甲车共行了:80×3=24O(千米),从图中可以看出来甲车实际行了两个全程少60千米,所以A、B两地间的路程就是:(24O+6O)÷2=150(千米)可见,解答两次相遇的行程问题的关键就是抓住两次相遇共行三个全程,然后再根据题意抓住第一次相遇点与三个全程的关系即可解答出来。

例1 AB两城间有一条公路长240千米,甲乙两车同时从A、B两城出发,甲以每小时45千米的速度从A 城到B城,乙以每小时35千米的速度从B城到A城,各自到达对方城市后立即以原速沿原路返回,几小时后,两车在途中第二次相遇?相遇地点离A城多少千米?分析:从图上可以看出,甲乙两人第一次相遇时,行了一个全程。

两次相遇求距离的解题方法

两次相遇求距离的解题方法

两次相遇求距离的解题方法
在数学中,我们可以使用几何方法或代数方法来解决两次相遇求距离的问题。

下面将介绍常见的解题方法:
1. 几何方法:
-连线法:在平面上绘制两个运动物体的运动轨迹,然后找到它们的相交点。

通过测量相交点与起始位置的距离,可以得到两次相遇的距离。

-三角法:如果你知道两次相遇的时间和两个物体的速度,可以使用三角关系来计算两次相遇的距离。

假设两个物体的速度分别为v1和v2,两次相遇的时间间隔为t,那么相遇的距离为d = v1 * t = v2 * t。

2. 代数方法:
-方程法:设两个物体的起始位置分别为x1和x2,速度分别为v1和v2。

分别写出两个物体的位置方程:x1 + v1 * t = x2 + v2 * t。

通过解这个方程,找到相遇的时间t,然后代入其中一个位置方程,可以求得相遇的距离。

-比例法:假设两个物体的速度比为k(即v1/v2=k),两次相遇的
时间分别为t1和t2。

根据速度距离的关系,我们可以得到比例方程:v1 * t1 = v2 * t2。

通过解这个方程,可以求得t1和t2。

然后,计算一个物体在t1时间内所走的距离,就是两次相遇的距离。

无论使用几何方法还是代数方法,都可以解决两次相遇求距离的问题。

具体选择哪种方法取决于题目的要求和提供的信息。

两辆车行程问题归纳总结

两辆车行程问题归纳总结

两辆车行程问题归纳总结在现代社会中,我们经常会遇到两辆车在不同的时间、速度和方向上行驶的情况。

这种情况下,我们需要解决与车辆相遇、相追、相离等问题。

本文将对这些两辆车行程问题进行归纳总结,帮助读者更好地理解和应对这类问题。

一、两辆车相遇问题1. 向心相遇问题当两辆车从两个不同的地点出发,以不同的速度向同一目的地行驶时,我们需要计算它们相遇的时间和距离。

假设车A以速度v1行驶,车B以速度v2行驶,并在t小时后相遇。

根据相遇的定义,我们可以得到以下公式:距离 = (速度A + 速度B)×时间2. 反向相遇问题有时,两辆车从同一地点同时出发,但以不同的速度和方向行驶,我们需要计算它们下次相遇的时间和地点。

假设车A以速度v1向东行驶,车B以速度v2向西行驶,并在t小时后相遇。

根据相遇的定义,我们可以得到以下公式:距离 = (速度A + 速度B)×时间二、两辆车相追问题1. 追及问题在两辆车的行程中,一辆追着另一辆车行驶,我们需要计算追及时间和距离。

假设车A以速度v1行驶,车B以速度v2行驶,并在t小时后车B追到车A。

根据追及的定义,我们可以得到以下公式:距离 = (速度B - 速度A)×时间2. 交叉追问题当两辆车以不同的速度和方向行驶,并在某一点相交时,我们需要计算交叉追的时间和距离。

假设车A以速度v1向东行驶,车B以速度v2向西行驶,并在t小时后相交。

根据交叉追的定义,我们可以得到以下公式:距离 = (速度A + 速度B)×时间三、两辆车相离问题当两辆车行驶在不同的速度、时间和方向上时,我们需要计算它们相离的时间和距离。

这种情况下的问题通常涉及到超越和错过的概念。

1. 超越问题当两辆车以不同的速度和方向行驶,并且一辆车超过了另一辆车时,我们需要计算超越的时间和距离。

假设车A以速度v1向东行驶,车B以速度v2向西行驶,并在t小时后车A超过车B。

根据超越的定义,我们可以得到以下公式:距离 = (速度A + 速度B)×时间2. 错过问题当两辆车以不同的速度和方向行驶,并且它们错过了相遇的机会时,我们需要计算它们错过的时间和距离。

二次相遇问题的解题思路

二次相遇问题的解题思路

二次相遇问题的解题思路一、直线二次相遇甲村、乙村相距6千米,小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回).在出发后40分钟两人第一次相遇.小王到达甲村后返回,在离甲村2千米的地方两人第二次相遇.问小张和小王的速度各是多少?解:画示意图如下:如图,第一次相遇两人共同走了甲、乙两村间距离,第二次相遇两人已共同走了甲、乙两村间距离的3倍,因此所需时间是40×3÷60=2(小时).从图上可以看出从出发至第二次相遇,小张已走了6×2-2=10(千米).小王已走了 6+2=8(千米).因此,他们的速度分别是小张10÷2=5(千米/小时),小王8÷2=4(千米/小时).答:小张和小王的速度分别是5千米/小时和4千米/小时.知识要点提示:甲从A地出发,乙从B地出发相向而行,两人在C地相遇,相遇后甲继续走到B地后返回,乙继续走到A地后返回,第二次在D地相遇。

一般知道AC和AD的距离,主要抓住第二次相遇时走的路程是第一次相遇时走的路程的两倍。

例题:1.甲乙两车同时从A、B两地相向而行,在距B地54千米处相遇,它们各自到达对方车站后立即返回,在距A地42千米处相遇。

请问A、B两地相距多少千米?A.120B.100C.90D.80【答案】A。

解析:设两地相距x千米,由题可知,第一次相遇两车共走了x,第二次相遇两车共走了2x,由于速度不变,所以,第一次相遇到第二次相遇走的路程分别为第一次相遇的二倍,即54×2=x-54+42,得出x=120。

54乘3再减去42=120,再用120减去54加42的和=24因为第一次相遇距离B地54千米,说明行完一个全程乙走了54千米,到甲乙第二次相遇时总共走了三个全程,也就是说,这时乙走了54乘3千米,也就是16 2千米,这个162千米也是乙走完一个全程后还包括多走的42千米,所以用16 2减去42就是一个AB之间的全程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

两次相遇行程问题的基本解法两次相遇行程问题的基本解法例1.甲、乙两车同时从A、B两地相向而行,在距A地80千米处相遇,相遇后两车继续前进,甲车到达B地、乙车到达A地后均立即按原路返回,第二次在距B地60千米处相遇。

求A、B两地间的路程。

[分析与解]根据题意可画出下面的线段图:由图中可知,甲、乙两车从同时出发到第二次相遇,共行驶了3个全程,第一次相遇距A地80千米,说明行完一个全程时,甲行了8O千米。

两车同时出发同时停止,共行了3个全程,说明两车第二次相遇时甲共行了8×3=240(千米),从图中可以看出来甲车实际行了一个全程多60千米,所以A、B两地间的路程就是:240-60=180(千米)例2.甲、乙两车同时从A、B两地相向而行,在距A地80千米处相遇,相遇后两车继续前进,甲车到达B地、乙车到达A地后均立即按原路返回,第二次在距A地60千米处相遇。

求A、B两地间的路程。

[分析与解]根据题意可画出线段图:由图中可知,甲、乙两车从同时出发到第二次相遇,共行驶了3个全程,第一次相遇距A地8O千米,说明行完一个全程时,甲行了8O千米。

两车同时出发同时停止,共行了3个全程。

说明两车第二次相遇时甲车共行了:80×3=24O(千米),从图中可以看出来甲车实际行了两个全程少60千米,所以A、B 两地间的路程就是:(24O+6O)÷2=150(千米)可见,解答两次相遇的行程问题的关键就是抓住两次相遇共行三个全程,然后再根据题意抓住第一次相遇点与三个全程的关系即可解答出来。

寻找最佳的解题方法有些题目,如果从不同的角度去分析,就会得到不同的解题方法,也就是说从多个角度去想就会有多种解法。

这样做可以使思维更开阔,也能从中找到最佳的解题方法。

下面的题目就可以用三种方法来解。

例某建筑工地,第一天用6辆汽车运沙子,共运96吨,第二天用同样的汽车12辆运沙子,第二天比第一天多运多少吨?解法一:先求一辆汽车一天运沙子的吨数,再求12辆汽车一天运沙子的吨数,减去第一天运的吨数,就得到第二天比第一天多运的吨数。

6÷6×12-96=96(吨)解法二:先求出12辆是6辆的多少倍,再求12辆汽车每天运的吨数,最后减去6辆汽车每天运的吨数。

96×(12÷6)-96=96(吨)解法三:先求一辆汽车一天运的吨数,再求第二天比第一天多几辆车,这多的几辆所运的沙子就是第二天比第一天多运的。

96÷6×(12-6)=96(吨)答:第二天比第一天多运48吨。

你认为哪种算法最好?我们来看一道题,它可以有五种解法,甚至更多,看完后,请你想一想还有没有别的解法?例某饭店买回一桶豆油,连桶称共有210千克,用去一半后,连桶称还有120千克,油桶重多少千克?解法一:把120千克扩大2倍,得到一桶豆油的重量和两只桶重,从中去掉210千克(这是一桶豆油与一只桶的重量和),即得桶重。

120×2-210=30(千克)解法二:先求出半桶豆油的重量,再从120千克中去掉这半桶豆油的重量,也可得桶重。

120-(210-120)=30(千克)解法三:先求出两只桶和两桶油的重量,再求出两只油桶和一桶油的重量,这样可求出一桶油的重量,然后可求出桶重。

210-(210×2-120×2)=30(千克)解法四:基本上与解法三相同,也可以说是它的简便算法,但算理稍有不同。

210-(210—120)×2=30(千克)解法五:先求出半只桶重,再求出整个油桶的重量。

(120-210÷2)×2=30(千克)答:油桶重30千克。

我们再来看一道题:李师傅要加工3080个零件,他用4天加工了280个零件。

照这样计算,加工剩下的零件还需要多少天?解法一:先求每天加工多少个零件和还剩下多少个零件,再求需要加工多少天。

(3080-280)÷(280÷4)=40(天)解法二:先求每天加工多少个零件,再求加工这批零件一共需要多少天,最后求还需要加工多少天。

3080÷(280÷4)-4=40(天)解法三:先求这批零件的总数是他4天加工零件的多少倍,再求加工这批零件一共需要多少天,最后求还需要加工多少天。

4×(3080÷280)-4=40(天)解法四:先求还要加工多少个零件,然后求还加工的零件数是4天加工零件数的多少倍,最后求还需要加工多少天。

4×[(3080-280)÷28] =40(天)答:加工剩下的零件还需要40天。

一道思考题的三种解法题目是这样的:选择+、-、×、÷中的运算符号,把下面各题连成算式,使它们的得数分别等于0、1、2、3、4、5、6、7、8、9。

(1) 2 2 2 2 2=0(2) 2 2 2 2 2=1(3) 2 2 2 2 2=2(4) 2 2 2 2 2=3(5) 2 2 2 2 2=4(6) 2 2 2 2 2=5(7) 2 2 2 2 2=6(8) 2 2 2 2 2=7(9) 2 2 2 2 2=8(10)2 2 2 2 2=9下面向你介绍三种解这道题的方法,希望你能受到启发,从而举一反三,学会解更多的思考题。

猜测法,也叫试验法。

它完全是靠边猜测、边试验的方式求解。

如(1)题,先试2×2÷2+2-2≠0,后试2÷2+2-2+2≠0……最后试得2÷2+2÷2-2=0,成功了。

猜到了一种答案,还可以继续下去,以寻找第二、第三种答案。

逆推法,就是从问题的要求或结果出发,一步一步地进行逆向推理,逐步靠拢已知条件,把已知条件逐个用进去,直至求出问题的答案。

如(2)题,因为等号右边的1比等号左边的2小,所以只能在等号左边第一个2前面添上减号或者除号。

如添上减号,使原题变成2 2 2 2=3。

同理又因3>2,故可在等号左边第二个2的前面添上加号,使原题变成2 2 2=1。

这时就很容易看出2-2÷2=1了。

综合前两步逆推,就得到2-2÷2+2-2=1的一种解法。

如继续作其它逆推,还可得到第二、第三……种解法。

前面介绍的两种方法你看懂了吗?请不要着急,慢慢地消化理解,逐步加以接受。

下面请看第三种解法。

凑数法,这是一种综合运用知识的方法,它同样要结合试验才能顺利进行。

如(3)题,可以让等式左边的5个2两两相减得0,剩下的一个2当然就和等式右边的2相等了,即2-2+2-2+2=2。

从某种意义上说,它和猜测法有相同的地方,那就是都要试验,但试验的方法是不同的,你能总结出它们的不同点吗?怎么样?这三种解法和你以前用过的方法一样吗?你还有更好的方法吗?如果有,那真是太好了,因为你现在的思路宽了,解题的速度和正确率都会大大提高的。

好吧,看看你学习的效果怎样,是不是真正能举一反三。

请做下面的题。

选择适当的运算符号和括号,使下式成立。

(1)2 3 5 7 1=2 (2)2 3 5 7 1=4(3)2 3 5 7 1=6 (4)2 3 5 7 1=8找出等量关系解决复杂应用题同学们在解答较复杂的应用题时,往往不知从何下手。

如果根据条件找出相应的等量关系或能将其中的条件转化一下,那么问题就会迎刃而解了。

[题目]修一多公路,已修和未修长度的比是1:3,再修300米后,已修和未修长度的比是1:2。

这条路长多少米?(九年义务教育六年制小学数学第十二册思考题)[分析与解]解法一:这道题的条件是:再修300米后,已修和未修长度的比是1: 2,这里隐藏着一个等量关系,如果抓住这个等量关系,就可列方程解答。

设已修的长度为x米,那么未修的长度为3x米。

利用双向思考解决奥数题早晨小明和爸爸、妈妈一起跑步。

爸爸跑的路程比小明的2倍少2O米,比妈妈的2倍多10米。

小明和他妈妈谁跑的路程长些?(人教版九年义务教育五年制小学数学第八册第86页思考题)此题可以用三种方法来解。

解法一:画线段图来解。

由图可见,小明比妈妈跑的路程长。

解法二:用方程解。

设小明跑了100米,爸爸跑的路程就是100×2-20=180(米),再设妈妈跑了x米,列出方程:2x+10=180 x=85(米)即妈妈跑了80米,可见小明比妈妈跑的路程长。

解法三:设小明、爸爸、妈妈跑的路程分别为x米、y米、z米,根据题意可以列出下面两式,再做适当的变形就能得解。

即:y=2x-20→y=2x+20y=2x+10→y=2x-10(x>z)即小明比妈妈跑的路程长。

画图法解决奥数难题一个山清水秀的村子里有三个好朋友:小明、小刚和小强,他们常在一起合伙打鱼。

一次,他们忙碌了大半天,打了一堆鱼。

实在太累了,就坐在河边的柳树下休息,一会儿都睡着了。

小明醒了想起家里有事,看小刚和小强睡得正香,没有吵醒他们。

他把鱼分成三份,自己拿一份走了。

不一会儿小刚也醒了,要回家。

他也把鱼分成三份,自己拿一份走了。

太阳快落山了,小强才醒来。

他想,小明和小刚上哪去了?这么晚了,我得回家劈柴去。

于是,他又把鱼分成三份,自己拿走一份。

最后还剩下8条鱼。

第二天,他们又合伙到河边打鱼,才知道昨天分的鱼不合理。

小明立即把剩下的8条鱼给小刚3条,小强5条。

你能算出他们原来共打多少条鱼吗?这个问题直接从文字上分析有一定难度,为了帮助我们理解题意,启发解题思路,可以根据题意,画出下面的线段图。

由于最后剩的8条是小强分的三份中的两份,所以小强拿走的鱼是8÷2条。

那么小刚拿走自己分的一份鱼后剩下的鱼是8÷2×3条,这占小刚分的三份中的两份,所以小刚拿走的鱼是(8÷2×3)÷2;同样可得知小明拿走的鱼是[(8÷2×3)÷2×3]÷2条。

所以打的鱼一共是[(8÷2×3)÷2×3]÷2×3=27(条)。

当然,我们还可以从小强第一天拿走的鱼是8一条和第二天又拿了5条知道,每人平均拿了8÷2+5条,所以打的鱼一共是(8÷2+5)×3=27(条)。

小明、小刚和小强三个伙伴互相关心,他们每个人无论有什么好事都忘不了另外两个朋友。

一次,小明从山里来了一筐山梨,他把小刚和小强找来,对他们说:“我把这筐梨先分给你们一些,剩下的便是我的。

”于是,他把山梨的一半给了小刚,然后又给小刚加了1个。

接着,他又把剩下的给了小强一半,也同样给小强加了1个,最后剩下5个山梨,他自己留下了。

你来算算,小明这一筐山梨共有多少个呢?可以按照上次的方法,先画出下面的图。

然后列出算式:[( 5+l)×2+1]×2=[6×2+1]×2=26(个)答:筐里一共有26个山梨。

相关文档
最新文档