初二(八年级)上册数学书练习题答案(北师大版)
北师大版数学八年级上册课后习题参考精品解析含答案
八年级上册数学课后练习题答案(北师大版)第一章勾股定理课后练习题答案说明:因录入格式限制,“√”代表“根号”,根号下内用放在“()”里面;“⊙”,表示“森哥马”,§,¤,♀,∮,≒,均表示本章节内的类似符号。
§1.l探索勾股定理随堂练习1.A所代表的正方形的面积是625;B所代表的正方形的面积是144。
2.我们通常所说的29英寸或74cm的电视机,是指其荧屏对角线的长度,而不是其长或宽,同时,因为荧屏被边框遮盖了一部分,所以实际测量存在误差.1.1知识技能1.(1)x=l0;(2)x=12.2.面积为60cm:,(由勾股定理可知另一条直角边长为8cm).问题解决12cm2。
1.2知识技能1.8m(已知直角三角形斜边长为10m,一条直角边为6m,求另一边长).数学理解2.提示:三个三角形的面积和等于一个梯形的面积:联系拓广3.可以将四个全等的直角三角形拼成一个正方形.随堂练习12cm、16cm.习题1.3问题解决1.能通过。
.2.要能理解多边形ABCDEF’与多边形A’B’C’D’E’F’的面积是相等的.然后剪下△OBC和△OFE,并将它们分别放在图③中的△A’B’F’和△D’F’C’的位置上.学生通过量或其他方法说明B’E’F’C’是正方形,且它的面积等于图①中正方形ABOF和正方形CDEO的面积和。
即(B’C’)2=AB2+CD2:也就是BC2=a2+b2。
,这样就验证了勾股定理§l.2 能得到直角三角形吗随堂练习l.(1) (2)可以作为直角三角形的三边长.2.有4个直角三角影.(根据勾股定理判断)数学理解2.(1)仍然是直角三角形;(2)略;(3)略问题解决4.能.§1.3 蚂蚁怎样走最近13km提示:结合勾股定理,用代数办法设未知数列方程是解本题的技巧所在习题1.5知识技能1.5lcm.问题解决2.能.3.最短行程是20cm。
4.如图1~1,设水深为x尺,则芦苇长为(x+1)尺,由勾股定理解得x=12,则水池的深度为12尺,芦苇长为13尺。
北师大版八年级数学上册《4.3一次函数的图象》练习题(附带参考答案)
北师大版八年级数学上册《4.3一次函数的图象》练习题(附带参考答案)学校:___________班级:___________姓名:___________考号:___________一、选择题1.一次函数y =3x +1的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限2.如图为正比例函数y =kx (k ≠0)的图象,则一次函数y =x +k 的大致图象是( )A .B .C .D .3.已知点P(1,4)在直线y =kx −2k 上,则k 的值为( )A .43B .−43C .4D .-44.如图,已知一次函数的图象与正比例函数y=12x 的图象交于点A ,则一次函数的表达式为()A .y=2x+2B .y=-12x+2C .y=-2x+2D .y=12x+25.将一次函数y =2x +5的图象沿y 轴向下平移4个单位长度,所得直线的解析式为( )A .y =2x −5B .y =x +5C .y =2x +1D .y =x +16.如图所示,点A (﹣1,m ),B (3,n )在一次函数y =kx+b 的图象上,则( )A .m =nB .m >nC.m<n D.m、n的大小关系不确定7.已知一次函数y=kx−k过点(−1,4),则下列结论正确的是()A.y随x增大而增大B.k=2C.一次函数的图象过点(1,0)D.一次函数的图象与坐标轴围成的三角形面积为28.如图,在平面直角坐标系中,已知A(2,0),B(1,3)在y轴上有一动点C,当△ABC的周长最小时,点C的坐标是()A.(0,0)B.(0,−2)C.(0,2)D.(−2,0)二、填空题9.直线y=2x+m−3经过点(2,3),则m=;10.已知y与x−2成正比例,且当x=1时y=1,则y与x之间的函数关系式为.11.如果正比例函数y=(3k+1)x的图像经过第二、四象限,那么k的取值范围是.12.若点P(m,n)在直线y=−2x+3上,则2m+n−3=.13.如果不论k为何值,一次函数y= 2k−1k+3x−k−11k+3的图象都经过一定点,则该定点的坐标是.三、解答题14.直线y=kx+1沿着y轴向上平移b个单位后,经过点A(−2,0)和y轴正半轴上的一点B,若△ABO(O为坐标原点)的面积为4,求b的值.15.已知y−2与x−3成正比例,且x=4时y=8.(1)求y与x之间的函数关系式;(2)当y=−6时,求x的值.16.已知y与3x−2成正比例,且当x=2时y=8.(1)求y与x的函数关系式;(2)画出这个函数的图象;(3)当x>0时, y的取值范围是.17.在直角坐标系内,一次函数y=kx+b的图象经过三点A(4,0),B(0,2)C(m,−3). (1)求这个一次函数解析式(2)求m的值.(3)若点P在直线y=kx+b上且到y轴的距离是3,求点P的坐标.参考答案1.D2.B3.D4.B5.C6.C7.C8.C9.210.y=-x+211.k<−1312.013.(2,3)14.解:直线y=kx+1沿着y轴向上平移b个单位后,得到y=kx+b+1 ∵直线y=kx+b+1经过点A(-2,0)和y轴正半轴上的一点B∴B(0,b+1)∵△ABO的面积是:1×2×(b+1)=42解得b=3.15.(1)解:∵y−2与x−3成正比例∴设y−2=k(x−3)∵x=4时∴8−2=k(4−3)∴k=6∴y=6x−16;(2)解:把y=−6代入y=6x−16,可得:−6=6x−16解得:x=5.316.(1)解:设y=k(3x−2)∵当x=2时x=2∴8=k(3×2−2)解得:k=2∴y与x的函数关系式为y=6x−4(2)解:令x =0,则y =−4,令x =1 过点(0,−4),(1,2)作直线如图所示:(3)y >-417.(1)解:∵一次函数y =kx +b 的图象经过三点A(4,0) B(0,2)则:{4k +b =0b =2,解得:{k =−12b =2∴这个一次函数解析式为:y =−12x +2(2)解:把C(m ,−3)代入:y =−12x +2中得:−3=−12m +2,解得:m =10(3)解:设P(x ,y)∵点P 在直线y =−12x +2上且到y 轴的距离是3 ∴x =±3当x =3时y =−12×3+2=12当x =−3时y =−12×(−3)+2=72∴点P 的坐标是(3,12)或(−3,72)。
初二(八年级)上册数学书练习题答案(北师大版)-最新教育文档
初二(八年级)上册数学书练习题答案(北师大版)初二(八年级)下册数学书练习题答案很重要,初二(八年级)下册数学书练习题答案是什么呢?下面是初二(八年级)下册数学书练习题答案,跟初二(八年级)下册数学书练习题答案对过后您做的对吗?八年级上册数学课后练习题答案(北师大版)第一章勾股定理课后练习题答案说明:因录入格式限制,“√”代表“根号”,根号下内用放在“()”里面;“⊙”,表示“森哥马”,§,¤,♀,∮,≒ ,均表示本章节内的类似符号。
§1.l探索勾股定理随堂练习1.A所代表的正方形的面积是625;B所代表的正方形的面积是144。
2.我们通常所说的29英寸或74cm的电视机,是指其荧屏对角线的长度,而不是其长或宽,同时,因为荧屏被边框遮盖了一部分,所以实际测量存在误差.1.1知识技能1.(1)x=l0;(2)x=12.2.面积为60cm:,(由勾股定理可知另一条直角边长为8cm). 问题解决12cm2。
1.2知识技能1.8m(已知直角三角形斜边长为10m,一条直角边为6m,求另一边长).数学理解2.提示:三个三角形的面积和等于一个梯形的面积:联系拓广3.可以将四个全等的直角三角形拼成一个正方形.随堂练习12cm、16cm.习题1.3问题解决1.能通过。
.2.要能理解多边形ABCDEF’与多边形A’B’C’D’E’F’的面积是相等的.然后剪下△OBC和△OFE,并将它们分别放在图③中的△A’B’ F’和△D’F’C’的位置上.学生通过量或其他方法说明B’ E’F’C’是正方形,且它的面积等于图①中正方形ABOF和正方形CDEO的面积和。
即(B’C’)2=AB2+CD2:也就是BC2=a2+b2。
,这样就验证了勾股定理§l.2 能得到直角三角形吗随堂练习l.(1) (2)可以作为直角三角形的三边长.2.有4个直角三角影.(根据勾股定理判断)数学理解2.(1)仍然是直角三角形;(2)略;(3)略问题解决4.能.§1.3 蚂蚁怎样走最近13km提示:结合勾股定理,用代数办法设未知数列方程是解本题的技巧所在习题 1.5知识技能1.5lcm.问题解决2.能.3.最短行程是20cm。
八年级数学上册课本习题答案北师大
八年级数学上册课本习题答案北师大做八年级数学课本习题应该集中全力,以求知道得更多,知道一切。
小编整理了关于八年级数学上册课本习题答案北师大,希望对大家有帮助!八年级数学上册课本习题答案北师大(一)复习题第16页1.解:由勾股定理分别求得AB,BC,CD,的长为5cm,13cm,10cm,所以折线的长为5+13+10=28(cm).2.解:(1)因为8²+15²=17²,所以8,15,17能作为直角三角形的三边长,.(2)因为7²+12²≠15²,所以7,12,15不能作为直角三角形的三边长.(3)因为12²+15²≠〖20〗^2,所以12,15,20不能作为直角三角形的三边长.(4)因为7²+24²=25²,所以7,24,25能作为直角三角形的三边长.3.解:如图1-4-11所示,设帆船的始点为A先向东方向航行了160km到点B,再向正北方向航行了120km到点C.在Rt△ABC中,∠B=90°,AB=160,BC=120,由勾股定理,得A C²=BC²+A=120²+160²=200²,所以AC200.因此,这艘船此时离出发点200km.4.解:在Rt△ABC中,∠B=90°,所以AC²=AB²+BC²=4²+3²=25,所以AC=5(cm).在Rt△FAC中,∠FAC=90°,所以FC²=FA²+AC²=12²+5²=169.所以S_正方形CDEF=FC²=169(cm^2 ).5.解:如图1-4-12所以,设小明家位于点C,先向正北方向走了150m到点A,再向正东方向走了250m到点B,在Rt△ABC中,∠A=90°,由勾股定理,得A B²=BC²-AC²=250²-150²=40 000(m²).所以AB=200m.故小明向正东方向走了200m远.6.解:一两直角边为直径的两个半圆面积之和等于以斜边为直径的半圆的面积.7.解:两图的面积相等,前者由4个全等的直角三角形和边长为C 的正方形组成,后者由4个全等直角三角形和边长分别为a,b的两个正方形组成,因此边长分别为a,b的两个正方形组成,因此边长为c 的正方形的面积等于边长为a,b的两个正方形的面积之和,即c²=a²+b².8.解这样做实际上得到了一个边长分别为3,4,5的三角形,因为3²+4²=5²,所以由直角三角形的判别条件可知该三角形是直角三角形.9.解:(1)面积为53个平方单位,可以构造一个直角三角形,斜边为AB,直角边长分别为2个单位和7个单位.由勾股定理,得AB²=2²+7²=53,即正方形的面积.(2)可利用5=2²+1²,10=3²+1²,13=2²+3²构造正方形(图略).10.解:(1)如图1-4-13所示.(2)所有正方形的面积和为4cm².(3)如果一直画下去,可以想象出是一幅丰富多彩的图形,如果取出图形的任意部分放大后与原图形形状相同.(4)若原直角三角形是等腰直角三角形,则这个图形是轴对称图形.11.解:(1)设梯子的顶端距底面xm(x>0),根据勾股定理,得x²+7²=25²,解得x=24,所以梯子的顶端距地面24m.(2)不是,设梯子底部在水平方向滑动ym(y>0),此时梯子顶端距地面24-4=20(m).由勾股定理,得20²+(7+y)²=25²,解得y=8.所以梯子底部在水平方向滑动了8m,而不是4m.12.解:将长方体展成平面图形,因为两点之间线段最短,所以所求的爬行距离就是线段AB的长度,线段AB的长度有3种可能,示意图如图1-4-14①②③所示,在图1-4-14①中,由勾股定理,得AB²=20²+15²=625=25²,所以AB=25;在图1-4-14②中,由勾股定理,得AB²=25²+10²=725;在图1-4-14③中,由勾股定理,得AB²=30²+5²=925.因为925>725>625,所以图1-4-14①中线段AB 的长度最短,为25,即蚂蚁需要爬行的最短路程为25.八年级数学上册课本习题答案北师大(二)第27页练习1.解:因为6²=36,所以36的算术平方根是6,即√36=6;因为(3/4)^2=9/16,所以9/16 的算术平方根是 3/4 即√(9/16)=3/4;因为(√17)^2=17所以17的算术水平根是√17,因为0.9²=0.81,所以0.81的算术平方根是0.9,即√0.81=0.9;因为(10-²)=10-⁴,所以10-⁴的算术平方根是10-²,即√(10-⁴)=10-².2.解:在Rt△ABC中,∠C=90°,由勾股定理,得AB²=AC²+BC²=5²+3²=34,所以AB=√34.3.解:在Rt△ABC中,∠B=90°,由勾股定理,得AB²=AC²-BC²=8²-6.4²=23.04,所以AB=√23.04=4.8(m).所以.帐篷支撑杆的高是4.8m.八年级数学上册课本习题答案北师大(三)第29页练习。
北师大版八年级上册数学书答案
北师大版八年级上册数学书答案这篇关于北师大版八年级上册数学书答案的文章,是特地为大家整理的,希望对大家有所帮助!13.1.1轴对称答案基础知识1~4:A;B;B;A5、①;不是轴对称图形6、王;中;田;甲;本、垂直平分线8、②①④③⑤能力提升9、10:2110、略探索研究11、∵AD=BD=CD,∴∠B=∠BAD,∠C=∠CAD,∵∠B+∠BAD+∠CAD+∠C=180°,∴∠B+∠C=90°,由翻折的性质得,∠C=∠ADC,由三角形的外角性质得,∠ADC=∠B+∠BAD=2∠B,∴∠B+2∠B=90°,解得∠B=30°13.1.2线段的垂直平分线的性质答案基础知识1~2:A;B3、垂直平分4、B’C;AB’;∠AB’C;60°5、△ABC全等于△ADC∠DCA=∠BCA∠DAC=∠BACDB垂直AC6、30°;60°15、证明:连结PA、PB、PC,∵AB、BC的垂直平分线相交与点P∴PA=PB,PB=PC∴PA=PC∴P点也在边AC的垂直平分线上能力提升8~9:C;D探索研究10、∵E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,∴DE=CE,OE=OE,在Rt△ODE与Rt△OCE中,DE=CE;OE=OE;∴Rt△ODE≌Rt△OCE,∴OD=OC,∵OD=OC,∴△DOC是等腰三角形,∵OE是∠AOB的平分线,∴OE是CD的垂直平分线13.2画轴对称图形第1课时答案基础知识1、D2、52°3、14、略直线MN是线段AA’,CC’,DD’的垂直平分线5、y=3,x=115°6、略、略能力提升8、略探索研究9、平移;旋转13.2画轴对称图形第2课时答案基础知识1~3:C;A;C4、-5或55、;6、1;2、2;3;-2;-38、;;;;长方形9、或10、;;;能力提升11、ABCD正方形12、略A²;B²;C²;D²探索研究13、可以找到对称点,A1,B1,C1,D1,顺次连接可得所求图形。
北师大版八年级上册数学课本答案
北师⼤版⼋年级上册数学课本答案
志⼠惜⽇短,愁⼈知夜长。
惜取⽇短。
认真努⼒做⼋年级数学课本的习题吧。
店铺为⼤家整理了北师⼤版⼋年级上册数学课本的答案,欢迎⼤家阅读!
北师⼤版⼋年级上册数学课本答案(⼀)
习题2.3
1:解(1)√49=7;(2) √(25/196)=5/14;(3) √0.09=0.3;(4)-√64=-8.
2.解:因为11²=121,所以121的算术平⽅根是11,即√121=11;因为(3/5)²=9/25,所以9/25 的算术平⽅根是3/5,即√(9/25)=3/5;因为1.4²=1.96,所以1.96的算术平⽅根是3/5,即√(9/25)=3/5;1.4²=1.96,所以1.96的算术平⽅根是1.4,即√1.96=1.4;因为(10³)²=10^6,所以√(〖10〗^6 )=10³.
3.解:设正⽅形的边长为x⾯积为a,由正⽅形的⾯积公式得x²=a.当正⽅形的⾯积变为原来的4倍时,则4a=4x²=(2x)²,所以它的边长变为原来的2倍.同理,当⾯积变为原来的9倍时,它的边长变为原来的3被;当⾯积变为原来的100倍时,它的边长变为原来的10倍;当⾯积为原来的n倍时,它的边长变为原来的√n 倍.
北师⼤版⼋年级上册数学课本答案(⼆)
习题2.5
北师⼤版⼋年级上册数学课本答案(三)
习题2.7。
北师大版八年级数学上册练习册(附答案)最新版
研发合作:313802968
北师大版八年级ㆍ 上册◇精品讲义
数 学
(精排打印版)
北师大版初中数学 八年级上册 精品讲义ㆍ精排打印版(含答案)
前言
行无私分享和上传的资 料。
声明:1.本文经过个人用心加工,版权所有,请勿另行上传;
北师大版初中数学 八年级上册 精品讲义第一章 勾股定理.................................................................................................................................... 1 1.1 探索勾股定理(1)................................................................................................................ 1 1.1 探索勾股定理(2)................................................................................................................ 4 1.1 探索勾股定理(3)................................................................................................................ 7 1.2 能得到直角三角形吗............................................................................................................ 10 1.3 蚂蚁怎样走最近.................................................................................................................... 13 单元综合评价...................................................................................................................是我下载了好几个付费文档,认 真排版整理而成的。
八年级数学上册《第三章 轴对称与坐标变化》练习题-含答案(北师大版)
八年级数学上册《第三章轴对称与坐标变化》练习题-含答案(北师大版)一、选择题1.在直角坐标系中,将点P(﹣3,2)向右平移4个单位长度,再向下平移6个单位长度后,得到的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限2.已知三角形的三个顶点坐标分别是(-1,4),(1,1),(-4,-1),现将这三个点先向右平移2个单位长度,再向上平移3个单位长度,则平移后三个顶点的坐标是()A.(-2,2),(3,4),(1,7)B.(-2,2),(4,3),(1,7)C.(2,2),(3,4),(1,7)D.(2,-2),(3,3),(1,7)3.将点A(﹣2,3)平移到点B(1,﹣2)处,正确的移法是()A.向右平移3个单位长度,向上平移5个单位长度B.向左平移3个单位长度,向下平移5个单位长度C.向右平移3个单位长度,向下平移5个单位长度D.向左平移3个单位长度,向上平移5个单位长度4.点M(1,2)关于x轴对称点的坐标为()A.(-1,-2)B.(-1,2)C.(1,-2)D.(2,-1)5.已知点P(1,﹣2),Q(﹣1,2), R (﹣1,﹣2),H(1,2),则下面选项中关于y轴对称的是( )A.P和QB.P和HC.Q和RD.P和R6.在直角坐标系中,点A(a,3)与点B(﹣4,b)关于y轴对称,则a+b的值是( )A.﹣7B.﹣1C.1D.77.已知点P(1,a)与Q(b,2)关于x轴成轴对称,则a﹣b的值为()A.﹣1B.1C.﹣3D.38.如图,在3×3的正方形网格中由四个格点A,B,C,D,以其中一点为原点,网格线所在直线为坐标轴,网格线所在直线为坐标轴,建立平面直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称,则原点是( )A.A点B.B点C.C点D.D点二、填空题9.在平面直角坐标系中,把点A(2,3)向左平移一个单位得到点A′,则点A′的坐标为________.10.已知点M(3,﹣2),将它先向左平移2个单位,再向上平移4个单位后得到点N,则点N的坐标是.11.点E(a,-5)与点F(-2,b)关于y轴对称,则a= ,b= .12.在平面直角坐标系中,点A的坐标是(﹣1,2),作点A关于y轴的对称点,得到点A′,再将点A′向下平移4个单位,得到点A″,则点A″的坐标是________.13.点A(a,b)和B关于x轴对称,而点B与点C(2,3)关于y轴对称,那么,ab=.14.如图,把平面内一条数轴x绕原点O逆时针旋转角θ(0°<θ<90°)得到另一条数轴y,x轴和y轴构成一个平面斜坐标系.规定:过点P作y轴的平行线,交x轴于点A,过点P作x 轴的平行线,交y轴于点B.若点A在x轴上对应的实数为a,点B在y轴上对应的实数为b,则称有序实数对(a,b)为点P的斜坐标.在某平面斜坐标系中,已知θ=60°,点M的斜坐标为(3,2),点N与点M关于y轴对称,则点N的斜坐标为________________.三、解答题15.如图,在平面直角坐标系中,三角形ABC的三个顶点分别为A(-1,-2),B(-2,-4),C(-4,-1).把三角形ABC向上平移3个单位长度后得到三角形A1B1C1,请画出三角形A1B1C1,并写出点B1的坐标.16.如图,在平面直角坐标系中,A(﹣1,5)、B(﹣1,0)、C(﹣4,3)。
初二(八年级)上册数学书练习题答案(北师大版)
初二(八年级)上册数学书练习题答案(北师大版)第一章实数1.1 实数的概念1. 实数包括哪些数?实数可以分为哪几类?答:实数包括有理数和无理数。
有理数可以进一步分为整数、分数和有限小数;无理数则包括无限不循环小数。
2. 如何判断一个数是有理数还是无理数?答:如果一个数可以表示为两个整数的比,即分数形式,那么它是有理数;否则,它是无理数。
1.2 实数的运算1. 如何进行实数的加减运算?答:实数的加减运算遵循交换律和结合律。
对于加法,同号相加取相同符号,异号相加取绝对值较大的符号,并用较大的绝对值减去较小的绝对值。
对于减法,可以将减法转换为加法,即减去一个数等于加上它的相反数。
2. 如何进行实数的乘除运算?答:实数的乘除运算也遵循交换律和结合律。
乘法中,同号相乘得正,异号相乘得负;除法中,除以一个数等于乘以它的倒数。
1.3 实数的应用1. 如何应用实数解决实际问题?答:实数在日常生活中有着广泛的应用,例如计算长度、面积、体积、质量等。
在解决实际问题时,需要将问题转化为数学模型,然后使用实数进行计算。
2. 实数在科学研究中有什么作用?答:实数是科学研究的基础,它用于描述物理量、化学量、生物量等。
在科学研究中,实数用于建立数学模型,进行实验数据的分析和处理。
第二章整式2.1 整式的概念1. 什么是整式?整式有哪些基本形式?答:整式是由常数和变量的乘积组成的代数式,其中变量的指数为非负整数。
整式的基本形式包括单项式和多项式。
2. 如何判断一个代数式是否为整式?答:如果一个代数式中只包含常数和变量的乘积,且变量的指数为非负整数,那么它是一个整式。
2.2 整式的运算1. 如何进行整式的加减运算?答:整式的加减运算遵循交换律和结合律。
对于加法,将同类项合并;对于减法,将减法转换为加法,即减去一个整式等于加上它的相反数。
2. 如何进行整式的乘除运算?答:整式的乘除运算也遵循交换律和结合律。
乘法中,将同类项相乘;除法中,将整式除以一个非零的整式,结果为商式和余式。
北师大版八年级数学上册 第一章 勾股定理--动点问题 练习(含答案)
《勾股定理--动点问题》一、单选题1.如图,在△ABC 中,AB =6,BC =8,∠B =90°,若P 是AC 上的一个动点,则AP+BP+CP 的最小值是( )A .14.8B .15C .15.2D .162.如图,Rt △ACB 中,∠ACB =90°,AB =25cm ,AC =7cm ,动点P 从点B 出发沿射线BC 以2cm/s 的速度运动,设运动时间为ts ,当△APB 为等腰三角形时,t 的值为( )A .62596或252B .252或24或12C .62596或24或12D .62596或252或243.如图,在四边形ABCD 中,∠B =∠D =90°,连接AC ,∠BAC =45°,∠CAD =30°,CD =2,点P 是四边形ABCD 边上的一个动点,若点P 到AC 的距离为3,则点P 的位置有( )A .4处B .3处C .2处D .1处4.如图,在等腰三角形ABC 中,AC =BC =5,AB =8,D 为底边上一动点(不与点A ,B 重合),DE ⊥AC ,DF ⊥BC ,垂足分别为E 、F ,则DE+DF =( )A .5B .8C .13D .4.85.已知Rt △BCE 和Rt △ADE 按如图方式摆放,∠A =∠B =90°,A 、E 、B 在一条直线上,AD =3,AE =4,EB =5,BC =12,M 是线段AD 上的动点,N 是线段BC 上的动点,MN 的长度不可能是( )A .9B .12C .14D .16二、填空题6.如图,已知∠AOM=45°,OA=2,点B是射线OM上的一个动点.当△AOB为等腰三角形时,线段OB的长度为 .7.如图,在△ABC中,已知AB=AC=6,BC=8,P是BC边上的一动点(P不与点B、C重合),∠B=∠APE,边PE与AC交于点D,当△APD为等腰三角形时,则PB的长为 .8.如图,在△ABC中,OA=4,OB=3,C点与A点关于直线OB对称,动点P、Q分别在线段AC、AB上(点P不与点A、C重合),满足∠BPQ=∠BAO.当△PQB为等腰三角形时,OP的长度是 .9.如图,在三角形△ABC中,∠A=45°,AB=8,CD为AB边上的高,CD=6,点P为边BC上的一动点,P1,P2分别为点P关于直线AB,AC的对称点,连接P1P2,则线段P1P2长度的取值范围是 .三、解答题10.如图,∠AOB=90°,点C在OA边上,OA=36cm,OB=12cm,点P从点A出发,沿着AO方向匀速运动,点Q同时从点B出发,以相同的速度沿BC方向匀速运动,P、Q两点恰好在C 点相遇,求BC的长度?11.如图,在Rt△ABC中,∠B=90°,AB=7cm,AC=25cm.点P从点A出发沿AB方向以1cm/s 的速度向终点B运动,点Q从点B出发沿BC方向以6cm/s的速度向终点C运动,P,Q两点同时出发,设点P的运动时间为t秒.(1)求BC的长;(2)当t=2时,求P,Q两点之间的距离;(3)当AP=CQ时,求t的值?12.如图,在Rt△ABC中,∠B=90°,AB=7cm,AC=25cm,点P从点A沿AB方向以1cm/s的速度运动至点B,点Q从点B沿BC方向以6cm/s的速度运动至点C,P、Q两点同时出发,设运动时间为t秒.(1)求BC的长;(2)运动几秒后,△PBQ是等腰三角形;(3)运动过程中,直线PQ能否平分△ABC的周长,若能,求出t的值,若不能,请说明理由.13.如图,在Rt△ABC中,∠C=90°,AB=10cm,AC=6cm,动点P从点B出发,以2cm/秒的速度沿BC移动至点C,设运动时间为t秒.(1)求BC的长;(2)在点P的运动过程中,是否存在某个时刻t,使得点P到边AB的距离与点P到点C的距离相等?若存在,求出t的值;若不存在,请说明理由.14.如图,已知△ABC中,∠B=90°,AB=16cm,BC=12cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,同时停止.(1)P、Q出发4秒后,求PQ的长;(2)当点Q在边BC上运动时,出发几秒钟后,△PQB能形成等腰三角形?(3)当点Q在边CA上运动时,出发几秒钟后,△CQB能形成直角三角形?15.某校机器人兴趣小组在如图所示的三角形场地上开展训练.已知:△ABC中,∠C=90°,AB=5,BC=3;机器人从点C出发,沿着△ABC边按C→B→A→C的方向匀速移动到点C停止;机器人移动速度为每秒1个单位,移动至拐角处调整方向需要0.5秒(即在B、A处拐弯时分别用时0.5秒).设机器人所用时间为t秒时,其所在位置用点P表示(机器人大小不计).(1)点C到AB边的距离是 ;(2)是否存在这样的时刻,使△PBC为等腰三角形?若存在,求出t的值;若不存在,请说明理由.16.如图1,Rt△ABC中,AC⊥CB,AC=15,AB=25,点D为斜边上动点.(1)如图2,过点D作DE⊥AB交CB于点E,连接AE,当AE平分∠CAB时,求CE;(2)如图3,在点D的运动过程中,连接CD,若△ACD为等腰三角形,求AD.17.如图,△ABC中,∠C=90°,AB=10cm,BC=6cm,若动点P从点C开始,按C→A→B→C 的路径运动,且速度为每秒1cm,设出发的时间为t秒.(1)出发2秒后,求△ABP的周长;(2)当t为几秒时,BP平分∠ABC;(3)问t为何值时,△BCP为等腰三角形?18.如图,已知在Rt△ABC中,∠ACB=90°,AC=8,BC=16,D是AC上的一点,CD=3,点P从B点出发沿射线BC方向以每秒2个单位的速度向右运动.设点P的运动时间为t.连接AP.(1)当t=3秒时,求AP的长度(结果保留根号);(2)当△ABP为等腰三角形时,求t的值;(3)过点D作DE⊥AP于点E.在点P的运动过程中,当t为何值时,能使DE=CD?个单位长度的速度运动.设点P的运动时间为t秒(t>0).(1)求AC的长及斜边AB上的高;(2)①当点P在AC延长线上运动时,CP的长为 ;(用含t的代数式表示)②若点P在∠ABC的角平分线上,则t的值为 ;(3)在整个运动中,直接写出△ABP是等腰三角形时t的值.度的速度沿折线A﹣B﹣C运动.设点P的运动时间为t秒(t>0).(1)求AC的长.(2)求斜边AB上的高.(3)①当点P在BC上时,PC的长为 .(用含t的代数式表示)②若点P在∠BAC的角平分线上,则t的值为 .(4)在整个运动过程中,直接写出△PBC是等腰三角形时t的值.答案一、单选题1.【思路点拨】利用勾股定理求出AC,根据垂线段最短,求出BP的最小值即可解决问题.【解题过程】解:∵∠B=90°,AB=6,BC=8,∴AC=AB2+BC2=62+82=10,∵AP+BP+PC=BP+AC=BP+10,根据垂线段最短可知,当BP⊥AC时,BP的值最小,最小值BP=AB⋅BCAC =245= 4.8,∴AP+BP+CP的最小值=10+4.8=14.8,故选:A.2.【思路点拨】当△ABP为等腰三角形时,分三种情况:①当AB=BP时;②当AB=AP时;③当BP=AP时,分别求出BP的长度,继而可求得t值.【解题过程】解:∵∠C=90°,AB=25cm,AC=7cm,∴BC=24cm.①当BP=BA=25时,∴t=252.②当AB=AP时,BP=2BC=48cm,∴t=24.③当PB=PA时,PB=PA=2t cm,CP=(24﹣2t)cm,AC=7cm,在Rt△ACP中,AP2=AC2+CP2,∴(2t)2=72+(24﹣2t)2,解得t=62596.综上,当△ABP为等腰三角形时,t=252或24或62596,3.【思路点拨】根据勾股定理,可以求得AC、AD、BC和AB的长,然后即可得到点D到AC的距离和点B到AC 的距离,从而可以得到满足条件的点P有几处,本题得以解决.【解题过程】解:∵∠CAD=30°,CD=2,∠D=90°,∴AC=4,AD=AC2−C D2=42−22=23,∴在Rt△ADC中,斜边AC上的高是:AD⋅CDAC =23×24=3,∵AC=4,∠B=90°,∠BAC=45°,∴AB=BC=22,∴在Rt△ABC中,斜边AC上的高是:BC⋅ABAC =22×224=2,∵3<2,点P是四边形ABCD边上的一个动点,点P到AC的距离为3,∴点P的位置在点D处,或者边BC上或者边AB上,即满足条件的点P有3处,故选:B.4.【思路点拨】连接CD,过C点作底边AB上的高CG,根据S△ABC=S△ACD+S△DCB不难求得DE+DF的值.【解题过程】解:连接CD,过C点作底边AB上的高CG,∵AC=BC=5,AB=8,∴BG=4,CG=BC2−B G2=52−42=3,∵S△ABC=S△ACD+S△DCB,∴AB•CG=AC•DE+BC•DF,∴8×3=5×(DE+DF)∴DE+DF=4.8.故选:D.5.【思路点拨】根据已知条件易求AB=9,AD∥BC,再确定MN的最大值及最小值可求出MN的取值范围,进而可求解.【解题过程】解:∵AE=4,EB=5,∴AB=AE+EB=4+5=9,∵∠DAE=∠B=90°,∴∠DAE+∠B=180°,∴AD∥BC,当M点与A点重合,N点与C点重合时,如图,∵∠B=90°,BC=12,∴MN=AB2+BC2=92+122=15;当M点与A点重合,N点与B点重合时,如图,MN=AB=9,∴9≤MN≤15,∴MN的长度不可能是16,故选:D.二、填空题6.【思路点拨】分三种情况,当OB=AB,OA=AB,OA=OB时,由等腰三角形的性质可求出答案.【解题过程】解:当△AOB为等腰三角形时,分三种情况:①如图,OB=AB,∴∠O=∠OAB,∵∠AOM=45°,∴∠ABO=90°,∴OB=1;②如图,OA=OB=2;③如图,OA=AB,∴∠O=∠ABO=45°,∴∠A=90°,∴OB=OA2+AB2=2+2=2.综上所述,OB的长为1或2或2.故答案为:1或2或2.7.【思路点拨】需要分类讨论:①当AP=PD时,易得△ABP≌△PCD.②当AD=PD时,根据等腰三角形的性质,勾股定理以及三角形的面积公式求得答案.③当AD=AP时,点P与点B重合.【解题过程】解:①当AP=PD时,则△ABP≌△PCD,则PC=AB=6,故PB=2.②当AD=PD时,∴∠PAD=∠APD,∵∠B=∠APD=∠C,∴∠PAD=∠C,∴PA=PC,过A作AG⊥BC于G,∴CG=4,∴AG=AC2−C G2=62−42=25,过P作PH⊥AC于H,∴CH=3,设PC=x,∴S△APC=12AG•PC=12AC•PH,∴5x=3×PH,x,∴PH=53∵PC2=PH2+CH2,∴x2=(5x)2+9,3(负值舍去),解得:x=92∴PC=9,2∴PB=7;2③当AD=AP时,点P与点B重合,不合题意..综上所述,PB的长为2或72故答案为:2或7.28.【思路点拨】分为三种情况:①PQ=BP,②BQ=QP,③BQ=BP,由等腰三角形的性质和勾股定理即可求解.【解题过程】解:∵OA=8,OB=6,C点与A点关于直线OB对称,∴BC=AB=42+32=5,分为3种情况:①当PB=PQ时,∵C点与A点关于直线OB对称,∴∠BAO=∠BCO,∵∠BPQ=∠BAO,∴∠BPQ=∠BCO,∵∠APB=∠APQ+∠BPQ=∠BCO+∠CBP,∴∠APQ=∠CBP,在△APQ与△CBP中,{∠QAP=∠PCB∠APQ=∠CBP,QP=PB∴△APQ≌△CBP(AAS),∴PA=BC,此时OP=5﹣4=1;②当BQ=BP时,∠BPQ=∠BQP,∵∠BPQ=∠BAO,∴∠BAO=∠BQP,根据三角形外角性质得:∠BQP>∠BAO,∴这种情况不存在;③当QB=QP时,∠QBP=∠BPQ=∠BAO,∴PB=PA,设OP=x,则PB=PA=4﹣x,在Rt△OBP中,PB2=OP2+OB2,∴(4﹣x)2=x2+32,解得:x=7;8∵点P在AC上,∴点P在点O左边,此时OP=7.8.∴当△PQB为等腰三角形时,OP的长度是1或78故答案为:1或7.89.【思路点拨】如图,连接AP1,AP,AP2,作AH⊥BC于H.证明△P1AP2是等腰直角三角形,推出P1P2=2 PA,求出PA的取值范围即可解决问题.【解题过程】解:如图,连接AP1,AP,AP2,作AH⊥BC于H.∵P1,P2分别为点P关于直线AB,AC的对称点,∴AP=AP1=AP2,∠PAB=∠BAP1,∠PAC=∠CAP2,∵∠BAC=45°,∴∠P1AP2是等腰直角三角形,∴P1P2=2AP2=2PA.∵CD⊥AB,∴∠ADC=90°,∠DAC=∠DCA=45°,∴AD=DC=6,∴AC=62>AB,∵AB=8,∴BD=2,BC=BD2+CD2=4+36=210,∵S△ABC=12•BC•AH=12•AB•CD,∴AH=8×6210=12510,∵12105≤PA≤62,∴2455≤P1P2≤12.故答案为2455≤P1P2≤12.三、解答题10.解:∵点P、Q同时出发,且速度相同,∴BC=CA,设BC=xcm,则CA=xcm,∵OA=36cm∴OC=(36﹣x)cm,∵∠AOB=90°∴OB2+OC2=BC2,∴122+(36﹣x)2=x2,解得:x=20,∴BC=20cm.11.解:(1)在Rt△ABC中,∠B=90°,AB=7cm,AC=25cm,∴BC=AC2−A B2=24cm.(2)如图,连接PQ,BP=7﹣2=5,BQ=6×2=12,在直角△BPQ中,由勾股定理得到:PQ=BP2+BQ2=13(cm);(3)设t秒后,AP=CQ.则t=24﹣6t,.解得 t=247秒,AP=CQ.答:P、Q两点运动24712.解:(1)由勾股定理得,BC=AC2−A B2=252−72=24(cm);(2)∵△PBQ是等腰三角形,∠B=90°,∴BP=BQ,则7﹣1×t=6t,解得t=1,∴运动1秒后,△PBQ是等腰三角形;(3)假设直线PQ能平分△ABC的周长,则BP+BQ=12(AB+BC+AC)=12(7+24+25)=28(cm),则7﹣1×t+6t=28,解得t=215,当t=215时,点Q的运动路程为6×215=25.2>24,∴直线PQ不能平分△ABC的周长.13.解:(1)在Rt△ABC中,由勾股定理得:BC=AB2−A C2=102−62=8(cm);(2)存在,理由如下:如图,当点P恰好运动到∠BAC平分线上时,点P到直线AB的距离与点P到点C的距离相等,由已知可得:BP=2tcm,PC=BC﹣BP=(8﹣2t)cm,连接AP,过点P作PE⊥AB于E,如图所示:则PE=PC=(8﹣2t)cm,在△AEP与△ACP中,{∠PAE=∠PAC∠AEP=∠C=90°AP=AP,∴△AEP≌△ACP(AAS),∴AE=AC=6cm,∴BE=AB﹣AE=10﹣6=4(cm),在Rt△BEP中,由勾股定理得:BP2=BE2+PE2,即(2t)2=42+(8﹣2t)2,解得:t=52,即当t的值为52时,点P到边AB的距离与点P到点C的距离相等.14.解:(1)∵运动时间为4秒,∴BQ=2×4=8(cm),BP=AB﹣AP=16﹣1×4=12(cm),在Rt△PQB中,根据勾股定理得:PQ=BQ2+BP2=82+122=413(cm);(2)设运动时间为t秒,则BQ=2t(cm),BP=(16﹣t)(cm),根据题意得:2t=16﹣t,解得:t=163,即出发163秒钟后,△PQB能形成等腰三角形;(3)当点Q在CA边上,且△CQB形成直角三角形时,过点B作CA的垂线,垂足即为点Q.在Rt△ABC中,根据勾股定理得:AC=AB2+BC2=162+122=20(cm),根据三角形面积公式可得:BQ=AB⋅BCAC =12×1620=485(cm),在Rt△BCQ中,根据勾股定理得:CQ=BC2−B Q2=122−(485)2=365(cm),(12+365)÷2=9.6(秒),当点Q运动到点A时,△CQB也形成直角三角形,(12+20)÷2=16(秒).∴当点Q在边CA上运动时,出发9.6或16秒钟后,△CQB能形成直角三角形.15.解:(1)△ABC中,∠C=90°,∴AB2=AC2+BC2,∵AB=5,BC=3,∵52=AC2+32,∴AC=4,∴点C到AB边的距离=AC⋅BCAB =3×45= 2.4;故答案为:2.4;(2)存在,使△PBC为等腰三角形时,P在AB上或在AC上,当P在AB上时,①BC=BP,如图1,∵BP=t﹣0.5﹣3,∴t﹣0.5﹣3=3,解得:t=6.5;②CB=CP,如图2,过点C作CD⊥AB于D,则BD=PD,由(1)知:CD=2.4,∵BC=3,∴BD=32−2.42=1.8,∴BP=3.6,∴t=3.6+3+0.5=7.1;③PB=CP,如图3,∴∠B=∠PCB,∵∠ACP+∠PCB=∠A+∠B=90°,∴∠ACP=∠A,∴AP=CP=BP=2.5,∴t=2.5+0.5+3=6;当P在AC上,如图4,CB=CP=3,∴t=3+5+0.5+0.5+4﹣3=10.综上所述,t的值为6.5或7.1或6或10.16.解:(1)∵AC⊥CB,AC=15,AB=25∴BC=20,∵AE平分∠CAB,∴∠EAC=∠EAD,∵AC⊥CB,DE⊥AB,∴∠EDA=∠ECA=90°,∵AE=AE,∴△ACE≌△ADE(AAS),∴CE=DE,AC=AD=15,设CE=x,则BE=20﹣x,BD=25﹣15=10在Rt△BED中∴x2+102=(20﹣x)2,∴x=7.5,∴CE=7.5.(2)①当AD=AC时,△ACD为等腰三角形∵AC=15,∴AD=AC=15.②当CD=AD时,△ACD为等腰三角形∵CD=AD,∴∠DCA=∠CAD,∵∠CAB+∠B=90°,∠DCA+∠BCD=90°,∴∠B=∠BCD,∴BD=CD,∴CD=BD=DA=12.5,③当CD=AC时,△ACD为等腰三角形,如图1中,作CH⊥BA于点H,则12•AB•CH=12•AC•BC,∵AC=15,BC=20,AB=25,∴CH=12,在Rt△ACH中,AH=AC2−C H2=9,∵CD=AC,CH⊥BA,∴DH=HA=9,∴AD=18.17.解:(1)∵∠C=90°,AB=10cm,BC=6cm,∴有勾股定理得AC=8cm,动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm∴出发2秒后,则CP=2cm,那么AP=6cm.∵∠C=90°,∴由勾股定理得PB=210cm∴△ABP的周长为:AP+PB+AB=6+10+210=(16+210)cm;(2)如图2所示,过点P作PD⊥AB于点D,∵BP平分∠ABC,∴PD=PC.在Rt△BPD与Rt△BPC中,{PD=PCBP=BP,∴Rt△BPD≌Rt△BPC(HL),∴BD=BC=6 cm,∴AD=10﹣6=4 cm.设PC=x cm,则PA=(8﹣x)cm在Rt△APD中,PD2+AD2=PA2,即x2+42=(8﹣x)2,解得:x=3,∴当t=3秒时,AP平分∠CAB;(3)若P在边AC上时,BC=CP=6cm,此时用的时间为6s,△BCP为等腰三角形;若P在AB边上时,有两种情况:①若使BP=CB=6cm,此时AP=4cm,P运动的路程为12cm,所以用的时间为12s,故t=12s时△BCP为等腰三角形;②若CP=BC=6cm,过C作斜边AB的高,根据面积法求得高为4.8cm,根据勾股定理求得BP=7.2cm,所以P运动的路程为18﹣7.2=10.8cm,∴t的时间为10.8s,△BCP为等腰三角形;③若BP=CP时,则∠PCB=∠PBC,∵∠ACP+∠BCP=90°,∠PBC+∠CAP=90°,∴∠ACP=∠CAP,∴PA=PC ∴PA=PB=5cm∴P的路程为13cm,所以时间为13s时,△BCP为等腰三角形.∴t=6s或13s或12s或 10.8s 时△BCP为等腰三角形.18.解:(1)根据题意,得BP=2t,PC=16﹣2t=16﹣2×3=10,AC=8,在Rt△APC中,根据勾股定理,得AP=AC2+PC2=164=241.答:AP的长为241.(2)在Rt△ABC中,AC=8,BC=16,根据勾股定理,得AB=64+256=320=85若BA=BP,则 2t=85,解得t=45;若AB=AP,则BP=32,2t=32,解得t=16;若PA=PB,则(2t)2=(16﹣2t)2+82,解得t=5.答:当△ABP为等腰三角形时,t的值为45、16、5.(3)①点P在线段BC上时,过点D作DE⊥AP于E,如图1所示:则∠AED=∠PED=90°,∴∠PED=∠ACB=90°,∴PD平分∠APC,∴∠EPD=∠CPD,又∵PD=PD,∴△PDE≌△PDC(AAS),∴ED=CD=3,PE=PC=16﹣2t,∴AD=AC﹣CD=8﹣3=5,∴AE=4,∴AP=AE+PE=4+16﹣2t=20﹣2t,在Rt△APC中,由勾股定理得:82+(16﹣2t)2=(20﹣2t)2,解得:t=5;②点P在线段BC的延长线上时,过点D作DE⊥AP于E,如图2所示:同①得:△PDE≌△PDC(AAS),∴ED=CD=3,PE=PC=2t﹣16,∴AD=AC﹣CD=8﹣3=5,∴AE=4,∴AP=AE+PE=4+2t﹣16=2t﹣12,在Rt△APC中,由勾股定理得:82+(2t﹣16)2=(2t﹣12)2,解得:t=11;综上所述,在点P的运动过程中,当t的值为5或11时,能使DE=CD.19.解:(1)在△ABC中,∠ACB=90°,AB=5,BC=3,由勾股定理得:AC=4.设斜边AB上的高为h,∵12AB•h=12AC•BC,∴5h=3×4,∴h=2.4.∴AC的长为4,斜边AB上的高为2.4;(2)已知点P从点A出发,以每秒2个单位长度的速度沿折线A﹣C﹣B﹣A运动,①当点P在CB上时,点P运动的长度为:AC+CP=2t,∵AC=4,∴CP=2t﹣AC=2t﹣4.故答案为:2t﹣4.②若点P在∠ABC的角平分线上,则:设PM=PC=y,则AP=4﹣y,在Rt△APM中,AM2+PM2=AP2,∴22+y2=(4﹣y)2,解得y=32,(4−32)÷2=54,即若点P在∠ABC的角平分线上,则t的值为54.故答案为:54.(3)当AB作为底边时,如图所示:∵APAM =AP2.5=54,∴AP=3.125,此时t=3.125÷2=1.5625;当AB作为腰时,如图所示:AP1=AB=5,此时t=5÷2=2.5;AP2=2AC=8,此时t=4,综上,t的值为1.5625或2.5或4.20.解:(1)∵在△ABC中,∠ACB=90°,AB=10,BC=6,∴AC=AB2−B C2=102−62=8;(2)设边AB上的高为h则S△ABC =12AC⋅BC=12AB⋅h,∴12×6×8=12×10⋅h,∴h=245,答:斜边AB上的高为245;(3)①当点P在BC上时,点P运动的长度为AB+BP=2t,则PC=BC﹣BP=6﹣(2t﹣10)=6﹣2t+10=16﹣2t;②当点P'在∠BAC的角平分线上时,过点P作PD⊥AB,如图:∵AP平分∠BAC,PC⊥AC,PD⊥AB,∴PD=PC,有①知,PC=16﹣2t,BP=2t﹣10,∴PD=16﹣2t,在Rt△ACP和Rt△ADP中,{AP=APPD=PC,∴Rt△ACP≌Rt△ADP(HL),∴AD=AC=8,又∵AB=10,∴BD=2,在Rt△BDP中,由勾股定理得:22+(16﹣2t)2=(2t﹣10)2,解得:t=20.3.故答案为:①16﹣2t;②203(4)由图可知,当△BCP是等腰三角形时,点P必在线段AB上,①当点P在线段AB上时,若BC=BP,则点P运动的长度为AP=2t,∵AP=AB﹣BP=10﹣6=4,∴2t=4,∴t=2;②若PC=BC,如图,过点C作CH⊥AB于点H,则BP=2BH,在△ABC中,∠ACB=90°,AB=10,BC=6,AC=8,∴AB•CH=AC•BC,∴10CH=8×6,∴CH=245,在Rt△BCH中,由勾股定理得:BH=BC2−C H2=62−(245)2=185= 3.6,∴BP=2BH=7.2,∴点P运动的长度为:AP=AB﹣BP=10﹣7.2=2.8,∴2t=2.8,∴t=1.4;③若PC=PB,如图所示,过点P作PQ⊥BC于点Q,则BQ=CQ=12×BC=3,∠PQB=90°,∴∠ACB=∠PQB=90°,∴PQ∥AC,∴PQ为△ABC的中位线,∴PQ=12×AC=12×8=4,在Rt△BPQ中,由勾股定理得:BP=BQ2+PQ2=32+42=5,点P运动的长度为AP=2t,AP=AB﹣BP=10﹣5=5,∴2t=5,∴t=2.5.综上,t的值为1.4或2或2.5.。
北师大版 八年级 数学上册答案
参考答案与解析第一章勾股定理1探索勾股定理第1课时探索勾股定理1.C 2.17 3.2.5m4.解:(1)在Rt△ABC中,AB2=BC2-AC2=172-82=225,∴AB=15cm.(2)S阴影=15×3=45(cm2).5.解:在Rt△ABC中,∵AC=12,BC=5,∴AB2=AC2+BC2=122+52=169,∴AB=13.∵S△ABC=12AC·BC=12AB·CD,∴12×12×5=12×13×CD,∴CD=6013.第2课时验证勾股定理及其简单应用1.C 2.D3.解:由题意可知OA=OB=5m,BC=3m.在Rt△OBC中,OC2=OB2-BC2=52-32=16,∴OC=4cm,∴AC=OA-OC=5-4=1(m).答:小丽上升的高度AC为1m.4.解:在Rt△ABC中,∵AB=6km,BC=8km,∴AC2=AB2+BC2=36+64=100,∴AC=10km.∵可疑船只的行驶速度为40km/h,∴可疑船只的行驶时间为8÷40=0.2(h),∴我边防海警船的速度为10÷0.2=50(km/h).答:我边防海警船的速度为50km/h时,才能恰好在C处将可疑船只截住.2一定是直角三角形吗1.D 2.B 3.B 4.等腰直角三角形 5.606.解:(1)101020(2)∵AB2+BC2=10+10=20=AC2,∴△ABC是直角三角形.3勾股定理的应用1.C 2.B 3.A4.解:如图,连接AB.由题意得CB=12×60=30cm,AC=40cm,∴AB2=AC2+BC2=2500,∴AB=50cm.12答:蚂蚁爬行的最短路程是50cm.第二章 实 数 1 认识无理数1.D 2.D 3.A 4.25.有理数:|+5|,-789,0.01·8·,3.1415926,0,-5%,223;无理数:π,3.6161161116…,π3.6.解:(1)它的周长l =2π是无理数.理由如下:2π是无限不循环小数. (2)l =2π≈6.28≈6.3.2 平方根第1课时 算术平方根1.A 2.D 3.D 4.0.9m 5.10 6.解:(1)0.25=0.5. (2)13. (3)⎝⎛⎭⎫-382=38. (4)179=43. 7.解:100000÷40=2500(cm 2),2500=50(cm),故底面边长应是50cm.第2课时 平方根1.C 2.B 3.256 4.(1)3.1 (2)85.解:(1)25的平方根是±5. (2)1681的平方根是±49. (3)0.16的平方根是±0.4.3(4)(-2)2的平方根是±2.6.解:由题意得2x +1+x -7=0,解得x =2,∴2x +1=5,x -7=-5,∴这个正数为25.3 立方根1.C 2.D 3.5 4.-2 5.解:(1)3-164=-14. (2)30.001=0.1. (3)-3(-7)3=7.6.解:∵3x +1的平方根是±4,∴3x +1=16,解得x =5,∴9x +19=64,∴9x +19的立方根是4.7.解:∵第一个立方体纸盒的体积是63=216(cm 3),∴第二个立方体纸盒的体积是216+127=343(cm 3),∴第二个立方体纸盒的棱长为3343=7(cm).答:第二个立方体纸盒的棱长为7cm.4 估 算1.C 2.B 3.2 4.<5 用计算器开方1.C 2.1.3 3.9.824.解:(1)∵正方形的面积为3平方米,∴边长为3米.如果精确到十分位,正方形的边长约为1.7米.(2)如果精确到百分位,正方形的边长约为1.73米.6 实 数1.A 2.D 3.P4.解:(1)原式=2+3-2=3. (2)原式=2-1-3+1=2-3.5.解:如图,A :-145,B :3,C :2,D :π,E :0.4-145<0<3<2<π. 7 二次根式第1课时 二次根式及其性质1.B 2.A 3.B 4.C 5.336.(1)59 (2)32 (3)747.解:(1)原式=25 3. (2)原式=4 6.第2课时 二次根式的运算1.A 2.C 3.B 4.B 5.B 6.解:(1)原式=3-5=-2. (2)原式=43+123=16 3. (3)原式=5-2 2.(4)原式=3-23+1-2=2-2 3.第3课时 二次根式的混合运算1.D 2.D 3.C4.解:(1)原式=(203+23-183)÷3=4. (2)原式=12-43+1+3-4=12-4 3. (3)原式=1+5-2-1-5=-2. (4)原式=2+2-2=2.第三章 位置与坐标1 确定位置1.B 2.B 3.D 4.B 5.(D ,6) 6.解:(1)(2,4) (5,1) (5,4) (2)秋千的位置如图所示.52 平面直角坐标系第1课时 平面直角坐标系1.B 2.D 3.D 4.3 135.解:(1)如图所示.(2)M (5,1),N (-3,-4),P (0,-2).第2课时 平面直角坐标系中点的坐标特点1.B 2.A 3.B 4.B 5.D 6.解:(1)如图,△ABC 即为所求.(2)如图,过点C 向x 轴、y 轴作垂线,垂足分别为D 、E .则S 四边形DOEC =3×4=12,S △BCD =12×2×3=3,S △ACE =12×2×4=4,S △AOB =12×2×1=1,∴S △ABC =S 四边形DOEC -S △ACE -S △BCD-S △AOB =12-4-3-1=4.第3课时 建立平面直角坐标系描述图形的位置1.B 2.A 3.D64.解:建立平面直角坐标系如图所示.A 点的坐标为(3,-2),B 点的坐标为(3,2),D 点的坐标为(-3,-2).3 轴对称与坐标变化1.A 2.D 3.C 4.A 5.y 轴 6.解:(1)△A1B 1C 1如图所示.(2)点C 1的坐标为(4,3).(3)S △ABC =3×5-12×3×2-12×3×1-12×2×5=112.第四章 一次函数1 函 数1.D 2.B 3.B 4.y =12-4x5.解:(1)y 与x 之间的函数关系式为y =30+10x .(2)当x =20时,y =30+10×20=230,即门票的总费用为230元.2 一次函数与正比例函数1.B 2.A 3.B 4.D 5.y =5-0.8x 6.解:(1)依题意可得s =520-80t .(2)依题意有当t =4时,s =520-80×4=200.即当行驶时间为4h 时,汽车距乙地的路程为200km.73 一次函数的图象第1课时 正比例函数的图象和性质1.B 2.A 3.B4.解:当x =0时,y =0;当x=2时,y =1.画出函数图象如图所示.(1)当x =4时,y =12×4=2,∴点(4,2)在该正比例函数的图象上;当x =-2时,y =12×(-2)=-1,∴点(-2,-2)不在该正比例函数的图象上.(2)y 的值随x 值的增大而增大.5.解:∵y =(2-m )x |m -2|是正比例函数,∴|m -2|=1,∴m =1或3.又∵y 随x 的增大而减小,∴2-m <0,∴m 只能取3.即m 的值为3.第2课时 一次函数的图象和性质1.D 2.A 3.A 4.D5.解:(1)∵y 随x 的增大而增大,∴m +2>0,∴m >-2.(2)由图象经过原点可知此函数是正比例函数,因此m +2≠0且3-n =0,解得m ≠-2,n =3.即当m ≠-2,n =3时,函数图象经过原点.4 一次函数的应用第1课时 确定一次函数的表达式1.A 2.A 3.C 4.y =-12x +25.解:(1)将A (0,3)与B (1,5)代入y =kx +b 中,得b =3,k +b =5,解得k =2,∴这个函数的表达式为y =2x +3.(2)由(1)得y =2x +3,将x =-3代入得y =2×(-3)+3=-3.第2课时 单个一次函数图象的应用1.B 2.C 3.C 4.x =25.解:由图象可得,当x =40时,y =140,∴140=4×40+b ,解得b =-20,∴当x =20时,y =4×20-20=60.即当工人生产的件数为20件时,每名工人每天获得的薪金为60元.8第3课时 两个一次函数图象的应用1.A 2.D 3.10 l 2 20 3米/秒4.解:(1)由图象可知小强让爷爷先出发60米. (2)山顶离山脚的距离为300米;小强先爬上山顶. (3)根据函数图象可得小强经过8分钟追上爷爷.第五章 二元一次方程组 1 认识二元一次方程组1.B 2.D 3.A 4.C5.解:(1)由题意得⎩⎪⎨⎪⎧2x +3y =380,4x +2y =360.(2)⎩⎪⎨⎪⎧x =40,y =100是(1)中列出的二元一次方程组的解. 2 求解二元一次方程组第1课时 代入法1.B 2.C 3.① y =3x -5 ②4.解:(1)⎩⎪⎨⎪⎧y =x +2①,4x +3y =13②,将①代入②,得4x +3x +6=13,解得x =1.把x =1代入①,得y =3,所以原方程组的解为⎩⎪⎨⎪⎧x =1,y =3.(2)⎩⎪⎨⎪⎧3x +2y =19①,2x -y =1②,由②得y =2x -1③.把③代入①,得3x +2(2x -1)=19,解得x =3.把x =3代入③,得y =5,所以原方程组的解是⎩⎪⎨⎪⎧x =3,y =5.5.解:∵|x +y -3|+(x -2y )2=0,∴⎩⎪⎨⎪⎧x +y -3=0①,x -2y =0②,由②得x =2y ③,把③代入①得2y +y -3=0,解得y =1.把y =1代入③,得x =2,∴⎩⎪⎨⎪⎧x =2,y =1.第2课时 加减法1.D 2.A 3.D94.解:(1)⎩⎪⎨⎪⎧x +y =2①,6x -y =5②,①+②,得7x =7,解得x =1.将x =1代入①,得1+y =2,解得y =1,∴原方程组的解为⎩⎪⎨⎪⎧x =1,y =1.(2)⎩⎪⎨⎪⎧x +2y =5①,x +y =2②,①-②,得y =3.将y =3代入②,得x =-1,∴原方程组的解为⎩⎪⎨⎪⎧x =-1,y =3. (3)⎩⎪⎨⎪⎧2x +y =2①,3x -2y =10②,①×2,得4x +2y =4③,②+③,得7x =14,解得x =2.将x =2代入①,得4+y =2,解得y =-2,∴原方程组的解为⎩⎪⎨⎪⎧x =2,y =-2.(4)⎩⎪⎨⎪⎧3x -4y =14①,2x -3y =3②,①×2-②×3,得2(3x -4y )-3(2x -3y )=14×2-3×3,解得y =19.把y =19代入②,得x =30,∴原方程组的解为⎩⎪⎨⎪⎧x =30,y =19.3 应用二元一次方程组——鸡兔同笼1.C 2.C3.解:设这个笼中的鸡有x 只,兔有y 只,根据题意得⎩⎪⎨⎪⎧x +y =30,2x +4y =84,解得⎩⎪⎨⎪⎧x =18,y =12.答:笼子里鸡有18只,兔有12只.4.解:设小明今年的年龄是x 岁,他奶奶今年的年龄是y 岁,根据题意得⎩⎪⎨⎪⎧5x =y ,3(x +12)=y +12,解得⎩⎪⎨⎪⎧x =12,y =60. 答:小明今年的年龄是12岁,他奶奶今年的年龄是60岁.4 应用二元一次方程组——增收节支1.C 2.D 3.⎩⎪⎨⎪⎧x +3y =55,2x +2y =904.解:设捐款2元的有x 名同学,捐款3元的有y 名同学,由题意可得⎩⎪⎨⎪⎧x +y =40-6-7,2x +3y =100-1×6-4×7,化简得⎩⎪⎨⎪⎧x +y =27,2x +3y =66,解得⎩⎪⎨⎪⎧x =15,y =12. 答:捐款2元的有15名同学,捐款3元的有12名同学.105 应用二元一次方程组——里程碑上的数1.C 2.D 3.954.解:设大客车每小时行x 千米,小轿车每小时行y 千米,由题意得⎩⎪⎨⎪⎧y -x =20,6y +4x =880,解得⎩⎪⎨⎪⎧x =76,y =96. 答:大客车每小时行76千米,小轿车每小时行96千米.6 二元一次方程与一次函数1.D 2.y =5-2x 3.⎩⎪⎨⎪⎧x =3,y =2 4.⎩⎪⎨⎪⎧x =1,y =25.解:如图,两个函数图象的交点坐标是(-1,-4),则由图象可得原方程组的解为⎩⎪⎨⎪⎧x=-1,y =-4.6.解:(1)方程组⎩⎪⎨⎪⎧ax -y =5,2x -y =-b 的解是⎩⎪⎨⎪⎧x =1,y =-2. (2)将A (1,-2)代入y =ax -5,得a -5=-2,解得a =3;将A (1,-2)代入y =2x +b ,得2+b =-2,解得b =-4.7 用二元一次方程组确定一次函数表达式1.D 2.C 3.y =x -5 4.y =200x +3005.解:(1)设y 与x 之间的函数关系式为y =kx +b .∵图象过(50,10),(40,0)两点,∴⎩⎪⎨⎪⎧10=50k +b ,0=40k +b ,解得⎩⎪⎨⎪⎧k =1,b =-40,∴行李费y (元)与行李质量x (千克)之间的函数关系式为y =x -40.(2)当x =60时,y =60-40=20.故当旅客携带60千克行李时,需付行李费20元.*8 三元一次方程组1.B 2.A 3.D 4.C115.解:⎩⎪⎨⎪⎧x +y =1①,y +z =5②,z +x =6③,①+②+③得2x +2y +2z =12,x +y +z =6④,④-①得z =5,④-②得x =1,④-③得y =0,∴原方程组的解为⎩⎪⎨⎪⎧x =1,y =0,z =5.第六章 数据的分析1 平均数第1课时 平均数1.B 2.C 3.B 4.935.解:(1)x 甲=(83+79+90)÷3=84(分),x 乙=(85+80+75)÷3=80(分),x 丙=(80+90+73)÷3=81(分).从高到低确定三名应聘者的排名顺序为甲、丙、乙.(2)∵该公司规定:笔试、面试、体能得分分别不得低于80分、80分、70分,∴甲淘汰;乙的成绩为85×60%+80×30%+75×10%=82.5(分),丙的成绩为80×60%+90×30%+73×10%=82.3(分),∴乙将被录用.第2课时 加权平均数的应用1.87分2.解:(1)88+90+863=88(分),故小王面试的平均成绩为88分. (2)88×6+92×46+4=528+36810=89.6(分),故小王的最终成绩为89.6分. 3.解:王老师的平均分是98×20%+95×60%+96×20%20%+60%+20%=95.8(分),张老师的平均分是90×20%+99×60%+98×20%20%+60%+20%=97(分).∵95.8<97,∴张老师的得分高,张老师应评为优秀. 2 中位数与众数1.A 2.D 3.C 4.65.解:(1)该月加工零件数的平均数为54+45+30×2+24×6+21×3+12×215=26(件),中位数为24件,众数为24件.(2)合理.因为24既是众数,也是中位数,且24小于人均加工零件数,是大多数人能达到的定额.3从统计图分析数据的集中趋势1.B 2.C 3.135,1304.解:该班捐书情况如下:4册:15%×40=6(人);5册:10%×40=4(人);6册:25%×40=10(人);7册:40%×40=16(人);8册:10%×40=4(人),则捐书册数的平均数为4×6+5×4+6×10+7×16+8×440=6.2(册),众数为7册,中位数为(6+7)÷2=6.5(册).4数据的离散程度第1课时极差、方差和标准差1.C 2.A 3.D 4.4 25.解:x甲=110(9+5+7+8+7+6+8+6+7+7)=7(环),x乙=110(7+9+6+8+2+7+8+4+9+10)=7(环),s2甲=110(4+4+0+1+0+1+1+1+0+0)=1.2,s2乙=110(0+4+1+1+25+0+1+9+4+9)=5.4.∵s2甲<s2乙,∴甲的射击成绩较稳定.第2课时方差的应用1.B 2.B 3.A4.解:(1)由题意可得x乙=9+7+5+8+65=7(环),s2乙=(9-7)2+(7-7)2+(5-7)2+(8-7)2+(6-7)25=2.(2)∵甲的方差是1.04,乙的方差是2,1.04<2,∴应该选择甲运动员参加比赛.第七章平行线的证明1为什么要证明1.A 2.612132 定义与命题第1课时 定义与命题1.C 2.C 3.B4.如果两个角相等,那么这两个角是对顶角第2课时 定理与证明1.C 2.C 3.C 4.等量代换5.证明:∵BE =CF ,∴BE +EF =CF +EF ,即BF =CE .在△ABF 和△DCE 中,⎩⎪⎨⎪⎧AB =DC ,∠B =∠C ,BF =CE ,∴△ABF ≌△DCE (SAS),∴∠A =∠D .6.解:答案不唯一,如:已知:∠1=∠2,∠B =∠C .求证:∠A =∠D .证明:∵∠1=∠CGD ,∠1=∠2,∴∠CGD =∠2,∴EC ∥BF ,∴∠AEC =∠B .又∵∠B =∠C ,∴∠AEC =∠C ,∴AB ∥CD ,∴∠A =∠D .3 平行线的判定1.D 2.A 3.∠BEC =60°(答案不唯一) 4.④5.证明:∵∠ACD =70°,∠ACB =60°,∴∠BCD =∠ACB +∠ACD =130°.∵∠ABC =50°,∴∠ABC +∠BCD =180°,∴AB ∥CD .4 平行线的性质1.B 2.D 3.129 4.①②③④5.证明:∵CD ∥BF ,∴∠BOD =∠B .∵∠B +∠D =180°,∴∠BOD +∠D =180°,∴AB ∥DE .5 三角形内角和定理第1课时 三角形内角和定理1.B 2.A 3.C 4.40°5.解:∵CD 平分∠ACB ,∠BCD =31°,∴∠ACD =∠BCD =31°,∴∠ACB =62°.∵在△ABC 中,∠A =72°,∠ACB =62°,∴∠B =180°-∠A -∠ACB =180°-72°-62°=46°.6.解:∵AD ,BE 为高,∴∠ADC =∠AEO =90°.在Rt △ACD 中,∠CAD =180°-90°-∠C =15°.在Rt △AOE 中,∠AOE =180°-∠AEO -∠CAD =180°-90°-15°=75°.第2课时三角形的外角1.D 2.C3.解:∵AD平分∠CAE,∴∠CAD=∠DAE=60°,∴∠CAE=120°.∵∠CAE=∠B+∠C,∴∠C=∠CAE-∠B=120°-35°=85°.4.证明:(1)∵∠AEC=∠B+∠EOB,∠ADB=∠C+∠DOC,且∠B=∠C,∠EOB =∠DOC,∴∠AEC=∠ADB.(2)∵∠BEC=∠C+∠A>∠C,∠B=∠C,∴∠BEC>∠B.14。
北师大版八年级数学上册练习册(附答案)最新版
义务教育课程标准实验教科书八年级上册数学练习册第一章 勾股定理单元总览勾股定理是平面几何有关度量的最基本定理之一,它从边的角度进一步刻画了直角三角形的特征,在探究过程中进一步丰富数学活动经验,发展推理能力和分析问题、解决问题的能力,同时感受勾股定理的文化价值.本章知识结构图:1 探索勾股定理(1)一、目标导航教学目标:①经历用数格子的办法探索勾股定理的过程,进一步发展学生的合情推理意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系.②探索并理解直角三角形的三边之间的数量关系,进一步发展学生的说理和简单推理的意识及能力. 二、基础过关1.如果直角三角形两直角边分别为a ,b ,斜边为c ,那么它们的关系是______ ,即直角三角形两直角边的_______ . 2.在Rt △ABC 中,∠C =90°,若a =5,b =12,则c = . 3.如图,在下列横线上填上适当的值:m= n= y= x=m xy554041171586m= n= y=m y540411715m= n= m4041n=4.在Rt △ABC 中,∠C =90°,若34a b , c =10,则a = ,b =_______. 5.已知,甲、乙从同一地点出发,甲往东走了90m ,乙往南走了120m ,这时甲、乙两人相距 .6.一个长方形的一条边长为3cm ,面积为12cm 2,那么它的一条对角线长为. 7.一直角三角形的三边是三个连续的正整数,则此直角三角形的周长为 . 8.如图,阴影部分的面积为()A .3B .9C .81D .1009.直角三角形两直角边分别为5cm 和12cm ,则其斜边的高为( ) 化归A .6cmB .8cmC .8013cm D .6013cm 10.如图,在四边形ABCD 中,∠BAD =90°,∠DBC =90°,AD =3,AB =4,BC =12,则CD 为( )A .5B .13C .17D .18ABCD8题图 10题图11.如图,某人欲垂直横渡一条河,由于水流的影响,他实际的上岸点C 偏离了想要到达的点B 有140m (即BC =140m ),其结果是他在水中实际游了500m ,求河宽为多少米?12.已知等腰△ABC ,AB =AC ,腰长是13cm ,底边是10cm ,求:(1)高AD 的长;(2)△ABC 的面积ABC S .13.在△ABC 中AB =15,AC =13,高AD =12,求△ABC 的周长.三、能力提升14.已知一个直角三角形的斜边与一条直角边的和为8,差为2,试求这个直角三角形三边的长. 15.如图,在一棵树的10米高处有两只猴子,一只猴子爬下树走到离树20米处的池塘的A 处.另一只爬到树顶D 后直接跃到A 处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高 米.四、聚沙成塔我国明朝数学家程大位(1533-1606)写过一本数学著作《直指算法统宗》,其中有一道与荡秋千有关的数学问题是用《西江月》词牌写的:平地秋千未起,踏板一尺离地;送行二步与人齐,五尺人高曾记.仕女佳人蹴,终朝笑语欢嬉;良工高士素好奇,算出索长有几?1 探索勾股定理(2)一、目标导航掌握勾股定理和它的简单应用.经历运用割补的方法说明勾股定理是正确的过程,在数学活动中发展学生的探究意识和合作交流的习惯.二、基础过关1.直角三角形的两边长分别是3cm、4cm,则第三边长是.2.等腰直角三角形的斜边长是12cm ,它的面积是 cm 2.3.一个长350m ,宽120m 的长方形公园ABCD ,如果某人要从公园的一角A 走到另一角C ,那么他至少要走 米.4.如图,以直角三角形三边为直径的三个半圆面积A 、B 、C •之间的关系是:___________. 5.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm ,则正方形A ,B ,C ,D 的面积之和为 cm 2.ABC7cmAB CDABCabc4题图 5题图 6题图 10题图6.如图,一棵大树在一次强台风中在离地面5米处折断倒下,倒下部分与地面成30○夹角,这棵大树在折断前的高度为( )A .10米B .15米C .25米D .30米7.已知有不重合的两点A 和B ,以点A 和点B 为其中两个顶点作位置不同的等腰直角三角形,一共可以作出( )A .2个B .4个C .6个D .8个8.若边长分别为2,4,x 的三角形为直角三角形,则x 的可能值为( )A .1个B .2个C .3个D .4个9.把直角三角形的两条直角边同时扩大到原来的2倍,则其斜边扩大到原来的( )A .2倍B .4倍C .2.5倍D .3倍 10.如图,在△ABC 中,三边a ,b ,c 的大小关系是( )A .a <b <cB .c <a <bC . a <c <bD .b <a <c 11.如果Rt △两直角边的比为5∶12,则斜边上的高与斜边的比为( )A .60∶13B .5∶12C .12∶13D .60∶169 12.如果Rt △的两直角边长分别为n 2-1,2n (n >1),那么它的斜边长是( )A .2nB .n +1C .n 2-1D .n 2+1 13.在△ABC 中,∠C =Rt ∠,BC =a ,AC =b ,AB =c .(1)a =9,b =12,求c ;(2)a =9,c =41,求b ;(3)b =24,c =26,求a .14.如图,在Rt △ABC 中,∠ACB =90○,CD ⊥AB 于D ,若 AC =8,BC =15,求CD 的长.15.求斜边是29m,一条直角边是21m的直角三角形土地的面积.三、能力提升16.如图,一个长为2.5m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为0.7m,如果梯子的顶端下滑0.4m,那么梯子的底端也将右滑0.4 m吗?为什么?17.有一条24cm长的铁丝弯成一个直角三角形,要使它的一条直角边比另一条直角边长2cm,应该怎样弯呢?18.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD 折叠,使它落在斜边AB上,且与AE重合,求CD的长.AEBC D四、聚沙成塔从课本上,我们已经知道,中国古代数学家赵爽创制了一幅“勾股圆方图”(弦图),由形数结合得到方法,给出了勾股定理的详细证明.他利用几何图形的截、割、拼、补来证明代数式之间的恒等关系,既具严密性,又具直观性,为中国古代以形证数、形数统一、代数和几何紧密结合、互不可分的独特风格树立了一个典范.据说,古印度的数学家兼天文学家婆什迦罗利用如下图的拼图证明了勾股定理.他是如何证明的呢?试一试,看看你能否对此作出解释.cba1 探索勾股定理(3)一、目标导航掌握勾股定理和它的简单应用.经历运用割补的方法说明勾股定理是正确的过程,在数学活动中发展学生的探究意识和合作交流的习惯.二、基础过关1.在Rt△ABC中,∠C=90○,AC=6,BC=8,则AB=.2.在Rt △ABC 中,∠C =90○,AC =9,AB =15,则BC = .3.已知直角三角形的两直角边分别是3cm 、4cm ,则第三边的高是 .4.在等腰△ABC 中,AB =AC =17cm ,BC =16cm ,则BC 边上的高AD = . 5.如图,阴影部分是一个正方形,则此正方形的面积为 .6.如图,在Rt △ABC 中,∠C =90○,AD 平分∠BAC 交BC 于D ,DE 是斜边AB 的垂直平分线,且DE =1cm ,则BC = .DBECA5题图 6题图 10题图 7.在Rt △ABC 中,∠A =90°,若a +b =16,a ∶c =5∶3,则b =_____8.若直角三角形的三条边长为三个连续的整数,那么以这三边为边长的三个正方形的面积分别为( )A .3,4,5B .9,16,25C .6,8,10D .8,12,249.在△ABC 中,三条边a 、b 、c 上的高分别是6cm 、4cm 、3cm ,那么三边的比为( )A .1∶2∶3B .2∶3∶4C .6∶4∶3D .不能确定10.已知,如图,一轮船以16海里/时的速度从港口A 出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A 出发向东南方向航行,离开港口2小时后,则两船相距( )A .25海里B .30海里C .35海里D .40海里 三、能力提升 11.要登上8m 高的建筑物,为了安全需要,需使梯子底端离建筑物6m ,至少需要多长的梯子?(画出示意图)12.已知,如图,在Rt △ABC 中,∠C =90°,AD 是角平分线,CD =1.5,BD =2.5,求AC 的长.AB C D北南A东13.如图,Rt△ABC,BC是斜边,P是三角形内一点,将△ABP绕点A逆时针旋转后,能与△ACP′重合,如果AP=6,求PP′2的长.14.已知:如图,△ABC中,∠C=90°,点O为△ABC的三条角平分线的交点,OD⊥BC,OE⊥AC,OF⊥AB,点D、E、F分别是垂足,且BC=8cm,CA=6cm,则点O到三边AB,AC和BC的距离分别等于多少.15.△ABC中,BC=a,CA=b,AB=c,若∠C=90○.如图1,根据勾股定理,则a2+b2=c2.若△ABC不是直角三角形,如图2和图3,请你类比勾股定理,试猜想a2+b2与c2的关系,并证明你的结论.图1 图2 图3四、聚沙成塔四年一度的国际数学家大会会标如图甲.它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形.若大正方形的面积为13,每个直角三角形两条直角边的和是5.(1)求中间小正方形的面积.(2)现有一张长为6.5cm、宽为2cm的纸片,如图乙,请你将它分割成6块,再拼合成一个正方形.(要求:先在图乙中画出分割线,再画出拼成的正方形并表明相应数据)AB CPP′COA BDEF2 能得到直角三角形吗一、目标导航①进一步发展数感,增加对勾股数的直观体验,培养从实际问题抽象出数学问题的能力,建立数学模型.②会通过边长判断一个三角形是否是直角三角形,并会辨析哪些问题应用哪个结论.二、基础过关1.已知一个三角形的三边分别为3k,4k,5k(k为自然数),则这个三角形为,理由是.2.有一个三角形的两条边长是6和10,要使这个三角形成为直角三角形,则第三边边长为.3.已知在ABC∆中,BC=6,BC边上的高为4,若AC=5,则AC边上的高为.4.若一个三角形的一个角等于其他两个角的差,那么这个三角形是三角形.5.若一个三角形的三边长为m+1 ,m+2 ,m+3,当m时,此三角形是直角三角形.6.已知ABC∆的三边长为BC=41,AC=40,AB=9,则ABC∆为_________三角形,最大角是∠.7.以ABC∆的三条边向外作正方形,依次得到的面积为25,144,169,则这个三角形是________三角形.8.三角形各边(从小到大)长度的平方比如下列各组,其中不是直角三角形的是()A.1∶1∶2 B.1∶3∶4 C.9∶25∶26 D.25∶144∶1699.下列各组数中,以a,b,c为边长的三角形不是直角三角形的是()A.a=1.5,b=2,c=3 B.a=7,b=24,c=25C.a=6,b=8,c=10 D.a=3,b=4,c=510.如图,有一块四边形地ABCD,∠B=90°,AB=4m,BC=3m,CD=12m,DA=13m,求该四边形地ABCD的面积?11.如图,在四边形ABCD中,AC⊥DC,△ADC的面积为30cm2,DC=12 cm,AB=3 cm,BC=4 cm,求△ABC的面积.D CBA三、能力提升12.如图:为修通铁路需凿通隧道AC,测得∠A=50°,∠B=40°,AB=5km,BC=4km,若每天开凿隧道0.3km,试计算需要几天才能把隧道AC凿通?CBA13.如图,古埃及人用下面方法画直角:把一根长绳打上等距离的13个结,然后用桩钉如图那样钉成一个三角形,其中一个角便是直角,说明这种做法的根据.(13)(4)(3)14.初春时分,两组同学到村外平坦的田野中采集植物标本,分手后,他们向不同的方向前进,第一组的速度是30米/分,第二组的速度是40米/分,半小时后两组同学同时停下来,而此时两组同学相距1500米.(1)两组同学行走的方向是否成直角?(2)如果接下来两组同学以原速相向而行,多长时间后能相遇?15.已知:如图,△ABC 中,CD AB ,垂足为D ,且平分AB ,CD =12AB ,△ABC 是等腰直角三角形吗?为什么?请你与同伴交流,并说明理由.DCB A四、聚沙成塔直角三角形边角关系定理为证明线段倍分关系、线段平方关系提供了理论依据;勾股定理及逆定理在几何证明与计算中应用非常广泛,熟悉常用的勾股数常能挖掘隐含条件.一些复杂的几何问题常常要分解为下述的基本图形及其基本结论来解决.(如图)3 蚂蚁怎样走最近一、目标导航能运用勾股定理及直角三角形的判别条件(即勾股定理的逆定理)解决简单的实际问题.①学会观察图形,勇于探索图形间的关系,培养学生的空间观念.②在将实际问题抽象成几何图形过程中,提高分析问题、解决问题的能力及渗透数学建模的思想.二、基础过关1.斜边长25cm,一条直角边长7cm,这个直角三角形的面积为.2.轮船在大海中航行,它从A点出发,向正北方向航行20km,遇到冰山后折向正东方向航行15km,则此时轮船与A点的距离为.3.欲登12米高的建筑物,梯子底端离建筑物5米,梯子的长度至少米.4.在平静的湖面上,有一支红莲,高出水面1米,阵风吹来,红莲被吹到一边,花朵齐及水面,已知红莲移动的水平距离为2米,问这里水深是米.5.在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是1234S S S S、、、,则1234S S S S+++=_______.5题图6.一只蚂蚁沿直角三角形的边爬行一周需2秒,如果将直角三角形的边扩大1倍,那么这只蚂蚁再沿边爬行一周需()A.2秒B.4秒C.6秒D.8秒7.某市在旧城改造中,计划在市内一块如图所示的三角形空地上种植草皮以美化环境,已知这种草皮每平方米售价a元,则购买这种草皮至少需要()A.450a元B.225a元C.150a元D.300a元8.已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A.6cm2B.8cm2C.10cm2D.12cm2三、能力提升9.小明想知道学校旗杆的高,他发现旗杆顶端的绳子垂到地面还多1米,当他把绳子的下端拉开5米后,发现下端刚好接触地面,求旗杆的高度.10.小明的叔叔家承包了一个矩形鱼池,已知其面积为48m2,其对角线长为10m,为建栅栏,要计算这个矩形鱼池的周长,你能帮助小明算一算吗?150°20m 30m第7题图ABD第8题图11.在某一平地上,有一棵树高8米的大树,一棵树高3米的小树,两树之间相距12米.今一只小鸟在其中一棵树的树梢上,要飞到另一棵树的树梢上,问它飞行的最短距离是多少?(画出草图然后解答)12.如图,铁路上A,B两点相距25km,C,D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,现在要在铁路AB上建一个土特产品收购站E,使得C,D两村到E 站的距离相等,则E站应建在离A站多少km处?13.一辆装满货物的卡车,其外形高2.5米,宽1.6米,要开进厂门形状如图的某工厂,问这辆卡车能否通过该工厂的厂门?14.假期中,王强和同学到某海岛上去探宝旅游,按照探宝图(如图),他们登陆后先往东走8千米,又往北走2千米,遇到障碍后又往西走3千米,再折向北走到6千米处往东一拐,仅走1千米就找到宝藏,问登陆点A到宝藏点B的直线距离是多少千米?ADE BC四、聚沙成塔①勾股定理的别称:中国:勾股定理希腊:毕达哥拉斯定理埃及:埃及三角形法国、比利时:驴桥定理②读一读:古今中外几乎不谋而合地发现和应用了勾股定理.它充分表现了勾股定理是自然界最本质,最基本的规律.所以,在人类借助宇宙飞船设法寻找“外星人”的时候,中国著名数学家华罗庚建议,用一幅勾股定理的数形关系图作为与“外星人”交谈的语言.单元综合评价一、填空题1.在△ABC中,∠C=90°.(1)已知a=2.4,b=3.2,则c=_______.(2)已知c=17,b=15,则△ABC面积等于_______.(3)已知∠A=45°,c=18,则a2=______.2.直角三角形三边是连续偶数,则这三角形的各边分别为_______.3.△ABC的周长为40cm,∠C=90°,BC∶AC=15∶8,则它的斜边长为______.4.直角三角形的两直角边之和为14,斜边为10,则它的斜边上的高为________,•两直角边分别为________.二、选择题5.在下列说法中是错误的().A.在△ABC中,∠C=∠A-∠B,则△ABC为直角三角形.B.在△ABC中,若∠A∶∠B∶∠C=5∶2∶3,则△ABC为直角三角形.C.在△ABC中,若35a c=,45b c=,则△ABC为直角三角形.D.在△ABC中,若a∶b∶c=2∶2∶4,则△ABC为直角三角形.6.直角三角形的两直角边分别为5cm,12cm,其斜边上的高为().A.6cm B.5cm C.3013D.6013cm7.下列线段不能组成直角三角形的是().A.a=6,b=8,c=10 B.a=1,b=2,c=6C.a=54,b=1,c=34D.a=2,b=3,c=48.有四个三角形:(1)△ABC的三边之比为3∶4∶5;(2)△A′B′C′的三边之比为5∶12∶13;(3)△A″B″C″的三个内角之比为1∶2∶3;(4)△CDE的三个内角之比为1∶1∶2,其中直角三角形的有().A.(1)(2)B.(1)(2)(3)C.(1)(2)(4)D.(1)(2)(3)(4)三、解答题9.如果3条线段的长a,b,c满足c2=a2-b2,那么这3•条线段组成的三角形是直角三角形吗?为什么?10.如图所示,AD⊥BC,垂足为D,如果CD=1,AD=2,BD=4,那么∠BAC•是直角吗?请说明理由.11.在图中,BC长为3厘米,AB长为4厘米,AF长为12厘米,求正方形CDEF•的面积.ABC DEF12.如图所示,为得到湖两岸A点和B点间的距离,一个观测者在C点设桩,使△ABC为直角三角形,并测得AC长20米,BC长16米,A、B两点间距离是多少?四、探究题13.如图所示,在一块正方形ABCD•的布料上要裁出四个大小不同的直角三角形做彩旗,裁剪师傅用画粉在CD边上找出中点F,在BC边上找出点E,使EC=14BC,•然后沿着AF、EF、AE裁剪,你认为裁剪师傅的裁剪方案是否正确?若正确,给予证明,若不正确,请说明理由.14.如图所示,长方形纸片ABCD的长AD=9cm,宽AB=3cm,将其折叠,使点D与点B重合.求:(1)折叠后DE的长;(2)以折痕EF为边的正方形面积.C'DCBAFEDCBA第二章实数单元总览:本单元主要讲了两个问题:1、给出了一种新的运算——开方运算;2、引进一个新数——无理数.使数的范围再次扩充为实数的范围内.本章知识结构:1 数怎么又不够用了一、目标导航①借助生活中的实例理解无理数的意义,体会无理数引入的必要性和无理数应用的广泛性.②会判断一个数是有理数还是无理数. 二、基础过关1.边长为4的正方形的对角线长是( )A .整数B .分数C .有理数D .不是有理数2.在下列各数-0.333……,-π,1π,3.1415,2.0101001……(相邻两个1之间依次多1个0),76.0123456……(小数部分由相继的正整数组成)中, 是无理数的有( )A .3个B .4个C .5个D .6个 3.下列说法正确的是( ) A .有理数只是有限小数 B .无理数是无限小数C .无限小数是无理数D .3π是分数 4.下列语句错误的是_________(填序号).(1)无限小数都是无理数;(2)π是无理数,故无理数也可能是有限小数.5.下列各数属于有理数的是____________,属于无理数的是____________.3.57,2π,3.1415926,0.1234,0,12,0.1212212221……6.比较大小:227π.7.已知直角三角形的两条直角边分别是4和5,这个直角三角形的斜边的长度在两个相邻的整数之间,这两个整数是_______和________. 8的点是 .9.边长为1的正方形,它的对角线的长可能是整数吗?可能是分数吗?三、能力提升10.如图:(1)斜边所在的正方形面积是___________.(2)如果斜边用b表示,b是有理数吗?11AC=b,CD=5,高AD可能是整数吗?可能是分数吗?可能是有理数吗?ABCDb5四、聚沙成塔你能说明3是无理数吗?2平方根(1)一、目标导航①了解开平方、平方根、算术平方根的意义,了解平方根、算术平方根的表示方法.②理解开平方与平方运算是互为逆运算.③会用平方求已知数的平方根,会利用平方运算验证一个数的平方根. ④了解平方根、算术平方根的性质. 二、基础过关1.能使3x -的平方根有意义的x 值是( )A .0x >B .3x >C .0x ≥D .3x ≥ 2.选择下列语句正确的是( )A .164-的平方根是18-B .164-的算术平方根是18C .164的平方根是18±D .164的算术平方根是18-3______,算术平方根是______.4= .53±,则a =______.6b 值是( ) A .零 B .非零数C .全体负数D .全体正数7.下列计算正确的是( )A 2B 5=±C .4=D .7=±80=,则2()______a b -=.9.大于的整数为 . 10.下列各式中,x 为何值时有意义?(1(2 (311.求下列各数的平方根和算术平方根:(1)7 (2)27 (3)2()a b +三、能力提升12.把下列各题进行化简:(1(2)21) (33 (4)(5)(6 (713.求下列各式中的x :(1)236x =(2)211604x -=(3)25(4)36x 2-=(4)2(7)169x -= (5)221(21)725x -= (6)23(5)750x --=14.一个自然数的算术平方根是x ,那么大于这个自然数且与它相邻的自然数的算术平方根是( )A B C .21x + D .1x +四、聚沙成塔8=,且2(21)0y z -++,求33x y z ++的值.2 平方根(2)一、目标导航①会用平方求已知数的平方根,会利用平方运算验证一个数的平方根; ②掌握平方根、算术平方根的性质. 二、基础过关1.64的平方根为 ,0.25的算术平方根为 .2.45±是 的平方根,是 的算术平方根.3.一个正数有 个平方根,它们是 .40.14=,则x = . 5.若一个正数的一个平方根为x ,则这个数的另一个平方根为 ,这两个数的和为 ,这个数的算术平方根为 .68=,则a = .7.平方根等于本身的数是 ,算术平方根等于本身的数是 .8.719的平方根是 .9 ,= ,= .10.若216x =,则x = . 11.如果2,x a =那么( )A .a 是x 的平方根B .x 是a 的二次幂C .a 是x 的二次幂D .x 是a 的算术平方根 12.2a 的算术平方根是( )A .aB .aCD .a - 13.下列运算正确的是( )A .9=B 9±C 7D 014.下列各数没有平方根的是( )A .64B .5(2)-C .0D .23(2)⎡⎤-⎣⎦三、能力提升15.求下列各式中的x(10(2)x =(3)2(2)0x y -++(4)2(1)4x -=16.求式子(23)(23)9m n m n -+--+的平方根.四、聚沙成塔252350a b -+=,求a ,b 的值.3立方根一、目标导航①了解立方根的概念,会用根号表示一个数的立方根;②能用立方根求某些数的立方根,了解开立方与立方互为逆运算; ③了解立方根的性质;④区分立方根与平方根的不同. 二、基础过关1.立方根等于本身的数是( )A .—1B .0C .±1D .±1或02.的平方根是( ) A .2 B .±2C .±4D .不存在3.求下列各数的立方根:(1)343;(2)0.729;(3)10227- .4.下列说法正确的是( )A ±3;B .1的立方根是±1;C 1±;D 0>.5在实数范围内有意义,则x 的取值范围为( ).A .0x >B .0x ≥C .0x ≠D .0x ≥且1x ≠6的平方根是 . 7.求下列各式的值:(1) (2(3) (48.当0a可以化简为 .9:x y .10.已知31x +的平方根是±4,求919x +的立方根.三、能力提升:114=,且2(21)0y z -++的值.12.求下列各式的值:(1(2)(3).13.求下列各式的x:(1)(x+3)3+27=0;(2)(x-0.5)3+10-3=0.四、聚沙成塔:根号内的10换成正数a,这种计算的规律是否仍然成立?4公园有多宽一、目标导航①了解开平方、开立方、实数的意义及实数的分类. ②理解实数与数轴上的点成一一对应关系. ③会用估算的方法比较实数的大小. 二、基础过关1.下列说法不正确的是( )A .-1的立方根是-1;B .-1的平方是1C .1的平方根是-1;D .1的平方根是±1 2.已知|x |=2,则下列四个式子中一定正确的是( )A .x =2B .x =-2C .x 2=4D .x 3=83.若规定误差小于1 ) A .3 B .7 C .8D .7或84.若误差小于10____________.5.a =-b =- a 与b 的大小关系为( ) A .a b > B .a b < C .a b =D .不能确定6.通过估算,下列不等式成立的是( )A 3.85B 3.85C 3.8D <27.估算比较大小:(填“>”或“<”)(1) 3.2;(2;(3(4 12.8.用估算法比较14的大小.9.下列结算结果正确吗?你是怎样判断的?说说你的理由.(119.3≈(211.5三、能力提升10x ,小数部分是y ,求)y x 的值.11.估算下列各数的大小:(1(误差小于100); (210);(31);(40.1).12.如图所示,要在离地面5米处的电线杆上的两侧引拉线AB 和AC ,固定电线杆.生活经验表明,当拉线的固定点B (或C )与电线杆底端点D 的距离为其一侧长度的13时,电线杆比较稳定.现要使电线杆稳定,问拉线至少需要多长才能符合要求?试用你学过的知识进行解答.(精确到1米).AB C DP四、聚沙成塔的整数部分.(N 为正整数)5 用计算器开方一、目标导航①会用计算器求一个数的平方根、立方根②能正确区分求一个数的平方根和立方根的方法 二、基础过关1.a 为大于1的正数,则有( )A .aB .aC .aD .无法确定2.比较大小: 12.3.一个正数的平方等于144,则这个正数是____________;一个负数的立方等于-27,则这个负数是____________;一个数的平方等于5,则这个数是___________.4.已知a <0____________. 5.用计算器求36的算术平方根.6.用计算器求0.8456的立方根.三、能力提升7.小芳想在墙壁上钉一个三角架(如图),其中两直角边长度之比为3∶2求两直角边的长度.(误差小于1)8.自由下落的物体的高度h (米)与下落时间t (秒)的关系为h =4.9t 2.有一学生不慎让一个玻璃杯从19.6米高的楼上自由下落,刚好另有一学生站在与下落的玻璃杯同一直线的地面上,在玻璃杯下落的同时楼上的学生惊叫一声.问这时楼下的学生能躲开吗?(声音的速度为340米/秒)9.用排水法测得一篮球的体积为9850cm 3,试求该篮球的直径(球的体积公式为343V R π=结果保留3个有效数字).10.求下列各数的算术平方根,保留4个有效数字,并探讨一下这些数的算术平方根有什么规律.(1)78000,780,7.8,0.00078; (2)0.00065,0.065,6.5,650,65000.四、聚沙成塔捉弄人的计算器数学老师给小明布置了一个额外的任务:设x、y、z是三个连续整数的平方(x<y<z),已知x=31329,z=32041,求y,并要求小明使用老师提供的计算器作答,小明说:“老师也太小看我啦,这么简单的问题让我做?”“那就请你在10分钟内把答案交给我.”老师笑着说.“不用10分钟,1分钟就够啦.”小明边说边按计算器……“老师,你的计算器坏了,根号键不能用.”小明这才发现老师给他的是一个捉弄人的计算器.“是吗?其他键能用吗?”“其他键都好好的.”小明试了试其他各键说.“现在你还能在10分钟之内给我答案吗?”思考:小明可不想轻易认输,如果你是小明,你能完成任务吗?6实数(1)一、目标导航①了解无理数、实数的概念和实数的分类 ②了解实数和数轴上的点是一一对应的关系. ③了解实数的相反数、绝对值、倒数等概念. ④会进行实数的大小的比较. 二、基础过关1.判断题:下列说法是否正确,并简要说明理由:(1)实数不是有理数就是无理数; (2)无理数都是无限小数; (3)带根号的数是无理数; (4)无理数一定都带根号; (5)两个无理数之积不一定是无理数; (6)两个无理数之和一定是无理数; (7)数轴上的任何一点都可以表示实数. 2.在实数中( )A .实数的绝对值都是正数;B .有绝对值最大的数,也有绝对值最小的数;C .没有绝对值最大的数,但有绝对值最小的数;D .没有绝对值最大的数,也没有绝对值最小的数. 3.化简:下列计算正确的是( )A .822-=B .2712941-=-= C .(25)(25)1-+= D .62322-=4.下列命题中,错误的一个是( )A .如果a 、b 互为相反数,那么a +1和b -1仍是互为相反数;B .不论x 是什么实数,222x x -+的值总是大于0;C .n 是自然数,21n +一定是一个无理数;D .如果a 是一个无理数,那么a 是非完全平方数.5.已知实数a 、b 、c 在数轴上的位置如图所示,化简|a +b |-|c -b |的结果是( )A .a c +B .2a b c --+C .2a b c +-D .a c --6.当0<x <1时,x 2、x 、1x的大小顺序是( ) A .21x x x<< B .21x x x << C .21x x x<<D .21x x x<<7. N - )A .N 是负有理数B .N 是一个非正数C .N 是完全平方数D .N 是一个完全平方数的相反数8.比较32-23-9.如果边长分别是4cm 和5cm 的矩形与一个正方形的面积相等,那么这个正方形的边长为 cm (结果保留根号). 三、能力提升10.若实数a b c ,,满足2(5)70a b c +++-3,求代数式ab c+的值.11.计算:0211)1)()3-+--12.用30张长3cm 、宽2.4cm 的小长方形纸片摆成一个正方形纸片,求这个正方形纸片的边长是多少?四、聚沙成塔:x 、y 的值.6 实 数(2)一、目标导航。
最新版(北师大版)八年级数学上册全册同步练习(含答案)
第一章勾股定理1探索勾股定理第1课时探索勾股定理1.已知直角三角形两直角边的长分别为12,16,则其斜边的长为()A.16 B.18 C.20 D.282.如图,以Rt△ABC的三边向外作正方形,其面积分别为S1、S2、S3,且S1=5,S2=12,则S3=________.3.如图,某农舍的大门是一个木制的长方形栅栏,它的高为2m,宽为1.5m.现需要在相对的顶点间用一块木板加固,则木板的长为________.4.如图,在Rt△ABC中,AC=8cm,BC=17cm.(1)求AB的长;(2)求阴影长方形的面积.5.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,BC=5,AC=12,求AB、CD的长.第2课时验证勾股定理及其简单应用1.从某电线杆离地面8m处拉一根长为10m的缆绳,这条缆绳在地面的固定点到电线杆底部的距离为()A.2m B.4m C.6m D.8m2.图中不能用来证明勾股定理的是()3.如图,小丽和小明一起去公园荡秋千,秋千绳索OA长5m.小丽坐上秋千后,小明在距离秋千3m的点B处保护.当小丽荡至小明处时,试求小丽上升的高度AC.4.如图,在海上观察所A处,我边防海警发现正北方向6km的B处有一可疑船只正在向其正东方向8km的C处行驶,我边防海警即刻派船只前往拦截.若可疑船只的行驶速度为40km/h,则我边防海警船的速度为多少时,才能恰好在C处将可疑船只截住?2一定是直角三角形吗1.下列各组数中不是勾股数的是()A.9、12、15 B.41、40、9C.25、7、24 D.6、5、42.已知△ABC中,a、b、c分别是∠A、∠B、∠C的对边,下列条件中不能判断△ABC 是直角三角形的是()A.∠A=∠C-∠B B.a∶b∶c=2∶3∶4C.a2=b2-c2D.a=3,b=5,c=43.如图是医院、公园和超市的平面示意图,超市在医院的南偏东25°的方向,且到医院的距离为300m,公园到医院的距离为400m.若公园到超市的距离为500m,则公园在医院的()A.北偏东75°的方向上B.北偏东65°的方向上C.北偏东55°的方向上D.无法确定4.已知a,b,c是△ABC的三边长,且满足关系式(a2+b2-c2)2+|a-b|=0,则△ABC 的形状为______________.5.在△ABC中,AB=8,BC=15,CA=17,则△ABC的面积为________.6.如图,每个小正方形的边长均为1.(1)直接计算结果:AB2=________,BC2=________,AC2=________;(2)请说明△ABC的形状.3勾股定理的应用1.如图是一个长方形公园的示意图,游人从A景点走到C景点至少要走()A.600m B.800m C.1000m D.1400m2.如图,在水塔O的东北方向32m处有一抽水站A,在水塔的东南方向24m处有一建筑工地B,在AB间建一条笔直的水管,则水管的长为()A.45m B.40m C.50m D.56m3.在一块平地上,张大爷家屋前9米远处有一棵大树,在一次强风中,这棵大树从离地面6米处折断倒下,如图,量得倒下部分的长是10米.请你帮张大爷分析一下,大树倒下时会砸到张大爷的房子吗?()A.一定不会B.可能会C.一定会D.以上答案都不对4.如图,一个无盖圆柱形纸筒的底面周长是60cm,高是40cm.一只小蚂蚁在圆筒底部的A处,它想吃到上底面上与点A相对的点B处的蜜糖,试问蚂蚁爬行的最短路程是多少?第二章 实 数1 认识无理数1.下列各数中,是无理数的是( )A .0.3333… B.227 C .0.1010010001 D .-π22.下列说法正确的是( )A .0.121221222…是有理数B .无限小数都是无理数C .面积为5的正方形的边长是有理数D .无理数是无限小数3.若面积为15的正方形的边长为x ,则x 的范围是( ) A .3<x <4 B .4<x <5 C .5<x <6 D .6<x <74.有六个数:0.123,(-1.5)3,3.1416,117,-2π,0.1020020002….若其中无理数的个数为x ,整数的个数为y ,则x +y =________.5.下列各数中哪些是有理数?哪些是无理数?|+5|,-789,π,0.01·8·,3.6161161116…,3.1415926,0,-5%,π3,223.6.已知半径为1的圆.(1)它的周长l 是有理数还是无理数?说说你的理由; (2)估计l 的值(结果精确到十分位).2 平方根第1课时 算术平方根1.数5的算术平方根为( )A. 5 B .25 C .±25 D .±52.如果a -3是一个数的算术平方根,那么a 的值可能为( ) A .0 B .1 C .2 D .43.下列有关说法正确的是( ) A .0.16的算术平方根是±0.4 B .(-6)2的算术平方根是-6 C.81的算术平方根是±9 D.4916的算术平方根是744.要切一块面积为0.81m 2的正方形钢板,则它的边长是________. 5.若|a -2|+b +3+(c -5)2=0,则a -b +c =________. 6.求下列各数的算术平方根: (1)0.25; (2)13; (3)⎝⎛⎭⎫-382; (4)179.7.如图,某玩具厂要制作一批体积为100000cm 3的长方体包装盒,其高为40cm.按设计需要,底面应做成正方形,则底面边长应是多少?第2课时 平方根1.81的平方根是( ) A .9 B .-9 C .±9 D .272.关于平方根,下列说法正确的是( )A .任何一个数都有两个平方根,并且它们互为相反数B .负数没有平方根C .任何一个数都只有一个算术平方根D .以上都不对3.如果一个数的一个平方根是-16,那么这个数是________. 4.计算:(1)( 3.1)2=________; (2)(-8)2=________. 5.求下列各数的平方根:(1)25; (2)1681; (3)0.16; (4)(-2)2.6.若一个正数的平方根为2x +1和x -7,求x 和这个正数.3 立方根1.9的立方根是( )A .3B .±3 C.39 D .±39 2.下列说法中正确的是( )A .-4没有立方根B .1的立方根是±1 C.136的立方根是16D .-5的立方根是3-5 3.已知(x -1)3=64,则x 的值为________. 4.-64的立方根为________. 5.求下列各式的值: (1)3-164; (2)30.001; (3)-3(-7)3.6.已知3x +1的平方根是±4,求9x +19的立方根.7.已知第一个立方体纸盒的棱长是6cm ,第二个立方体纸盒的体积比第一个立方体纸盒的体积大127cm 3,求第二个立方体纸盒的棱长.4估算1.在3,0,-2,-2这四个数中,最小的数是()A.3 B.0C.-2 D.- 22.估计14+1的值应在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间3.7的整数部分是________.4.比较大小:35________4 3.5用计算器开方1.用计算器求2018的算术平方根时,下列四个键中,必须按的键是() A.+ B.× C. D.÷2.计算器计算的按键顺序为1·69=,其显示的结果为________.3.用科学计算器计算:36+23≈________(结果精确到0.01).4.在某项工程中,需要一块面积为3平方米的正方形钢板,应该如何划线、下料呢?要解决这个问题,必须首先求出正方形的边长,那么请你算一算:(1)如果精确到十分位,正方形的边长是多少?(2)如果精确到百分位呢?6 实 数1.2的相反数是( )A .- 2 B. 2 C.12 D .22.下列各数是有理数的是( ) A .π B. 3 C.27 D.383.如图,M ,N ,P ,Q 是数轴上的四个点,这四个点中最适合表示7的点是________.4.计算:(1)38+327-(-2)2; (2)|1-2|-(3)2+(6-π)0.5.在数轴上表示下列各数,并把这些数用“<”连接起来.-145,3,2,π,0.7 二次根式第1课时 二次根式及其性质1.下列式子中,不是二次根式的是( ) A.45 B.-3 C.a 2+3 D.232.下列根式中属于最简二次根式的是( ) A. 6 B.12C.8D.27 3.化简8的结果是( )A. 2 B .2 2 C .3 2 D .4 2 4.下列变形正确的是( )A.(-4)×(-9)=-4×-9B.1614=16×14=4×12=2 C.62=62= 3 D.252-242=25-24=15.3的倒数是________. 6.化简: (1)2581=________; (2)34=________; (3)3116=________. 7.化简:(1)3×25×25; (2)(-12)×(-8).第2课时 二次根式的运算1.下列根式中,能与18合并的是( ) A. 2 B. 3 C. 5 D. 62.计算12×3的结果为( ) A .2 B .4 C .6 D .36 3.下列计算正确的是( ) A .23+32=5 B.8÷2=2 C .53×52=5 6 D.412=2124.计算24-923的结果是( ) A. 6 B .- 6 C .-43 6 D.4365.若a =22+3,b =22-3,则下列等式成立的是( ) A .ab =1 B .ab =-1 C .a =b D .a =-b 6.计算:(1)(3+5)(3-5); (2)212+348; (3)153-8; (4)(3-1)2-2.第3课时二次根式的混合运算1.化简8-2(2-2)得()A.-2 B.2-2C.2 D.42-22.下列计算正确的是()A.6÷(3-6)=2-1B.27-123=9- 4C.2+5=7D.(-6)2=63.估计20×15+3的运算结果应在()A.1到2之间B.2到3之间C.3到4之间D.4到5之间4.计算:(1)(548+12-627)÷3;(2)(23-1)2+(3+2)(3-2);(3)(25-2)0+|2-5|+(-1)2017-13×45;(4)6÷3+2(2-1).第三章位置与坐标1确定位置1.如果影剧院的座位8排5座用(8,5)表示,那么(4,6)表示()A.6排4座B.4排6座C.4排4座D.6排6座2.下列表述中,位置确定的是()A.北偏东30°B.东经118°,北纬24°C.淮海路以北,中山路以南D.银座电影院第2排3.小明向班级同学介绍自己家的位置时,最恰当的表述是()A.在学校的东边B.在东南方向800米处C.距学校800米处D.在学校东南方向800米处4.生态园位于县城东北方向5公里处,下图表示准确的是()5.如图,围棋盘的左下角呈现的是一局围棋比赛中的几手棋.为记录棋谱方便,横线用数字表示,纵线用英文字母表示.这样,棋子①的位置可记为(C,4),棋子②的位置可记为(E,3),则棋子⑨的位置可记为________.6.如图是游乐园的一角.(1)如果用(3,2)表示跳跳床的位置,那么跷跷板用数对________表示,碰碰车用数对________表示,摩天轮用数对________表示;(2)已知秋千在大门以东400m,再往北300m处,请你在图中标出秋千的位置.2平面直角坐标系第1课时平面直角坐标系1.下列选项中,平面直角坐标系的画法正确的是()2.在平面直角坐标系中,点(6,-2)在()A.第一象限B.第二象限C.第三象限D.第四象限3.如图,笑脸盖住的点的坐标可能为()A.(5,2)B.(3,-4)C.(-4,-6)D.(-1,3)4.已知点A的坐标为(-2,-3),则点A到x轴的距离为________,到原点的距离为________.5.在如图所示的平面直角坐标系xOy中.(1)分别标出点A(4,2),B(0,6),C(-1,3),D(-2,-3),E(2,-4),F(3,0)的位置;(2)写出点M,N,P的坐标.第2课时平面直角坐标系中点的坐标特点1.下列各点在第四象限的是()A.(-1,2) B.(3,-5)C.(-2,-3) D.(2,3)2.下列各点中,在y轴上的是()A.(0,3) B.(-3,0)C.(-1,2) D.(-2,-3)3.在平面直角坐标系中,点P(-2,x2+1)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限4.若点P(m+1,m+3)在直角坐标系的x轴上,则点P的坐标为()A.(0,2) B.(-2,0)C.(4,0) D.(0,-2)5.已知M(1,-2),N(-3,-2),则直线MN与x轴、y轴的位置关系分别为() A.相交、相交B.平行、平行C.垂直、平行D.平行、垂直6.已知A(0,1),B(2,0),C(4,3).(1)在如图所示的平面直角坐标系中描出各点,画出△ABC;(2)求△ABC的面积.第3课时建立平面直角坐标系描述图形的位置1.如图,在正方形网格中,若A(1,1),B(2,0),则C点的坐标为()A.(-3,-2) B.(3,-2) C.(-2,-3) D.(2,-3)2.如图,已知等腰三角形ABC.若要建立直角坐标系求各顶点的坐标,则你认为最合理的方法是()A.以BC的中点O为坐标原点,BC所在的直线为x轴,AO所在的直线为y轴B.以B点为坐标原点,BC所在的直线为x轴,过B点作x轴的垂线为y轴C.以A点为坐标原点,平行于BC的直线为x轴,过A点作x轴的垂线为y轴D.以C点为坐标原点,平行于BA的直线为x轴,过C点作x轴的垂线为y轴3.中国象棋是中华民族的文化瑰宝,它渊远流长,趣味浓厚.如图,在某平面直角坐标系中,如果所在位置的坐标为(-3,1),所在位置的坐标为(2,-1),那么所在位置的坐标为()A.(0,1) B.(4,0)C.(-1,0) D.(0,-1)4.如图,长方形ABCD的长AD=6,宽AB=4.请建立适当的直角坐标系使得C点的坐标为(-3,2),并且求出其他顶点的坐标.3轴对称与坐标变化1.点P(3,-5)关于y轴对称的点的坐标为()A.(-3,-5) B.(5,3)C.(-3,5) D.(3,5)2.已知点P(a,3)和点Q(4,-3)关于x轴对称,则a的值为()A.-4 B.-3 C.3 D.43.已知点P(-2,3)关于y轴的对称点为Q(a,b),则a+b的值是()A.1 B.-1 C.5 D.-54.将△ABC各顶点的横坐标都乘以-1,纵坐标不变,顺次连接这三个点,得到另一个三角形,下列选项中正确表示这种变换的是()5.已知点M(a,-1)和点N(2,b)不重合.当M、N关于________对称时,a=-2,b =-1.6.如图,在直角坐标系中,A(-1,5),B(-3,0),C(-4,3).(1)在图中作出△ABC关于y轴对称的图形△A1B1C1;(2)写出点C1的坐标;(3)求△ABC的面积.第四章一次函数1函数1.有下面四个关系式:①y=|x|;②|y|=x;③2x2-y=0;④y=x(x≥0).其中y是x 的函数的是()A.①②B.②③C.①②③D.①③④2.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,这一过程中汽车的行驶速度v和行驶时间t之间的关系用图象表示,其图象可能是()3.某学习小组做了一个实验:从一幢100m高的楼顶随手放下一只苹果,测得有关数据如下:下落时间t(s),1,2,3,4下落高度h(m),5,20,45,80则下列说法错误的是()A.苹果每秒下落的高度越来越大B.苹果每秒下落的高度不变C.苹果下落的速度越来越快D.可以推测,苹果落到地面的时间不超过5秒4.一个正方形的边长为3cm,它的各边边长减少x cm后,得到的新正方形的周长为y cm,则y与x之间的函数关系式是__________.5.一名老师带领x名学生到动物园参观,已知成人票每张30元,学生票每张10元.设门票的总费用为y元.(1)写出y与x之间的函数关系式;(2)当老师带领20名学生参观时,门票的总费用为多少元?2 一次函数与正比例函数1.下列函数中,是一次函数的有( )①y =πx ;②y =2x -1;③y =1x ;④y =2-3x ;⑤y =x 2-1.A .4个B .3个C .2个D .1个2.已知y =x +2-3b 是正比例函数,则b 的值为( ) A.23 B.32C .0D .任意实数 3.若y =(m -2)x +(m 2-4)是正比例函数,则m 的值是( ) A .2 B .-2 C .±2 D .任意实数4.汽车开始行驶时,油箱内有油40升.若每小时耗油5升,则油箱内余油量y (升)与行驶时间t (小时)之间的函数关系式为( )A .y =40t +5B .y =5t +40C .y =5t -40D .y =40-5t5.小雨拿5元钱去邮局买面值为80分的邮票,小雨买邮票后所剩的钱数y (元)与买邮票的枚数x (枚)之间的关系式为____________.6.甲、乙两地相距520km ,一辆汽车以80km/h 的速度从甲地开往乙地.(1)写出汽车距乙地的路程s (km)与行驶时间t (h)之间的函数关系式(不要求写出自变量的取值范围);(2)当行驶时间为4h 时,求汽车距乙地的路程.3 一次函数的图象第1课时 正比例函数的图象和性质1.正比例函数y =3x 的大致图象是( )2.已知直线y =-2x 上有两点(-1,a ),(2,b ),则a 与b 的大小关系是( ) A .a >b B .a <b C .a =b D .无法确定 3.已知正比例函数y =kx (k ≠0),点(2,-3)在该函数的图象上,则y 随x 的增大而( ) A .增大 B .减小 C .不变 D .不能确定4.画出正比例函数y =12x 的图象,并结合图象回答下列问题:(1)点(4,2)是否在正比例函数y =12x 的图象上?点(-2,-2)呢?(2)随着x 值的增大,y 的值如何变化?5.已知正比例函数y =(2-m )x |m -2|,且y 随x 的增大而减小,求m 的值.第2课时一次函数的图象和性质1.函数y=-2x+3的图象大致是()2.若点A(1,a)和点B(4,b)在直线y=-2x+m上,则a与b的大小关系是() A.a>b B.a<bC.a=b D.与m的值有关3.在一次函数y=(2m+2)x+4中,y随x的增大而增大,那么m的值可以是() A.0 B.-1 C.-1.5 D.-24.把直线y=-5x+6向下平移6个单位长度,得到的直线的表达式为()A.y=-x+6 B.y=-5x-12C.y=-11x+6 D.y=-5x5.已知一次函数y=(m+2)x+(3-n).(1)当m满足什么条件时,y随x的增大而增大?(2)当m,n满足什么条件时,函数图象经过原点?4 一次函数的应用第1课时 确定一次函数的表达式1.某正比例函数的图象如图所示,则此函数的表达式为( ) A .y =-12x B .y =12x C .y =-2x D .y =2x2.已知y 与x 成正比例,当x =1时,y =8,则y 与x 之间的函数表达式为( ) A .y =8x B .y =2x C .y =6x D .y =5x 3.如图,直线AB 对应的函数表达式是( ) A .y =-32x +2 B .y =32x +3C .y =-23x +2D .y =23x +24.如图,长方形ABCO 在平面直角坐标系中,且顶点O 为坐标原点.已知点B (4,2),则对角线AC 所在直线的函数表达式为____________.5.已知直线y =kx +b 经过点A (0,3)和B (1,5). (1)求这个函数的表达式;(2)当x =-3时,y 的值是多少?第2课时单个一次函数图象的应用1.一根蜡烛长30cm,点燃后每小时燃烧5cm,燃烧时蜡烛剩余的长度h(cm)和燃烧时间t(h)之间的函数关系用图象可以表示为()2.一次函数y=mx+n的图象如图所示,则关于x的方程mx+n=0的解为()A.x=2B.y=2C.x=-3D.y=-33.周末小丽从家出发骑单车去公园,途中,她在路边的便利店购买一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园.图中描述了小丽路上的情景,下列说法中错误的是()A.小丽从家到达公园共用了20分钟B.公园离小丽家的距离为2000米C.小丽在便利店的时间为15分钟D.便利店离小丽家的距离为1000米4.若一次函数y=ax+b的图象经过点(2,3),则关于x的方程ax+b=3的解为________.5.某工厂加工一批零件,每名工人每天的薪金y(元)与生产件数x(件)之间的函数关系如图所示.已知当生产件数x大于等于20件时,y与x之间的函数表达式为y=4x+b.当工人生产的件数为20件时,求每名工人每天获得的薪金.第3课时两个一次函数图象的应用1.如图,图象l甲,l乙分别表示甲、乙两名运动员在校运动会800米比赛中所跑的路程s(米)与时间t(分钟)之间的关系,则()A.甲跑的速度比乙跑的速度快B.乙跑的速度比甲跑的速度快C.甲、乙两人所跑的速度一样快D.图中提供的信息不足,无法判断2.如图,l1反映了某公司的销售收入与销售量的关系,l2反映了该公司产品的销售成本与销售量的关系.当该公司盈利(收入大于成本)时,销售量()A.小于3t B.大于3t C.小于4t D.大于4t3.小明和小强进行百米赛跑,小明比小强跑得快,如果两人同时起跑,小明肯定赢.如图,现在小明让小强先跑________米,直线________表示小明所跑的路程与时间的关系,大约________秒时,小明追上了小强,小强在这次赛跑中的速度是________.4.王教授和孙子小强经常一起进行早锻炼,主要活动是爬山.有一天,小强让爷爷先出发,然后追赶爷爷.图中两条线段分别表示小强和爷爷离开山脚的距离y(米)与爬山所用时间x(分钟)之间的关系(从小强开始爬山时计时).(1)小强让爷爷先出发多少米?(2)山顶离山脚的距离有多少米?谁先爬上山顶?(3)小强经过多长时间追上爷爷?第五章 二元一次方程组1 认识二元一次方程组1.下列属于二元一次方程的是( ) A .xy +2x -y =7 B .4x +1=y C.1x+y =5 D .x 2-y 2=2 2.下列各组数是二元一次方程组⎩⎪⎨⎪⎧x +y =1,2x +y =5的解的是( )A.⎩⎪⎨⎪⎧x =-1,y =2B.⎩⎪⎨⎪⎧x =-2,y =3C.⎩⎪⎨⎪⎧x =2,y =1D.⎩⎪⎨⎪⎧x =4,y =-3 3.如果⎩⎪⎨⎪⎧x =3,y =-5是方程mx +2y =-2的一组解,那么m 的值为( )A.83 B .-83 C .-4 D.854.一个长方形的长的2倍比宽的5倍还多1cm ,宽的3倍又比长多1cm ,求这个长方形的长与宽.设长为x cm ,宽为y cm ,则下列方程组中正确的是( )A.⎩⎪⎨⎪⎧2x -5y =1,x -3y =1B.⎩⎪⎨⎪⎧5y -2x =1,3y -x =1C.⎩⎪⎨⎪⎧2x -5y =1,3y -x =1D.⎩⎪⎨⎪⎧5y -2x =1,x -3y =1 5.为了响应“足球进校园”的口号,某校计划为学校足球队购买一些足球.已知购买2个A 品牌的足球和3个B 品牌的足球共需380元,购买4个A 品牌的足球和2个B 品牌的足球共需360元.(1)设A 品牌足球的单价为x 元,B 品牌足球的单价为y 元,请根据题意列出相应的方程组;(2)⎩⎪⎨⎪⎧x =40,y =100是(1)中列出的二元一次方程组的解吗?2 求解二元一次方程组第1课时 代入法1.方程组⎩⎪⎨⎪⎧3x -4y =2,x +2y =1用代入法消去x ,所得关于y 的一元一次方程为( )A .3-2y -1-4y =2B .3(1-2y )-4y =2C .3(2y -1)-4y =2D .3-2y -4y =22.方程组⎩⎪⎨⎪⎧y =3x ,x +y =16的解是( )A.⎩⎪⎨⎪⎧x =3,y =9B.⎩⎪⎨⎪⎧x =2,y =6C.⎩⎪⎨⎪⎧x =4,y =12D.⎩⎪⎨⎪⎧x =1,y =3 3.用代入消元法解二元一次方程组⎩⎪⎨⎪⎧3x -y =5①,5x +3y =9②,首先把方程________变形得__________,再代入方程________.4.用代入消元法解下列方程组:(1)⎩⎪⎨⎪⎧y =x +2,4x +3y =13; (2)⎩⎪⎨⎪⎧3x +2y =19,2x -y =1.5.已知|x +y -3|+(x -2y )2=0,求x ,y 的值.第2课时 加减法1.对于方程组⎩⎪⎨⎪⎧4x +7y =-19,4x -5y =17,用加减法消去x ,得到的方程是( )A .2y =-2B .2y =-36C .12y =-2D .12y =-362.方程组⎩⎪⎨⎪⎧x -y =2,2x -y =1的解为( )A.⎩⎪⎨⎪⎧x =-1,y =-3B.⎩⎪⎨⎪⎧x =1,y =-3 C.⎩⎪⎨⎪⎧x =-1,y =3 D.⎩⎪⎨⎪⎧x =1,y =3 3.已知方程组⎩⎪⎨⎪⎧2x +y =4,x +2y =5,则x +y 的值为( )A .-1B .0C .2D .34.用加减消元法解下列方程组:(1)⎩⎪⎨⎪⎧x +y =2,6x -y =5; (2)⎩⎪⎨⎪⎧x +2y =5,x +y =2;(3)⎩⎪⎨⎪⎧2x +y =2,3x -2y =10; (4)⎩⎪⎨⎪⎧3x -4y =14,2x -3y =3.3 应用二元一次方程组——鸡兔同笼1.中国古代第一部数学专著《九章算术》中记载了一个问题,大意是:有几个人一起去买一件物品,每人出8元,多3元;每人出7元,少4元,问有多少人?该物品价几何?设有x 人,物品价值y 元,则所列方程组正确的是( )A.⎩⎪⎨⎪⎧8y +3=x ,7y -4=xB.⎩⎪⎨⎪⎧8x +3=y ,7x -4=yC.⎩⎪⎨⎪⎧8x -3=y ,7x +4=yD.⎩⎪⎨⎪⎧8y -3=x ,7y +4=x 2.某年级共有学生246人,其中男生人数y 比女生人数x 的2倍多2人,则下面所列的方程组中符合题意的是( )A.⎩⎪⎨⎪⎧x +y =246,2y =x -2B.⎩⎪⎨⎪⎧x +y =246,2x =y +2C.⎩⎪⎨⎪⎧x +y =246,y =2x +2D.⎩⎪⎨⎪⎧x +y =246,2y =x +2 3.有若干只鸡和兔关在一个笼子里,从上面数,有30个头;从下面数,有84条腿,问笼中鸡和兔各有几只?4.小明同学发现他奶奶今年的年龄是他年龄的5倍,12年后,他奶奶的年龄是他年龄的3倍.问小明和他奶奶今年的年龄各是多少?4 应用二元一次方程组——增收节支1.小李家去年节余50000元,今年可节余95000元,并且今年收入比去年高15%,支出比去年低10%,问今年的收入与支出各是多少?设去年的收入为x 元,支出为y 元,则可列方程组为( )A.⎩⎪⎨⎪⎧x +y =50000,85%x +110y =95000B.⎩⎪⎨⎪⎧x +y =50000,85%x -110%y =95000C.⎩⎪⎨⎪⎧x -y =50000,115%x -90%y =95000D.⎩⎪⎨⎪⎧x -y =50000,85%x -110%y =95000 2.在去年植树节时,甲班比乙班多种了100棵树.今年植树时,甲班比去年多种了10%,乙班比去年多种了12%,结果甲班比乙班还是多种100棵树.设甲班去年植树x 棵,乙班去年植树y 棵,则下列方程组中正确的是( )A.⎩⎪⎨⎪⎧x -y =100,10%x -12%y =100B.⎩⎪⎨⎪⎧x -y =100,112%x -110%y =100C.⎩⎪⎨⎪⎧x -y =100,12%x -10%y =100D.⎩⎪⎨⎪⎧x -y =100,110%x -112%y =1003.母亲节那天,很多同学给妈妈准备了鲜花和礼盒.从图中信息可知,若设鲜花x 元/束,礼盒y 元/盒,则可列方程组______________.4.某校初三(2)班40名同学为“希望工程”共捐款100元,捐款情况如下表:捐款(元),1,2,3,4人数(人),6,●,●,7表格中捐款2元和3元的人数不小心被墨水污染已经看不清楚了,求捐款2元和3元的同学各有多少名.5 应用二元一次方程组——里程碑上的数1.已知两数x 、y 之和是10,x 比y 的2倍大1,则下面所列方程组正确的是( ) A.⎩⎪⎨⎪⎧x +y =10,y =2x +1 B.⎩⎪⎨⎪⎧x +y =10,y =2x -1 C.⎩⎪⎨⎪⎧x +y =10,x =2y +1 D.⎩⎪⎨⎪⎧x +y =10,x =2y -1 2.通讯员要在规定时间骑车到达某地,若他每小时行驶15千米,则可提前24分钟到达;若他每小时行驶12千米,则要迟到15分钟.设通讯员到达某地的路程是x 千米,原定的时间为y 小时,则可列方程组为( )A.⎩⎨⎧x 15-15=y ,x 12+12=yB.⎩⎨⎧x 15+15=y ,x 12-12=yC.⎩⎨⎧x 15-2460=y ,x 12-1560=yD.⎩⎨⎧x 15+2460=y ,x 12-1560=y 3.一个两位数的数字和为14,若调换个位数字与十位数字,所得的新数比原数小36,则这个两位数是________.4.甲、乙两地相距880千米,小轿车从甲地出发,2小时后,大客车从乙地出发相向而行,又经过4小时两车相遇.已知小轿车比大客车每小时多行20千米,问大客车每小时行多少千米?小轿车每小时行多少千米?6 二元一次方程与一次函数1.已知直线y =3x 与y =-x +b 的交点为(-1,-3),则关于x ,y 的方程组⎩⎪⎨⎪⎧y -3x =0,y +x -b =0的解为( )A.⎩⎪⎨⎪⎧x =1,y =3B.⎩⎪⎨⎪⎧x =-1,y =3C.⎩⎪⎨⎪⎧x =1,y =-3D.⎩⎪⎨⎪⎧x =-1,y =-3 2.以方程2x +y =5的解为坐标的所有点组成的图象与一次函数__________的图象相同.3.若一次函数y =2x -4的图象上有一点的坐标是(3,2),则方程2x -y -4=0必有一组解为__________.4.如图,一次函数y =kx +b 的图象l 1与一次函数y =-x +3的图象l 2相交于点P ,则关于x ,y 的方程组⎩⎪⎨⎪⎧y =kx +b ,y =-x +3的解为__________. 5.用图象法解方程组⎩⎪⎨⎪⎧y =2x -2,x +y =-5.6.已知一次函数y =ax -5与y =2x +b 的图象的交点坐标为A (1,-2).(1)直接写出关于x ,y 的方程组⎩⎪⎨⎪⎧ax -y =5,2x -y =-b 的解; (2)求a ,b 的值.7 用二元一次方程组确定一次函数表达式1.一次函数y =kx +b 的图象如图所示,则( )A.⎩⎪⎨⎪⎧k =-13,b =-1B.⎩⎪⎨⎪⎧k =13,b =1C.⎩⎪⎨⎪⎧k =3,b =1D.⎩⎪⎨⎪⎧k =13,b =-12.已知一次函数y =kx +b ,下表中列出了x 与y 的部分对应值,则( )x,…,-1,1,…y,…,1,-5,…A.⎩⎪⎨⎪⎧k =3,b =-2 B.⎩⎪⎨⎪⎧k =-3,b =2 C.⎩⎪⎨⎪⎧k =-3,b =-2 D.⎩⎪⎨⎪⎧k =3,b =2 3.已知y 是关于x 的一次函数,且当x =3时,y =-2;当x =2时,y =-3,则这个一次函数的表达式为____________.4.若某公司销售人员的个人月收入y (元)与其每月的销售量x (千件)是一次函数关系(如图),则个人月收入y (元)与每月销售量x (千件)之间的函数关系式为____________.5.如图是某长途汽车站旅客携带行李费用示意图.(1)求行李费y (元)与行李质量x (千克)之间的函数关系式;(2)当旅客携带60千克行李时,需付行李费多少元?*8 三元一次方程组1.以下方程中,属于三元一次方程组的是( )A.⎩⎪⎨⎪⎧2x +3y =4,2y +z =5,x 2+y =1B.⎩⎪⎨⎪⎧x +y +z =2,x -2y =3,y -6z =9C.⎩⎪⎨⎪⎧1x +1y +1z =16,3x -4y =3,x +z =2D.⎩⎪⎨⎪⎧x -y =2,2x -3y =4,2x -2y =42.已知三元一次方程组⎩⎪⎨⎪⎧2x -3y +2z =5,x -2y +3z =-6,3x -y +z =3消去未知数y 后,得到的方程组可能是( )A.⎩⎪⎨⎪⎧7x +z =4,5x -z =12B.⎩⎪⎨⎪⎧7x +z =4,x -5z =8C.⎩⎪⎨⎪⎧7x -z =12,x -5z =28D.⎩⎪⎨⎪⎧7x -z =4,x -5z =12 3.三元一次方程组⎩⎪⎨⎪⎧x -y =1,y -z =1,x +z =6的解是( )A.⎩⎪⎨⎪⎧x =2,y =3,z =4B.⎩⎪⎨⎪⎧x =2,y =4,z =3C.⎩⎪⎨⎪⎧x =3,y =2,z =4D.⎩⎪⎨⎪⎧x =4,y =3,z =24.有甲、乙、丙三种货物,如果购买甲3件、乙2件、丙1件共需315元;购买甲1件、乙2件、丙3件共需285元,那么购买甲、乙、丙各1件共需( )A .128元B .130元C .150元D .160元5.解方程组:⎩⎪⎨⎪⎧x +y =1,y +z =5,z +x =6.第六章数据的分析1平均数第1课时平均数1.数据:-2,-1,0,3,4的平均数是()A.0 B.0.8 C.1 D.22.7位评委给一个演讲者打分(满分10分)如下:9,8,9,10,10,7,9.若去掉一个最高分和一个最低分,则这名演讲者的最后平均得分是()A.7分B.8分C.9分D.10分3.若一组数据2,4,3,x,4的平均数是3,则x的值为()A.1 B.2 C.3 D.44.某大学招生考试只考数学和物理,计算综合得分时,按数学占60%、物理占40%计算.如果小明数学得分为95分,物理得分为90分,那么小明的综合得分是________分.5.某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核.甲、乙、丙各项得分如下表:,笔试,面试,体能甲,83,79,90乙,85,80,75丙,80,90,73(1)根据三项得分的平均分,从高到低确定三名应聘者的排名顺序;(2)该公司规定:笔试、面试、体能得分分别不得低于80分、80分、70分,并按60%、30%、10%的比例计入总分.根据规定,请你说明谁将被录用.第2课时加权平均数的应用1.小明在七年级第二学期的数学成绩如下表所示.如果按如图所显示的权重计分,那么小明该学期的总评得分为________.姓名,平时,期中,期末,总评小明,90分,90分,85分2.某公司招聘一名公关人员,应聘者小王参加面试和笔试,成绩(100分制)如表所示:,面试,笔试成绩,评委1,评委2,评委388,90,86,92(1)请计算小王面试的平均成绩;(2)如果将面试的平均成绩与笔试成绩按6∶4的比例确定最终成绩,请你计算出小王的最终成绩.3.学校对王老师和张老师的工作态度、教学成绩及业务学习三个方面做了一个初步评估,成绩如下表所示:,工作态度,教学成绩,业务学习王老师,98,95,96张老师,90,99,98若工作态度、教学成绩、业务学习分别占20%、60%、20%,请分别计算王老师和张老师三个方面的平均分,并以此判断谁应评为优秀.2中位数与众数1.数据21、12、18、16、20、21的众数是()A.21 B.20 C.18 D.162.某区在一次空气污染指数抽查中,收集到10天的数据如下:61,75,70,56,81,91,92,91,75,81.该数据的中位数是()A.77.3 B.91 C.81 D.783.抢微信红包成为节日期间人们最喜欢的活动之一.对某单位50名员工在春节期间所抢的红包金额进行统计,并绘制成了如下统计图.根据如图提供的信息,红包金额的众数和中位数分别是()A.30,30B.30,20C.40,40D.30,404.若一组数据6、7、4、6、x、1的平均数是5,则这组数据的众数是________.5.某乡镇企业生产部有技术工人15人,生产部为了合理制定产品每月的生产定额,统计了这15人某月加工的零件个数(如下表).月加工零件数(件),54,45,30,24,21,12人数,1,1,2,6,3,2(1)写出这15人该月加工零件数的平均数、中位数和众数;(2)假设生产部负责人把每位工人的月加工零件数定为24件,你认为是否合理?请说明理由.3 从统计图分析数据的集中趋势1.在一次体育课上,体育老师对九年级(1)班的40名学生进行了立定跳远项目的测试,测试所得分数及相应的人数如图所示,则该班40名学生这次测试的平均分为( ) A.53分 B.354分 C.403分 D .8分2.某次比赛中,15名选手的成绩如图所示,则这15名选手成绩的众数和中位数分别是( )A .98,95B .98,98C .95,98D .95,953.如图是小华同学6次数学测验的成绩统计图,则该同学这6次成绩的众数和中位数分别是____________.4.某校八(4)班共有40人,每位同学都向“希望工程”捐献了图书,捐书情况绘制成了如图所示的扇形统计图,求捐书册数的平均数、众数和中位数.4数据的离散程度第1课时极差、方差和标准差1.在九年级体育中考中,某班一组女生(每组8人)参加仰卧起坐测试的成绩如下(单位:次/分):46,44,45,42,48,46,47,45,则这组数据的极差为()A.2 B.4 C.6 D.82.甲、乙两个样本,甲样本的方差是0.105,乙样本的方差是0.055,那么样本() A.甲的波动比乙大B.乙的波动比甲大C.甲、乙的波动一样大D.甲、乙的波动大小无法确定3.某兴趣小组为了解我市气温的变化情况,记录了今年1月份连续6天的最低气温(单位:℃):-7,-4,-2,1,-2,2.关于这组数据,下列结论不正确的是() A.平均数是-2 B.中位数是-2C.众数是-2 D.方差是74.已知一组数据:2,4,5,6,8,则它的方差为________,标准差为________.5.甲、乙两名同学进行射击训练,在相同条件下各射靶10次,成绩统计如下(单位:环):甲:9,5,7,8,7,6,8,6,7,7;乙:7,9,6,8,2,7,8,4,9,10.谁的成绩射击成绩较稳定?。
北师大版八年级上册数学书习题答案
北师大版八年级上册数学书习题答案
做北师大版八年级数学上册的课本习题如上阶尽管费力,却一步比一步高。
小编整理了关于北师大版八年级上册数学书习题的答案,希望对大家有帮助!
北师大版八年级上册数学书习题答案(一)
第31页练习
北师大版八年级上册数学书习题答案(二)
第34页练习
1.解:(1)因为3.6²<13.6<3.7^2,所以3.6<√13.6<3.7.又因为3.68^2<13.6<3.63^2,所以3.68<√13.6<3.69,所以√13.6 的估算值是3.7.
(2)因为9³<800<10^3所以9<∛800<10.又因为9.2^3<800<9.3^3,所以9.2<∛800<9.3.所以∛800 的估算值是9.
2.解:因为2.5²=6.25,所以√6<√6.25,所以√6<2.5.
北师大版八年级上册数学书习题答案(三)
第39页练习
1.解:(1)错误.带根号的数不一定是无理数,如√4=
2.
(2)正确.
(3)错误.因为数轴上的每一个点都表示一个实数.
2.解(1)-√7,1/√7,√7 (2)2,-1/2,2 (3)-7,1/7,7
3.解:如图2-6-5所示,点A表示√10.。
北师大版八年级数学上册练习册(附答案)最新版
声明:1.本文经过个人用心加工,版权所有,请勿另行上传;
北师大版初中数学 八年级上册 精品讲义ㆍ精排打印版(含答案)
研发合作:313802968
目录
第一章 勾股定理.................................................................................................................................... 1 1.1 探索勾股定理(1)................................................................................................................ 1 1.1 探索勾股定理(2)................................................................................................................ 4 1.1 探索勾股定理(3)................................................................................................................ 7 1.2 能得到直角三角形吗............................................................................................................ 10 1.3 蚂蚁怎样走最近.................................................................................................................... 13 单元综合评价................................................................................................................................ 16
北师大版八年级上册数学课本课后练习题答案
八年级上册数学课后练习题答案(北师大版)第一章勾股定理课后练习题答案说明:因录入格式限制,“√”代表“根号”,根号下内用放在“()”里面;“⊙”,表示“森哥马”,§,¤,♀,∮,≒,均表示本章节内的类似符号。
§1.l探索勾股定理随堂练习1.A所代表的正方形的面积是625;B所代表的正方形的面积是144。
2.我们通常所说的29英寸或74cm的电视机,是指其荧屏对角线的长度,而不是其长或宽,同时,因为荧屏被边框遮盖了一部分,所以实际测量存在误差.1.1知识技能1.(1)x=l0;(2)x=12.2.面积为60cm:,(由勾股定理可知另一条直角边长为8cm).问题解决12cm2。
1.2知识技能1.8m(已知直角三角形斜边长为10m,一条直角边为6m,求另一边长).数学理解2.提示:三个三角形的面积和等于一个梯形的面积:联系拓广3.可以将四个全等的直角三角形拼成一个正方形.随堂练习12cm、16cm.习题1.3问题解决1.能通过。
.2.要能理解多边形ABCDEF’与多边形A’B’C’D’E’F’的面积是相等的.然后剪下△OBC和△OFE,并将它们分别放在图③中的△A’B’F’和△D’F’C’的位置上.学生通过量或其他方法说明B’E’F’C’是正方形,且它的面积等于图①中正方形ABOF和正方形CDEO的面积和。
即(B’C’)2=AB2+CD2:也就是BC2=a2+b2。
,这样就验证了勾股定理§l.2 能得到直角三角形吗随堂练习l.(1) (2)可以作为直角三角形的三边长.2.有4个直角三角影.(根据勾股定理判断)数学理解2.(1)仍然是直角三角形;(2)略;(3)略问题解决4.能.§1.3 蚂蚁怎样走最近13km提示:结合勾股定理,用代数办法设未知数列方程是解本题的技巧所在习题1.5知识技能1.5lcm.问题解决2.能.3.最短行程是20cm。
4.如图1~1,设水深为x尺,则芦苇长为(x+1)尺,由勾股定理解得x=12,则水池的深度为12尺,芦苇长为13尺。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二(八年级)上册数学书练习题答案(北师大版)初二(八年级)下册数学书练习题答案很重要,初二(八年级)下册数学书练习题答案是什么呢?下面是初二(八年级)下册数学书练习题答案,跟初二(八年级)下册数学书练习题答案对过后您做的对吗?八年级上册数学课后练习题答案(北师大版)第一章勾股定理课后练习题答案说明:因录入格式限制,“√”代表“根号”,根号下内用放在“()”里面;“⊙”,表示“森哥马”,§,¤,♀,∮,≒,均表示本章节内的类似符号。
§1.l探索勾股定理随堂练习1.A所代表的正方形的面积是625;B所代表的正方形的面积是144。
2.我们通常所说的29英寸或74cm的电视机,是指其荧屏对角线的长度,而不是其长或宽,同时,因为荧屏被边框遮盖了一部分,所以实际测量存在误差.1.1知识技能1.(1)x=l0;(2)x=12.2.面积为60cm:,(由勾股定理可知另一条直角边长为8cm). 问题解决12cm2。
1.2知识技能1.8m(已知直角三角形斜边长为10m,一条直角边为6m,求另一边长).数学理解2.提示:三个三角形的面积和等于一个梯形的面积:联系拓广3.可以将四个全等的直角三角形拼成一个正方形.随堂练习12cm、16cm.习题1.3问题解决1.能通过。
.2.要能理解多边形ABCDEF’与多边形A’B’C’D’E’F’的面积是相等的.然后剪下△OBC和△OFE,并将它们分别放在图③中的△A’B’ F’和△D’F’C’的位置上.学生通过量或其他方法说明B’ E’F’C’是正方形,且它的面积等于图①中正方形ABOF和正方形CDEO的面积和。
即(B’C’)2=AB2+CD2:也就是BC2=a2+b2。
,这样就验证了勾股定理§l.2 能得到直角三角形吗随堂练习l.(1) (2)可以作为直角三角形的三边长.2.有4个直角三角影.(根据勾股定理判断)数学理解2.(1)仍然是直角三角形;(2)略;(3)略问题解决4.能.§1.3 蚂蚁怎样走最近13km提示:结合勾股定理,用代数办法设未知数列方程是解本题的技巧所在习题1.5知识技能1.5lcm.问题解决2.能.3.最短行程是20cm。
4.如图1~1,设水深为x尺,则芦苇长为(x+1)尺,由勾股定理解得x=12,则水池的深度为12尺,芦苇长为13尺。
复习题知识技能1.蚂蚁爬行路程为28cm.2.(1)能;(2)不能;(3)不能;(4)能.3.200km.4.169cm。
5.200m。
数学理解6.两直角边上的半圆面积之和等于斜边上半圆的面积.7.提示:拼成的正方形面积相等:8.能.9.(1)18;(2)能.10.略.问题解决11.(1)24m;(2)不是,梯子底部在水平方向上滑动8m.12.≈30.6。
联系拓广13.两次运用勾股定理,可求得能放人电梯内的竹竿的最大长度约是3m,所以小明买的竹竿至少为3.1 m第二章实数§2.1 数怎么又不够用了随堂练习1.h不可能是整数,不可能是分数。
2.略:结合勾股定理来说明问题是关键所在。
随堂练习1.0.4583,3.7,一1/7,18是有理数,一∏是无理数。
习题2.2知识技能1.一559/180,3.97,一234,10101010…是有理数,0.123 456 789 101 1 12 13…是无理数.2.(1)X不是有理数(理由略);(1)X≈3.2;(3)X≈3.16§2.2 平方根随堂练习1.6,3/4,√17,0.9,10-22.√10 cm.习题2.3知识技能1.11,3/5,1.4,103问题解决2.设每块地砖的边长是xm,x2×120=10.8 解得x=0.3m 联系拓广3.2倍,3倍,10倍,√n 倍。
随堂练习1.±1.2, 0,±√18,±10/7,±√21,±√14,±10-22.(1)±5;(2)5;(3)5.习题2.4知识技能1.±13,±10-3,±4/7,±3/2,±√182.(1)19;(2) —11;(3)±14。
3.(1)x=±7;(2)x=±5/94.(1)4;(2)4;(3)0.8联系拓广5.不一定.§2.3 立方根1.0.5,一4.5,16.2. 6cm.习题2.5知识技能1.0.1,一1,一1/6,20,2/3,一82. 2,1/4,一3, 125,一33.a1827641252163435127291 0003√a12345678910数学理解4.(1)不是,是;(2)都随着正数k值的增大而增大;(3)增大问题解决5.5cm联系拓广6.2倍,3倍,10倍,3√n倍.§2.4 公园有多宽随堂练习1.(1)3.6或3.7;(2)9或102.√6 2.5习题2.6知识技能1.(I)6或7;(2)5.0或5.12.(1)( √3—1)/21/2 (2) √153.853.(√5—1)/25/8数学理解4.(1)错,因为(√8955)显然大于10;(2)错,因为(√12345)显然小于100.问题解决5.4m,这里只是能取过剩近似值4m,不能取3m.6.≈5m.§2.5 用计算器开方(1) (3√11) √5.(2)5/8(√5—1)/2。
习题2.7知识技能1.(1)49;(2) 一2.704;(3)1.828;(4)8.2162.(1) √8(2)8/13(√5—1)/2。
数学理解3.随着开方次数的增加,结果越来越趋向于1或一l。
4.(1)结果越来越小,趋向于0;(2)结果越来越大,但也趋向于0.§2.6 实数随堂练习1.(1)错(无限小数不都是无理数);(2)x4(无理数部是无限不循环小数);(3)错(带根号的数不一定是无理数).2.(1)一√7,1/√7,√7;(2)2,一1/2,2 (3)一7,1/7,73.略习题2.8(1){ 一7.5,4,2/3,一3√27,0.31,0.15…);(2) { √15,√(9/17),—∏…);(3){ √15,4,√(9/17),2/3,0.31,0.15) (4){—7.5,一3√27,—∏}2.(1) –3.8,5/19,3.8.(2) √21,一√21/21,√21;(3) ∏,一1/∏,∏;(4)一3,√3/3,√3;(5)一3/10,10/3,3/10 3.略随堂练习1.(1)3/2;(2)3;(3) √3一1;(4)13—4√3习题2.9知识技能1. 解:(1)原式=1;(2)原式=1/2解得x=16 y=14 答:略.40.解:设甲商品原价x元,乙商品原价y元,则有方程组{ x+ y=100 (1—10%) x+(1+40%)y=(1+20%)×100 },解得x=40 y=60 答:略·这个工作可让学生分组负责收集整理,登在小黑板上,每周一换。
要求学生抽空抄录并且阅读成诵。
其目的在于扩大学生的知识面,引导学生关注社会,热爱生活,所以内容要尽量广泛一些,可以分为人生、价值、理想、学习、成长、责任、友谊、爱心、探索、环保等多方面。
如此下去,除假期外,一年便可以积累40多则材料。
如果学生的脑海里有了众多的鲜活生动的材料,写起文章来还用乱翻参考书吗?4l.小明和他妈妈现在的年龄分别是15岁和40岁.我国古代的读书人,从上学之日起,就日诵不辍,一般在几年内就能识记几千个汉字,熟记几百篇文章,写出的诗文也是字斟句酌,琅琅上口,成为满腹经纶的文人。
为什么在现代化教学的今天,我们念了十几年书的高中毕业生甚至大学生,竟提起作文就头疼,写不出像样的文章呢?吕叔湘先生早在1978年就尖锐地提出:“中小学语文教学效果差,中学语文毕业生语文水平低,……十几年上课总时数是9160课时,语文是2749课时,恰好是30%,十年的时间,二千七百多课时,用来学本国语文,却是大多数不过关,岂非咄咄怪事!”寻根究底,其主要原因就是腹中无物。
特别是写议论文,初中水平以上的学生都知道议论文的“三要素”是论点、论据、论证,也通晓议论文的基本结构:提出问题――分析问题――解决问题,但真正动起笔来就犯难了。
知道“是这样”,就是讲不出“为什么”。
根本原因还是无“米”下“锅”。
于是便翻开作文集锦之类的书大段抄起来,抄人家的名言警句,抄人家的事例,不参考作文书就很难写出像样的文章。
所以,词汇贫乏、内容空洞、千篇一律便成了中学生作文的通病。
要解决这个问题,不能单在布局谋篇等写作技方面下功夫,必须认识到“死记硬背”的重要性,让学生积累足够的“米”。
42.一般17:30—19:00期间汽车车流量较大.家庭是幼儿语言活动的重要环境,为了与家长配合做好幼儿阅读训练工作,孩子一入园就召开家长会,给家长提出早期抓好幼儿阅读的要求。
我把幼儿在园里的阅读活动及阅读情况及时传递给家长,要求孩子回家向家长朗诵儿歌,表演故事。
我和家长共同配合,一道训练,幼儿的阅读能力提高很快。
第11页/共11页。