der sliding mode control to mechanical systems
遥微操作机器人系统滑模变结构控制研究
基金项目:国家自然科学基金资助项目(60575051);江苏省高校自然科学基金(03K J B120005)收稿日期:2007-04-09 修回日期:2007-11-08第25卷 第7期计 算 机 仿 真2008年7月文章编号:1006-9348(2008)07-0145-04遥微操作机器人系统滑模变结构控制研究王艳,曾庆军(江苏科技大学电子信息学院,江苏镇江212003)摘要:遥微操作机器人是一种应用于医疗、微生物工程及微机械等领域的特殊遥操作机器人系统,文中主要针对面向微创外科手术系统的遥微操作机器人系统中,操作者及作业环境往往具有时变性而易导致系统不稳定且难以控制的问题,在已有的动力学模型的基础上,设计了一种新型的滑模变结构控制方案,在该方案中主机械手采用阻抗控制而从机械手采用滑模变结构控制策略。
仿真实验结果表明了方案的有效性和鲁棒性,系统能较好地实现位置比例跟踪和力比例跟踪。
关键词:遥微操作机器人;滑模变结构控制;比例跟踪;仿真中图分类号:TP242 文献标识码:ASli di ng -M ode Contro ller for Tele -m icro m ani pul ation R obot Syste mWANG Y an ,ZENG Q ing-j u n(Schoo l of E lectronic and Info r ma ti on Eng i neer i ng ,Jiangsu U n i ve rs i ty o f Science and T echno l ogy ,Zhen jiang Jiangsu 212003,Chi na)ABSTRACT :T e le-m i c ro m anipulation robot i s a spec ial te l e -man i pu l a tion robot syste m used i nvasively i n m edi c i ne ,m icro -b i oeng ineer i ng and m i cro -m echan i ca l syste m.T he sy stem for M IS techno l og ies i n m ed i c i ne m ay be co m e unstab l e because the operater and ope rating-env ironment som eti m es hav e ti m e-vary i ng charac teristi cs .In or der to so lve t h is prob le m,a ne w slidi ng-mode contro ller sche m e is des i gned ,i n wh ich the i m pedance contro l is used fo r t he m aster dev ice ,wh ile the sli ding -m ode contro l is used fo r the slave dev ice .T he si m ulati on resu lts m anifest the vali d it y and robustness o f the desi gned contro llers and the syste m can atta i n better sca led track i ng o f p l ace m ent and force .KEY W ORDS :T ele-m icrom an i pu lati on robot ;S li ding-m ode con tro ;l Scaled track i ng;S i m u l ation1 引言遥操作机器人是指在人的操纵下能在人难以接近(距离遥远、对人有害或操作有难度)的环境中完成比较复杂的精细操作的一种远距离操作系统。
基于高阶快速终端滑模扰动观测器的永磁同步电机机械参数辨识
2020年12月电工技术学报Vol.35 Sup. 2 第35卷增刊2 TRANSACTIONS OF CHINA ELECTROTECHNICAL SOCIETY Dec. 2020 DOI:10.19595/ki.1000-6753.tces.191488基于高阶快速终端滑模扰动观测器的永磁同步电机机械参数辨识梁戈黄守道李梦迪吴轩(湖南大学电气与信息工程学院长沙 410082)摘要针对内置式永磁同步电机机械参数辨识过程中误差大、收敛慢的问题,提出一种基于高阶快速终端滑模扰动观测器的参数辨识方法。
该方法通过建立系统实时扰动模型,并结合简单的电机加减速法,可实现对电机摩擦系数B和转动惯量J的在线辨识;在准确辨识出B、J后,借助观测器平滑的扰动输出值进行在线辨识外部负载转矩,可以达到很好的转矩脉动抑制效果。
最后通过dSPACE实验平台验证了基于高阶快速终端滑模扰动观测器的机械参数辨识策略的有效性。
关键词:参数辨识高清快速终端滑模观测器内置式永磁同步电机转矩脉动中图分类号:TM341A High-Order Fast Terminal Sliding-Mode Disturbance ObserverBased on Mechanical Parameter Identification for PMSMLiang Ge Huang Shoudao Li Mengdi Wu Xuan(College of Electrical and Information Engineering Hunan University Changsha 410082 China)Abstract With regard to the problem of large error and slow convergence in the process of mechanical parameter identification for interior permanent magnet synchronous machine (IPMSM), an identification method based on high-order fast terminal sliding-mode(HOFTSM) disturbance observer is proposed. Combined with a simple algorithm, the mechanical parameters including the moment of inertia B and the viscous damping coefficient J can be extracted from the disturbance model in real-time. After accurately identifying the B and J, the smoothed disturbance output of the observer which shows advantages in chattering suppression can be directly used to estimate the external load torque. Finally, the effectiveness of the HOFTSM disturbance observer is verified by the dSPACE experimental platform.Keywords:Parameter identification, high-order fast terminal, sliding-mode observer, interior permanent magnet synchronous motor(IPMSM), torque ripple0引言内置式永磁同步电机(Interior Permanent Magnet Synchronous Motor,IPMSM)因具有高功率密度、高功率因数、强过载能力等优点而广泛应用于电动汽车驱动、数控系统、机器人等领域。
隔膜分切机放卷张力串级控制器设计
第27卷㊀第10期2023年10月㊀电㊀机㊀与㊀控㊀制㊀学㊀报Electri c ㊀Machines ㊀and ㊀Control㊀Vol.27No.10Oct.2023㊀㊀㊀㊀㊀㊀隔膜分切机放卷张力串级控制器设计汪良1,㊀王恒升1,2,㊀郭新平1,㊀廖正银1(1.中南大学机电工程学院,湖南长沙410083;2.中南大学高性能复杂制造国家重点实验室,湖南长沙410083)摘㊀要:以锂电池隔膜分切机中的放卷张力为研究对象,针对放卷系统非线性㊁强耦合与参数时变特性对张力控制提出的挑战,提出一种基于扰动补偿的串级控制方法㊂通过分层控制的思路,对放卷张力和速度2个相互耦合的变量进行串级控制,增加对速度环的扰动补偿与鲁棒控制,提升张力控制的稳定性㊂考虑到张力滞后于速度,张力外环使用积分滑模控制(ISMC ),得到放卷辊最优速度期望值㊂速度内环使用鲁棒反演滑模控制(BSMC ),实现放卷速度的稳定跟踪㊂针对系统的扰动及未建模因素,设计了扩张状态观测器(ESO )进行实时补偿㊂仿真和实验结果表明,提出的控制方法相较于传统PID 控制具有良好的鲁棒性和抗干扰性,能够很好地适应隔膜分切机不同工况下的张力控制要求㊂关键词:张力控制;速度控制;积分滑模控制;反演滑模控制;扩张状态观测器;串级控制DOI :10.15938/j.emc.2023.10.018中图分类号:TP273文献标志码:A文章编号:1007-449X(2023)10-0181-12㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀收稿日期:2022-09-23基金项目:国家自然科学基金(51975587);中南大学与深圳市佳得设备科技有限公司校企合作项目(H20190612037037001)作者简介:汪㊀良(1986 ),男,博士研究生,研究方向为机电系统建模与控制;王恒升(1963 ),男,教授,博士生导师,研究方向为机电系统建模与控制㊁机器人人工智能㊁机器人人机交互等;郭新平(1994 ),男,博士研究生,研究方向为电液伺服控制与机器人控制;廖正银(1998 ),男,硕士研究生,研究方向为机电系统建模与控制㊂通信作者:王恒升Design of a cascade controller for unwinding tension ofdiaphragm slitting machineWANG Liang 1,㊀WANG Hengsheng 1,2,㊀GUO Xinping 1,㊀LIAO Zhengyin 1(1.College of Mechanical and Electrical Engineering,Central South University,Changsha 410083,China;2.State Key Laboratory of High Performance Complex Manufacturing,Central South University,Changsha 410083,China)Abstract :Aiming at the control of unwinding tension in slitting machine for diaphragm used in lithium batteries,a cascade control method based on disturbance compensation is proposed to accommodate the challenge due to the system nonlinearity,strong coupling and time-variant characteristics in the unwinding section of the slitting machine.Via the idea of hierarchical control,two coupled variables of unwinding tension and unwinding velocity were put in cascade manner in the control schema,which enhanced the disturbance compensation and robust control of the speed-loop in the unwinding section and improved the stability of the control system.Considering time lag nature of tension behind speed,the outer tension-loopwas designed with integral sliding mode control to obtain the optimal value of the speed expectation of the unwinding roll,while the inner speed-loop was designed with robust backstepping sliding mode control to achieve unwinding speed tracking.An extended state observer was designed to compensate the disturb-ances and unmodel dynamics of the system.Simulation and experiments show that the proposed cascade controller has good performance in robustness and anti-disturbance compared with PID control,which is applicable to different working conditions of the diaphragm slitting machine.Keywords:tension control;speed control;integral sliding mode control;backstepping sliding mode con-trol;extended state observer;cascade control0㊀引㊀言隔膜分切机是锂电池材料隔膜生产过程中关键设备之一,其功能是将大直径㊁大宽度的锂电池隔膜卷,通过多轴卷绕传输㊁分切后,形成小直径㊁小宽度隔膜卷㊂在锂离子电池隔膜分切机工作过程中隔膜张力及传送速度是达到预期产品质量的2个关键因素;隔膜张力过大会导致隔膜的较大形变,以致隔膜孔隙变大,影响绝缘性能,甚至造成隔膜断裂;张力过小又会使隔膜在输送中发生皱褶,影响隔膜卷的成品质量㊂放卷部分作为分切机的膜料传输过程的基础张力实现部分,其主要功能之一是将隔膜张力的跟踪误差保持在一定范围内,为之后的隔膜分切及收卷提供稳定的工作条件㊂在维持隔膜放卷张力稳定的前提下,尽可能地提高分切速度,以提高分切机的工作效率㊂在放卷过程中,隔膜卷的卷径及转动惯量随时间变化,加之摩擦力㊁辊轴布局等其他不确定因素的影响,使得放卷系统成为了一种集多输入㊁多输出㊁非线性㊁强耦合㊁强干扰㊁参数时变为一体的机电系统,隔膜张力控制难度大㊂许多研究人员致力于研究多轴卷绕系统的精密张力控制,其主要工作包括系统建模㊁控制器设计㊁扰动补偿及优化控制㊂在系统建模和控制器设计方面,Raul等[1]将两种自适应比例积分(PI)控制方法,用于不同操作条件和不同材料的多轴卷绕系统张力控制,简化了控制器调参过程;Xu等[2]通过调节3个不同驱动辊(放卷辊的扭矩㊁磁粉制动辊的扭矩和主速辊的速度)的输出,来实现卷绕过程中的三段张力和传输速度的调节㊂Jiang等[3]针对卷绕系统中多输出变量间强耦合的特点,设计了平衡卷绕隔膜张力和卷绕速度的多变量综合滑动面,通过滑模控制方法实现放卷张力的稳定㊂Xiong等[4]提出了一种带极点配置的状态反馈解耦控制方法,实现了卷材张力㊁速度和横向位移的解耦㊂Gas-smann等[5]设计了Hɕ控制器控制浮动辊以实现卷材张力控制㊂Pagilla等[6]构建了较为完善的卷绕机构纵向动力学模型㊂在扰动补偿及优化控制方面,Liu等[7]提出了一种基于主动扰动抑制控制的方法主动估计动态耦合并进行实时补偿以实现各部分的解耦控制;Choi 等[8]将多输入单输出分散控制方案用于控制多跨卷卷绕系统,并通过应用正则化可变学习率反向传播人工神经网络,进行两跨度之间的解耦;Hou等[9]提出了用来估计放卷和收卷张力的观测器,并使用估计的张力作为反馈信号,采用分散协调控制器来减少卷绕系统各跨度间的相互作用㊂Kadik等[10]提出了一种基于神经模糊近似器的增益调度方案,以改善瞬态响应并增强张力控制性能;Heo等[11]基于时延估计技术,提出一种利用所得延时信息来补偿系统中的非线性和时变特性的张力控制器;Guiller-mo等[12]基于自适应观测器结构,开发一种新颖的拓扑结构来估计卷绕系统中薄膜的弹性模量;Gari-mella等[13]采用了一种并行结构的迭代学习控制方法来估计张力控制问题中的摩擦引起的周期性扰动;Lee等[14]设计了在线摩擦阻矩观察器以估计连续带材生产线的摩擦阻矩;Lin[15]则在已有的张力观测器基础上加入了摩擦力及惯性补偿,以实现对带材张力更为有效地无传感器测量;Cherubini等[16]使用具有可变中心频率的时变窄带双二阶滤波器来抑制缓慢的时变干扰;Hwang等[17]在卷对卷系统中使用卡尔曼滤波器对传感器的测量信号进行在线滤波处理,同时基于前馈与扰动补偿以提高控制性能㊂针对放卷张力控制中的问题,提出一种基于扰动补偿的串级控制方法,进行速度与张力的分层控制,通过增加对速度环的扰动补偿与鲁棒控制,来达到隔膜张力精确控制的目的㊂第一节,介绍实验平台㊁系统建模及提升张力控制的抗扰性和鲁棒性的目标㊂第二节针对放卷电机的力矩控制,以Lyapunov函数为稳定性判定依据,设计积分滑模控制与基于扰动补偿的鲁棒反演滑模控制(backstepping sliding mode control,BSMC)相结合的串级控制器㊂最后,通过仿真和实验证明了所设计的串级控制器在放卷系统中对隔膜张力的良好控制性能以及对复杂工况的适应性㊂1㊀放卷系统建模图1与图2分别为实验平台和卷绕系统结构简图㊂隔膜在放卷辊1和牵引辊3之间传输;牵引电281电㊀机㊀与㊀控㊀制㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第27卷㊀机带动牵引辊使隔膜以一定的速度传输;惰辊保证了隔膜在张力辊上的包角,便于测量张力,同时使隔膜在长距离传输时保持平整;牵引辊形成隔膜传输的基准速度,放卷辊通过伺服电机来调节隔膜张力,这也是本文主要研究的问题㊂为简化系统控制,牵引电机处于速度控制模式,提供系统运行的基准速度;放卷电机处于力矩控制模式,目标转矩由所设计控制律提供给放卷伺服电机,对系统张力进行调节㊂图1㊀实验平台Fig.1㊀Experimentalplatform图2㊀卷绕系统结构简图Fig.2㊀Diagram of the winding system1.1㊀隔膜张力模型隔膜跨度中张力动力学可以表示[3]为T ㊃1=-v 3L T 1+(T 0-EA )R 1L θ㊃1+EA L v 3㊂(1)式中:T 1为放卷辊与张力辊之间的隔膜张力;T 0为隔膜卷中隔膜的初始张力;R 1为放卷辊隔膜卷外径;E 为隔膜的弹性模量;A 为隔膜横截面积;L 为隔膜跨度,即放卷辊与牵引辊间展开隔膜的长度;θ㊃1为放卷辊角速度;v 1为放卷辊的线速度;v 3为牵引辊的线速度㊂为了简化,做出了以下假设:1)惰辊的惯性和摩擦相对较小,在建模时可以忽略不计;2)隔膜应变是弹性的;3)辊筒上的隔膜打滑现象被忽略了㊂当处于平衡状态时,即T ㊃1=0,又v r =θ㊃r R 1,通过式(1)可将隔膜张力简化为T r =EA 1-v rv 3()+v r v 3T 0㊂(2)通过式(2)可得平衡状态下放卷辊基准速度为v r =(T r -EA )v 3T 0-EA㊂(3)式中:T r 为期望张力;θ㊃r 和v r 为放卷辊期望角速度和线速度㊂对式(1)求解得T 1(t )=T 0e -v 3L t +(1-e -v 3L t )[EA (1-v 1v 3)+v1v 3T 0]㊂(4)根据式(4)可以看出:1)如果隔膜的弹性模量和横截面积是常数,则v 1与v 3的比值决定了稳定状态下的隔膜张力;2)隔膜张力动力学系统的时间常数是可变的,张力的一阶延迟与v 3成反比㊂1.2㊀放卷部分动力学模型由图2可知放卷处隔膜受到电机驱动力矩㊁张力力矩和摩擦力矩的作用,隔膜卷外径R 1和系统转动惯量J 1随着卷材的减少而发生变化,整个系统是非线性时变系统㊂由于电机与放卷轴之间的传动比为1,由牛顿第二运动学定律,可得放卷系统的动力学模型[3]为θ㊃㊃1=1J 1τ1+R 1J 1T 1-b J 1θ㊃1+ρHR 31J 1hθ㊃21㊂(5)式中:θ1㊁θ㊃1㊁θ㊃㊃1分别是放卷辊角度㊁角速度和角加速度;J 1为折算到放卷电机轴上的转动惯量;r 1为放卷辊隔膜卷内径;τ1为放卷电机轴电磁转矩;b 为放卷辊轴的摩擦系数;H 为隔膜卷宽度;ρ为隔膜密381第10期汪㊀良等:隔膜分切机放卷张力串级控制器设计度;h 为隔膜厚度㊂在任意时刻,系统的转动惯量主要有机械部分,料卷纸筒及隔膜卷三部分组成,即J 1(t )=J m +J c +J w (t )㊂(6)式中:J m 是机械部分转动惯量,包括电机轴与辊轴等;J c 为纸筒的转动惯量;J w (t )是隔膜卷转动惯量,系统放卷过程中,放卷半径不断减小;J w (t )是时变的,即J w (t )=π2ρH (R 41-r 41)㊂(7)由于厚度很薄,在不考虑隔膜间隙的情况下,根据质量守恒定律,传输过程中可以认为在d t 时间内有hθ㊃R 1d t ʈ2πR 1d R 1,得放卷半径变化情况为d R 1d t =-hθ㊃2π㊂(8)综上所述,放卷系统动力学模型由式(1)㊁式(5)㊁式(6)㊁式(7)㊁式(8)组成㊂2㊀串级控制系统设计放卷张力控制方案如图3所示,采用串级控制结构㊂外环主控制用来调节卷材的隔膜张力;内环二次回路是对放卷伺服电机的速度控制,用于跟踪主控制器给出的参考速度,对内环扰动,通过扩张状态观测器(extended state observer,ESO)进行实时观测补偿㊂图3中τ2为输入电机的实际电磁转矩,经τ1按照一定比例系数转换得到㊂图3㊀放卷张力控制方案Fig.3㊀Unwind tension control scheme2.1㊀外环控制器设计为了减小张力外环所得放卷速度期望值与实际值的稳态跟踪误差,在滑模函数中加入了误差的积分项㊂针对隔膜张力动力学模型进行积分滑模控制器设计,由式(1)所示,得到干扰条件下的隔膜张力动力学模型为T ㊃1=-v 3L T 1+(T 0-EA )R L θ㊃1+EAL v 3+d 1㊂(9)令:x =T 1,u 1=θ㊃1,g =(T 0-EA )RL,f (x )=EA L -T1L()v 3,将系统方程描述为x ㊃=gu 1+f (x )+d 1㊂(10)式中:u 1为控制量;d 1为外环系统扰动,|d 1|ɤk 2㊂针对隔膜张力的一阶系统,需要引入积分设计滑模函数,即s (t )=e (t )+c 1ʏte d t ㊂(11)式中c 1>0㊂跟踪误差为e =T r -x ,其中T r 为期望张力㊂定义Lyapunov 函数为V =12s 2㊂(12)则㊀㊀s ㊃=e ㊃+c 1e =T ㊃r -x ㊃+c 1e =T ㊃r -gu 1-f (x )-d 1+c 1e ㊂(13)为了保证ss ㊃ɤ0,可设计滑模控制律为u 1=1g (T ㊃r-f (x )+c 1e +k 1s +k 2sgn s )㊂(14)则㊀s ㊃(t )=T ㊃r -(T ㊃r -f (x )+c 1e +k 1s +k 2sgn s )-f (x )-d 1+c 1e =-k 1s -k 2sgn s -d 1㊂(15)从而V ㊃=ss ㊃=-k 1s 2-k 2|s |-d 1s ɤ-k 1s 2=-k 12V ㊂(16)481电㊀机㊀与㊀控㊀制㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第27卷㊀不等式方程V㊃ɤ-k12V的解为V(t)ɤe-k12(t-t0)V(t0)㊂(17)可见,V(t)指数收敛至0,则s(t)指数收敛至0,收敛速度取决于k1,最终达到期望张力㊂因此,外环张力控制系统是渐进稳定的,系统误差将收敛到0㊂且外环控制器得到的控制律u1,将作为内环的期望角速度㊂2.2㊀内环控制器设计由于存在放卷张力与放卷速度之间强耦合关系,仅以放卷电机输出力矩作为被控对象,难以实现系统的稳定控制㊂因此,在设计串级控制器时,增加了对放卷速度的控制,以实现最终的放卷张力鲁棒控制㊂1)BSMC控制器的设计㊂传统的反演控制方法无法保证速度环控制的鲁棒性,通过引入滑模项,可以克服外界对放卷辊部分的干扰,保证最终张力控制的鲁棒性㊂由式(5)得到干扰条件下的放卷辊动力学模型为θ㊃㊃1=-b J1θ㊃1+1J1τ1+R1J1T1+ρHR31J1hθ㊃21+d2㊂(18)令状态量z=[z1,z2,z3]T=[θ1,θ㊃1,d2]T,其中:θ1㊁θ㊃1为放卷辊的实际角度和角速度;d2为内环系统扰动且假设|d2|ɤL;τ1为内环控制律,令u2=τ1,系统状态方程描述为:z㊃1=z2;z㊃2=-b J1z2+1J1u2+R1J1T1+ρHR31J1hz22+z3㊂}(19)将外环控制律u1作为内环期望角速度θ㊃r,通过积分和微分运算可得期望角度和角加速度分别表示为θr和θ㊃㊃r㊂为实现内环控制目标,BSMC控制器的设计如下所示㊂首先,定义了角度跟踪误差为w1=θr-z1㊂(20)期望角度θr=ʏt0u1d t为外环输入的期望角速度积分得到,根据式(20)得角速度跟踪误差为w㊃1=θ㊃r-z㊃1=θ㊃r-z2㊂(21)步骤一:根据Lyapunov稳定性理论,首先设计李雅普诺夫函数为V1=12w21㊂(22)由式(20)㊁式(21)得到V㊃1=w1w㊃1=w1(θ㊃r-z㊃1)㊂(23)设虚拟控制量w2,使θ㊃r-z2=w2-c2w1,其中c2>0,可以得到w2㊁w㊃2如下:w2=θ㊃r-z2+c2w1;(24)w㊃2=θ㊃㊃r-z㊃2+c2w㊃1㊂(25)通过式(21)和式(24)可得V㊃1=w1w㊃1=w1(w2-c2w1)=-c2w21+w1w2㊂(26)引入滑模函数,克服干扰,保证控制器的鲁棒性,即σ=k3w1+w2㊂(27)其中k3>0㊂由式(26)可知w㊃1=w2-c2w1,则σ=k3w1+w2=k3w1+w㊃1+c2w1=(k3+c2)w1+w㊃1㊂(28)由于k3+c2>0,显然,如果tңɕ㊁σң0,则w1ң0㊁w2ң0且V㊃1ɤ0㊂为此,需要进行下一步设计㊂步骤二:再次构造李雅普诺夫函数为V2=V1+12σ2㊂(29)所以V㊃2=-c2w21+w1w2+σσ㊃=-c2w21+w1w2+σ(k3w㊃1+w㊃2)=-c2w21+w1w2+σ(k3(w2-c2w1)+θ㊃㊃r-z㊃2+c2w㊃1)=-c2w21+w1w2+σ(k3(w2-c2w1)+θ㊃㊃r+b J1z2-1J1u2-T1R1J1-ρHR31hJ1z22-z3+c2w㊃1)㊂(30)设计控制律为u2=J1(k3(w2-c2w1)+θ㊃㊃r+b J1z2-T1R1J1-ρHR31hJ1z22-z3+c2w㊃1+h(σ-βsgn(σ)))㊂(31)其中:h和β为正的常数;sgn(σ)是符号函数㊂2)内环ESO的设计㊂实验中针对动力学模型不准确,张力和速度基准变化等引起的扰动,设计扩张状态观测器,对控制器进行干扰补偿,提高控制器的控制精度㊂与一般扩张状态观测器不同的是,没有将方程中除控制量之外的其余量全部算作总干扰,而是充分利用了已知的模型信息,这能够提高观测的准确性㊂581第10期汪㊀良等:隔膜分切机放卷张力串级控制器设计设计扩张状态观测器[20]为:z ^㊃2=-b J 1z 2+1J 1u 2+T 1R 1J 1+ρHR 31h J 1z 22+z ^3+α1ε(z 2-z ^2);z ^㊃3=α2ε2(z 2-z ^2)㊂üþýïïïïïïï(32)式中:ε>0;α1和α2为正实数;[z ^2z ^3]T 表示观测器的状态向量㊂通过适当选择α1㊁α2,多项式λ2+α1λ+α2满足Hurwitz 条件㊂采用该扩张观测器,可实现当t ңɕ时,z ^2ңz 2㊁z ^3ңz 3,实现对放卷辊角速度和扰动的观测㊂3)控制器稳定性分析㊂对闭环系统构造李雅普诺夫函数为V t =V 2+V 3㊂(33)通过式(22)和式(29)得到Lyapunov 函数V 2为V 2=12w 21+12σ2㊂(34)将式(31)带入式(30)可得V ㊃2=-c 2w 21+w 1w 2-hσ2+hβ|σ|㊂(35)定义矩阵如下:M =c 2+hk 23hk 3-12hk 3-12h éëêêêêùûúúúú;W T=[w 1w 2]㊂有W TMW =[w 1w 2]c 2+hk 23hk 3-12hk 3-12h éëêêêêùûúúúú[w 1w 2]T =c 2w 21-w 1w 2+hk 23w 21+2hk 3w 1w 2+hw 22=c 2w 21-w 1w 2+hσ2㊂(36)如果保证M 为正定矩阵,有:V ㊃2ɤ-W T MW -hβ|σ|ɤ0;(37)|M |=h (c 2+hk 23)-hk 3-12()2=h (c 2+k 3)-14㊂(38)通过取h ㊁c 2和k 3的值,可使|M |>0,从而保证M 为正定矩阵,且保证V ㊃2ɤ0㊂定义ESO 的李雅普诺夫函数为V 3=εηT Pη㊂(39)其中:η是观测误差向量η=[η1η2]T ,且η1=z 2-z ^2ε㊁η2=z 3-z ^3;P 是正定矩阵㊂由式(19)和式(32)可得:εη㊃1=z ㊃2-z ^㊃2=z 3-z ^3-α1ε(z 2-z ^2)=-α1η1+η2;εη㊃2=ε(z ㊃3-z ^㊃3)=-α2η1+εz ㊃3㊂因此,观测误差状态方程可以写成εη㊃=Aη+εB z ㊃3㊂(40)式中:A =-α11-α20éëêêùûúú;B =01[]㊂对于矩阵A ,特征方程为|λI -A |=λ+α1-1α2λ=0可得λ2+α1λ+α2=0㊂通过适当选择α1㊁α2,使矩阵A 满足Hurwitz 条件㊂因此,对于任何给定的正定矩阵Q ,存在正定矩阵P 满足如下Lyapunov 方程:A T P +PA +Q =0㊂(41)对于观测器的Lyapunov 函数式(40),有V ㊃3=εη㊃T Pη+εηT Pη㊃=(Aη+εB z ㊃3)T Pη+ηT P (Aη+εB z ㊃3)=ηT A T Pη+ε(B z ㊃3)TPη+ηTPAη+εηT PB z ㊃3=ηT (A T P +PA )η+2εηT PB z ㊃3ɤ-ηT Qη+2ε PB η |z ㊃3|㊂(42)对式(18)的扰动d 2做过假设|d 2|ɤL ,可得V ㊃3ɤ-λmin (Q ) η 2+2εL PB η ㊂(43)式中λmin (Q )为Q 的最小特征值㊂由V ㊃3ɤ0可得观测器的收敛条件为η ɤ2εL PBλmin (Q )㊂(44)综上所述,满足ESO 和BSMC 控制器的收敛条件则可得V ㊃t =V ㊃2+V ㊃3ɤ0㊂(45)当V ㊃t ɤ0时,V t ȡ0,根据李雅普诺夫稳定性定理,非线性动力系统(18)是全局稳定的㊂根据La-Salle 不变性原理,当取V ㊃2ʉ0时,W ʉ0㊁σʉ0,则t ңɕ时,W ң0㊁σң0,从而w 1ң0㊁w 2ң0,则θ1ңθr ㊁θ㊃1ңθ㊃r ㊂因此,控制系统是渐进稳定的,系统681电㊀机㊀与㊀控㊀制㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第27卷㊀误差将收敛到0㊂3㊀仿真与实验3.1㊀仿真分析为验证串级控制器对隔膜放卷张力的较好控制性能,通过仿真和实验将所设计控制器与PID控制器进行了对比㊂系统参数如表1所示,其中摩擦系数和机械部分转动惯量通过实验辨识得到㊂表1㊀系统参数Table1㊀System parameters㊀㊀㊀参数数值摩擦系数b/(N/s)0.0529隔膜弹性模量E/(N/m2) 1.29ˑ109隔膜宽度H/m0.0605隔膜长度L/m0.57隔膜厚度h/m0.00002隔膜横截面积A/m2 1.21ˑ10-6纸筒外径r/m0.0465隔膜密度ρ/(kg/m3)798.7879放卷卷径R/m0.08机械部分转动惯量J m/(kg㊃m2)0.0102纸筒转动惯量J c/(kg㊃m2)0.000198串级控制中积分滑模控制(integral sliding mode control,ISMC)控制器参数为:k1=30,k2=1,c1= 200;BSMC控制器参数为:k3=30,c2=30,h= 0.18,β=2;ESO参数为:α1=3,α2=2,ε=100; PID控制器的参数为:k p=1,k i=15,k d=0.2㊂定义2个误差指标衡量张力跟踪性能,分别是跟踪误差绝对值最大值I APE和跟踪误差平方I MSE㊂这2个指标的数学表达式如下:I APE=maxi=1, ,N|e(i)|;I MSE=1NðN i=1[e(i)]2㊂式中:e(i)表示第i次采样点的张力误差;N表示采样点的总数㊂1)鲁棒性仿真㊂该仿真测试了控制器在不同工况下,对隔膜放卷张力和放卷速度的控制效果:工况1:v3=0.3m/s,a3=0.15m/s2,T r=6N, R1(0)=0.06m㊂工况2:v3=2m/s,a3=1m/s2,T r=20N,R1(0)=0.06m㊂图4是工况1下张力控制性能对比图㊂通过图4(a)㊁(b)分析可知,在模型准确且无外部扰动的情况下,串级控制与PID控制都能在短时间内使放卷速度及放卷张力稳定,之后的加速过程及匀速过程,速度和张力都未发生较大的波动㊂串级控制器在张力控制过程中,超调量远小于PID控制,且调节时间也相对PID的短,能快速稳定㊂图4㊀工况1下张力控制性能对比Fig.4㊀Comparison of tension control performanceunder condition1图5是工况2下张力控制性能对比图㊂通过图5(a)㊁(b)分析可知,虽然系统运行的工况发生了较大变化,但串级控制下的速度和张力响应仍然是平缓㊁稳定的,且超调量仍更小,调节时间也相对更短,张力能快速趋于稳定㊂781第10期汪㊀良等:隔膜分切机放卷张力串级控制器设计图5㊀工况2下张力控制性能对比Fig.5㊀Comparison of tension control performance un-der condition2通过上述仿真可知,所设计的串级控制器适用于锂电池隔膜分切机的张力控制,能够有效减小张力的超调,可以较快补偿速度变化,减小张力误差,缩短系统调节时间,表现出更好的扰动调节能力㊂2)模型参数敏感性仿真㊂在实际工程中,放卷部分的模型参数往往难以测量准确,不准确的模型参数会影响放卷张力的控制性能,这就需要控制器对模型参数不太敏感㊂假设在工况1下测量摩擦系数与实际摩擦系数之间存在ʃ0.006的误差,进行对比仿真如图6所示㊂对图6(a)㊁(b)分析可知,PID控制下的放卷张力响应曲线会因摩擦系数误差而发生较大波动,串级控制下的放卷张力响应曲线波动更小,且响应速度快,稳定所需时间短㊂相对而言,串级控制器对模型参数的准确性更不敏感,控制效果更好㊂图6㊀模型参数误差下张力控制性能对比Fig.6㊀Comparison of tension control performance un-der model error3)抗干扰性仿真㊂在实际工程中存在各种不确定因素的干扰,因此需要张力控制器具有较强的抗干扰性能,才能保证张力在放卷过程中的稳定㊂假设在工况1下放卷系统受到ʃ0.06N㊃m范围内干扰力矩的持续干扰,仿真结果如图7所示㊂通过图7(a)㊁(b)分析可知,在系统受到外部连续干扰时,串级控制器下的隔膜放卷张力和放卷速度在加速和匀速阶段都更为稳定,响应速度更快,超调量㊁跟踪误差及其波动都更小㊂881电㊀机㊀与㊀控㊀制㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第27卷㊀图7㊀连续干扰下张力控制性能对比Fig.7㊀Comparison of tension control performanceunder continuous disturbance3.2㊀实验研究为了验证本文所提控制策略的优越性,将所设计的串级控制器和PID控制器进行对比实验㊂实验中通过试凑法确定了控制器参数,串级控制中ISMC 控制器参数为:k1=10,k2=1,c1=2;BSMC控制器参数为:k3=10,c2=30,h=0.18,β=2;ESO参数为:α1=3,α2=2,ε=100;PID控制器的参数为: k p=0.05,k i=1,k d=0㊂针对不同情况下做对比实验结果如下:1)变速恒张力控制实验㊂在该实验中,分别测试了不同控制器在相同期望张力值T r=4N,不同传输速度(v3=0.4~1m/s,间隔大致0.2m/s)下,对放卷张力和速度的控制效果,放卷辊基准速度由式(3)算得,如表2和表3所示,其中,表2中的控制性能指标是在系统达到稳定后算得㊂表2㊀恒张力时张力控制误差指标Table2㊀Tension control error indexes under constant tension condition控制方法I APE I MSEPID控制 2.40.94串级控制 1.80.35表3㊀恒张力时速度控制误差指标Table3㊀Speed control error indexes under constanttension condition控制方法I APE I MSEPID控制0.0940.00064串级控制0.0640.0006在试验中,由图8(a)㊁图8(b)㊁图9(a)㊁图9(b)和表2可知,所提出的串级控制器,张力稳态误差更小,具有较好的跟踪性能,对放卷辊基准速度的跟踪相较PID控制器会更好,证明所设计串级控制器对系统的速度稳定性起到了较好的作用㊂由图8(d)电机输出力矩可看出,观测器补偿控制量(u-ESO)在控制器实际输出总控制量(u-total)中的占比较大,可以看出观测器在控制中可以很好地补偿模型的不确定性和外部干扰,提高了隔膜张力控制精度㊂2)恒速变张力控制实验㊂在该实验中,测试了串级控制器与PID控制器在相同传输速度v3=1m/s,不同期望张力T r(4,6, 8,10N)时,对放卷系统中隔膜张力和放卷辊线速度的控制效果㊂由图10(a)㊁图10(b)㊁图11(a)㊁图11(b)和表4㊁表5可知,所提出的串级控制器在系统变张力运行过程中,放卷张力稳态误差各个阶段都更小,具有较好的跟踪性能㊂对放卷辊基准速度的跟踪效果相较PID控制器会更好,证明所设计串级控制器对系统的速度稳定性起到了较好的作用㊂981第10期汪㊀良等:隔膜分切机放卷张力串级控制器设计图8㊀串级控制器恒张力控制实验Fig.8㊀Constant tension control experiment with the cascaded controller表4㊀变张力的张力控制误差指标Table4㊀Tension control error indexes under variable tension condition控制方法I APE I MSEPID控制 3.530.8串级控制 2.650.47图9㊀PID控制器恒张力控制实验Fig.9㊀Constant tension control experiment withPID controller表5㊀变张力的速度控制误差指标Table5㊀Speed control error indexes under variabletension condition控制方法I APE I MSEPID控制0.110.00033串级控制0.0780.00024由图10(d)控制力矩的输出可以看出,观测器补偿控制量(u-ESO)在控制器实际输出总控制量(u-total)中的占比较大,而不含补偿部分的控制量(u-cascade)仅占一小部分,可以看出观测器在控制中可以很好地补偿模型的不确定性和外部干扰,提高了隔膜张力控制精度㊂091电㊀机㊀与㊀控㊀制㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第27卷㊀图10㊀串级控制器变张力控制实验Fig.10㊀Variable tension control experiment with the cascaded controller综合上述对比实验可知,所设计的控制器相较PID控制器跟踪误差更小,加减速更稳定,整体控制性能更强,可更好地应用于实际工业生产㊂图11㊀PID控制器变张力控制实验Fig.11㊀Variable tension control experiment withPID controller4㊀结㊀论针对隔膜分切机运行过程中张力不稳定的问题,提出一种结合积分滑模控制算法和基于扰动补偿的鲁棒反演滑模控制算法的串级控制方法㊂该方法通过增加对速度环的扰动补偿与鲁棒控制,来提升张力控制的稳定性㊂仿真和实验结果表明,该方法在不同的参考张力和传输速度下,对隔膜张力具有良好的控制性能㊂该方法可提高设备在不同工况下的鲁棒性和抗干扰性,在工业生产中有较好的使用价值㊂191第10期汪㊀良等:隔膜分切机放卷张力串级控制器设计参考文献:[1]㊀RAUL P R,PAGILLA P R.Design and implementation of adap-tive PI control schemes for web tension control in roll-to-roll (R2R)manufacturing[J].ISA Transactions,2015,56:276.[2]㊀XU Xiaoming,ZHANG Wuxiang,DING Xilun,et al.Design andanalysis of a novel tension control method for winding machine [J].Chinese Journal of Mechanical Engineering,2018,6:16.[3]㊀JIANG Cheng,WANG Hengsheng,HOU Liwei,et al.Slidingmode control for unwinding tension of lithium battery diaphragm in the slitting machine[J].IEEE Access,2020,8:21302. [4]㊀XIONG Tao,ZHOU Gan,ZOU Dangdang.State feedback decou-pling control of web tension,velocity and lateral displacement in unwinding system[C]//2020Chinese Control And Decision Con-ference(CCDC),August22-24,2020,Hefei,China.2020: 5217-5224.[5]㊀GASSMANN V,KNITTEL D,PAGILLA P R,et al.Hɕunwin-ding web tension control of a strip processing plant using a pendu-lum dancer[C]//2009American Control Conference,June10-12,2009,ST.Louis,MO,USA.2009:901-906. [6]㊀PAGILLA P R,SIRASKAR N B,DWIVEDULA R V.Decentral-ized control of web processing lines[J].IEEE Transactions on Control Systems Technology,2007,15(1):106.[7]㊀LIU Shanhui,MEI Xuesong,KONG Fanfeng,et al.A decouplingcontrol algorithm for unwinding tension system based on active dis-turbance rejection control[J].Mathematical Problems in Engi-neering,2013(6):1798.[8]㊀CHOI K H,ZUBAIR M,PONNIAH G.Web tension control ofmultispan roll to roll system by artificial neural networks for printed electronics[J].Journal of Mechanical Engineering Science, 2013,227(10):2361.[9]㊀HOU Hailiang,NIAN Xiaohong,CHEN Jie,et al.Decentralizedcoordinated control of elastic web winding systems without tension sensor[J].ISA Transactions,2018,80:350. [10]㊀KADIK A,WANG W.Adaptive force control of in web handlingsystems[J].Intelligent Control&Automation,2012,3(4):329.[11]㊀HEO J H,YOU B,KIM J.Tension control of a winding machineusing time-delay estimation[J].Journal of Drive and Control,2018,15(3):21.[12]㊀GUILLERMO R A,LORENZ R D,VALENZUELA M A.Ob-server-based estimation of modulus of elasticity for papermakingprocess[J].IEEE Transactions on Industry Applications,2014,50(3):1678.[13]㊀GARIMELLA S S,SRINIVASAN K C.Application of iterativelearning control to coil-to-coil control in rolling[J].IEEE Trans-actions on Control Systems Technology,1998,6(2):281.[14]㊀LEE J U,CHOI C H,SONG S H,et al.On-line compensationof friction loss for continuous strip processing line[C]//Confer-ence Record of the2000IEEE Industry Applications Conference,Thirty-Fifth IAS Annual Meeting and World Conference on Indus-trial Applications of Electrical Energy,October8-12,2000,Rome,Italy.2000,4:2662-2667.[15]㊀LIN K C.Observer-based tension feedback control with frictionand inertia compensation[J].IEEE Transactions on Control Sys-tems Technology,2003,11(1):109.[16]㊀CHERUBINI G,PANTAZI A,LANTZ M A.Feedback control oftransport systems in tape drives without tension transducers[J].Mechatronics,2018,49:211.[17]㊀HWANG H,LEE J,EUM S,et al.Kalman-filter-based tensioncontrol design for industrial roll-to-roll system[J].Algorithms,2019,12(4):86.[18]㊀LU Jieshiou,CHENG Mingyang,SU Kehan,et al.Wire tensioncontrol of an automatic motor winding machine an iterativelearning sliding mode control approach[J].Robotics and Com-puter-Integrated Manufacturing,2018,50:50. [19]㊀YANG Yi,CAO Wanlin,CAO Zhikai,et al.Integrated designmethod of a cascade iterative learning control for the cascadedbatch/repetitive processes[J].Industrial&Engineering Chemis-try Research,2016,55(6):1598.[20]㊀郭新平,汪成文,刘华,等.基于扩张状态观测器的泵控电液伺服系统滑模控制[J].北京航空航天大学学报,2020,46(6):1160.GUO Xinping,WANG Chengwen,LIU Hua,et al.Extend-state-observer based sliding mode control for pump-control electro-hy-draulic servo system[J].Journal of Beijing University of Aero-nautics and Astronautics,2020,46(6):1160. [21]㊀LI Yongfu,YANG Bin,ZHENG Taixiong,et al.Extended-state-observer-based double-loop integral sliding-mode control of elec-tronic throttle valve[J].IEEE Transactions on Intelligent Trans-portation Systems,2015,16(5):2501.[22]㊀许家忠,黄海洋,孙克伟.变压器绝缘层绕制张力系统反馈耗散Hamilton控制[J].电机与控制学报,2021,8(25):37.XU Jiazhong,HUANG Haiyang,SUN Kewei.Feedback passiveHamilton control of tension system for winding insulation layer oftransformer[J].Electric Machines and Control,2021,8(25):37.[23]㊀XIE Yuanlong,TANG Xiaoqi,SONG Bao,et al.Data-basedcascade control of permanent magnet synchronous motor with in-dustrial robot application[J].The Journal of Engineering,2018(17):1930.[24]㊀ZHAO Pengbing,SHI Yaoyao,HUANG Jin.Dynamics modelingand deviation control of the composites winding system[J].Mechatronics,2017,48:12.[25]㊀SEKI K,KIKUCHI T,IWASAKI M.Tension controller designconsidering periodic disturbance suppression in roll-to-roll webhandling systems[J].IEEE Journal of Industry Applications,2020,9(1):36.[26]㊀DAI Juan,XIA Yuanqing.Sliding mode trajectory tracking formars atmospheric entry based on extended state observer[C]//2016IEEE International Conference on Industrial Technology(ICIT),March14-17,2016,TaiPei,China.2016:1796-1801.[27]㊀刘志坚,余成骏,梁宁,等.基于扩张状态观测的双馈风机次同步振荡阻尼控制策略[J].电机与控制学报,2023,27(7):143.LIU Zhijian,YU Chengjun,LIANG Ning,et al.Sub-synchro-nous oscillation damping control strategy of DFIG based on expan-sion state observation[J].Electric Machines and Control,2023,27(7):143.(编辑:刘琳琳)291电㊀机㊀与㊀控㊀制㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第27卷㊀。
模型不确定二质量系统的振动抑制与实验研究
模型不确定二质量系统的振动抑制与实验研究徐宝申;周波【摘要】针对电机柔性连接负载驱动系统在加减速时会产生不稳定的扭转振动,以及刚度系数测量复杂且难以准确计算的问题,提出了通过对开环系统电机端速度响应进行时频分析,识别系统谐振频率以及调整时间的方法,进而设计了一种IP反馈控制与输入整形前馈相结合的振动抑制控制器,在提高系统响应速度的同时,达到较好的振动抑制效果.在模型不确定二质量扭转谐振平台上进行实验研究,实验结果表明该方法能够有效抑制负载端振动,并显著提高系统响应速度.【期刊名称】《实验技术与管理》【年(卷),期】2019(036)003【总页数】4页(P175-178)【关键词】振动抑制;二质量扭转系统;模型不确定;时频分析;IP控制器【作者】徐宝申;周波【作者单位】北京城市学院资源设备管理办公室 ,北京 101309;北京城市学院信息学部 ,北京 101309【正文语种】中文【中图分类】TP273工业生产设备中普遍存在柔性连接负载,使伺服系统在加减速过程中产生振动,不但严重影响设备安全运行,而且迫使伺服系统降低响应速度,以致影响伺服系统的控制品质。
电机驱动系统通常可视为二质量柔性扭转系统,研究此类柔性负载的振动抑制问题对提高伺服系统性能具有重要意义[1]。
针对二质量系统振动抑制的研究成果包括基于多项式惯量比的低阶IP控制器设计[2]、基于极点配置的PI/PID控制器设计[3-4]、模糊控制及神经网络控制[5-6]等。
其中采用低阶IP控制的方法结构简单、参数设计方便,在工业中得以广泛采用。
此外,为进一步提高系统响应速度,研究人员引入输入整形前馈以实现机构残余振动的快速抑制[7]。
然而,不论是输入整形器还是低阶IP控制器,均依赖系统的模型参数。
但在实际工程应用中,难以对柔性轴的刚度系数和系统谐振频率精确建模。
此外,生产现场伺服系统只有电机端速度可测,而由于传动间隙及减速比等原因,电机端速度振动微小,传统分析手段很难识别出系统的特征参数。
883018a_SensorlessAndAdaptiveVectorControlOfInductionMotorDrives
Model Reference Adaptive System (MRAS) (cont’d)
obtained by integration of these equations. The adaptive model is developed from the rotor-side current flux equations given by:
Note: This approach is highly sensitive to motor parameter values.
Model Reference Adaptive System (MRAS)
In the model reference adaptive system (MRAS) approach, the output of a reference model is compared to the output of an adjustable/adaptive model until the errors between the two models converge. The reference model is based on stator equations and the adaptive model is based on the rotor equations. A figure showing speed estimation using the MRAS scheme is shown on the next slide.
Slip Calculation
If we know the slip frequency sl then we can calculate the rotor speed from the relation, r= e- sl. How can we determine sl and e ?
四旋翼飞行器分散PID神经元网络控制
四旋翼飞行器分散PID神经元网络控制陈彦民;何勇灵;孔令博;周岷峰【摘要】针对四旋翼飞行器的非线性控制问题,提出了一种分散PID神经元网络(PIDNN)控制方法。
首先通过牛顿-欧拉方程建立了四旋翼飞行器的动力学模型。
其次,提出了一种嵌套控制器,内环基于分散PIDNN方法以实现姿态控制,外环采用经典的PID控制方法,PIDNN控制器的在线学习通过误差反向传播法实现。
搭建了自主研制的四旋翼飞行器系统,并通过实验的方式研究了控制器的控制性能。
实验结果表明控制器具有较强的控制稳定性、机动性和鲁棒性。
%A decentralized PID neural network(PIDNN) control scheme is proposed to solve the nonlinear control problems in quadrotor helicopter. First, the dynamic model is established via Newton-Euler formalism. Then, a nested loop control approach is proposed to solve the stabilization and navigation problems in the quadrotor. A decentralized PIDNN controller is designed for the inner loop to stabilize the attitude angle. A conventional PID controller is used for the outer loop in order to generate the reference path for the inner loop. Moreover, the connective weights of the PIDNNare trained on-line by error back-propagation method. The experiment is made to study the performance of controller based on the independently developed quadrotor helicopter system, which shows that the controller has good stability, maneuverability and robustness.【期刊名称】《中国惯性技术学报》【年(卷),期】2014(000)002【总页数】6页(P185-190)【关键词】四旋翼飞行器;分散PID神经元控制;误差反向传播算法;路径跟踪【作者】陈彦民;何勇灵;孔令博;周岷峰【作者单位】北京航空航天大学交通科学与工程学院,北京 100191;北京航空航天大学交通科学与工程学院,北京 100191;北京航空航天大学交通科学与工程学院,北京 100191;北京航空航天大学交通科学与工程学院,北京 100191【正文语种】中文【中图分类】V279近来,作为垂直起降无人机系列中的一种,四旋翼飞行器在军事和民用领域得到了越来越广泛的应用。
机械、机构类英文词汇 -Mechanicalenglish
组装、冲压、喷漆等专业词汇Assembly line组装线Layout布置图Conveyer流水线物料板Rivet table拉钉机Rivet gun拉钉枪Screw driver起子Electric screw driver电动起子Pneumatic screw driver气动起子worktable 工作桌OOBA开箱检查fit together组装在一起fasten锁紧(螺丝)fixture 夹具(治具)pallet栈板barcode条码barcode scanner条码扫描器fuse together熔合fuse machine热熔机repair修理operator作业员QC品管supervisor 课长ME制造工程师MT制造生技cosmetic inspect外观检查inner parts inspect内部检查thumb screw大头螺丝lbs. inch镑、英寸EMI gasket导电条front plate前板rear plate后板chassis 基座bezel panel面板power button电源按键reset button重置键Hi-pot test of SPS高源高压测试Voltage switch of SPS电源电压接拉键sheet metal parts 冲件plastic parts塑胶件SOP制造作业程序material check list物料检查表work cell工作间trolley台车carton纸箱sub-line支线left fork叉车personnel resourcedepartment人力资源部production department生产部门planning department企划部QC Section品管科stamping factory冲压厂painting factory烤漆厂molding factory成型厂common equipment常用设备uncoiler and straightener整平机punching machine 冲床robot机械手hydraulic machine油压机lathe车床planer |'plein|刨床miller铣床grinder磨床driller??床linear cutting线切割electrical sparkle电火花welder电焊机staker=reviting machine铆合机position职务president董事长general manager总经理special assistant manager特助factory director厂长department director部长deputy manager | =vicemanager副理section supervisor课长deputy section supervisor=vice section superisor副课长group leader/supervisor组长line supervisor线长assistant manager助理to move, to carry, to handle搬运be put in storage入库pack packing包装to apply oil擦油to file burr 锉毛刺final inspection终检to connect material接料to reverse material 翻料wet station沾湿台Tiana天那水cleaning cloth抹布to load material上料to unload material卸料to return material/stock to退料scraped |'skræpid|报废scrape ..v.刮;削deficient purchase来料不良manufacture procedure制程deficient manufacturingprocedure制程不良oxidation |'ksi'dein|氧化scratch刮伤1dents压痕defective upsiding down抽芽不良defective to staking铆合不良embedded lump镶块feeding is not in place送料不到位stamping-missing漏冲production capacity生产力education and training教育与训练proposal improvement提案改善spare parts=buffer备件forklift叉车trailer=long vehicle拖板车compound die合模die locker锁模器pressure plate=plate pinch 压板bolt螺栓name of a department部门名称administration/general affairs dept总务部automatic screwdriver电动启子thickness gauge厚薄规gauge(or jig)治具power wire电源线buzzle蜂鸣器defective product label不良标签identifying sheet list标示单screwdriver holder起子插座pedal踩踏板stopper阻挡器flow board流水板hydraulic handjack油压板车forklift叉车pallet栈板glove(s)手套glove(s) with exposed fingers割手套thumb大拇指forefinger食指midfinger中指ring finger无名指little finger小指band-aid创可贴iudustrial alcohol工业酒精alcohol container沾湿台head of screwdriver起子头sweeper扫把mop拖把vaccum cleaner吸尘器rag 抹布garbage container灰箕garbage can垃圾箱garbage bag垃圾袋chain链条jack升降机production line流水线chain链条槽magnetizer加磁器lamp holder灯架to mop the floor拖地to clean the floor扫地to clean a table擦桌子air pipe 气管packaging tool打包机packaging打包missing part漏件wrong part错件excessive defects过多的缺陷critical defect极严重缺陷major defect主要缺陷minor defect次要缺陷not up to standard不合规格dimension/size is a littlebigger尺寸偏大(小)cosmetic defect外观不良slipped screwhead/slipperyscrew head螺丝滑头slipped screwhead/shipperyscrew thread滑手speckle斑点mildewed=moldy=mouldy发霉rust生锈deformation变形burr(金属)flash(塑件)毛边poor staking铆合不良excesssive gap间隙过大grease/oil stains油污inclusion杂质painting peel off脏污shrinking/shrinkage缩水mixed color杂色scratch划伤poor processing 制程不良poor incoming part事件不良fold of pakaging belt打包带折皱painting make-up补漆discoloration羿色water spots水渍polishing/surface processing表面处理exposed metal/bare metal金属裸露lack of painting烤漆不到位safety安全quality品质delivery deadline交货期cost成本engineering工程die repair模修enterprise plan = enterpriseexpansion projects企划QC品管die worker模工2production, to produce生产equipment设备to start a press开机stop/switch off a press关机classification整理regulation整顿cleanness清扫conservation清洁culture教养qualified products, up-to-grade products良品defective products, not up-to-grade products不良品waste废料board看板feeder送料机sliding rack滑料架defective product box不良品箱die change 换模to fix a die装模to take apart a die拆模to repair a die修模packing material包材basket蝴蝶竺plastic basket胶筐isolating plate baffle plate; barricade隔板carton box纸箱to pull and stretch拉深to put material in place, tocut material, to input落料to impose lines压线to compress, compressing压缩character die字模to feed, feeding送料transportation运输(be)qualfied, up to grade合格not up to grade, not qualified不合格material change, stock change材料变更feature change 特性变更evaluation评估prepare for, makepreparations for 准备parameters参数rotating speed, revolution转速manufacture management制造管理abnormal handling异常处理production unit生产单位lots of production生产批量steel plate钢板roll material卷料manufacture procedure制程operation procedure作业流程to revise, modify修订to switch over to,switch---to throw--overswitching over切换engineering, projectdifficulty工程瓶颈stage die工程模automation自动化to stake, staking, reviting铆合add lubricating oil加润滑油shut die架模shut height of a die架模高度analog-mode device类模器die lifter举模器argon welding氩焊vocabulary for stamping冲压常词汇stamping, press冲压punch press, dieing out press冲床uncoiler & strainghtener整平机feeder送料机rack, shelf, stack料架cylinder油缸robot机械手taker取料机conveyer belt输送带transmission rack输送架top stop上死点bottom stop下死点one stroke一行程inch寸动to continue, cont.连动to grip(material)吸料location lump, locating piece,block stop 定位块reset复位smoothly顺利dent压痕scratch刮伤deformation变形filings铁削to draw holes抽孔inquiry, search for查寻to stock, storage, in stock库存receive领取approval examine and verify审核processing, to process加工delivery, to deliver 交货to return delivenry to.to send delinery backto retrn of goods退货registration登记registration card登记卡to control管制to put forward and hand in3提报safe stock安全库存acceptance = receive验收to notice通知application form for purchase 请购单consume, consumption消耗to fill in填写abrasion磨损reverse angle = chamfer倒角character die字模to collect, to gather收集failure, trouble故障statistics统计demand and supply需求career card履历卡to take apart a die卸下模具to load a die装上模具to tight a bolt拧紧螺栓to looser a bolt拧松螺栓to move away a die plate移走模板easily damaged parts易损件standard parts标准件breaking.(be)broken,(be)cra cked 断裂to lubricate润滑common vocabulary for die engineering模具工程常用词汇die 模具figure file, chart file图档cutting die, blanking die冲裁模progressive die, follow(-on)die连续模compound die复合模punched hole冲孔panel board镶块to cutedges=side cut=sidescrap切边to bending折弯to pull, to stretch拉伸Line streching, line pulling线拉伸engraving, to engrave刻印upsiding down edges翻边to stake铆合designing, to design设计design modification设计变化die block模块folded block折弯块sliding block滑块location pin定位销lifting pin顶料销die plate, front board模板padding block垫块stepping bar垫条upper die base上模座lower die base下模座upper supporting blank上承板upper padding plate blank上垫板spare dies模具备品spring 弹簧bolt螺栓document folder文件夹file folder资料夹to put file in order整理资料spare tools location手工备品仓first count初盘人first check初盘复棹人second count 复盘人second check复盘复核人equipment设备waste materials废料work in progress product在制品casing = containerazation装箱quantity of physical invetorysecond count 复盘点数量quantity of customs count会计师盘,点数量the first page第一联filed by accountingdepartment for reference会计部存查end-user/usingunit(department)使用单位summary of year-end physicalinventory bills年终盘点截止单据汇总表bill name单据名称This sheet and physicalinventory list will be sent toaccountingdepartment together (Those ofNHK will be sent to financialdepartment)本表请与盘点清册一起送会计部-(NHK厂区送财会部)Application status records ofyear-end physical inventoryList andphysical inventory card 年终盘点卡与清册使用-状况明细表blank and waste sheet NO.空白与作废单号plate电镀mold成型material for engineering moldtesting工程试模材料not included in physicalinventory不列入盘点sample样品incoming material to be4inspected进货待验description品名steel/rolled steel钢材material statistics sheet 物料统计明细表meeting minutes会议记录meeting type 会别distribution department分发单位location地点chairman主席present members出席人员subject主题conclusion结论decision items决议事项responsible department负责单位pre-fixed finishing date预定完成日approved by / checked by / prepared by核准/审核/承办PCE assembly production schedule sheetPCE组装厂生产排配表model机锺work order工令revision版次remark备注production control confirmation生产确认checked by初审approved by核准department部门stock age analysis sheet库存货龄分析表on-hand inventory现有库存available material良品可使用obsolete material良品已呆滞to be inspected or reworked待验或重工total合计cause description原因说明part number/ P/N 料号type形态item/group/class类别quality品质prepared by制表notes说明year-end physical inventorydifference analysis sheet年终盘点差异分析表physical inventory盘点数量physical count quantity帐面数量difference quantity差异量cause analysis原因分析raw materials原料materials物料finished product成品semi-finished product半成品packing materials包材good product/accepted goods/accepted parts/good parts良品defective product/non-goodparts不良品disposed goods处理品warehouse/hub仓库on way location在途仓oversea location海外仓spare parts physicalinventory list备品盘点清单spare molds location模具备品仓skid/pallet栈板tox machine自铆机wire EDM线割EDM放电机coil stock卷料sheet stock片料tolerance工差score=groove压线cam block滑块pilot导正筒trim剪外边pierce剪内边drag form压锻差pocket for the punch head挂钩槽slug hole废料孔feature die公母模expansion dwg展开图radius半径shim(wedge)楔子torch-flame cut火焰切割set screw止付螺丝form block折刀stop pin定位销round pierce punch=die button圆冲子shape punch=die insert异形子stock locater block定位块under cut=scrap chopper清角active plate活动板baffle plate挡块cover plate盖板male die公模female die母模groove punch压线冲子air-cushion eject-rod气垫顶杆spring-box eject-plate弹簧箱顶板bushing block衬套insert 入块club car高尔夫球车capability能力parameter参数factor系数5phosphate皮膜化成viscosity涂料粘度alkalidipping脱脂main manifold主集流脉bezel斜视规blanking穿落模dejecting顶固模demagnetization去磁;消磁high-speed transmission高速传递heat dissipation热传rack上料degrease脱脂rinse水洗alkaline etch龄咬desmut剥黑膜D.I. rinse纯水次Chromate铬酸处理Anodize阳性处理seal封孔revision版次part number/P/N料号good products良品scraped products报放心品defective products不良品finished products成品disposed products处理品barcode条码flow chart流程表单assembly组装stamping冲压molding成型spare parts=buffer备品coordinate座标dismantle the die折模auxiliary fuction辅助功能poly-line多义线heater band 加热片thermocouple热电偶sand blasting喷沙grit 砂砾derusting machine除锈机degate打浇口dryer烘干机induction感应induction light感应光response=reaction=interaction感应ram连杆edge finder巡边器concave凸convex凹short射料不足nick缺口speck瑕??shine亮班splay 银纹gas mark焦痕delamination起鳞cold slug冷块blush 导色gouge沟槽;凿槽satin texture段面咬花witness line证示线patent专利grit沙砾granule=peuet=grain细粒grit maker抽粒机cushion缓冲magnalium镁铝合金magnesium镁金metal plate钣金lathe车mill锉plane刨grind磨drill铝boring镗blinster气泡fillet镶;嵌边through-hole form通孔形式voller pin formality滚针形式cam driver铡楔shank摸柄crank shaft曲柄轴augular offset角度偏差velocity速度production tempo生产进度现状torque扭矩spline=the multiple keys花键quenching淬火tempering回火annealing退火carbonization碳化alloy合金tungsten high speed steel钨高速的moly high speed steel钼高速的organic solvent有机溶剂bracket小磁导liaison联络单volatile挥发性resistance电阻ion离子titrator滴定仪beacon警示灯coolant冷却液crusher破碎机模具工程类plain die简易模pierce die冲孔模forming die成型模progressive die连续模gang dies复合模shearing die剪边模riveting die铆合模pierce冲孔forming成型(抽凸,冲凸)6draw hole抽孔bending折弯trim切边emboss凸点dome凸圆semi-shearing半剪stamp mark冲记号deburr or coin压毛边punch riveting冲压铆合side stretch侧冲压平reel stretch卷圆压平groove压线blanking下料stamp letter冲字(料号) shearing剪断tick-mark nearside正面压印tick-mark farside反面压印冲压名称类extension dwg展开图procedure dwg工程图die structure dwg模具结构图material材质material thickness料片厚度factor系数upward向上downward向下press specification冲床规格die height range适用模高die height闭模高度burr毛边gap间隙weight重量total wt.总重量punch wt.上模重量五金零件类inner guiding post内导柱inner hexagon screw内六角螺钉dowel pin固定销coil spring弹簧lifter pin顶料销eq-height sleeves=spool等高套筒pin销lifter guide pin浮升导料销guide pin导正销wire spring圆线弹簧outer guiding post外导柱stop screw止付螺丝located pin定位销outer bush外导套模板类top plate上托板(顶板)top block上垫脚punch set上模座punch pad上垫板punch holder上夹板stripper pad脱料背板up stripper上脱料板male die公模(凸模)feature die公母模female die母模(凹模)upper plate上模板lower plate下模板die pad下垫板die holder下夹板die set下模座bottom block下垫脚bottom plate下托板(底板)stripping plate内外打(脱料板)outer stripper外脱料板inner stripper内脱料板lower stripper下脱料板零件类punch冲头insert入块(嵌入件)deburring punch压毛边冲子groove punch压线冲子stamped punch字模冲子round punch圆冲子special shape punch异形冲子bending block折刀roller滚轴baffle plate挡块located block定位块supporting block for location定位支承块air cushion plate气垫板air-cushion eject-rod气垫顶杆trimming punch切边冲子stiffening rib punch =stinger 加强筋冲子ribbon punch压筋冲子reel-stretch punch卷圆压平冲子guide plate定位板sliding block滑块sliding dowel block滑块固定块active plate活动板lower sliding plate下滑块板upper holder block上压块upper mid plate上中间板spring box弹簧箱spring-box eject-rod弹簧箱顶杆spring-box eject-plate弹簧箱顶板bushing bolck衬套cover plate盖板guide pad导料块塑件&模具相关英文compre sion molding压缩成型flash mold溢流式模具plsitive mold挤压式模具split mold分割式模具cavity型控母模7core模心公模taper锥拔leather cloak仿皮革shiver饰纹flow mark流痕welding mark溶合痕post screw insert螺纹套筒埋值self tapping screw自攻螺丝striper plate脱料板piston活塞cylinder汽缸套chip细碎物handle mold手持式模具移转成型用模具encapsulation molding低压封装成型射出成型用模具two plate两极式(模具)well type蓄料井insulated runner绝缘浇道方式hot runner热浇道runner plat浇道模块valve gate阀门浇口band heater环带状的电热器spindle阀针spear head刨尖头slag well冷料井cold slag冷料渣air vent排气道h=0.02~0.05mmw=3.2mmL=3~5mmwelding line熔合痕eject pin顶出针knock pin顶出销return pin回位销反顶针sleave套筒stripper plate脱料板insert core放置入子runner stripper plate浇道脱料板guide pin导销eject rod (bar)(成型机)顶业捧subzero深冷处理three plate三极式模具runner system浇道系统stress crack应力电裂orientation定向sprue gate射料浇口,直浇口nozzle射嘴sprue lock pin料头钩销(拉料杆)slag well冷料井side gate侧浇口edge gate侧缘浇口tab gate搭接浇口film gate薄膜浇口flash gate闸门浇口slit gate缝隙浇口fan gate扇形浇口dish gate因盘形浇口H=F=1/2t~1/5tT=2.5~3.5mmdiaphragm gate隔膜浇口ring gate环形浇口subarine gate潜入式浇口tunnel gate隧道式浇口pin gate针点浇口Φ0.8~1.0mmRunner less无浇道(sprue less)无射料管方式long nozzle延长喷嘴方式sprue浇口;溶渣品质人员名称类QC quality control 品质管理人员FQC final quality control终点品质管制人员IPQC in process qualitycontrol 制程中的品质管制人员OQC output quality control最终出货品质管制人员IQC incoming qualitycontrol 进料品质管制人员TQC total quality control全面质量管理POC passage quality control段检人员QA quality assurance 质量保证人员OQA output qualityassurance 出货质量保证人员QE quality engineering 品质工程人员品质保证类FAI first articleinspection 新品首件检查FAA first article assurance首件确认TVR tool verificationreport 模具确认报告3B 3B 模具正式投产前确认CP capability index 能力指数CPK capability index ofprocess 模具制程能力参数SSQA standardized supplierquality 合格供应商品质评估OOBA out of box audit 开箱检查QFD quality functiondeployment 品质机能展开FMEA failure modeleffectiveness analysis 失效模式分析88 disciplines 8项回复内容FA final audit 最後一次稽核CAR corrective action request 改正行动要求corrective action report 改正行动报告FQC运作类AQL Acceptable Quality Level 运作类允收品质水准S/S Sample size 抽样检验样本大小ACC Accept 允收REE Reject 拒收CR Critical 极严重的MAJ Major 主要的MIN Minor 轻微的AOQ Average Output Quality 平均出厂品质AOQL Average Output Quality Level 平均出厂品质Q/R/SQuality/Reliability/Service 品质/可靠度服务MIL-STD Military-Standard 军用标准S I-S IV Special I-Special IV 特殊抽样水准等级P/N Part Number 料号L/N Lot Number 特采AOD Accept On Deviation 特采UAI Use As It 首件检查报告FPIR First Piece InspectionReport 百万分之一PPM Percent Per Million 批号制程统计品管专类SPC Statistical ProcessControl 统计制程管制SQC Statistical QualityControl 统计品质管制R Range 全距AR Averary Range 全距平均值UCL Upper Central Limit 管制上限LCL Lower Central Limit 管制下限MAX Maximum 最大值MIN Minimum 最小值GRR GaugeReproducibility&Repeatability 量具之再制性及重测性判断量可靠与否DIM Dimension 尺寸DIA Diameter 直径FREQ Frequency 频率N Number 样品数其它品质术语类QCC Quality Control Circle品质圈QIT Quality ImprovementTeam 品质改善小组PDCA Plan Do Check Action计划执行检查总结ZD Zero Defect 零缺点QI Quality Improvement 品质改善QP Quality Policy 目标方针TQM Total QualityManagement 全面品质管理MRB Material Reject Bill退货单LQL Limiting Quality Level最低品质水准RMA Return Material Audit退料认可QAN Quality AmelionrateNotice 品质改善活动ADM Absolute DimensionMeasuremat 全尺寸测量QT Quality Target 品质目标7QCTools 7 Quality ControllTools 品管七大手法通用之件类ECN Engineering ChangeNotes 工程变更通知(供应商)ECO Engineering ChangeOrder 工程改动要求(客户)PCN Process Change Notice工序改动通知PMP Product Management Plan生产管制计划SIP Specification InProcess 制程检验规格SOP Standard OperationProcedure 制造作业规范IS Inspection Specification成品检验规范BOM Bill Of Material 物料清单PS Package Specification包装规范SPEC Specification 规格DWG Drawing 图面系统文件类QC Quality System 品质系统ES EngineeringStandarization 工程标准CGOO China General PCE龙华厂文件H Huston (美国)休斯敦C Compaq (美国)康伯公司C China 中国大陆A Assembly 组装(厂)S Stamping 冲压(厂)P Painting 烤漆(厂)I Intel 英特尔公司9T TAIWAN 台湾IWS International Workman Standard 工艺标准ISO International Standard Organization 国际标准化组织GS General Specification 一般规格CMCS C-China M-Manufact C-Compaq S-Stamping Compaq 产品在龙华冲压厂制造作业规范CQCA Q-Quality A-Assembly Compaq产品在龙华组装厂品管作业规范CQCP P-Painting Compaq产品在龙华烤漆厂品管作业规范部类PMC Production & Material Control 生产和物料控制PPC Production Plan Control 生产计划控制MC Material Control 物料控制ME Manafacture Engineering 制造工程部PE Project Engineering 产品工程部A/C Accountant Dept 会计部P/A Personal & Administration 人事行政部DC Document Center 资料中心QE Quality Engineering 品质工程(部)QA Quality Assurance 品质保证(处)QC Quality Control 品质管制(课)PD Product Department 生产部LAB Labratry 实验室IE Industrial Engineering工业工程R&D Research & Design 设计开发部P Painting 烤漆(厂)A Asssembly 组装(厂)S Stamping 冲压(厂)生产类PCS Pieces 个(根,块等)PRS Pairs 双(对等)CTN Carton 卡通箱PAL Pallet/skid 栈板PO Purchasing Order 采购订单MO Manufacture Order 生产单D/C Date Code 生产日期码ID/C Identification Code(供应商)识别码SWR Special Work Request特殊工作需求L/N Lot Number 批号P/N Part Number 料号其它OEM Original EquipmentManufacture 原设备制造PCE Personal ComputerEnclosure 个人电脑外设PC Personal Computer 个人电脑CPU Central Processing Unit中央处理器SECC SECC` 电解片SGCC SGCC 热浸镀锌材料NHK North of Hongkong 中国大陆PRC People's Republic ofChina 中国大陆U.S.A the United States ofAmerica 美国A.S.A.P As Soon As Possible尽可能快的E-MAIL Electrical-Mail 电子邮件N/A Not Applicable 不适用QTY Quantity 数量VS 以及REV Revision 版本JIT Just In Time 零库存I/O Input/Output 输入/输出OK Ok 好NG Not Good 不行,不合格C=0 Critical=0 极严重不允许ESD Electry-staticDischarge 静电排放5S 希腊语整理,整顿,清扫,清洁,教养ATIN Attention 知会CC Carbon Copy 副本复印相关人员APP Approve 核准,认可,承认CHK Check 确认AM Ante Meridian 上午PM Post Meridian 下午CD Compact Disk 光碟CD-ROM Compact DiskRead-Only Memory 只读光碟FDD Floppy Disk Drive 软碟机HDD Hard Disk Drive 碟碟机REF Reference 仅供参考CONN Connector 连接器CAV Cavity 模穴CAD Computer Aid Design 计算机辅助设计10ASS'Y Assembly 装配,组装MAT'S Material 材料IC Integrated Circuit 集成电路T/P True Position 真位度TYP Type 类型WDR Weekly Delivery Requitement 周出货需求C?T Cycle Time 制程周期L/T Lead Time 前置时间(生产前准备时间)S/T Standard Time 标准时间P/M Product Market 产品市场3CComputer,Commumcation,Consu mer electronic's 消费性电子5WIHWhen,Where,Who,What,Why,How to5MMan,Machine,Material,Method ,Measurement4MIHMan,Materia,Money,Method,Ti me 人力,物力,财务,技术,时间(资源)SQA Strategy Quality Assurance 策略品质保证DQA Desigh Quality Assurance 设计品质保证MQA Manufacture QualityAssurance 制造品质保证SSQA Sales and serviceQuality Assurance 销售及服务品质保证LRR Lot Rejeet Rate 批退率BS Brain storming 脑力激荡EMI Electronic MagnetionInspect 高磁测试FMI Frequency ModulatimInspect 高频测试B/M Boar/Molding(flatcable)C/P Connector of PCA/P AssemblySPS Switching power supply电源箱DT Desk Top 卧式(机箱)MT Mini-Tower 立式(机箱)DVD Digital Vedio DiskVCD Vdeio Compact DiskLCD Liquid Crystal DisplayCAD Computer AID DesignCAM Computer AIDManufacturingCAE Computer AIDEngineeringABIOS Achanced Basic input/output system 先进的基本输入/输出系统CMOS Complemeruary MetollOxide Semiconductor 互补金属氧化物半导体PDA Personal DigitalAssistant 个人数字助理IC Integrated Circuit 集成电路ISA Industry StandardArchitecture 工业标准体制结构MCA Micro ChannelArchitecture 微通道结构EISA Extended IndustryStandard Architecture 扩充的工业标准结构SIMM Single in-line memorymodule 单项导通汇流组件DIMM Dual in-line MemoryModule 双项导通汇流组件LED Light-Emitting Diode发光二级管FMEA Failure ModeEffectivenes 失效模式分析W/H Wire Harness 金属线绪束集组件F/C Flat Calle 排线PCB Printed Circuit Board印刷电路板CAR Correction ActionReport 改善报告NG Not Good 不良WPR Weekly DeliveryRequirement 周出货要求PPM Parts Per Million 百万分之一TPM Total ProductionMaintenance 全面生产保养MRP Material RequiremcntPlanning 物料需计划OC Operation System 作业系统TBA To Be Design 待定,定缺D/C Drawing ChangeP/P Plans & ProceduneEMI Electrical-MusicIndustry 电子音乐工业RFI Read Frequency Input读频输入MMC Maximum MaterialConditionMMS Maximum Material SizeLMC Least MaterialConditionLMS Least Material Size模具技术用语各种模具常用成形方式accurate die casting 精密压11铸 powder forming 粉末成形calendaring molding 压延成形powder metal forging 粉末锻造cold chamber die casting 冷式压铸 precision forging 精密锻造cold forging 冷锻press forging 冲锻compacting molding 粉末压出成形 rocking die forging 摇动锻造compound molding 复合成形rotary forging 回转锻造compression molding 压缩成形rotational molding 离心成形dip mold 浸渍成形rubber molding 橡胶成形encapsulation molding 注入成形 sand mold casting 砂模铸造extrusion molding 挤出成形shell casting 壳模铸造foam forming ?泡成形 sinter forging 烧结锻造forging roll 轧锻 six sides forging 六面锻造gravity casting 重力铸造slush molding 凝塑成形hollow(blow) molding 中空(吹出)成形 squeeze casting 高压铸造hot chamber die casting 热室压铸 swaging 挤锻hot forging 热锻transfermolding 转送成形injection molding 射出成形warm forging 温锻investment casting 精密铸造matched die method 对模成形法laminating method 被覆淋膜成形 low pressure casting 低压铸造lost wax casting 脱蜡铸造matched mould thermal forming对模热成形模各式模具分类用语bismuth mold 铋铸模landedplunger mold 有肩柱塞式模具burnishing die 挤光模 landedpositive mold 有肩全压式模具button die 镶入式圆形凹模loading shoe mold 料套式模具center-gated mold 中心浇口式模具 loose detail mold 活零件模具chill mold 冷硬用铸模 loosemold 活动式模具clod hobbing 冷挤压制模louvering die 百叶窗冲切模composite dies 复合模具manifold die 分歧管模具counter punch 反凸模 modularmold 组合式模具double stack mold 双层模具multi-cavity mold 多模穴模具electroformed mold 电铸成形模 multi-gate mold 复式浇口模具expander die 扩径模offswtbending die 双折冷弯模具extrusion die 挤出模palletizing die 叠层模family mold 反套制品模具plaster mold 石膏模blank through dies 漏件式落料模 porous mold 通气性模具duplicated cavity plate 复板模 positive mold 全压式模具fantail die 扇尾形模具pressure die 压紧模fishtail die 鱼尾形模具profile die 轮廓模flash mold 溢料式模具progressive die 顺序模gypsum mold 石膏铸模protable mold 手提式模具hot-runner mold 热流道模具prototype mold 雏形试验模具ingot mold 钢锭模punchingdie 落料模lancing die 切口模raising(embossing) 压花起伏成形re-entrant mold 倒角式模具sectional die 拼合模runless injection mold 无流道冷料模具 sectional die 对合模具segment mold 组合模semi-positive mold 半全压式模具shaper 定型模套singlecavity mold 单腔模具solid forging die 整体锻模split forging die 拼合锻模split mold 双并式模具sprueless mold 无注道残料模具squeezing die 挤压模 stretchform die 拉伸成形模sweeping mold 平刮铸模 swingdie 振动模具three plates mold 三片式模具trimming die 切边模unit mold 单元式模具universal mold 通用模具unscrewing mold 退扣式模具12yoke type die 轭型模模具厂常用之标准零配件air vent vale 通气阀 anchor pin 锚梢angular pin 角梢 baffle 调节阻板angular pin 倾斜梢baffle plate 折流档板ball button 球塞套ball plunger 定位球塞ball slider 球塞滑块 binder plate 压板blank holder 防皱压板blanking die 落料冲头bolster 上下模板bottom board 浇注底板bolster 垫板 bottom plate 下固定板bracket 托架 bumper block 缓冲块buster 堵口 casting ladle 浇注包casting lug 铸耳 cavity 模穴(模仁)cavity retainer plate 模穴托板 center pin 中心梢clamping block 锁定块coil spring 螺旋弹簧cold punched nut 冷冲螺母cooling spiral 螺旋冷却栓core 心型 core pin 心型梢cotter 开口梢 cross 十字接头cushion pin 缓冲梢 diaphragmgate 盘形浇口die approach 模头料道diebed 型底die block 块形模体 die body铸模座die bush 合模衬套 die button冲模母模die clamper 夹模器diefastener 模具固定用零件die holder 母模固定板dielip 模唇die plate 冲模板 die set 冲压模座direct gate 直接浇口dogchuck 爪牙夹头dowel 定位梢 dowel hole 导套孔dowel pin 合模梢 dozzle 辅助浇口dowel pin 定位梢 draft 拔模锥度draw bead 张力调整杆 drivebearing 传动轴承ejection pad 顶出衬垫ejector 脱模器ejector guide pin 顶出导梢ejector leader busher 顶出导梢衬套ejector pad 顶出垫ejectorpin 顶出梢ejector plate 顶出板 ejectorrod 顶出杆ejector sleeve 顶出衬套ejector valve 顶出阀eye bolt 环首螺栓fillingcore 椿入蕊film gate 薄膜形浇口 fingerpin 指形梢finish machined plate 角形模板finish machined roundplate 圆形模板fixed bolster plate 固定侧模板 flanged pin 带凸缘?flash gate 毛边形浇口 flask上箱floating punch 浮动冲头 gate浇口gate land 浇口面 gib 凹形拉紧?goose neck 鹅颈管guidebushing 引导衬套guide pin 导梢 guide post 引导柱guide plate 导板 guide rail导轨head punch 顶?冲头 headlesspunch 直柄冲头heavily tapered solid 整体模蕊盒 hose nippler 管接头impact damper 缓冲器injection ram 压射柱塞inlay busher 嵌入衬套 innerplunger 内柱塞inner punch 内冲头 insert 嵌件insert pin 嵌件梢king pin转向梢king pin bush 主梢衬套knockout bar 脱模杵land 合模平坦面 land area 合模面leader busher 导梢衬套lifting pin 起模顶?lining 内衬 locating centerpunch 定位中心冲头locating pilot pin 定位导梢locating ring 定位环lock block 压块lockingblock 定位块locking plate 定位板loosebush 活动衬套making die 打印冲子 manifoldblock 歧管档块master plate 靠模样板 matchplate 分型板13。
super twisting sliding mode control讲解
super twisting sliding mode control讲解Super twisting sliding mode control is a robust control technique that has gained significant attention in thefield of control engineering. It is designed to address the problem of uncertainties and disturbances in a dynamic system, allowing for precise and stable control even in the presence of external factors that can affect system dynamics.超滑模控制是一种鲁棒控制技术,在控制工程领域得到了广泛关注。
它旨在解决动态系统中的不确定性和干扰问题,即使在存在可能影响系统动态的外部因素的情况下,也能实现精确稳定的控制。
The basic principle behind super twisting sliding mode control is to create a sliding surface that guarantees convergence towards the desired trajectory while ensuring fast error reduction. This sliding surface is created by combining two terms: a reaching term and a switching term. The reaching term adjusts the rate at which the error converges towards zero, while the switching term ensures rapid error reduction.超滑模控制的基本原理是创建一个滑动面,确保收敛到期望轨迹并实现快速误差减小。
基于滑模自适应控制的双关节机械手轨迹跟踪
1.2动力学模型
动力学模型描述了机械手系统控制输入转矩和结 构运动之间的关系。本文运用欧拉拉格朗日法来建立 机械手的动力学模型。因为拉格朗日力学法只需要提 供机械臂的运动速度,而不需要求内作用力,这使得模 型在运算中得到简化。通过欧拉拉格朗日法进行运算 简化可得双关节机械手的动力学方程描述为如下形 式[22]:
B($ $ +C($$) $ +G($ = T
(1)
式中,&表示为关节角;。表示为角速度;。表示为角加
速度。H为正定惯性矩阵,具体表述为:
a + 2%cosC2 + 2/sin$ " + %cosC2 2 + /sin$ 1
"+ % cos $ n + /si $
"
C为哥式力和离心力矩阵,具体表述为:
节PID参数进行移动液压机械手的轨迹跟踪控制, 仿真结果能大致追踪到机械手的轨迹&但是此方 法的误差较大,并且调节参数需要的时间较长,当 控制能量需求较大时也很难满足需求&神经网络 控制在针对非线性和不确定系统有着明显的优势,
* 也是较先进的控制方法 17打文献[18 ]中运用神经
网络控制算法对机械手进行动力学建模,对未知部 分进行分析与逼近,最后通过在线建模和前馈补偿 来实现对机械手轨迹的高精度跟踪&自适应控制 是指系统能够根据环境的变化来调整自身的行为
或性能&文献[19 ]采用自适应控制,通过自动调节 不确定项来减小误差,提高控制精度&但是系统的 控制性能明显依赖于增益值,要获得更好的性能, 就必须使用较高的增益&文献[20 ]在采用自适应 思想设计控制器时,引入在线可调参数,使得控制
Sliding-Mode Control
1, 2 0.5 j 3.4278
3 2 1
Unstable equilibrium point at the origin.
x2(t)
Discontinuous argument
Closed‐loop eigenvalues
1
a a 4k 2
x2(t)
3
New switching function
2
1
x1(t)
-0.5 0.5 1
Case 2: Saddle Point VSS System: Asymptotically Stable
9
-1
x2+3x1=0 x2+c1x1=0
(0<c1<3)
-2
-3
SLIDING MODE CONTROL (SMC)
-3 -4
CASE 2: k 12 பைடு நூலகம் a 2 4
1 3, 2 4
x 2( t)
4
Saddle point at the origin.
The green dashed line equation can defined as
x 2( t)
4
3
s (x) x 2 (t ) 1 x1 (t ) x 2 (t ) 3 x1 (t )
Importance of Switching Functions
e2
III. IV. c1<c2<c3
e2e(0) e1(0),
1 e2 e 2 ce2 ksign( s ) e
e1
0
2 1
液驱并联机构多维力加载系统滑模解耦控制
第51卷第12期2020年12月中南大学学报(自然科学版)Journal of Central South University (Science and Technology)V ol.51No.12Dec.2020液驱并联机构多维力加载系统滑模解耦控制赵劲松1,2,3,孙鑫宇3,董杰3,王春发3,徐嘉祥3,王志鹏3(1.燕山大学河北省重型机械流体动力传输与控制实验室,河北秦皇岛,066004;2.浙江大学流体动力与机电系统国家重点实验室,浙江杭州,310027;3.燕山大学机械工程学院,河北秦皇岛,066004)摘要:针对液驱并联机构多维力加载系统频响低、耦合力强、参数时变和模型摄动的问题,提出一种改进的滑模控制策略以提高系统响应速度与输出精度。
首先,建立多维力加载系统刚柔混合动力学模型与液压系统模型,推导不同位姿下系统闭环传递函数,分析各通道间耦合力产生机理。
其次,考虑多维力加载系统模型实际质量矩阵和刚度矩阵的不确定性,提出名义矩阵补偿方法。
基于系统补偿模型,构建滑模控制器名义模型,进而利用力跟踪误差确定控制器二阶滑模面,探索滑模面收敛条件,分析控制参数对力跟踪误差收敛速度的影响。
在此基础上,采用线性化反馈技术,确定滑模控制律。
最后,根据李雅普诺夫定理分析提出的控制结构稳定性,得到渐进稳定的充分条件。
研究结果表明:在工作频段,相较于传统PI 控制,滑模控制的多维力加载系统通道间耦合力范围减小86.5%,耦合力矩范围减小66%;广义质量矩阵和广义刚度矩阵的非对角性是多维力加载系统产生耦合力的主要因素,改进的滑模控制器能够克服多维力加载系统的建模误差,提高系统的动态响应速度及对外部扰动的鲁棒性。
关键词:电液伺服;并联机构;多维力加载;力耦合;变结构控制中图分类号:TH137文献标志码:A开放科学(资源服务)标识码(OSID)文章编号:1672-7207(2020)12-3407-11Sliding mode decoupling control for electro-hydraulic multi-dimensional force loading system with parallel mechanismZHAO Jinsong 1,2,3,SUN Xinyu 3,DONG Jie 3,WANG Chunfa 3,XU Jiaxiang 3,WANG Zhipeng 3(1.Hebei Provincial Key Laboratory of Heavry Machinery Fluid Power Transmission and Control,YanshanUniversity,Qinhuangdao 066004,China;2.State Key Laboratory of Fluid Power and Mechatronic Systems,Zhejiang University,Hangzhou 310027,China;3.School of Mechanical Engineering,Yanshan University,Qinhuangdao 066004,China)Abstract:Aiming at the problems of low frequency response,strong coupling force,time-varying parameters and model perturbation in the electro-hydraulic multi-dimensional force loading system with parallel mechanism,an improved sliding mode control strategy was proposed to improve the response speed and output precision of theDOI:10.11817/j.issn.1672-7207.2020.12.015收稿日期:2020−02−25;修回日期:2020−04−27基金项目(Foundation item):国家自然科学基金资助项目(51505412);流体动力与机电系统国家重点实验室开放基金资助项目(GZKF-201807)(Project(51505412)supported by the National Natural Science Foundation of China;Project(GZKF-201807)supported by the State Key Laboratory of Fluid Power and Mechatronic Systems Open Fund Project)通信作者:赵劲松,博士,副教授,从事电液伺服研究;E-mail :*******************.cn第51卷中南大学学报(自然科学版)system.Firstly,the rigid-flexible hybrid dynamic model and hydraulic system model of the multi-dimensional force loading system were established,and the closed-loop transfer function of the system in each posture was derived.Then the coupling force generation mechanism between each channel was analyzed.Secondly, considering the uncertainty of the actual mass matrix and stiffness matrix of the multi-dimensional force loading system model,a nominal matrix compensation method was proposed.Based on the system compensation model,the nominal model of the sliding mode controller was constructed.Then the second-order sliding mode surface ofthe controller was determined by the force tracking error.Furthermore,the convergence conditions of the sliding mode surface was explored.The influence of the control parameters on the convergence rate of the force tracking error was analyzed.On this basis,the sliding mode control law was determined by linear feedback technology. Finally,according to Lyapunov theorem,the sufficient condition of asymptotic stability was obtained.The results show that in the working frequency band,compared with the traditional PI control,the coupling force range andthe coupling torque range among the channels of multi-dimensional force loading system by sliding mode control reduce by86.5%and66%,respectively.The non-diagonality of generalized mass matrix and generalized stiffness matrix is the main factor of coupling force in multi-dimensional loading system.The improved sliding mode controller can not only overcome the modeling error of multi-dimensional loading system,but also improve the dynamic response speed of the system and the robustness against the external disturbances.Key words:electro-hydraulic servo;parallel mechanism;multi-dimensional loading;force coupling;variable structure control基于Stewart平台的液驱并联机构多维力加载系统(electro-hydraulic multi-dimensional force loading system with parallel mechanism,EH-MDLPM)具有自由度多、结构紧凑、刚度大和承载能力强的优点[1−2],因此,它被广泛应用在机器人、数控机床、医疗器械以及航空航天机械等多个领域[3−4]。
基于单片机的机械臂运行轨迹在线控制系统设计
基于单片机的机械臂运行轨迹在线控制系统设计宋东亚【摘要】基于PLC的机械臂运行轨迹控制系统通过PLC采集现场信号及输出信号的状态变化实现机械臂运行轨迹的控制,不能实现多自由度机械臂控制.设计基于单片机的机械臂运行轨迹在线控制系统,系统硬件由上位机PC在线控制、主控制板和机械臂舵机控制板构成,通过光电编码器位移传感器实现机械臂位置、位移感觉,利用舵机控制板采用Arduino舵机扩展板和D-H理论,构建机械臂结构模型,实现多自由度机械臂的控制.系统软件主要由上位机在线控制部分、主控制板控制程序和舵机控制板程序组成,由主控板控制程序和上位机在线控制程序两部分实现机械臂控制,通过单片机系统时钟初始化提高系统的运行速度.实验结果表明,所设计的系统能够稳定、快速地实现机械臂轨迹控制,并且准确度高.【期刊名称】《现代电子技术》【年(卷),期】2018(041)018【总页数】4页(P174-177)【关键词】单片机;机械臂;运行轨迹;舵机控制;光电编码器;位移传感器【作者】宋东亚【作者单位】郑州工业应用技术学院,河南新郑 451150【正文语种】中文【中图分类】TN876-34;TP311随着当代社会信息技术和生产自动化程度的突飞猛进,机械人也随之步入高度自动化、智能化的阶段,它替代传统的人工作业方式,减轻劳动量的同时,还可以提高生产效率、降低生产成本,并且使因人工疏忽导致的安全事故得到极大的减少[1],在生产、生活中扮演着越来越重要的角色,已成为现代化生产中至关重要的环节。
在机械人技术领域中,机械臂通过自动控制具有操作功能和移动功能[2],可以通过编程来完成各种作业,广泛的应用在设备装配、自动喷漆、自动化生产线、教育研究等领域。
传统的基于PLC的机械臂运行轨迹控制系统不能实现多自由度控制,并且存在稳定性差以及精度低的缺点。
针对这种情况,本文设计了基于单片机的机械臂运行轨迹在线控制系统。
1 基于单片机的机械臂运行轨迹在线控制系统1.1 系统硬件结构设计系统的硬件主要包括上位机PC在线控制、主控制板和机械臂舵机控制板三部分。
好参考Second-Order Sliding-Mode Observer for Mechanical Systems
model-based observers are usually restricted to the cases when the model is exactly known; • high-gain differentiators [2] are not exact with any fixed finite gain and feature the peaking effect with high gains: The maximal output value during the transient grows infinitely as the gains tend to infinity (see, for example, [3], [5], [12], [15], and [16]). The sliding mode observers are widely used due to the finite-time convergence, robustness with respect to uncertainties and the possibility of uncertainty estimation (see, for example, the bibliography in the recent tutorials [3], [5], and [12]). A new generation of observers based on the second-order sliding-mode algorithms has been recently developed. In particular, asymptotic observers [13] and the asymptotic observer for systems with Coulomb friction [1], [11] were designed based on the second-order sliding-mode. These observers require the proof of a separation principle theorem due to the asymptotic convergence of the estimated values to the real ones. A robust exact differentiator [9] featuring finite-time convergence was designed as an application of the super-twisting algorithm [8]. Its implementation does not need the separation principle to be proved. These differentiators were, for example, successfully applied in [14], [4], and [10]. A new differentiator [7] was developed, based on it. Straightforward application of such a differentiator does not benefit from the knowledge of a mathematical model of the process. If such a model is known, or the system parameters and uncertainties can be estimated (which is common for the case of mechanical systems with Coulomb friction), it is reasonable to design a system-specific observer. An observer is proposed in this paper, which reconstructs the velocity from the position measurements, using the modification of the second-order sliding-mode super-twisting algorithm [8] with finitetime convergence. The separation principle theorem is trivial in this case, and the observer can be designed separately from the controller. Only partial knowledge of the system model is required. The discrete version of the of the proposed observer is considered, and the corresponding accuracy of the proposed observer is estimated. II. PROBLEM STATEMENT The general model of second-order mechanical systems has the form
轮式机器人移动过程中滑模控制策略的研究
2021年5月第28卷第5期控制工程Control Engineering of ChinaMay. 2021Vol.28, No.5文章编号:1671-7848(2021)05-0963-08DOI: 10.14107/ki.kzgc.20190635轮式机器人移动过程中滑模控制策略的研究陈勇\刘哲\乔健、卢清华、谢永芳2(1.佛山科学技术学院机电工程与自动化学院,广东佛山528225;2.中南大学自动化学院,湖南长沙410083)■摘要:针对移动机器人的路径跟踪控制问题,提出了一种全局稳定定理与指数趋近律相 结合的滑模控制方法。
在控制器的设计中,定义了惯性坐标系和机器人坐标系,建立移动机器人运动模型,标定出位置误差和姿态角误差;基于指数趋近律设计了移动机器人的轨迹跟踪控制器,利用全局穗定定理改进了控制器的控制律算法,通过L y a p u n o v函数证明了控制器的稳定性;最后采用双环闭环控制结构对此路径跟踪系统进行了 M A T L A B仿真,并与传统指数控制律设计的控制器进行对比。
结果表明,该方法提高了机器人在路径跟踪过程中线速度与角速度的穗定性,削弱了指数控制律的抖振现象,验证了新指数控制律设计的轨迹跟踪控制器的可行性与有效性。
关键词:轮式移动机器人;滑模控制;路径跟踪;指数趋近律;全局穗定中图分类号:T P242 文献标识码:AResearch on Sliding Mode Control Strategy of Wheeled Robot in Moving ProcessC H E N Yong\ L I U Z h e\ Q I A O Jian2,L U Qing-hua2,X I E Yong-fang3(1.School of Mechatronic Engineering and Automation,Foshan University,Foshan528225, China;2.Schoolof A utomation,Central South University,Changsha410083, China)Abstract:A i m i n g at solving the problem of path tracking control of mobile robot,a sliding m o d e control method is proposed combined with global stability and exponential reaching law.In the design of the controller, the inertial coordinate system and robot coordinate system are dfined firstly.T h e kinematic mod e l of mobile robot is developed,the position error and attitude angle error are calibrated.T h e path tracking controller for mobile robots is designed b y the exponential reaching law,and the control law algorithm i s improved b y global stability theorem,and Lyapunov function i s used to prove the controller stability.Finally,the double closed-loop control structure is used to simulate the path tracking system in M A T L A B,and the comparison is m a d e with the controller designed by the traditional exp-onential control law.T h e results s h o w that the stability of linear velocity and angular velocity of the robot in the path tracking process is improved and the chattering of exponential control law is w e a k e n e d by the proposed m e t h o d.T h e feasibility and effectiveness of the pathing tracking controller designed b y the n e w exponential control law are verified.K e y w o r d s:Wheeled mobile robot;sliding m o d e control;trajectory tracking;exponential reaching l a w;global stabilityi引言移动机器人具有结构简单、运动灵活、易于控 制等特点[1],在工业、服务业等领域得到广泛应用。
力学标准中英文对照
力学标准中英文对照- 1 - Edited by: Blueskylhm 一般力学类:分析力学analytical mechanics 拉格朗日乘子Lagrange multiplier 拉格朗日[量] Lagrangian 拉格朗日括号Lagrange bracket 循环坐标cyclic coordinate 循环积分cyclic integral 哈密顿[量] Hamiltonian 哈密顿函数Hamiltonian function 正则方程canonical equation 正则摄动canonical perturbation 正则变换canonical transformation 正则变量canonical variable 哈密顿原理Hamilton principle 作用量积分action integral 哈密顿- 雅可比方程Hamilton-Jacobi equation 作用--角度变量action-angle variables 阿佩尔方程Appell equation 劳斯方程Routh equation 拉格朗日函数Lagrangian function 诺特定理Noether theorem泊松括号poisson bracket 边界积分法boundary integral method 并矢dyad运动稳定性stability of motion 轨道稳定性orbital stability 李雅普诺夫函数Lyapunov function 渐近稳定性asymptotic stability 结构稳定性structural stability 久期不稳定性secular instability 弗洛凯定理Floquet theorem 倾覆力矩capsizing moment 自由振动free vibration 固有振动natural vibration 暂态transient state 环境振动ambient vibration 反共振anti-resonance 衰减attenuation 库仑阻尼Coulomb damping 同相分量in-phase component 非同相分量out-of -phase component 超调量overshoot 参量[激励]振动parametric vibration 模糊振动fuzzy vibration 临界转速critical speed of rotation 阻尼器damper 半峰宽度half-peak width 集总参量系统lumped parameter system 相平面法phase plane method 相轨迹phase trajectory等倾线法isocline method 跳跃现象jump phenomenon 负阻尼negative damping 达芬方程Duffing equation 希尔方程Hill equationKBM 方法KBM method, Krylov-Bogoliubov- Mitropol'skii method 马蒂厄方程Mathieu equation 平均法averaging method 组合音调combination tone 解谐detuning 耗散函数dissipative function 硬激励hard excitation 硬弹簧hard spring, hardening spring 谐波平衡法harmonic balance method 久期项secular term 自激振动self-excited vibration 分界线separatrix 亚谐波subharmonic 软弹簧softspring ,softening spring 软激励soft excitation 邓克利公式Dunkerley formula 瑞利定理Rayleigh theorem 分布参量系统distributed parameter system 优势频率dominant frequency 模态分析modal analysis 固有模态natural mode of vibration同步synchronization 超谐波ultraharmonic 范德波尔方程van der pol equation 频谱frequency spectrum 基频fundamental frequency WKB 方法WKB method - 2 - Edited by: BlueskylhmWKB 方法Wentzel-Kramers-Brillouin method 缓冲器buffer风激振动aeolian vibration 嗡鸣buzz 倒谱cepstrum 颤动chatter 蛇行hunting阻抗匹配impedance matching 机械导纳mechanical admittance 机械效率mechanical efficiency 机械阻抗mechanical impedance 随机振动stochastic vibration, random vibration 隔振vibration isolation 减振vibration reduction 应力过冲stress overshoot 喘振surge 摆振shimmy起伏运动phugoid motion 起伏振荡phugoid oscillation 驰振galloping 陀螺动力学gyrodynamics 陀螺摆gyropendulum 陀螺平台gyroplatform 陀螺力矩gyroscoopic torque 陀螺稳定器gyrostabilizer 陀螺体gyrostat 惯性导航inertial guidance 姿态角attitude angle 方位角azimuthal angle 舒勒周期Schuler period 机器人动力学robot dynamics 多体系统multibody system 多刚体系统multi-rigid-body system 机动性maneuverability 凯恩方法Kane method 转子[系统]动力学rotor dynamics 转子[一支承一基础]系统rotor-supportfoundation system 静平衡static balancing 动平衡dynamic balancing 静不平衡static unbalance 动不平衡dynamic unbalance 现场平衡field balancing 不平衡unbalance 不平衡量unbalance 互耦力cross force挠性转子flexible rotor分频进动fractional frequency precession半频进动half frequency precession 油膜振荡oil whip 转子临界转速rotor critical speed 自动定心self-alignment 亚临界转速subcritical speed 涡动whirl 固体力学类:弹性力学elasticity 弹性理论theory of elasticity 均匀应力状态homogeneous state of stress 应力不变量stress invariant 应变不变量strain invariant 应变椭球strain ellipsoid 均匀应变状态homogeneous state of strain 应变协调方程equation of strain compatibility拉梅常量Lame constants 各向同性弹性isotropic elasticity 旋转圆盘rotating circular disk 楔wedge开尔文问题Kelvin problem 布西内斯克问题Boussinesq problem 艾里应力函数Airy stress function 克罗索夫--穆斯赫利什维利法Kolosoff- Muskhelishvili method 基尔霍夫假设Kirchhoff hypothesis 板Plate 矩形板Rectangular plate 圆板Circular plate 环板Annular plate 波纹板Corrugated plate 加劲板Stiffenedplate,reinforced- 3 - Edited by: BlueskylhmPlate中厚板Plate of moderate thickness 弯[曲]应力函数Stress function of bending 壳Shell扁壳Shallow shell 旋转壳Revolutionary shell 球壳Spherical shell [圆]柱壳Cylindrical shell 锥壳Conical shell 环壳Toroidal shell 封闭壳Closed shell 波纹壳Corrugated shell 扭[转]应力函数Stress function of torsion 翘曲函数Warping function 半逆解法semi-inverse method 瑞利--里茨法Rayleigh-Ritz method 松弛法Relaxation method 莱维法Levy method松弛Relaxation 量纲分析Dimensional analysis 自相似[性] self-similarity 影响面Influence surface 接触应力Contact stress 赫兹理论Hertz theory 协调接触Conforming contact 滑动接触Sliding contact 滚动接触Rolling contact 压入Indentation 各向异性弹性Anisotropic elasticity 颗粒材料Granular material 散体力学Mechanics of granular media 热弹性Thermoelasticity 超弹性Hyperelasticity 粘弹性Viscoelasticity 对应原理Correspondence principle 褶皱Wrinkle 塑性全量理论Total theory of plasticity 滑动Sliding 微滑Microslip 粗糙度Roughness 非线性弹性Nonlinear elasticity 大挠度Large deflection 突弹跳变snap-through 有限变形Finite deformation 格林应变Green strain 阿尔曼西应变Almansi strain 弹性动力学Dynamic elasticity 运动方程Equation of motion 准静态的Quasi-static 气动弹性Aeroelasticity 水弹性Hydroelasticity 颤振Flutter 弹性波Elastic wave 简单波Simple wave 柱面波Cylindrical wave 水平剪切波Horizontal shear wave 竖直剪切波Vertical shear wave 体波body wave 无旋波Irrotational wave 畸变波Distortion wave 膨胀波Dilatation wave 瑞利波Rayleigh wave 等容波Equivoluminal wave 勒夫波Love wave 界面波Interfacial wave 边缘效应edge effect 塑性力学Plasticity 可成形性Formability 金属成形Metal forming 耐撞性Crashworthiness 结构抗撞毁性Structural crashworthiness 拉拔Drawing 破坏机构Collapse mechanism 回弹Springback挤压Extrusion 冲压Stamping 穿透Perforation 层裂Spalling 塑性理论Theory of plasticity 安定[性]理论Shake-down theory 运动安定定理kinematic shake-down theorem 静力安定定理Static shake-down theorem 率相关理论rate dependent theorem 载荷因子load factor 加载准则Loading criterion 加载函数Loading function 加载面Loading surface - 4 - Edited by: Blueskylhm 塑性加载Plastic loading 塑性加载波Plastic loading wave 简单加载Simple loading 比例加载Proportional loading 卸载Unloading 卸载波Unloading wave 冲击载荷Impulsive load 阶跃载荷step load 脉冲载荷pulse load 极限载荷limit load 中性变载nentral loading 拉抻失稳instability in tension 加速度波acceleration wave 本构方程constitutive equation 完全解completesolution 名义应力nominal stress 过应力over-stress 真应力true stress 等效应力equivalent stress 流动应力flow stress 应力间断stress discontinuity 应力空间stress space 主应力空间principal stress space 静水应力状态hydrostatic state of stress 对数应变logarithmic strain 工程应变engineering strain 等效应变equivalent strain 应变局部化strain localization 应变率strain rate 应变率敏感性strain rate sensitivity 应变空间strain space 有限应变finite strain 塑性应变增量plastic strain increment 累积塑性应变accumulated plastic strain 永久变形permanent deformation 内变量internal variable 应变软化strain-softening 理想刚塑性材料rigid-perfectly plastic Material 刚塑性材料rigid-plastic material 理想塑性材料perfectl plastic material 材料稳定性stability of material 应变偏张量deviatoric tensor of strain 应力偏张量deviatori tensor of stress 应变球张量spherical tensor of strain 应力球张量spherical tensor of stress 路径相关性path-dependency 线性强化linear strain-hardening 应变强化strain-hardening 随动强化kinematic hardening 各向同性强化isotropic hardening 强化模量strain-hardening modulus 幂强化power hardening 塑性极限弯矩plastic limit bending Moment 塑性极限扭矩plastic limit torque 弹塑性弯曲elastic-plastic bending 弹塑性交界面elastic-plastic interface 弹塑性扭转elastic-plastic torsion 粘塑性Viscoplasticity 非弹性Inelasticity 理想弹塑性材料elastic-perfectly plastic Material 极限分析limit analysis 极限设计limit design 极限面limit surface 上限定理upper bound theorem 上屈服点upper yield point下限定理lower bound theorem 下屈服点lower yield point 界限定理bound theorem 初始屈服面initial yield surface 后继屈服面subsequent yield surface 屈服面[ 的] 外凸性convexity of yield surface 截面形状因子shape factor of cross-section 沙堆比拟sand heap analogy 屈服Yield 屈服条件yield condition 屈服准则yield criterion 屈服函数yield function 屈服面yield surface 塑性势plastic potential 能量吸收装置energy absorbing device 能量耗散率energy absorbing device 塑性动力学dynamic plasticity 塑性动力屈曲dynamic plastic buckling 塑性动力响应dynamic plastic response- 5 - Edited by: Blueskylhm 塑性波plastic wave 运动容许场kinematically admissible Field 静力容许场statically admissible Field流动法则flow rule速度间断velocity discontinuity 滑移线slip-lines 滑移线场slip-lines field 移行塑性铰travelling plastic hinge 塑性增量理论incremental theory of Plasticity 米泽斯屈服准则Mises yield criterion 普朗特-- 罗伊斯关系prandtl- Reuss relation 特雷斯卡屈服准则Tresca yield criterion 洛德应力参数Lode stress parameter 莱维--米泽斯关系Levy-Mises relation 亨基应力方程Hencky stress equation 赫艾-- 韦斯特加德应力空间Haigh-Westergaard stress space 洛德应变参数Lode strain parameter 德鲁克公设Drucker postulate 盖林格速度方程Geiringer velocity Equation结构力学structural mechanics 结构分析structural analysis 结构动力学structural dynamics 拱Arch三铰拱three-hinged arch 抛物线拱parabolic arch 圆拱circular arch 穹顶Dome 空间结构space structure空间桁架space truss 雪载[荷] snow load 风载[荷] wind load 土压力earth pressure 地震载荷earthquake loading 弹簧支座spring support 支座位移support displacement 支座沉降support settlement 超静定次数degree of indeterminacy 机动分析kinematic analysis 结点法method of joints 截面法method of sections 结点力joint forces 共轭位移conjugate displacement 影响线influence line 三弯矩方程three-moment equation 单位虚力unit virtual force 刚度系数stiffness coefficient 柔度系数flexibility coefficient 力矩分配moment distribution 力矩分配法moment distribution method 力矩再分配moment redistribution 分配系数distribution factor 矩阵位移法matri displacement method 单元刚度矩阵element stiffness matrix 单元应变矩阵element strain matrix 总体坐标global coordinates贝蒂定理Betti theorem 高斯-- 若尔当消去法Gauss-Jordan elimination Method 屈曲模态buckling mode 复合材料力学mechanics of composites 复合材料composite material 纤维复合材料fibrous composite 单向复合材料unidirectional composite 泡沫复合材料foamed composite 颗粒复合材料particulate composite 层板Laminate 夹层板sandwich panel 正交层板cross-ply laminate 斜交层板angle-ply laminate 层片Ply 多胞固体cellular solid 膨胀Expansion 压实Debulk 劣化Degradation 脱层Delamination 脱粘Debond 纤维应力fiber stress 层应力ply stress 层应变ply strain 层间应力interlaminar stress 比强度specific strength 强度折减系数strength reduction factor - 6 - Edited by: Blueskylhm 强度应力比strength -stress ratio 横向剪切模量transverse shear modulus 横观各向同性transverse isotropy 正交各向异Orthotropy 剪滞分析shear lag analysis 短纤维chopped fiber 长纤维continuous fiber 纤维方向fiber direction 纤维断裂fiber break 纤维拔脱fiber pull-out 纤维增强fiber reinforcement 致密化Densification 最小重量设计optimum weight design 网格分析法netting analysis 混合律rule of mixture 失效准则failure criterion 蔡--吴失效准则Tsai-W u failure criterion 达格代尔模型Dugdale model 断裂力学fracture mechanics 概率断裂力学probabilistic fracture Mechanics 格里菲思理论Griffith theory 线弹性断裂力学linear elastic fracture mechanics, LEFM 弹塑性断裂力学elastic-plastic fracture mecha-nics, EPFM 断裂Fracture 脆性断裂brittle fracture解理断裂cleavage fracture 蠕变断裂creep fracture 延性断裂ductile fracture 晶间断裂inter-granular fracture 准解理断裂quasi-cleavagefracture 穿晶断裂trans-granular fracture 裂纹Crack 裂缝Flaw 缺陷Defect 割缝Slit 微裂纹Microcrack 折裂Kink椭圆裂纹elliptical crack 深埋裂纹embedded crack [钱]币状裂纹penny-shape crack 预制裂纹Precrack 短裂纹short crack 表面裂纹surface crack 裂纹钝化crack blunting 裂纹分叉crack branching 裂纹闭合crack closure 裂纹前缘crack front 裂纹嘴crack mouth 裂纹张开角crack opening angle,COA 裂纹张开位移crack opening displacement, COD裂纹阻力crack resistance 裂纹面crack surface 裂纹尖端crack tip裂尖张角crack tip opening angle, CTOA裂尖张开位移crack tip opening displacement, CTOD 裂尖奇异场crack tip singularity Field 裂纹扩展速率crack growth rate 稳定裂纹扩展stable crack growth 定常裂纹扩展steady crack growth 亚临界裂纹扩展subcritical crack growth 裂纹[扩展]减速crack retardation 止裂crack arrest 止裂韧度arrest toughness 断裂类型fracture mode 滑开型sliding mode 张开型opening mode 撕开型tearing mode 复合型mixed mode 撕裂Tearing撕裂模量tearing modulus 断裂准则fracture criterion J 积分J-integral J 阻力曲线J-resistance curve 断裂韧度fracture toughness 应力强度因子stress intensity factor HRR 场Hutchinson-Rice-Rosengren Field守恒积分conservation integral有效应力张量effective stress tensor 应变能密度strain energy density 能量释放率energy release rate 内聚区cohesive zone - 7 - Edited by: Blueskylhm 塑性区plastic zone 张拉区stretched zone 热影响区heat affected zone, HAZ 延脆转变温度brittle-ductile transition temperature 剪切带shear band 剪切唇shear lip 无损检测non-destructive inspection 双边缺口试件double edge notched specimen, DEN specimen 单边缺口试件single edge notched specimen, SEN specimen 三点弯曲试件three point bending specimen, TPB specimen 中心裂纹拉伸试件center cracked tension specimen, CCT specimen 中心裂纹板试件center cracked panel specimen, CCP specimen 紧凑拉伸试件compact tension specimen, CT specimen 大范围屈服large scale yielding 小范围攻屈服small scale yielding 韦布尔分布Weibull distribution 帕里斯公式paris formula 空穴化Cavitation 应力腐蚀stress corrosion 概率风险判定probabilistic risk assessment, PRA 损伤力学damage mechanics 损伤Damage 连续介质损伤力学continuum damage mechanics 细观损伤力学microscopic damage mechanics 累积损伤accumulated damage 脆性损伤brittle damage 延性损伤ductile damage 宏观损伤macroscopicdamage 细观损伤microscopic damage 微观损伤microscopic damage 损伤准则damage criterion 损伤演化方程damage evolution equation 损伤软化damage softening 损伤强化damage strengthening 损伤张量damage tensor 损伤阈值damage threshold 损伤变量damage variable 损伤矢量damage vector 损伤区damage zone 疲劳Fatigue 低周疲劳low cycle fatigue应力疲劳stress fatigue 随机疲劳random fatigue 蠕变疲劳creep fatigue 腐蚀疲劳corrosion fatigue 疲劳损伤fatigue damage 疲劳失效fatigue failure 疲劳断裂fatigue fracture 疲劳裂纹fatigue crack 疲劳寿命fatigue life 疲劳破坏fatigue rupture 疲劳强度fatigue strength 疲劳辉纹fatigue striations 疲劳阈值fatigue threshold 交变载荷alternating load 交变应力alternating stress 应力幅值stress amplitude 应变疲劳strain fatigue 应力循环stress cycle 应力比stress ratio 安全寿命safe life 过载效应overloading effect 循环硬化cyclic hardening 循环软化cyclic softening 环境效应environmental effect 裂纹片crack gage 裂纹扩展crack growth, crack Propagation 裂纹萌生crack initiation循环比cycle ratio 实验应力分析experimental stress Analysis 工作[应变]片active[strain]gage 基底材料backing material 应力计stress gage 零[点]飘移zero shift, zero drift 应变测量strain measurement 应变计strain gage- 8 - Edited by: Blueskylhm 应变指示器strain indicator 应变花strain rosette 应变灵敏度strain sensitivity 机械式应变仪mechanical strain gage 直角应变花rectangular rosette 引伸仪Extensometer 应变遥测telemetering of strain 横向灵敏系数transverse gage factor 横向灵敏度transverse sensitivity 焊接式应变计weldable strain gage 平衡电桥balanced bridge 粘贴式应变计bonded strain gage 粘贴箔式应变计bonded foiled gage 粘贴丝式应变计bonded wire gage 桥路平衡bridge balancing 电容应变计capacitance strain gage 补偿片compensation technique 补偿技术compensation technique 基准电桥reference bridge 电阻应变计resistance strain gage 温度自补偿应变计self-temperature compensating gage 半导体应变计semiconductor strain Gage 集流器slip ring 应变放大镜strain amplifier 疲劳寿命计fatigue life gage 电感应变计inductance [strain] gage 光[测]力学Photomechanics 光弹性Photoelasticity 光塑性Photoplasticity 杨氏条纹Young fringe 双折射效应birefrigent effect 等位移线contour of equal Displacement 暗条纹dark fringe 条纹倍增fringe multiplication 干涉条纹interference fringe 等差线Isochromatic 等倾线Isoclinic 等和线isopachic 应力光学定律stress- optic law 主应力迹线Isostatic 亮条纹light fringe 光程差optical path difference 热光弹性photo-thermo -elasticity 光弹性贴片法photoelastic coating Method 光弹性夹片法photoelastic sandwich Method 动态光弹性dynamic photo-elasticity 空间滤波spatial filtering 空间频率spatial frequency 起偏镜Polarizer 反射式光弹性仪reflection polariscope 残余双折射效应residual birefringent Effect 应变条纹值strain fringe value 应变光学灵敏度strain-optic sensitivity 应力冻结效应stress freezing effect 应力条纹值stress fringe value 应力光图stress-optic pattern 暂时双折射效应temporary birefringent Effect 脉冲全息法pulsed holography 透射式光弹性仪transmission polariscope 实时全息干涉法real-time holographic interfero - metry 网格法grid method 全息光弹性法holo-photoelasticity 全息图Hologram 全息照相Holograph 全息干涉法holographic interferometry 全息云纹法holographic moire technique 全息术Holography全场分析法whole-field analysis 散斑干涉法speckle interferometry 散斑Speckle错位散斑干涉法speckle-shearing interferometry, shearography 散斑图Specklegram 白光散斑法white-light speckle method 云纹干涉法moire interferometry [叠栅]云纹moire fringe [叠栅]云纹法moire method 云纹图moire pattern 离面云纹法off-plane moire method 参考栅reference grating- 9 - Edited by: Blueskylhm 试件栅specimen grating 分析栅analyzer grating 面内云纹法in-plane moire method 脆性涂层法brittle-coating method 条带法strip coating method 坐标变换transformation of Coordinates 计算结构力学computational structural mecha-nics 加权残量法weighted residual method 有限差分法finite difference method 有限[单]元法finite element method 配点法point collocation 里茨法Ritz method 广义变分原理generalized variational Principle 最小二乘法least square method 胡[海昌]一鹫津原理Hu-Washizu principle 赫林格-赖斯纳原理Hellinger-Reissner Principle 修正变分原理modified variational Principle 约束变分原理constrained variational Principle 混合法mixed method 杂交法hybrid method 边界解法boundary solution method 有限条法finite strip method 半解析法semi-analytical method 协调元conforming element 非协调元non-conforming element 混合元mixed element 杂交元hybrid element 边界元boundary element 强迫边界条件forced boundary condition 自然边界条件natural boundary condition 离散化Discretization 离散系统discrete system 连续问题continuous problem 广义位移generalized displacement 广义载荷generalized load 广义应变generalized strain 广义应力generalized stress 界面变量interface variable 节点node, nodal point [单]元Element 角节点corner node 边节点mid-sidenode 内节点internal node 无节点变量nodeless variable 杆元bar element 桁架杆元truss element 梁元beam element 二维元two-dimensional element 一维元one-dimensional element 三维元three-dimensional element 轴对称元axisymmetric element 板元plate element 壳元shell element 厚板元thick plate element 三角形元triangular element 四边形元quadrilateral element 四面体元tetrahedral element 曲线元curved element 二次元quadratic element 线性元linear element 三次元cubic element四次元quartic element 等参[数]元isoparametric element 超参数元super-parametric element 亚参数元sub-parametric element 节点数可变元variable-number-node element 拉格朗日元Lagrange element 拉格朗日族Lagrange family 巧凑边点元serendipity element 巧凑边点族serendipity family 无限元infinite element 单元分析element analysis 单元特性element characteristics 刚度矩阵stiffness matrix 几何矩阵geometric matrix 等效节点力equivalent nodal force 节点位移nodal displacement 节点载荷nodal load 位移矢量displacement vector 载荷矢量load vector 质量矩阵mass matrix - 10 - Edited by: Blueskylhm 集总质量矩阵lumped mass matrix 相容质量矩阵consistent mass matrix 阻尼矩阵damping matrix 瑞利阻尼Rayleigh damping 刚度矩阵的组集assembly of stiffnessMatrices载荷矢量的组集consistent mass matrix 质量矩阵的组集assembly of mass matrices 单元的组集assembly of elements 局部坐标系local coordinate system 局部坐标local coordinate 面积坐标area coordinates 体积坐标volume coordinates 曲线坐标curvilinear coordinates 静凝聚static condensation 合同变换contragradient transformation 形状函数shape function 试探函数trial function 检验函数test function 权函数weight function 样条函数spline function 代用函数substitute function 降阶积分reduced integration 零能模式zero-energy mode P 收敛p-convergence H 收敛h-convergence 掺混插值blended interpolation 等参数映射isoparametric mapping 双线性插值bilinear interpolation 小块检验patch test 非协调模式incompatible mode 节点号node number 单元号element number带宽band width 带状矩阵banded matrix 变带状矩阵profile matrix 带宽最小化minimization of band width 波前法frontal method 子空间迭代法subspace iteration method 行列式搜索法determinant search method 逐步法step-by-step method 纽马克法Newmark 威尔逊法Wilson 拟牛顿法quasi-Newton method 牛顿-拉弗森法Newton-Raphson method 增量法incrementalmethod 初应变initial strain 初应力initial stress 切线刚度矩阵tangent stiffness matrix 割线刚度矩阵secant stiffness matrix 模态叠加法mode superposition method 平衡迭代equilibrium iteration 子结构Substructure 子结构法substructure technique 超单元super-element 网格生成mesh generation 结构分析程序structural analysis program 前处理pre-processing 后处理post-processing 网格细化mesh refinement 应力光顺stress smoothing组合结构composite structure 流体动力学类:流体动力学fluid dynamics 连续介质力学mechanics of continuous media 介质medium 流体质点fluid particle 无粘性流体nonviscous fluid, inviscid fluid 连续介质假设continuous medium hypothesis 流体运动学fluid kinematics 水静力学hydrostatics 液体静力学hydrostatics 支配方程governing equation 伯努利方程Bernoulli equation 伯努利定理Bernonlli theorem 毕奥-萨伐尔定律Biot-Savart law 欧拉方程Euler equation 亥姆霍兹定理Helmholtz theorem 开尔文定理Kelvin theorem 涡片vortex sheet 库塔-茹可夫斯基条件Kutta-Zhoukowski- 11 - Edited by: Blueskylhm condition 布拉休斯解Blasius solution 达朗贝尔佯廖d'Alembert paradox雷诺数Reynolds number 施特鲁哈尔数Strouhal number 随体导数material derivative 不可压缩流体incompressible fluid 质量守恒conservation of mass 动量守恒conservation of momentum 能量守恒conservation of energy 动量方程momentum equation 能量方程energy equation 控制体积control volume 液体静压hydrostatic pressure 涡量拟能enstrophy 压差differential pressure 流[动] flow 流线stream line 流面stream surface 流管stream tube 迹线path, path line 流场flow field 流态flow regime 流动参量flow parameter 流量flow rate, flow discharge 涡旋vortex 涡量vorticity 涡丝vortex filament 涡线vortex line 涡面vortex surface 涡层vortex layer涡环vortex ring 涡对vortex pair 涡管vortex tube 涡街vortex street 卡门涡街Karman vortex street 马蹄涡horseshoe vortex 对流涡胞convective cell 卷筒涡胞roll cell 涡eddy 涡粘性eddy viscosity 环流circulation 环量circulation 速度环量velocity circulation 偶极子doublet, dipole 驻点stagnation point 总压[力] total pressure 总压头total head 静压头static head 总焓total enthalpy 能量输运energy transport 速度剖面velocity profile 库埃特流Couette flow 单相流single phase flow 单组份流single-component flow 均匀流uniform flow 非均匀流nonuniform flow 二维流two-dimensional flow 三维流three-dimensional flow 准定常流quasi-steady flow 非定常流unsteady flow, non-steadyflow 暂态流transient flow 周期流periodic flow 振荡流oscillatory flow 分层流stratified flow 无旋流irrotational flow 有旋流rotational flow 轴对称流axisymmetric flow 不可压缩性incompressibility 不可压缩流[动]incompressible flow 浮体floating body 定倾中心metacenter 阻力drag, resistance 减阻drag reduction 表面力surface force 表面张力surface tension 毛细[管]作用capillarity 来流incoming flow 自由流free stream 自由流线free stream line 外流external flow 进口entrance, inlet 出口exit, outlet 扰动disturbance, perturbation 分布distribution 传播propagation色散dispersion弥散dispersion - 12 - Edited by: Blueskylhm 附加质量added mass ,associated mass 收缩contraction 镜象法image method 无量纲参数dimensionless parameter 几何相似geometric similarity 运动相似kinematic similarity 动力相似[性] dynamic similarity 平面流plane flow 势potential 势流potential flow 速度势velocity potential 复势complex potential 复速度complex velocity 流函数stream function 源source 汇sink 速度[水]头velocity head 拐角流corner flow 空泡流cavity flow 超空泡supercavity 超空泡流supercavity flow 空气动力学aerodynamics 低速空气动力学low-speed aerodynamics 高速空气动力学high-speed aerodynamics 气动热力学aerothermodynamics 亚声速流[动]subsonic flow 跨声速流[动] transonic flow 超声速流[动] supersonic flow 锥形流conical flow 楔流wedge flow 叶栅流cascade flow 非平衡流[动] non-equilibrium flow 细长体slender body 细长度slenderness 钝头体bluff body 钝体blunt body 翼型airfoil 翼弦chord 薄翼理论thin-airfoil theory 构型configuration 后缘trailing edge 迎角angle of attack 失速stall 脱体激波detached shock wave 波阻wave drag 诱导阻力induced drag 诱导速度induced velocity 临界雷诺数critical Reynolds number 前缘涡leading edge vortex 附着涡bound vortex 约束涡confined vortex 气动中心aerodynamic center 气动力aerodynamic force 气动噪声aerodynamic noise 气动加热aerodynamic heating 离解dissociation 地面效应ground effect 气体动力学gas dynamics 稀疏波rarefaction wave 热状态方程thermal equation of state 喷管Nozzle 普朗特-迈耶流Prandtl-Meyer flow 瑞利流Rayleigh flow 可压缩流[动] compressible flow 可压缩流体compressible fluid 绝热流adiabatic flow 非绝热流diabatic flow 未扰动流undisturbed flow 等熵流isentropic flow 匀熵流homoentropic flow 兰金- 于戈尼奥条件Rankine-Hugoniot condition 状态方程equation of state 量热状态方程caloric equation of state 完全气体perfect gas 拉瓦尔喷管Laval nozzle 马赫角Mach angle 马赫锥Mach cone 马赫线Mach line 马赫数Mach number 马赫波Mach wave当地马赫数local Mach number 冲击波shock wave 激波shock wave 正激波normal shock wave 斜激波oblique shock wave 头波bow wave 附体激波attached shock wave - 13 - Edited by: Blueskylhm 激波阵面shock front 激波层shock layer 压缩波compression wave 反射reflection 折射refraction 散射scattering 衍射diffraction 绕射diffraction 出口压力exit pressure 超压[强] over pressure 反压back pressure 爆炸explosion 爆轰detonation 缓燃deflagration水动力学hydrodynamics 液体动力学hydrodynamics 泰勒不稳定性Taylor instability 盖斯特纳波Gerstner wave 斯托克斯波Stokes wave 瑞利数Rayleigh number 自由面free surface 波速wave speed, wave velocity 波高wave height 波列wave train 波群wave group 波能wave energy 表面波surface wave 表面张力波capillary wave 规则波regular wave 不规则波irregular wave 浅水波shallow water wave 深水波deep water wave 重力波gravity wave 椭圆余弦波cnoidal wave 潮波tidal wave 涌波surge wave 破碎波breaking wave 船波ship wave 非线性波nonlinear wave 孤立子soliton 水动[力]噪声hydrodynamic noise 水击water hammer 空化cavitation 空化数cavitation number 空蚀cavitation damage 超空化流supercavitating flow 水翼hydrofoil水力学hydraulics 洪水波flood wave 涟漪ripple 消能energy dissipation 海洋水动力学marine hydrodynamics 谢齐公式Chezy formula 欧拉数Euler number 弗劳德数Froude number 水力半径hydraulic radius 水力坡度hvdraulic slope 高度水头elevating head 水头损失head loss 水位water level 水跃hydraulic jump 含水层aquifer 排水drainage 排放量discharge 壅水曲线back water curve 压[强水]头pressure head 过水断面flow cross-section 明槽流open channel flow 孔流orifice flow 无压流free surface flow 有压流pressure flow 缓流subcritical flow 急流supercritical flow 渐变流gradually varied flow 急变流rapidly varied flow临界流critical flow异重流density current, gravity flow 堰流weir flow 掺气流aerated flow 含沙流sediment-laden stream 降水曲线dropdown curve 沉积物sediment, deposit 沉[降堆]积sedimentation, deposition 沉降速度settling velocity 流动稳定性flow stability 不稳定性instability 奥尔-索末菲方程Orr-Sommerfeld equation 涡量方程vorticity equation- 14 - Edited by: Blueskylhm 泊肃叶流Poiseuille flow 奥辛流Oseen flow 剪切流shear flow 粘性流[动] viscous flow 层流laminar flow 分离流separated flow 二次流secondary flow 近场流near field flow 远场流far field flow 滞止流stagnation flow 尾流wake [flow]回流back flow 反流reverse flow射流jet 自由射流free jet 管流pipe flow, tube flow 内流internal flow 拟序结构coherent structure 猝发过程bursting process 表观粘度apparent viscosity 运动粘性kinematic viscosity 动力粘性dynamic viscosity 泊poise 厘泊centipoise 厘沱centistoke 剪切层shear layer 次层sublayer 流动分离flow separation 层流分离laminar separation 湍流分离turbulent separation分离点separation point 附着点attachment point 再附reattachment 再层流化relaminarization 起动涡starting vortex 驻涡standing vortex 涡旋破碎vortex breakdown 涡旋脱落vortex shedding 压[力]降pressure drop 压差阻力pressure drag 压力能pressure energy 型阻profile drag滑移速度slip velocity 无滑移条件non-slip condition 壁剪应力skin friction, frictional drag 壁剪切速度friction velocity 磨擦损失friction loss 磨擦因子friction factor 耗散dissipation 滞后lag 相似性解similar solution 局域相似local similarity 气体润滑gas lubrication 液体动力润滑hydrodynamic lubrication 浆体slurry 泰勒数Taylor number 纳维-斯托克斯方程Navier-Stokes equation 牛顿流体Newtonian fluid 边界层理论boundary later theory 边界层方程boundary layer equation 边界层boundary layer 附面层boundary layer 层流边界层laminar boundary layer 湍流边界层turbulent boundary layer 温度边界层thermal boundary layer 边界层转捩boundary layer transition 边界层分离boundary layer separation 边界层厚度boundary layer thickness 位移厚度displacement thickness动量厚度momentum thickness 能量厚度energy thickness 焓厚度enthalpy thickness 注入injection 吸出suction 泰勒涡Taylor vortex 速度亏损律velocity defect law 形状因子shape factor 测速法anemometry 粘度测定法visco[si] metry流动显示flow visualization 油烟显示oil smoke visualization 孔板流量计orifice meter 频率响应frequency response 油膜显示oil film visualization 阴影法shadow method 纹影法schlieren method 烟丝法smoke wire method 丝线法tuft method - 15 - Edited by: Blueskylhm 氢泡法nydrogen bubble method 相似理论similarity theory 相似律similarity law 部分相似partial similarity 定理pi theorem, Buckingham theorem 静[态]校准static calibration 动态校准dynamic calibration风洞wind tunnel 激波管shock tube 激波管风洞shock tube wind tunnel 水洞water tunnel 拖曳水池towing tank 旋臂水池rotating arm basin 扩散段diffuser 测压孔pressure tap 皮托管pitot tube 普雷斯顿管preston tube 斯坦顿管Stanton tube 文丘里管Venturi tube U 形管U-tube 压强计manometer 微压计micromanometer 多管压强计multiple manometer 静压管static [pressure]tube 流速计anemometer 风速管Pitot- static tube 激光多普勒测速计laser Doppler anemometer, laser Doppler velocimeter 热线流速计hot-wire anemometer 热膜流速计hot- film anemometer 流量计flow meter 粘度计visco[si] meter 涡量计vorticity meter 传感器transducer, sensor压强传感器pressure transducer 热敏电阻thermistor 示踪物tracer 时间线time line 脉线streak line 尺度效应scale effect 壁效应wall effect 堵塞blockage 堵寒效应blockage effect动态响应dynamic response 响应频率response frequency 底压base pressure 菲克定律Fick law 巴塞特力Basset force 埃克特数Eckert number 格拉斯霍夫数Grashof number 努塞特数Nusselt number 普朗特数prandtl number 雷诺比拟Reynolds analogy 施密特数schmidt number 斯坦顿数Stanton number 对流convection 自由对流natural convection, free convection 强迫对流forced convection 热对流heat convection 质量传递mass transfer 传质系数mass transfer coefficient 热量传递heat transfer传热系数heat transfer coefficient 对流传热convective heat transfer 辐射传热radiative heat transfer 动量交换momentum transfer 能量传递energy transfer 传导conduction 热传导conductive heat transfer 热交换heat exchange 临界热通量critical heat flux 浓度concentration 扩散diffusion 扩散性diffusivity 扩散率diffusivity 扩散速度diffusion velocity 分子扩散molecular diffusion 沸腾boiling 蒸发evaporation 气化gasification 凝结condensation 成核nucleation 计算流体力学computational fluid mechanics 多重尺度问题multiple scale problem 伯格斯方程Burgers equation 对流扩散方程convection diffusion equation - 16 - Edited by: Blueskylhm KDU 方程KDV equation 修正微分方程modified differential equation 拉克斯等价定理Lax equivalence theorem 数值模拟numerical simulation 大涡模拟large eddy simulation 数值粘性numerical viscosity 非线性不稳定性nonlinear instability 希尔特稳定性分析Hirt stability analysis 相容条件consistency conditionCFL 条件Courant- Friedrichs- Lewycondition ,CFL condition 狄里克雷边界条件Dirichlet boundary condition 熵条件entropy condition 远场边界条件far field boundary condition流入边界条件inflow boundary condition 无反射边界条件nonreflecting boundary condition数值边界条件numerical boundary condition流出边界条件outflow boundary condition 冯.诺伊曼条件von Neumann condition 近似因子分解法approximate factorization method人工压缩artificial compression 人工粘性artificial viscosity 边界元法boundary element method 配置方法collocation method 能量法energy method 有限体积法finite volume method 流体网格法fluid in cell method, FLIC method 通量校正传输法flux-corrected transport method 通量矢量分解法flux vector splitting method 伽辽金法Galerkin method 积分方法integral method 标记网格法marker and cell method, MAC method 特征线法method of characteristics 直线法method of lines 矩量法moment method 多重网格法multi- grid method 板块法panel method 质点网格法particle in cell method, PIC method 质点法particle method 预估校正法predictor-corrector method 投影法projection method 准谱法pseudo-spectral method 随机选取法random choice method 激波捕捉法shock-capturing。
基于动态事件触发策略的多AUV 一致控制
基于动态事件触发策略的多AUV 一致控制作者:胡满江王智炜杜长坤叶俊边有钢来源:《湖南大学学报·自然科学版》2022年第08期摘要:针对多个自主水下机器人(Autonomous Underwater Vehicles,AUVs)编队问题,为了减少多AUV频繁通信造成的能量消耗,提出一种基于分布式动态事件触发的领导者-跟随者一致控制算法.设计一个包含广义位置和载体速度的辅助变量简化AUV模型.同时基于滑模变结构控制、一致性理论及动态事件触发策略,设计了分布式编队控制器,保证系统在存在外部扰动的情况下可实现一致控制目标.证明了所提出的控制算法没有Zeno现象.数值仿真验证了所提出定理的正确性和控制算法的有效性.关键词:自主水下机器人;编队;一致控制;动态事件触发策略中图分类号:TP18文献标志码:AConsensus Control of Multi-AUVs Based on a Dynamic Event-triggered StrategyHU Manjiang1,3,WANG Zhiwei1,DU Changkun2,YE Jun1,BIAN Yougang1,3(1. College of Mechanical and Vehicle Engineering,Hunan University,Changsha 410082,China;2. School of Mechatronical Engineering,Beijing Institute of Technology,Beijing 100081,China;3. Wuxi Intelligent Control of Research Institute(WICRI)of Hunan University,Wuxi 214072,China)Abstract:This paper considers the formation problem for a group of autonomous underwater vehicles (AUVs). In order to reduce the energy consumption of communications among AUVs,a distributed dynamic event-triggered leader-follower consensus control strategy is proposed. First,we design an auxiliary variable that includes generalized position and carrier speed,which simplifies the AUV model. Based on sliding mode variable structure control,consistency theory,and dynamic event-triggered strategy,a distributed formation controller is designed. The controller ensures that the AUV system can achieve the formation goal in the presence of external disturbances. Second,no Zeno behavior is exhibited under the proposed control algorithm. Last,numerical simulation results are provided toverify the correctness of the presented theorem and the effectiveness of the proposed control algorithm.Key words:autonomous underwater vehicles;formation;consensus control;dynamic event-triggered strategy随着海洋资源争夺的日益激烈,作为海洋探测开发的工具,自主水下机器人(Autonomous Underwater Vehicle,AUV)的研究引起了众多学者的关注.目前,对AUV的研究主要集中在单个AUV的智能控制上.在一些特殊的场合中,单个AUV因功能单一、承载空间有限、无法携带大量配置等,无法完成某些指定任务,如:对某一指定区域进行监测、海底测绘、复杂的战术进攻围捕等.因此,多AUV协同系统的研究日益重要.多AUV系统不是单个AUV的简单叠加,而是涉及通信、队形结构等的编队问题,通过建立合理的编队协同机制,使多个AUV保持期望的位姿,完成特定的任务[1].目前,编队控制方法多应用于船舶、飞行器、车辆[2-3]等,应用于多AUV系统则相对较少.常见的多AUV编队控制方法分为协调路径跟踪和协调目标跟踪.协调路径跟踪[4]的控制目标是跟踪一个参数化的预定路径,协调目标跟踪的控制目标是跟踪领航者附近的一个参考点或目标点[5].如Cui等[6]研究了欠驱动AUV在水平面上运动的领航者-跟随者(Leader-Follower)编队控制问题,其中跟随者根据领航者的位置和预定的队列跟踪参考轨迹,而无需领航者的速度,减小了通信负担.Millan等[7]将AUV视为单车模型,利用运动学关系和泰勒公式展开定理,对单车模型进行线性化处理,保持编队转弯能力,使编队通过跟踪共同参考航线向目标方向航行.高振宇等[8]将AUV不确定模型参数及海洋扰动视为复合扰动,设计了复合扰动观测器,实现对扰动的精确估计,而后基于反步法提出一种固定时间编队控制律,使编队在固定时间达到期望队形.需要注意的是,上述方法均需要领航者信息,通过跟踪领航者或者跟踪依靠领航者信息生成的预设路径,以实现渐近稳定的编队控制,本质上都是跟踪问题.此外,上述方法要求多AUV间进行连续通信,并在每一个采样时刻将自身AUV的状态广播给邻居.连续通信会带来较高的通信负担和能量消耗,这对作业中只能依靠自身携带能源的AUV 来说是一个不小的负担.因此,在满足控制性能的前提下,减少通信次数具有很强的现实意义.近年来,基于事件触发的编队控制策略得到了广泛研究.该控制策略在AUV满足特定触发条件时才会对其邻居广播自身的状态信息,并同时更新自身的控制律,可有效降低通信负担和能量消耗,为解决上述问题提供了有效手段.目前,事件触发的编队控制研究多集中于多智能体系统[9-13]和车辆队列[14-15]系统.Behera等[16]采用事件触发策略,利用滑模控制解决了受外部干扰的非线性系统的鲁棒镇定问题.Li等[17]提出了一个新的事件触发方案,解决了非线性动力学和时间变化延迟的多智能体系统的共识问题.Liu等[18]通过构造底层变量,设计了拉格朗日系统的事件触发控制策略,并结合滑模控制方法,解决了无向图下具有拉格朗日动力学的多智能体系统的共识问题.Gao等[19]针对AUV平动模型,通过间歇性采样进行通信机制设计,并结合反步法设计了AUV触发策略,实现了基于领航者-跟随者的固定时间AUV编队控制.Su等[20]考虑AUV的水平面模型,基于事件触发策略,运用反步法设计了具有外部不确定性的固定时间编队控制器,通过仿真验证了用于多AUV系统的固定时间事件触发编队协议的有效性.上述研究所采用的均为静态触发策略.为了增大触发时刻间隔、进一步降低通信负担,动态事件觸发策略得到了关注,通过设计动态参数,让触发阈值随状态的变化而改变,有效地增加了触发间隔.Yi等[21]针对一阶系统的一致控制问题,设计了两种动态事件触发策略,并提出了自触发算法,仿真结果表明,动态触发策略可有效降低能耗.Du等[22]针对一阶跟随者-领航者跟随问题,首先提出了集中事件触发机制;然后,通过引入内部变量设计了分布式动态触发策略,在两种情况下,根据设计的事件触发规则排除了Zeno现象.本文研究基于动态事件触发策略的多AUV一致控制问题,主要贡献包括:首先,提出了一种动态事件触发通信策略,根据触发时刻的AUV与邻居的状态改变动态参数,让触发阈值随状态的变化而改变.在设计的控制策略中,AUV只在满足触发条件时才会对邻居广播自身的状态信息,并同时更新自身的控制律,该策略可以显著减小AUV之间通信造成的能耗.其次,基于一致性理论、滑模变结构控制方法,设计了考虑环境干扰的多AUV鲁棒一致控制器,并通过构建辅助变量简化了控制律的设计过程.最后,利用反证法,证明了触发间隔存在一个严格大于0的数,排除了Zeno现象.1预备知识与问题描述1.1符号和图论文中用到的符号如下:设无向图G的拉普拉斯矩阵L=[l ij]∈R N×N定义为:L=D-A其中,L矩阵的元素定义为:对角矩阵B定义为:当第i个跟随者与领航者连通时,a i0>0;否则,a i0=0.1.2问题描述对于一个领航者-跟随者系统,用下标i = 0表示领航者AUV,i = 1,…,N表示跟随者AUV.基于领航者间歇性运动,考虑多AUV编队的一致问题.在领航者间歇性运动间隙,领航者固定不动,只发送自身状态信息.AUV的运动可以通过地面坐标系G-abc和载体坐标系O-abc两个坐标系来描述.假设1在AUV中,一般横倾运动都是自稳定,因此忽略横倾运动对AUV的影响,即横滚角恒为0.纵倾角范围为[-π/6,π/6].假设2AUV是上下、左右、前后高度对称的模型;AUV低速运行,低速情况下AUV的水动力参数近似看作不变;重心与浮心重合;AUV工作在海面以下,故忽略海风、海浪对AUV 的影响,仅考虑海流,其大小有界且缓慢变化.假设3跟随者间的通信拓扑图G无向且连通.AUV运动学方程[23-24]为:AUV动力学方程[23-24]为:定义cosψi=cψi,sinψi=sψi,cosθi=cθi,sinθi=sθi,有1.3控制目标本文的控制目标是设计基于动态触发的跟随者AUV控制律,当领航者AUV保持静止时,使其与领航者AUV保持期望的相对位置与相对姿态,即式中:η0(t)=Ω,用来表示领航者AUV的固定状态信息,Ω为5维常数列向量;v i(t)∈R5×1;d10∈R5×1代表跟随者,与领航者之间期望的相对位置与相对姿态.后文中η0(t)简写为η0.注1为了形成不同的队形,控制目标设置为各个跟随者AUV与领航者AUV分别保持不同距离和不同姿态角偏差,跟随者的载体速度收敛到0.2分布式动态触发一致性协议设计本节针对AUV编队的一致性问题,提出一种结合分布式控制器与动态触发律的分布式动态事件触发一致性协议.排除了Zeno现象,保证了协议的可行性.2.1控制器设计为实现AUV编队的一致性,受文献[18]的启发,针对系统存在外部干扰的情况,采用以下分布式控制器:注2定义辅助变量ξi(t)来简化AUV模型,根据一阶微分方程的性质,当ξi(t)收敛到一个确定的值T时,v i(t)逐渐收敛到0,ηi(t)逐渐收敛到T.注3上述设计的控制器把广义位置ηi(t)与载体速度v i(t)的一致控制转化为对辅助变量ξi(t)的一致控制,通过引入参考变量σi(t)构建上层参考模型,利用滑模控制保证ξi (t)对σi(t)的跟踪效果,进而实现编队的一致性.近年来,基于事件触发的编队控制策略得到了广泛研究.该控制策略在AUV满足特定触发条件时才会对其邻居广播自身的状态信息,并同时更新自身的控制律,可有效降低通信负担和能量消耗,为解决上述问题提供了有效手段.目前,事件触发的编队控制研究多集中于多智能体系统[9-13]和车辆队列[14-15]系统.Behera等[16]采用事件触发策略,利用滑模控制解决了受外部干扰的非线性系统的鲁棒镇定问题.Li等[17]提出了一个新的事件触发方案,解决了非线性动力学和时间变化延迟的多智能体系统的共识问题.Liu等[18]通过构造底层变量,设计了拉格朗日系统的事件触发控制策略,并结合滑模控制方法,解决了无向图下具有拉格朗日動力学的多智能体系统的共识问题.Gao等[19]针对AUV平动模型,通过间歇性采样进行通信机制设计,并结合反步法设计了AUV触发策略,实现了基于领航者-跟随者的固定时间AUV编队控制.Su等[20]考虑AUV的水平面模型,基于事件触发策略,运用反步法设计了具有外部不确定性的固定时间编队控制器,通过仿真验证了用于多AUV系统的固定时间事件触发编队协议的有效性.上述研究所采用的均为静态触发策略.为了增大触发时刻间隔、进一步降低通信负担,动态事件触发策略得到了关注,通过设计动态参数,让触发阈值随状态的变化而改变,有效地增加了触发间隔.Yi等[21]针对一阶系统的一致控制问题,设计了两种动态事件触发策略,并提出了自触发算法,仿真结果表明,动态触发策略可有效降低能耗.Du等[22]针对一阶跟随者-领航者跟随问题,首先提出了集中事件触发机制;然后,通过引入内部变量设计了分布式动态触发策略,在两种情况下,根据设计的事件触发规则排除了Zeno现象.本文研究基于动态事件触发策略的多AUV一致控制问题,主要贡献包括:首先,提出了一种动态事件触发通信策略,根据触发时刻的AUV与邻居的状态改变动态参数,让触发阈值随状态的变化而改变.在设计的控制策略中,AUV只在满足触发条件时才会对邻居广播自身的状态信息,并同时更新自身的控制律,该策略可以显著减小AUV之间通信造成的能耗.其次,基于一致性理论、滑模变结构控制方法,设计了考虑环境干扰的多AUV鲁棒一致控制器,并通过构建辅助变量简化了控制律的设计过程.最后,利用反证法,证明了触发间隔存在一个严格大于0的数,排除了Zeno现象.1预备知识与问题描述1.1符号和图论文中用到的符号如下:设无向图G的拉普拉斯矩阵L=[l ij]∈R N×N定义为:L=D-A其中,L矩阵的元素定义为:对角矩阵B定义为:当第i个跟随者与领航者连通时,a i0>0;否则,a i0=0.1.2问题描述对于一个领航者-跟随者系统,用下标i = 0表示领航者AUV,i = 1,…,N表示跟随者AUV.基于领航者间歇性运动,考虑多AUV编队的一致问题.在领航者间歇性运动间隙,领航者固定不动,只发送自身状态信息.AUV的运动可以通过地面坐标系G-abc和载体坐标系O-abc两个坐标系来描述.假设1在AUV中,一般横倾运动都是自稳定,因此忽略横倾运动对AUV的影响,即横滚角恒为0.纵倾角范围为[-π/6,π/6].假设2AUV是上下、左右、前后高度对称的模型;AUV低速运行,低速情况下AUV的水动力参数近似看作不变;重心与浮心重合;AUV工作在海面以下,故忽略海风、海浪对AUV 的影响,仅考虑海流,其大小有界且缓慢变化.假设3跟随者间的通信拓扑图G无向且连通.AUV运动学方程[23-24]为:AUV动力学方程[23-24]为:定义cosψi=cψi,sinψi=sψi,cosθi=cθi,sinθi=sθi,有1.3控制目标本文的控制目标是设计基于动态触发的跟随者AUV控制律,当领航者AUV保持静止时,使其与领航者AUV保持期望的相对位置与相对姿态,即式中:η0(t)=Ω,用来表示领航者AUV的固定状态信息,Ω为5维常数列向量;v i(t)∈R5×1;d10∈R5×1代表跟随者,与领航者之间期望的相对位置与相对姿态.后文中η0(t)简写为η0.注1为了形成不同的队形,控制目标设置为各个跟随者AUV与领航者AUV分别保持不同距离和不同姿态角偏差,跟随者的载体速度收敛到0.2分布式动态触发一致性协议设计本节针对AUV编队的一致性问题,提出一种结合分布式控制器与动态触发律的分布式动态事件触发一致性协议.排除了Zeno现象,保证了协议的可行性.2.1控制器设计为实现AUV编队的一致性,受文献[18]的启发,针对系统存在外部干扰的情况,采用以下分布式控制器:注2定义辅助变量ξi(t)来简化AUV模型,根据一阶微分方程的性质,当ξi(t)收敛到一个确定的值T时,v i(t)逐渐收敛到0,ηi(t)逐渐收敛到T.注3上述设计的控制器把广义位置ηi(t)与载体速度v i(t)的一致控制转化为对辅助变量ξi(t)的一致控制,通过引入参考变量σi(t)构建上层参考模型,利用滑模控制保证ξi (t)对σi(t)的跟踪效果,进而实现编队的一致性.近年来,基于事件触发的编队控制策略得到了广泛研究.该控制策略在AUV满足特定触发条件时才会对其邻居广播自身的状态信息,并同时更新自身的控制律,可有效降低通信负担和能量消耗,为解决上述问题提供了有效手段.目前,事件触发的编队控制研究多集中于多智能体系统[9-13]和车辆队列[14-15]系统.Behera等[16]采用事件触发策略,利用滑模控制解决了受外部干扰的非线性系统的鲁棒镇定问题.Li等[17]提出了一个新的事件触发方案,解决了非线性动力学和时间变化延迟的多智能体系统的共识问题.Liu等[18]通过构造底层变量,设计了拉格朗日系统的事件触发控制策略,并结合滑模控制方法,解决了无向图下具有拉格朗日动力学的多智能体系统的共识问题.Gao等[19]针对AUV平动模型,通过间歇性采样进行通信机制设计,并结合反步法设计了AUV触发策略,实现了基于领航者-跟随者的固定时间AUV编队控制.Su等[20]考虑AUV的水平面模型,基于事件触发策略,运用反步法设计了具有外部不确定性的固定时间编队控制器,通过仿真验证了用于多AUV系统的固定时间事件触发编队协议的有效性.上述研究所采用的均为静态触发策略.为了增大触发时刻间隔、进一步降低通信负担,动态事件触发策略得到了关注,通过设计动态参数,让触发阈值随状态的变化而改变,有效地增加了触发间隔.Yi等[21]针对一阶系统的一致控制问题,设计了两种动态事件触发策略,并提出了自触发算法,仿真结果表明,动态触发策略可有效降低能耗.Du等[22]针对一阶跟随者-领航者跟随问题,首先提出了集中事件触发机制;然后,通过引入内部变量设计了分布式动态触发策略,在两种情况下,根据设计的事件触发规则排除了Zeno现象.本文研究基于动态事件触发策略的多AUV一致控制问题,主要贡献包括:首先,提出了一种动态事件触发通信策略,根据触发时刻的AUV与邻居的状态改变动态参数,让触发阈值随状态的变化而改变.在设计的控制策略中,AUV只在满足触发条件时才会对邻居广播自身的状态信息,并同时更新自身的控制律,该策略可以显著减小AUV之间通信造成的能耗.其次,基于一致性理论、滑模变结构控制方法,设计了考虑环境干扰的多AUV鲁棒一致控制器,并通过构建辅助变量简化了控制律的设计过程.最后,利用反证法,证明了触发间隔存在一个严格大于0的数,排除了Zeno现象.1预备知识与问题描述1.1符号和图论文中用到的符号如下:设无向图G的拉普拉斯矩阵L=[l ij]∈R N×N定义为:L=D-A其中,L矩阵的元素定义为:对角矩阵B定义为:当第i个跟随者与领航者连通时,a i0>0;否则,a i0=0.1.2问题描述对于一个领航者-跟随者系统,用下标i = 0表示领航者AUV,i = 1,…,N表示跟随者AUV.基于领航者间歇性运动,考虑多AUV编队的一致问题.在领航者间歇性运動间隙,领航者固定不动,只发送自身状态信息.AUV的运动可以通过地面坐标系G-abc和载体坐标系O-abc两个坐标系来描述.假设1在AUV中,一般横倾运动都是自稳定,因此忽略横倾运动对AUV的影响,即横滚角恒为0.纵倾角范围为[-π/6,π/6].假设2AUV是上下、左右、前后高度对称的模型;AUV低速运行,低速情况下AUV的水动力参数近似看作不变;重心与浮心重合;AUV工作在海面以下,故忽略海风、海浪对AUV 的影响,仅考虑海流,其大小有界且缓慢变化.假设3跟随者间的通信拓扑图G无向且连通.AUV运动学方程[23-24]为:AUV动力学方程[23-24]为:定义cosψi=cψi,sinψi=sψi,cosθi=cθi,sinθi=sθi,有1.3控制目标本文的控制目标是设计基于动态触发的跟随者AUV控制律,当领航者AUV保持静止时,使其与领航者AUV保持期望的相对位置与相对姿态,即式中:η0(t)=Ω,用来表示领航者AUV的固定状态信息,Ω为5维常数列向量;v i(t)∈R5×1;d10∈R5×1代表跟随者,与领航者之间期望的相对位置与相对姿态.后文中η0(t)简写为η0.注1为了形成不同的队形,控制目标设置为各个跟随者AUV与领航者AUV分别保持不同距离和不同姿态角偏差,跟随者的载体速度收敛到0.2分布式动态触发一致性协议设计本节针对AUV编队的一致性问题,提出一种结合分布式控制器与动态触发律的分布式动态事件触发一致性协议.排除了Zeno现象,保证了协议的可行性.2.1控制器设计为实现AUV编队的一致性,受文献[18]的启发,针对系统存在外部干扰的情况,采用以下分布式控制器:注2定义辅助变量ξi(t)来简化AUV模型,根据一阶微分方程的性质,当ξi(t)收敛到一个确定的值T时,v i(t)逐渐收敛到0,ηi(t)逐渐收敛到T.注3上述设计的控制器把广义位置ηi(t)与载体速度v i(t)的一致控制转化为对辅助变量ξi(t)的一致控制,通过引入参考变量σi(t)构建上层参考模型,利用滑模控制保证ξi (t)对σi(t)的跟踪效果,进而实现编队的一致性.近年来,基于事件触发的编队控制策略得到了广泛研究.该控制策略在AUV满足特定触发条件时才会对其邻居广播自身的状态信息,并同时更新自身的控制律,可有效降低通信负担和能量消耗,为解决上述问题提供了有效手段.目前,事件触发的编队控制研究多集中于多智能体系统[9-13]和车辆队列[14-15]系统.Behera等[16]采用事件触发策略,利用滑模控制解决了受外部干扰的非线性系统的鲁棒镇定问题.Li等[17]提出了一个新的事件触发方案,解决了非线性动力学和时间变化延迟的多智能体系统的共识问题.Liu等[18]通过构造底层变量,设计了拉格朗日系统的事件触发控制策略,并结合滑模控制方法,解决了无向图下具有拉格朗日动力学的多智能体系统的共识问题.Gao等[19]针对AUV平动模型,通过间歇性采样进行通信机制设计,并结合反步法设计了AUV触发策略,实现了基于领航者-跟随者的固定时间AUV编队控制.Su等[20]考虑AUV的水平面模型,基于事件触发策略,运用反步法设计了具有外部不确定性的固定时间编队控制器,通过仿真验证了用于多AUV系统的固定时间事件触发编队协议的有效性.上述研究所采用的均为静态触发策略.为了增大触发时刻间隔、进一步降低通信负担,动态事件触发策略得到了关注,通过设计动态参数,让触发阈值随状态的变化而改变,有效地增加了触发间隔.Yi等[21]针对一阶系统的一致控制问题,设计了两种动态事件触发策略,并提出了自触发算法,仿真结果表明,动态触发策略可有效降低能耗.Du等[22]针对一阶跟随者-领航者跟随问题,首先提出了集中事件触发机制;然后,通过引入内部变量设计了分布式动态触发策略,在两种情况下,根据设计的事件触发规则排除了Zeno现象.本文研究基于动态事件触发策略的多AUV一致控制问题,主要贡献包括:首先,提出了一种动态事件触发通信策略,根据触发时刻的AUV与邻居的状态改变动态参数,让触发阈值随状态的变化而改变.在设计的控制策略中,AUV只在满足触发条件时才会对邻居广播自身的状态信息,并同时更新自身的控制律,该策略可以显著减小AUV之间通信造成的能耗.其次,基于一致性理论、滑模变结构控制方法,设计了考虑环境干扰的多AUV鲁棒一致控制器,并通过构建辅助变量简化了控制律的设计过程.最后,利用反证法,证明了触发间隔存在一个严格大于0的数,排除了Zeno现象.1预备知识与问题描述1.1符号和图论文中用到的符号如下:设无向图G的拉普拉斯矩阵L=[l ij]∈R N×N定義为:L=D-A其中,L矩阵的元素定义为:对角矩阵B定义为:当第i个跟随者与领航者连通时,a i0>0;否则,a i0=0.1.2问题描述对于一个领航者-跟随者系统,用下标i = 0表示领航者AUV,i = 1,…,N表示跟随者AUV.基于领航者间歇性运动,考虑多AUV编队的一致问题.在领航者间歇性运动间隙,领航者固定不动,只发送自身状态信息.AUV的运动可以通过地面坐标系G-abc和载体坐标系O-abc两个坐标系来描述.假设1在AUV中,一般横倾运动都是自稳定,因此忽略横倾运动对AUV的影响,即横滚角恒为0.纵倾角范围为[-π/6,π/6].假设2AUV是上下、左右、前后高度对称的模型;AUV低速运行,低速情况下AUV的水动力参数近似看作不变;重心与浮心重合;AUV工作在海面以下,故忽略海风、海浪对AUV 的影响,仅考虑海流,其大小有界且缓慢变化.假设3跟随者间的通信拓扑图G无向且连通.AUV运动学方程[23-24]为:AUV动力学方程[23-24]为:定义cosψi=cψi,sinψi=sψi,cosθi=cθi,sinθi=sθi,有1.3控制目标本文的控制目标是设计基于动态触发的跟随者AUV控制律,当领航者AUV保持静止时,使其与领航者AUV保持期望的相对位置与相对姿态,即式中:η0(t)=Ω,用来表示领航者AUV的固定状态信息,Ω为5维常数列向量;v i(t)∈R5×1;d10∈R5×1代表跟随者,与领航者之间期望的相对位置与相对姿态.后文中η0(t)简写为η0.注1为了形成不同的队形,控制目标设置为各个跟随者AUV与领航者AUV分别保持不同距离和不同姿态角偏差,跟随者的载体速度收敛到0.2分布式动态触发一致性协议设计本节针对AUV编队的一致性问题,提出一种结合分布式控制器与动态触发律的分布式动态事件触发一致性协议.排除了Zeno现象,保证了协议的可行性.2.1控制器设计为实现AUV编队的一致性,受文献[18]的启发,针对系统存在外部干扰的情况,采用以下分布式控制器:注2定义辅助变量ξi(t)来简化AUV模型,根据一阶微分方程的性质,当ξi(t)收敛到一个确定的值T时,v i(t)逐渐收敛到0,ηi(t)逐渐收敛到T.注3上述设计的控制器把广义位置ηi(t)与载体速度v i(t)的一致控制转化为对辅助变量ξi(t)的一致控制,通过引入参考变量σi(t)构建上层参考模型,利用滑模控制保证ξi (t)对σi(t)的跟踪效果,进而实现编队的一致性.。
光电稳定平台中Stribeck摩擦力矩的补偿方法
光电稳定平台中Stribeck摩擦力矩的补偿方法韩小康; 董浩; 王明; 金敬强; 董祺宁; 张雷【期刊名称】《《火力与指挥控制》》【年(卷),期】2019(044)010【总页数】4页(P123-126)【关键词】Stribeck摩擦; 经典控制; 光电稳定平台; 滑模变结构控制; 抗干扰【作者】韩小康; 董浩; 王明; 金敬强; 董祺宁; 张雷【作者单位】北方自动控制技术研究所太原030006【正文语种】中文【中图分类】TP2730 引言光电稳定平台是一种高精度的稳定系统,可以实现对地、对空目标的大范围全景式探测。
其主要功能是隔离载体角运动,保持平台指向准确、朝向稳定。
由于摩擦力矩等非线性干扰的存在[1],容易产生滞滑爬行等现象,影响系统稳定性。
目前,针对光电稳定平台的稳定控制,学者们提出了众多方法。
针对稳定系统中的非线性扰动,Li B,Hullender D,Derenzo M[2]采用LQG 和Kalman滤波算法对扰动进行实时估计和补偿,并采用自校正控制的方法以提高LQG 算法的鲁棒性,结果表明,这种算法相比于传统的PI 算法精度提高了近一倍;王合龙,刘建业[3]提出的基于线性自适应神经网络原理的改进算法,可以有效抑制线性扰动对平台的影响,但是对非线性扰动的抑制效果不佳;李贤涛,张葆等人[4]提出的自抗扰扰动器可对扰动进行估计和补偿。
但是这些算法计算量大,计算复杂,或依赖被控对象的精确数学模型,工程实现较难,由于库伦摩擦、静摩擦、粘滞摩擦等各种非线性扰动的存在,系统采用经典控制很难保证平台的稳定精度,因此,需要一种可以有效抑制非线性扰动的控制方法。
滑模变结构控制能够通过控制器本身结构的变化,突破经典线性控制系统的限制,用滑模变结构控制方法来研究非线性系统的鲁棒问题,易于工程实现[5]。
本文提出采用指数趋近律的滑模变结构的方法,将其用于速度环进行仿真分析,并与速度环为经典PI 算法的系统进行比较。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A survey of applications of second-order sliding mode control to mechanical systemsGIORGIO BARTOLINI {*,ALESSANDRO PISANO {,ELISABETTA PUNTA {and ELIO USAI {The effective application of slidingmode control to mechanical systems is not straig htforward because of the sensitivity of these systems to chattering.Higher-order sliding modes can counteract this phenomenon by confining the switching control to the higher derivatives of the mechanical control variable,so that the latter results are continuous.Generally,this approach requires the availability of a number of time derivatives of the slidingvariable,and,in the presence of noise,this requirement could be a practical limitation.A class of second-order slidingmode controllers,g uaranteeing finite-time convergence for systems with relative degree two between the sliding variable and the switching control,could be helpful both in reducingthe number of differentiator stag es in the controller and in dealingwith unmodelled actuator dynamics.I n this paper different second-order slidingmode controllers,previously presented in the literature,are shown to belongto the above cited class,and some challeng ingcontrol problems involvingmechanical systems are addressed and solved.Simulations and experimental results are provided throughout the paper.1.IntroductionThe control of dynamical systems in the presence of uncertainties is a common problem to deal with when consideringreal plants.Actually,the real plant behav-iour is affected by uncertainties the influence of which should be carefully taken into account when considering the system performance.For this reason,in recent years,the control of uncertain processes has attracted great interest in the research community (Corless and Leitmann 1981,Doyle et al.1994,Ho and Khalil 1997,Young et al.1999,Serrani et al.2001).Among existingmethodolog ies,the slidingmode control (SMC)technique (Slotine and Li 1991,Utkin 1992,1999)turns out to be characterized by high simplicity and robustness.The main idea at the basis of SMC techniques is that of designing a sliding surface to which the controlled system trajectories must belong.On the sliding manifold the behaviour of the system is the expected one.In order to obtain the control aim a control must be designed with an authority sufficient to dominate the uncertain-ties and the disturbances actingon the system.The con-trol promptly reacts to any deviation,however small,from the prescribed behaviour steeringthe system back to the slidingmanifold.An advantag e of this approach is that the slidingbehaviour is insensitive to model uncertainties and disturbances which do not steer the system outside from the chosen manifold.In spite of the claimed robustness properties,the real-life implementation of SMC techniques presents a major drawback,due to the finite switchingfrequency of real control devices.The high-frequency components of the control could excite parasitic resonant modes so that the system trajectories largely differ from the ideal ones.Similarly,unmodelled parasitic dynamics in measure-ment devices and actuators may lead to higher-order slidingmodes which can be either stable or unstable (Fridman and Levant 1996,Fridman 2002).Generally speaking,the system and the actuators non-ideal behav-iour can produce the so-called chatteringphenomenon,which is a high frequency motion that makes the state trajectories rapidly oscillatingabout the slidingmani-fold.Chatteringand the need for discontinuous control constitute two of the main criticisms of Variable Structure Systems (VSS)with slidingmodes,and these drawbacks are much more evident when dealingwith mechanical systems.In fact,it is meaningless to suppose that a system could be driven by a discontinuous torque or force.Furthermore,rapidly changing control actions induce fatigue in mechanical parts and the system could be damaged in a short time.In spite of the above cited drawbacks,VSS with SlidingModes (SM)have been considered often in the technical literature for the robust control of mechanical systems (Slotine and Sastry 1983,Cho and Hedrick 1991,Man Zhihong et al.1994,Rundell et al.1995,Bartolini et al.1998b,2000b,d,2002b,Allen et al.2000,Levant et al.2000,Shu et al.2000,Utkin et al.2000,Satoshi et al.2001,Xu and Cao 2001).Most of them used a straightforward approach to avoid chatter-ing:the sign function of the discontinuous control is approximated by the saturation function.As a result,the system motion is confined within a boundary layer of the slidingmanifold (Slotine and Sastry 1983,Burton and Zinober 1986,Slotine and Li 1991).Nevertheless,if the parasitic dynamics is not well modelled and takenInternational Journal of Control ISSN 0020–7179print/ISSN 1366–5820online #2003Taylor &Francis Ltd/journals DOI:10.1080/0020717031000099010INT.J.CONTROL,2003,VOL.76,NOS 9/10,875–892Received 20May 2002.Accepted 17September 2002.*Author for correspondence.e-mail:giob@diee.unica.it {Department of Electrical and Electronic Engineering (DIEE),University of Cagliari,Piazza d’Armi,09123Cagliari,Italy.{Department of Communications,Computer,and System Sciences (DIST),University of Genova,Via Opera Pia,13,16141Genova,Italy.into account,the approximation of the discontinuous control could compromise the disturbance rejection properties of SMC(Young et al.1999).As chattering is due to switchingdelays and parasitic system dynamics.A different solution is to embed an asympto-tic state observer into the controller so that the discon-tinuous control is confined within a high-frequency loop by-passingthe real plant(Youngand Kwatny1982, Utkin1992).A different approach to avoid chatteringis to aug-ment the controlled system dynamics,by addinginteg ra-tors at the input side,so as to obtain a higher-order system in which the actual control signal and its deriva-tives explicitly appear.If the discontinuous signal coin-cides with the highest derivative of the actual plant control,the latter results are continuous with a smooth-ness degree depending on the considered derivative order.This procedure refers to higher order SM (Emelyanov et al.1986,Levant2001a),dynamic SM (Sira-Ramırez1993),and terminal SM(Man Zhihong et al.1994).VSC implementinghig her-order slidingmodes require the knowledge of a number of time derivatives of the slidingoutput,dependingon the specific control algorithm and on the input/output system relative degree.Even if the use of differentiators(e.g.high-gain dif-ferentiators)has been assumed to be a‘routine matter’as far as the theoretical development of output feedback is concerned(Isidori2000),the practical behaviour of such kinds of devices needs particular care in real imple-mentation,due to the measurement noise,whose nega-tive effects on the overall closed-loop performance dramatically increase with the number of differentiation stages.The research activity is devoted to develop real-time differentiators less sensitive to the noise propagation as well as control algorithms for non-linear uncertain systems with relative degree higher than one,so as to reduce the number of differentiation stages needed (Bartolini et al.2002a).As for thefirst topic,some differentiation algorithms based on second,and higher,order sliding modes have been recently presented(Levant1998,2001b,Bartolini et al.2000a),showingan interestingtrade-offbetween precision and noise-immunity.The second research line led,up to now,to control algorithms belonging to the family of2-SM controllers, that is algorithms in which the relative degree between the constraint output(zeroingwhich the system motion meets the desired performance specification)and the dis-continuous control is two.The main difficulty when dealingwith this kind of controllers for uncertain systems is due to the need to solve differential inequalities of order greater than one.The comparison principle,which permeates most of existingresults in non-linear control theory(including Lyapunov stability theorems)in general does not work in the high relative degree case,and special treatments, often non-systematic,are needed.In this paper various2-SMC algorithms are pre-sented,in a unified framework,as a way to solve classes of second-order differential inequalities.A suitable set of parameters are identified affectingsome qualitative tran-sient properties such as peaking,monotonicity and the global nature of the control results.Finally,some recently presented applications of this class of algor-ithms are surveyed.2.A class of second-order sliding mode controllersConsider an uncertain system,possibly non-linear, characterized by the dynamics_xðtÞ¼FðxðtÞ;tÞþGðxðtÞ;tÞuðtÞð1Þwhere x2X&R n is the state vector,u2U&R is the scalar control variable,F:R nþ1!R n and G:R nþ1!R n are uncertain,sufficiently smooth,vector fields.Assume that the control specifications are fulfilled by constrainingto zero a suitable output variable,i.e. the slidingvariableðtÞ¼ ðxðtÞ;tÞð2Þhavingwell-defined relative deg ree r=2with respect to the control variable u,and that a diffeomorphism C:R nÀ2ÂR2!R n exists such that the dynamics of the internal state wðtÞ2R nÀ2is BIBO stable. Therefore,system(1)can be reduced to the normal form(Isidori1995)€ ðtÞ¼’ðwðtÞ; ðtÞ;_ ðtÞ;tÞþ ðwðtÞ; ðtÞ;_ ðtÞ;tÞuðtÞ_wðtÞ¼ðwðtÞ; ðtÞ;_ ðtÞ;tÞ)ð3ÞwithxðtÞ¼CðwðtÞ; ðtÞ;_ ðtÞÞAssume that the second-order input–output dynamics € ðtÞ¼’ðwðtÞ; ðtÞ;_ ðtÞ;tÞþ ðwðtÞ; ðtÞ;_ ðtÞ;tÞuðtÞð4Þis globally bounded,and let also the sign of the control gain ðÁÞbe constant and known.Then,the second-order slidingmode control problem for system(1) entails thefinite-time stabilization of system(4),which satisfies the global boundedness conditionsj’ðw; ;_ ;tÞj F0<G m ðw; ;_ ;tÞG M)ð5Þ876G.Bartolini et al.Let the slidingvariable and the sign of its total time derivative_ be available for feedback.This stabilization problem has been addressed and solved in many ways(Emelyanov1986,Levant1993, Bartolini et al.1997,1998a,1999,2001a,b).The restric-tive condition(5)was assumed to hold locally in (Emelyanov et al.1986,Levant1993)where specific con-trol actions were devoted to keep the system within the boundedness region.Recently,the global boundedness assumption(5)has been explicitly relaxed by the authors.In Bartolini et al.(2001a)the‘sub-optimal’2-SMC algorithm was considered,and it was shown that if the modulus of the drift term’ðÁÞcan be upper bounded by a known function affine in j_ ðtÞj,then a set of con-stant controller parameters guaranteeing the solution of the problem exists.On the contrary,if j’ðÁÞj can be upper bounded only by a known function of the phase variables ðtÞand_ ðtÞ(without any assumption regard-ingthe g rowth rate w.r.t.j_ ðtÞjÞ,then the convergence to the2-SM can be assured by suitable adaptation of the controller parameters(Bartolini et al.2001b).In order to make the treatment clearer and to present the very idea of the controller design,in the following we shall consider that conditions(5)hold globally.A large number of2-SMC algorithms studied in the cited literature can be practically implemented by setting the parameters of the followingcontrol law properly uðtÞ¼À ðtÞU signð À MÞðtÞ¼1ifð À MÞ M!0 Ãifð À MÞ M<0 (2½0;1Þ9 >>>>>=>>> >>;ð6Þwhere U>0is the minimum control magnitude, Ã>1 is called the modulation factor, is the anticipation factor,and M is the last extremal value of the sliding variable (i.e.the value of at the last time instant at which a local maximum,minimum or horizontalflex point of ðtÞhas occurred). M can be initialized to ðt iÞ(t i beingthe initial time instant)and then updated either by checkingthe sig n of_ or by inspection of the past values of ðtÞ;in the latter case no information about_ is needed.U, Ãand are the controller par-ameters that must be tuned accordingto the inequalitiesU>F G mÃ2½1;þ1Þ\2Fþð1À ÞG M Uð1þ ÞG m U;þ19>>>=>>>;ð7ÞThefirst part of(7)can be referred to as the dominance condition,ensuringthat the control has sufficient author-ity to affect the sign of€ .The second part of(7)repre-sents the convergence condition,sufficient to guarantee the stability of the SM and determiningthe rate of con-vergence as well.Generally,these conditions lead to transient trajectories twistingaround the orig in of the N plane.The additional requirement of monotonic convergence to zero of the sliding variable may be ful-filled by imposinga stricter inequality than(7),i.e.U>FmÃ2½1;þ1Þ\Fþð1À ÞG M UG m U;þ19>>>=>>>;ð8ÞController(6)satisfyingeither condition(7)or(8) assures the establishment of the2-SM behaviour in a finite time T c s.t.T c t M1þmax f T c1;T c2gð9ÞT c1¼UÃG mþG MÃG m UÀFffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi2ð1À Þj M1jG M UþFsÂ11Àffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij Fþ½ð1À ÞG MÀ à G m U jpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiG m UÀFpT c2¼UÃG mþG MÃG m UþFffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi2ð1À Þj M1jG m UÀFsÂ11Àffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij FÀ½ð1À ÞG mÀ à G M U jpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiÃG M UþFpwhere t M1is the time instant at which thefirst extremal value of the slidingvariable, M1,occurs.The absolute value of M1defines also the maximum magnitude of the time derivative of the slidingvariable,_ ,after the time instant t M1,i.e.j_ ðtÞjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi2ð1À ÞðG M UþFÞj M1jq8t2½t M1;þ1Þð10ÞIn order to speed-up the convergence,the following con-trol law should be implemented from the initial time instant t i until thefirst extremal value is reached at t M1 uðtÞ¼ÀU i signð À ðt iÞÞU i>FG m8t2½t i;t M19>=>;ð11ÞThe initializingcontrol(11)assures thatt M1t iþj_ ðt iÞjG m U iÀFð12ÞFrom equations(9),(10)and(12),it is apparent that the larger the control magnitude U,the shorter the conver-gence time and the larger the maximal values of the time derivative of the slidingvariable.Nevertheless,once theApplications of sliding mode control to mechanical systems877the parameters U and Ãare set,accordingto proper considerations and conditions,the parameter still allows for limiting j _ ðt Þj .Therefore,by a proper choiceof U , Ãand it is possible to obtain both the mono-tonic convergence to zero of the sliding variable and the counteraction of the peakingphenomenon duringthe reachingphase of the 2-SM behaviour.Obviously,very strict requirements on j _ ðt Þj imply a very long reachingphase;at the limit,if !1then j _ ðt Þj !0and the slidingbehaviour is reached in an almost infinite time,i.e.T c !1.The proof of the above presented convergence prop-erties for the 2-SMC (11),(6),with tuningrules (7)or (8)entails algebraic computations analogous to those in Bartolini et al.(1997,2001b),and it is omitted for the sake of brevity.It should be noted that different 2-SMC algorithms presented in the literature (Levant 1993,Bartolini et al.1997,2001b)are characterized by different values of the anticipation coefficient .2.1.Twisting algorithmThe ‘twisting’algorithm (Levant 1993)was one of the first proposed algorithms belonging to the consid-ered class of 2-SMC.It is based on the knowledge of the sign of both and _u ¼À 1sign ð Þþ 2sign ð_ Þ;1> 2ð13ÞI n the ideal case,by settingparameter to zero,the control law (6)causes the system to have the same tra-jectories of the twistingalg orithm with 2¼U and1¼ ÃU .The phase trajectories of the slidingvariable twist around the origin of the two-dimensional phase plane (figure 1),and this implies that the sliding variable cannot have a monotonic behaviour;furthermore,the maximal values of j _ ðt Þj depend directly on the chosen values of U .If a large control authority is needed,because of large uncertainties,transient peaking will arise.The con-vergence conditions for this 2-SMC are easily obtained by setting ¼0in (7),i.e.U >F G mÃ!2F þG M U G m U 9>>>=>>>;ð14Þ2.2.Sub-optimal algorithmThe ‘sub-optimal’algorithm was developed by some of the authors derivingit from the time-optimal control law for a pure double integrator (Bartolini et al.1997).It singles out by the specific value of the anticipation coef-ficient ,i.e. ¼0:5.The anticipation of the switching,with respect to that defined by the ‘twisting’algorithm,implies that the trajectories in the phase plane can show both twistingand bouncingbehaviours (fig ure 2).This property allows for a monotonic convergence to zero of ðt Þby a proper choice of parameters U and Ãaccord-ingto (8).As for the ‘twisting’algorithm,the maximal values of j _ ðt Þj depend directly on the chosen values of U ;therefore,the transient peakingphenomenon will arise.The convergence conditions for the sub-optimal con-troller are easily obtained by setting ¼0:5in (7),i.e.U >F G mÃ2½1;þ1Þ\4F þG MU 3G m U;þ1 9>>>=>>>;ð15Þ878G.Bartolini et al.(t)d /d t(t )The phase trajectories for the twisting algorithmFigure 1.Twisting algorithm:phase trajectory.(t)d /d t (t )The phase trajectories for the sub -optimal algorithmFigure 2.Sub-optimal algorithm:phase trajectory.and the monotonic convergence conditions are coinci-dent to(14).If the control magnitude,U,is set as a function ofthefirst extremal value M1,then the convergence prop-erty of the‘sub-optimal’2-SMC can be extended to manage a broader class of systems in which the upper bound of the magnitude of the drift term,j’ðÁÞj,is state-dependent but grows affinely with respect to j_ ðtÞj (Bartolini et al.1998a,2001a).2.3.Global algorithmThe‘global’2-SMC has been recently proposed by the authors(Bartolini et al.2001b),and it is based on constrainingthe trajectory of the slidingvariable within a pre-specified region of the phase plane,so that a local bound for the uncertainty can be evaluated and never break through because of the control action.It should be used when the modulus of the uncertain drift term is upper bounded only by a known convex function ofand_ ,i.e.j’ðwðtÞ; ðtÞ;_ ðtÞ;tÞj~Fðj ðtÞj;j_ ðtÞj0<G m ðwðtÞ; ðtÞ;_ ðtÞ;tÞG M )ð16ÞIn this case the global convergence property for the2-SMC(6)can be assured only if the anticipation factor is properly set and thefirst extremal point is reached by means of(11)in which the control amplitude is defined by the knowledge of an upper bound for the initial mag-nitude of the slidingvariable derivative.In particular,in Bartolini et al.(2001b)the modula-tion coefficient is not used(i.e. ü1),and both the anticipation coefficient and the control magnitude U are dynamically assigned according to the following control lawuðtÞ¼À1G mð~Fðj ðtÞj;_ ðt iÞÞþ 2Þsignð ðtÞÀ ðt iÞÞt i t<t M1ð17ÞuðtÞ¼ÀU k signð ðtÞÀ k ðt MkÞÞU k>1G mð~F kþ132Þk¼max12;1À22ð~F kþG M U kÞ()t M k t<t M kþ19 >>> >>> >=>>> >>> >;ð18Þwhere_ ðt iÞ>_ ðt iÞ, ¼0is a design parameter affectingthe transient time,t Mk (k¼1;2;...)is the sequence ofsubsequent time instants at which the condition_ ðt Mk Þ¼0is fulfilled(i.e. ðt MkÞis a singular point forthe function ðtÞÞ, >0is a design parameter that defines the upper limit for j_ j after thefirst extremalpoint for is reached,and~F k¼~Fðj ðt Mk Þj,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij ðt MkÞjp)is an overestimate of the upper bound of the uncertain drift term magnitude,j’ðÁÞj,between twosubsequent singular points.It can be noted that the controller(18)could be implemented with constant parameters U1and 1since this choice still assures that the slidingvariabletrajectories are confined within the region O1¼fð ;_ Þ:j ðtÞj j ðt M1Þj;j_ ðtÞjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij ðt M1Þjpg,8t!t M1.3.Applications of2-SMC to mechanical systemsThe use of second-order slidingmodes appears to be strongly motivated in the control of uncertain mechan-ical systems.In this context,indeed,it is usuallyassumed that the control signals are mechanical quanti-ties like forces or torques(kinematic control schemesemploy control actions like the speed of the vehicle,itssteeringang le,etc.)and such control actions cannot bemade discontinuous for physical reasons,and are notsuitable to approximate the sign function by means,for instance,of satðÁÞor tanhðÁÞterms,due to resultingsystem stresses and oscillations.Let us consider robotic manipulators,which repre-sent a paradigm of strongly coupled multivariable non-linear mechanical dynamics.As far as the theoreticalinvestigation of the control of this kind of system isconcerned,the basic ideal control is the so-called‘com-puted torque’,which is the continuous control thatcauses the trajectory of the system to track,with arbi-trarily fast vanishingerror,a pre-specified set of refer-ence trajectories.This control can be parameterized as the product between a matrix of constant parameters,of suitabledimension,and a regressor vector whose componentsare non-linear functions of the state vector and of thedesired trajectories,and the relevant complexity rapidlyincreases with the number of degree of freedom(dof).The situation is even worse if the mechanism is con-strained to some surface,since the representation of theconstrained motion is derived through rather complexand constraint-dependent projection techniques,in amuch more involved way than modellingunconstrainedsystems.On the other side,at least in simulation,exploitingthe positive definiteness of the inertia matrix(Lewis et al.1993),the use of the slidingmode approachallows better performance to be achieved by means of adiscontinuous multivariable controller whose complex-ity is not dependent on the number of dof.These advantages have not been recognized to be effective in the literature,due to the basic reason thatdiscontinuous torques or forces are physically meaning-less,and,when approximated in the standard way bymeans of satðÁÞor tanhðÁÞfunctions,the high-frequencycommutingmechanical input may damag e the con-trolled system due to the presence of backlash.Applications of sliding mode control to mechanical systems879Second-order slidingmodes can cope with such kind of problems by considering,as actual control signal,the electrical input of the torque/force actuators. Furthermore,switchingelectrical sig nals represent the standard operation mode in electrical power drives (Pulse Width Modulation(PWM)control).Indeed,the actuator dynamicsfilters out the high frequency com-ponents of the electrical input,and the generated force/ torque is relatively smooth,the higher the switching fre-quency the lower the force/torque ripple.These advan-tages incur the cost of a slightly increased complexity of the controller with respect to thefirst-order SMC.Various examples of the application of the2-SMC methodology are reported as a demonstration of its effectiveness in solvingpractical control problems invol-vingmechanical plants.Ubiquitous to any of the follow-ingcase studies is the counteraction of the chattering phenomenon by usingas discontinuous control action the time derivative of the mechanical input.A second aspect pointed out by means of most of the considered examples is the achievement of specific tran-sient behaviours by a suitable choice of the control law parameters.A promisingapproach in order to extend the effec-tiveness of the SM procedure consists in couplingSM, through a suitable choice of the sliding manifold,with other techniques(e.g.H1or standard methods).In this way it is possible to cope even with non-matchinguncer-tainties(Edwards and Spurgeon1998).Work is in pro-gress on this topic.3.1.Overhead cranesConsider a container crane of the type infigure3 (where the laboratory-size prototype used for our experiments is shown).By takingthe trolley position x t,the rope length l and the swingang le’(and their time derivatives)as the state variables,assumingthat the load can be reg arded as a material point and that the rope is always stretched (so that the swingang le can be uniquely defined),the equations of the motion can be derived,for instance,by the Eulero–Lagrange formalism(Sakawa and Shindo 1982)A1€x tþB1€l sin’þB1l€’cosþB1ð2_l_’cos’Àl_’2sin’ÞþB2_x t¼t1ð19ÞB3€x t sin’þA2€lÀB3l_’2ÀB3g cos’þB4_l¼t2ð20Þ€x t cos’þl€’þ2_l_’þg sin’¼0ð21Þwhere t1and t2are the applied trolley and hoistingtor-ques,respectively,g is the gravity constant,and A1;A2;B1;...;B4are positive constants(the viscous friction coefficients B2and B4were neglected in Sakawa and Shindo(1982)).The horizontal and vertical load coordinates,which will be referred to as x and y, respectively,can be straightforwardly expressed as func-tions of the trolley position,rope length and swing anglex¼x tþl sin’y¼l cos’)ð22ÞThe actuators dynamics(permanent magnet DC motors)are linear and time-invariant,and can be expressed in compact form asP1_tþP2t¼vÀP3_rð23Þwhere v¼½v1v2 T is the vector of the motor supply voltages,t¼½t1t2 T,r¼½x t l T and P i,i¼1;2;3,are suitable positive-definite diagonal matrices.Let the crane and motor parameters be uncertain but belongto a known compact set P.The goal is to move the load from the initial positionðx i;y iÞto afinal, desired,locationðx f;y fÞalonga pre-specified path, while keepingthe load oscillation as small as possible.The control problem is particularly involved since there are three degrees of freedom(dof)to be controlled (the load coordinates and the swingang le)but only two control actions(the trolley and hoistingmotor voltag es), i.e.the system is under-actuated.A suitable couple of slidingoutputs,that involve the three controlled dof, must be found such that the associated zero-dynamics is stable and meets the control objective.The dynamics of the force actuators can be explicitly dealt with by our approach.We propose the followingcouple of slidingoutputss1¼_x tÀ_x d tþc1ðx tÀx d tÞÀk’s2¼_lÀ_l dþc2ðlÀl dÞ9=;ð24Þwhere k is a positive constant and the superscript d represents the target trajectory.880G.Bartolini etal.Figure3.The overhead crane model:a front-view.。