中考数学精编—初中数学圆专题复习
初中数学圆专题复习(精心整理版)
圆一、知识点梳理知识点1:圆的定义:1. 圆上各点到圆心的距离都等于 .2. 圆是对称图形,任何一条直径所在的直线都是它的;圆又是对称图形,是它的对称中心.知识点2:弦、弧、半圆、优弧、同心圆、等圆、等弧、圆心角、圆周角等与圆有关的概念1.在同圆或等圆中,相等的弧叫做2. 同弧或等弧所对的圆周角,都等于它所对的圆心角的 .3. 直径所对的圆周角是,90°所对的弦是 .知识点3:圆心角、弧、弦、弦心距之间的关系在同圆或等圆中,如果两个圆心角,两条弧,两条弦,两个圆周角中有一组量,那么它们所对应的其余各组量都分别 .知识点4:垂径定理垂直于弦的直径平分,并且平分;平分弦(不是直径)的垂直于弦,并且平分 .知识点5:确定圆的条件三角形的三个顶点确定一个圆,这个圆叫做三角形的___________、这个圆的圆心叫做三角形的、这个三角形是圆的 .知识点6:点与圆的位置关系(1)点与圆的位置关系:点在圆内、点在圆上、点在圆外.其中r为圆的半径,d为点到圆心的距离,知识点7:直线与圆的位置关系直线与圆的位置关系有三种:相交、相切、相离.设r为圆的半径,d为圆心到直线的距离,直线与圆的位置关系如下表:知识点8:切线的判定与性质判定切线的方法有三种:①利用切线的定义:即与圆有的直线是圆的切线。
②到圆心的距离等于的直线是圆的切线。
③经过半径的外端点并且于这条半径的直线是圆的切线。
切线的五个性质:①切线与圆只有公共点;②切线到圆心的距离等于圆的;③切线垂直于经过切点的;④经过圆心垂直于切线的直线必过;⑤经过切点垂直于切线的直线必过。
知识点9:切线长定理经过圆外一点作圆的切线,这点与之间的线段的长度,叫做这点到圆的切线长.过圆外一点可以引圆的两条切线,它们的相等,这一点和圆心的连线平分两条切线的 .知识点10:三角形内切圆和三角形各边都相切的圆叫做三角形的,三角形内切圆的圆心叫三角形的 .课堂小结:一、这章有三条常用辅助线:一是圆心距,第二是直径圆周角,第三条是切线径,就是连接圆心和切点的,或者是连接圆周角的距离。
中考圆知识点总结复习
中考圆知识点总结复习圆是数学中重要的基本概念之一,也是我们日常生活中经常遇到的形状。
在中考数学中,圆的知识点是不可避免的,掌握好圆的相关知识对于中考数学的考试至关重要。
本文将对中考数学中关于圆的知识点进行总结复习,希望对同学们的复习有所帮助。
一、圆的基本概念1. 圆的定义:在平面上的所有到一个固定点距离相等的点的集合,这个固定的点叫作圆心,这个相等的距离叫作圆的半径。
2. 直径、半径和周长的关系:圆的直径是通过圆心的两个相对的点之间的线段,它等于半径的两倍,周长等于直径的π倍或者半径的两倍π。
二、圆的性质1. 圆心角的性质:圆内切于同一弧上的两条弦所对圆心的两个角是相等的,当圆心角的度数是180°时,这两条弦构成的角是直角。
2. 圆周角的性质:位于圆的同一弧上的两条弦所对的圆周角相等。
3. 圆内接四边形的性质:圆内接四边形的对角和等于180°。
4. 弦长定理:圆内一条弦和它所对的两个圆周角的性质。
5. 弦切定理和切割定理:切割定理:切线与过切点作直径的两个弧所对的圆周角等于90°。
三、圆的相关计算1. 圆的周长和面积的计算公式:周长C=2πr面积S=πr²2. 圆的内、外接正多边形的周长和面积的计算四、圆的位置关系1. 圆的位置关系的判定:“点和圆的位置关系”、“直线和圆的位置关系”、“圆和圆的位置关系”。
五、圆的几何变换1. 圆的平移、旋转、对称的基本概念。
2. 圆的平移、旋转、对称的性质。
六、圆的应用.1. 圆的应用在实际生活和工作中运用。
2. 圆在建筑、设计、制图中的应用。
3. 圆的运动的应用。
七、典型例题解析1. 利用圆的数学知识解决问题的方法。
2. 典型例题的解题思路和方法。
3. 典型例题的解题技巧和技巧。
八、练习题1. 适当安排时间,每天复习一定的题目,加深对知识点的理解和掌握。
2. 定期进行模拟考试,检测自己对圆的知识点的掌握情况。
3. 及时总结巩固,弥补知识点的不足。
中考数学圆知识点归纳
中考数学圆知识点归纳一、圆的定义和性质:1.圆的定义:平面上的所有到圆心距离相等的点的集合。
2.圆的部分:弧、弦、弧长、弦长、圆心角、半径、直径、切线、弧度、坐标公式等。
二、圆的特殊位置和位置关系:1.圆上的点与圆心之间的关系:圆周角是直径的角为直角。
2.圆内外的点与圆心之间的关系:内接圆和外接圆。
三、圆的性质:1.半径相等的圆相等,直径相等的圆相等。
2.圆的直径是两个切点。
3.两圆相交,切点在弦上,切点与所对弧不在一条直径上。
4.圆上的切线与半径垂直,且只有一条。
(切线切圆问题)5.过圆外一点可以作无数条切线,其中只有一条切线与圆通过该点处的切线垂直。
(外切线和切线问题)四、圆的计算:1.圆的周长:C=2πr(其中r为半径)。
2.圆的面积:S=πr²(其中r为半径)。
3.弧长:L=2πr(对应圆心角为360°的弧)。
4.弧度制和角度制的转换:弧度=角度×(π/180°)角度=弧度×(180°/π)五、利用圆的知识解决问题:1.根据已知条件作出相关几何图形,运用定理和性质求解问题。
2.提取关键信息,运用圆的性质和公式进行计算。
3.运用切线的特性求解问题。
4.运用弧的性质,求解弧长、弦长、圆心角等问题。
5.运用角平分线和垂直平分线的性质,求解相关问题。
六、与圆相关的解题技巧:1.制图时,可以借助直角三角形和等腰三角形的性质。
2.运用圆的部分的特性,构造性质,使用类似全等三角形的方法求解问题。
3.运用余弦定理、正弦定理等三角函数的性质,结合圆的特性求解问题。
4.利用圆内切四边形的特性解决问题。
以上为中考数学圆知识点的归纳,希望对你复习和备考有所帮助。
中考圆专题知识点总结
中考圆专题知识点总结一、圆的概念圆是平面上一个集合,该集合中任意两点的距离都相等,并且距离都等于圆的半径。
圆的周长叫做圆的周长,圆的面积叫做圆的面积。
圆的半径为r,圆的直径为d。
二、圆的性质1. 圆的周长和面积:圆的周长C = 2πr圆的面积S = πr²2. 弧和圆心角:- 弧:两点间的曲线部分,圆的一部分。
- 弧长:弧的长度,记作L。
- 圆心角:以圆心为顶点的角叫做圆心角,圆心角的度数等于它所对的弧的弧度数。
3. 弧长公式:L = rθ(θ用弧度表示)4. 圆周角:圆周角是一条弧所对的圆心角。
圆周角的度数等于它所对的圆心角的两倍。
5. 切线和切点:切线是与圆只有一个交点的直线。
切线与圆相切的点叫做切点。
6. 相交弧、对应弧和交角:- 相交弧:两个圆相交的弧。
- 对应弧:两个圆相交的弧的对应部分。
- 交角:两个相交弧的交角。
7. 圆内接四边形:如果一个四边形的四个顶点都在圆上,那么这个四边形叫做圆内接四边形。
8. 圆的切线和割线:切线是与圆只有一个交点的直线,割线是与圆相交而不相切的直线。
切线和割线的切点到圆心的连线和圆的半径相垂直。
三、圆周角、圆心角和弧对应的关系1. 圆周角的度数等于所对的圆心角的两倍。
2. 圆周角的度数等于所对的弧的度数。
3. 圆心角的度数等于所对的弧的度数。
四、圆的性质定理证明1. 同弧或同角:弧对应的圆心角和圆周角以及弧的长度都相等。
2. 切线定理:若直线与圆相交,且交点在圆外,则直线与圆的切点连线垂直于直线。
3. 切线与弦定理:如果一条切线和一条弦相交于圆上的同一点,则切线上这个点的两个切线段相等。
五、常见的圆相关问题1. 圆与圆之间的位置关系:相离、外切、相交、内切、相切。
2. 圆的面积和周长问题:求圆的面积和周长。
3. 圆心角、圆周角和弧的问题:根据给定的信息计算圆心角、圆周角和弧的长度。
4. 切线和切点的问题:计算切线和切点的位置以及相关长度。
5. 圆的切线和割线问题:计算切线和割线的位置以及相关长度。
中考数学圆知识点归纳(中考数学专题复习)
中考数学圆知识点归纳(中考数学专题复习)圆是初中数学几何部分的难点,涉及到的公式定理相对较多,且容易和其他数学知识相结合,以压轴题的方式出现在试卷中。
豆姐建议大家在复习的过程中,一定要先打好基础知识,这遍复习一定要确保掌握概念、公式、定理等!圆的高频考点你会吗?一起来看~考点一圆的定义圆是圆周,是曲线,而不是指圆面。
考点二弦与直径弦与直径的关系:直径是过圆心的弦,凡是直径都是弦,但弦不一定是直径,因此,在提到“弦”时,如果没有特殊说明,不要忘记直径这种特殊的弦。
(直径是圆中最长的弦)考点三弧和半圆半圆是弧,但弧不一定是半圆。
(1)优弧和半圆通常用三个字母表示,劣弧通常用两个字母表示。
(2)知道弧的两个端点,不能判断它是优弧还是劣弧,需分情况讨论。
(3)由弦及其所对的弧组成的图形叫做弓形。
同一条弦分别与所对的优弧、劣弧组成两个不同的弓形。
等弧只能出现在同圆或等圆之中,等弧的长度相等,但长度相等的弧不一定是等弧。
考点四圆的对称性圆有无数条对称轴;圆是旋转对称图形,它关于圆心有任意角的旋转对称性。
考点五垂径定理及其推论一条直线如果具有:(1)经过圆心;(2)垂直于弦;(3)平分弦(被平分的弦不是直径);(4)平分弦所对的优弧;(5)平分弦所对的劣弧。
这五条中的任意两条,则必然具备其余的三条,简称“知二推三”。
考点六圆心角及圆心角定理圆心角定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等。
圆心角、弧、弦直接的关系可归纳为:在同圆或等圆中,两个圆心角、两条弧、两条弦中如果有一组量相等,那么所对应的其余各组量也分别相等。
考点七圆周角及圆周角定理圆周角必须具备两个特征:第一,顶点在圆上;第二,两边都与圆相交,如图,只有③是圆周角。
切记,同一条弧所对的圆周角有无数个。
圆周角定理:圆周角的度数等于它所对弧上的圆心角度数的一半,同弧或等弧所对的圆周角相等。
(1)在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等。
初中数学中考专题复习之圆专题01切线长定理
专题01切线长定理切线长定理(Theorem of length of tangent),是初等平面几何的一个定理。
它指出,从圆外一点引圆的两条切线,它们的切线长相等。
即如图,AB、AC切圆O于B、C,切线长AB=AC。
1.如图,PA,PB切⊙O于A,B两点,CD切⊙O于点E,交PA,PB于C,D.若⊙O的半径为1,△PCD的周长等于2,则线段AB的长是()A.B.3 C.2D.3解析:∵PA,PB切⊙O于A、B两点,CD切⊙O于点E,交PA,PB于C,D,∴AC=EC,DE=DB,PA=PB,∵△PCD的周长等于2,∴PA+PB=2,∴PA=PB=,连接PA和AO,∵⊙O的半径为1,∴tan∠APO===,∴∠APO=30°,∴∠APB=60°,∴△APB是等边三角形,∴AB=PA=PB=.选A.2.如图,P为⊙O外一点,PA、PB分别切⊙O于点A、B,CD切⊙O于点E且分别交PA、PB于点C,D,若PA=4,则△PCD的周长为()A.5 B.7 C.8 D.10解析:∵PA、PB分别切⊙O于点A、B,∴PB=PA=4,∵CD切⊙O于点E且分别交PA、PB于点C,D,∴CA=CE,DE=DB,∴△PCD的周长=PC+PD+CD=PC+CA+PD+DB=PA+PB=8,选C.3.如图,PA、PB、CD与⊙O相切于点为A、B、E,若PA=7,则△PCD的周长为()A.7 B.14 C.10.5 D.10解析:∵PA、PB、CD与⊙O相切于点为A、B、E,∴PB=PA=7,CA=CE,DE=DB,∴△PCD的周长=PC+CD+PB=PC+CE+DE+PD=PC+CA+DB+PD=PA+PB=14,选B.4.如图,PA,PB切⊙O于A,B两点,CD切⊙O于点E交PA,PB于C,D,若⊙O 的半径为r,△PCD的周长为3r,连接OA,OP,则的值是()A.B.C.D.解析:∵PA,PB切⊙O于A,B两点,CD切⊙O于点E交PA,PB于C,D,∴CA=CF,DF=DB,PA=PB,∴PC+CF+DF+PD=PA=PB=2PA=3r,∴PA=r,则的值是:=.选D.5.如图,PA、PB切⊙O于点A、B,PA=8,CD切⊙O于点E,交PA、PB于C、D 两点,则△PCD的周长是()A.8 B.18 C.16 D.14解析:∵PA,PB切⊙O于A、B两点,CD切⊙O于点E,∴PB=PA=8,CA=CE,DB=DE,∴△PCD的周长=PC+CE+PD=PC+CE+DE+PC=PC+CA+DB+PD=PA+PB=16.选C.6.如图,P为⊙O外一点,PA,PB分别切⊙O于A,B,CD切⊙O于点E,分别交PA,PB于点C,D.若PA=5,则△PCD的周长和∠COD分别为()A.5,(90°+∠P)B.7,90°+C.10,90°﹣∠P D.10,90°+∠P解析:∵PA、PB切⊙O于A、B,CD切⊙O于E,∴PA=PB=10,ED=AD,CE=BC;∴△PCD的周长=PD+DE+PC+CE=2PA,即△PCD的周长=2PA=10,;如图,连接OA、OE、OB.由切线性质得,OA⊥PA,OB⊥PB,OE⊥CD,DB=DE,AC=CE,∵AO=OE=OB,易证△AOC≌△EOC(SAS),△EOD≌△BOD(SAS),∴∠AOC=∠EOC,∠EOD=∠BOD,∴∠COD=∠AOB,∴∠AOB=180°﹣∠P,∴∠COD=90°﹣∠P.选C.7.P是⊙O外一点,PA、PB分别与⊙O相切于点A、B,点C是劣弧AB上任意一点,经过点C作⊙O的切线,分别交PA、PB于点D、E.若PA=4,则△PDE的周长是()A.4 B.8 C.12 D.不能确定解析:根据题意画出图形,如图所示,由直线DA和直线DC为圆O的切线,得到AD=DC,同理,由直线EC和直线EB为圆O的切线,得到EC=EB,又直线PA和直线PB为圆O的切线,所以PA=PB=4,则△PDE的周长C=PD+DE+PE=PD+DC+EC+PE=PD+DA+EB+PE=PA+PB=4+4=8.选B.8.如图,AE、AD和BC分别切⊙O于点E、D、F,如果AD=20,则△ABC的周长为()A.20 B.30 C.40 D.50解析:据切线长定理有AD=AE,BE=BF,CD=CF;则△ABC的周长=AB+BC+AC=AB+BF+CF+AC=AB+BE+AC+CD=AD+AE=2AD=40.选C.9.如图,PA、PB分别是⊙O的切线,A、B为切点,AC是⊙O的直径,已知∠BAC =35°,∠P的度数为()A.35°B.45°C.60°D.70°解析:根据切线的性质定理得∠PAC=90°,∴∠PAB=90°﹣∠BAC=90°﹣35°=55°.根据切线长定理得PA=PB,所以∠PBA=∠PAB=55°,所以∠P=70°.选D.10.如图,PA,PB是⊙O的切线,A,B为切点,∠OAB=38°,则∠P=°.解析:∵PA,PB是⊙O的切线,∴PA=PB,PA⊥OA,∴∠PAB=∠PBA,∠OAP=90°,∴∠PBA=∠PAB=90°﹣∠OAB=90°﹣38°=52°,∴∠P=180°﹣52°﹣52°=76°;故答案为:76.11.如图,直角梯形ABCD中,以AD为直径的半圆与BC相切于E,BO交半圆于F,DF的延长线交AB于点P,连DE.以下结论:①DE∥OF;②AB+CD=BC;③PB=PF;④AD2=4AB•DC.其中正确的是()A.①②③④B.只有①②C.只有①②④D.只有③④解析:∵BA,BE是圆的切线.∴AB=BE,BO是△ABE顶角的平分线.∴OB⊥AE∵AD是圆的直径,∴DE⊥AE,∴DE∥OF,故①正确;∵CD=CE,AB=BE,∴AB+CD=BC,故②正确;∵OD=OF,∴∠ODF=∠OFD=∠BFP若PB=PF,则有∠PBF=∠BFP=∠ODF而△ADP与△ABO不一定相似,故PB=PF不一定成了,故③不正确;连接OC.可以证明△OAB∽△CDO∴,即:OA•OD=AB•CD∴AD2=4AB•DC,故④正确.故正确的是:①②④.选C.12.一个菱形的周长是20cm,两对角线之比是4:3,则该菱形的内切圆的半径是cm.解析:如图所示:菱形ABCD,对角线AC,BD,可得菱形内切圆的圆心即为对角线交点,设AB与圆相切于点E,可得OE⊥AB,∵一个菱形的周长是20cm,两对角线之比是4:3,∴AB=5cm,设BO=4x,则AO=3x,故(4x)2+(3x)2=25,解得:x=1,则AO=3,BO=4,故EO•AB=AO•BO,解得:EO=.13.如图,四边形ABCD是⊙O的外切四边形,且AB=10,CD=12,则四边形ABCD 的周长为.解析:∵四边形ABCD是⊙O的外切四边形,∴AD+BC=AB+CD=22,∴四边形ABCD的周长=AD+BC+AB+CD=44,故答案为:44.14.如图,PA、PB分别切圆O于A、B,并与圆O的切线,分别相交于C、D,已知△PCD的周长等于10cm,则PA=cm.解析:如图,设DC与⊙O的切点为E;∵PA、PB分别是⊙O的切线,且切点为A、B;∴PA=PB;同理,可得:DE=DA,CE=CB;则△PCD的周长=PD+DE+CE+PC=PD+DA+PC+CB=PA+PB=10(cm);∴PA=PB=5cm,故答案为:5.15.如图,已知以直角梯形ABCD的腰CD为直径的半圆O与梯形上底AD、下底BC 以及腰AB均相切,切点分别是D,C,E.若半圆O的半径为2,梯形的腰AB为5,则该梯形的周长是.解析:根据切线长定理,得AD=AE,BC=BE,所以梯形的周长是5×2+4=14,故答案为:14.16.如图,在Rt△ABC中,∠C=90°,BC=5,⊙O与Rt△ABC的三边AB、BC、AC 分别相切于点D、E、F,若⊙O的半径r=2,则Rt△ABC的周长为.解析:连接OE、OF,设AD=x,由切线长定理得AF=x,∵⊙O与Rt△ABC的三边AB、BC、AC分相切于点D、E、F,∴OE⊥BC,OF⊥AC,∴四边形OECF为正方形,∵r=2,BC=5,∴CE=CF=2,BD=BE=3,∴由勾股定理得,(x+2)2+52=(x+3)2,解得,x=10,∴△ABC的周长为12+5+13=30,故答案为30.17.如图,AB、BC、CD分别与⊙O相切于点E、F、G,若∠BOC=90°,(1)求证:AB∥CD;(2)若OB=3,OC=4,求由BE、BC、CG、及弧EFG围成图形的面积(即图中阴影部分).解析:(1)∵∠BOC=90°,∴∠OBC+∠OCB=90°,又BE与BF为圆O的切线,∴BO为∠EBF的平分线,∴∠OBC=∠OBF,同理可得∠OCB=∠OCG,∴∠OBF+∠OCG=90°,∴∠OBC+∠OCB+∠OBE+∠OCG=180°,即∠ABF+∠DCF=180°,∴AB∥CD;(2)连接OE,OF,OG,如图所示:由BE和BF为圆的切线,可得OE⊥AB,OF⊥BC,即∠OEB=∠OFB=90°,∴BE=BF,又OB=OB,∴Rt△OEB≌Rt△OFB(HL),∴∠BOE=∠BOF,S△OEB=S△OFB,∴S扇形OEM=S扇形OFM,∴S△OEB﹣S扇形OEM=S△OFB﹣S扇形OFM,即S阴影BEM=S阴影BFM,同理S阴影NFC=S阴影NCG,由∠BOC=90°,OB=3,OC=4,根据勾股定理得:BC=5,∵BC为圆的切线,∴OF⊥BC,∴OB•OC=BC•OF,即OF=,∴S△BOC=OB•OC=6,S扇形OMN==,则阴影部分面积S=2(S阴影BFM+S阴影NFC)=2(S△BOC﹣S扇形OMN)=12﹣18.如图,PA,PB是⊙O的切线,A、B为切点,AC是⊙O的直径,∠P=60°.(1)求∠BAC的度数;(2)当OA=2时,求AB的长.解析:(1)∵PA,PB是⊙O的切线,∴AP=BP,∵∠P=60°,∴∠PAB=60°,∵AC是⊙O的直径,∴∠PAC=90°,∴∠BAC=90°﹣60°=30°.(2)连接OP,则在Rt△AOP中,OA=2,∠APO=30°,∴OP=4,由勾股定理得:,∵AP=BP,∠APB=60°,∴△APB是等边三角形,∴.19.如图,已知AB为⊙O的直径,PA,PC是⊙O的切线,A,C为切点,∠BAC=30°.(Ⅰ)求∠P的大小;(Ⅱ)若AB=2,求PA的长(结果保留根号).解析:(Ⅰ)∵PA是⊙O的切线,AB为⊙O的直径,∴PA⊥AB,∴∠BAP=90°;∵∠BAC=30°,∴∠CAP=90°﹣∠BAC=60°.又∵PA、PC切⊙O于点A、C,∴PA=PC,∴△PAC为等边三角形,∴∠P=60°.(Ⅱ)如图,连接BC,则∠ACB=90°.在Rt△ACB中,AB=2,∠BAC=30°,∵c o s∠BAC=,∴AC=AB•c o s∠BAC=2c o s30°=.∵△PAC为等边三角形,∴PA=AC,∴PA=.20.如图所示,在梯形ABCD中,AD∥BC,AB⊥BC,以AB为直径的⊙O与DC相切于E.已知AB=8,边BC比AD大6.(1)求边AD、BC的长;(2)在直径AB上是否存在一动点P,使以A、D、P为顶点的三角形与△BCP相似?若存在,求出AP的长;若不存在,请说明理由.解析:(1)方法1:过D作DF⊥BC于F在Rt△DFC中,DF=AB=8,FC=BC﹣AD=6∴DC2=62+82=100,即DC=10设AD=x,则DE=AD=x,EC=BC=x+6∴x+(x+6)=10.∴x=2.∴AD=2,BC=2+6=8方法2:连OD、OE、OC,由切线长定理可知∠DOC=90°,AD=DE,CB=CE设AD=x,则BC=x+6,由射影定理可得:OE2=DE•EC,即:x(x+6)=16,解得x1=2,x2=﹣8,(舍去)∴AD=2,BC=2+6=8(2)存在符合条件的P点设AP=y,则BP=8﹣y,△ADP与△BCP相似,有两种情况①△ADP∽△BCP时,∴y=②△ADP∽△BPC时,∴y=4故存在符合条件的点P,此时AP=或4。
初三数学圆知识点复习专题经典
《圆》章节知识点复习一、圆的概念集合形式的概念: 1、 圆可以看作是到定点的距离等于定长的点的集合; 2、圆的外部:可以看作是到定点的距离大于定长的点的集合; 3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆; (补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线 (也叫中垂线);3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于 定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线 距离都相等的一条直线。
二、点与圆的位置关系1、点在圆内 ⇒ d r < ⇒ 点C 在圆内;2、点在圆上 ⇒ d r = ⇒ 点B 在圆上;3、点在圆外 ⇒ d r > ⇒ 点A 在圆外; 三、直线与圆的位置关系1、直线与圆相离 ⇒ d r > ⇒ 无交点;2、直线与圆相切 ⇒ d r = ⇒ 有一个交点;3、直线与圆相交 ⇒ d r < ⇒ 有两个交点;drd=rrd四、圆与圆的位置关系外离(图1)⇒ 无交点 ⇒ d R r >+; 外切(图2)⇒ 有一个交点 ⇒ d R r =+; 相交(图3)⇒ 有两个交点 ⇒ R r d R r -<<+; 内切(图4)⇒ 有一个交点 ⇒ d R r =-; 内含(图5)⇒ 无交点 ⇒ d R r <-;r dd CBAO图1rRd图3rR d五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。
推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可 推出其它3个结论,即:①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论。
初中数学圆专题复习(精心整理版)
圆一、知识点梳理知识点1:圆的定义:1. 圆上各点到圆心的距离都等于.2. 圆是对称图形,任何一条直径所在的直线都是它的;圆又是对称图形,是它的对称中心.知识点2:弦、弧、半圆、优弧、同心圆、等圆、等弧、圆心角、圆周角等与圆有关的概念1.在同圆或等圆中,相等的弧叫做2. 同弧或等弧所对的圆周角,都等于它所对的圆心角的.3. 直径所对的圆周角是,90°所对的弦是.知识点3:圆心角、弧、弦、弦心距之间的关系在同圆或等圆中,如果两个圆心角,两条弧,两条弦,两个圆周角中有一组量,那么它们所对应的其余各组量都分别.知识点4:垂径定理垂直于弦的直径平分,并且平分;平分弦(不是直径)的垂直于弦,并且平分.知识点5:确定圆的条件三角形的三个顶点确定一个圆,这个圆叫做三角形的___________、这个圆的圆心叫做三角形的、这个三角形是圆的.知识点6:点与圆的位置关系(1)点与圆的位置关系:点在圆内、点在圆上、点在圆外.其中r为圆的半径,d为点到圆心的距离,知识点7:直线与圆的位置关系直线与圆的位置关系有三种:相交、相切、相离.设r为圆的半径,d为圆心到直线的距离,直线与圆的位置关系如下表:知识点8:切线的判定与性质判定切线的方法有三种:①利用切线的定义:即与圆有的直线是圆的切线。
②到圆心的距离等于的直线是圆的切线。
③经过半径的外端点并且于这条半径的直线是圆的切线。
切线的五个性质:①切线与圆只有公共点;②切线到圆心的距离等于圆的;③切线垂直于经过切点的;④经过圆心垂直于切线的直线必过;⑤经过切点垂直于切线的直线必过。
知识点9:切线长定理经过圆外一点作圆的切线,这点与之间的线段的长度,叫做这点到圆的切线长.过圆外一点可以引圆的两条切线,它们的相等,这一点和圆心的连线平分两条切线的.知识点10:三角形内切圆和三角形各边都相切的圆叫做三角形的,三角形内切圆的圆心叫三角形的.知识点11:圆和圆的位置关系设两圆半径分别为R和r。
初中数学圆的专题讲解
初中数学中考复习辅导专题圆考点一:圆的基本性质【例题精讲】例题1.如图,公园的一座石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为()A .5米B.8米C .7米D .53米例题2.如图⊙O 的半径为5,弦AB=8,M 是弦AB 上的动点,则OM 不可能为()A .2B .3C .4D .5例题3.如图⊙O 弦AB=6,M 是AB 上任意一点,且OM 最小值为4,则⊙O 半径为()A .5B .4C .3D .2例题4.如图,⊙O 的半径为1,AB 是⊙O 的一条弦,且AB=3,则弦AB 所对圆周角的度数为()A.30° B.60° C.30°或150° D.60°或120°例题5.AB 是⊙O 的直径,弦CD ⊥AB 于点E ,∠CDB =30°,⊙O 的半径为cm 3,则弦CD 的长为()A .3cm 2B .3cmC .23cmD .9cm例题6.如图,BC 是以线段AB 为直径的O ⊙的切线,AC 交O ⊙于点D ,过点D 作弦DE AB ⊥,垂足为点F ,连接BD BE 、..(1)仔细观察图形并写出四个不同的正确结论:①______,②________,③______,④________(不添加其它字母和辅助线)(2)A ∠=30°,CD =233,求O ⊙的半径r .考点二:与圆有关的位置关系【例题精讲】例1.⊙O 的半径是6,点O 到直线a 的距离为5,则直线a 与⊙O 的位置关系为()A .相离B .相切C .相交D .内含例2.如图,⊙O 内切于ABC △,切点分别为D,E,F.∠B=50°,∠C=60°,,连结OE,OF,DE,DF ,则EDF ∠等于()A .40°B .55°C .65°D .70°第2题第3题例3.如图,已知直线L 和直线L 外两定点A 、B ,且A 、B 到直线L 的距离相等,则经过A 、B 两点且圆心在L 上的圆有()A .0个B .1个C .无数个D .0个或1个或无数个例4.已知⊙O 1半径为3cm ,⊙O 2半径为4cm ,并且⊙O 1与⊙O 2相切,则这两个圆的圆心距为()A.1cm B.7cm C.10cm D.1cm 或7cm 例5.两圆内切,圆心距为3,一个圆的半径为5,另一个圆的半径为。
初三《圆》章节知识点复习专题
初三《圆》章节知识点复习专题(总7页)-本页仅作为预览文档封面,使用时请删除本页-《圆》章节知识点复习一、圆的概念集合形式的概念: 1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。
二、点与圆的位置关系1、点在圆内⇒d r<⇒点C在圆内;2、点在圆上⇒d r=⇒点B在圆上;3、点在圆外⇒d r>⇒点A在圆外;三、直线与圆的位置关系1、直线与圆相离⇒d r>⇒无交点;2、直线与圆相切⇒d r=⇒有一个交点;A3、直线与圆相交⇒d r<⇒有两个交点;四、圆与圆的位置关系外离(图1)⇒无交点⇒d R r>+;外切(图2)⇒有一个交点⇒d R r=+;相交(图3)⇒有两个交点⇒R r d R r-<<+;内切(图4)⇒有一个交点⇒d R r=-;内含(图5)⇒无交点⇒d R r<-;五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。
推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;图4图5(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB是直径②AB CD⊥③CE DE=④弧BC=弧BD⑤弧AC=弧AD 中任意2个条件推出其他3个结论。
2025年中考数学考点分类专题归纳之 圆
2025年中考数学考点分类专题归纳圆知识点一、圆的定义、性质及与圆有关的角1.圆的定义(1)线段OA绕着它的一个端点O旋转一周,另一个端点A所形成的封闭曲线,叫做圆.(2)圆是到定点的距离等于定长的点的集合.备注:①圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可;②圆是一条封闭曲线.2.圆的性质(1)旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心.在同圆或等圆中,两个圆心角,两条弧,两条弦,两条弦心距,这四组量中的任意一组相等,那么它所对应的其他各组分别相等.(2)轴对称:圆是轴对称图形,经过圆心的任一直线都是它的对称轴.(3)垂径定理及推论:①垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.②平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.③弦的垂直平分线过圆心,且平分弦对的两条弧.④平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦.⑤平行弦夹的弧相等.备注:在垂经定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径)3.与圆有关的角(1)圆心角:顶点在圆心的角叫圆心角.圆心角的性质:圆心角的度数等于它所对的弧的度数.(2)圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角.4.圆周角的性质:①圆周角等于它所对的弧所对的圆心角的一半.②同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等.③90°的圆周角所对的弦为直径;半圆或直径所对的圆周角为直角.④如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.⑤圆内接四边形的对角互补;外角等于它的内对角.备注:(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交.(2)圆周角定理成立的前提条件是在同圆或等圆中.知识点二、与圆有关的位置关系1.判定一个点P是否在⊙O上设⊙O的半径为,OP=,则有点P在⊙O 外;点P在⊙O 上;点P在⊙O 内.备注:点和圆的位置关系和点到圆心的距离的数量关系是相对应的,即知道位置关系就可以确定数量关系;知道数量关系也可以确定位置关系.2.判定几个点A1,A2……A n在同一个圆上的方法当A1O=A2O=……=A n O=R时,A1,A2……A n在⊙O 上.3.直线和圆的位置关系设⊙O 半径为R,点O到直线的距离为.(1)直线和⊙O没有公共点直线和圆相离.(2)直线和⊙O有唯一公共点直线和⊙O相切.(3)直线和⊙O有两个公共点直线和⊙O相交.4.切线的判定、性质(1)切线的判定:①经过半径的外端并且垂直于这条半径的直线是圆的切线.②到圆心的距离等于圆的半径的直线是圆的切线.(2)切线的性质:①圆的切线垂直于过切点的半径.②经过圆心作圆的切线的垂线经过切点.③经过切点作切线的垂线经过圆心.(3)切线长:从圆外一点作圆的切线,这一点和切点之间的线段的长度叫做切线长.(4)切线长定理:从圆外一点作圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.5.圆和圆的位置关系设的半径为,圆心距.(1)和没有公共点,且每一个圆上的所有点在另一个圆的外部外离.(2)和没有公共点,且的每一个点都在内部内含(3)和有唯一公共点,除这个点外,每个圆上的点都在另一个圆外部外切.(4)和有唯一公共点,除这个点外,的每个点都在内部内切.(5)和有两个公共点相交.知识点三、三角形的外接圆与内切圆、圆内接四边形与外切四边形1.三角形的内心、外心、重心、垂心(1)三角形的内心:是三角形三条角平分线的交点,它是三角形内切圆的圆心,在三角形内部,它到三角形三边的距离相等.(2)三角形的外心:是三角形三边中垂线的交点,它是三角形外接圆的圆心,锐角三角形外心在三角形内部,直角三角形的外心是斜边中点,钝角三角形外心在三角形外部,三角形外心到三角形三个顶点的距离相等.(3)三角形重心:是三角形三边中线的交点,在三角形内部;它到顶点的距离是到对边中点距离的2倍,通常用G表示.(4)垂心:是三角形三边高线的交点.备注:(1) 任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形;(2) 解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S为三角形的面积,P为三角形的周长,r为内切圆的半径).(3) 三角形的外心与内心的区别:2.圆内接四边形和外切四边形(1)四个点都在圆上的四边形叫圆的内接四边形,圆内接四边形对角互补,外角等于内对角.(2)各边都和圆相切的四边形叫圆外切四边形,圆外切四边形对边之和相等.知识点四、圆中有关计算1.圆中有关计算圆的面积公式:,周长.圆心角为、半径为R的弧长.圆心角为,半径为R,弧长为的扇形的面积.弓形的面积要转化为扇形和三角形的面积和、差来计算.圆柱的侧面图是一个矩形,底面半径为R,母线长为的圆柱的体积为,侧面积为,全面积为.圆锥的侧面展开图为扇形,底面半径为R,母线长为,高为的圆锥的侧面积为,全面积为,母线长、圆锥高、底面圆的半径之间有.备注:(1)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的,即;(2)在扇形面积公式中,涉及三个量:扇形面积S、扇形半径R、扇形的圆心角,知道其中的两个量就可以求出第三个量.(3)扇形面积公式,可根据题目条件灵活选择使用,它与三角形面积公式有点类似,可类比记忆;(4)扇形两个面积公式之间的联系:.1.(2024•贺州)如图,AB是⊙O的直径,且经过弦CD的中点H,已知sin∠CDB,BD=5,则AH的长为()A.B.C.D.2.(2024•张家界)如图,AB是⊙O的直径,弦CD⊥AB于点E,OC=5cm,CD=8cm,则AE=()A.8cm B.5cm C.3cm D.2cm3.(2024•襄阳)如图,点A,B,C,D都在半径为2的⊙O上,若OA⊥BC,∠CDA=30°,则弦BC的长为()A.4 B.2C.D.24.(2024•衢州)如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O作OF⊥BC于F,若BD=8cm,AE=2cm,则OF的长度是()A.3cm B.cm C.2.5cm D.cm5.(2024•枣庄)如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为()A.B.2C.2D.86.(2024•安顺)已知⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=8cm,则AC的长为()A.2cm B.4cm C.2cm或4cm D.2cm或4cm7.(2024•临安区)如图,⊙O的半径OA=6,以A为圆心,OA为半径的弧交⊙O于B、C点,则BC=()A.B.C.D.8.(2024•乐山)《九章算术》是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就.它的算法体系至今仍在推动着计算机的发展和应用.书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(ED=1寸),锯道长1尺(AB=1尺=10寸)”,问这块圆柱形木材的直径是多少?”如图所示,请根据所学知识计算:圆柱形木材的直径AC是()A.13寸B.20寸C.26寸D.28寸9.(2024•日照)如图,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则∠BED 的正切值等于()A.B.C.2 D.10.(2024•巴中)如图,⊙O中,半径OC⊥弦AB于点D,点E在⊙O上,∠E=22.5°,AB=4,则半径OB 等于()A.B.2 C.2D.311.(2024•赤峰)如图,AB是⊙O的直径,C是⊙O上一点(A、B除外),∠AOD=130°,则∠C的度数是()A.50°B.60°C.25°D.30°12.(2024•盘锦)如图,⊙O中,OA⊥BC,∠AOC=50°,则∠ADB的度数为()A.15°B.25°C.30°D.50°13.(2024•陕西)如图,△ABC是⊙O的内接三角形,AB=AC,∠BCA=65°,作CD∥AB,并与⊙O相交于点D,连接BD,则∠DBC的大小为()A.15°B.35°C.25°D.45°14.(2024•柳州)如图,A,B,C,D是⊙O上的四个点,∠A=60°,∠B=24°,则∠C的度数为()A.84°B.60°C.36°D.24°15.(2024•铜仁市)如图,已知圆心角∠AOB=110°,则圆周角∠ACB=()A.55°B.110°C.120°D.125°16.(2024•通辽)已知⊙O的半径为10,圆心O到弦AB的距离为5,则弦AB所对的圆周角的度数是()A.30°B.60°C.30°或150°D.60°或120°17.(2024•咸宁)如图,已知⊙O的半径为5,弦AB,CD所对的圆心角分别是∠AOB,COD,若∠AOB与∠COD互补,弦CD=6,则弦AB的长为()A.6 B.8 C.5D.518.(2024•陇南)如图,⊙A过点O(0,0),C(,0),D(0,1),点B是x轴下方⊙A上的一点,连接BO,BD,则∠OBD的度数是()A.15°B.30°C.45°D.60°19.(2024•盐城)如图,AB为⊙O的直径,CD是⊙O的弦,∠ADC=35°,则∠CAB的度数为()A.35°B.45°C.55°D.65°20.(2024•邵阳)如图所示,四边形ABCD为⊙O的内接四边形,∠BCD=120°,则∠BOD的大小是()A.80°B.120°C.100°D.90°21.(2024•泰安)如图,⊙M的半径为2,圆心M的坐标为(3,4),点P是⊙M上的任意一点,PA⊥PB,且PA、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最小值为()A.3 B.4 C.6 D.822.(2024•牡丹江)如图,△ABC内接于⊙O,若sin∠BAC,BC=2,则⊙O的半径为()A.3B.6C.4D.223.(2024•自贡)如图,若△ABC内接于半径为R的⊙O,且∠A=60°,连接OB、OC,则边BC的长为()A.B.C.D.24.(2024•湘西州)已知⊙O的半径为5cm,圆心O到直线l的距离为5cm,则直线l与⊙O的位置关系为()A.相交B.相切C.相离D.无法确定25.(2024•湘西州)如图,直线AB与⊙O相切于点A,AC、CD是⊙O的两条弦,且CD∥AB,若⊙O的半径为5,CD=8,则弦AC的长为()A.10 B.8 C.4D.426.(2024•福建)如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD等于()A.40°B.50°C.60°D.80°27.(2024•宜昌)如图,直线AB是⊙O的切线,C为切点,OD∥AB交⊙O于点D,点E在⊙O上,连接OC,EC,ED,则∠CED的度数为()A.30°B.35°C.40°D.45°28.(2024•重庆)如图,已知AB是⊙O的直径,点P在BA的延长线上,PD与⊙O相切于点D,过点B作PD的垂线交PD的延长线于点C,若⊙O的半径为4,BC=6,则PA的长为()A.4 B.2C.3 D.2.529.(2024•海南)如图,在平面直角坐标系中,点A的坐标是(20,0),点B的坐标是(16,0),点C、D 在以OA为直径的半圆M上,且四边形OCDB是平行四边形,则点C的坐标为_______.30.(2024•烟台)如图,方格纸上每个小正方形的边长均为1个单位长度,点O,A,B,C在格点(两条网格线的交点叫格点)上,以点O为原点建立直角坐标系,则过A,B,C三点的圆的圆心坐标为_________.31.(2024•孝感)已知⊙O的半径为10cm,AB,CD是⊙O的两条弦,AB∥CD,AB=16cm,CD=12cm,则弦AB和CD之间的距离是______cm.32.(2024•广元)如图是一块圆环形玉片的残片,作外圆的弦AB与内圆相切于点C,量得AB=8cm、点C 与的中点D的距离CD=2cm.则此圆环形玉片的外圆半径为___cm.33.(2024•舟山)如图,量角器的0度刻度线为AB,将一矩形直尺与量角器部分重叠,使直尺一边与量角器相切于点C,直尺另一边交量角器于点A,D,量得AD=10cm,点D在量角器上的读数为60°,则该直尺的宽度为________cm.34.(2024•毕节市)如图,AB是⊙O的直径,C、D为半圆的三等分点,CE⊥AB于点E,∠ACE的度数为_____.35.(2024•随州)如图,点A,B,C在⊙O上,∠A=40度,∠C=20度,则∠B=____度.36.(2024•黑龙江)如图,AC为⊙O的直径,点B在圆上,OD⊥AC交⊙O于点D,连接BD,∠BDO=15°,则∠ACB=_____.37.(2024•吉林)如图,A,B,C,D是⊙O上的四个点,,若∠AOB=58°,则∠BDC=____度.38.(2024•北京)如图,点A,B,C,D在⊙O上,,∠CAD=30°,∠ACD=50°,则∠ADB=_____.39.(2024•绥化)如图,△ABC是半径为2的圆内接正三角形,则图中阴影部分的面积是________(结果用含π的式子表示).40.(2024•常州)如图,△ABC是⊙O的内接三角形,∠BAC=60°,的长是,则⊙O的半径是___.41.(2024•新疆)如图,△ABC是⊙O的内接正三角形,⊙O的半径为2,则图中阴影部分的面积是__.42.(2024•临沂)如图.在△ABC中,∠A=60°,BC=5cm.能够将△ABC完全覆盖的最小圆形纸片的直径是______cm.43.(2024•内江)已知△ABC的三边a,b,c,满足a+b2+|c﹣6|+28=410b,则△ABC的外接圆半径=_.44.(2024•益阳)如图,在圆O中,AB为直径,AD为弦,过点B的切线与AD的延长线交于点C,AD=DC,则∠C=____度.45.(2024•枣庄)如图,在Rt△ACB中,∠C=90°,AC=3cm,BC=4cm,以BC为直径作⊙O交AB于点D.(1)求线段AD的长度;(2)点E是线段AC上的一点,试问:当点E在什么位置时,直线ED与⊙O相切?请说明理由.46.(2024•徐州)如图,AB为⊙O的直径,点C在⊙O外,∠ABC的平分线与⊙O交于点D,∠C=90°.(1)CD与⊙O有怎样的位置关系?请说明理由;(2)若∠CDB=60°,AB=6,求的长.。
2024年中考数学复习-圆知识点复习讲义
圆知识点复习讲义第1 节圆的认识一、知识梳理1.圆的基本概念弦:连接圆上任意两点的线段叫作弦.直径:经过圆心的弦叫作直径.圆弧:圆上任意两点间的部分叫作圆弧 .弧包括优弧和劣弧,大于半圆的弧叫作优弧,小于半圆的弧叫作劣弧.半圆:圆的任意一条直径的两个端点将圆分成两条弧,每一条弧都叫作半圆.等圆:能够重合的两个圆叫作等圆.等弧:在同圆或等圆中,能够互相重合的弧叫作等弧.2.圆的对称性圆是轴对称图形,其对称轴是任意一条过圆心的直线.圆是中心对称图形,对称中心为圆心.在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.3.点与圆的位置关系设⊙O的半径为r,点P到圆心O的距离为d,则有:①点在圆外⇔d>r;②点在圆上⇔d=r;③点在圆内⇔d<r.【例】如图1-1所示,AB是⊙O 的直径,四边形ABCD 内接于⊙O. 若BC=CD=DA=4cm,则⊙O的周长为( ).A. 5πcmB. 6πcmC. 9πcmD. 8πcm解:如图1-2所示,连接OD,OC.∵AB是⊙O的直径,四边形ABCD 内接于⊙O, BC=CD=DA=4cm,̂=CD̂=BĈ.∴AD∴∠AOD=∠DOC=∠COB=60°.又∵OA=OD,∴△AOD是等边三角形.∴OA=AD=4cm.∴⊙O 的周长=2π×4=8π(cm).故选 D.二、分层练习☆万丈高楼平地起1.下列命题正确的个数是( )个.①直径是圆中最大的弦;②长度相等的两条弧一定是等弧;③半径相等的两个圆是等圆;④面积相等的两个圆是等圆;⑤同一条弦所对的两条弧一定是等弧;A. 2B. 3C. 4D. 52.小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图1-3 所示 .为了在商店配到与原来大小一样的圆形玻璃,小明要选择携带的应该是( ).A. 第①块B. 第②块C. 第③块D. 第④块3. 如图1-4所示,AB是⊙O的直径,点C在⊙O上,CD⊥AB,垂足为点D.已知CD=4,OD=3,则AB的长为 .4. 如图1-5所示,AB是⊙O的直径,点C,D在AB的异侧,连接AD,OD,OC. 若∠AOC=70°,且AD∥OC,则∠AOD的度数为 .欲穷千里目,更上一层楼5. 如图1-6所示,AB,CD是⊙O的直径, AÊ=BD̂.若∠AOE=32°,则∠COE的度数是( ).A. 32°B. 60°C. 68°D. 64°6. 如图1-7所示,AB是⊙O的直径, BĈ=CD̂=DÊ,∠COD=35∘,则∠AOE 的度数是( ).A. 65°B. 70°C. 75°D. 85°̂=DĈ=CB̂,则四边7. 如图1-8所示,已知⊙O的半径为2cm,AB是⊙O的直径,点C,D是⊙O 上的两点,且AD形ABCD的周长为( ).A. 8cmB. 10cmC. 12cmD. 16cm̂=2AĈ,那么( ).8. 如图1-9所示,在⊙O 中,如果ABA.AB=ACB.AB=2ACC.AB<2ACD.AB>2AC9. 如图1-10 所示,在矩形ABCD中, AB=8,BC=3√5,点 P 在边 AB 上,且BP=3AP.如果圆P 是以点 P 为圆心,PD 为半径的圆,那么下列判断正确的是( ).A. 点B,C均在圆P外B. 点 B在圆 P 外,点 C在圆 P 内C. 点B在圆P内,点C在圆P外D. 点 B,C均在圆P内10. 如图1-11所示,城市A的正北方向50km的B处,有一无线电信号发射塔,该发射塔发射的无线电信号的有效半径为100km,AC 是一条直达C 城的公路,从A城开往C城的班车速度为60km/h.(1)当班车从A城出发开往C城时,有人立即打开无线电收音机,班车行驶了0.5h时接收信号最强,则此时班车到发射塔的距离是多少?(离发射塔越近,信号越强)(2)班车从 A城到C城共行驶2h,请你判断,班车到C城后还能接收到信号吗?请说明理由.会当凌绝顶,一览众山小̂的中点,点P 是直径MN上一动点,⊙O 的半径11.如图1-12所示,已知点A是半圆上的三等分点,点B是AN为1.请问:点 P 在MN上什么位置时,AP+BP的值最小?并给出AP+BP的最小值.第2 节垂径定理一、知识梳理(一)垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的弧.如图2-1所示,垂径定理的条件与结论理解如下:∵AB是直径,AB⊥CD于点 E,∴CE=DE,CB̂=DB̂,AĈ=AD̂.(二)垂径定理推论平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.【例】如图2-2所示,AB是⊙O 的弦,点 C,D是直线AB上的两点,且AC=BD,求证:OC=OD.证明:如图2-3所示,过点O作OE⊥AB于点E.∵OE⊥AB,∴AE=BE.又∵AC=BD,∴CE=DE.∴OE是CD的中垂线.∴OC=OD.二、分层练习☆万丈高楼平地起1.下列判断中正确的是( ).A.长度相等的弧是等弧B.平分弦的直线也必平分弦所对的两条弧C.弦的垂直平分线必平分弦所对的两条弧D.平分一条弧的直线必平分这条弧所对的弦2.某蔬菜基地的圆弧形蔬菜大棚的剖面如图2-4所示,已知AB=16m,,半径OA为10m,则中间柱CD的高度为( )m.A. 6B. 4C. 8D. 53. 如图2-5所示,点A,B是⊙O上的两点,AB=10,点P是⊙O上的动点(点 P与点A,B不重合). 连接AP,PB,过点O 分别作OE⊥AP于点E,( OF⊥PB于点F,连接EF,则EF长为( ).A. 4B. 5C. 5.5D. 64. 点P为⊙O内一点,且OP=4. 若⊙O的半径为6,则过点P的弦长不可能为( ).A. 12B.2√30C. 8D. 10.5欲穷千里目,更上一层楼5.刘徽是中国古代卓越的数学家之一,他在《九章算术》中提出了“割圆术”,即用内接或外切正多边形逐步逼近圆来近似计算圆的面积.如图2-6所示,设⊙O的半径为2,若用⊙O的内接正六边形的面积来估计⊙O的面积,则⊙O的面积约为 (结果保留根号).6. 如图2-7所示,已知⊙O的半径为2,四边形ABCD为⊙O的内接四边形,且AD=2√2,AB=2√3,则∠DAB的度数为( ).A.105°B.60°C.75°D.70°7. 如图2-8所示, ∠PAC=30°,,在射线AC 上顺次截取AD=3cm,DB=10cm,以DB为直径作⊙O 交射线AP于点 E,F.(1)求圆心 O到AP的距离;(2)求弦 EF的长.8. 如图2-9所示,AB是⊙O的直径,弦CD交AB于点 P, AP=2,BP=6,∠APC=30°,,则 CD的长为( ).A.√15B.2√5C.2√15D. 89. 如图2-10所示,在半径为√5的⊙O中,AB,CD是互相垂直的两条弦,垂足为点 P,且AB=CD=4,则OP的长为( ).A. 1B.√2C. 2D.2√210. 如图2-11所示,在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x的图象被⊙P截得的弦AB的长为y=x2√3,,则a的值是( ).A.2√2B.2+√2C.2√3D.2+√311. 如图2-12所示,△ABC外接圆的半径为5,其圆心O恰好在中线CD上.若AB=CD,则△ABC的面积为( ).A. 36B. 32C. 24D.1812.圆柱形油槽内装有一些油,截面如图2-13所示,油面宽AB 为6dm,再注入一些油后,油面 AB 上升1dm,油面宽变为 8dm,则圆柱形油槽直径 MN 为( ).A. 6dmB. 8dmC. 10dmD. 12dm会当凌绝顶,一览众山小13.如图2-14所示,在平面直角坐标系中,以原点O 为圆心的圆过点A(13,0),直线y=kx-3k+44与⊙O 相交于点B,C,则弦BC的长的最小值为 .第3 节圆周角定理(1)一、知识梳理圆心角:顶点在圆心的角叫作圆心角.圆周角:顶点在圆上,并且两边都和圆相交的角叫作圆周角.圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半.推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧相等.推论2:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.推论3:圆内接四边形对角互补,并且任何一个外角都等于它的内对角.【例】如图3-1所示,直径为10的⊙A经过点C(0,5)和点O(0,0),点B 是y轴右侧⊙A优弧上的一点,则∠OBC的余弦值为( ).A.12B.34C.√32D.54解:如图3-2 所示,连接CA 并延长交⊙A 于点D.∵CD为直径,∴∠COD=∠yOx=90°.∵直径为10的⊙A经过点C(0,5)和点O(0,0),∴CD=10,CO=5.∴DO=√CD2−CO2=5√3.∵∠OBC=∠CDO,∴cos∠OBC=cos∠CDO=ODCD =5√310=√32.故选 C.二、分层练习☆万丈高楼平地起1. 如图3-3所示,AB是⊙O的直径,点C,D是⊙O 上的两点. 若∠CAB=25°,则∠ADC 的度数为 .2.如图3-4所示,在边长为1的小正方形构成的网格中,半径为1的⊙O 的圆心O 在格点上,则tan∠CBD 的值等于( ).A.2√55B.3√55C. 2D.123. 如图3-5 所示,△ABC 是⊙O 的内接三角形,AC是⊙O的直径, ∠C=50°,∠ABC的角平分线BD交⊙O 于点D,则∠BAD的度数为( ).A. 45°B. 85°C. 90°D. 95°4. 如图3-6所示,△ABC内接于⊙O, AB=AC,,连接BO 并延长交AC 于点 D. 若∠A=50°,,则∠BDC 的度数为( ).A. 75°B.76°C.65°D.70°5. 如图3-7所示,点A,B,C,D在⊙O上,直径AB交CD于点E. 已知∠C=57°,∠D=45°,则∠CEB=.6. 如图3-8所示,AB是半圆的直径,点D是AĈ的中点,∠ABC=50°,则∠DAB等于( ).A.55°B.60°C.65°D.70°欲穷千里目,更上一层楼7. 如图3-9所示,若△ABC内接于半径为R的⊙O,且∠A=60°,,连接OB,OC,则边 BC的长为( ).A.√2RRB.√32RC.√22D.√3R8. 如图3-10所示,在⊙O中, AC‖OB,∠BOC=50°,则∠OAB的度数为( ).A.25°B. 50°C. 60°D. 30°9. 如图3-11 所示,AD 是半圆的直径,点 C 是弧 BD 的中点, ∠ADC=55°,则∠BAD 等于( ).A. 50°B. 55°C. 65°D. 70°̂=2BĈ,∠C=20∘, 10. 如图3-12所示,AB为⊙O的直径,点C,D在⊙O上,连接AC,CD,CD交AB于点 E.若BD则∠AED的度数为( ).A. 50°B. 53°C. 55°D. 58°11. 如图3-13所示,AB是⊙O的弦,( OH⊥AB于点H,点P是优弧上的一点.若AB=2√3,OH=1,则∠APB的度数为 .12. 如图3-14所示,⊙O的半径为2,. △ABC是⊙O的内接三角形,连接OB,OC.若∠BAC 与∠BOC 互补,则弦BC的长为( ).A.4√3B.3√3C.2√3D.√3☆会当凌绝顶,一览众山小13. 如图3-15所示,在Rt△ABC中,. ∠ACB=90°,∠A=56°.. 以 BC 为直径的⊙O交AB 于点 D. 点 E 是⊙O 上的一点,且CÊ=CD̂,连接 OE. 过点 E 作. EF⊥OE,交AC的延长线于点F,则∠F的度数为( ).A. 92°B. 108°C. 112°D. 124°14. 如图3-16所示,点B,C在⊙A上,AB的垂直平分线交⊙A于点E,F,交线段AC 于点 D. 若∠BFC=20°,则∠DBC=(A. 30°B.29°C.28°D. 20°。
(完整版)中考复习--圆专题(所有知识点和题型汇总,全)
《圆》题型分类资料一.圆的有关概念:1.下列说法:①直径是弦②弦是直径③半圆是弧,但弧不一定是半圆④长度相等的两条弧是等弧,正确的命题有()A. 1 个B.2 个C.3 个D.4 个2.下列命题是假命题的是()A.直径是圆最长的弦B.长度相等的弧是等弧C.在同圆或等圆中,相等的圆心角所对的弧也相等D.如果三角形一边的中线等于这条边的一半,那么这个三角形是直角三角形。
3.下列命题正确的是()A.三点确定一个圆B.长度相等的两条弧是等弧C.一个三角形有且只有一个外接圆D.一个圆只有一个外接三角形4.下列说法正确的是( )A.相等的圆周角所对的弧相等B.圆周角等于圆心角的一半C.长度相等的弧所对的圆周角相等5.下面四个图中的角,为圆心角的是( )D.直径所对的圆周角等于90°A.B.C.D.二.和圆有关的角:1.如图1,点O 是△ABC 的内心,∠A=50 ,则∠BOC=图1 图22.如图2,若AB 是⊙O 的直径,CD 是⊙O 的弦,∠ABD=58°,则∠BCD 的度数为( )A.116°B.64°C. 58°D.32°3.如图3,点O 为优弧AB 所在圆的圆心,∠AOC=108°,点D 在AB 的延长线上,BD=BC,则∠D 的度数为ADOO1 2CDC图 3图 44.如图 4,AB 、AC 是⊙O 的两条切线,切点分别为 B 、C ,D 是优弧 BC 上的一点,已知∠BAC =80°,那么∠BDC =度.5. 如图 5,在⊙O 中, BC 是直径,弦 BA ,CD 的延长线相交于点 P ,若∠P =50°,则∠AOD =.PCBAOBC图 5 图 66. 如图 6,A ,B ,C ,是⊙O 上的三个点,若∠AOC =110°,则∠ABC =°.7. 圆的内接四边形 ABCD 中,∠A :∠B :∠C =2:3:7,则∠D 的度数为。
九年级数学《圆》单元小结复习(中考复习)
圆一、本章知识结构图二、本章知识点(一)圆的基本性质1.半圆与弧,直径与弦①半圆是弧,但弧不一定是半圆,等弧只能出现在同圆或等圆中,弧所对的圆心角等,弧长相等,这样的弧才是等弧.②直径是弦(图中最长的弦),但弦并非为直径.2.圆是轴对称图形,任何一条直径所在的直线都是它的对称轴.垂径定理及推论①推论中注意非直径的弦这个条件,其实一条直线满足下述五个条件的两个,就能推出其他三个.(i)过圆心;(i i)垂直弦;(i i i)平分弦;(iv)平分弦所对的劣弧;(v)平分弦所对的优劣.②过圆内一点最短弦的问题.③圆中两条平行所夹的弧相等.④垂直平分半径的弦的问题.如图CD为⊙O直径,AB为⊙O的弦,AB垂直平分OC.则△AOC、△BOC均为正三角形.⑤赵州桥问题,弦长a,弦心距d,半径r,弓形高之间的关系.3.圆的旋转的不变性弧、弦、圆心角之间的相等关系:在同圆或等圆中,两个圆心角,两条弧,两条弦中有一组量相等,它们所对应的其余各组量也相等.①一条弦对唯一圆心角,但对两条弧.②同圆或等圆中,弦等,弦心距等;弦长弦心距短. 4.圆周角、圆心角的关系定理及推论. ①圆周角的概念.②在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.③在同圆或等圆中,如果两个圆周角相等,则它们所对的弧相等. ④半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.EODCBAOBA CEDFOABPOA B CDM OCDABAOBC 12C 3CADB⑤圆周角、圆内角、圆外角的关系. ⑥圆内接四边形对角互补,逆命题亦真.⑦一组对边平行的圆内接四边形是矩形或等腰梯形. ⑧图中A 、B 、C 、D 共圆.⑨如果三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形.⑩矩形四个顶点共圆,菱形四边的中点共圆. (二)点、直线、圆和圆的位置关系. 1.点与圆的位置关系.①圆、圆内部、圆外部的集合观点的定义.②点与圆的位置关系与d 、r 数量关系的联系OP=d ,⊙O 的半径为r.③三点作圆问题.④三角形的外接圆;一个圆有无数个内接三角形,但一个三角形只有唯一一个外接圆;三角形的外心是三边垂直平分线的交点,它到三角形三个顶点距离相等;锐角三角形的外心在三角形内,直角三角形的外心是有斜边的中点,钝角三角形的外心在三角形之外.⑤反证法.2.直线与圆的位置关系.①判定方法:公共点的个数;d 、r 的关系判定.②切线的判定:(i )d=r ;(ii )经过半径的外端并且垂直于这条半径的直线是圆的切线.③切线的性质:(i )d=r ;(ii )切线垂直于过切点的半径;(iii )过切点垂直于切线的直线必过圆心;(iv )过圆心垂直于切线的直线必过切点;(v )直线与圆只有一个公共点.④判定切线时,若已知直线过圆上的点,连半径证垂直;OCBADACDBABCDOAlOBAC若没有给出直线过圆上的某点,作垂线段,证垂线段等于半径;切线问题常用的辅助线是将切点与圆心相连,构造垂直.⑤两条切线问题.(i )l 1、l 2分别切⊙O 于A 、B ,且l 1// l 2,则AB 为⊙O 的直径.反之,若AB 为⊙O 的直径,则 l 1// l 2.(ii )PA ·PB 切⊙O 于A 、B ,则PA =PB ;PO 平分∠APB ;BC//PO ;∠CAB =12∠APB ;⌒AE = ⌒BE ;BD 平分∠OBC ;∠ADB +∠APB =∠AEB ;E 为△PAB 的内心.⑥三条切线问题(i )三角形有唯一内切圆,圆心是三角形内角平分线的交点,叫三角形的内心,内心到三角形三边的距离相等,一个圆有无数个外切三角形.(ii )如图:△ABC 内切圆的半径r ,△ABC 的周长为l ,则△ABC 的面积12ABC S rl ∆=.(iii )若D 、E 、F 为切点,则AE =AF =12(AB+AC -BC ),BF =BD =12(AB +BC -AC ),CD =CE =12(AC+BC -AB )(iv )如图:Rt △ABC 中,∠C =90°,AB 、BC 、CA 的长分别为c 、a 、b.则r=12(a+b-c )或r=ab a b c++(v )PA 、PB 切⊙O 于A 、B ,C 为弧AB 上任一点,过C 的圆的切线交PA 于E ,交PB 于F ,则△PFE 的周长等于PA +PB ,∠FOE =90°-12∠P.(vi )AB 、BC 、CD 分别切⊙O 于E 、F 、G 且AB//CD.则BC=BE+CG ; ∠BOC=90°;以BC 为直径的圆与EG 相切.⑥四条切线问题(i )四边形ABCD 为⊙O 的外切四边形,则AB +CD=AD+BC.(三)正多边形和圆①将一个圆n 等分,依次连接每个分点得到的多边形是圆的内接正n 边形;过每个分点作圆的切线,OBC AFE DOC BAEAC BFEOPGE OAB CDFDABCFEDCBAABCDEOnOAB以相邻的切线的交点为顶点的多边形是圆的外切正n 边形.②正n 边形的n 条半径将正n 边形分成n 个全等的等腰三角形;半径、边心距将正n 边形分成2n 个全等的直角三角形.③各边相等的圆内接多边形是正多边形,但各角相等的圆内接多边形不一定是正多边形(如长方形);各角相等的圆外切多边形是正多边形,但各边相等的圆外切多边形不一定是正多边(如一般菱形).④正n 边形是轴对称图形,有n 条对称轴,偶数边正多边形是中心对称图形.(四)弧长和扇形面积 1.弧长、扇形面积2,180360n R n R l S ππ==扇形 12S lR =扇形其中l 为扇形的弧长,R 为半径.2.圆锥的侧面展开图.圆锥的侧面展开图是扇形.扇形的弧长是底面圆的周长,扇形面积是圆锥的侧面积. 四、典型问题1、如图,AB 是⊙O 的直径,点C 是BA 延长线上一点,CD 切⊙O 于D 点,弦DE//CB ,Q 是AB 上一动点,CA =1,CD 是⊙O 半径的3倍.(1)求⊙O 的半径R ;(2)在Q 从A 向B 运动的过程中,图中阴影部分的面积是否发生变化?若发生变化,请你指出变化范围;若不发生变化,请你求出其面积.BEF CA2、如图,O A ⊥BC ,∠AOB =50°,试确定∠ADC 的大小.3、如图,⊙O 的直径AB 为10cm ,弦AC 为6cm ,∠ACB 的平分线交⊙O 于D ,求BC 、AD 、BD 的长.4、如图,在△ABC 中,∠A =50°,⊙O 截△ABC 的三边所得的弦长相等,则∠BOC等于.DBOAC。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学圆的专题圆一、知识点梳理知识点1:圆的定义:1. 圆上各点到圆心的距离都等于 .2. 圆是对称图形,任何一条直径所在的直线都是它的;圆又是对称图形,是它的对称中心.知识点2:弦、弧、半圆、优弧、同心圆、等圆、等弧、圆心角、圆周角等与圆有关的概念1.在同圆或等圆中,相等的弧叫做2. 同弧或等弧所对的圆周角,都等于它所对的圆心角的 .3. 直径所对的圆周角是,90°所对的弦是 .例1 P为⊙O内一点,OP=3cm,⊙O半径为5cm,则经过P点的最短弦长为________;•最长弦长为_______.例2 如图,在Rt△ABC中,∠ACB=90度.点P是半圆弧AC的中点,连接BP交AC于点D,若半圆弧的圆心为O,点D、点E关于圆心O对称.则图中的两个阴影部分的面积S1,S2之间的关系是()A.S1<S2B.S1>S2C.S1=S2D.不确定例3 如图,正方形的边长为a,以各边为直径在正方形内画半圆,所围成的图形(阴影部分)的面积为()例4 车轮半径为0.3m的自行车沿着一条直路行驶,车轮绕着轴心转动的转速为100转/分,则自行车的行驶速度()A.3.6π千米/时 B.1.8π千米/时 C.30千米/时 D.15千米/时例5 如图,⊙O中,点A,O,D以及点B,O,C分别在一条直线上,图中弦的条数有()A.2条 B.3条 C.4条 D.5条知识点3:圆心角、弧、弦、弦心距之间的关系在同圆或等圆中,如果两个圆心角,两条弧,两条弦,两个圆周角中有一组量,那么它们所对应的其余各组量都分别 .知识点4:垂径定理垂直于弦的直径平分,并且平分;平分弦(不是直径)的垂直于弦,并且平分 .例1、如图(1)和图(2),MN是⊙O的直径,弦AB、CD•相交于MN•上的一点P,•∠APM=∠CPM.(1)由以上条件,你认为AB和CD大小关系是什么,请说明理由.(2)若交点P在⊙O的外部,上述结论是否成立?若成立,加以证明;若不成立,请说明理由.例2 在圆柱形油槽内装有一些油.截面如图,油面宽AB为6分米,如果再注入一些油后,油面AB上升1分米,油面宽变为8分米,圆柱形油槽直径MN为()A.6分米 B.8分米 C.10分米 D.12分米例3 小英家的圆形镜子被打碎了,她拿了如图(网格中的每个小正方形边长为1)的一块碎片到玻璃店,配制成形状、大小与原来一致的镜面,则这个镜面的半径是()例4如图所示,某宾馆大厅要铺圆环形的地毯,工人师傅只测量了与小圆相切的大圆的弦AB 的长,就计算出了圆环的面积,若测量得AB的长为20米,则圆环的面积为()A.10平方米 B.10π平方米 C.100平方米 D.100π平方米例5 为了测量一铁球的直径,将该铁球放入工件槽内,测得有关数据如图所示(单位:cm),则该铁球的直径为()A.8.8cm B.8cm C.9cm D.10cm角形,则四边形ABCD的周长P的取值范围是()知识点5:确定圆的条件及内切圆三角形的三个顶点确定一个圆,这个圆叫做三角形的___________、这个圆的圆心叫做三角形的、这个三角形是圆的 .切线的判定与性质判定切线的方法有三种:①利用切线的定义:即与圆有的直线是圆的切线。
②到圆心的距离等于的直线是圆的切线。
③经过半径的外端点并且于这条半径的直线是圆的切线。
切线的五个性质:①切线与圆只有公共点;②切线到圆心的距离等于圆的;③切线垂直于经过切点的;④经过圆心垂直于切线的直线必过;⑤经过切点垂直于切线的直线必过。
三角形内切圆和三角形各边都相切的圆叫做三角形的,三角形内切圆的圆心叫三角形的 .切线长定理经过圆外一点作圆的切线,这点与之间的线段的长度,叫做这点到圆的切线长.过圆外一点可以引圆的两条切线,它们的相等,这一点和圆心的连线平分两条切线的 .例⊙O的直径等于()例2 如图,在坐标平面上,Rt△ABC为直角三角形,∠ABC=90°,AB垂直x轴,M为Rt △ABC的外心.若A点坐标为(3,4),M点坐标为(-1,1),则B点坐标为何()A.(3,-1) B.(3,-2) C.(3,-3) D.(3,-4)例3 如图所示,已知⊙O是△ABC的外接圆,AD是⊙O的直径,连接CD,若AD=3,AC=2,则cosD的值为()知识点6:点与圆的位置关系(1)点与圆的位置关系:点在圆内、点在圆上、点在圆外.其中r为圆的半径,d为点到圆心的距离,例1 如图,在Rt ABC△中,直角边3AB=,4BC=,点E,F分别是BC,AC的中点,以点A 为圆心,AB 的长为半径画圆,则点E 在圆A 的_________,点F 在圆A 的_________.例2 在直角坐标平面内,圆O 的半径为5,圆心O 的坐标为(14)--,.试判断点(31)P -,与圆O 的位置关系.例3 如图,铁路MN 和公路PQ 在点O 处交汇,∠QON=30°,公路PQ 上A 处距离O 点240米,如果火车行驶时,周围200米以内会受到噪音的影响,那么火车在铁路MN 上沿MN 方向以72千米/小时的速度行驶时,A 处受到噪音影响的时间为( )A .12秒B .16秒C .20秒D .24秒例4 矩形ABCD 中,AB=8,BC=3为圆心,PD 为半径的圆,那么下列判断正确的是( )A .点B 、C 均在圆P 外 B .点B 在圆P 外、点C 在圆P 内C .点B 在圆P 内、点C 在圆P 外D .点B 、C 均在圆P 内例5 一个点到圆的最大距离为11cm ,最小距离为5cm ,则圆的半径为( )A .16cm 或6cmB .3cm 或8cmC .3cmD .8cm知识点7:直线与圆的位置关系直线与圆的位置关系有三种:相交 、相切、相离.设r 为圆的半径,d 为圆心到直线的距离,直线与圆的位置关系如下表:例1、在中,BC=6cm,∠B=30°,∠C=45°,以A为圆心,当半径r多长时所作的⊙A与直线BC相切?相交?相离?例2.如图,AB为⊙O的直径,C是⊙O上一点,D在AB的延长线上,且∠DCB=•∠A.(1)CD与⊙O相切吗?如果相切,请你加以证明,如果不相切,请说明理由.(2)若CD与⊙O相切,且∠D=30°,BD=10,求⊙O的半径.例3 如图,在平面直角坐标系中,⊙O的半径为1,则直线A.相离 B.相切 C.相交 D.以上三种情况都有可能例4 如图,已知线段OA交⊙O于点B,且OB=AB,点P是⊙O上的一个动点,那么∠OAP的最大A.30° B.45° C.60° D.90°知识点8:圆和圆的位置关系设两圆半径分别为R和r。
圆心距为d。
(R>r)1. 两圆外离 _____________;2. 两圆外切_____________;3. 两圆相交______________;4. 两圆内切_____________;5. 两圆内含______________.例1.如图所示,点A坐标为(0,3),OA半径为1,点B在x轴上.(1)若点B坐标为(4,0),⊙B半径为3,试判断⊙A与⊙B位置关系;(2)若⊙B过M(-2,0)且与⊙A相切,求B点坐标.例2已知两圆半径r1、r2分别是方程x2-7x+10=0的两根,两圆的圆心距为7,则两圆的位置关A.相交 B.内切 C.外切 D.外离例3如图,⊙O1,⊙O,⊙O2的半径均为2cm,⊙O3,⊙O4的半径均为1cm,⊙O与其他4个圆均相外切,图形既关于O1O2所在直线对称,又关于O3O4所在直线对称,则四边形O1O4O2O3的面积为()A.12cm2 B.24cm2 C.36cm2 D.48cm2例4定圆O的半径是4cm,动圆P的半径是2cm,动圆在直线l上移动,当两圆相切时,OP的值是()A.2cm或6cm B.2cm C.4cm D.6cm课堂小结:一、这章有三条常用辅助线:一是圆心距,第二是直径圆周角,第三条是切线径,就是连接圆心和切点的,或者是连接圆周角的距离。
二、有几个分析题目的思路,在圆中有一个非常重要,就是弧、弦与圆周角互相转换,那么怎么去应用,就根据题目条件而定。
作业一、选择题1.(北京市西城区)如图,BC 是⊙O 的直径,P 是CB 延长线上一点,PA 切⊙O 于点A ,如果PA =3,PB =1,那么∠APC 等于 ()(A ) 15 (B ) 30 (C ) 45 (D ) 602.(北京市西城区)如果圆柱的高为20厘米,底面半径是高的41, 那么这个圆柱的侧面积是 ()(A )100π平方厘米 (B )200π平方厘米(C )500π平方厘米 (D )200平方厘米3.(北京市西城区)“圆材埋壁”是我国古代著名的数学菱《九章算术》中的一个问题,“今在圆材,埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”用现在的数学语言表述是:“如图,CD 为⊙O 的直径,弦AB ⊥CD ,垂足为E ,CE =1寸,AB =10寸,求直径CD 的长”.依题意,CD 长为 ( )(A )225寸 (B )13寸 (C )25寸 (D )26寸4.(北京市朝阳)已知:如图,⊙O 半径为5,PC 切⊙O 于点C ,PO 交⊙O 于点A ,PA =4,那么PC 的长等于( )(A )6 (B )25 C )210 (D )2145.(北京市朝阳)如果圆锥的侧面积为20π平方厘米,它的母线长为5厘米,那么此圆锥的底面半径的长等于( )(A )2厘米 (B )22厘米 (C )4厘米 (D )8厘米二、填空题1.(北京市东城区)如图,AB 、AC 是⊙O 的两条切线,切点分别为B 、C ,D 是优弧上的一点,已知∠BAC = 80,那么∠BDC =__________度.2.(北京市东城区)在Rt △ABC 中,∠C = 90,A B=3,BC =1,以AC 所在直线为轴旋转一周,所得圆锥的侧面展开图的面积是__________.3.(北京市海淀区)如果圆锥母线长为6厘米,那么这个圆锥的侧面积是_______平方厘米4.(北京市海淀区)一种圆状包装的保鲜膜,如图所示,其规格为“20厘米×60米”,经测量这筒保鲜膜的内径1ϕ、外径2ϕ的长分别为3.2厘米、4.0厘米,则该种保鲜膜的厚度约为_________厘米(π取3.14,结果保留两位有效数字).三、解答题:1.(苏州市)已知:如图,△ABC 内接于⊙O ,过点B 作⊙O 的切线,交CA 的延长线于点E ,∠EBC =2∠C .①求证:AB =AC ;②若tan ∠ABE =21,(ⅰ)求BC AB 的值;(ⅱ)求当AC =2时,AE 的长.2.(广州市)如图,PA 为⊙O 的切线,A 为切点,⊙O 的割线PBC 过点O 与⊙O 分别交于B 、C ,PA =8cm ,PB =4cm ,求⊙O 的半径.3.(河北省)已知:如图,BC 是⊙O 的直径,AC 切⊙O 于点C ,AB 交⊙O 于点D ,若AD ︰DB =2︰3,AC =10,求sin B 的值.4.(北京市海淀区)如图,PC 为⊙O 的切线,C 为切点,PAB 是过O 的割线,CD ⊥AB于点D ,若tan B =21,PC =10cm ,求三角形BCD 的面积.5.(宁夏回族自治区)如图,在两个半圆中,大圆的弦MN与小圆相切,D为切点,且MN∥AB,MN=a,ON、CD分别为两圆的半径,求阴影部分的面积.6.(四川省)已知,如图,以△ABC的边AB作直径的⊙O,分别并AC、BC于点D、E,弦FG∥AB,S△CDE︰S△ABC=1︰4,DE=5cm,FG=8cm,求梯形AFGB的面积.7.(贵阳市)如图所示:PA为⊙O的切线,A为切点,PBC是过点O的割线,PA=10,PB=5,求:(1)⊙O的面积(注:用含π的式子表示);(2)cos∠BAP的值.。