南开20秋学期《概率论与数理统计》在线作业答案
概率论与数理统计课后习题答案(非常全很详细)
0.8 0.1
4 0.3077
0.8 0.1 0.2 0.9 13
即考试不及格的学生中努力学习的学生占 30.77%.
26. 将两信息分别编码为 A 和 B 传递出来,接收站收到时,A 被误收作 B 的概率为 0.02,而
B 被误收作 A 的概率为 0.01.信息 A 与 B 传递的频繁程度为 2∶1.若接收站收到的信息是
P( A1
B)
P( A1B) P(B)
P(B
A 1
)
P(
A1
)
2
P(B Ai )P( Ai )
i0
2 / 31/ 3
1
1/ 31/ 3 2 / 31/ 3 11/ 3 3
28. 某工厂生产的产品中 96%是合格品,检查产品时,一个合格品被误认为是次品的概率
为 0.02,一个次品被误认为是合格品的概率为 0.05,求在被检查后认为是合格品产品确
≤M)正品(记为 A)的概率.如果: (1) n 件是同时取出的; (2) n 件是无放回逐件取出的; (3) n 件是有放回逐件取出的.
【解】(1)
P(A)=
C
m M
Cnm N M
/ CnN
(2) 由于是无放回逐件取出,可用排列法计算.样本点总数有 PNn 种,n 次抽取中有 m
次为正品的组合数为
C
m n
种.对于固定的一种正品与次品的抽取次序,从
M
件正
品中取
m
件的排列数有 PMm
种,从
NM
件次品中取
nm
件的排列数为
Pnm N M
种,
故
P(A)=
Cmn PMm
Pnm N M
PNn
南开大学20秋《概率论与统计原理》在线作业-2(参考答案)
1.在参数估计中利用t分布构造置信区间的条件是()。
A.总体分布需服从正态分布,且方差已知B.总体分布需服从正态分布,且方差未知C.总体不一定是正态分布,但需要大样本D.总体不一定是正态分布,但需要方差已知答案:B2.题面见图片A.AB.BC.CD.D答案:C3.题面见图片A.AB.BC.CD.D答案:C4.设某批产品中甲、乙、丙三个厂家的产量分别占45%,35%,20%,各厂产品中次品率分别为4%、2%和5%。
现从中任取一件,取到的恰好是次品的概率为()。
A.0.035B.0.038C.0.045D.0.076答案:A5.设有3箱同型号零件,里面分别装有10件、15件和25件,而其中一等品分别有7件、8件和20件。
现随机抽取一箱,然后从中抽出一个零件,则抽到的零件是一等品的概率为()。
B.20/90C.29/90D.61/90答案:A6.题面见图片A.AB.BC.CD.D答案:B7.题面见图片A.AB.BC.CD.D答案:A8.设箱中有a个红球和b个黑球,从中任意不放回地取出2个球,则第2次取出的球是黑球的概率为()。
A.a/(a+b)B.a/(a+b-1)C.(a-1)/(a+b-1)D.b/(a+b)答案:D9.设A,B为两个事件,且A与B相互独立。
已知P(A)=0.9,P(B)=0.8,则P(A -B)=()。
A.0B.0.18D.0.98答案:B10.题面见图片A.AB.BC.CD.D答案:A11.某食品厂规定其袋装食品每包的平均重量不低于500克,否则不能出厂。
现对一批产品进行出厂检验时,要求有99%的可靠性实现其规定,其原假设和对立假设应该是()。
A.H0∶μ=500,H1∶μ≠500B.H0∶μ≥500,H1∶μ<500C.H0∶μ≤500,H1∶μ>500D.H0∶μ>500,H1∶μ≤500答案:C12.设随机变量X服从参数为1的指数分布,则E[X^2]()。
南开大学20秋《概率论与统计原理》在线作业(参考答案)
1.设随机变量X的分布函数为F(x),则Y=2X+1的分布函数为()。
A.F(0.5y-0.5)B.F(2y+1)C.2F(y)+1D.0.5F(y)-0.5答案:A2.题面见图片A.AB.BC.CD.D答案:C3.设随机变量X服从参数为1的指数分布,则E(X+e-2X)=()。
A.1B.1.5C.4/3D.2答案:A4.已知随机变量X满足P{|X-EX|≥2}=1/16,则必有()。
A.DX=1/4B.DX≥1/4C.P{|X-EX|<2}=15/16D.DX<1/4答案:A5.如果X服从正态分布N(μ,16),Y服从正态分布N(μ,25)。
令A=P{X<μ-4},B=P{Y>μ+5},则()。
A.对任意实数μ,都有A=BB.对任意实数μ,都有A<BC.只对个别实数μ,才有A=BD.对任意实数μ,都有A>B答案:A6.设随机变量X在区间[-2,6]上服从均匀分布,则E(X^2)=()。
A.1B.3C.4D.6答案:B7.已知连续型随机变量X的概率密度为Φ(X)=,则DX=()。
A.0.25B.0.5C.1D.2答案:A8.设一次试验成功的概率为p,进行100次独立重复试验,当p=()时,成功次数的标准差的值为最大。
A.0B.0.25C.0.5D.0.75答案:C9.题面见图片A.AB.BC.CD.D10.题面见图片A.AB.BC.CD.D答案:A11.题面见图片A.AB.BC.CD.D答案:A12.题面见图片A.AB.BC.CD.D答案:A13.在抽样方式与样本容量不变的情况下,要求提高置信时,就会()。
A.缩小置信区间B.不影响置信区间C.可能缩小也可能增大置信区间D.增大置信区间答案:D14.掷一枚硬币,当投掷次数充分大时,正面朝上的频率依概率将收敛于()。
A.0.49B.0.5D.0.51答案:B15.设随机变量X~N(0,1),则方程t2+2×t+4=0没有实根的概率为()。
概率论与数理统计(第四版)习题答案全
概率论与数理统计(第四版)习题答案全概率论与数理统计习(第四版)题解答第一章 随机事件及其概率·样本空间·事件的关系及运算一、任意抛掷一颗骰子,观察出现的点数。
设事件A 表示“出现偶数点”,事件B 表示“出现的点数能被3整除”.(1)写出试验的样本点及样本空间;(2)把事件A 及B 分别表示为样本点的集合;(3)事件B A AB B A B A ,,,,分别表示什么事件?并把它们表示为样本点的集合.解:设i ω表示“出现i 点”)6,,2,1( =i ,则(1)样本点为654321,,,,,ωωωωωω;样本空间为}.,,,,,{654321ωωωωωω=Ω (2)},,{642ωωωA =; }.,{63ωωB =(3)},,{531ωωωA =,表示“出现奇数点”;},,,{5421ωωωωB =,表示“出现的点数不能被3整除”;},,,{6432ωωωωB A =⋃,表示“出现的点数能被2或3整除”;}{6ωAB =,表示“出现的点数能被2整除且能被3整除”;},{B A 51ωω= ,表示“出现的点数既不能被2整除也不能被3整除”二、写出下列随机试验的样本空间及各个事件中的样本点:(1)同时掷三枚骰子,记录三枚骰子的点数之和.A —“点数之和大于10”,B —“点数之和小于15”.(2)一盒中有5只外形相同的电子元件,分别标有号码1,2,3,4,5.从中任取3只,A —“最小号码为1”.解:(1) 设i ω表示“点数之和等于i ”)18,,4,3( =i ,则},,,{1843ωωω =Ω;},,,{181211ωωωA =;}.,,,{1443ωωωB =(2) 设ijk ω表示“出现号码为k j i ,,”);5,,2,1,,(k j i k j i ≠≠= ,则},,,,,,,,,{345245235234145135134125124123ωωωωωωωωωω=Ω }.,,,,,{145135134125124123ωωωωωωA =三、设C B A ,,为三个事件,用事件之间的运算表示下列事件: (1) A 发生, B 与C 都不发生; (2) C B A ,,都发生;(3) C B A ,,中至少有两个发生; (4) C B A ,,中至多有两个发生. 解:(1) C B A ;(2) ABC ;(3) ABC C AB C B A BC A ⋃⋃⋃或CA BC AB ⋃⋃(4) BC A C B A C AB C B A C B A C B A C B A ⋃⋃⋃⋃⋃⋃或C B A ⋃⋃或.ABC四、一个工人生产了n 个零件,以i A 表示他生产的第 i 个零件是合格品(n i ≤≤1).用i A 表示下列事件:(1)没有一个零件是不合格品; (2)至少有一个零件是不合格品; (3)仅有一个零件是不合格品;(4)至少有一个零件不是不合格品. 解:(1) n A A A 21;(2) n A A A 21或n A A A ⋃⋃⋃ 21; (3) n n n A A A A A A A A A 212121⋃⋃⋃ (4) n A A A ⋃⋃⋃ 21或.21n A A A第二章 概率的古典定义·概率加法定理一、电话号码由七个数字组成,每个数字可以是0,1,2,…,9中的任一个数(但第一个数字不能为0),求电话号码是由完全不同的数字组成的概率.解:基本事件总数为611011011011011011019109⨯=C C C C C C C 有利事件总数为456789214151617181919⨯⨯⨯⨯⨯=C C C C C C C 设A 表示“电话号码是由完全不同的数字组成”,则0605.0109456789)(62≈⨯⨯⨯⨯⨯⨯=A P 二、把十本书任意地放在书架上,求其中指定的三本书放在一起的概率.解:基本事件总数为!101010=A 指定的三本书按某确定顺序排在书架上的所有可能为!777=A 种;这三本书按确定的顺序放在书架上的所以可能的位置共818=C 种;这三本书的排列顺序数为!333=A ;故有利事件总数为!3!8!38!7⨯=⨯⨯(亦可理解为)3388P P设A 表示“指定的三本书放在一起”,则067.0151!10!3!8)(≈=⨯=A P三、为了减少比赛场次,把二十个队任意分成两组(每组十队)进行比赛,求最强的两个队被分在不同组内的概率.解:20个队任意分成两组(每组10队)的所以排法,构成基本事件总数1020C ;两个最强的队不被分在一组的所有排法,构成有利事件总数91812C C 设A 表示“最强的两队被分在不同组”,则526.01910)(102091812≈==C C C A P四、某工厂生产的产品共有100个,其中有5个次品.从这批产品中任取一半来检查,求发现次品不多于1个的概率.解:设i A 表示“出现的次品为i 件”)5,4,3,2,1,0(=i ,A 表示“取出的产品中次品不多于 1个”,则 .10A A A ⋃=因为V A A =10,所以).()()(10A P A P A P +=而0281.0979942347)(5010050950≈⨯⨯⨯==C C A P 1529.09799447255)(501004995151≈⨯⨯⨯⨯==C C C A P故 181.01529.00281.0)(=+≈A P五、一批产品共有200件, 其中有6件废品.求 (1) 任取3件产品恰有1件是废品的概率; (2) 任取3件产品没有废品的概率; (3) 任取3件产品中废品不少于2件的概率. 解:设A 表示“取出的3件产品中恰有1件废品”;B 表示“取出的3件产品中没有废品”;C 表示“取出的3件产品中废品不少于2件”,则 (1) 0855.019819920019319418)(3200219416≈⨯⨯⨯⨯==C C C A P (2) 912.0198199200192193194)(32003194≈⨯⨯⨯⨯==C C B P(3) 00223.019819920012019490)(3200019436119426≈⨯⨯⨯⨯=+=C C C C C C P六、设41)( ,0 ,31)()()(======BC P P(AC)P(AB)C P B P A P .求A , B , C 至少有一事件发生的 概率.解:因为0==P(AC)P(AB),所以V AC V AB ==,,从而V C AB =)(可推出0)(=ABC P设D 表示“A , B , C 至少有一事件发生”,则C B A D ⋃⋃=,于是有)()()()()()()()()(ABC P CA P BC P AB P C P B P A P C B A P D P +---++=⋃⋃=75.04341313131==-++=第三章 条件概率与概率乘法定理·全概率公式与贝叶斯公式一、设,6.0)|(,4.0)(,5.0)(===B A P B P A P 求)|(,)(B A A P AB P . 解:因为B A AB B B A A +=+=)(,所以)()()(B A P AB P A P +=,即14.06.0)4.01(5.0)()()()()()(=⨯--=-=-=B A P B P A P B A P A P AB P68.074.05.036.0)4.01(5.05.0)()()()()()]([)|(≈=--+=-+==B A P B P A P A P B A P B A A P B A A P二、某人忘记了电话号码的最后一个数字,因而他随意地拨号,求他拨号不超过两次而接通所需电话的概率.若已知最后一个数字是奇数,那么此概率是多少? 解:设A 表示“第一次拨通”,B 表示“第二次拨通”,C 表示“拨号不超过两次而拨通”(1)2.0101101)()()(19111101911011=+=⋅+=+=C C C C C C A B P A P C P(2)4.05151)()()(2511141511=+=+=+=A A A A A A B P A P C P三、两台车床加工同样的零件,第一台出现废品的概率是0.03,第二台出现废品的概率是0.02.加工出来的零件放在一起,并且已知第一台加工的零件比第二台加工的零件多一倍.(1)求任意取出的零件是合格品的概率;(2)如果任意取出的零件是废品,求它是第二台车床加工的概率. 解:设i A 表示“第i 台机床加工的零件”)2,1(=i ;B 表示“出现废品”;C 表示“出现合格品”(1))()()()()()()()(22112121A C P A P A C P A P C A P C A P C A C A P C P +=+=+= 973.0)02.01(31)03.01(32≈-⨯+-⨯=(2)25.002.03103.03202.031)()()()()()()()()(22112222=⨯+⨯⨯=+==A B P A P A B P A P A B P A P B P B A P B A P四、猎人在距离100米处射击一动物,击中的概率为0.6;如果第一次未击中,则进行第二次射击,但由于动物逃跑而使距离变为150米;如果第二次又未击中,则进行第三次射击,这时距离变为200米.假定击中的概率与距离成反比,求猎人三次之内击中动物的概率.解:设i A 表示“第i 次击中”)3,2,1(=i ,则由题设,有1006.0)(1kA P ==,得60=k ,从而有4.015060150)(2===k A P ,.3.020060200)(3===k A P设A 表示“三次之内击中”,则321211A A A A A A A ++=,故有)()()()()()()(321211A P A P A P A P A P A P A P ++=832.03.0)4.01()6.01(4.0)6.01(6.0=⨯-⨯-+⨯-+= (另解)设B 表示“猎人三次均未击中”,则168.0)3.01)(4.01)(6.01()(=---=B P故所求为 832.0)(1)(=-=B P B P五、盒中放有12个乒乓球,其中有9个是新的.第一次比赛时从其中任取3个来用,比赛后仍放回盒中.第二次比赛时再从盒中任取3个,求第二次取出的都是新球的概率. 解:设i A 表示“第一次取得i 个新球”)3,2,1,0(=i ,则2201)(312330==C C A P 22027)(31219231==C C C A P 220108)(31229132==C C C A P 22084)(31239033==C C C A P 设B 表示“第二次取出的都是新球”,则312363123731238312393022084220108220272201)()()(C C C C C C C C A B P A P B P i i i ⋅+⋅+⋅+⋅==∑=146.0532400776161112208444722010855142202755212201≈=⋅+⋅+⋅+⋅=第四章 随机事件的独立性·独立试验序列一、一个工人看管三台车床,在一小时内车床不需要工人照管的概率:第一台等于0.9,第二台等于0.8,第三台等于0.7.求在一小时内三台车床中最多有一台需要工人照管的概率. 解:设i A 表示“第i 台机床不需要照管”)3,2,1(=i ,则9.0)(1=A P 8.0)(2=A P 7.0)(3=A P再设B 表示“在一小时内三台车床中最多有一台需要工人照管”,则321321321321A A A A A A A A A A A A B +++= 于是有)()()()()()()()()()()()()(321321321321A P A P A P A P A P A P A P A P A P A P A P A P B P +++= )7.01(8.09.07.0)8.01(9.07.08.0)9.01(7.08.09.0-⨯⨯+⨯-⨯+⨯⨯-+⨯⨯=902.0=.(另解)设i B 表示“有i 台机床需要照管”)1,0(=i ,B 表示“在一小时内三台车床中最多有一台需要工人照管”,则10B B B +=且0B 、1B 互斥,另外有 504.07.08.09.0)(0=⨯⨯=B P398.0)7.01(8.09.07.0)8.01(9.07.08.0)9.01()(1=-⨯⨯+⨯-⨯+⨯⨯-=B P 故902.0398.0504.0)()()()(1010=+=+=+=B P B P B B P B P .二、电路由电池a 与两个并联的电池b 及c 串联而成.设电池c b a ,,损坏的概率分别是0.3、0.2、0.2,求电路发生间断的概率. 解:设1A 表示“a 损坏”;2A 表示“b 损坏”;3A 表示“c 损坏”;则3.0)(1=A P 2.0)()(32==A P A P 又设B 表示“电路发生间断”,则321A A A B += 于是有)()()()()(321321321A A A P A A P A P A A A P B P -+=+=)()()()()()(321321A P A P A P A P A P A P -+=328.02.02.03.02.02.03.0=⨯⨯-⨯+=.三、三个人独立地去破译一个密码,他们能译出的概率分别为51、31、41,求能将此密码译出的概率.解:设A 表示“甲能译出”;B 表示“乙能译出”;C 表示“丙能译出”,则51)(=A P 31)(=B P 41)(=C P设D 表示“此密码能被译出”,则C B A D ⋃⋃=,从而有)()()()()()()()()(ABC P CA P BC P AB P C P B P A P C B A P D P +---++=⋃⋃=)()()()()()()()()()()()(C P B P A P A P C P C P B P B P A P C P B P A P +---++= 6.0413151415141513151413151=⨯⨯+⨯-⨯-⨯-++=. (另解)52)411)(311)(511()()()()()(=---===C P B P A P C B A P D P ,从而有6.053521)(1)(==-=-=D P D P四、甲、乙、丙三人同时对飞机进行射击,三人的命中概率分别为7.0,5.0,4.0.飞机被一人击中而被击落的概率为2.0,被两人击中而被击落的概率为6.0,若三人都击中,则 飞机必被击落.求飞机被击落的概率. 解:设1A 表示“甲命中”;2A 表示“乙命中”;3A 表示“丙命中”;则4.0)(1=A P5.0)(2=A P 7.0)(3=A P 设i B 表示“i 人击中飞机” )3,2,1,0(=i ,则09.0)7.01)(5.01)(4.01()())(()()(3213210=---===A P A P A P A A A P B P)()(3213213211A A A A A A A A A P B P ++=)()()(321321321A A A P A A A P A A A P ++=)()()()()()()()()(321321321A P A P A P A P A P A P A P A P A P ++=36.07.0)5.01)(4.01()7.01(5.0)4.01()7.01)(5.01(4.0=⨯--+-⨯⨯-+--⨯=)()(3213213212A A A A A A A A A P B P ++= )()()(321321321A A A P A A A P A A A P ++=)()()()()()()()()(321321321A P A P A P A P A P A P A P A P A P ++=41.07.0)5.01)(4.01()7.01(5.0)4.01()7.01)(5.01(4.0=⨯--+-⨯⨯-+--⨯=14.07.05.04.0)()()()()(3213213=⨯⨯===A P A P A P A A A P B P 设A 表示“飞机被击落”,则由题设有0)(0=B A P 2.0)(1=B A P 6.0)(2=B A P 1)(3=B A P故有458.0114.06.041.02.036.0009.0)()()(30=⨯+⨯+⨯+⨯==∑=i i i B A P B P A P .五、某机构有一个9人组成的顾问小组,若每个顾问贡献正确意见的概率都是0.7,现在该机构内就某事可行与否个别征求每个顾问的意见,并按多数人意见作出决策,求作 出正确决策的概率.解:设i A 表示“第i 人贡献正确意见”,则7.0)(=i A P )9,,2,1( =i .又设m 为作出正确意见的人数,A 表示“作出正确决策”,则)9()8()7()6()5()5()(99999P P P P P m P A P ++++=≥=+⋅⋅+⋅⋅+⋅⋅=277936694559)3.0()7.0()3.0()7.0()3.0()7.0(C C C 9991889)7.0()3.0()7.0(⋅+⋅⋅+C C+⋅⋅+⋅⋅+⋅⋅=273645)3.0()7.0(36)3.0()7.0(84)3.0()7.0(126918)7.0()3.0()7.0(9+⋅⋅+0403.01556.02668.02668.01715.0++++= 901.0=.六、每次试验中事件A 发生的概率为p ,为了使事件A 在独立试验序列中至少发生一次的概率不小于p ,问至少需要进行多少次试验? 解:设做n 次试验,则n p A P A P )1(1}{1}{--=-=一次都不发生至少发生一次要p p n ≥--)1(1,即要p p n -≤-1)1(,从而有.1)1(log )1(=-≥-p n p 答:至少需要进行一次试验.第五章离散随机变量的概率分布·超几何分布·二项分布·泊松分布一、一批零件中有9个合格品与3个废品.安装机器时从这批零件中任取1个.如果每次取出的废品不再放回去,求在取得合格品以前已取出的废品数的概率分布.解:设X表示“在取得合格品以前已取出的废品数”,则X的概率分布为即亦即二、自动生产线在调整以后出现废品的概率为p.生产过程中出现废品时立即进行调整.求在两次调整之间生产的合格品数的概率分布.解:设X表示“在两次调整之间生产的合格品数”,且设=1,则ξ的概率分布为q-p三、 已知一批产品共20个,其中有4个次品.(1)不放回抽样.抽取6个产品,求样品中次品数的概率分布;(2)放回抽样.抽取6个产品,求样品中次品数的概率分布. 解:(1)设X 表示“取出的样本中的次品数”,则X 服从超几何分布,即X 的概率函数为)4,3,2,0()(6206164===-x CCC x X P x x从而X 的概率分布为即(2)设X 表示“取出的样本中的次品数”,则X 服从超几何分布,即X 的概率函数为)6,5,4,3,2,0()2.01()2.0()(66=-==-x C x X P xxx从而X 的概率分布为即四、 电话总机为300个电话用户服务.在一小时内每一电话用户使用电话的概率等于0.01,求在一小时内有4个用户使用电话的概率(先用二项分布计算,再用泊松分布近似计算,并求相对误差). 解:(1)用二项分布计算)01.0(=p168877.0)01.01()01.0()1()4(2964430029644300≈-=-==C p p C ξP(2)用泊松分布计算)301.0300(=⨯==np λ168031355.0!43)4(34≈==-e ξP 相对误差为.5168877.0168031355.0168877.000≈-=δ五、 设事件A 在每一次试验中发生的概率为0.3,当A 发生次数不少于3次时,指示灯发出信号.现进行了5次独立试验,求指示灯发出信号的概率. 解:设X 表示“事件A 发生的次数”,则3.0)(==p A P ,5=n ,).3.0,5(~B X 于是有)5()4()3()3(=+=+==≥X P X P X P X P5554452335)1()1(p C p p C p p C +-+-=16308.000243.002835.01323.0≈++≈(另解) )2()1()0(1)3(1)3(=-=-=-=<-=≥X P X P X P X P X P 32254115505)1()1()1(11p p C p p C p p C ------=16308.0≈六、 设随机变量X 的概率分布为2, 1, ,0 , !)(===k k ak X P kλ;其中λ>0为常数,试确定常数a .解:因为∑∞===01)(k k X P ,即∑∞==01!k kk λa ,亦即1=λae ,所以.λe a -=第六章 随机变量的分布函数·连续随机变量的概率密度一、 函数211x +可否是连续随机变量X 的分布函数?为什么?如果X 的可能值充满区间: (1)(∞+∞- ,);(2)(0,∞-). 解:(1)设211)(x x F +=,则1)(0<<x F因为0)(lim =-∞→x F x ,0)(lim =+∞→x F x ,所以)(x F 不能是X 的分布函数.(2)设211)(x x F +=,则1)(0<<x F 且0)(lim =-∞→x F x ,1)(lim 0=-→x F x因为)0( 0)1(2)('22<>+-=x x x x F ,所以)(x F 在(0,∞-)上单增.综上述,故)(x F 可作为X 的分布函数.二、函数x x f sin )(=可否是连续随机变量X 的概率密度?为什么?如果X 的可能值充满区间:(1)⎥⎦⎤⎢⎣⎡2,0π; (2)[]π,0; (3)⎥⎦⎤⎢⎣⎡23,0π. 解:(1)因为⎥⎦⎤⎢⎣⎡∈2,0πx ,所以sin )(≥=x x f ;又因为1cos )(2020=-=⎰ππx dx x f ,所以当⎥⎦⎤⎢⎣⎡∈2,0πx时,函数x x f sin )(=可作为某随机变量X 的概率密度.(2)因为[]πx ,0∈,所以0sin )(≥=x x f ;但12cos )(00≠=-=⎰ππx dx x f ,所以当[]πx ,0∈时,函数x x f sin )(=不可能是某随机变量X 的概率密度.(3)因为⎥⎦⎤⎢⎣⎡∈23,0πx ,所以x x f sin )(=不是非负函数,从而它不可能是随机变量X 的概率密度.二、 一批零件中有9个合格品与3个废品.安装机器时从这批零件中任取1个.如果每次取出的废品不再放回去,求在取得合格品以前已取出的废品数的分布函数,并作出分布函数的图形. 解:设X 表示“取出的废品数”,则X 的分布律为⎪⎪⎪⎩⎪⎪⎪⎨⎧>≤<≤<≤<≤=3,132,22021921,222110,430,0)(x x x x x x F四、(柯西分布)设连续随机变量X 的分布函数为+∞<<∞-+=x x B A x F ,arctan )(.求:(1)系数A 及B ;(2)随机变量X 落在区间)1 ,1(-内的概率;(3) X 的概率密度.解:(1) 由0)2()(lim =-⋅+=-∞→πB A x F x ,12)(lim =⋅+=-∞→πB A x F x ,解得.1,21πB A == 即)( ,arctan 121)(+∞<<-∞+=x x πx F . (2).21)]1arctan(121[]1arctan 121[)1()1()11(=-+-+=--=<<-ππF F X P(3) X 的概率密度为)1(1)()(2x x F x f +='=π.五、(拉普拉斯分布)设随机变量X 的概率密度为+∞<<∞-=-x Ae x f x,)(.求:(1)系数A ;(2)随机变量X 落在区间)1,0(内的概率;(3)随机变量X 的分布函数.解:(1) 由1)(⎰+∞∞-=dx x f ,得1220⎰⎰+∞∞-+∞--===A dx e A dx Ae xx,解得21=A ,即有).( ,21)(+∞<<-∞=-x e x f x(2)).11(21)(2121)()10(101010ee dx e dx xf X P x x -=-===<<--⎰⎰(3) 随机变量X 的分布函数为⎪⎩⎪⎨⎧>-≤===-∞--∞-⎰⎰21102121)()(x e x e dx e dx x f x F x xx xx .第七章 均匀分布·指数分布·随机变量函数的概率分布一、公共汽车站每隔5分钟有一辆汽车通过.乘客到达汽车站的任一时刻是等可能的.求乘客候车时间 不超过3分钟的概率.解:设随机变量X 表示“乘客的候车时间”,则X 服从]5,0[上的均匀分布,其密度函数为⎩⎨⎧∉∈=]5,0[,0]5,0[,51)(x x x f 于是有.6.053)()30(3===≤≤⎰dx x f X P二、已知某种电子元件的使用寿命X (单位:h)服从指数分布,概率密度为⎪⎩⎪⎨⎧≤>=-.0,0;0,8001)(800x x e x f x任取3个这种电子元件,求至少有1个能使用1000h 以上的概率. 解:设A 表示“至少有1个电子元件能使用1000h 以上”;321A 、A 、A 分别表示“元件甲、乙、丙能使用1000h 以上”.则287.08001)1000()()()(4510008001000800321≈=-==>===-∞+-∞+-⎰e e dx e X P A P A P A P xx)()()()()()()()()(321313221321321A A A P A A P A A P A A P A P A P A P A A A P A P +---++=⋃⋃=638.0287.0287.03287.0332≈+⨯-⨯=(另解)设A 表示“至少有1个电子元件能使用1000h 以上”.则287.08001)1000(4510008001000800≈=-==>-∞+-∞+-⎰e e dx e X P xx从而有713.01)1000(1)1000(45≈-=>-=≤-eX P X P ,进一步有 638.0713.01)]1000([1)(33≈-≈≤-=X P A P三、(1) 设随机变量X 服从指数分布)(λe .证明:对于任意非负实数s 及t ,有).()(t X P s X t s X P ≥=≥+≥这个性质叫做指数分布的无记忆性.(2) 设电视机的使用年数X 服从指数分布)10(.e .某人买了一台旧电视机,求还能使用5年以上的概率.解:(1)因为)(~λe X ,所以R x ∈∀,有xe x F λ--=1)(,其中)(x F 为X 的分布函数.设t s X A +≥=,t X B ≥=.因为s 及t 都是非负实数,所以B A ⊂,从而A AB =.根据条件概率公式,我们有)(1)(1)()()()()()()()(s X P t s X P s X P t s X P B P A P B P AB P B A P s X t s X P <-+<-=≥+≥====≥+≥tst s e e e λλλ--+-=----=]1[1]1[1)(. 另一方面,我们有tt e e t F t X P t X P t X P λλ--=--=-=≤-=<-=≥)1(1)(1)(1)(1)(.综上所述,故有)()(t X P s X t s X P ≥=≥+≥. (2)由题设,知X 的概率密度为⎩⎨⎧≤>=-.,;,0001.0)(1.0x x e x f x设某人购买的这台旧电视机已经使用了s 年,则根据上述证明的(1)的结论,该电视机还能使用5年以上的概率为6065.01.0)()5()5(5.051.051.05≈=-===≥=≥+≥-∞+-∞+-∞+⎰⎰e e dx e dx x f X P s X s X P x x.答:该电视机还能使用5年以上的概率约为6065.0. 四、 设随机变量X 服从二项分布)4.0 ,3(B ,求下列随机变量函数的概率分布: (1)X Y 211-=;(2)2)3(2X X Y -=.解:X 的分布律为(1)X Y 211-=的分布律为(2)2)3(2X X Y -=的分布律为即五、设随机变量X 的概率密度为⎪⎩⎪⎨⎧≤>+=.0,0;0,)1(2)(2x x x x f π求随机变量函数X Y ln =的概率密度.解:因为)()()(ln )()(yXyYe F e X P y X P y Y P y F =<=<=<= 所以随机变量函数X Y ln =的概率密度为)( )1(2)()()()(2''+∞<<-∞+====y e e e e f e e F y F y f yyyyyyXYY π,即)( )1(2)(2+∞<<-∞+=y e e y f y yY π.第八章 二维随机变量的联合分布与边缘分布一、把一颗均匀的骰子随机地掷两次.设随机变量X 表示第一次出现的点数,随机变量Y 表示两次出现点数的最大值,求二维随机变量),(Y X 的联合概率分布及Y 的边缘概率分布.解:二维随机变量),(Y X 的联合概率分布为Y的边缘概率分布为二、设二维随机变量(X ,Y )的联合分布函数)3arctan )(2arctan (),(yC x B A y x F ++=. 求:(1)系数A 、B 及C ;(2)(X ,Y )的联合概率密度:(3)边缘分布函数及边缘概率密度. 解:(1)由0)0,(,0),0(,1),(=-∞=∞-=∞+-∞F F F ,得⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=--=++0)2(0)2)(0(1)2)(2(πB AC πC B A πC πB A 解得2πC B ==,.12πA =(2)因为)3arctan 2)(2arctan 2(1),(2yx y x F ++=πππ,所以(X ,Y )的联合概率密度为.)9)(4(6),(),(222"y x y x F y x f xy ++==π(3)X 及Y 的边缘分布函数分别为xxxXx dx x dy y x f dx x F ∞-∞-∞-+∞∞-=+==⎰⎰⎰2arctan 1)4(2),()(2ππ2arctan 121x π+=yxy Y ydy y dx y x f dy x F ∞-∞-∞-+∞∞-=+==⎰⎰⎰3arctan1)9(3),()(2ππ3arctan 121y π+=X 及Y 的边缘概率密度分别为⎰⎰⎰+∞+∞∞-+∞∞-++⋅=++==0222222)9(1)4(112)9)(4(6),()(dy y x dy y x dy y x f x f X ππ)4(2)3arctan 31()4(1122022x y x +=+⋅=∞+ππ⎰⎰⎰+∞+∞∞-+∞∞-++=++==022222241)9(12)9)(4(6),()(dxx y dx y x dx y x f y f Y ππ)9(3)2arctan 21()9(122022y x y +=+=∞+ππ三、设),(Y X 的联合概率密度为⎩⎨⎧>>=+-.,00;0,,Ae ),(3y)(2x 其它y x y x f求:(1)系数A ;(2)),(Y X 的联合分布函数;(3)X及Y 的边缘概率密度;(4)),(Y X落在区域R :632 ,0 ,0<+>>y x y x 内的概率. 解:(1)由1),(=⎰⎰+∞∞-+∞∞-dy dx y x f ,有1610032==⎰⎰∞+∞+--A dy e dx e A yx,解得.6=A (2)),(Y X 的联合分布函数为⎪⎩⎪⎨⎧>>==⎰⎰⎰⎰--∞-∞-其它0,06),(),(0032y x dy e dx e dy y x f dx y x F x yy x xy⎩⎨⎧>>--=--其它00,0)1)(1(32y x e e y x(3)X 及Y 的边缘概率密度分别为⎩⎨⎧≤>=⎪⎩⎪⎨⎧≤>==-+∞--∞+∞-⎰⎰020006),()(2032x x ex x dye e dy y xf x f xy x X⎩⎨⎧≤>=⎪⎩⎪⎨⎧≤>==-+∞--∞+∞-⎰⎰030006),()(3032y y ex x dxe e dx y xf y f yy x Y(4)⎰⎰⎰⎰---==∈x y xRdye dx edxdy y x f R Y X P 322033026),(}),{( 6306271)(2---⎰-=-=e dx e e x四、设二维随机变量),(Y X 在抛物线2x y =与直线2+=x y 所围成的区域R 上服从均匀分布.求:(1) ),(Y X 的联合概率密度;(2) 概率)2(≥+Y X P . 解:(1) 设),(Y X 的联合概率密度为⎩⎨⎧∉∈=.),(, 0;),(,),(R y x R y x C y x f 则由129)322()2(21322122212==-+=-+==--+-⎰⎰⎰⎰⎰Cx x x C dx x x C dy dx C Cdxdy x x R解得92=C .故有⎪⎩⎪⎨⎧∉∈=.),(, 0;),(,92),(R y x R y x y x f(2) ⎰⎰⎰⎰⎰⎰++-≥++==≥+x x x x y x dydx dy dx dxdy y x f Y X P 2212210229292),()2(⎰⎰-++=21210)2(92292dx x x xdx481.02713)322(92922132102≈=-++=x x x x .第九章 随机变量的独立性·二维随机变量函数的分布一、 设X 与Y 是两个相互独立的随机变量,X 在]1,0[上服从均匀分布,Y 的概率密度为⎪⎩⎪⎨⎧≤>=-.0,0;0,21)(2y y e y f yY求 (1) ),(Y X 的联合概率密度; (2) 概率)(X Y P ≥. 解: (1)X 的概率密度为⎩⎨⎧∉∈=)1,0(,0)1,0(,1)(x x x f X,),(Y X 的联合概率密度为(注意Y X ,相互独立)⎪⎩⎪⎨⎧><<==-其它,00,10,21)()(),(2y x e y f x f y x f yY X(2)dxedx edy e dx dxdy y x f X Y P x xyxyxy ⎰⎰⎰⎰⎰⎰-∞+-∞+-≥=-===≥102102212)(21),()(7869.0)1(2221122≈-=-=--e ex二、 设随机变量X 与Y 独立,并且都服从二项分布:.,,2 ,1 ,0 ,)(;,,2 ,1 ,0 ,)(212211n j q p C j p n i q p C i p j n j j n Y in i i n X====--证明它们的和Y X Z +=也服从二项分布. 证明: 设j i k +=, 则ik n i k i k n ki i n i i n ki Y X Z q p C q p C i k P i P k Z P k P +---=-=∑∑=-===22110)()()()(∑=-+=ki kn n k in i n q p C C 02121)(由k nm ki ik nk m C C C +=-=∑0, 有 kn nki in i n C C C21210+==∑. 于是有),,2,1,0( )(212121n n k q p C k P k n n k in n Z +==-++由此知Y X Z +=也服从二项分布.三、设随机变量X 与Y 独立,并且X 在区间[0,1]内服从均匀分布,Y 在区间[0,2]内服从辛普森分布:⎪⎩⎪⎨⎧><≤<-≤≤=.20 0,;2 1 ,2;10 ,)(y y y y y y y f Y 或求随机变量Y X Z +=的概率密度.解: X 的概率密度为 ⎩⎨⎧∉∈=]1,0[,0]1,0[,1)(x x y f ξ. 于是),(Y X 的联合概率密度为⎪⎩⎪⎨⎧≤<≤≤-≤≤≤≤=. 0,2 1,10 ,210,10,),(其它当当y x y y x y y x fYX Z +=的联合分布函数为}),{(}{}{)(D y x P z Y X P z Z P z F Z∈=≤+=≤=,其中D 是z y x ≤+与),(y x f 的定义域的公共部分.故有⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<+-≤<-+-≤≤><=3229321212331023,00)(222z z z z z z z zz z z F Z从而随机变量Y X Z +=的概率密度为⎪⎪⎩⎪⎪⎨⎧≤<-≤<+-≤≤><=3232132103,00)(z z z z z z z z z f Z三、 电子仪器由六个相互独立的部件ijL (3,2,1;2,1==j i )组成,联接方式如右图所示.设各个部件的使用寿命ijX 服从相同的指数分布)(λe ,求仪器使用寿命的概率密度.解: 由题设,知ij X 的分布函数为⎩⎨⎧≤>-=-0,00,1x x e F x X ij λ 先求各个并联组的使用寿命)3,2,1( =i Y i 的分布函数.因为当并联的两个部件都损坏时,第i 个并联组才停止工作,所以有)3,2,1(),m ax (21==i Y i i i ξξ从而有)3,2,1( =i Y i 的分布函数为⎩⎨⎧≤>-==-0,00,)1()(221y y e F F y F y X X Y i i i λ设Z "仪器使用寿命".因为当三个并联组中任一个损坏时,仪器停止工作.所以有),,min(321Y Y Y Z =.从而有Z 的分布函数为⎩⎨⎧≤>---=⎩⎨⎧≤>----=-0,00,])1(1[10,00)],(1)][(1)][(1[1)(32321z z e z z z F z F z F z F z Y Y Y Z λ故Z 的概率密度为⎩⎨⎧≤>--=---0,00,)2)(1(6)(23z z e e e z f z z z Z λλλλ第十章 随机变量的数学期望与方差一、 一批零件中有9个合格品与3个废品.安装机器时从这批零件中任取一个.如果取出的废品不再放回去,求在取得合格品以前已取出的废品数的数学期望、方差与标准差.解:设X 表示“在取得合格品以前已取出的废品数”,则X 的概率分布为即于是有1103322013220924491430=⨯+⨯+⨯+⨯=EX 即3.0004.03041.02205.0175.00≈⨯+⨯+⨯+⨯=EX 2X 的分布为即于是有229220192209444914302=⨯+⨯+⨯+⨯=EX 即4091.0004.09041.04205.0175.002≈⨯+⨯+⨯+⨯=EX从而有3191.013310042471)11033(229)(222≈=-=-=EX EX DX 565.03191.0≈==DX Xσ二、 对某一目标进行射击,直至击中为止.如果每次射击命中率为p ,求射击次数的数学期望及方差. 解:设X 表示“第i 次击中”),2,1( =i ,则X 的分布为于是有p q p q q p q p iq p ipq EX i ii i i i 1)1()1()(211111=-='-='===∑∑∑∞=∞=-∞=- 2X于是有pp p p q q p q p q q p pqi EX i i i ii i 122)1()1()(])([223111122-=-=-+='=''==∑∑∑∞=∞=∞=-进一步有pp p p p EX EX DX 11)1(12)(22222-=--=-=三、设离散型随机变量X 的概率函数为,,2,1,21]2)1([ ==-=k k X P kk k问X 的数学期望是否存在?若存在,请计算)(X E ;若不存在,请解释为什么.解:因为∑∑∑∑∞=∞=∞=∞=-=⋅-=-=-==1111)1(212)1(]2)1([2)1()(k kkk k kkkk kki iik k k X P k x X P x 不绝对收敛,所以ξ没有数学期望. 四、设随机变量X 的概率密度为⎪⎩⎪⎨⎧≥<-=.1, 0;1,11)(2x x x x f π 求数学期望)(X E 及方差)(X D . 解:011)()(112=-⋅==⎰⎰-+∞∞-dx xx dx x xf X E πdxx x dx xx dx x f x X D ⎰⎰⎰-=-⋅==-∞+∞-1022112221211)()(πππ21]arcsin 2112[2102=+--=x x x π五、(拉普拉斯分布)设随机变量X 的概率密度为)( ,21)(+∞<<-∞=-x e x f x.求数学期望)(X E 及方差)(X D . 解:021)(===⎰⎰+∞∞--+∞∞-dx xe dx x xf EX x2!2)3(21)(0222==Γ====⎰⎰⎰+∞-+∞∞--+∞∞-dx e x dx e x dx x f x DX x x(分部积分亦可)第十一章 随机变量函数的数学期望·关于数学期望与方差的定理一、设随机变量X 服从二项分布)4.0,3(B ,求2)3(X X Y -=的数学期望及方差. 解:X 的概率分布为Y 的概率分布为2Y 的分布为于是有72.072.0128.00=⨯+⨯=EY72.072.0128.002=⨯+⨯=EY2016.0)72.0(72.0)(222=-=-=EY EY DY二、过半径为R 的圆周上一点任意作这圆的弦,求所有这些弦的平均长度.解:在圆周上任取一点O ,并通过该点作圆得直径OA .建立平面直角坐标系,以O 为原点,且让OA 在x 轴的正半轴上.通过O 任作圆的一条弦OB ,使OB 与x 轴的夹角为θ,则θ服从]2,2[ππ-上的均匀分布,其概率密度为 ⎪⎩⎪⎨⎧-∉-∈=]2,2[,0]2,2[,1)(ππθππθπθf .弦OB 的长为]2,2[cos 2)(ππθθθ-∈=R L ,故所有弦的平均长度为⎰⎰-∞+∞-⋅==22cos 21)()()]([ππθθπθθθθd R d L f L EπθπθθπππRR d R4sin 4cos 42020===⎰.三、一工厂生产的某种设备的寿命X (以年计)服从指数分布,概率密度为⎪⎩⎪⎨⎧≤>=-. 0,0 ; 0 ,41)(4x x e x f x工厂规定,出售的设备若在售出一年之内损坏可予以调换.若工厂售出一台设备赢利100元,调换一台设备厂方需花费300元.试求厂方出售一台设备的平均净赢利. 解:由题设,有⎰⎰---∞--=-===<14110441141)()1(e e dx e dx x f X P x x进而有 41)1(1)1(-=<-=≥e X P X P 设Y 表示“厂方出售一台设备获得的净赢利”,则Y 的概率分布为从而有64.33200300100)1(200414141≈-⨯=⨯+-⨯-=---e e e EY答:厂方出售一台设备获得的平均净赢利约为64.33元.四、设随机变量nX X X ,,21相互独立,并且服从同一分布,数学期望为μ,方差为2σ.求这些随机变量的算术平均值∑==ni iX nX 11的数学期望与方差. 解:因为μ=)(i X E ,2)(σ=i X D ,且随机变量nX X X,,21相互独立.所以有μμ=====∑∑∑∑====ni n i i ni i n i i n X E n X E n X n E X E 11111)(1)(1)1()(,nn X D n X D n X n D X D ni ni in i i n i i 2122121211)(1)(1)1()(σσ=====∑∑∑∑====.五、一民航送客车载有20位旅客自机场开出,沿途有10个车站可以下车,到达一个车站时如没有旅客下车就不停车.假设每位旅客在各车站下车是等可能的,且各旅客是否下车相互独立.求该车停车次数的数学期望.解: 设iX 表示"第i 站的停车次数" (10,,2,1 =i ). 则iX 服从"10-"分布. 其中⎩⎨⎧=站有人下车若在第站无人下车若在第i i X i,1,0 于是iX 的概率分布为设∑==ni iX X 1, 则X 表示沿途停车次数, 故有]})10110(1[1)10110(0{10)(2020101101--⨯+-⨯===∑∑==i i i i EX X E EX748.8)9.01(1020≈-=即停车次数的数学期望为748.8.第十二章 二维随机变量的数字特征·切比雪夫不等式与大数定律一、 设二维随机变量),(Y X 的联合概率密度为()(). 1,222++=y x Ay x f求:(1)系数A ;(2)数学期望)(X E 及)(Y E ,方差)(X D 及)(Y D ,协方差),cov(Y X . 解: (1) 由⎰⎰+∞∞-+∞∞-=1),(dxdy y x f . 有()()⎰⎰⎰⎰∞+∞-∞+∞-∞+==+=++11120022222A dr r rd A dxdy y x A πθπ解得, π1=A .(2)()11),()(222⎰⎰⎰⎰∞+∞-∞+∞-∞+∞-∞+∞-=++==dx y xxdy dxdy y x xf X E π.由对称性, 知)(=Y E .⎰⎰+∞∞-+∞∞-==-=dxdy y x f x EX EX X E X D ),(])[()(222()⎰⎰∞+∞-∞+∞-++=dxy xx dy 222211π()()+∞=+++=+-+=+=∞+∞+∞+⎰⎰⎰022022220223]11)1ln([1)1(211r r dr r r r r dr r r d πθπ同理, 有 +∞=)(Y D .)()])([(),cov(XY E EY Y Ex X E Y X =--=⎰⎰+∞∞-+∞∞-=dxdy y x xyf ),(()011),(222⎰⎰⎰⎰∞+∞-∞+∞-∞+∞-∞+∞-=++==dx y x xydy dxdy y x xyf π.二、 设二维随机变量),(Y X 的联合概率密度为⎩⎨⎧<<<=其它.,0;10,,1),(x x y y x f求(1) ),cov(Y X ;(2) X 与Y 是否独立,是否相关,为什么?解: (1) 因为 ⎰⎰⎰⎰⎰====-∞+∞-∞+∞-121322),(dx x dy xdx dxdy y x xf EX xx0),(1===⎰⎰⎰⎰-+∞∞-+∞∞-xx ydy dx dxdy y x yf EY 0),()(1===⎰⎰⎰⎰-+∞∞-+∞∞-xxydy xdx dxdy y x xyf XY E所以有])32[()])([(),cov(Y X E EY Y EX X E Y X -=--=⎰⎰+∞∞-+∞∞-=dxdyy x xyf ),(10==⎰⎰-xxydy xdx .(2) 当)1,0(∈x 时,有⎰⎰+∞∞--===xdy dy y x f x f x xX 2),()(; 当)1,0(∉x 时,有0)(=x f X.即⎩⎨⎧∉∈=)1,0(0)1,0(2)(X x x x x f同理有 ⎩⎨⎧∉+∈-=⎪⎩⎪⎨⎧∉∈=⎰⎰-)1,0(1)1,0(1)1,0()1,0()(11Y x y x y x dx x dx y f y y 因为),()()(y x f y f x f Y X ≠, 所以X 与Y 不是独立的.又因为0),cov(=Y X , 所以X 与Y 是不相关的.三、 利用切比雪夫不等式估计随机变量X 与其数学期望)(X E 的差的绝对值大于三倍标准差 )(X σ的概率.解:91)3()3(2=≤>-ξξξξξD DD E P .四、为了确定事件A 的概率,进行10000次重复独立试验.利用切比雪夫不等式估计:用事件A在10000次试验中发生的频率作为事件A 的概率的近似值时,误差小于0.01的概率.解:设ξ表示“在10000次试验中事件A 的次数”,则)5.0,10000(~B ξ且有50005.010000=⨯==np E ξ 2500)5.01(5.010000=-⨯⨯==npq D ξ 于是有npq p npq p np m P p n m P 22)01.0(1)01.0(1)01.0()01.0(-=-≥<-=<- 75.025.011=-=-=pq五、 样检查产品质量时,如果发现次品多于10个,则认为这批产品不能接受.应该检查多少 个产品,可使次品率为10%的一批产品不被接受的概率达到0.9?解:设ξ表示“发现的次品件数”,则)1.0,(~n B ξ,现要求.nn ξE 1.0= n ξD 09.0=要使得9.0)10(=>ξP ,即9.0)10(=≤<n ξP ,因为9.0)10(=≤<n ξP ,所以)3.01.03.01.03.01.010()10(nn n n n ξn n P ξD ξE n ξD ξE ξξD ξE P -≤-<-=-≤-<-)3.01.010()3()33.01.03.01.010(1,01,0nn n n n n ξn n P --≈≤-<-=ΦΦ 1)3.0101.0()3(1,01,0--+nn n ΦΦ (德莫威尔—Laplace 定理) 因为10>n ,所以53>n ,从而有1)3(1,0≈n Φ,故9.0)3.0101.0(1,0≈-nn Φ.查表有8997.0)28.1(1,0=Φ,故有28.13.0101.0≈-nn ,解得.146≈n答:应该检查约146个产品,方可使次品率为10%的一批产品不被接受的概率达到0.9.第十三章 正态分布的概率密度、分布函数、数学期望与方差一、 设随机变量X 服从正态分布)2,1(2N ,求(1))8.56.1(<≤-X P ;(2))56.4(≥X P .解:(1) )4.2213.1()8.416.2()8.56.1(<-≤-=<-≤-=<≤-X P X P X P8950.09032.019918.0)]3.1(1[)4.2()3.1()4.2(1,01,01,01,0=+-=--=--=ΦΦΦΦ(2) )78.12178.2(1)56.4(1)56.4(<-<--=<-=≥X P X P X P)]78.2(1)78.1(1)]78.2()78.1([11,01,01,01,0ΦΦΦΦ-+-=---=.0402.09973.09625.02=--二、 已知某种机械零件的直径X (mm )服从正态分布)6.0,100(2N .规定直径在2.1100±(mm )之间为合格品,求这种机械零件的不合格品率.解:设p 表示这种机械零件的不合格品率,则)2.1100(1)2.1100(≤--=>-=X P X P p .而)26.01002()6.02.16.01006.02.1()2.1100(≤-≤-=≤-≤-=≤-X P X P X P 1)2(2)]2(1[)2()2()2(-Φ=Φ--Φ=-Φ-Φ= 9544.019772.02=-⨯= 故0456.09544.01=-=p .三、测量到某一目标的距离时发生的误差X (m)具有概率密度3200)20(22401)(--=x ex f π求在三次测量中至少有一次误差的绝对值不超过30m 的概率.解:三次测量中每次误差绝对值都超过30米可表为}30{}30{}30{>⋃>⋃>=ξξξD 第三次第二次第一次因为)40,20(~2N ξ,所以由事件的相互独立性,有31,01,033)]25.0(1)25.1([})3030{(})30{()(ΦΦ-+-=>+-<=>=ξξP ξP D P 13025.05069.0)8944.05987.02(33≈=--= 于是有86975.013025.01)(1}30{=-=-=<D P P 米至少有一次绝对值三次测量中ξ.四、设随机变量),(~2σμN X ,求随机变量函数Xe Y =的概率密度(所得的概率分布称为对数正态分布). 解:由题设,知X 的概率密度为)(21)(222)(+∞<<-∞=--x ex f x X σμσπ从而可得随机变量Y 的分布函数为)()()(y e P y Y P y F XY≤=≤=.当0≤y 时,有0)(=y F Y ;此时亦有0)(='y F Y. 当0>y 时,有dx ey X P y F yx Y⎰∞---=≤=ln 2)(2221)ln ()(σμσπ. 此时亦有222)(ln 21)(σμσπ--='y Yeyy F .从而可得随机变量Y 的概率密度为⎪⎩⎪⎨⎧>≤=--.0,21;0,0)(222)(ln y e yy y f y Y σμσπ五、设随机变量X 与Y 独立,),(~211σμN X ,),(~222σμN Y ,求: (1) 随机变量函数bY aX Z +=1的数学期望与方差,其中a 及b 为常数;(2) 随机变量函数XY Z =2的数学期望与方差.解:由题设,有211)(,)(σμ==X D X E ;222)(,)(σμ==Y D Y E .从而有 (1)211)()()()()()(μμb a Y bE X aE bY E aX E bY aX E Z E +=+=+=+=; 222212221)()()()()()(σσb a Y D b X D a bY D aX D bY aX D Z D +=+=+=+=. (2)212)()()()(μμ===Y E X E XY E Z E ;)()()()()()()()(22222222Y E X E Y E X E XY E Y X E XY D Z D -=-== )()()]()()][()([2222Y E X E Y E Y D X E X D -++= )()()()()()(22X E Y D Y E X D Y D X D ++= 212222212221μσμσσσ++=.第十四章二维正态分布·正态随机变量线性函数的分布中心极限定理一、设二维随机变量),(Y X 服从二维正态分布,已知0)()(==Y E X E ,16)(=X D ,25)(=Y D ,并且12),cov(=Y X ,求),(Y X 的联合概率密度.。
南开20秋学期《概率论与统计原理》在线作业
20秋学期(1709、1803、1809、1903、1909、2003、2009 )《概率论与统计原理》在线作业题面见图片:A:A B:B C:C D:D 答案:A 设某批产品中甲、乙、丙三个厂家的产量分别占45%,35%,20%,各厂产品中次品率分别为4%、2%和5%。
现从中任取一件,取到的恰好是次品的概率为() A:0.035B:0.038 C:0.045 D:0.076 答案:A题面见图片:A:A B:B C:C D:D 答案:D 设箱中有a个白球和b个黑球,从中任意不放回地取出k个(1≤k≤a+b)球,则第k次取出的球是白球的概率为( ) A:a/(a+b) B:a/(a+b-1) C:(a-1)/(a+b-1) D:b/(a+b) 答案:A 将一枚硬币向上抛掷5次,其中正面向上恰有5次是()A:必然事件 B:随机事件 C:不可能事件 D:无法确定答案:B 假设检验时若增大样本容量,则犯两类错误的概率()。
A:一个增大,一个减少 B:都增大 C:都不变 D:都减少答案:D 某工厂生产的零件出厂时每200个装一盒,这种零件由合格和不合格两类,合格率为0.99。
设每盒中不合格数为X,则X通常服从() A:正态分布 B:均匀分布 C:指数分布 D:二项分布答案:D题面见图片:A:A B:B C:C D:D 答案:A 设一次试验成功的概率为p,进行100次独立重复试验,当p = ( ) 时,成功次数的标准差的值为最大 A:0 B:0.25 C:0.5 D:0.75 答案:C 下列数字中有可能是随机事件概率的是() A:0 B:-0.3 C:- 0.2 D:1.5 答案:A题面见图片:A:A B:B C:C D:D 答案:A题面见图片:A:AB:B C:C D:D 答案:D题面见图片:A:A B:B C:C D:D 答案:C。
概率论与数理统计 习题答案全解
1.一打靶场备有5支某种型号的枪,其中3支已经校正,2支未经校正.某人使用已校正的枪击中目标的概率为1p ,使用未经校正的枪击中目标的概率为2p .他随机地取一支枪进行射击,已知他射击了5次,都未击中,求他使用的是已校正的枪的概率(设各次射击的结果相互独立).解以M 表示事件“射击了5次均未击中”,以C 表示事件“取得的枪是已经校正的”,则,5/3)(=C P ,5/2)(=C P 又,按题设,)1()|(51p C M P -=52)1()|(p C M P -=,由贝叶斯公式)()()|(M P MC P M C P =)()|()()|()()|(C P C M P C P C M P C P C M P +=52)1(53)1(53)1(525151⨯-+⨯-⨯-=p p p .)1(2)1(3)1(3525151p p p -+--=2.某人共买了11只水果,其中有3只是二级品,8只是一级品.随机地将水果分给C B A 、、三人,各人分别得到4只、6只、1只.(1)求C 未拿到二级品的概率.(2)已知C 未拿到二级品,求B A ,均拿到二级品的概率.(3)求B A ,均拿到二级品而C 未拿到二级品的概率.解以,,,C B A 分别表示事件C B A ,,取到二级品,则C B A,,表示事件C B A ,,未取到二级品.(1).11/8)(=C P (2)就是需要求).|(C AB P 已知C 未取到二级品,这时B A ,将7只一级品和3只二级品全部分掉.而B A 、均取到二级品,只需A 取到1只至2只二级品,其它的为一级品.于是.5441027234103713|(=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=C AB P (3).55/32)()|()(==C P C AB P C AB P 3.一系统L 由两个只能传输字符0和1的独立工作的子系统1L 和2L 串联而成(如图15.3),每个子系统输入为0输出为0的概率为)10(<<p p ;而输入为1输出为1的概率也是p .今在图中a 端输入字符1,求系统L 的b 端输出字符0的概率.1L 2L b题15.3图解“系统L 的输入为1输出为0”这一事件(记)01(→L )是两个不相容事件之和,即),00()01()01()11()01(2121→→→→=→L L L L L 这里的记号“)11(1→L ”表示事件“子系统1L 的输入为1输出为1,其余3个记号的含义类似.于是由子系统工作的独立性得)}00()01({)}01()11({)}01({2121→→+→→=→L L P L L P L P )}00({)}01({)}01({)}11({2121→→+→→=L P L P L P L P ).1(2)1()1(p p p p p p -=-+-=4.甲乙二人轮流掷一骰子,每轮掷一次,谁先掷得6点谁得胜,从甲开始掷,问甲、乙得胜的概率各为多少?解以i A 表示事件“第i 次投掷时投掷者才得6点”.事件i A 发生,表示在前1-i 次甲或乙均未得6点,而在第i 次投掷甲或乙得6点.因各次投掷相互独立,故有.6165)(1-⎪⎭⎫⎝⎛=i i A P 因甲为首掷,故甲掷奇数轮次,从而甲胜的概率为}{}{531 A A A P P =甲胜 +++=)()()(531A P A P A P ),(21两两不相容因 A A ⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+= 426565161.116)6/5(11612=-=同样,乙胜的概率为}{}{642 A A A P P =乙胜+++=)()()(642A P A P A P.1156565656153=⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+= 5.将一颗骰子掷两次,考虑事件=A “第一次掷得点数2或5”,=B “两次点数之和至少为7”,求),(),(B P A P 并问事件B A ,是否相互独立.解将骰子掷一次共有6种等可能结果,故.3/16/2)(==A P 设以i X 表示第i 次掷出骰子的点数,则}).6({1})7({)(2121≤+-=≥+=X X P X X P B P 因将骰子掷两次共有36个样本点,其中621≤+X X 有6,5,4,3,221=+X X 共5种情况,这5种情况分别含有1,2,3,4,5个样本点,故.12/712/5136/)54321(1)(=-=++++-=B P 以),(21X X 记两次投掷的结果,则AB 共有(2,5),(2,6),(5,2),(5,3)(5,4),(5,5),(5,6)这7个样本点.故.36/7)(=AB P 今有).(36/7)12/7)(3/1()()(AB P B P A P ===按定义B A ,相互独立.6.B A ,两人轮流射击,每次各人射击一枪,射击的次序为 A B A B A ,,,,,射击直至击中两枪为止.设各人击中的概率均为p ,且各次击中与否相互独立.求击中的两枪是由同一人射击的概率.解A 总是在奇数轮射击,B 在偶数轮射击.先考虑A 击中两枪的情况.以12+n A 表示事件“A 在第12+n 轮),2,1( =n 射击时又一次击中,射击在此时结束”.12+n A 发生表示“前n 2轮中A 共射击n 枪而其中击中一枪,且A 在第12+n 轮时击中第二枪”(这一事件记为C ),同时“B 在前n 2轮中共射击n 枪但一枪未中”(这一事件记为D ),因此)()()()(12D P C P CD P A P n ==+nn p p p p n )1()1(11-⎥⎦⎤⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛=-.)1(122--=n p np 注意到 ,,,753A A A 两两互不相容,故由A 击中了两枪而结束射击(这一事件仍记为A )的概率为∑∑∞=-∞=++∞=-===1122112121)1()()()(n n n n n n p np A P A P A P1122])1[()1(-∞=∑--=n n p n p p .)2(1])1(1[1)1(2222p pP p p --=---=(此处级数求和用到公式.1,)1(1112<=-∑∞=-x nx x n n 这一公式可自等比级数1,110<=-∑∞=x x x n n 两边求导而得到.)若两枪均由B 击中,以)1(2+n B 表示事件“B 在第)1(2+n 轮),2,1( =n 射击时又一次击中,射击在此时结束”.)1(2+n B 发生表示在前12+n 轮中B 射击n 枪其中击中一枪,且B 在第)1(2+n 轮时击中第2枪,同时A 在前12+n 轮中共射击1+n 枪,但一枪未中.注意到 ,,,864A A A 两两互不相容,故B 击中了两枪而结束射击(这一事件仍记为B )的概率为∑∞=+-+∞=--⎪⎪⎭⎫ ⎝⎛==111)1(21)1()1(1)()(n n n n n p p p p n B P B P 12112222])1[()1()1(-∞=∞=--=-=∑∑n n n np n p p p np .)2()1(])1(1[1)1(222222p p p p p --=---=因此,由一人击中两枪的概率为222)2()1()2(1)()()(p p p p B P A P B A P --+--=+= .21pp --=7.有3个独立工作的元件1,元件2,元件3,它们的可靠性分别为.,,321p p p 设由它们组成一个“3个元件取2个元件的表决系统”,记为2/3].[G 这一系统的运行方式是当且仅当3个元件中至少有2个正常工作时这一系统正常工作.求这一2/3][G 系统的可靠性.解以i A 表示事件“第i 个元件正常工作”,以G 表示事件“2/3][G 系统正常工作”,则G 可表示为下述两两互不相容的事件之和:321321321321A A A A A A A A A A A A G =因321,,A A A 相互独立,故有)()()()()(321321321321A A A P A A A P A A A P A A A P G P +++=AB12题 15.8 图)()()()()()()()()()()()(321321321321A P A P A P A P A P A P A P A P A P A P A P A P +++=.)1()1()1(321321321321p p p p p p p p p p p p +-+-+-=8.在如图15.8图所示的桥式结构电路中,第i 个继电器触点闭合的概率为i p ,.54321,,,,i =各继电器工作相互独立.求:(1)以继电器触点1是否闭合为条件,求A 到B 之间为通路的概率.(2)已知A 到B 为通路的条件下,继电器触点3是闭合的概率.解以F 表示事件“A 到B 为通路”,以i C 表示事件“继电器触点i 闭合”,.54321,,,,i =各继电器工作相互独立.(1)得.()|(()|()(1111))C P C F P C P C F P F P +=而)()|(545321C C C C C P C F P =)()()()()(54253254532C C C P C C C P C C P C C P C P --++=)()(5432543C C C C P C C C P +-543254354253254532p p p p p p p p p p p p p p p p p p +---++=)()|(432541C C C C C P C F P =543243254p p p p p p p p p -+=故),1)(|()|()(1111p C F P p C F P F P -+=其中)|(1C F P 543254354253254532p p p p p p p p p p p p p p p p p p +---++=,)|(1C F P 543243254p p p p p p p p p -+=.(2)令,1i i p q -=则)()()]([1)()()|()|(35241333F P C P C C C C P F P C P C F P F C P -==.)()1(354215241F P p q q q q q q q q +--=)(F P 的表达式由(1)确定.9.进行非学历考试,规定考甲、乙两门课程,每门课考第一次未通过都允许考第二次.考生仅在课程甲通过后才能考课程乙,如两门课程都通过可获得一张资格证书.设某考生通过课程甲的各次考试的概率为1p ,通过课程乙的各次考试的概率为2p ,设各次考试的结果相互独立.又设考生参加考试直至获得资格证书或者不准予再考为止.以X 表示考生总共需考试的次数.求X 的分布律以及数学期望)(X E .解按题意知考试总共至少需考2次而最多只考4次.以i A 表示事件“课程甲在考第i 次时通过”,以i B 表示事件“课程乙在考第i 次时通过”,2,1=i .事件}2{=X 表示考试总共考2次,这一事件只在下列两种互不相容的情况下发生,一种是课程甲、乙都在第一次考试时通过.亦即11B A 发生(此时他得到证书);另一种是课程甲在第一次、第二次考试均未通过,亦即21A A 发生(此时他不准再考).故2111}2{A A B A X ==,同样211121211}3{B B A B A A B B A X ==,21212121}4{B B A A B B A A X ==.得X 的分布律为)(}2{2111A A B A P X P ==)()(2111A A P B A P +=)()()()(2111A P A P B P A P ++=)1)(1(2121p p p p --+=;)(}3{211121211B B A B A A B B A P X P ==)(12111B A A B A P =21121)1()1(p p p p p -+-=;)(}3{211121211B B A B A A B B A P X P ==)(12111B A A B A P =21121)1()1(p p p p p -+-=;)(}4{21212121B B A A B B A A P X P ==)(121B A A P =)1()1(211p p p --=.)1()1(4])1()1([3])1([2)(211211212121p p p p p p p p p p p X E --+-+-+-+=)]2(1)[2(211p p p -+-=.例如,若431=p ,212=p ,则有66.2)(=X E (次).10.(1)5只电池,其中有2只是次品,每次取一只测试,直到将2只次品都找到.设第2只次品在第)5,4,3,2(=X X 次找到,求X 的分布规律(注:在实际上第5次检测可无需进行).(2)5只电池,其中2只是次品,每次取一只,直到找出2只次品或3只正品为止.写出需要测试的次数的分布律.解(1)X 可能取的值为2,3,4,5.P X P ==}2{{第1次、第2次都取到一只次品}.1014152=⨯=P X P ==}3{{(前两次取到一只次品) (第3次取到一只次品)}=P {第3次取到一只次品|前两次取到一只次品}P ⨯{前两次取到一只次品}.102)42534352(31=⨯+⨯⨯=P X P ==}4{{(前3次取到一只次品) (第4次取到一只次品)}=P {第4次取到一只次品|前3次取到一只次品}P ⨯{前3次取到一只次品}.103)324253324253324352(21=⨯⨯+⨯⨯+⨯⨯⨯=}4{}3{}2{1}5{=-=-=-==X P X P X P X P .10/4=得分布律为(2)以Y 表示所需测试的次数,则Y 的可能取值为2,3,4..10/1}2{}2{====X P Y P }3{=Y 表示“前3次取到都是正品”或“第二只次品在第3次取到”,故}3{}3{}3{=+==X P P Y P 次取到的都是正品前.103102314253=+⨯⨯1031011}3{}2{1}4{--==-=-==X P X P X P .Y 的分布律为11.向某一目标发射炮弹设炮弹弹着点目标的距离为R (单位:10m ),R 服从瑞利分布,其概率密度为⎪⎩⎪⎨⎧≤>=-.0,0,0,252)(25/2r r er r f r R 若弹着点离目标不超过5m 时,目标被摧毁.(1)求发射一枚炮弹能摧毁目标的概率.(2)为使至少有一枚炮弹能摧毁目标的概率不小于0.94,问最少需要独立发射多少枚炮弹.解(1)所求概率为⎰⎰-∞-==≤525/52252)(}5{dre r dr rf R P r R .632.01|1525/2=-==--e e r(2)设发射n 枚炮弹,则这n 枚炮弹都不能摧毁目标的概率为n)632.01(-,故至少有一枚炮弹能摧毁目标的概率为n )632.01(1--.按题意需求最小的n ,使得.94.0)632.01(1≥--n 即.81.2)368.0/(ln )06.0(ln ,06.0368.0=≥≤n n 故最少需要独立发射3枚炮弹.12.设一枚深水炸弹击沉一潜水艇的概率为31,击伤的概率为21,击不中的概率为61.并设击伤两次也会导致潜水艇下沉.求释放4枚深水炸弹能击沉潜水艇的概率.(提示:先求击不沉的概率.)解“击沉”的逆事件为事件“击不沉”,击不沉潜水艇仅出现于下述两种不相容的情况:(1)4枚深水炸弹全击不中潜水艇(这一事件记为A ),(2)一枚击伤潜水艇而另三枚击不中潜水艇(这一事件记为B ).各枚炸弹袭击效果被认为是相互独立的.故有,61)(4⎪⎭⎫⎝⎛=A P ,612114)(3⎪⎭⎫ ⎝⎛⨯⎪⎪⎭⎫ ⎝⎛=B P (因击伤潜水艇的炸弹可以是4枚中的任一枚),又A ,B 是互不相容的,于是,击不沉潜艇的概率为.613)()()(4=+=B P A p B A P 因此,击沉潜艇的概率为.97989.06131)(14=-=-=B A P p 13.一盒中装有4只白球,8只黑球,从中取3只球,每次一只,作不放回抽样.(1)求第1次和第3次都取到白球的概率.(提示:考虑第2次的抽取.)(2)求在第1次取到白球的条件下,前3次都取到白球的概率.解以,1A ,2A 3A 分别表示1,2,3次取到白球.(1))()()]([)(321321223131A A A P A A A P A A A A p A A P +== )()|()|()()|()|(112213112213A P A A P A A A P A P A A P A A A P +=.111124118103124113101=⨯⨯+⨯⨯=(2)124102113124)()()|(13211321⨯⨯==A P A A A P A A A A P .5531106==14.设元件的寿命T (以小时计)服从指数分布,分布函数为⎩⎨⎧≤>-=-.0,0,0,1)(03.0t t e t F t (1)已知元件至少工作了30小时,求它能再至少工作20小时的概率.(2)由3个独立工作的此种元件组成一个2/3][G 系统(参见第7题),求这一系统的寿命20>X 的概率.解(1)由指数分布的无记忆性(参见教材)1(第56页)知所求概率为}20{}30|50{>=>>=T P T T P p .5488.0)20(16.0==-=-e F (2)由第7题知2/3][G 系统的寿命20>X 的概率为.5730.0)23()1(3}20{232=-=+-=>p p p p p X P 15.(1)已知随机变量X 的概率密度为,,21)(+∞<<-∞=-x e x f xX 求X 的分布函数.(2)已知随机变量X 的分布函数为),(x F X 另外有随机变量⎩⎨⎧≤->=,0,1,0,1X X Y 试求Y 的分布律和分布函数.解(1)由于⎪⎪⎩⎪⎪⎨⎧+∞<≤<<∞-=-.0,21,0,21)(x e x e x f x xX 当0<x 时,分布函数,212121)()(|x x x xx x X X e e dx e dx x f x F ====∞-∞-∞-⎰⎰当0≥x 时,分布函数.2112121212121)()(00x x xx x x X X e e dx e dx e dx x f x F ---∞-∞--=-+=+==⎰⎰⎰故所求分布函数为⎪⎪⎩⎪⎪⎨⎧≥-<=-.0,211,021)(x e x e x F x xX (2),21)0(}0{}1{==≤=-=X F X P Y P .21211}1{1}1{=-=-=-==Y P Y P 分布律为分布函数为⎪⎪⎩⎪⎪⎨⎧≥<≤--<=.1,1,11,21,10)(y y y y F Y 16.(1)X 服从泊松分布,其分布律为,,2,1,0,!}{ ===-k k e k X P k λλ问当k 取何值时}{k X P =为最大.(2)X 服从二项分布,其分布律为.,2,1,0,)1(}{n k p p k n k X P kn k =-⎪⎪⎭⎫ ⎝⎛==-问当k 取何值时}{k X P =为最大.解(1)由λλλλ----⨯=-==ek k e k X P k X P k k 1)!1(!}1{}{⎪⎩⎪⎨⎧><===<>=,,1,,2,1,,1,,1λλλλk k k k k 当当当 知道,当λ<k 时,}{k X P =随k 增大而递增;当λ>k 时,}{k X P =随k 增大而递减.从而,若λ为正整数,则当λ=k 时,}1{}{-===λλX P X P 为概率的最大值,即当1-==λλk k 或时概率都取到最大值.若λ不是正整数,令的整数部分),是即λλ00]([k k =则,100+<<k k λ此时有},1{}{},{}1{0000+=>==<-=k X P k X P k X P k X P 因此不难推得]}[{}{0λ===X P k X P 为概率的最大值.(2)由⎪⎩⎪⎨⎧+><=+==+<>--++=---=-==,)1(,1,,2,1,)1(,1,)1(,1)1()1(1)1()1(}1{}{p n k nk p n k p n k p k k p n p k p k n k X P k X P 当当当 知道,当p n k )1(+<时,}{0k X P =随k 增大而递增;,当p n k )1(+>时,}{0k X P =随k 增大而递减.从而,若p n )1(+为正整数,则当p n k )1(+=时,}1)1({})1({-+==+=p n X P p n X P 为概率的最大值,即当1)1()1(-+=+=p n k p n k 或时概率都取到最大值.若p n )1(+不是正整数,令])1[(0p n k +=,则1)1(00+<+<k p n k ,此时有},{}1{00k X P k X P =<-=},1{}{00+=>=k X P k X P 不难推得]})1[({}{0p n X P k X P +===为概率的最大值.17..称X 服从取值为n ,,2,1 的离散型均匀分布.对于任意非负实数x ,记][x 为不超过x 的最大整数.记),1,0(~U U 证明1][+=nU X 服从取值为n ,,2,1 的离散型均匀分布.证对于,,,2,1n i =}1]{[}1]{[)(-===+==i nU P i nU P i X P .1}1{}1{nn i U n i P i nU i P =<≤-=<≤-=证毕.18.设),2,1(~-U X 求X Y =的概率密度.解X 的概率密度为⎩⎨⎧<<-=.,0,21,3/1)(其他x x f X 记X 的分布函数为).(x F X 先来求Y 的分布函数).(y F Y当0≤y 时,,0}{)(=≤=y Y P y F Y 当0>y 时,}{}{)(y X y P y X P y F Y ≤≤-=≤=).()(y F y F X X --=将)(y F Y 关于y 求导可得Y 的概率密度)(y f Y 如下:⎩⎨⎧>-+=.,0,0),()()(其他y y f y f y f X X Y 当10<<y 时,01<-<-y .因而,3/1)(,3/1)(=-=y f y f X X 此时.3/13/1)(+=y f Y 当21<<y 时,12-<-<-y .因而,0)(,3/1)(=-=y f y f X X 此时.3/1)(=y f Y 当2>y 时,,0)(,0)(=-=y f y f X X 因而.0)(=y f Y 故⎪⎩⎪⎨⎧<≤<<=.,0,21,3/1,10,3/2)(其他y y y f Y 19.设X 的概率密度⎪⎪⎪⎩⎪⎪⎪⎨⎧∞<≤<≤<=.1,21,10,21,0,0)(2x xx x x f X 求XY 1=的概率密度.解因函数x x g y 1)(==严格单调减少,它的反函数.1)(yy h =当∞<<x 0时,∞<<y 0.由第二章)2(公式(2.1)得Y 的概率密度为⎩⎨⎧≤∞<<'⋅=.0,0,0,)()]([y y y h y h f f X Y⎪⎩⎪⎨⎧≤∞<<⎪⎪⎭⎫ ⎝⎛=.0,0,0,112y y yy f X 因而⎪⎪⎪⎩⎪⎪⎪⎨⎧∞<≤<<≤=.1,1)/1(121,110,121,0,0)(222y y y y y y y f Y 即⎪⎪⎪⎩⎪⎪⎪⎨⎧∞<≤≤<≤=.1,21,10,21,0,0)(2y y y y y f Y 本题X 和X1的概率密度相同.20.设随机变量X 服从以均值为λ1的指数分布.验证随机变量][X Y =服从以参数为λ--e1的几何分布.这一事实表明连续型随机变量的函数可以是离散型随机变量.解X 的概率密度为⎩⎨⎧>=-.,0,0,)(其他x e x f x X λλ,X 的值域为)(∞,0,故][X Y =的值域为},2,1,0{ ,Y 是离散型随机变量.对于任意非负整数y ,有}1{}]{[}{+<≤====y X y P y X P y Y P )1(1d +--+--==⎰y y y yx e e x e λλλλ 2,1,0,))(1(==--y e e y λλ-.2,1,0,))1(1)(1( =--=--y e e y λλ-这就是说Y 服从以λ--e1为参数的几何分布.这表示一个连续型随机变量经过变换变成了离散型随机变量.21.投掷一硬币直至正面出现为止,引入随机变量=X 投掷总次数.⎩⎨⎧=.,0,1若首次投掷得到反面若首次投掷得到正面,Y(1)求X 和Y 的联合分布律及边缘分布律.(2)求条件概率}.1|2{},1|1{====X Y P Y X P 解(1)Y 的可能值是0,1,X 的可能值是.,3,2,1 }1{}1|1{}1,1{======X P X Y P Y X P .2/12/11=⨯=(因1=X 必定首次得正面,故).1}1|1{===X Y P 若1>k ,}{}|1{}1,{k X P k X Y P Y k X P ======.0)2/1(0=⨯=k (因,1>=k X 首次得正面是不可能的,故).,3,2,0}|1{ ====k k X Y P }1{}1|0{}0,1{======X P X Y P Y X P 0)2/1(0=⨯=(因1=X 必须首次得正面,故).0}1|0{===X Y P 当1>k }{}|0{}0,{k X P k X Y P Y k X P ======,3,2),2/1(1=⨯=k k (因,1>=k X 必定首次得反面,故).1}|0{===k X Y P 综上,得),(Y X 的分布律及边缘分布律如下:(2).12/12/1}1{}1,1{}1|1{========Y P Y X P Y X P.0}1{}2,1{}1|2{=======X P Y X P X Y P 22.设随机变量),(~λπX 随机变量).2,max(X Y =试求X 和Y 的联合分布律及边缘分布律.解X 的分布律为.,2,1,0,!}{ ===-k k e k X P k λλX 的可能值是 ,2,1,0;Y 的可能值为.,4,3,2 }0{}0|2{}2,0{======X P X Y P Y X P .}0{1λ-==⋅=e X P }1{}1|2{}2,1{======X P X Y P Y X P .}1{1λλ-==⋅=e X P 2≥i 时}{}|{},{i X P i X j Y P j Y i X P ======,4,3,2,,0,,!},{0},{1=⎪⎩⎪⎨⎧≠==⎩⎨⎧≠=⋅==⋅=-j i j i j i e i j i X P i j i X P i λλ即得Y X ,的联合分布律及边缘分布律为23.设X ,Y 是相互独立的泊松随机变量,参数分别为,,21λλ求给定n Y X =+的条件下X 的条件分布.解}|{n Y X k X P =+=}{},{n Y X P n Y X k X P =+=+==}{},{n Y X P k n Y k X P =+-===独立性}{}{}{n Y X P k n Y P k X P =+-==1)(2121!)()!(!2121-+----⎦⎤⎢⎣⎡+-⋅=n e k n e k e n kn k λλλλλλλλn k n k k k n n )(!)!(!2121λλλλ+-=-.)(2122112121kn kn kn k k n k n --⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛=+⎪⎪⎭⎫ ⎝⎛=λλλλλλλλλλ这就是说给定n Y X =+的条件下X 的条件分布为以)/(,211λλλ+n 为参数的二项分布.24.一教授将两篇论文分别交给两个打字员打印.以X ,Y 分别表示第一篇第二篇论文的印刷错误.设),(~λπX ),(~μπY X ,Y 相互独立.(1)求X ,Y 的联合分布律;(2)求两篇论文总共至多1个错误的概率.解(1)X ,Y 的联合分布律为,!!!!},{)(y x e y e x e y Y x X P y x y x μλμλμλμλ+---=⋅===.,2,1,0, =y x (2)两篇论文总共至多1个错误的概率为})1{}0({}1{=+=+=≤+Y X Y X P Y X P }1,0{}0,1{}0,0{==+==+===Y X P Y X P Y X P ).1()()()()(μλμλμλμλμλμλ++=++=+-+-+-+-e e e e 25.一等边三角形ROT (如图15.25)的边长为1,在三角形内随机地取点),(Y X Q (意指随机点),(Y X 在三角形ROT 内均匀分布).(1)写出随机变量),(Y X 的概率密度.(2)求点Q 的底边OT 的距离的分布密度.解(1)因三角形ROT 的面积为4/3,故),(Y X 的概率密度为⎩⎨⎧--≤≤≤≤=.,0),130,303/4),(其他x y x y y x f (2)点),(Y X Q 到底边OT 的距离就是Y ,因而求Q 到OT 的距离的分布函数,就是求),(Y X 关于Y 的边缘分布函数,现在yo题15.25图,230,32134),()(3.13/<<⎪⎪⎭⎫ ⎝⎛-==⎰-y y dx y x f y f y y Y 从而⎪⎩⎪⎨⎧<<⎪⎪⎭⎫ ⎝⎛-=.,0,230,32134)(其他y y y f Y Y 的分布函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤-<=.23,1,230,3434,0,0)(2y y y y y y F Y 26.设随机变量),(Y X 具有概率密度⎩⎨⎧>>=+-.,0,0,0,),()1(其他y x xe y x f y x (1)求边缘概率密度).(),(y f x f Y X (2)求条件概率密度).|(),|(||x y f y x f X Y Y X 解(1)当0>x 时,,)()(0)1(x y y xy x y x X e e e dy xe x f -∞==--∞+-===⎰当0>y 时,dx xe y y xe dx xey f y x x x y x y x Y ⎰⎰∞+-∞==+-∞+-+++-==0)1(0)1(0)1(111)(.)1(1)1(22)1(+=+-=∞==+-y y xe x x y x 故边缘概率密度分别是⎩⎨⎧>=-.,0,0,)(其他x e x f x X ⎪⎩⎪⎨⎧>+=.,0,0,)1(1)(2其他y y y f Y (2)条件概率密度:当0>x 时,⎪⎩⎪⎨⎧>=-+-.,0,0,)|()1(|取其他值y y e xe x y f xy x X Y ⎩⎨⎧>=-.,0,0,取其他值y y xe xy 当0>y 时,⎪⎩⎪⎨⎧>+=+-.,0,0,)1/(1)|(2)1(|取其他值x x y xe y x f y x Y X ⎩⎨⎧>+=+-.,0,0,)1()1(2取其他值x x e y x y x 27.设有随机变量U 和V ,它们都仅取1,1-两个值.已知,2/1}1{==U P }.1|1{3/1}1|1{-=-=====U V P U V P (1)求U 和V 的联合分布密度.(2)求x 的方程02=++V Ux x 至少有一个实根的概率.(3)求x 的方程0)(2=+++++V U x V U x 至少有一个实根的概率.解(1).6/1)2/1)(3/1(}1{}1|1{}1,1{========U P U V P V U P }1{}1|1{}1,1{-=-=-==-=-=U P U V P V U P .6/1)2/1)(3/1(}]1{1[)3/1(===-⨯=U P }1{}1|1{}1,1{==-==-==U P U V P V U P .3/1)2/1)(3/2(}1{}]1|1{1[=====-=U P U V P }1{}1|1{}1,1{-=⋅-====-=U P U V P V U P .3/1)2/1()3/2(}1{}]1|1{1[=⨯=-=-=-=-=U P U V P V U ,的联合分布密度为UV-11-11/62/612/61/6xy题 15.30图(2)方程02=++V Ux x 当且仅当在042≥-=∆V U 时至少有一实根,因而所求的概率为.2/1}1{}04{}0{2=-==≥-=≥∆V P V U P P (3)方程0)(2=+++++V U x V U x 当且仅当在0)(4)(2≥+-+=∆V U V U 时至少有一实根,因而所求的概率为.6/5}1,1{}1,1{}1,1{}0{=-==+=-=+-=-==≥∆V U P V U P V U P P 28.某图书馆一天的读者人数)(~λπX ,任一读者借书的概率为p ,各读者借书与否相互独立.记一天读者借书的人数为Y ,求X 与Y 的联合分布律.解读者借书人数的可能值为}{}|{},{,,,2,1,0k X P k X i Y P i Y k X P X Y Y ======≤= =.,,2,1,2,1,!)1(k i k k e p p i k k i k i ==-⎪⎪⎭⎫ ⎝⎛--λλ29.设随机变量X 和Y 相互独立,且都服从U (0,1),求两变量之一至少为另一变量之值两倍的概率.解按题意知,(X,Y )在区域:}10,10|),{(<<<<=y x y x G 服从均匀分布,其概率密度为其它10,10,0,1),(<<<<⎩⎨⎧=y x y x f 所求概率为}2{}2{Y X P X Y P p >+>==⎰⎰⎰⎰+12),(),(G G dxdyy x f dxdy y x f =G 1的面积+G 2的面积=1/2,G 1,G 2见图15.29.30.一家公司有一份保单招标,两家保险公司竞标.规定标书的保险费必须在20万元至22万元之间.若两份标书保险费相差2千或2千以上,招标公司将选择报价低者,否则就重新招标.设两家保险公司的报价是相互独立的,且都在20万至22万之间均匀分布.试求招标公司需重新招标的概率.解设以X ,Y 分别表示两家保险公司提出的保费.由假设X 和Y 的概率密度均为⎪⎩⎪⎨⎧<<=.,0,2220 ,21)(其他μμf 因X ,Y 相互独立,故),(Y X 的概率密度为⎪⎩⎪⎨⎧<<<<==.,0,2220 ,2220 ,41)()(),(其他y x y f x f y x f Y Xoy题15.29图按题意需求概率为}.2.0{≤-Y X P 画出区域:},2.0|),{(≤-Y X y x 以及矩形},2220 ,2220|),{(<<<<y x y x 如图15.30,它们公共部分的面积G 为G =正方形面积-2×三角形面积=4-1.8×1.8=0.76.所求概率=.19.02276.0=⨯31.设),0(~),,0(~2221σσN Y N X 且Y X ,相互独立,求概率}20{2112σσσσ<-<Y X P .解因Y X ,独立,其线性组合Y X 12σσ-仍为正态变量,而)()()(1212=-=-Y E X E Y X E σσσσ22212122122)()()(σσσσσσ=+=-Y D X D Y X D 故).2,0(~222112σσσσN Y X -因而}20{2112σσσσ<-<Y X P =}202200{222121222112σσσσσσσσ-≤--<Y X P =5.0)2()0()22(222121-=-ΦΦσσσσΦ=4207.05.09207.0=-32.NBA 篮球赛中有这样的规律,两支实力相当的球队比赛时,每节主队得分与客队得分之差为正态随机变量,均值为1.5,方差为6,并且假设四节的比分差是相互独立的.问(1)主队胜的概率有多大?(2)在前半场主队落后5分的情况下,主队得胜的概率有多大?(3)在第1节主队赢5分得情况下,主队得胜的概率有多大?解以)4,3,2,1(=i X i 记主队在第i 节的得分与客队在第i 节的得分之差,则有),6,5.1(~N X i ).64,5.14(~41⨯⨯∑=N Xi i记Z 为标准正态随机变量.(1)⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧⨯->⨯⨯=>∑∑==646645.14}0{4141-i i i i X P X P.7889.0}7224.1{=->=Z P (2)由独立性}5{}5|0{432141>+=-=>∑∑==X X P X X P i i i i }33{123562343>=⎭⎬⎫⎩⎨⎧->⨯-+=Z P X X P .8281.0}5577.0{=>=Z P (3)}05{}5|0{432141>+++==>∑=X X X P X XP i i}5{432->++=X X X P ⎭⎬⎫⎩⎨⎧-->⨯-++=185.45635.4432X X X P .4987.0}239.2{}185.9{=->=->=Z P Z P 33.产品的某种性能指标的测量值X 是随机变量,设X 的概率密度为⎪⎩⎪⎨⎧>=-其他.,0,0,)(221x xe x f x X 测量误差Y~U (εε,-),X ,Y 相互独立,求Z=X+Y 的概率密度)(z f Z ,并验证due Z P u⎰-=>εεε202/221}{解(1)Y 的概率密度为其他.,εεε<<-⎪⎩⎪⎨⎧=y y f Y ,0,21)(故Z =X+Y 的概率密度为⎰+∞∞--=dxx z f x f z f Y X Z )()()(仅当⎩⎨⎧<-<->εεx z x 0即⎩⎨⎧+<<->εεz x z x 0时,上述积分的被积函数不等于零,参考图15.33,即得⎪⎪⎩⎪⎪⎨⎧≥<<-=⎰⎰+--+-其他,,,,0,21,21)(2212210εεεεεεεεz dx xe z dx xez f z z x z x Z题15.33图题 15.34 图=⎪⎪⎪⎩⎪⎪⎪⎨⎧≥-<<--+---+-其他,,,,0],[21],1[21221221221))()(εεεεεεεεz e e z ez z z (2)⎰∞=>εεdzz f Z P Z )(}{=][21221221)()(⎰⎰∞+-∞---εεεεεdz e dz e z z ε21记成[Ⅰ+Ⅱ]其中Ⅰ=⎰⎰∞-∞--=-0),221221du euz eu dz z εεε令Ⅱ=⎰⎰∞-∞+--=+-εεεε2)(221221dueuz dzez 令于是εε21}{=>Z P [Ⅰ+Ⅱ]=⎰-εε2022121dueu 34.在一化学过程中,产品中有份额X 为杂质,而在杂质中有份额Y 是有害的,而其余部分不影响产品的质量.设)5.0,0(~),1.0,0(~U Y U X ,且X 和Y 相互独立,求产品中有害杂质份额Z 的概率密度.解因,XY Z =)5.0,0(~),1.0,0(~U Y U X 且X 和Y 相互独立,于是Z 的概率密度为,d )()(1)(21-x xz f x f x z f Z ⎰+∞∞=)1(*其中,⎩⎨⎧<<=. 0,0.1,0 ,10)(1其他x x f ,⎩⎨⎧<<=.0,0.5,0 ,2)(2其他x x f 易知仅当⎩⎨⎧<<<<0.5,00.1,0z/x x 即⎩⎨⎧<<<<,200.1,0x z x 时,)1(*中的被积函数不等于零,参考题15.34图,即得⎪⎩⎪⎨⎧<<⋅⋅=⎰.0, 0.05,0 ,d 1210)(1.02其他z x xz f z ⎪⎩⎪⎨⎧<<=.0, 0.05,0 ,ln 201.02其他z x zy题 15.35 图1⎩⎨⎧<<-=.0, 0.05,0 ),20ln(20其他z z 35.设随机变量),(Y X 的概率密度为⎩⎨⎧<<=-.0,,0,),(其他y x e y x f y (1)求),(Y X 的边缘概率密度.(2)问Y X ,是否相互独立.(3)求Y X +的概率密度).(z f Y X +(4)求条件概率密度).|(|y x f Y X (5)求条件概率}.5|3{<>Y X P (6)求条件概率}.5|3{=>Y X P 解(1)⎪⎩⎪⎨⎧>==⎰∞.0, 0,,d )(其他x e y e x f -x x -y X ⎪⎩⎪⎨⎧>==⎰.0, 0,,d )(0其他y ye x e y f -y y-y Y (2)Y X ,不是相互独立的.(3)⎰+∞∞-+-=.d ),()(y y y z f z f Y X 仅当,0y y z <-<即⎪⎩⎪⎨⎧<>>z y y zy 02时被积函数不为零.如图15.35图1,得⎪⎩⎪⎨⎧>-==⎰+.0, 0, ,d )(2/2/其他z e ey e z f -z -z zz -y Y X (4)对于,0>y ⎪⎩⎪⎨⎧<<==--. 0, ,0 ,1)|(|其他y x yye e y x f yyY X 即对于固定的)0(>y y X 的条件分布是区间),0(y 上的均匀分布.y 题 15.35 图2(5)如图15.35图2,条件概率为}5{}5,3{}5|3{<<>=<>Y P Y X P Y X P ,)d (d d 50⎰⎰⎰-=yy f xy e Y D y分子=⎰⎰⎰=5355x 53d )(-e d d exx y x-y -y,e e 3)d e (-e 35535--+-=+⎰x -x -=分母=⎰⎰=5Y5d e (y)d y y y f -y x,1e 6d e e 5550+-=+-=⎰--y -yy y 故.82030.0}5|3{=<>Y X P (6)⎪⎩⎪⎨⎧<<=. 0, ,50 ,51)5|(|其他x x f Y X .52d 51}5|3{53===>⎰x Y X P 36.设图书馆的读者借阅甲种图书的概率为p ,借阅乙种图书的概率为α,设每人借阅甲、乙图书的行动相互独立,读者之间的行动也相互独立.(1)某天恰有n 个读者,求甲、乙两种图书中至少借阅一种的人数的数学期望.解(1)以X 表示某天读者中借阅甲种图书的人数,因各人借阅甲种图书的概率均为p ,且由题设各人是否借阅相互独立,故np X E p n b X =)(),,(~因此.(2)以A 表示事件“读者借阅甲种图书”,以B 表示事件“读者借阅乙种图书”,则就读者而言,有).()()()(AB P B P A P B A P -+= 借阅两种图书的行动相互独立,故ααp p B P A P B P A P B A P -+=-+=⋃)()()()()(.以Y 表示至少借阅一种图书的人数,由题设各人是否借阅相互独立,知),(~ααp p n b Y -+,故).()(ααp p n Y E -+=也可这样做.引入随机变量:⎩⎨⎧=.,0,,1种图书的任一种位读者不借阅甲、乙两若第两种图书的一种位读者至少借阅甲、乙若第i i Z i ni ,,2,1 =)()(][)(,111ααp p n Z E Z E Y E Z Y ni i n i i n i i -+====∑∑∑===.这里不需假设读者之间的行动相互独立.37.某种鸟在某时间区间],0(0t 下蛋数为1~5只,下r 只蛋的概率与r 成正比.一个收集鸟蛋的人在0t 时去收集鸟蛋,但他仅当鸟窝多于3只蛋时他从中取走一只蛋.在某处有这种鸟的鸟窝6个(每个鸟窝保存完好,各鸟窝中蛋的个数相互独立).(1)写出一个鸟窝中鸟蛋只数X 的分布率.(2)对于指定的一只鸟窝,求拾蛋人在该鸟窝中拾到一只蛋的概率.(3)求拾蛋人在6只鸟窝中拾到蛋的总数Y 的分布律及数学期望.(4)求}4{},4{><Y P Y P (5)当一个拾蛋人在这6只鸟窝中拾过蛋后,紧接着又有一个拾蛋人到这些鸟窝中拾蛋,也仅当鸟窝中多于3只蛋时,拾取一只蛋,求第二个拾蛋人拾得蛋数Z 的数学期望.解(1)设该中鸟在],0(0t 内下蛋数为X 按题意,5,4,3,2,1,}{===r Cr r X P 其中C 为待定常数.因∑===51,1}{r r X P 即有,11551==∑=C Cr r 所以15/1=C ,因此X 的分布律为.5,4,3,2,1,151}{===r r r X P (2)因当且仅当窝中蛋数多于3时,某人从中取走一只蛋,故拾蛋人在该窝中拾取一只蛋的概率为53155154}5{}4{}3{=+==+==>X P X P X P (3)记拾蛋人在6只鸟窝中拾到蛋的总数为Y ,则)53,6(~b Y ,故518)53(6)(=⨯=Y E (4)}6{}5{}4{1}4{=-=-=-=<Y P Y P Y P Y P =6524535253565253461⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=0.456,(6)第2个拾蛋人仅当鸟窝中最初有5只蛋时,他才能从该窝中拾到一只蛋,故他在一个鸟窝中拾到一只蛋的为,31}5{===X P p 以Z 记第2个拾蛋人拾到蛋的总数,则),31,6(~b Z 故有2)31(6)(=⨯=Z E .38.设袋中有r 只白球,r N -只黑球.在袋中取球)(r n n ≤次,每次任取一只做不放回抽样,以Y 表示取到白球的个数,求)(Y E .解引入随机变量i X :⎩⎨⎧=,,0,,1次取球得到不是白球若第次取到白球若第i i X i ,,,2,1n i =则n 次取球得到的白球数.21n X X X Y +++= 而的分布律为次取球得到白球第i i X Nri P X P ,}{}1{===.,,2,1n i =即知i X 的数学期望为NrX E i =)(.于是得Y 得数学期望为NnrN r n X E X E Y E ni i ni i =⨯===∑∑==11)()()(.本题也可按以下方式写出Y 的表达式,从而求得)(Y E ,将球编号,引入随机变量:i X ⎩⎨⎧=号白球未被取到若第号白球被取到若第i i X i ,0,,1ri ,,2,1 =则r X X X Y +++= 21.事件}1{=i X 发生,表示在袋中取球n 次,若每次任取一只不放回抽样时,第i 号白球被取到.因为事件}1{=i X 可以在第一次、第二次、…、第n 次取球,这n 种两两互不相容的情况发生,且每次取到第i 号白球的概率都是N1.因此r i NnN N N X P i ,,2,1,111}1{ ==+++==,这样N n X E i =)(,从而N nrX E Y E ri i ==∑=1)()(.39.抛一颗骰子直到所有点数全部出现为止,求所需投掷次数Y 的数学期望.解引入随机变量.6,5,4,3,2,1,=i X i 如下:,11=X ,,2待次数等待第二不同点所需等是第一点得到后X 3X 是第一、第二两点得到后,等待第三个不同点所需等待次数,654,,X X X 的意义类似.则所需投掷的总次数为621X X X Y +++= .因第一点得到后,掷一次得第二个不同的点的概率为65,因此2X 的分布律为,,2,1,)61(65}{12 ===-k k X P k 即2X 服从参数65=p 的几何分布,又因得到两个不同的点后,掷一次得第三个不相同点的概率为64,故3X 服从参数64=p 的几何分布,其分布律为,2,1,)62(64}{13===-k k X P k 同样,654,,X X X 的分布律分别为.,2,1,63(63}{14 ===-k k X P k .,2,1,64(62}{15 ===-k k X P k .,2,1,65(61}{16 ===-k k X P k 因几何分布 ,2,1,)1(}{1=-==-k p p k X P k 的数学期望为(参见第四章)2(习题选解19题)pX E 1)(=.所以∑∑==+==62161)()()()(i ii i X E X E X E Y E =7.141626364656[1=+++++.40.设随机变量Y X ,相互独立.且Y X ,分别服从以βα1,1为均值得指数分布.求).(2X Ye X E -+解)()()()(22X X e E Y E X E Ye X E --+=+dtee Y E X E X D ttαα-∞-⎰⋅⋅++=02)()]([)(⎰∞+-++=0)1(22111dte t ααβαα.)1(22++=αβαα41.一酒吧间柜台前有6张凳子,服务员预测,若两个陌生人进来就坐的话,他们之间至少相隔两张凳子.(1)若真有2个陌生人入内,他们随机地就坐,问服务员预言为真的概率是多少?(2)设2个顾客是随机坐的,求顾客之间凳子数的数学期望.解(1)将凳子按自左至右编号,设服务员预言为真.)(A 若第一顾客就坐于1号,则另一顾客可坐4或5或6号共三种坐法,)(B 若第一顾客就坐于2号,则另一顾客可坐在5或6号共两种坐法,)(C 若第一顾客就坐于6号,只有一种坐法.综合)(),(),(C B A 三种情况共计6种坐法.同样,若第一顾客分别就坐于6号,5号,4号,则另一顾客也有6种坐法,因此两人共有1226=⨯种坐法,若两人随机就坐共有3026=A 种坐法,故服务员预言为真的概率是523012==p .(2)若两顾客是随机坐的,以Y 记两顾客间的凳子数,则Y 可能取的值为0,1,2,3,4.可知Y 的分布律为于是3415141523153215411550)(=⨯+⨯+⨯+⨯+⨯=Y E .42.设随机变量10021,,,X X X 相互独立,且都服从),1,0(U 又设,10021X X X Y ⋅⋅⋅= 求概率}10{40-<Y P 的近似值.解所求概率为}.1.92ln {}10ln 40{ln }10ln 40{ln }10{1001100140-<=-<=-<=<=∑∏==-i i i i X P X P Y P Y P p 因n X X X ,,,21 相互独立且都服从),1,0(U 知n X X X ln ,,ln ,ln 21 也相互独立,且服从同一分布,又),1,0(~U X i 其概率密度为⎩⎨⎧<<=其他,,010,1)(x x f 故有.112)(,2d ln )(ln ,1d ln )(ln 1221=-===-==⎰⎰i i i X D x x X E x x X E 由中心极限定理得}1.92ln {1001-<=∑=i i X P p ⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧+-<-⨯-=∑=11001001.921100)1(100ln 1001i i X P .7852.0)97.0()1001001.92(=Φ=+-Φ≈43.来自某个城市的长途电话呼叫的持续时间X (以分计)是一个随机变量,它的分布函数是⎪⎩⎪⎨⎧<≥--=--.0,0,0,e 21e 211)(]3[3x x x F x x(其中3[x是不大于3x的最大整数).(1)画出)(x F 的图形.(2)说明X 是什么类型的随机变量.(3)求}6{},4{},3{},4{>>==X P X P X P X P (提示)0()(}{--==a F a F a X P ).解(1)(2))(x F 的所有不连续点为),,2,1(3 =k k X 取这些值的概率的总和为∑∑∞=∞=--==11)]03()3([}3{k k k F k F k X P ∑∞=-----⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛--=1)133(33]33[33e 21e 211e 21e 211i k k k k ∑∑∞=∞=---=-=-=111.21e )1e (21)e e (21i k k kk 注意到,在)(x F 的任一连续点a 处有;0}{==a X P 又由于∑∞===121}3{k k X P ,因此,不可能取到可列多个值,,,21 x x 使得∑∞===1,1}{k kx X P 故X 不是离散型随机变量.又由于)(x F 不是连续函数,故X也不是连续型随机变量.(3).0}4{==X P )03()3(}3{--==F F X P ⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛--=-----)11(111e 21e 211e 21e 211.316.0)e 1(211=-=-.684.00e 21e 211}4{)4(}4{134=---==-=<--X P F X P.0.0.0.0.1题15.43图.135.0e 21e 2111)6(1}4{222==⎪⎭⎫⎝⎛---=-=>---e F X P 44.一汽车保险公司分析一组(250人)签约的客户中的赔付情况.据历史数据分析,在未来一周中一组客户中至少提出一项索赔的客户数X 占10%.写出X 的分布,并求12.0250⨯>X (即30>X )的概率.设各客户是否提出索赔相互独立.解按题意知)10.0,250(~b X .现在需要求∑=-⎪⎪⎭⎫ ⎝⎛=>2503125090.010.0250}30{x x x x X P 即需求∑=-⎪⎪⎭⎫ ⎝⎛-=>30025090.010.02501}30{x xx x X P 由拉普拉斯定理得⎪⎪⎭⎫⎝⎛⨯⨯⨯-Φ-≈>90.010.025010.0250301}30{X P .1469.08531.01)054.1(1=-=Φ-=45.在区间)1,0(随机地取一点X .定义}.75.0,min{X Y =(1)求随机变量Y 的值域.(2)求Y 的分布函数,并画出它的图形.(3)说明Y 不是连续型随机变量,Y 也不是离散型随机变量.解(1)因},75.0,min{X Y =故X Y ≤且.75.0≤Y 又由于X 的值域是)1,0(,知Y 的值域为]75.0,0(.(2)由(1)知当0<y 时,0}{)(=≤=y Y P y F Y 当75.0≥y 时,.1}{)(=≤=y Y P y F Y 当75.00<≤y 时,事件}{y Y ≤表示X 是在],0(y 随机取的一点.故有⎪⎩⎪⎨⎧≥<≤<=75.0,175.00,0,0)(y y y y y F Y )(y F Y 的图形如题15.45图所示.(3)从题15.45图看出,)(y F Y 在点75.0=y 处不连续,故它不是连续型随机变量.)(y F Y 只有一个不连续点75.0=y .注意到在)(y F Y 的任一连续点a 处,有,0}{==a Y P 而在不连续点75.0=y 处,.01题15.45图。
2020年奥鹏南开20秋学期《概率论与统计原理》在线作业1标准答案
B.正确
正确答案:B
8.设F(x)和f(x)分别是随机变量X的分布函数和概率密度函数,则必有F/(x)=f(x)
A.错误
B.正确
正确答案:B
9.投掷一枚均匀的骰子,“出现1点”是一个基本事件
A.错误
B.正确
正确答案:B
10.任何事件的概率都必须是区间[0,1]上的实数
A.错误
B.正确
正确答案:B
正确答案:D
21.如果X服从正态分布N(μ,σ^2),则P{│X - μ│<1.96σ}=()
A.0.6826
B.0.95
C.0.9545
D.0.9973
正确答案:B
22.
题面见图片:
A.A
B.B
C.C
D.D
正确答案:A
23.
题面见图片:
A.A
B.B
C.C
D.D
正确答案:B
24.
题面见图片:
A.A
B.B
11.已知一批同型号的电子元件,次品率为1/6.从这批元件中任取6000只,设X表示其中的次品数,则X近似服从正态分布N(1000,2500/3)
AHale Waihona Puke 错误B.正确正确答案:B
12.设随机变量X服从参数为2的指数分布,则EX=DX=2
A.错误
B.正确
正确答案:A
13.一段时间内某城市110报警次数是一个离散型随机变量
A.X
B.μ
C.n
D.无法确定
正确答案:B
28.袋中有10个球,其中有3个是红球,其余为白球,不放回抽样从中任取5次,一次取一个球,则第5次取到红球的概率为()
A.0.1
B.0.3
《概率论与数理统计》在线作业
第一阶段在线作业第1题1-设川与另互为对立事件,且* ? U) >0, P <B) >0,则下列各式中错误的是(P VA JP⑷=1申⑻ B.P (>4B) =P <A)B (B)屮C.F(AB) = 1D.P (AUB) =2您的答案:B题目分数:0.5此题得分:0.5批注:对立不是独立。
两个集合互补。
第2题2•设儿&为两个随机事件.且P U)>0,则P UU5U)=( 八A. P (AB)B.P (乂)4C P (B) D3您的答案:D题目分数:0.5此题得分:0.5批注:A发生,必然导致和事件发生。
■3.下列各函数可作为随机变壘分市函曹时是(0<r<l(_1」工w -1;C.用兀-[1 r>l.X 2 0<XClj .J r>l.I <0;0 <x <1 ;zx>1.您的答案:B题目分数:0.5此题得分:0.5批注:分布函数的取值最大为1,最小为0.第4题4 .设随机变量X的概率密度次(|x|a 其他4c.2J!l JP{-i<z<i}=(DU您的答案:A题目分数:0.5此题得分:0.5批注:密度函数在【-1,1】区间积分。
第5题玄役岛B为陋机事件,P (B) Ah P (A|B) =1贝J必有( )束A. F(AUB)^F (A)B. A ziBC. P (A) =P (B) D・ P (AB) =F <A)-您的答案:A题目分数:0.5此题得分:0.5批注:A答案,包括了BC两种情况。
第6题&将两封信ffi机地投入四个邮筒中,则未向前面两个邮筒投信的概率为()心C. 2!D当C:4!您的答案:A题目分数:0.5此题得分:0.5批注:古典概型,等可能概型,16种总共的投法。
第7题第9题7.某人连续向一目标射击,每次命中目标的概率沟轴 他连续射击直至倫中沟止,则射註 i ■燉沏3的概率是( )-您的答案:C题目分数:0.5 此题得分:0.5批注:几何概型,前两次没有命中,且第三次命中,三次相互独立,概率相乘。
(完整版)概率论与数理统计习题集及答案
《概率论与数理统计》作业集及答案第1章 概率论的基本概念§1 .1 随机试验及随机事件1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ;(2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ;B :两次出现同一面,则= ;C :至少有一次出现正面,则C= .§1 .2 随机事件的运算1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件:(1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则(1)=⋃B A ,(2)=AB ,(3)=B A , (4)B A ⋃= ,(5)B A = 。
§1 .3 概率的定义和性质1. 已知6.0)(,5.0)(,8.0)(===⋃B P A P B A P ,则(1) =)(AB P , (2)()(B A P )= , (3))(B A P ⋃= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = .§1 .4 古典概型1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率,(2)最多有2个女同学的概率,(3) 至少有2个女同学的概率.2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率.§1 .5 条件概率与乘法公式1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。
2020年大学基础课概率论与数理统计必考题及答案(精选版)
2020年大学基础课概率论与数理统计必考题及答案(精选版)一、单选题1、设为来自正态总体的一个样本,若进行假设检验,当__ __时,一般采用统计量(A)(B) (C) (D)【答案】C2、设X ~(1,)p β 12,,,,,n X X X ⋅⋅⋅是来自X 的样本,那么下列选项中不正确的是(A)当n 充分大时,近似有X ~(1),p p N p n -⎛⎫ ⎪⎝⎭(B){}(1),k k n k n P X k C p p -==-0,1,2,,k n =⋅⋅⋅(C ){}(1),k k n k n k P X C p p n-==-0,1,2,,k n =⋅⋅⋅(D ){}(1),1k k n k i n P X k C p p i n -==-≤≤ 【答案】B3、设离散型随机变量(,)X Y 的联合分布律为(,)(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)1/61/91/181/3X Y P αβ且Y X ,相互独立,则 A ) 9/1,9/2==βα B ) 9/2,9/1==βαC ) 6/1,6/1==βαD ) 18/1,15/8==βα【答案】A4、设 ()2~,X N μσ,其中μ已知,2σ未知,1234,,,X X X X 为其样本, 下列各项不是统计量的是____ (A)4114i i X X ==∑ (B)142X X μ+- (C)42211()i i K X X σ==-∑ (D)4211()3i i S X X ==-∑ n X X X ,,,21 2(,)N μσX t =220μσσ未知,检验=220μσσ已知,检验=20σμμ未知,检验=20σμμ已知,检验=【答案】C5、已知n X X X ,,,21 是来自总体的样本,则下列是统计量的是( )X X A +)( +A ∑=-n i i X n B 1211)( a X C +)( +10 131)(X a X D ++5 【答案】B6、 设123,,X X X 相互独立同服从参数3λ=的泊松分布,令1231()3Y X X X =++,则2()E Y =A )1.B )9.C )10.D )6.【答案】C7、设X ~2(,)N μσ,那么当σ增大时,{}P X μσ-<= A )增大 B )减少 C )不变 D )增减不定。
概率论和数理统计带答案
概率论和数理统计带答案单选题(共40 分))C)(1、在假设检验问题中,犯第一类错误的概率α的意义是(A、在H0不成立的条件下,经检验H0被拒绝的概率B、在H0不成立的条件下,经检验H0被接受的概率C、在H0成立的条件下,经检验H0被拒绝的概率D、在H0成立的条件下,经检验H0被接受的概率)C则有(且P(A)≤P(A|B),2、设,AB是两个事件,A、P(A)=P(A|B)B、P(B)>0C、P(A|B)≥P(B)D、设,AB是两个事件3、某中学为迎接建党九十周年,举行了”童心向党,从我做起”为主题的演讲比赛.经预赛,七、八年纪各有)(A,那么九年级同学获得前两名的概率是()一名同学进入决赛,九年级有两名同学进入决赛A、1/、1/、1/、1/3.4、设,,ABC是三个相互独立的事件,且0<p(c)<1,则在下列给定的四对事件中不相互独立的是< b="\</p" bdsfid="70"></p(c)<1,则在下列给定的四对事件中不相互独立的是<>style=ont-size: 9pt; margin: 0px; padding: 0px;>(B)A、AUB与cB、AC与CC、A-B与CD、AB与C5、设随机事件A与B相互独立,P(A)=,P(B)=则P(A-B)=(D)A、1/、1/、1/、1/12.6、将C,C,E,E,I,N,S等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE的概率为(A)A、4/、4/、5/、6/7.7、设事件,AB满足ABBB,则下列结论中肯定正确的是()(D)A、AB互不相容B、AB相容C、互不相容D、P(A-B)=P(A)8、已知P(B)=,P(AUB)=,且A与B相互独立,则P(A)=(D)A、、、、9、若事件A和事件B相互独立, P(A)==,P(B)=,P(AB)=,则则(A)A、3/、4/、5/、6/7.10、,设X表示掷两颗骰子所得的点数,则EX =(D)A、2B、3C、4D、7多选题(共20 分)1、甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为,乙击中敌机的概率为.求敌机被击中的概率为(D)A、、、、2、设X1,X2,Xn为来自正态总体N((,,)的一个样本,若进行假设检验,当___ __(C)A、未知,检验验2==2B、未知,检验验2==3C、未知,检验验2==2D、未知,检验验2==33、甲、乙、丙3人同时各自独立地对同一目标进行射击,3人击中目标的概率分别为,,。
南开大学20秋学期《概率论与数理统计》在线作业
20秋学期(1709、1803、1809、1903、1909、2003、2009 )《概率论与数理统计》在线作业判断题一、单选题共30题,60分12分.ABCD22分从6台原装计算机和5台组装计算机中任意选取5台参加展览,其中至少有原装与组装计算机各2台的概率为()。
ABCD32分设X服从二项分布B(n,p),E表示期望,D表示方差,则下列式子成立的是()A E(2X-1)=2npB D(2X-1)=4npC E(2X+1)=4np+1D D(2X_1)=4np(1-p)42分X为随机变量,E[X]为其期望,则下面有关X的期望,正确的是()。
A E[2X]=2XB E[2X]=2E[X]C E[2X]=2+XD E[2+X]=2X52分.ABCD62分.ABCD72分某药厂用从甲、乙、丙三地收购而来的药材加工生产出一种中成药,三地的供货量分别占40%,35%和25%,且用这三地的药材能生产出优等品的概率分别为0.65,0.70和0.85,如果一件产品是优质品,它的材料来自甲地的概率为()。
A0.445B0.533C0.327D0.36282分设容量为16人的简单随机样本,平均完成工作时间13分钟,总体服从正态分布且标准差为3分钟。
若想对完成工作所需时间构造一个90%置信区间,则( )A应用标准正态概率表查出z值B应用t-分布表查出C应用二项分布表查出p值D应用泊松分布表查出λ值92分.ABCD102分.ABCD112分.ABCD122分设二维随机变量X,Y相互独立,X服从标准正态分布,Y服从标准正态分布,则E(X+Y) =()。
A0.1B0C0.25D1132分.ABCD142分设随机变量X1,X2,…,Xn相互独立, Sn=X1+X2+…+Xn, 则根据列维-林德伯格(Levy-Lindberg)中心极限定理,则只要X1,X2,…,Xn( ) 时,Sn一定近似服从正态分布。
A有相同的数学期望B有相同的方差C服从同一指数分布D服从同一离散型分布152分在事件A发生的条件下事件B发生的概率,简称为B的()。
概率论与数理统计课后习题集及答案详解
概率论与数理统计课后习题集及解答第一章 随机事件和概率一. 填空题1. 设A, B, C 为三个事件, 且=-=⋃⋃=⋃)(,97.0)(,9.0)(C AB P C B A P B A P 则____. 解.)(1)(1)()()()(ABC P AB P ABC P AB P ABC AB P C AB P +--=-=-=-=)(C B A P ⋃⋃-)(B A P ⋃= 0.97-0.9 = 0.072. 设10件产品中有4件不合格品, 从中任取两件, 已知所取两件产品中有一件是不合格品, 另一件也是不合格品的概率为_______.解. }{合格品二件产品中有一件是不=A , }{二件都是不合格品=B511)()()()()|(2102621024=-===c c c c A P B P A P AB P A B P 注意: }{合格品二件产品中有一件是不=}{不合格品二件产品中恰有一件是 +}{二件都是不合格品 所以B AB B A =⊃,; }{二件都是合格品=A 3. 随机地向半圆a x ax y (202-<<为正常数)内掷一点, 点落在半圆内任何区域的概率与区域的面积成正比, 则原点和该点的连线与x 轴的夹角小于4π的概率为______. 解. 假设落点(X, Y)为二维随机变量, D 为半圆. 则121)),((2==∈a kD Y X P π, k 为比例系数. 所以22ak π= 假设D 1 = {D 中落点和原点连线与x 轴夹角小于4π的区域}πππ121)2141(2)),((22211+=+=⨯=∈a a a D k D Y X P 的面积. 4. 设随机事件A, B 及其和事件A ⋃B 的概率分别是0.4, 0.3, 0.6, 若B 表示B 的对立事件, 则积事件B A 的概率)(B A P = ______.解. =+-+=)()()()(B A P B P A P AB P 0.4 + 0.3-0.6 = 0.13.01.04.0)()()(=-=-=AB P A P B A P .5. 某市有50%住户订日报, 有65%住户订晚报, 有85%住户至少订这两种报纸中的一种, 则同时订这两种报纸的住户的百分比是________. 解. 假设A = {订日报}, B = {订晚报}, C = A + B. 由已知 P(A) = 0.5, P(B) = 0.65, P(C) = 0.85.所以 P(AB) = P(A) + P(B)-P(A + B) = 0.5 + 0.65-0.85 = 0.3.6. 三台机器相互独立运转, 设第一, 第二, 第三台机器不发生故障的概率依次为0.9, 0.8, 0.7, 则这三台机器中至少有一台发生故障的概率________. 解. 设A i 事件表示第i 台机器运转不发生故障(i = 1, 2, 3). 则 P(A 1) = 0.9, P(A 2) = 0.8, P(A 3) = 0.7,)()()(1)(1)()(321321321321A P A P A P A A A P A A A P A A A P -=-==++ =1-0.9×0.8×0.7=0.496.7. 电路由元件A 与两个并联元件B, C 串联而成, 若A, B, C 损坏与否相互独立, 且它们损坏的概率依次为0.3, 0.2, 0.1, 则电路断路的概率是________. 解. 假设事件A, B, C 表示元件A, B, C 完好.P(A) = 0.7, P(B) = 0.8, P(C) = 0.9. 事件线路完好 = A(B + C) = AB + AC.P(A(B + C) ) = P(AB + AC) = P(AB)+P(AC)-P(ABC) = P(A)P(B) + P(A)P(C)-P(A)P(B)P(C) = 0.7×0.8 +0.7×0.9-0.7×0.8×0.9 = 0.686. 所以 P(电路断路) = 1-0.686 = 0.314.8. 甲乙两人投篮, 命中率分别为0.7, 0.6, 每人投三次, 则甲比乙进球多的概率______. 解. 设X 表示甲进球数, Y 表示乙进球数.P(甲比乙进球多) = P(X = 3, Y = 2) +P(X = 3, Y = 1) + P(X = 3, Y = 0) + P(X = 2, Y = 1) +P(X = 2, Y = 0) + P(X = 1, Y = 0) = P(X = 3)P(Y = 2) +P(X = 3)P(Y = 1) + P(X = 3)P(Y = 0) + P(X = 2)P(Y = 1) +P(X = 2)P(Y = 0) + P(X = 1)P(Y = 0)=+⋅⋅⋅21336.04.07.0c +⋅⋅⋅6.04.07.02233c 334.07.0⋅++⋅⋅⋅⋅⋅2132134.06.07.03.0c c +⋅⋅⋅32134.07.03.0c 32134.03.07.0⋅⋅⋅c= 0.148176 + 0.098784 +0.021952 + 0.127008 + 0.028224 + 0.012096 = 0.43624.9. 三人独立破译一密码, 他们能单独译出的概率分别为41,31,51, 则此密码被译出的概率_____.解. 设A, B, C 表示事件甲, 乙, 丙单独译出密码., 则41)(,31)(,51)(===C P B P A P . P(A + B + C) = P(A) + P(B) + P(C)-P(AB)-P(AC)-P(BC) + P(ABC)= P(A) + P(B) + P(C)-P(A)P(B)-P(A)P(C)-P(B)P(C) + P(A)P(B)P(C) =53413151413141513151413151=⋅⋅+⋅-⋅-⋅-++.二.单项选择题.1. 以A 表示“甲种产品畅销, 乙种产品滞销”, 则对立事件A 为(A) “甲种产品滞销, 乙种产品畅销” (B) “甲、乙产品均畅销”(C) “甲种产品滞销” (D) “甲产品滞销或乙产品畅销” 解. (D)是答案.2. 设A, B, C 是三个事件, 与事件A 互斥的事件是(A) C A B A + (B) )(C B A + (C) ABC (D) C B A ++ 解. ==++C B A A )C B A A(φ, 所以(D)是答案. 3. 设A, B 是任意二个事件, 则(A) P(A ⋃B)P(AB)≥P(A)P(B) (B) P(A ⋃B)P(AB)≤P(A)P(B) (C) P(A -B)P(B -A)≤P(A)P(B)-P(AB) (D)41)()(≥--A B P B A P . 解. P(A + B)P(AB)-P(A)P(B) = (P(A) + P(B)-P(AB))P(AB)-P(A)P(B) =-P(A)(P(B)-P(AB)) + P(AB)(P(B)-P(AB) =-(P(B)-P(AB))(P(A)-P(AB)) =-P(B -A)P(A -B) ≤ 0 所以(B)是答案 .4. 事件A 与B 相互独立的充要条件为(A) A + B = Ω (B) P(AB) = P(A)P(B) (C) AB = φ (D) P(A + B) = P(A) + P(B) 解. (B)是答案.5. 设A, B 为二个事件, 且P(AB) = 0, 则(A) A, B 互斥 (B) AB 是不可能事件 (C) AB 未必是不可能事件 (D) P(A) = 0或P(B) = 0. 解. 概率理论中 P(A) = 0不能推出A 为不可能事件(证明超出大纲要求). 所以(C)是答案. 6. 设A, B 为任意二个事件, 且A ⊂B, P(B) > 0, 则下列选项必然成立的是 (A) P(A) < P(A|B) (B) P(A) ≤ P(A|B) (C) P(A) > P(A|B) (C) P(A) ≥ P(A|B) 解. )()()()()()|(A P B P A P B P AB P B A P ≥==(当B = Ω时等式成立). (B)是答案.7. 已知 0 < P(B) < 1, 且P[(A 1 + A 2)|B] = P(A 1|B) + P(A 2|B), 则下列选项必然成立的是 (A))B |P(A )B |P(A ]B |)A P[(A 2121+=+ (B) P(A 1B +A 2B) = P(A 1B) +P(A 2B)(C) P(A 1 +A 2) = P(A 1|B) +P(A 2|B)(D) P(B) = P(A 1)P(B|A 1) + P(A 2)P(B|A 2)解. 由P[(A 1 + A 2)|B] = P(A 1|B) + P(A 2|B)得到)()()()()(])[(2121B P B A P B P B A P B P B A A P +=+, 所以P(A 1B +A 2B) = P(A 1B) +P(A 2B). (B)是答案.三. 计算题1. 某厂生产的产品次品率为0.05, 每100个产品为一批, 抽查产品质量时, 在每批中任取一半来检查, 如果发现次品不多于1个, 则这批产品可以认为合格的, 求一批产品被认为是合格的概率.解. P(该批产品合格) = P(全部正品) + P(恰有1个次品)=2794.050100154995*********=+c cc c c2. 书架上按任意次序摆着15本教科书, 其中有5本是数学书, 从中随机地抽取3本, 至少有一本是数学书的概率.解. 假设A={至少有一本数学书}. A ={没有数学书}P(A ) =9124315310=c c , P(A) = 1-P(A ) = 91673. 全年级100名学生中有男生80名, 来自北京的20名中有男生12名. 免修英语的40名学生中有男生32名, 求出下列概率: i. 碰到男生情况不是北京男生的概率;ii. 碰到北京来的学生情况下是一名男生的概率; iii. 碰到北京男生的概率;iv. 碰到非北京学生情况下是一名女生的概率; v. 碰到免修英语的男生的概率.解. 学生情况: 男生 女生 北京 12 8 免修英语 32 8 总数 80 20i. P(不是北京|男生) =20178068=ii. P(男生|北京学生) =532012=iii. P(北京男生) =10012iv. P(女生|非北京学生) =8012v. P(免修英语男生) =100324. 袋中有12个球, 其中9个是新的, 第一次比赛时从中取3个, 比赛后任放回袋中, 第二次比赛再从袋中任取3个球, 求: i. 第二次取出的球都是新球的概率;ii. 又已知第二次取出的球都是新球, 第一次取到的都是新球的概率.解. i. 设B i 表示第一次比赛抽到i 个新球(i = 0, 1, 2, 3). A 表示第二次比赛都是新球. 于是312339)(c c c B P i i i -=, 31239)|(c c B A P i i -=)()(1)()|()()(3603393713293823193933092312323123933930c c c c c c c c c c c c c c c c c B A P B P A P i i i i i i i +++===∑∑=--=146.0484007056)201843533656398411()220(12==⨯⨯+⨯⨯+⨯⨯+⨯⨯=ii. 215484007056)220(20184)()()|()|(2333=⨯⨯==A P B P B A P A B P5. 设甲、乙两袋, 甲袋中有n 个白球, m 个红球, 乙袋中有N 个白球, M 个红球, 今从甲袋中任取一只放入乙袋, 再从乙袋中任取一球, 问取到白球的概率. 解. 球的情况: 白球 红球 甲袋 n m 乙袋 N M假设 A = {先从甲袋中任取一球为白球} B = {先从甲袋中任取一球为红球} C = {再从乙袋中任取一球为白球} P(C) = P(C|A)P(A) + P(C|B)P(B)nm mM N N m n n M N N +⋅++++⋅+++=111 ))(1()1(n m M N NmN n +++++=第二章 随机变量及其分布一. 填空题1. 设随机变量X ~B(2, p), Y ~B(3, p), 若P(X ≥ 1) =95, 则P(Y ≥ 1) = _________. 解. 94951)1(1)0(=-=≥-==X P X P 94)1(2=-p , 31=p 2719321)0(1)1(3=⎪⎭⎫⎝⎛-==-=≥Y P Y P2. 已知随机变量X 只能取-1, 0, 1, 2四个数值, 其相应的概率依次为cc c c 162,85,43,21, 则c = ______. 解. 2,16321628543211==+++=c cc c c c 3. 用随机变量X 的分布函数F(x)表示下述概率:P(X ≤ a) = ________. P(X = a) = ________.P(X > a) = ________. P(x 1 < X ≤ x 2) = ________.解. P(X ≤ a) = F(a) P(X = a) = P(X ≤ a)-P(X < a) = F(a)-F(a -0) P(X > a) = 1-F(a) P(x 1 < X ≤ x 2) = F(x 2)-F(x 1)4. 设k 在(0, 5)上服从均匀分布, 则02442=+++k kx x 有实根的概率为_____.解. k 的分布密度为⎪⎩⎪⎨⎧=051)(k f 其它50≤≤kP{02442=+++k kx x 有实根} = P{03216162≥--k k } = P{k ≤-1或k ≥ 2} =535152=⎰dk 5. 已知2}{,}{kbk Y P k a k X P =-===(k = 1, 2, 3), X 与Y 独立, 则a = ____, b = ____, 联合概率分布_____, Z = X + Y 的概率分布为_____. 解. 116,132==++a a a a . 4936,194==++b b b b(X, Y)的联合分布为ab = 216α, 539=α α249)3()1()3,1()2(==-===-===-=abY P X P Y X P Z P α66)2,1()3,2()1(=-==+-===-=Y X P Y X P Z Pα251)1,1()2,2()3,3()0(=-==+-==+-====Y X P Y X P Y X P Z P α126)2,3()1,2()1(=-==+-====Y X P Y X P Z Pα723)1()3()1,3()2(==-===-====abY P X P Y X P Z P6. 已知(X, Y)联合密度为⎩⎨⎧+=0)sin(),(y x c y x ϕ 其它4,0π≤≤y x , 则c = ______, Y 的边缘概率密度=)(y Y ϕ______.解.12,1)sin(4/04/0+==+⎰⎰c dxdy y x c ππ所以⎩⎨⎧++=0)sin()12(),(y x y x ϕ 其它4,0π≤≤y x当 40π≤≤y 时))4cos()(cos 12()sin()12(),()(4y y dx y x dx y x y Y +-+=++==⎰⎰∞+∞-πϕϕπ所以⎪⎩⎪⎨⎧+-+=0))4cos()(cos 12()(y y y Y πϕ 其它40π≤≤y7. 设平面区域D 由曲线2,1,01e x x y xy ====及直线围成, 二维随机变量(X, Y)在D 上服从均匀分布, 则(X, Y)关于X 的边缘密度在x = 2处的值为_______. 解. D 的面积 =2121=⎰e dx x. 所以二维随机变量(X, Y)的密度为: ⎪⎩⎪⎨⎧=021),(y x ϕ 其它D y x ∈),(下面求X 的边沿密度:当x < 1或x > e 2时 0)(=x X ϕ 当1 ≤ x ≤ e 2时 ⎰⎰===∞+∞-x X x dy dy y x x 102121),()(ϕϕ, 所以41)2(=X ϕ. 8. 若X 1, X 2, …, X n 是正态总体N(μ, σ2)的一组简单随机样本, 则)(121n X X X nX +++=服从______. 解. 独立正态分布随机变量的线性函数服从正态分布.μ==⎪⎭⎫ ⎝⎛∑∑==n i i n i i X E n X n E 11)(11, nX D nX n D ni in i i 2121)(11σ==⎪⎭⎫ ⎝⎛∑∑==所以 ),(~2nN X σμ9. 如果(X, Y)的联合分布用下列表格给出,且X 与Y 相互独立, 则α = ______, β = _______.解.213161)1(,18)3(,9)2(,31)2(=+==+==+==++==Y P Y P Y P X P βαβα 132)3()2()1(=++==+=+=βαY P Y P Y P⎪⎪⎩⎪⎪⎨⎧+++=======+++=======)181)(31()3()2()3,2()91)(31()2()2()2,2(ββαβαβααY P X P Y X P Y P X P Y X P两式相除得βαβα=++18191, 解得 βα2=, 92,91==αβ.10. 设(X, Y)的联合分布律为3122 0 122 则 i. Z = X + Y 的分布律 ______. ii. V = X -Y 的分布律______.iii. U= X 2 + Y -2的分布律_______. 解.二. 单项选择题1. 如下四个函数哪个是随机变量X 的分布函数(A)⎪⎪⎩⎪⎪⎨⎧=221)(x F 0022≥<≤--<x x x , (B) ⎪⎩⎪⎨⎧=1sin 0)(x x F ππ≥<≤<x x x 00(C) ⎪⎩⎪⎨⎧=1sin 0)(x x F 2/2/00ππ≥<≤<x x x , (D) ⎪⎪⎩⎪⎪⎨⎧+=1310)(x x F 212100≥<≤<x x x解. (A)不满足F(+∞) = 1, 排除(A); (B)不满足单增, 排除(B); (D)不满足F(1/2 + 0) = F(1/2), 排除(D); (C)是答案. 2. ),4,2,0(!/)( ===-k k ec k X P kλλ是随机变量X 的概率分布, 则λ, c 一定满足(A) λ > 0 (B) c > 0 (C) c λ > 0 (D) c > 0, 且 λ > 0 解. 因为),4,2,0(!/)( ===-k k ec k X P kλλ, 所以c > 0. 而k 为偶数, 所以λ可以为负.所以(B)是答案.3. X ~N(1, 1), 概率密度为ϕ(x), 则(A)5.0)0()0(=≥=≤X P X p (B)),(),()(+∞-∞∈-=x x x ϕϕ (C) 5.0)1()1(=≥=≤X P X p (D) ),(),(1)(+∞-∞∈--=x x F x F 解. 因为E(X) = μ = 1, 所以5.0)1()1(=≥=≤X P X p . (C)是答案.4. X, Y 相互独立, 且都服从区间[0, 1]上的均匀分布, 则服从区间或区域上的均匀分布的随机变量是(A) (X, Y) (B) X + Y (C) X 2 (D) X -Y 解. X ~⎩⎨⎧=01)(x ϕ其它10≤≤x , Y ~⎩⎨⎧=01)(y ϕ其它10≤≤y . 所以(X, Y)~⎩⎨⎧=01),(y x ϕ其它1,0≤≤y x .所以(A)是答案.5. 设函数⎪⎪⎩⎪⎪⎨⎧=120)(xx F 1100>≤<≤x x x 则(A) F(x)是随机变量X 的分布函数. (B) 不是分布函数.(C) 离散型分布函数. (D)连续型分布函数.解. 因为不满足F(1 + 0) = F(1), 所以F(x)不是分布函数, (B)是答案.6. 设X, Y 是相互独立的两个随机变量, 它们的分布函数为)(),(y F x F Y X , 则Z = max(X, Y)的分布函数是(A) )(z F Z = max{)(),(z F z F Y X } (B) )(z F Z = max{|)(||,)(|z F z F Y X } (C) )(z F Z = )()(z F z F Y X (D) 都不是解. }{}),{m ax ()()(z Y z X P z Y X P z Z P z F Z ≤≤=≤=≤=且 )()()()(z F z F z Y P z X P Y X =≤≤因为独立. (C)是答案.7. 设X, Y 是相互独立的两个随机变量, 其分布函数分别为)(),(y F x F Y X , 则Z = min(X, Y)的分布函数是(A) )(z F Z = )(z F X (B) )(z F Z = )(z F Y(C) )(z F Z = min{)(),(z F z F Y X } (D) )(z F Z = 1-[1-)(z F X ][1-)(z F Y ] 解. }{1}),{m in(1)(1)()(z Y z X P z Y X P z Z P z Z P z F Z >>-=>-=>-=≤=且 )](1)][(1[1)](1)][(1[1z F z F z Y P z X P Y X ---=≤-≤--因为独立 (D)是答案.8. 设X 的密度函数为)(x ϕ, 而,)1(1)(2x x +=πϕ 则Y = 2X 的概率密度是 (A))41(12y +π (B) )4(22y +π (C) )1(12y +π (D)y arctan 1π解. )2()2(}2{)()(y F y X P y X P y Y P y F X Y =≤=≤=≤= )4(2)2(112121)2()2()]([)(22''y y y y F y F y X X Y Y +=⎪⎭⎫ ⎝⎛+⋅=⋅=⎪⎭⎫ ⎝⎛==ππϕϕ (B)是答案.9. 设随机变量(X, Y)的联合分布函数为⎩⎨⎧=+-0),()(y x e y x ϕ 其它0,0>>y x , 则2YX Z +=的分布密度是(A) ⎪⎩⎪⎨⎧=+-021)()(y x Z e Z ϕ 其它0,0>>y x (B) ⎪⎩⎪⎨⎧=+-0)(2y x Z e z ϕ 其它0,0>>y x(C) ⎩⎨⎧=-04)(2z Z ze Z ϕ 00≤>z z (D) ⎪⎩⎪⎨⎧=-021)(zZ eZ ϕ 00≤>z z解. 2YX Z +=是一维随机变量, 密度函数是一元函数, 排除(A), (B). 21210=⎰∞+-dz e z , 所以(D)不是答案. (C)是答案.注: 排除法做单项选择题是经常使用而且很有效的方法. 该题也可直接计算Z 的密度: 当z < 0时0)(=z F Z当z ≥ 0时⎰⎰≤+=≤+=≤+=≤=zy x Z dxdy y x z Y X P z YX P z Z P z F 2),()2()2()()(ϕ =12222020+--=⎥⎦⎤⎢⎣⎡-----⎰⎰z z z xz y x e ze dx dy e e ==)()('z F z ZZ ϕ⎩⎨⎧-042z ze 00≤>z z , (C)是答案.10. 设两个相互独立的随机变量X 和 Y 分别服从正态分布N(0, 1)和N(1, 1), 则下列结论正确的是(A) P{X + Y ≤ 0} = 1/2 (B) P{X + Y ≤ 1} = 1/2 (C) P{X -Y ≤ 0} = 1/2 (D) P{X -Y ≤ 1} = 1/2解. 因为X 和 Y 分别服从正态分布N(0, 1)和N(1, 1), 且X 和 Y 相互独立, 所以 X + Y ~ N(1, 2), X -Y ~ N(-1, 2) 于是P{X + Y ≤ 1} = 1/2, (B)是答案.11. 设随机变量X 服从指数分布, 则Y = min{X, 2}的分布函数是(A) 是连续函数 (B) 至少有两个间断点 (C) 是阶梯函数 (D) 恰好有一个间断点 解. 分布函数:))2,(m in(1))2,(m in()()(y X P y X P y Y P y F Y >-=≤=≤= 当y ≥ 2时101))2,(m in(1)(=-=>-=y X P y F Y 当0 ≤ y < 2时)2,(1))2,(m in(1)(y y X y X P y F Y >>-=>-= ye y X P y X P λ--=≤=>-=1)()(1当y < 0时)2,(1))2,(m in(1)(y y X y X P y F Y >>-=>-= 0)()(1=≤=>-=y X P y X P于是 ⎪⎩⎪⎨⎧-=-011)(yY e y F λ 0202<<≤≥y y y 只有y = 2一个间断点, (D)是答案.三. 计算题1. 某射手有5发子弹, 射击一次的命中率为0.9, 如果他命中目标就停止射击, 不命中就一直到用完5发子弹, 求所用子弹数X 的分布密度. 解. 假设X 表示所用子弹数. X = 1, 2, 3, 4, 5.P(X = i) = P(前i -1次不中, 第i 次命中) = 9.0)1.0(1⋅-i , i = 1, 2, 3, 4.当i = 5时, 只要前四次不中, 无论第五次中与不中, 都要结束射击(因为只有五发子弹). 所以 P(X = 5) = 4)1.0(. 于是分布律为2. 设一批产品中有10件正品, 3件次品, 现一件一件地随机取出, 分别求出在下列各情形中直到取得正品为止所需次数X 的分布密度.i. 每次取出的产品不放回; ii. 每次取出的产品经检验后放回, 再抽取; iii. 每次取出一件产品后总以一件正品放回, 再抽取.解. 假设A i 表示第i 次取出正品(i = 1, 2, 3, …) i.1310)()1(1===A P X P 1331210)()|()()2(11212⋅====A P A A P A A P X P 1331221110)()|()|()()3(11223321⋅⋅====A P A A P A A P A A A P X P 1331221111)()|()|()|()4(1122334⋅⋅⋅===A P A A P A A P A A P X Pii. 每次抽取后将原产品放回1310133)()()()()(11111---⎪⎭⎫⎝⎛====k k k k k A P A P A P A A A p k X P , (k = 1, 2, …)iii.13)()1(1===A P X P 1331311)()|()()2(11212⋅====A P A A P A A P X P1331321312)()|()|()()3(112123321⋅⋅====A P A A P A A A P A A A P X P 1331321311)()|()|()|()4(1121231234⋅⋅⋅===A P A A P A A A P A A A A P X P3. 随机变量X 的密度为⎪⎩⎪⎨⎧-=01)(2x cx ϕ 其它1||<x , 求: i. 常数c; ii. X 落在)21,21(-内的概率. 解. πππϕ1,22|arcsin 21)(110112====-==⎰⎰-∞+∞-c c c x c dx xc dx x3162|arcsin 211))2/1,2/1((2/102/12/12=⋅==-=-∈⎰-ππππx x dx X P 4. 随机变量X 分布密度为i. 2102)(x x -⎪⎩⎪⎨⎧=πϕ 其它1||<x , ii. ⎪⎩⎪⎨⎧-=02)(x x x ϕ 其它2110≤≤<≤x x求i., ii 的分布函数F(x).解. i. 当x ≤ 1时 ⎰⎰∞-∞-===x xdt dt t x F 00)()(ϕ当-1< x < 1时 ⎰⎰∞--++-=-==x x x x xdt t dt t x F 21arcsin 1112)()(212πππϕ 当x ≥ 1时 ⎰⎰∞--=-==x dt t dt t x F 112)()(112πϕ所以 ⎪⎪⎩⎪⎪⎨⎧++-=121arcsin 110)(2x x xx F ππ 1111≥<<--≤x x xii. 当x < 0时 ⎰⎰∞-∞-===x xdt dt t x F 00)()(ϕ当0 ≤ x < 1时 ⎰⎰∞-===x x x tdt dt t x F 2)()(2ϕ当1 ≤ x < 2时 122)2()()(2110-+-=-+==⎰⎰⎰∞-x x dt t tdt dt t x F x x ϕ当2 ≤ x 时 1)2()()(2110⎰⎰⎰∞-=-+==x dt t tdt dt t x F ϕ所以 ⎪⎪⎪⎩⎪⎪⎪⎨⎧-+-=112220)(22x x x x F 221100≥<≤<≤<x x x x5. 设测量从某地到某一目标的距离时带有的随机误差X 具有分布密度函数⎪⎪⎭⎫ ⎝⎛--=3200)20(exp 2401)(2x x πϕ, -∞ < x < +∞试求: i. 测量误差的绝对值不超过30的概率;ii. 接连独立测量三次, 至少有一次误差的绝对值不超过30的概率.解. 因为⎪⎪⎭⎫ ⎝⎛--=3200)20(exp 2401)(2x x πϕ, -∞ < x < +∞, 所以X ~N(20, 402). i. {}⎭⎬⎫⎩⎨⎧<-<-=<<-=<25.0402025.13030)30|(|X P X P X P )25.1()25.0(-Φ-Φ=1)25.1()25.0()25.1(1()25.0(-Φ+Φ=Φ--Φ= 18944.05987.0-+== 0.4931.(其中Φ(x)为N(0, 1)的分布函数)ii. P(至少有一次误差的绝对值不超过30) = 1-P(三次误差的绝对值都超过30) =88.012.01)4931.0(13=-=- 6. 设电子元件的寿命X 具有密度为⎪⎩⎪⎨⎧=0100)(2x x ϕ 100100≤<x x问在150小时内, i. 三只元件中没有一只损坏的概率是多少? ii. 三只电子元件全损坏的概率是多少? iii. 只有一个电子元件损坏的概率是多少?解. X 的密度⎪⎩⎪⎨⎧=0100)(2x x ϕ 100100≤<x x . 所以31100)150(1501002==<⎰dx x X P . 令p = P(X ≥ 150) = 1-31= 32.i. P(150小时内三只元件没有一只损坏) =2783=p ii. P(150小时内三只元件全部损坏) =271)1(3=-piii. P(150小时内三只元件只有一只损坏) =943231213=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛c 7. 对圆片直径进行测量, 其值在[5, 6]上服从均匀分布, 求圆片面积的概率分布.解. 直径D 的分布密度为⎩⎨⎧=01)(d ϕ 其它65≤≤d假设42D X π=, X 的分布函数为F(x).)()()(2x D P x X P x F ≤=≤=π当x ≤ 0时, F(x) = 0 当x > 0时⎭⎬⎫⎩⎨⎧≤≤-=≤=≤=πππx D xP x D P x X P x F 44)()()(2 当时即425,54ππ<<x xF(x) = 0 当时即πππ925,645≤≤≤≤x x⎭⎬⎫⎩⎨⎧≤≤-=≤=≤=πππx D xP x D P x X P x F 44)()()(2 =54145-=⎰ππxdt x当 x > 9π时 1)()(65===⎰⎰∞-dt dt t x F x ϕ所以 ⎪⎪⎩⎪⎪⎨⎧-=1540)(πxx F ππππ99425425>≤≤<x x x 密度⎪⎩⎪⎨⎧==01)(')(x x F x πϕ 其它ππ9425≤≤x8. 已知X 服从参数 p = 0.6的0-1分布在X = 0, X = 1下, 关于Y 的条件分布分别为表1、表2所示表1 表2Y 1 2 3 Y 1 2 3 P(Y|X = 0)41 21 41 P(Y|X = 1) 21 61 31 求(X, Y)的联合概率分布, 以及在Y ≠ 1时, 关于X 的条件分布.解. X 的分布律为(X, Y)3.05321)1()1|1()1,1(=⋅=======X P X Y P Y X P 1.05361)1()1|2()2,1(=⋅=======X P X Y P Y X P2.05331)1()1|3()3,1(=⋅=======X P X Y P Y X P1.05241)0()0|1()1,0(=⋅=======X P X Y P Y X P2.05221)0()0|2()2,0(=⋅=======X P X Y P Y X P1.05241)0()0|3()3,0(=⋅=======X P X Y P Y X P所以Y 的分布律为5.06.03.0)1()1,0()1|0(==≠≠==≠=Y P Y X P Y X P5.06.03.0)1()1,1()1|1(==≠≠==≠=Y P Y X P Y X P所以9. 设随机变量X 与Y 相互独立, 并在区间[0, 9]上服从均匀分布, 求随机变量YXZ =的分布密度.解. X ~⎪⎩⎪⎨⎧=091)(x X ϕ 其它90≤≤x , Y ~⎪⎩⎪⎨⎧=091)(x Y ϕ 其它90≤≤y因为X, Y 相互独立, 所以(X, Y)联合密度为(X, Y)~⎪⎩⎪⎨⎧=0811),(y x ϕ 其它9,0≤≤y x , )()()(z X Y P z Z P z F Z ≤=≤=当 z ≤ 0时0)(=z F Z 当 0 < z < 1时D 1z z dxdy Xz Y P z X Y P z Z P z F D Z 219921811811)()()()(1=⋅⋅==≤=≤=≤=⎰⎰ 当z ≥ 1时⎰⎰=≤=≤=≤=2811)()()()(D Z dxdy Xz Y P z X Y P z Z P z F zz 211)992181(811-=⋅-⋅=所以 ⎪⎪⎩⎪⎪⎨⎧==2'21210)()(zz F z Z Z ϕ 1100≥<<≤z z z 10. 设(X, Y)的密度为⎩⎨⎧--=0)1(24),(y x y y x ϕ 其它1,0,0<+>>y x y x 求: i.)21|(),|(),(=x y x y x X ϕϕϕ, ii. )21|(),|(),(=y x y x y Y ϕϕϕ 解. i.⎰∞+∞-=dy y x x X ),()(ϕϕ当x ≤ 0 或 x ≥ 1时0),()(==⎰∞+∞-dy y x x X ϕϕ当0 < x < 1时310)1(4)1(24),()(x dy y x y dy y x x x X -=--==⎰⎰-∞+∞-ϕϕ所以 ⎩⎨⎧-=0)1(4)(3x x X ϕ 其它10<<x所以 ⎪⎩⎪⎨⎧---==0)1()1(6)(),()|(3x y x y x y x x y X ϕϕϕ 其它1,0,0<+>>y x y x 所以 ⎩⎨⎧-==0)21(24)21|(y y x y ϕ 其它210<<yii.⎰∞+∞-=dx y x y Y ),()(ϕϕ当y ≤ 0 或 y ≥ 1时0),()(==⎰∞+∞-dx y x y Y ϕϕ当0 < y < 1时210)1(12)1(24),()(y y dx y x y dx y x y y Y -=--==⎰⎰-∞+∞-ϕϕ所以 ⎩⎨⎧-=0)1(12)(2y y y Y ϕ 其它10<<y所以 ⎪⎩⎪⎨⎧---==0)1()1(2)(),()|(2y y x y y x y x Y ϕϕϕ其它1,0,0<+>>y x y x所以 ⎩⎨⎧-==0)21(4)21|(x y x ϕ 其它210<<x第三章 随机变量的数字特征一. 填空题1. 设随机变量X 与Y 相互独立, D(X) = 2, D(Y) = 4, D(2X -Y) = _______. 解. D(2X -Y) = 4D(X) + D(Y) = 122. 已知随机变量X ~N(-3, 1), Y ~N(2, 1 ), 且X 与Y 相互独立, Z = X -2Y + 7, 则Z ~____. 解. 因为Z = X -2Y + 7, 所以Z 服从正态分布. E(Z) = E(X)-2E(Y) + 7 = 0. D(Z) = D(X -2Y + 7) = D(X) + 4D(Y) = 1+4 = 5. 所以Z ~N(0, 5)3. 投掷n 枚骰子, 则出现点数之和的数学期望______. 解. 假设X i 表示第i 颗骰子的点数(i = 1, 2, …, n). 则 E(X i ) = 27616612611=⋅++⋅+⋅(i = 1, 2, …, n) 又设∑==ni i X X 1, 则27)()()(11nX E X E X E ni i ni i ===∑∑== 4. 设离散型随机变量X 的取值是在两次独立试验中事件A 发生的次数, 如果在这些试验中事件发生的概率相同, 并且已知E(X) = 0.9, 则D(X) = ______. 解. ),2(~p B X , 所以E(X) = 0.9 = 2p. p = 0.45, q = 0.55 D(X) = 2pq = 2×0.45×0.55 = 0.495.5. 设随机变量X 在区间[-1, 2]上服从均匀分布, 随机变量⎪⎩⎪⎨⎧-=101Y 000<=>X X X , 则方差D(Y) = _______.解. X ~⎪⎩⎪⎨⎧=031)(x ϕ 其它21≤≤-xY因为 33)0()1(20==>==⎰dx X P Y P 0)0()0(====X P Y P3131)0()1(01==<=-=⎰-dx X P Y P于是 313132)(=-=Y E , 13132)(2=+=Y E , 98)]([)()(22=-=Y E Y E Y D6. 若随机变量X 1, X 2, X 3相互独立, 且服从相同的两点分布⎪⎪⎭⎫ ⎝⎛2.08.010, 则∑==31i i X X 服从_______分布, E(X) = _______, D(X) = ________.解. X 服从B(3, 0.2). 所以E(X) = 3p = 3×0.2= 0.6, D(X) = 3pq = 3×0.2×0.8 = 0.487. 设X 和Y 是两个相互独立的随机变量, 且X ~N(0, 1), Y 在[-1, 1]上服从均匀分布, 则),cov(Y X = _______.解. 因为X 和Y 是两个相互独立的随机变量, 所以),cov(Y X = 0.8. 设X 和Y 是两个相互独立的随机变量, 其概率密度分别为:⎩⎨⎧=02)(x x ϕ 其它10≤≤x , ⎩⎨⎧=--0)()5(y e y ϕ 其它5>y , 则E(XY) = ________. 解. 322)()(1=⋅==⎰⎰∞+∞-xdx x dx x x X E ϕ 6)()(5)5(=⋅==⎰⎰∞+--∞+∞-dy e y dy y y Y E y ϕ因为X 和Y 是两个相互独立的随机变量, 所以E(XY) = E(X)E(Y) = 49. 若随机变量X 1, X 2, X 3相互独立, 其中X 1在[0, 6]服从均匀分布, X 2服从正态分布N(0, 22), X 3服从参数λ = 3的泊松分布, 记Y = X 1-2X 2 + 3X 3, 则D(Y) = ______. 解. )(9)(4)()32()(321321X D X D X D X X X D Y D ++=+-==4639441262=⨯+⨯+二. 单项选择题1. 设随机变量X 和Y 独立同分布, 记U = X -Y , V = X + Y , 则U 和V 必然 (A) 不独立 (B) 独立 (C) 相关系数不为零 (D) 相关系数为零 解. 因为X 和Y 同分布, 所以E(U) = E(X)-E(Y) = 0, E(U)E(V) = 0. 0)()()(22=-=Y E X E UV E .所以 cov(X,Y) = E(UV)-E(U)E(V) = 0. (D)是答案. 2. 已知X 和Y 的联合分布如下表所示, 则有(A) X 与Y 不独立 (B) X 与Y 独立 (C) X 与Y 不相关 (D) X 与Y 彼此独立且相关 解. P(X = 0) = 0.4, P(Y = 0) = 0.3.0.1 = P(X = 0, Y= 0) ≠ P(X = 0)×P(Y = 0). (A)是答案.3. 设离散型随机变量X 可能取值为: x 1 = 1, x 2 = 2, x 3 = 3, 且E(X) = 2.3, E(X 2) = 5.9, 则x 1, x 2, x 3所对应的概率为(A) p 1 = 0.1, p 2 = 0.2, p 3 = 0.7 (B) p 1 = 0.2, p 2 = 0.3, p 3 = 0.5 (C) p 1 = 0.3, p 2 = 0.5, p 3 = 0.2 (D) p 1 = 0.2, p 2 = 0.5, p 3 = 0.3解. 3.223)1(32)(212121332211=--=--++=++=p p p p p p p x p x p x X E 7.0221=+p p9.5)1(94)(21213232221212=--++=++=p p p p p x p x p x X E 1.35821=+p p解得 p 1 = 0.2, p 2 = 0.3, p 3 = 0.5. (B)是答案.4. 现有10张奖券, 其中8张为2元, 2张为5元, 今每人从中随机地无放回地抽取3张, 则此人抽得奖券的金额的数学期望(A) 6 (B) 12 (C) 7.8 (D) 9解. 假设X 表示随机地无放回地抽取3张, 抽得奖券的金额. X 的分布律为157)()6(31038====c c P X P 三张都是二元157),()9(3101228====c c c P X P 一张五元二张二元151),()9(3102218====c c c P X P 二张五元一张二元8.71511215791576)(=⋅+⋅+⋅=X E . (C)是答案. 5. 设随机变量X 和Y 服从正态分布, X ~N(μ, 42), Y ~N(μ, 52), 记P 1 =P{X ≤ μ-4}, P 2 = P{Y≥ μ + 5}, 则(A) 对任何μ, 都有P 1 = P 2 (B) 对任何实数μ, 都有P 1 < P 2 (C) 只有μ的个别值, 才有P 1 = P 2 (D) 对任何实数μ, 都有P 1 > P 2 解. P 1 = {X ≤ μ-4} =)1(1)1(14Φ-=-Φ=⎭⎬⎫⎩⎨⎧-≤-μX PP 2 = {Y ≥ μ + 5} =)1(115115Φ-=⎭⎬⎫⎩⎨⎧≤--=⎭⎬⎫⎩⎨⎧≥-μμY P Y P(其中Φ(x)为N(0, 1)的分布函数). 所以(A)是答案.6. 随机变量ξ = X + Y 与η = X -Y 不相关的充分必要条件为(A) E(X) = E(Y) (B) E(X 2)-E 2(X) = E(Y 2)-E 2(Y) (C) E(X 2) = E(Y 2) (D) E(X 2) + E 2(X) = E(Y 2) + E 2(Y) 解. cov(ξ, η) = E(ξη)-E(ξ)E(η)E(ξη) =)()()])([(22Y E X E Y X Y X E -=-+ E(ξ)E(η) = [E(X)+E(Y)][E(X)-E(Y)] = )()(22Y E X E - 所以(B)是答案.三. 计算题1. 设X 的分布律为1)1()(++==k ka a k X P , k = 0, 1, 2, …, a > 0, 试求E(X), D(X).解. ∑∑∑∞=+∞=+∞=⎪⎭⎫⎝⎛+=+===1111011)1()()(k k k k k k a a k a a ka k X kP X E令 22'2'1211201)1(1)(x x x x x x x kx x kxx f k k k k k k -=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛===∑∑∑∞=∞=-∞=+ 2222)11()1()1(a aa a a a a f =+-+=+, 所以a a a X E =⋅=21)(.∑∑∑∞=+∞=+∞=+-+=+===11112022)1()11()1()()(k k kk k k k a a k k a a k k X P k X E∑∑∑∞=∞=+∞=+-+++=+-++=11111)1()1(11)1()1()1(k kkk k k k k k a a a k k a a a k a a k k 令 3''2''1111)1(21)1()1()(x x x x x x x kx k x kxk x f k k k k k k-=⎪⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=+=+=∑∑∑∞=+∞=-∞= 23)1(2)11(12)1(a a a a a aa a f +=+-+=+,所以2222)1(211)(a a a a a aX E +=-+⋅+=.222222)]([)()(a a a a a X E X E X D +=-+=-=.2. 设随机变量X 具有概率密度为⎪⎩⎪⎨⎧=0cos 2)(2xx πϕ 其它2||π≤x , 求E(X), D(X).解. 0cos 2)()(222===⎰⎰-∞+∞-πππϕxdx xdx x x X E⎰-=-=222222cos 2)]([)()(πππxdx x X E X E X D211222cos 122222-=+=⎰πππdx x x 3.求⎥⎦⎤⎢⎣⎡+2)(sin Y X E π. 解. 2)(sinY X +π的分布律为 25.015.0)1(40.0145.002)(sin =⨯-+⨯+⨯=⎥⎦⎤⎢⎣⎡+Y X E π 4. 一汽车沿一街道行驶需要通过三个设有红绿信号灯路口, 每个信号灯为红或绿与其它信号灯为红或绿相互独立, 且红绿两种信号显示的时间相等, 以X 表示该汽车首次遇到红灯前已通过的路口的个数, 求: i. X 的概率分布, ii. ⎪⎭⎫⎝⎛+XE 11 解. 假设X 为该汽车首次遇到红灯已通过的路口数P(X = 0) = P{第一个路口为红灯} =2P(X = 1) = P{第一个路口为绿灯, 第二个路口为红灯} =2212121=⋅ P(X = 0) = P{第一,二路口为绿灯, 第三个路口为红灯} =321P(X = 0) = P{第一, 二, 三路口为绿灯} =3219667214121312121211111332=⋅+⋅+⋅+⋅=⎪⎭⎫⎝⎛+X E 5. 设(X, Y)的分布密度⎩⎨⎧=+-04),()(22y xxye y x ϕ其它0,0>>y x求)(22Y X E +. 解. ⎰⎰⎰⎰>>+-∞+∞-∞+∞-+=+=+00)(222222224),()(y x y xdxdy xye y x dxdy y x y x Y X E ϕ434sin cos 02202πθθθπ=⋅⋅⋅⋅=⎰⎰∞+-rdr e r r d r 6. 在长为l 的线段上任选两点, 求两点间距离的数学期望与方差.解. 假设X, Y 为线段上的两点. 则它们都服从[0, l ]上的均匀分布, 且它们相互独立.X ~⎪⎩⎪⎨⎧=01)(l x ϕ 其它l x ≤≤0, Y ~⎪⎩⎪⎨⎧=01)(l y ϕ 其它l y ≤≤0(X, Y)的联合分布为⎪⎩⎪⎨⎧=01)(2l x ϕ 其它l y x ≤≤,0.又设Z = |X -Y|, D 1={(x, y): x > y, 0 ≤ x, y ≤ l }, D 2={(x, y): x ≤ y, 0 ≤ x, y ≤ l }⎰⎰⎰⎰⎰⎰-+-=-=∞+∞-∞+∞-21221)(1)(),(||)(D D dxdy l x y dxdy l y x dxdy y x y x Z E ϕ⎰⎰⎰⎰-+-=l y lxdy dx x y l dx dy y x l2002])([1])([13212122022ldy y l dx x ll l=+=⎰⎰ 6)(1),()()(2002222l dxdy y x ldxdy y x y x Z E ly lx =-=-=⎰⎰⎰⎰∞+∞-∞+∞-≤≤≤≤ϕ 1896)]([)()(22222l l l Z E Z E Z D =-=-=7. 设随机变量X 的分布密度为)(,21)(||+∞<<-∞=--x e x x μϕ, 求E(X), D(X). 解. ⎰⎰⎰∞+∞--∞+∞---∞+∞-+-===dt e t x t dx e x dx x x X E t x ||||)(2121)()(μμϕμ=⎰∞+∞--dt te t ||21+μμμ==⎰⎰∞+-∞+∞--0||21dt e dt e tt⎰⎰⎰∞+∞--∞+∞---∞+∞-+-===dt e t x t dx e x dx x x X E t x ||2||222)(2121)()(μμϕμ=⎰∞+-02dt e t t+20022μμμ+==⎰⎰∞+-∞+-dt e dt e t t所以 22)]([)()(2222=-+=-=μμX E X E X D8. 设(X, Y)的联合密度为⎪⎩⎪⎨⎧=01),(πϕy x 其它122≤+y x , 求E(X), D(Y), ρ(X, Y).解. 01),()(122===⎰⎰⎰⎰+∞∞-+∞∞-≤+y x xdxdy dxdy y x x X E πϕ01),()(122===⎰⎰⎰⎰+∞∞-+∞∞-≤+y x ydxdy dxdy y x y Y E πϕ41cos 11),()(20132122222====⎰⎰⎰⎰⎰⎰∞+∞-∞+∞-≤+πθθππϕdr r d dxdy x dxdy y x x X E y x 41sin 11),()(20132122222====⎰⎰⎰⎰⎰⎰∞+∞-∞+∞-≤+πθθππϕdr r d dxdy y dxdy y x y Y E y x 01),()(122===⎰⎰⎰⎰∞+∞-∞+∞-≤+y x xydxdy dxdy y x xy XY E πϕ41)]([)()(22=-=X E X E X D , 41)]([)()(22=-=Y E Y E Y D0)()()()()(=-=Y D X D Y E X E XY E XY ρ.9. 假设一部机器在一天内发生故障的概率为0.2, 机器发生故障时全天停止工作. 若一周5个工作日里无故障, 可获利润10万元, 发生一次故障仍可获利润5万元; 发生二次故障所获利润0元; 发生三次或三次以上故障就要亏损2万元. 求一周内期望利润是多少? 解. 假设X 表示一周内发生故障的天数. 则X ~B(5, 0.8)33.0)8.0()0(5===X P , 41.0)8.0(2.05)1(4=⨯⨯==X P20.0)8.0(2.0)2(3225=⨯⨯==c X P , 06.020.041.033.01)3(=---=≥X P又设YE(Y) = 10×0.33 + 5×0.41 + 0×0.20 + (-2)×0.06 = 5.23(万元)10. 两台相互独立的自动记录仪, 每台无故障工作的时间服从参数为5的指数分布; 若先开动其中的一台, 当其发生故障时停用而另一台自行开动. 试求两台记录仪无故障工作的总时间T 的概率密度)(t f 、数学期望和方差.解. 假设X 、Y 分别表示第一、二台记录仪的无故障工作时间, 则X 、Y 的密度函数如下:⎩⎨⎧<≥=-05)(~,5x x e x f Y X xX 、Y 相互独立, 且 T = X + Y .X 、Y 的联合密度: ⎩⎨⎧≥≥=+-,00,0,25),()(5y x e y x f y x关于T 的分布函数: ⎰⎰≤+=≤+=≤=ty x T dxdy y x f t Y X P t T P t F ),(}{}{)(当 0<t 时⎰⎰⎰⎰≤+≤+===≤+=≤=ty x ty x T dxdy dxdy y x f t Y X P t T P t F 00),(}{}{)(当 0≥t 时⎰⎰⎰⎰≥≥≤++-≤+==≤+=≤=0,0)(525),(}{}{)(y x t y x y x ty x T dxdy edxdy y x f t Y X P t T P t Ft t tx t y x x t y t x te e dx e e dy e dx e 550055050551|)(525----------=-==⎰⎰⎰所以 ⎩⎨⎧<≥--=--0,00,51)(55t t te e t F t t T所以T 的概率密度: ⎩⎨⎧<≥==-0,00,25)]'([)(5t t e t t F t f t T T 所以 ⎰⎰∞+∞-∞+-===5225)()(052dt e t dt t f t T E t T 所以⎰⎰∞+∞-∞+-=-=-=-=25225425)52()()]([)()(0532222dt e t dt t f t T E T E T D tT第四章 大数定律和中心极限定理一. 填空题1. 设Y n 是n 次伯努利试验中事件A 出现的次数, p 为A 在每次试验中出现的概率, 则对任意 ε > 0, 有=⎪⎭⎫⎝⎛≥-∞→ε||lim p n Y P n n __________. 解. =⎪⎭⎫⎝⎛≥-∞→ε||lim p n Y P n n 1-011||lim =-=⎪⎭⎫ ⎝⎛<-∞→εp n Y P n n2. 设随机变量X 和Y 的数学期望是2, 方差分别为1和4, 而相关系数为0.5, 则根据切比雪夫不等式P(|X -Y| ≥ 6) ≤ _______. 解. E(X -Y) = E(X)-E(Y) = 2-2 = 0 D(X -Y) = D(X) + D(Y)-)()(2Y D X D XY ρ= 1 + 4-2×0.5×1×2 = 3所以 1213636)()6|(|2==-≤≥-Y X D Y X P二. 选择题1. 设随机变量n X X X ,,,21 相互独立, n n X X X S +++= 21, 则根据列维-林德伯格(Levy-Lindberg)中心极限定理, n S 近似服从正态分布, 只要n X X X ,,,21 ( A ) 有相同的数学期望 ( B ) 有相同的方差( C ) 服从同一指数分布 ( D ) 服从同一离散型分布解. 列维-林德伯格(Levy-Lindberg)中心极限定理要求n X X X ,,,21 既有相同的数学期望, 又有相同的方差, 因此( A ) 、( B )、 ( D )都不是答案, ( C )为答案.三. 计算题1. 某厂有400台同型机器, 各台机器发生故障的概率均为0,02, 假如各台机器相互独立工作, 试求机器出现故障的台数不少于2台的概率.解. 假设X 表示400台机器中发生故障的台数, 所以X ~B(400, 0.02) 由棣莫佛-拉普拉斯定理:。
南开20秋学期《概率论与数理统计》在线作业答案
南开20秋学期《概率论与数理统计》在线作业答案1.题目要求判断两个服从标准正态分布的随机变量X和Y 的性质,正确的选项是X2和Y2都服从χ2分布,因此答案为C。
2.题目要求选择均值的简称,正确的选项是期望,因此答案为D。
3.题目给出了一张图,正确的选项是A,因此答案为A。
4.题目要求根据泊松分布的参数λ=3计算期望和方差,正确的选项是E(X)=D(X)=3,因此答案为A。
5.题目给出了一张图,正确的选项是C,因此答案为C。
6.题目给出了一个取球问题,根据条件概率公式计算得到答案为0.486,因此答案为C。
7.题目要求计算两个服从标准正态分布的随机变量X和Y 的和的方差,根据独立性和方差的性质,得到D(X+Y)=D(X)+D(Y)=1+1=2,因此答案为D。
8.题目给出了一个分书问题,根据插板法计算得到答案为3/35,因此答案为C。
9.题目要求判断连续型随机变量X的密度函数和分布函数的关系,正确的选项是f(x)=F'(x),因此答案为C。
10.题目给出了三个事件的概率关系,根据独立性的定义得到A、B、C三个事件相互独立,因此答案为B。
11.题目要求选择协方差的定义,正确的选项是cov(X,Y)=E[(X-EX)(Y-EY)],因此答案为A。
12.给定正态总体N(μ。
σ^2)的样本X1.X2.Xn,样本均值X的分布是N(μ。
σ^2/n)。
13.当危险情况发生时,两个报警器并联时报警器可靠的概率为0.998.14.图中的数值为0.7.15.若一个随机变量的均值很大,则其期望很大。
16.图中的答案是A。
17.在显著水平0.05下接受H0: μ = μ,则在显著水平0.01下必定接受H0.18.E(X+Y)的值为0.19.在同一时刻至少有两个设备被使用的概率为0.08.20.区间估计表明的是可能的范围。
21.进行该实验3次,不成功的概率为0.125.22.图中的答案是D。
23.若X与Y相互独立,D(X+Y) = D(X) + D(Y)。
《概率论与数理统计》课后习题答案
《概率论与数理统计》课后习题答案习题1.1解答1. 将⼀枚均匀的硬币抛两次,事件C B A ,,分别表⽰“第⼀次出现正⾯”,“两次出现同⼀⾯”,“⾄少有⼀次出现正⾯”。
试写出样本空间及事件C B A ,,中的样本点。
解:{=Ω(正,正),(正,反),(反,正),(反,反)}{=A (正,正),(正,反)};{=B (正,正),(反,反)} {=C (正,正),(正,反),(反,正)}2. 在掷两颗骰⼦的试验中,事件D C B A ,,,分别表⽰“点数之和为偶数”,“点数之和⼩于5”,“点数相等”,“⾄少有⼀颗骰⼦的点数为3”。
试写出样本空间及事件D C B A BC C A B A AB ---+,,,,中的样本点。
解:{})6,6(,),2,6(),1,6(,),6,2(,),2,2(),1,2(),6,1(,),2,1(),1,1( =Ω;{})1,3(),2,2(),3,1(),1,1(=AB ;{})1,2(),2,1(),6,6(),4,6(),2,6(,),5,1(),3,1(),1,1( =+B A ;Φ=C A ;{})2,2(),1,1(=BC ;{})4,6(),2,6(),1,5(),6,4(),2,4(),6,2(),4,2(),5,1(=---D C B A3. 以C B A ,,分别表⽰某城市居民订阅⽇报、晚报和体育报。
试⽤C B A ,,表⽰以下事件:(1)只订阅⽇报;(2)只订⽇报和晚报;(3)只订⼀种报;(4)正好订两种报;(5)⾄少订阅⼀种报;(6)不订阅任何报;(7)⾄多订阅⼀种报;(8)三种报纸都订阅;(9)三种报纸不全订阅。
解:(1)C B A ;(2)C AB ;(3)C B A C B A C B A ++;(4)BC A C B A C AB ++; (5)C B A ++;(6)C B A ;(7)C B A C B A C B A C B A +++或C B C A B A ++(8)ABC ;(9)C B A ++4. 甲、⼄、丙三⼈各射击⼀次,事件321,,A A A 分别表⽰甲、⼄、丙射中。
(完整版)概率论与数理统计课后习题答案
·1·习 题 一1.写出下列随机试验的样本空间及下列事件中的样本点: (1)掷一颗骰子,记录出现的点数. A =‘出现奇数点’; (2)将一颗骰子掷两次,记录出现点数. A =‘两次点数之和为10’,B =‘第一次的点数,比第二次的点数大2’; (3)一个口袋中有5只外形完全相同的球,编号分别为1,2,3,4,5;从中同时取出3只球,观察其结果,A =‘球的最小号码为1’;(4)将,a b 两个球,随机地放入到甲、乙、丙三个盒子中去,观察放球情况,A =‘甲盒中至少有一球’;(5)记录在一段时间内,通过某桥的汽车流量,A =‘通过汽车不足5台’,B =‘通过的汽车不少于3台’。
解 (1)123456{,,,,,}S e e e e e e =其中i e =‘出现i 点’1,2,,6i =,135{,,}A e e e =。
(2){(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)S = (2,1),(2,2),(2,3),(2,4),(2,5),(2,6) (3,1),(3,2),(3,3),(3,4),(3,5),(3,6) (4,1),(4,2),(4,3),(4,4),(4,5),(4,6)(5,1),(5,2),(5,3),(5,4),(5,5),(5,6) (6,1),(6,2),(6,3),(6,4),(6,5),(6,6)}; {(4,6),(5,5),(6,4)}A =; {(3,1),(4,2),(5,3),(6,4)}B =。
(3){(1,2,3),(2,3,4),(3,4,5),(1,3,4),(1,4,5),(1,2,4),(1,2,5)S =(2,3,5),(2,4,5),(1,3,5)}{(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)}A =(4){(,,),(,,),(,,),(,,),(,,),(,,),S ab ab ab a b a b b a =---------(,,),(,,,),(,,)}b a a b b a ---,其中‘-’表示空盒;{(,,),(,,),(,,),(,,),(,,)}A ab a b a b b a b a =------。
奥鹏[南开大学]20秋学期(1709~2009 )《概率论与数理统计》在线作业
奥鹏[南开大学]20秋学期(1709、1803、1809、1903、1909、2003、2009 )《概率论与数理统计》在线作业一、单选题第1题正确答案:A第2题正确答案:A第3题,若X与Y相互独立,D(X)、D(Y)分别表示X、Y的方差,则以下正确的是()。
A、D(X+Y)=D(X)+D(Y)B、D(X+Y)=X+YC、D(XY)=D(X)D(Y)D、D(XY)=XY正确答案:A第4题,设(X,Y)服从二维正态分布,则A、随机变量(X,Y)都服从一维正态分布B、随机变量(X,Y)不一定都服从一维正态分布C、随机变量(X,Y)一定不服从一维正态分布D、随机变量X+Y都服从一维正态分布正确答案:A第5题,假设检验中,显著性水平为α,则( )。
A、犯第二类错误的概率不超过αB、犯第一类错误的概率不超过αC、α是小于等于10%的一个数,无具体意义D、可信度为1-α正确答案:B第6题,.正确答案:D第7题,.正确答案:C第8题,设X~N(μ,σ2),那么关于概率P(Xμ+2)的说法正确的是()A、随μ增加而变大B、随μ增加而减小C、随σ增加而不变D、随σ增加而减小正确答案:D第9题,棣莫弗-拉普拉斯中心极限定理所针对的分布是()A、二项分布B、泊松分布C、几何分布D、超几何分布正确答案:A第10题,若某产品的不合格率为0.005,任取10000件,不合格品不多于70件的概率等于()。
A、0.5B、0.998C、0.776D、0.865正确答案:B第11题,X为随机变量,E[X]为其期望,则下面有关X的期望,正确的是()。
A、E[2X]=2XB、E[2X]=2E[X]C、E[2X]=2+XD、E[2+X]=2X正确答案:B第12题,设A,B是两个事件,则这两个事件至少有一个没发生可表示为()。
正确答案:C第13题,当随机变量X服从()分布时,其期望等于方差。
A、指数B、泊松C、正态D、均匀正确答案:B第14题,.正确答案:A第15题,随机试验E的样本空间S的子集,称为E的()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
20秋学期(1709、1803、1809、1903、1909、2003、2009 )《概率论与数理统计》在线作业
试卷总分:100 得分:100
一、单选题(共30 道试题,共60 分)
1.设随机变量X和Y都服从标准正态分布,则()。
A.X+Y服从正态分布
B.X2+Y2服从χ2分布
C.X2和Y2都服从χ2分布
D.X2/Y2服从正态分布
答案:C
2.以下哪一个简称均值()。
A.相关系数
B.方差
C.极差
D.期望
答案:D
3..{图}
A.{图}
B.{图}
C.{图}
D.{图}
答案:A
4.设随机变量服从λ=3的泊松分布,则正确的为()
A.E(X)=D(X)=3
B.E(X)=D(X)=1/3
C.E(X)=3 D(X)=1/3
D.E(X)=1/3 D(X)=9
答案:A
5..{图}
A.{图}
B.{图}
C.{图}
D.以上命题不全对。
答案:C
6.有两箱同种类的零件,第一箱装50只,其中10只一等品;第二箱装30只,其中18只一等品,今从两箱中任挑出一箱,然后从该箱中取零件2次,每次任取1只,作不放回抽取,试求第1次取到的零件是一等品的条件下,第2次取到的也是一等品的概率为()。
A.0.455
B.0.470
C.0.486
D.0.500
答案:C
7.设二维随机变量X,Y无关,X服从标准正态分布,Y服从标准正态分布,则D(X+Y)=
A.0.1
B.0
C.0.25
D.2
答案:D
8.4本不同的书分给3个人,每人至少分得1本的概率为( )。
A.{图}
B.{图}
C.{图}
D.{图}
答案:C
9.设连续型随机变量X的密度函数和分布函数分别为f(x)和F(x),则下列选项正确的是()。
A.{图}
B.{图}
C.{图}
D.{图}
答案:C
10.设A,B,C为三个事件,若有P(AB)=P(A)P(B), P(AC)=P(A)P(C), P(BC)=P(B)P(C), P(ABC)=P(A)P(B)P(C),则称A、B、C三个事件()。
A.两两相互独立
B.相互独立
C.相关
D.相互不独立
答案:B
11.以下哪一个是协方差的定义()。
A.cov(X,Y)=E[(X-EX)(Y-EY)]
B.cov(X,Y)=E[XY]
C.cov(X,Y)=E[X-Y]
D.cov(X,Y)=E[(X-EX)+(Y-EY)]
答案:A
12.设X1,X2,…,Xn是来自正态总体N(μ,σ2)的样本,则样本均值X ?服从的分布为()
A.N(0,1)。