基本初等函数测试题
基本初等函数练习题
![基本初等函数练习题](https://img.taocdn.com/s3/m/34b62322dcccda38376baf1ffc4ffe473368fd86.png)
基本初等函数练习题基本初等函数练习题函数是数学中的重要概念,它描述了一种映射关系,将一个集合中的元素映射到另一个集合中的元素。
而初等函数则是指可以由有限次的四则运算、指数和对数运算以及三角函数和反三角函数运算得到的函数。
在数学学习中,初等函数是一个基础且重要的概念,下面我们来练习一些基本初等函数的题目。
1. 计算函数f(x) = 3x + 2在x = 5处的值。
解答:将x = 5代入函数f(x) = 3x + 2中,得到f(5) = 3 * 5 + 2 = 17。
所以函数在x = 5处的值为17。
2. 求函数g(x) = x^2 - 4x + 3的零点。
解答:零点即函数的解,即g(x) = 0。
将g(x) = x^2 - 4x + 3置零,得到x^2 -4x + 3 = 0。
通过求根公式,我们可以得到x = 1和x = 3。
所以函数的零点为x = 1和x = 3。
3. 计算函数h(x) = log2(x)在x = 8处的值。
解答:将x = 8代入函数h(x) = log2(x)中,得到h(8) = log2(8)。
由于2的多少次方等于8,所以log2(8) = 3。
所以函数在x = 8处的值为3。
4. 求函数k(x) = sin(x) + cos(x)的最大值和最小值。
解答:由于三角函数的取值范围在[-1, 1]之间,所以sin(x)和cos(x)的最大值和最小值都是1和-1。
所以函数k(x) = sin(x) + cos(x)的最大值为1 + 1 = 2,最小值为-1 - 1 = -2。
5. 计算函数m(x) = e^x在x = 2处的值。
解答:将x = 2代入函数m(x) = e^x中,得到m(2) = e^2。
e是一个数学常数,约等于2.71828。
所以函数在x = 2处的值为e^2。
通过以上的练习题,我们可以巩固对基本初等函数的理解和运用。
初等函数在数学中的应用非常广泛,它们可以描述各种各样的数学关系和现象。
高中数学必修1第二章基本初等函数单元测试题含参考答案
![高中数学必修1第二章基本初等函数单元测试题含参考答案](https://img.taocdn.com/s3/m/b0a9d8ddf9c75fbfc77da26925c52cc58bd690b8.png)
高一数学单元测试题 必修1第二章《根本初等函数》班级 姓名 序号 得分一.选择题.(每小题5分,共50分)1.若0m >,0n >,0a >且1a ≠,则下列等式中正确的是 ( )A .()m n m na a+= B .11mma a=C .log log log ()a a a m n m n ÷=-D 43()mn =2.函数log (32)2a y x =-+的图象必过定点( )A .(1,2)B .(2,2)C .(2,3)D .2(,2)33.已知幂函数()y f x =的图象过点(2,2,则(4)f 的值为 ( )A .1B . 2C .12D .8 4.若(0,1)x ∈,则下列结论正确的是( )A .122lg xx x >> B .122lg xx x >> C .122lg xx x >> D .12lg 2xx x >> 5.函数(2)log (5)x y x -=-的定义域是( )A .(3,4)B .(2,5)C .(2,3)(3,5) D .(,2)(5,)-∞+∞6.某商品价格前两年每年进步10%,后两年每年降低10%,则四年后的价格及原来价格比拟,改变的状况是 ( )A .削减1.99%B .增加1.99%C .削减4%D .不增不减 7.若1005,102a b ==,则2a b +=( )A .0B .1C .2D .3 8.函数()lg(101)2x x f x =+-是( )A .奇函数B .偶函数C .既奇且偶函数D .非奇非偶函数 9.函数2log (2)(01)a y x x a =-<<的单调递增区间是( )A .(1,)+∞B .(2,)+∞C .(,1)-∞D .(,0)-∞10.已知2log (2)y ax =- (0a >且1a ≠)在[0,1]上是x 的减函数,则a 的取值范围是( )A .(0,1)B .(0,2)C .(1,2)D .[2,)+∞一.选择题(每小题5分,共50分)二.填空题.(每小题5分,共25分)11.计算:459log 27log 8log 625⨯⨯= .12.已知函数3log (0)()2(0)xx x >f x x ⎧=⎨≤⎩,, ,则1[()]3f f = . 13.若3())2f x a x bx =++,且(2)5f =,则(2)f -= .14.若函数()log (01)f x ax a =<<在区间[,2]a a 上的最大值是最小值的3倍,则a = .15.已知01a <<,给出下列四个关于自变量x 的函数:①log x y a =,②2log a y x =, ③31(log )ay x = ④121(log )ay x =.其中在定义域内是增函数的有 . 三.解答题(6小题,共75分) 16.(12分)计算下列各式的值:17.求下列各式中的x 的值(共15分,每题5分) 18.(共12分)(Ⅰ)解不等式2121()x x aa--> (01)a a >≠且. (Ⅱ)设集合2{|log (2)2}S x x =+≤,集合1{|()1,2}2xT y y x ==-≥-求ST ,S T .19.( 12分) 设函数421()log 1x x f x x x -⎧<=⎨≥⎩.(Ⅰ)求方程1()4f x =的解. (Ⅱ)求不等式()2f x ≤的解集.20.( 13分)设函数22()log (4)log (2)f x x x =⋅的定义域为1[,4]4, (Ⅰ)若x t 2log =,求t 的取值范围;(Ⅱ)求()y f x =的最大值及最小值,并求出最值时对应的x 的值.21.(14分)已知定义域为R 的函数12()22x x bf x +-+=+是奇函数.(Ⅰ)求b 的值;(Ⅱ)证明函数()f x 在R 上是减函数;(Ⅲ)若对随意的t R ∈,不等式22(2)(2)0f t t f t k -+-<恒成立,求k 的取值范围. 22.已知函数)1a (log )x (f xa -= )1a 0a (≠>且, (1)求f(x)的定义域;(2)探讨函数f(x)的增减性。
基本初等函数练习题与答案
![基本初等函数练习题与答案](https://img.taocdn.com/s3/m/2a8f6ae631b765ce04081438.png)
数学1(必修)第二章 基本初等函数(1)[基础训练A 组] 一、选择题1.下列函数与x y =有相同图象的一个函数是( )A .2x y = B .xx y 2=C .)10(log ≠>=a a ay xa 且 D .x a a y log =2.下列函数中是奇函数的有几个( )①11x x a y a +=- ②2lg(1)33x y x -=+- ③x y x = ④1log 1a x y x +=-A .1B .2C .3D .43.函数y x=3与y x=--3的图象关于下列那种图形对称( )A .x 轴B .y 轴C .直线y x =D .原点中心对称 4.已知13x x -+=,则3322x x -+值为( )A. B. C. D. -5.函数y =)A .[1,)+∞B .2(,)3+∞ C .2[,1]3 D .2(,1]36.三个数60.70.70.76log 6,,的大小关系为( ) A. 60.70.70.7log 66<< B. 60.70.70.76log 6<<C .0.760.7log 660.7<< D. 60.70.7log 60.76<<7.若f x x (ln )=+34,则f x ()的表达式为( ) A .3ln x B .3ln 4x + C .3xe D .34xe +二、填空题1.985316,8,4,2,2从小到大的排列顺序是 。
2.化简11410104848++的值等于__________。
3.计算:(log )log log 2222545415-++= 。
4.已知x y x y 224250+--+=,则log ()x xy 的值是_____________。
5.方程33131=++-xx的解是_____________。
6.函数1218x y -=的定义域是______;值域是______.7.判断函数2lg(y x x =的奇偶性 。
高一基本初等函数练习题
![高一基本初等函数练习题](https://img.taocdn.com/s3/m/27dba742b307e87100f69604.png)
基本初等函数练习题一.选择题1.函数y =a x -2+log (1)a x -+1(a >0,a ≠1)的图象必经过点( ) A .(0,1) B .(1,1) C .(2,1) D .(2,2) 2.已知221,0,0x y x y +=>>,且1lo g(1),l o g,1aaa xm n y x+==-则等于( ).A .m n +B .m n -C .()12m n + D .()12m n -3.函数f (x )=log a (a -a x)在其定义域上是( ). A .增函数B .减函数C .不是单调函数D .单调性与a 有关4.已知0<a <1,log log 0a a m n <<,则( ).A .1<n <mB .1<m <nC .m <n <1D .n <m <15.使不等式123x x >成立的x 的取值范围是( ) A .0x <或1x > B .0<x <1 C .x >1D .x <16.函数m y x -=--12的图象与x 轴有交点时,则A .01<≤-mB .10≤≤mC .10≤<mD .0≥m7.函数x y 3log=与()x y 9log31=的图象( )A.关于直线1=x 对称B.关于直线x y =对称C.关于直线1-=y 对称D.关于直线1=y 对称8.若a 2x=2-1,则xxx x aa aa--++33等于( )A .22-1B .2-22C .22+1D .2+19.已知⎩⎨⎧≥--=1,log 1,4)3()(x x x a x a x f ,<是(-∞,+∞)上的增函数,那么a的取值范围是(A )(1,+∞) (B )(-∞,3) (C)⎪⎭⎫⎢⎣⎡3,53 (D)(1,3)10.如果函数y 2(31)(0x x a a a a =-->且1)a ≠在区间[0,)+∞上是增函数,那么实数a 的取值范围是(A )2(0,]3 (B)3(C)(0, (D )3[,)2+∞11.已知()f x 是周期为2的奇函数,当01x <<时,()lg .f x x =设63(),(),52a f b f ==5(),2c f =则(A )a b c << (B )b a c << (C )c b a << (D )c a b <<12.设()2212(3)2(2),2log (1)2,2x t t x f x x x -+⎧+<⎪=⎨-+≥⎪⎩,则不等式()2f x >的解集为( ). A .(1,+∞) B .(2,+∞)C .(1,2) (2,+∞)D .(1,2] 二.填空题13.设,0.(),0.x e x g x lnx x ⎧≤=⎨>⎩则1(())2g g =__________.14.已知函数()()b x f x-=2lg (b 为常数),若[)+∞∈,1x 时,()0≥x f 恒成立,则b 的取值范围是___________.15.已知定义域为R 的偶函数f (x )在[0,+∞)上是增函数,且f (21)=0,则不等式f (l og 4x )>0的解集是______________.16.若log a x=log b y=-21log c2,a,b,c均为不等于1的正数,且x>0,y>0,c=ab,则xy=________________.三.解答题17.如图,ABC∆中,,22,90==︒=∠BCACC一个边长2的正方形由位置Ⅰ沿AB边平行移动到位置Ⅱ,若移动的距离为x,正方形和三角形的公共部分的面积为)(xf,(1)求)(xf的解析式;(2)在坐标系中画出函数)(xfy=的草图;(3)根据图象,指出函数)(xfy=的最大值和单调区间.18.设1x和2x是方程22(3)(9)0x t x t+-+-=的两个实根,定义函数22200612()log()f t x x=+,(1)求函数)(tfy=的解析式及定义域;(2)求函数)(tfy=的单调区间;(3)若()332,2x-∈,试比较()2logf x与()3logf x的大小.19.某型号高脚杯的曲面是由一幂函数在x轴上侧的部分沿着y轴旋转一周得到,高脚杯的高度为9cm,曲面底部的高度为5cm,上缘面所在圆的半径为cm,如图所示.(1)求该幂函数的方程;(2)有种型号的易拉罐的底面半径为3cm,若使高脚杯能够倒套在这种易拉罐上(如图),则应该加长高脚杯的曲面部分.求高脚杯的高度不应小于多少.(精确到小数点后一位数字)20.已知函数()22x ax b f x +=+,且f (1)=52、f (2)=174.(1)求a b 、;(2)判断f (x )的奇偶性;(3)试判断函数在(,0]-∞上的单调性,并证明之; (4)求函数f (x )的最小值.基本初等函数参考答案1. 答案:D2.答案:D3.答案:B 4.答案:A5.答案:A 2. 6.答案:C7.答案:C8.答案:A 提示:在原式的分子、分母上同时乘以x a . 9.答案:D 10.答案:B 11.答案:D12.答案:A 提示:此题中()f x 的解析式看起来很复杂,但形式上不过是一个分段函数.由()2f x >可知: ()122222x x t -<⎧⎪⎨+>⎪⎩或()()2232log 122t x x +≥⎧⎪⎨-+>⎪⎩即:()()10222212x x t t -<⎧⎪⎨+>=+⎪⎩或()()()222332log 10log 1t t x x ++≥⎧⎪⎨->=⎪⎩注意到222131t t +>+>、,函数()22xy t =+和()23logty x +=在定义域上皆为增函数,210x x <⎧∴⎨->⎩或2x x x ≥⎧⎪⎨><⎪⎩1x >.作为选择题,此题用特值法更简单,只需验证2x =和3x =即可. 分段函数是高考考察的热点,应重点注意.13.答案:1ln2111(())(ln )222g g g e===.14.答案:1≤b . 15.答案:x >2或0<x <21 提示:因为f (x )是偶函数,所以f (-21)=f (21)=0.又f (x )在[0,+∞)上是增函数,所以f (x )在(-∞,0)上是减函数.所以f (l og 4x )>0⇒l og 4x >21或l og 4x <-21.解得x >2或0<x <21.16.答案:2117.解:(1)⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≤-<<-+-≤≤=)64(,)6(21)42(,66)20(,21)(222x x x x x x x x f ;(2)由解析式可得图像如下:(3)由图像可知:3=x 时,函数值最大为3;单调增区间为]3,0[,单调减区间为]6,3[.18.解:(1)首先,()()223490t t ∆=--->,即()()530t t +-<,解得53t -<< .........①再由根与系数的关系可得:123x x t +=-,2129x x t =-所以:()2221212122x x x x x x +=+- ()()22329t t =---2627t t =--+即:22006()log (627)f t t t =--+.由26270t t --+>可解得:93t -<< .........②由①②得定义域为()5,3-.(2)设2627x t t =--+,此函数在(,3]-∞-上为增函数,在[3,)+∞上为减函数,而函数2006log y x =在定义域上为增函数,又因为)(t f y =的定义域为()5,3-,所以)(t f y =的单调递增区间为(5,3]--,单调递减区间为[3,3)-.(3)当()32,1x -∈时,233log log 0x x -<<<,因为()f t 在[3,3)-上为减函数,所以()()23log log f x f x >;当1x =时,23log log 0x x ==,所以()()23log log f x f x =; 当()31,2x ∈时,320log log 3x x <<<,因为()f t 在[3,3)-上为减函数,所以()()23log log f x f x <.19.解:(1)设所求幂函数为a y x =,则由已知可得,当x =954y =-=,所以:(4a=,解得32a =,从而32y x =.(2)当高脚杯上缘面的半径等于3cm 时,曲面部分的高度为323 5.2y =≈cm此时高脚杯的高度为5.2+5=10.2cm ,所以高脚杯的高度最小不应小于10.2cm .20.解:(1)由已知得:2522217424a ba b ++⎧=+⎪⎪⎨⎪=+⎪⎩,解得10a b =-⎧⎨=⎩. (2)由上知()22xxf x -=+.任取x R ∈,则()()()22x xf x f x ----=+=,所以()f x 为偶函数.(3)可知()f x 在(,0]-∞上应为减函数.下面证明: 任取12(,0]x x ∈-∞、,且12x x <,则()()()()1122122222xx x x fx f x ---=+-+()12121122()22x x x x =-+-=()()1212122222122x x x x xx --,因为12(,0]x x ∈-∞、,且12x x <,所以120221x x <<≤,从而12220x x -<,122210xx -<,12220xx >,故()()120f x f x ->,由此得函数()f x 在(,0]-∞上为减函数 (4)因为()f x 在(,0]-∞上为减函数,且()f x 为偶函数,所以f (x )在[0,+∞)上是增函数,所以当0x ≥时,()(0)f x f ≥;又因为()f x 在(,0]-∞上为减函数,所以当0x ≤时,()(0)f x f ≥,从而对于任意的x R ∈,都有:()()000222f x f ≥=+=, 所以()f x 的最小值为2.。
(完整版)基本初等函数测试题及答案
![(完整版)基本初等函数测试题及答案](https://img.taocdn.com/s3/m/69b519f0a300a6c30d229fcc.png)
基本初等函数测试题一、选择题 (本大题共 12 个小题,每题 5 分,共 60 分.在每题给出的四个选项中,只有一项为哪一项切合题目要求的)1.有以下各式:① na n = a ; ②若 a ∈ R ,则 (a 2- a + 1)0= 1;③ 3 x 44y ; ④6- 2 2= 3- 2.y3x3此中正确的个数是 ()A . 0B . 1C .2D .3|x|的图象是 ()2.函数 y = a (a>1)3.以下函数在 (0,+∞ )上是增函数的是 ()-xB . y =- 2x1A . y = 3C . y = logxD . y = x24.三个数 log 21, 20.1,2-1 的大小关系是 ()51-1--11 -A . log 25<2<2 1 B . log 25<2 1<20.1 C . 2<2 1<log 25 D . 2<log 25<215.已知会合 A = { y|y = 2x , x<0} , B = { y|y =log 2x} ,则 A ∩ B = ()A . { y|y>0}B . { y|y>1}C . { y|0<y<1}D .6.设 P 和 Q 是两个会合,定义会合 P -Q = { x|x ∈ P 且 x?Q} ,假如 P ={ x|log x < 1} ,Q2= { x|1<x<3} ,那么 P -Q 等于 ( )A . { x|0< x < 1}B . { x|0< x ≤ 1}C . { x|1≤ x <2}D . { x|2≤ x < 3}17.已知 0<a<1, x = log a 2+ log a 3, y =2log a 5,z =log a 21- log a 3,则 ( )A . x>y>zB . x>y>xC . y>x>zD . z>x>y8.函数 y = 2x - x 2 的图象大概是 ()9.已知四个函数① y = f 1(x);② y = f 2 (x);③ y =f 3(x);④ y = f 4( x)的图象以以下图:- 1 -则以下不等式中可能建立的是 ()A . f (x + x )= f (x )+ f (x )B . f (x + x )=f (x )+ f(x )112111 22122122C . f 3(x 1+ x 2) =f 3(x 1)+ f 3(x 2 )D . f 4(x 1+ x 2)=f 4(x 1)+ f 4(x 2)f ( x)12-1, f 3 2,则 f 1 2 310.设函数x 2(x)= x(2010))) 等于 ()1, f (x)= x ( f (fB . 2010211A . 2010 C.2010 D. 201211.函数 f(x)=3x 2 + lg(3 x + 1)的定义域是 ( )1-xA. -∞,- 1B. - 1, 133 3C. -1, 1D. - 1,+∞332e x -1, x<2,12. (2010 石·家庄期末测试)设 f(x)=则 f[ f(2)] 的值为 ()log 3 x 2- 1 , x ≥ 2.A . 0B . 1C . 2D . 3二、填空题 (本大题共 4 小题,每题 5 分,共 20 分.把答案填在题中横线上 )13. 给出以下四个命题:(1)奇函数的图象必定经过原点;(2)偶函数的图象必定经过原点;1(3)函数 y = lne x 是奇函数; (4)函数 yx 3 的图象对于原点成中心对称.此中正确命题序号为 ________. (将你以为正确的都填上 )14. 函数 y log 1 (x 4) 的定义域是.215.已知函数 y = log a (x +b)的图象以以下图所示,则 a = ________, b = ________.16.(2008 上·海高考 )设函数 f(x)是定义在 R 上的奇函数, 若当 x ∈ (0,+∞ )时,f(x)= lgx ,则知足 f(x)>0 的 x 的取值范围是 ________.- 2 -三、解答题 (本大题共 6 小题,共 70 分.解答应写出必需的文字说明、证明过程或演算步骤 )17. (本小题满分 10 分 )已知函数 f( x)= log 2(ax + b),若 f(2)= 1, f(3)= 2,求 f(5).118. (本小题满分 12 分 )已知函数 f (x)2 x 2 .(1)求 f(x) 的定义域; (2) 证明 f(x)在定义域内是减函数.2x - 1 19. (本小题满分 12 分 )已知函数f( x)=2x + 1.(1)判断函数的奇偶性; (2) 证明: f( x)在(-∞,+∞ )上是增函数.220. (本小题满分 12 分 )已知函数 f x(m 2 m 1)x mm 3是幂函数 , 且 x ∈ (0,+∞ )时, f(x)是增函数,求 f(x)的分析式.21. (本小题满分 12 分 )已知函数 f( x)= lg(a x -b x ), (a>1>b>0) .(1)求 f(x)的定义域;(2)若 f(x)在 (1,+∞ )上递加且恒取正当,求a ,b 知足的关系式.1122. (本小题满分 12 分 )已知 f(x)= 2x -1+2 ·x.(1)求函数的定义域;(2)判断函数 f(x)的奇偶性;(3)求证: f(x)>0.- 3 -参照答案答案速查: 1-5 BCDBC6-10 BCACC11-12 CC1.分析: 仅有②正确. 答案: Ba x , x ≥0 ,2.分析: y = a |x|=-且 a>1 ,应选 C.答案: Ca x, x<0 ,3.答案: D4.答案: B5.分析:A = { y|y = 2x ,x<0} = { y|0<y<1} ,B = { y|y = log 2x} = { y|y ∈ R} ,∴ A ∩ B ={ y|0<y<1} .答案: C6.分析: P ={ x|log 2x<1} = { x|0<x<2} , Q ={ x|1<x<3} ,∴ P - Q = { x|0<x ≤1} ,应选 B.答案: B17.分析: x = log a 2+ log a 3= log a 6= 2log a 6, z = loga21- loga 3= loga 7= 2log 7.1a∵ 0<a<1 ,∴ 111log a 7.2 log a 5> log a 6> 22 即 y>x>z.答案: C8.分析: 作出函数 y =2x 与 y = x 2 的图象知,它们有3 个交点,因此 y =2x - x 2 的图象与x 轴有 3 个交点,清除B 、C ,又当 x<- 1 时, y<0,图象在 x 轴下方,清除 D.应选 A.答案: A9.分析: 联合图象知, A 、 B 、 D 不建立, C 建立. 答案: C10.分析: 依题意可得 f 3(2010) = 20102, f 2(f 3(2010))22 -1-2 = f 2(2010 ) =(2010 ) = 2010 ,∴ f 1(f 2(f 3(2010))) = f 1(2010 - 2-2 1-11 .)= (2010) =2010=20102答案: C1-x>0x<1-111.分析: 由 ?1? <x<1. 答案: C3x +1>0x>- 3312.分析: f(2) = log 3(22- 1)= log 33= 1,∴ f[f(2)] = f(1) = 2e 0= 2.答案: C13.分析: (1) 、 (2)不正确,可举出反例,如1, y = x -2,它们的图象都可是原点. (3)y = x中函数 y = lne x=x ,明显是奇函数.对于(4) , y =x 13是奇函数,而奇函数的图象对于原点对称,因此 (4)正确.答案: (3)(4)- 4 -14.答案: (4,5]15.分析: 由图象过点 (- 2,0), (0,2)知, log a (- 2+ b)= 0, log a b = 2,∴- 2+ b =1,∴ b= 3, a 2= 3,由 a>0 知 a = 3.∴ a = 3, b = 3.答案: 3 316.分析: 依据题意画出 f(x)的草图,由图象可知,f(x)>0 的 x 的取值范围是-1<x<0 或x>1.答案: (- 1,0)∪ (1,+∞ )17.解:由 f(2) log 2 2a + b =12a + b =2 ? a = 2, = 1,f(3)= 2,得 3a + b = 2? ∴ f(x)= log 2(2xlog 2 3a + b =4 b =- 2. - 2),∴ f(5)= log 28 =3.18.∵ x 2>x 1≥ 0,∴ x 2- x 1>0, x 2+ x 1>0,∴ f(x 1) - f(x 2)>0 ,∴ f(x 2)<f( x 1).于是 f(x)在定义域内是减函数.19.解: (1) 函数定义域为 R.2-x - 11- 2x2x - 1f(- x)=- x+ 1 =x =-x=- f(x),21+ 22 + 1因此函数为奇函数.1 2< +∞ ,(2)证明:不如设- ∞<x <x∴ 2x 2>2x 1.又由于 f(x 2)- f(x 1)= 2x 2- 1 - 2x 1- 1 = 2 2x 2- 2x 12 1 1 2x 2>0,2x + 1 2x + 1 2x + 1 +1∴ f(x 2)> f(x 1).因此 f(x)在 (- ∞ ,+ ∞ )上是增函数.20.解: ∵ f(x)是幂函数,∴ m 2- m - 1= 1, ∴ m =- 1 或 m = 2,∴ f(x)= x -3 或 f(x)= x 3,而易知 f(x)= x -3 在 (0,+ ∞ )上为减函数,f(x)=x 3 在 (0,+ ∞ )上为增函数. ∴ f(x)= x 3.21.解: (1) 由 a x- b x>0,得 a x>1.ba∵ a>1>b>0,∴ b >1, ∴ x>0.即 f(x)的定义域为 (0,+ ∞ ).(2)∵ f( x)在 (1,+ ∞ )上递加且恒为正当,∴ f(x)>f(1) ,只需 f(1)≥ 0,即 lg(a - b)≥ 0,∴ a - b ≥1.∴ a ≥ b + 1 为所求22.解: (1) 由 2x - 1≠ 0 得 x ≠0,∴函数的定义域为 { x|x ≠0, x ∈ R} . (2)在定义域内任取 x ,则- x 必定在定义域内. 1 1 f(- x)= 2-x - 1+ 2 (- x)=2xx +1 ( -x) =- 1+2x ·x = 2x +1 ·x.1-2 22 1- 2x 2 2x - 111 2x + 1而f(x)=2x - 1+2 x = 2 2x -1 ·x , ∴ f(- x)= f(x).∴ f(x)为偶函数.(3)证明:当 x>0 时, 2x >1,11∴2x - 1+2 ·x>0.又 f(x)为偶函数,∴当 x<0 时, f(x)>0.故当 x ∈ R 且 x ≠ 0 时, f(x)>0.。
高中数学试卷 代数——基本初等函数列练习题
![高中数学试卷 代数——基本初等函数列练习题](https://img.taocdn.com/s3/m/eadb72306fdb6f1aff00bed5b9f3f90f77c64d5a.png)
高中数学试卷代数——基本初等函数列练习题一、单选题1.已知函数f(x)=a x,其中a>0,且a≠1,如果以P(x1,f(x1)),Q(x2,f(x2))为端点的线段的中点在y 轴上,那么f(x1)·f(x2)等于()A.1B.a C.2D.a22.已知函数f(x)={log a x,x>0a x,x≤0(a>0,且a≠1),则f(f(−1))=()A.1B.0C.-1D.a3.已知函数f(x)=(3m2−2m)x m是幂函数,若f(x)为增函数,则m等于()A.−13B.-1C.1D.−13或14.函数f(x)=(13)x−√x的零点所在的区间为()A.(0,13)B.(13,12)C.(12,1)D.(1,2)5.根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N约为1080.则下列各数中与M N最接近的是().(参考数据:lg3≈0.48)A.B.C.D.6.若y=x2,y=(12)x,y=4x2,y=x5+1,y=(x−1)2,y=x,y=a x(a>1)上述函数是幂函数的个数是()A.0个B.1个C.2个D.3个7.已知函数f(x)=|log3(x−1)|−(13)x有两个零点x1,x2,则()A.x1x2<1B.x1x2>x1+x2C.x1x2<x1+x2D.x1x2=x1+x2 8.化简(1+2 −132)(1+2 −116)(1+2 −18)(1+2 −14)(1+2 −12)的结果是()A.(1−2−132)−1B.12(1−2−1 32)−1C.1−2 −132D.12(1-2 −132)9.a=log20.7,b=(15)23,c=(12)﹣3,则a,b,c的大小关系是()A.c>b>a B.b>c>a C.c>a>b D.a>b>c 10.函数f(x)=x2−2|x|−m的零点有两个,求实数m的取值范围()A .−1<m <0B .m >0 或 m =−1C .m >0 或 −1≤m <0D .0<m <111.函数f (x )=2x +x 3﹣2在区间(0,1)内的零点个数是( )A .0B .1C .2D .312.已知函数 f(x)={x ,x ≤0x 2−x ,x >0 ,若函数g (x )=f (x )﹣m 有三个不同的零点,则实数m的取值范围为( ) A .[−12,1]B .[−12,1)C .(−14,0)D .(−14,0]13.设函数f(x)={21−x ,x ≤11−log 2x ,x >1则满足f(x)≤2的x 取值范围是( )A .[-1,2]B .[0,2]C .[1,+∞)D .[0,+∞)14.若直线y=a 与函数y=|lnx+1x3|的图象恰有3个不同的交点,则实数a 的取值范围为( )A .{e 23}B .(0,e 23)C .(e 23,e )D .(1e ,1)∪{e 23}15.已知曲线f(x)=−1x在点(−1,f(−1))处的切线l 与曲线g(x)=alnx 相切,则实数a 所在的区间为(ln2≈0.69,ln5≈1.61)( ) A .(2,3)B .(3,4)C .(4,5)D .(5,6)16.方程2x •x 2=1的实数解的个数为( )A .0B .1C .2D .317.已知函数 f(x)=lnxx −a , g(x)=3(lnx−ax)lnx,若方程 f(x)=g(x) 有2不同的实数解,则实数a 的取值范围是( ) A .(−∞,e)B .(0,1e )C .(−∞,0)∪(e,+∞)D .(e,+∞)二、填空题18.计算:lg2+lg 10012−lg √2 = .19.函数 f(x)=(13)x 在 (−1,+∞) 上的值域为 .20.设 2a =5b =m ,若 1a +1b=2 ,则 m = .21.设函数f (x )的图象关于原点对称,且存在反函数f ﹣1(x ).若已知f (4)=2,则f ﹣1(﹣2)= .22.已知函f(x)={lnx ,x >0x 2+1,x ≤0,f(a)=2,则a = .23.已知幂函数 f(x)=(m 2−5m +7)x m 2−6在区间 (0,+∞) 上单调递增,则实数 m 的值为 .24.测量地震级别的里氏震级M 的计算公式为: M =lgA −lgA 0 ,其中A 是测震仪记录的地震曲线的最大振幅,常数A 0是相应的标准地震的振幅.假设在一次地震中,测震仪记录的最大振幅是1000,而此次地震的里氏震级恰好为6级,那么里氏9级地震的最大的振幅是里氏5级地震最大振幅的 倍.25.函数 f(x)={tx 2+x +1,x ≤t x +78,x >t , f(x) 在定义域上是单调函数,则 t 的取值范围为 .26.若方程2x +x=4的解所在区间为[m ,m+1](m∪Z ),则m= .27.如图,煤场的煤堆形如圆锥,设圆锥母线与底面所成角为 α=π4,传输带以0.9 m 3min ⁄ 的速度送煤,则r 关于时间t 的函数是 ,当半径为 3m 时,r 对时间t 的变化率为 .28.若 f(x) 是定义在 R 上的偶函数,在 (−∞,0] 上是减函数,且 f(2)=0 ,则使得f(log 2x)<0 的 x 的取值范围是 .29.已知函数 f(x)={x 2+18x ,2≤x ≤12ax −12a +152,12<x ≤18,若对于任意的实数 x 1,x 2,x 3∈[2,18] ,均存在以 f(x 1),f(x 2),f(x 3) 为三边边长的三角形,则 a 的取值范围是 .30.函数f (x )=log 3(x 2﹣2x+10)的值域为31.已知函数f (x )= {x 2+1,x ≥0−1x ,x <0,若f (a )=1,则实数a= . 32.已知函数 f(x)=lnx −x 3 与 g(x)=x 3−ax ,若函数 f(x) 图象上存在点 P ,且点 P 关于x 轴对称点 Q 在函数 g(x) 图象上,则实数 a 的取值范围为 .33.已知函数 y =cosωx −a , x ∈[−π,π] (其中 a , ω 为常数,且 ω>0 )有且仅有5个零点,则a 的值为 , ω 的取值范围是 . 34.已知函数 f(x)={2x 2−2,x ≥0−43x ,x <0, ,函数 g(x)=f(x)+√1−x 2+|f(x)−√1−x 2|−2ax +4a 有三个零点,则实数 a 的取值范围为 .三、解答题35.计算下列各式的值:(1)823−(12)−2+(1681)34−(π)0 ;(2)(log 43+log 83)×log 32+2log 21 .36.计算求值:(1)(a 23⋅b −1)−12⋅a −12⋅b 13√a⋅b 56;(2)lg2−lg 14+3lg5−log 32⋅log 4937.已知指数函数 y =(1a)x , x ∈(0,+∞) 时,有 y >1 .(1)求 a 的取值范围;(2)解关于 x 的不等式 log a (x −1)≤log a (x 2+x −6) .38.某工厂需要建一个面积为512m 2的矩形堆料场,一边可以利用原有的墙壁,则要使砌墙所用材料最省,则堆料场的长和宽分别为多少?39.已知函数 f(x)=log a (2+x) , g(x)=log a (2−x) ( a >0 且 a ≠1 ),设 ℎ(x)=f(x)−g(x) .(1)求函数 ℎ(x) 的定义域;(2)当 f(x)>g(x) 时,求 x 的取值范围.40.计算: |−7|+(−2)3+tan45°−√4 . 41.(1)化简: (3a 13b −12)2⋅√a 43÷(ab)−1(a >0,b >0) .(2)计算: log 53×(log 325+log 135)−lg4−lg250 .42.首届世界低碳经济大会在南昌召开,本届大会以“节能减排,绿色生态”为主题.某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为300吨,最多为600吨,月处理成本y (元)与月处理量x (吨)之间的函数关系可近似地表示为 y =12x 2−200x +45000 ,且每处理一吨二氧化碳得到可利用的化工产品价值为200元.(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则需要国家至少补贴多少元才能使该单位不亏损?43.已知函数f (x )=e x ﹣ax ﹣a ,g (x )= 13 x 3﹣2x 2+3x+ 163.(1)讨论f (x )零点的个数;(2)若∪x 1∪[﹣1,2],∪x 2∪[﹣1,2],使得f (x 1)≥g (x 2),求a 的取值范围. 44.已知函数 f(x)={x 2−2mx,x ≥0−x 2−2mx,x <0,其中 m ∈R .(1)当 m =1 时,画出函数 f(x) 的图像,并写出 f(x) 的单调区间; (2)若 f(f(1))=1 ,求满足条件所有的 m 的值.45.已知函数 f(x)=log 3(3a x)⋅log 3x9(常数 a ∈R ).(∪)当 a =0 时,求不等式 f(x)≤0 的解集;(∪)当 x ∈[19,27] 时,求 f(x) 的最小值.46.已知函数 f(x)=2sinxsin(x +π6)+√32cos2x .(1)求函数 f(x) 的最小值及此时 x 的取值集合;(2)若函数 g(x)=f(x +π12)−√32−a 在 x ∈[0,3π4] 时有2个零点,求实数 a 的取值范围.47.某地为了鼓励节约用电,采用分段计费的方法计算用户的电费:每月用电量不超过100kw ⋅ℎ ,按0.58元/ (kw ⋅ℎ) 计费;每月用电量超过 100kw ⋅ℎ ,其中 100kw ⋅ℎ 仍按原标准收费,超过部分按0.98元/ (kw ⋅ℎ) 计费.(1)设月用电xkw ⋅ℎ ,应交电费y 元,写出y 关于x 的函数关系式;(2)小王家第四季度用电325kw ⋅ℎ ,共交电费206.5元,其中10月份电费49.3元,若已知12月份用电超过 100kw ⋅ℎ ,问小王家10月,11月和12月各用电多少 kw ⋅ℎ ?48.计算(x ﹣4y 5)﹣2•(﹣2x ﹣3y ﹣2)3•(4x ﹣1y ﹣20)﹣1. 49.已知函数f(x)=(x 2−ax)lnx +x(a ∈R ,a >0).(1)若0<a ≤1,试问f(x)是否存在零点.若存在,请求出该零点;若不存在,请说明理由.(2)若f(x)有两个零点,求满足题意的a的最小整数值.(参考数据:ln2≈0.693,√e≈1.649)50.已知函数f(x)=lg(1−x)−lg(1+x).(1)解方程:f(x)=0;(2)求证:当x1∈(−1,1),x2∈(−1,1)时,f(x1)+f(x2)=f(x1+x21+x1x2).答案解析部分1.【答案】A【知识点】有理数指数幂的运算性质【解析】【解答】因为以P (x 1,f (x 1)),Q (x 2,f (x 2))为端点的线段的中点在y 轴上,所以 x 1+x 2=0 .因为f (x )=a x ,所以f (x 1)·f (x 2)= a x 1⋅a x 2=a x 1+x 2=a 0=1 . 故答案为:A【分析】结合题目条件,运用中点坐标计算公式,得到一个等式,运用指数运算,即可得出答案。
基本初等函数练习题与答案
![基本初等函数练习题与答案](https://img.taocdn.com/s3/m/2e59c01da5e9856a561260a5.png)
5.
1
3x 3x 3x 3x 3, x 1 1 3x
6.
x
|
x
1
,y
|
y
0,
且y
1
2x
1
0,
x
1
;
y
1
8 2 x 1
0, 且y
1
2
2
7. 奇函数 f (x) x2 lg(x x2 1) x2 lg(x x2 1) f (x)
84 411
212 222
212 (1 210 )
3. 2 原式 log2 5 2 log2 51 log2 5 2 log2 5 2
4. 0 (x 2)2 ( y 1)2 0, x 2且y 1, logx ( yx ) log2 (12 ) 0
4.若函数
f
(x)
1
m ax 1
是奇函数,则 m
为__________。
5.求值:
2
27 3
2log2 3
log2
1 8
2 lg(
3
5
3
5 ) __________。
三、解答题
1.解方程:(1) log4 (3 x) log0.25 (3 x) log4 (1 x) log0.25 (2x 1)
log a
(1
1 a
)
②
log a
(1
a)
log a
(1
1 a
)
③ a1a
基本初等函数测试题及答案精编版
![基本初等函数测试题及答案精编版](https://img.taocdn.com/s3/m/1c929dbb8762caaedd33d452.png)
基本初等函数测试题一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.有下列各式:①na n=a ; ②若a ∈R ,则(a 2-a +1)0=1;③44333x y x y +=+; ④6(-2)2=3-2.其中正确的个数是( )A .0B .1C .2D .32.函数y =a |x |(a >1)的图象是( )3.下列函数在(0,+∞)上是增函数的是( ) A .y =3-x B .y =-2x C .y =log 0.1x D .y =x 124.三个数log 215,20.1,2-1的大小关系是( )A .log 215<20.1<2-1B .log 215<2-1<20.1C .20.1<2-1<log 215 D .20.1<log 215<2-15.已知集合A ={y |y =2x ,x <0},B ={y |y =log 2x },则A ∩B =( ) A .{y |y >0} B .{y |y >1} C .{y |0<y <1} D .∅6.设P 和Q 是两个集合,定义集合P -Q ={x |x ∈P 且x ∉Q },如果P ={x |log 2x <1},Q ={x |1<x <3},那么P -Q 等于( )A .{x |0<x <1}B .{x |0<x ≤1}C .{x |1≤x <2}D .{x |2≤x <3}7.已知0<a <1,x =log a 2+log a 3,y =12log a 5,z =log a 21-log a 3,则( )A .x >y >zB .x >y >xC .y >x >zD .z >x >y 8.函数y =2x -x 2的图象大致是( )9.已知四个函数①y =f 1(x );②y =f 2(x );③y =f 3(x );④y =f 4(x )的图象如下图:则下列不等式中可能成立的是( )A .f 1(x 1+x 2)=f 1(x 1)+f 1(x 2)B .f 2(x 1+x 2)=f 2(x 1)+f 2(x 2)C .f 3(x 1+x 2)=f 3(x 1)+f 3(x 2)D .f 4(x 1+x 2)=f 4(x 1)+f 4(x 2)10.设函数121()f x x =,f 2(x )=x -1,f 3(x )=x 2,则f 1(f 2(f 3(2010)))等于( ) A .2010 B .20102 C.12010 D.1201211.函数f (x )=3x 21-x +lg(3x +1)的定义域是( )A.⎝⎛⎭⎫-∞,-13 B.⎝⎛⎭⎫-13,13 C.⎝⎛⎭⎫-13,1 D.⎝⎛⎭⎫-13,+∞ 12.(2010·石家庄期末测试)设f (x )=⎩⎪⎨⎪⎧2e x -1, x <2,log 3(x 2-1), x ≥2. 则f [f (2)]的值为( )A .0B .1C .2D .3二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.给出下列四个命题:(1)奇函数的图象一定经过原点;(2)偶函数的图象一定经过原点; (3)函数y =lne x是奇函数;(4)函数13y x =的图象关于原点成中心对称. 其中正确命题序号为________.(将你认为正确的都填上) 14. 函数12log (4)y x =-的定义域是 .15.已知函数y =log a (x +b )的图象如下图所示,则a =________,b =________.16.(2008·上海高考)设函数f (x )是定义在R 上的奇函数,若当x ∈(0,+∞)时,f (x )=lg x ,则满足f (x )>0的x 的取值范围是________.三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知函数f (x )=log 2(ax +b ),若f (2)=1,f (3)=2,求f (5).18.(本小题满分12分)已知函数12()2f x x =-.(1)求f (x )的定义域;(2)证明f (x )在定义域内是减函数. 19.(本小题满分12分)已知函数f (x )=2x -12x +1.(1)判断函数的奇偶性;(2)证明:f (x )在(-∞,+∞)上是增函数. 20.(本小题满分12分)已知函数()223(1)mm f x m m x +-=--是幂函数, 且x ∈(0,+∞)时,f (x )是增函数,求f (x )的解析式.21.(本小题满分12分)已知函数f (x )=lg(a x -b x ),(a >1>b >0). (1)求f (x )的定义域;(2)若f (x )在(1,+∞)上递增且恒取正值,求a ,b 满足的关系式. 22.(本小题满分12分)已知f (x )=⎝⎛⎭⎫12x -1+12·x .(1)求函数的定义域; (2)判断函数f (x )的奇偶性; (3)求证:f (x )>0.参考答案答案速查:1-5 BCDBC 6-10 BCACC 11-12 CC 1.解析:仅有②正确.答案:B2.解析:y =a |x |=⎩⎪⎨⎪⎧a x ,(x ≥0),a -x ,(x <0),且a >1,应选C.答案:C3.答案:D4.答案:B5.解析:A ={y |y =2x ,x <0}={y |0<y <1},B ={y |y =log 2x }={y |y ∈R },∴A ∩B ={y |0<y <1}. 答案:C6.解析:P ={x |log 2x <1}={x |0<x <2},Q ={x |1<x <3},∴P -Q ={x |0<x ≤1},故选B.答案:B7.解析:x =log a 2+log a 3=log a 6=12log a 6,z =log a 21-log a 3=log a 7=12log a 7.∵0<a <1,∴12log a 5>12log a 6>12log a 7.即y >x >z . 答案:C8.解析:作出函数y =2x 与y =x 2的图象知,它们有3个交点,所以y =2x -x 2的图象与x 轴有3个交点,排除B 、C ,又当x <-1时,y <0,图象在x 轴下方,排除D.故选A.答案:A9.解析:结合图象知,A 、B 、D 不成立,C 成立.答案:C 10.解析:依题意可得f 3(2010)=20102,f 2(f 3(2010)) =f 2(20102)=(20102)-1=2010-2,∴f 1(f 2(f 3(2010)))=f 1(2010-2)=(2010-2)12=2010-1=12010.答案:C11.解析:由⎩⎪⎨⎪⎧1-x >03x +1>0⇒⎩⎪⎨⎪⎧x <1x >-13⇒-13<x <1. 答案: C12.解析:f (2)=log 3(22-1)=log 33=1,∴f [f (2)]=f (1)=2e 0=2. 答案:C13.解析:(1)、(2)不正确,可举出反例,如y =1x ,y =x -2,它们的图象都不过原点.(3)中函数y =lne x =x ,显然是奇函数.对于(4),y =x 13是奇函数,而奇函数的图象关于原点对称,所以(4)正确.答案:(3)(4)14. 答案:(4,5]15.解析:由图象过点(-2,0),(0,2)知,log a (-2+b )=0,log a b =2,∴-2+b =1,∴b =3,a 2=3,由a >0知a = 3.∴a =3,b =3.答案:3 316.解析:根据题意画出f (x )的草图,由图象可知,f (x )>0的x 的取值范围是-1<x <0或x >1.答案:(-1,0)∪(1,+∞)17.解:由f (2)=1,f (3)=2,得⎩⎪⎨⎪⎧ log 2(2a +b )=1log 2(3a +b )=2⇒⎩⎪⎨⎪⎧ 2a +b =23a +b =4⇒⎩⎪⎨⎪⎧a =2,b =-2.∴f (x )=log 2(2x-2),∴f (5)=log 28=3. 18.∵x 2>x 1≥0,∴x 2-x 1>0,x 2+x 1>0, ∴f (x 1)-f (x 2)>0,∴f (x 2)<f (x 1). 于是f (x )在定义域内是减函数. 19.解:(1)函数定义域为R .f (-x )=2-x -12-x +1=1-2x 1+2x =-2x -12x +1=-f (x ),所以函数为奇函数.(2)证明:不妨设-∞<x 1<x 2<+∞, ∴2x 2>2x 1.又因为f (x 2)-f (x 1)=2x 2-12x 2+1-2x 1-12x 1+1=2(2x 2-2x 1)(2x 1+1)(2x 2+1)>0,∴f (x 2)>f (x 1).所以f (x )在(-∞,+∞)上是增函数. 20.解:∵f (x )是幂函数, ∴m 2-m -1=1, ∴m =-1或m =2, ∴f (x )=x-3或f (x )=x 3,而易知f (x )=x -3在(0,+∞)上为减函数,f (x )=x 3在(0,+∞)上为增函数. ∴f (x )=x 3.21.解:(1)由a x -b x >0,得⎝⎛⎭⎫a b x>1. ∵a >1>b >0,∴ab >1,∴x >0.即f (x )的定义域为(0,+∞).(2)∵f (x )在(1,+∞)上递增且恒为正值, ∴f (x )>f (1),只要f (1)≥0, 即lg(a -b )≥0,∴a -b ≥1.∴a ≥b +1为所求22.解:(1)由2x -1≠0得x ≠0,∴函数的定义域为{x |x ≠0,x ∈R }.(2)在定义域内任取x ,则-x 一定在定义域内. f (-x )=⎝⎛⎭⎫12-x -1+12(-x )=⎝⎛⎭⎫2x 1-2x +12(-x )=-1+2x 2(1-2x )·x =2x+12(2x -1)·x . 而f (x )=⎝⎛⎭⎫12x -1+12x =2x+12(2x -1)·x ,∴f (-x )=f (x ). ∴f (x )为偶函数.(3)证明:当x >0时,2x >1, ∴⎝⎛⎭⎫12x -1+12·x >0.又f (x )为偶函数, ∴当x <0时,f (x )>0.故当x ∈R 且x ≠0时,f (x )>0.。
基本初等函数
![基本初等函数](https://img.taocdn.com/s3/m/869fc856fe4733687e21aa9c.png)
数学1(必修)第二章 基本初等函数(1)[基础训练A 组]一、选择题1.下列函数与x y =有相同图象的一个函数是( )A .2x y = B .x x y 2= C .)10(log ≠>=a a a y x a 且 D .x a a y log = 2.下列函数中是奇函数的有几个( ) ①11x x a y a +=- ②2l g (1)33x y x -=+- ③x y x = ④1l o g 1a x y x +=- A .1 B .2 C .3 D .43.函数y x =3与y x =--3的图象关于下列那种图形对称( )A .x 轴B .y 轴C .直线y x =D .原点中心对称4.已知13x x-+=,则3322x x -+值为( )A .B .C .D . -5.函数y =的定义域是( ) A .[1,)+∞ B .2(,)3+∞ C .2[,1]3D .2(,1]36.三个数60.70.70.76log 6,,的大小关系为( ) A . 60.70.70.7log 66<< B . 60.70.70.76log 6<<C .0.760.7log 660.7<<D . 60.70.7log 60.76<<7.若f x x (ln )=+34,则f x ()的表达式为( )A .3ln xB .3ln 4x +C .3x eD .34xe + 二、填空题1.985316,8,4,2,2从小到大的排列顺序是 。
2.化简11410104848++的值等于__________。
3.计算:(log )log log 2222545415-++= 。
4.已知x y x y 224250+--+=,则log ()x x y 的值是_____________。
5.方程33131=++-xx的解是_____________。
6.函数1218x y -=的定义域是______;值域是______.7.判断函数2lg(y x x =+的奇偶性 。
第二章 基本初等函数
![第二章 基本初等函数](https://img.taocdn.com/s3/m/9c5c61dd524de518964b7dc0.png)
第二章 基本初等函数一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符号题目要求的。
)一、选择题1.下列各式正确的是( ) A.(-3)2=-3 B.4a 4=a C.22=2D .a 0=1[答案] C[解析] 由根式的意义知A 错;4a 4=|a |,故B 错;当a =0时,a 0无意义,故D 错. 2.函数y =log 12(x -1)的定义域是( ) A .[2,+∞) B .(1,2]C .(-∞,2] D.⎣⎡⎭⎫32,+∞ [答案] B [解析] log 12(x -1)≥0,∴0<x -1≤1,∴1<x ≤2.故选B.3.(2010·浙江文,2)已知函数f (x )=log 2(x +1),若f (α)=1,则α=( ) A .0 B .1 C .1 D .3 [答案] B[解析] 由题意知,f (α)=log 2(α+1)=1,∴α+1=2,∴α=1. 4.如果lg x =lg a +2lg b -3lg c ,则x 等于( ) A .a +2b -3c B .a +b 2-c 3 C.ab 2c 3D.2ab 3c[答案] C[解析] lg x =lg a +2lg b -3lg c =lg ab 2c 3,∴x =ab 2c3,故选C.5.已知a =log 32,那么log 38-2log 36用a 表示为( ) A .a -2B .5a -2C .3a -(1+a )2D .3a -a 2-1[答案] A[解析] 由log 38-2log 36=3log 32-2(log 32+log 33)=3a -2(a +1)=a -2. 6. 的值等于( )A .2+ 5B .2 5C .2+52D .1+52[答案] B[解析] 据对数恒等式及指数幂的运算法则有:7.(2010·重庆理,5)函数f (x )=4x +12x 的图象( )A .关于原点对称B .关于直线y =x 对称C .关于x 轴对称D .关于y 轴对称 [答案] D[解析] ∵f (-x )=2-x +12-x =2x +12x =f (x )∴f (x )是偶函数,其图象关于y 轴对称.8.(09·天津文)设a =log 132,b =log 1213,c =⎝⎛⎭⎫120.3,则( ) A .a <b <c B .a <c <b C .b <c <aD .b <a <c[答案] B[解析] ∵a =log 132=-log 32∈(-1,0),b =log 1213=log 23∈(1,+∞),9.设lg2=a ,lg3=b ,则log 512等于( ) A.2a +b 1+a B.a +2b 1+a C.2a +b 1-aD.a +2b 1-a[答案] C[解析] log 512=lg12lg5=2lg2+lg31-lg2=2a +b1-a ,故选C.10.log 23·log 34·log 45·log 56·log 67·log 78=( ) A .1B .2C .3D .4[答案] C[解析] log 23·log 34·log 45·log 56·log 67·log 78=lg3lg2×lg4lg3×lg5lg4×lg6lg5×lg7lg6×lg8lg7=lg8lg2=3,故选C.11.已知f (x )是定义在R 上的奇函数,当x <0时,f (x )=(13)x ,那么f (12)的值是( )A.33B. 3 C .- 3D .9[答案] C[解析] f (12)=-f (-12)=-(13)-12=- 3.12.已知集合A ={y |y =log 2x ,x >1},B ={y |y =(12)x ,x >1},则A ∩B =( )A .{y |0<y <12} B .{y |0<y <1}C .{y |12<y <1} D .∅[答案] A[解析] A ={y |y >0},B ={y |0<y <12}∴A ∩B ={y |0<y <12},故选A.1.(5116)0.5+(-1)-1÷0.75-2+(21027)-23=( )A.94 B.49 C .-94D .-49[答案] A[解析] 原式=(8116)12-1÷(34)-2+(6427)-23=94-1÷(43)2+(2764)23=94-916+916=94. 3.(2010·四川理,3)2log 510+log 50.25=( ) A .0 B .1 C .2D .4[答案] C[解析] 2log 510+log 50.25=log 5100+log 50.25=log 525=2.7.已知f (log 2x )=x ,则f (12)=( )A.14B.12C.22D. 2[答案] D[解析] 令log 2x =12,∴x =2,∴f (12)= 2.9.(09·湖南文)log 22的值为( ) A .- 2 B. 2 C .-12D.12[答案] D[解析] log 22=log 2212=12.3.设0<x <y <1,则下列结论中错误..的是( ) ①2x <2y ②⎝⎛⎭⎫23x <⎝⎛⎭⎫23y ③log x 2<log y 2 ④log 12x >log 12yA .①②B .②③C .①③D .②④[答案] B[解析] ∵y =2u 为增函数,x <y ,∴2x <2y ,∴①正确; ∵y =⎝⎛⎭⎫23u为减函数,x <y ,∴⎝⎛⎭⎫23x >⎝⎛⎭⎫23y ,∴②错误; ∵y =log 2x 为增函数,0<x <y <1,∴log 2x <log 2y <0,∴log x 2>log y 2,∴③错误; ∵y =log 12u 为减函数0<x <y ,∴log 12x >log 12y ,∴④正确.2.一批价值a 万元的设备,由于使用时磨损,每年比上一年价值降低b %,则n 年后这批设备的价值为( )A .na (1-b %)B .a (1-nb %)C .a [1-(b %)n ]D .a (1-b %)n[答案] D6.已知f (x )=⎩⎪⎨⎪⎧f (x +2) x ≤0log 12x x >0,则f (-8)等于( )A .-1B .0C .1D .2[答案] A[解析] f (-8)=f (-6)=f (-4)=f (-2)=f (0)=f (2)=log 122=-1,选A.11.已知log 12b <log 12a <log 12c ,则( ) A .2b >2a >2c B .2a >2b >2c C .2c >2b >2aD .2c >2a >2b[答案] A[解析] ∵由log 12b <log 12a <log 12c ,∴b >a >c , 又y =2x 为增函数,∴2b >2a >2c .故选A. 1.12log 612-log 62等于( ) A .22 B .12 2 C.12D .3[答案] C[解析] 12log 612-log 62=12log 612-12log 62=12log 6122=12log 66=12,故选C. 7.(2010·湖北文,5)函数y =1log 0.5(4x -3)的定义域为( )A.⎝⎛⎭⎫34,1B.⎝⎛⎭⎫34,+∞ C .(1,+∞)D.⎝⎛⎭⎫34,1∪(1,+∞)[答案] A[解析] log 0.5(4x -3)>0=log 0.51,∴0<4x -3<1, ∴34<x <1. 6.若2x +2-x =5,则4x +4-x 的值是( )A .29B .27C .25D .23[答案] D[解析] 4x +4-x =(2x +2-x )2-2=23. 1.已知幂函数f (x )的图象经过点(2,22),则f (4)的值为( ) A .16 B.116 C.12D .2解析:选C.设f (x )=x n ,则有2n=22,解得n =-12, 即f (x )=x -12,所以f (4)=4-12=12.3.不论a 取何正实数,函数f (x )=a x +1-2恒过点( )A .(-1,-1)B .(-1,0)C .(0,-1)D .(-1,-3)解析:选A.f (-1)=-1,所以,函数f (x )=a x +1-2的图象一定过点(-1,-1).1.使不等式23x -1>2成立的x 的取值为( )A .(23,+∞) B .(1,+∞)C .(13,+∞)D .(-13,+∞)解析:选A.23x -1>2⇒3x -1>1⇒x >23.2.下列幂函数中,定义域为{x |x >0}的是( )A .y =x 23 B .y =x 32 C .y =x -13D .y =x -34解析:选D.A.y =x 23=3x 2,x ∈R ;B.y =x 32=x 3,x ≥0;C.y =x -13=13x,x ≠0;D.y =x -34=14x 32.根式1a 1a(式中a >0)的分数指数幂形式为( ) A .a -43 B .a 43C .a -34 D .a 34解析:选C.1a1a= a -1·(a -1)12=a -32=(a -32)12=a -34.3.(a -b )2+5(a -b )5的值是( ) A .0 B .2(a -b ) C .0或2(a -b ) D .a -b 解析:选C.当a -b ≥0时, 原式=a -b +a -b =2(a -b ); 当a -b <0时,原式=b -a +a -b =0. 二、填空题13.若3log 3x =19,则x 等于________.解析:∵3log 3x =19=3-2∴log 3x =-2,∴x =3-2=19.答案:1914.函数y =a x +1(0<a ≠1)的反函数图象恒过点______.[答案] (1,-1)[解析] 由于y =a x +1的图象过(-1,1)点,因此反函数图象必过点(1,-1). 15.函数y =log a (x +2)+3(a >0且a ≠1)的图象过定点________.解析:当x =-1时,log a (x +2)=0,y =log a (x +2)+3=3,过定点(-1,3). 答案:(-1,3)16.log 6[log 4(log 381)]=________. [答案] 0[解析] log 6[log 4(log 381)]=log 6(log 44)=log 61=0.17.函数f (x )=a x (a >0且a ≠1),在x ∈[1,2]时的最大值比最小值大a2,则a 的值为________.[答案] 32或12[解析] 注意进行分类讨论(1)当a >1时,f (x )=a x 为增函数,此时 f (x )max =f (2)=a 2,f (x )min =f (1)=a ∴a 2-a =a 2,解得a =32>1.(2)当0<a <1时,f (x )=a x 为减函数,此时 f (x )max =f (1)=a ,f (x )min =f (2)=a 2 ∴a -a 2=a 2,解得a =12∈(0,1)综上所述:a =32或12.9.指数函数y =f (x )的图象过点(-1,12),则f [f (2)]=________.[答案] 16[解析] 设f (x )=a x (a >0且a ≠1),∵f (x )图象过点(-1,12),∴a =2,∴f (x )=2x ,∴f [f (2)]=f (22)=f (4)=24=16.14.已知log a 12<1,那么a 的取值范围是__________.[答案] 0<a <12或a >1[解析] 当a >1时,log a 12<0成立,当0<a <1时,log a 12<log a a ,∴12>a >0.12.使对数式log (x -1)(3-x )有意义的x 的取值范围是________. [答案] 1<x <3且x ≠2[解析] y =log (x -1)(3-x )有意义应满足 ⎩⎪⎨⎪⎧3-x >0x -1>0x -1≠1,解得1<x <3且x ≠2.4.计算:(π)0+2-2×(214)12=________.解析:(π)0+2-2×(214)12=1+122×(94)12=1+14×32=118. 答案:1189.(lg5)2+lg2·lg50=________. [答案] 1[解析] 原式=(lg5)2+(1-lg5)(1+lg5) =(lg5)2+1-(lg5)2=1. 18.计算:(1)2log 210+log 20.04=________; (2)lg3+2lg2-1lg1.2=________;(3)lg 23-lg9+1=________; (4)13log 168+2log 163=________; (5)log 6112-2log 63+13log 627=________.[答案] 2,1,lg 103,-1,-2[解析] (1)2log 210+log 20.04=log 2(100×0.04)=log 24=2 (2)lg3+2lg2-1lg1.2=lg(3×4÷10)lg1.2=lg1.2lg1.2=1(3)lg 23-lg9+1=lg 23-2lg3+1=(1-lg3)2=1-lg3=lg 103(4)13log 168+2log 163=log 162+log 163=log 166=-1 (5)log 6112-2log 63+13log 627=log 6112-log 69+log 63=log 6(112×19×3)=log 6136=-2.19.化简求值: (1)0.064-13-(-18)0+1634+0.2512;(2)a -1+b -1(ab )-1(a ,b ≠0). 解:(1)原式=(0.43)-13-1+(24)34+(0.52)12=0.4-1-1+8+12=52+7+12=10. (2)原式=1a +1b 1ab =a +b ab1ab=a +b .10.计算:(1)log 2(3+2)+log 2(2-3);(2)22+log 25-2l og 23·log 35. 解:(1)log 2(3+2)+log 2(2-3) =log 2(2+3)(2-3)=log 21=0.(2)22+log25-2log23·log35=22×2log25-2lg3lg2×lg5lg3=4×5-2log 25=20-5=15. 20.求下列函数的定义域:(1)y =log 333x +4;(2)y =log (x -1)(3-x ).解:(1)∵33x +4>0,∴x >-43,∴函数y =log 333x +4的定义域为(-43,+∞).(2)∵⎩⎪⎨⎪⎧3-x >0x -1>0x -1≠1,∴⎩⎨⎧1<x <3x ≠2.∴函数的定义域为(1,2)∪(2,3).21.求函数f (x )=log a (x 2-2x )(a >0且a ≠1)的定义域和单调增区间. [解析] 由x 2-2x >0得,x <0或x >2,∴定义域为(-∞,0)∪(2,+∞).∵函数u =x 2-2x =(x -1)2-1的对称轴为x =1,∴函数u =x 2-2x 在(-∞,0)上单调减,在(2,+∞)上单调增, ∴当a >1时,函数f (x )的单调增区间为(2,+∞), 当0<a <1时,函数f (x )的单调增区间为(-∞,0). 22.已知f (x )=log a 1+x1-x (a >0且a ≠1),(1)求f (x )的定义域; (2)判断y =f (x )的奇偶性; (3)求使f (x )>0的x 的取值范围.[解析] (1)依题意有1+x1-x >0,即(1+x )(1-x )>0,所以-1<x <1,所以函数的定义域为(-1,1).(2)f (x )为奇函数.因为函数的定义域为(-1,1), 又f (-x )=log a 1-x 1+x =log a (1+x 1-x )-1=-log a 1+x1-x =-f (x ),因此y =f (x )为奇函数.(3)由f (x )>0得,log a 1+x1-x >0(a >0,a ≠1),①当0<a <1时,由①可得0<1+x1-x <1,②解得-1<x <0;当a >1时,由①知1+x1-x >1,③解此不等式得0<x <1.22.已知幂函数f (x )=x α的图象过(8,14)点,试指出该函数的定义域、奇偶性、单调区间.[解析] ∵f (x )=x α过⎝⎛⎭⎫8,14点,∴14=8α,即2-2=23α,∴α=-23.∴f (x )=x -23,即f (x )=13x 2 .(1)欲使f (x )有意义,须x 2>0,∴x ≠0,∴定义域为{x ∈R |x ≠0}.(2)对任意x ∈R 且x ≠0,有f (-x )=13(-x )2=f (x ),∴f (x )为偶函数.(3)∵α<0,∴f (x )在(0,+∞)上是减函数,又f (x )为偶函数,∴f (x )在(-∞,0)上为增函数,故单调增区间为(-∞,0),单调减区间为(0,+∞).15.对于函数y =(12)x 2-6x +17,(1)求函数的定义域、值域;(2)确定函数的单调区间. [解析] (1)设u =x 2-6x +17,∵函数y =(12)u 及u =x 2-6x +17的定义域是R , ∴函数y =(12)x 2-6x +17的定义域是R . ∵u =x 2-6x +17=(x -3)2+8≥8,∴(12)u ≤(12)8=1256, 又∵(12)u >0,∴函数的值域为{y |0<y ≤1256}. (2)∵函数u =x 2-6x +17在[3,+∞)上是增函数,∴当3≤x 1<x 2<+∞时,有u 1<u 2.∴y 1>y 2,即[3,+∞)是函数y =(12)x 2-6x +17的单调递减区间; 同理可知,(-∞,3]是函数y =(12)x 2-6x +17的单调递增区间. 15.求函数y =log 2(x 2-6x +5)的定义域和值域.[解析] 由x 2-6x +5>0得x >5或x <1因此y=log2(x2-6x+5)的定义域为(-∞,1)∪(5,+∞)设y=log2t,t=x2-6x+5∵x>5或x<1,∴t>0,∴y∈(-∞,+∞)因此y=log2(x2-6x+5)的值域为R.16.已知函数f(x)=log a(a x-1)(a>0且a≠1)(1)求f(x)的定义域;(2)讨论f(x)的单调性;(3)x为何值时,函数值大于1.[解析](1)f(x)=log a(a x-1)有意义,应满足a x-1>0即a x>1当a>1时,x>0,当0<a<1时,x<0因此,当a>1时,函数f(x)的定义域为{x|x>0};0<a<1时,函数f(x)的定义域为{x|x<0}.(2)当a>1时y=a x-1为增函数,因此y=log a(a x-1)为增函数;当0<a<1时y=a x-1为减函数,因此y=log a(a x-1)为增函数综上所述,y=log a(a x-1)为增函数.(3)a>1时f(x)>1即a x-1>a∴a x>a+1∴x>log a(a+1)0<a<1时,f(x)>1即0<a x-1<a∴1<a x<a+1∴log a(a+1)<x<0.。
(完整版)基本初等函数测试题及答案
![(完整版)基本初等函数测试题及答案](https://img.taocdn.com/s3/m/f2687b88fad6195f302ba637.png)
基本初等函数测试题一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.有下列各式:①na n=a ; ②若a ∈R ,则(a 2-a +1)0=1;③44333x y x y +=+; ④6(-2)2=3-2.其中正确的个数是( )A .0B .1C .2D .32.函数y =a |x |(a >1)的图象是( )3.下列函数在(0,+∞)上是增函数的是( ) A .y =3-x B .y =-2x C .y =log 0.1x D .y =x 124.三个数log 215,20.1,2-1的大小关系是( )A .log 215<20.1<2-1B .log 215<2-1<20.1C .20.1<2-1<log 215 D .20.1<log 215<2-15.已知集合A ={y |y =2x ,x <0},B ={y |y =log 2x },则A ∩B =( ) A .{y |y >0} B .{y |y >1} C .{y |0<y <1} D .∅6.设P 和Q 是两个集合,定义集合P -Q ={x |x ∈P 且x ∉Q },如果P ={x |log 2x <1},Q ={x |1<x <3},那么P -Q 等于( )A .{x |0<x <1}B .{x |0<x ≤1}C .{x |1≤x <2}D .{x |2≤x <3}7.已知0<a <1,x =log a 2+log a 3,y =12log a 5,z =log a 21-log a 3,则( )A .x >y >zB .x >y >xC .y >x >zD .z >x >y 8.函数y =2x -x 2的图象大致是( )9.已知四个函数①y =f 1(x );②y =f 2(x );③y =f 3(x );④y =f 4(x )的图象如下图:则下列不等式中可能成立的是( )A .f 1(x 1+x 2)=f 1(x 1)+f 1(x 2)B .f 2(x 1+x 2)=f 2(x 1)+f 2(x 2)C .f 3(x 1+x 2)=f 3(x 1)+f 3(x 2)D .f 4(x 1+x 2)=f 4(x 1)+f 4(x 2)10.设函数121()f x x =,f 2(x )=x -1,f 3(x )=x 2,则f 1(f 2(f 3(2010)))等于( ) A .2010 B .20102 C.12010 D.1201211.函数f (x )=3x 21-x +lg(3x +1)的定义域是( )A.⎝⎛⎭⎫-∞,-13 B.⎝⎛⎭⎫-13,13 C.⎝⎛⎭⎫-13,1 D.⎝⎛⎭⎫-13,+∞ 12.(2010·石家庄期末测试)设f (x )=⎩⎪⎨⎪⎧2e x -1, x <2,log 3(x 2-1), x ≥2. 则f [f (2)]的值为( )A .0B .1C .2D .3二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.给出下列四个命题:(1)奇函数的图象一定经过原点;(2)偶函数的图象一定经过原点; (3)函数y =lne x是奇函数;(4)函数13y x =的图象关于原点成中心对称. 其中正确命题序号为________.(将你认为正确的都填上) 14. 函数12log (4)y x =-的定义域是 .15.已知函数y =log a (x +b )的图象如下图所示,则a =________,b =________.16.(2008·上海高考)设函数f (x )是定义在R 上的奇函数,若当x ∈(0,+∞)时,f (x )=lg x ,则满足f (x )>0的x 的取值范围是________.三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知函数f (x )=log 2(ax +b ),若f (2)=1,f (3)=2,求f (5).18.(本小题满分12分)已知函数12()2f x x =-.(1)求f (x )的定义域;(2)证明f (x )在定义域内是减函数. 19.(本小题满分12分)已知函数f (x )=2x -12x +1.(1)判断函数的奇偶性;(2)证明:f (x )在(-∞,+∞)上是增函数. 20.(本小题满分12分)已知函数()223(1)mm f x m m x +-=--是幂函数, 且x ∈(0,+∞)时,f (x )是增函数,求f (x )的解析式.21.(本小题满分12分)已知函数f (x )=lg(a x -b x ),(a >1>b >0). (1)求f (x )的定义域;(2)若f (x )在(1,+∞)上递增且恒取正值,求a ,b 满足的关系式. 22.(本小题满分12分)已知f (x )=⎝⎛⎭⎫12x -1+12·x .(1)求函数的定义域; (2)判断函数f (x )的奇偶性; (3)求证:f (x )>0.参考答案答案速查:1-5 BCDBC 6-10 BCACC 11-12 CC 1.解析:仅有②正确.答案:B2.解析:y =a |x |=⎩⎪⎨⎪⎧a x ,(x ≥0),a -x ,(x <0),且a >1,应选C.答案:C3.答案:D4.答案:B5.解析:A ={y |y =2x ,x <0}={y |0<y <1},B ={y |y =log 2x }={y |y ∈R },∴A ∩B ={y |0<y <1}. 答案:C6.解析:P ={x |log 2x <1}={x |0<x <2},Q ={x |1<x <3},∴P -Q ={x |0<x ≤1},故选B.答案:B7.解析:x =log a 2+log a 3=log a 6=12log a 6,z =log a 21-log a 3=log a 7=12log a 7.∵0<a <1,∴12log a 5>12log a 6>12log a 7.即y >x >z . 答案:C8.解析:作出函数y =2x 与y =x 2的图象知,它们有3个交点,所以y =2x -x 2的图象与x 轴有3个交点,排除B 、C ,又当x <-1时,y <0,图象在x 轴下方,排除D.故选A.答案:A9.解析:结合图象知,A 、B 、D 不成立,C 成立.答案:C 10.解析:依题意可得f 3(2010)=20102,f 2(f 3(2010)) =f 2(20102)=(20102)-1=2010-2,∴f 1(f 2(f 3(2010)))=f 1(2010-2)=(2010-2)12=2010-1=12010.答案:C11.解析:由⎩⎪⎨⎪⎧1-x >03x +1>0⇒⎩⎪⎨⎪⎧x <1x >-13⇒-13<x <1. 答案: C12.解析:f (2)=log 3(22-1)=log 33=1,∴f [f (2)]=f (1)=2e 0=2. 答案:C13.解析:(1)、(2)不正确,可举出反例,如y =1x ,y =x -2,它们的图象都不过原点.(3)中函数y =lne x =x ,显然是奇函数.对于(4),y =x 13是奇函数,而奇函数的图象关于原点对称,所以(4)正确.答案:(3)(4)14. 答案:(4,5]15.解析:由图象过点(-2,0),(0,2)知,log a (-2+b )=0,log a b =2,∴-2+b =1,∴b =3,a 2=3,由a >0知a = 3.∴a =3,b =3.答案:3 316.解析:根据题意画出f (x )的草图,由图象可知,f (x )>0的x 的取值范围是-1<x <0或x >1.答案:(-1,0)∪(1,+∞)17.解:由f (2)=1,f (3)=2,得⎩⎪⎨⎪⎧ log 2(2a +b )=1log 2(3a +b )=2⇒⎩⎪⎨⎪⎧ 2a +b =23a +b =4⇒⎩⎪⎨⎪⎧a =2,b =-2.∴f (x )=log 2(2x-2),∴f (5)=log 28=3. 18.∵x 2>x 1≥0,∴x 2-x 1>0,x 2+x 1>0, ∴f (x 1)-f (x 2)>0,∴f (x 2)<f (x 1). 于是f (x )在定义域内是减函数. 19.解:(1)函数定义域为R .f (-x )=2-x -12-x +1=1-2x 1+2x =-2x -12x +1=-f (x ),所以函数为奇函数.(2)证明:不妨设-∞<x 1<x 2<+∞, ∴2x 2>2x 1.又因为f (x 2)-f (x 1)=2x 2-12x 2+1-2x 1-12x 1+1=2(2x 2-2x 1)(2x 1+1)(2x 2+1)>0,∴f (x 2)>f (x 1).所以f (x )在(-∞,+∞)上是增函数. 20.解:∵f (x )是幂函数, ∴m 2-m -1=1, ∴m =-1或m =2, ∴f (x )=x-3或f (x )=x 3,而易知f (x )=x -3在(0,+∞)上为减函数,f (x )=x 3在(0,+∞)上为增函数. ∴f (x )=x 3.21.解:(1)由a x -b x >0,得⎝⎛⎭⎫a b x>1. ∵a >1>b >0,∴ab >1,∴x >0.即f (x )的定义域为(0,+∞).(2)∵f (x )在(1,+∞)上递增且恒为正值, ∴f (x )>f (1),只要f (1)≥0, 即lg(a -b )≥0,∴a -b ≥1.∴a ≥b +1为所求22.解:(1)由2x -1≠0得x ≠0,∴函数的定义域为{x |x ≠0,x ∈R }.(2)在定义域内任取x ,则-x 一定在定义域内. f (-x )=⎝⎛⎭⎫12-x -1+12(-x )=⎝⎛⎭⎫2x 1-2x +12(-x )=-1+2x 2(1-2x )·x =2x+12(2x -1)·x . 而f (x )=⎝⎛⎭⎫12x -1+12x =2x+12(2x -1)·x ,∴f (-x )=f (x ). ∴f (x )为偶函数.(3)证明:当x >0时,2x >1, ∴⎝⎛⎭⎫12x -1+12·x >0.又f (x )为偶函数, ∴当x <0时,f (x )>0.故当x ∈R 且x ≠0时,f (x )>0.。
完整版)基本初等函数经典复习题+答案
![完整版)基本初等函数经典复习题+答案](https://img.taocdn.com/s3/m/c5f3daf7a0c7aa00b52acfc789eb172ded639994.png)
完整版)基本初等函数经典复习题+答案1、幂的运算性质1) $a^r\cdot a^s=a^{r+s}$,其中$r,s\in R$;2) $(a^r)^s=a^{rs}$,其中$r,s\in R$;3) $a^r\cdot b^r=(ab)^r$,其中$r\in R$;4) $a^{-n}=\dfrac{1}{a^n}$,其中$a>0,n\in N^*,n>1$。
2、对数的运算性质若$a>0$且$a\neq 1$,$M>0,N>0$,则有:1) $a^x=N\iff \log_a N=x$;2) $\log_a(MN)=\log_a M+\log_a N$;3) $\log_a\dfrac{M}{N}=\log_a M-\log_a N$;4) $\log_a M^n=n\log_a M$,其中$n\in R$;5) $\log_a 1=0$;6) 换底公式:$\log_a b=\dfrac{\log_c b}{\log_c a}$,其中$a>0,a\neq 1,c>0,c\neq 1,b>0$。
3、函数的定义域能使函数式有意义的实数$x$的集合称为函数的定义域。
求函数的定义域时,需要注意以下几点:1) 偶次方根的被开方数不小于零;2) 对数式的真数必须大于零;3) 分式的分母不等于零;4) 指数、对数式的底必须大于零且不等于1.4、函数单调区间与单调性的判定方法A) 定义法:1.任取$x_1,x_2\in D$,且$x_1<x_2$;2.作差$f(x_1)-f(x_2)$;3.变形(通常是因式分解和配方);4.定号(即判断差$f(x_1)-f(x_2)$的正负);5.下结论(指出函数$f(x)$在给定的区间$D$上的单调性)。
B) 图象法(从图象上看升降)。
C) 复合函数的单调性:复合函数$f[g(x)]$的单调性与构成它的函数$u=g(x),y=f(u)$的单调性密切相关,其规律为“同增异减”。
基本初等函数基础题(答案解析)
![基本初等函数基础题(答案解析)](https://img.taocdn.com/s3/m/b5a9534ff4335a8102d276a20029bd64783e62fe.png)
基本初等函数基础题汇总一、单选题(共15小题)1.若a>b,则下列各式中恒正的是()A.lg(a﹣b)B.a3﹣b3C.0.5a﹣0.5b D.|a|﹣|b|【解答】解:选项A:令a=1,b=,则a﹣b=,而lg=﹣lg2<0,A错误,选项B:因为函数y=x3在R上单调递增,又a>b,所以有a3>b3,则a3﹣b3>0,B正确,选项C:因为函数y=0.5x在R上单调递减,又a>b,所以有0.5a<0.5b,即0.5a﹣0.5b<0,C错误,选项D:令a=1,b=﹣2,则|a|﹣|b|=1﹣2=﹣1<0,D错误,故选:B【知识点】指数函数的图象与性质、对数函数的图象与性质、幂函数的性质2.设a=40.4,b=log0.40.5,c=log50.4,则a,b,c的大小关系是()A.a<b<c B.b<c<a C.c<a<b D.c<b<a【解答】解:∵a=40.4>1,0<b=log0.40.5<log0.40.4=1,c=log50.4<0,∴c<b<a.故选:D.【知识点】对数值大小的比较3.设lg2=a,lg3=b,则log512等于()A.B.C.D.【解答】C【知识点】对数的运算性质4.已知幂函数f(x)的图象过点(2,),则f()的值为()A.B.C.2D.8【解答】解:设幂函数f(x)=xα(α为常数),∵幂函数f(x)的图象过点(2,),∴,∴,∴f(x)==,∴f()==,故选:A.【知识点】幂函数的概念、解析式、定义域、值域5.已知幂函数y=(k﹣1)xα的图象过点(2,4),则k+α等于()A.B.3 C.D.4【解答】解:∵幂函数y=(k﹣1)xα的图象过点(2,4),∴k﹣1=1,2α=4,∴k=2,α=2,∴k+α=4,故选:D.【知识点】幂函数的概念、解析式、定义域、值域6.已知x>0,y>0,a≥1,若a•()y+log2x=log8y3+2﹣x,则()A.ln|1+x﹣3y|<0 B.ln|1+x﹣3y|≤0C.ln(1+3y﹣x)>0 D.ln(1+3y﹣x)≥0【解答】解:由题意可知,a•()3y+log2x=log2y+,∴=<≤,令f(x)=,则f(x)<f(3y),易知f(x)在(0,+∞)上为增函数,由f(x)<f(3y)得:x<3y,∴3y﹣x>0,∴1+3y﹣x>1,∴ln(1+3y﹣x)>ln1=0,故选:C.【知识点】对数的运算性质7.若a,b,c满足,则()A.c<b<a B.a<b<c C.b<c<a D.c<a<b【解答】解:∵2a=3,∴a=log23,∵1=log22<log23<log25,∴b>a>1,∵3c=2,∴c=log32,∵0=log31<log32<log33=1,∴0<c<1,∴b>a>c,故选:D.【知识点】对数值大小的比较8.已知实数a,b,c∈R,满足==﹣<0,则a,b,c的大小关系为()A.c>b>a B.c>a>b C.b>c>a D.b>a>c【解答】解:易知,a,b,c>0.由﹣<0,则c>1,不妨令c=e.则<0,故0<2a<1,0<b<1.因为,故,所以,而函数f(x)=,,易知0<x<1时,f′(x)>0,f(x)在(0,1)上递增,故0<a<b<1.所以c>b>a.故选:A.【知识点】对数值大小的比较9.函数f(x)=a x﹣2﹣ax+2a+1恒过定点P,则点P的坐标为()A.(2,1)B.(2,2)C.(3,1)D.(2,2)或(3,1)【解答】解:①令x﹣2=0,得x=2,此时y=1﹣2a+2a+1=2,所以定点P(2,2),②令x﹣2=1,得x=3,此时y=a﹣3a+2a+1=1,所以定点P(3,1)综上所述,点P的坐标为(2,2)或(3,1),故选:D.【知识点】指数函数的单调性与特殊点10.若函数为对数函数,则a=()A.1 B.2 C.3 D.4【解答】解:∵函数为对数函数,∴a2﹣3a+2=0,则a=1(舍去)或a=2,故选:B.【知识点】对数函数的定义11.若实数a,b满足2a=2﹣a,log2(b﹣1)=3﹣b,则a+b=()A.3 B.C.D.4【解答】解:由2a=2﹣a可知,a为函数y=2x与y=2﹣x的交点A的横坐标,由log2(b﹣1)=3﹣b=2﹣(b﹣1)可知,b﹣1为函数y=log2x与y=2﹣x的交点B的横坐标,如图所示:,∵函数y=2x与函数y=log2x关于直线y=x对称,∴点A与点B关于点(1,1)对称,∴a+b﹣1=2,即a+b=3,故选:A.【知识点】指数式与对数式的互化、对数的运算性质12.函数f(x)=a x﹣2+3(a>0且a≠1)的图象恒过定点P,点P又在幂函数g(x)的图象上,则g(3)的值为()A.4 B.8 C.9 D.16【解答】解:∵f(x)=a x﹣2+3,令x﹣2=0,得x=2,∴f(2)=a0+3=4,∴f(x)的图象恒过点(2,4).设幂函数g(x)=xα,把P(2,4)代入得2α=4,∴α=2,∴g(x)=x2,∴g(3)=32=9,故选:C.【知识点】幂函数的概念、解析式、定义域、值域13.已知幂函数f(x)=(m2﹣2m﹣2)x在(0,+∞)上是减函数,则f(m)的值为()A.3 B.﹣3 C.1 D.﹣1【解答】解:∵幂函数f(x)=(m2﹣2m﹣2)x在(0,+∞)上是减函数,则m2﹣2m﹣2=1,且m2+m﹣2<0,求得m=﹣1,故f(x)=x﹣2=,故f(m)=f(﹣1)==1,故选:C.【知识点】幂函数的概念、解析式、定义域、值域、幂函数的性质14.已知对数函数y=log a x(a>0,a≠1)的图象经过点P(3,﹣1),则幂函数y=x a的图象是()A.B.C.D.【解答】解:∵对数函数y=log a x(a>0,a≠1)的图象经过点P(3,﹣1),∴﹣1=log a3,∴a=,故幂函数y=x a=,它的图象如图D所示,故选:D.【知识点】幂函数的图象15.从2,4,6,8,10这五个数中,每次取出两个不同的数分别为a,b,共可得到lga﹣lgb的不同值的个数是()A.20 B.18 C.10 D.9【解答】解:首先从2,4,6,8,10这五个数中任取两个不同的数排列,共A52=20有种排法,又,,∴从2,4,6,8,10这五个数中,每次取出两个不同的数分别记为a,b,共可得到lga﹣lgb=的不同值的个数是:20﹣2=18.故选:B.【知识点】对数的运算性质二、填空题(共10小题)16.设函数f(x)=a x+1﹣2(a>1)的反函数为y=f﹣1(x),若f﹣1(2)=1,则f(2)=【解答】解:由题意得:函数f(x)=a x+1﹣2(a>1)过(1,2),将(1,2)代入f(x)得:a2﹣2=2,解得:a=2,故f(x)=2x+1﹣2,故f(2)=6,故答案为:6.【知识点】反函数17.若函数y=f(x)的反函数f﹣1(x)=log a x(a>0,a≠1)图象经过点(8,),则f(﹣)的值为.【解答】解:由已知可得log a8=,即a=8,解得a=4,所以f﹣1(x)=log4x,再令log4x=﹣,即4=x,解得x=,由反函数的定义可得f(﹣)=,故答案为:.【知识点】反函数、函数的值18.若函数y=log2(x﹣m)+1的反函数的图象经过点(1,3),则实数m=.【解答】解:∵函数y=log2(x﹣m)+1的反函数的图象经过点(1,3),∴函数y=log2(x﹣m)+1的图象过点(3,1),∴1=log2(3﹣m)+1∴log2(3﹣m)=0,∴3﹣m=1,∴m=2.故答案为:2.【知识点】反函数19.已知幂函数y=(n∈N*)的定义域为(0,+∞),且单调递减,则n=.【解答】解:∵幂函数y=(n∈N*)的定义域为(0,+∞),且单调递减,∴,解得n=2.故答案为:2.【知识点】幂函数的性质20.已知函数y=f(x)在定义域R上是单调函数,值域为(﹣∞,0),满足f(﹣1)=﹣,且对于任意x,y∈R,都有f(x+y)=﹣f(x)f(y).y=f(x)的反函数为y=f﹣1(x),若将y=kf(x)(其中常数k>0)的反函数的图象向上平移1个单位,将得到函数y=f﹣1(x)的图象,则实数k的值为()【解答】解:由题意,设f(x)=y=﹣a x,根据f(﹣1)=﹣,解得a=3,∴f(x)=y=﹣3x,那么x=log3(﹣y),(y<0),x与y互换,可得f﹣1(x)=log3(﹣x),(x<0),则y=kf(x)=﹣k•3x,那么x=,x与y互换,可得y=,向上平移1个单位,可得y=+1,即log3(﹣x)=,故得k=3,故答案为:3.【知识点】反函数21.若函数y=log a(x﹣7)+2恒过点A(m,n),则=()【解答】解:∵函数y=log a(x﹣7)+2恒过点A(m,n),令x﹣7=1,求得x=8,y=2,可得函数的图象经过定点(8,2).若函数y=log a(x﹣7)+2恒过点A(m,n),则m=8,n=2,则==2,故答案为:2.【知识点】对数函数的单调性与特殊点22.已知函数f(x)=(m2﹣m﹣1)x1﹣m是幂函数,在x∈(0,+∞)上是减函数,则实数m的值为.【解答】解:∵函数f(x)=(m2﹣m﹣1)x1﹣m是幂函数,∴m2﹣m﹣1=1,求得m=2,或m=﹣1.∵当x∈(0,+∞)时,f(x)=x1﹣m是上是减函数,∴1﹣m<0,故m=2,f(x)=x﹣1=,故答案为:2.【知识点】幂函数的性质23.已知函数f(x)=x2﹣3tx+1,其定义域为[0,3]∪[12,15],若函数y=f(x)在其定义域内有反函数,则实数t的取值范围是()【解答】解:函数f(x)=x2﹣3tx+1的对称轴为x=,若≤0,即 t≤0,则 y=f(x)在定义域上单调递增,所以具有反函数;若≥15,即 t≥10,则 y=f(x)在定义域上单调递减,所以具有反函数;当3≤≤12,即 2≤t≤8时,由于区间[0,3]关于对称轴的对称区间是[3t﹣3,3t],于是当或,即t∈[2,4)或t∈(6,8]时,函数在定义域上满足1﹣1对应关系,具有反函数.综上,t∈(﹣∞,0]∪[2,4)∪(6,8]∪[10,+∞).【知识点】反函数24.如图所示,正方形ABCD的四个顶点在函数y1=log a x,y2=2log a x,y3=log a x+3(a>1)的图象上,则a=()【解答】解:设B(x1,2log a x1),C(x1,log a x1+3),A(x2,log a x2),D(x2,2log a x2),则log a x2=2log a x1,∴,又2log a x2=log a x1+3,,即x1=a,,∵ABCD为正方形,∴|AB|=|BC|;可得a2﹣a=2,解得a=2.故答案为:2.【知识点】对数函数的图象与性质25.已知函数y=f(x)与y=g(x)的图象关于直线y=x对称,若f(x)=x+log2(2x+2),则满足f(x)>log23>g(x)的x的取值范围是.【解答】解:∵函数y=f(x)与y=g(x)的图象关于直线y=x对称,f(x)=x+log2(2x+2),设y=x+,则y﹣x=,∴2y﹣x=2x+2,∴2y=22x+2x+1,∴2x==﹣1,x=.互换x,y,得g(x)=,∵f(x)>log23>g(x),∴x+log2(2x+2)>log23>,解得0<x<log215.∴满足f(x)>log23>g(x)的x的取值范围是(0,log215).故答案为:(0,log215).【知识点】反函数三、解答题(共10小题)26.计算以下式子的值:(1)2lg2+lg25;(2);(3)(2)0+2﹣2•(2)﹣(0.01)0.5.【解答】解:(1)原式=lg4+lg25=lg(4×25)=lg100=2;(2)原式=====1;(3)原式=.【知识点】对数的运算性质、有理数指数幂及根式27.求值:(1);(2)log354﹣log32+log23•log34.【解答】解:(1)原式=+4+1+=7;(2)原式=log327+•=3+2=5.【知识点】有理数指数幂及根式、对数的运算性质28.计算下列各式的值:(1);(2)lg25+4.【解答】解:(1)原式===;(2)原式=2lg5+2lg2﹣2log23•log32=2(lg5+lg2)﹣2=2﹣2=0.【知识点】对数的运算性质、有理数指数幂及根式29.已知幂函数f(x)=(m∈N*),经过点(2,),试确定m的值,并求满足条件f(2﹣a)>f(a﹣1)的实数a的取值范围.【解答】解:∵幂函数f(x)经过点(2,),∴=,即=∴m2+m=2.解得m=1或m=﹣2.又∵m∈N*,∴m=1.∴f(x)=,则函数的定义域为[0,+∞),并且在定义域上为增函数.由f(2﹣a)>f(a﹣1)得解得1≤a<.∴a的取值范围为[1,).【知识点】幂函数的性质30.(1)化简:(a,b均为正数);(2)求值:lg4+2lg5+π0﹣4ln+.【解答】解:(1)===.(2)lg4+2lg5+π0﹣4ln+==2+1﹣4×=22.【知识点】对数的运算性质、有理数指数幂及根式31.已知函数f(x)为函数y=a x(a>0,a≠1)的反函数,f(5)>f(6),且f(x)在区间[a,3a]上的最大值与最小值之差为1.(1)求a的值;(2)解关于x的不等式.【解答】解:(1)∵f(x)为函数y=a x的反函数,∴f(x)=log a x,又∵log a5>log a6得:0<a<1,由f(x)在区间[a,3a]上的最大值与最小值之差为1,得:log a a﹣log a3a=1,解得:a=;(2)∵0<a<1,∴,∴1<x≤2.【知识点】反函数、指、对数不等式的解法32.计算:(1).(2)已知,,求实数B的值.【解答】解:(1)原式==.(2)由题意知:,,∴3B=9B﹣6=(3B)2﹣6,解得3B=3或﹣2(舍),∴B=1.【知识点】对数的运算性质33.已知函数f(x)=log a(kx2﹣2x+6)(a>0且a≠1).(1)若函数的定义域为R,求实数k的取值范围;(2)若函数f(x)在[1,2]上恒有意义,求k的取值范围;(3)是否存在实数k,使得函数f(x)在区间[2,3]上为增函数,且最大值为2?若存在,求出k的值;若不存在,请说明理由。
高一数学《基本初等函数》测试题
![高一数学《基本初等函数》测试题](https://img.taocdn.com/s3/m/d6168fc6b84ae45c3b358caf.png)
23、求下列各式的值: ( 共 10 分,每题 5 分 )
( 1) log 2.56.25+ lg 1 +ln ( e e )+ log 2( log 216) 100
1 32 4
( 2) lg
lg 8 lg 245
2 49 3
24、用定义证明:函数 f ( x) x2 2x 1在 (0,1] 上是减函数。( 6 分)
14、若函数 f ( x) loga x(0 a 1) 在区间 a,2 a 上的最大值是最小值的 3 倍,则 a 的值为( )
2
A、
4
2
B、
2
1
C、
4
1
D、
2
Hale Waihona Puke 15、已知 0< a <1,则函数 y ax 和 y (a 1)x2 在同坐标系中的图象只能是图中的
二、 填空题. (每小题 3 分 )
16.函数 y (2 a) x 在定义域内是减函数,则 a 的取值范围是
)
4
3
1
1
A. f (2) f ( ) f ( )
3
4
1
1
B. f ( ) f ( ) f (2)
4
3
1
1
C. f (2) f ( ) f ( )
4
3
1
1
D. f ( ) f ( ) f (2)
3
4
7、方程: lg x lg( x 3) 1的解为 x =
(
)
A、 5 或 -2
B
、5
C
、 -2
D
、无解
2
1
A. 3 B. 2 3 C.
D.3
2
基本初等函数 课时训练
![基本初等函数 课时训练](https://img.taocdn.com/s3/m/30ed0f2d02768e9950e7383b.png)
10.已知奇函数y= .若f(x)=ax(a>0,a≠1)对应的图象如图所示,则g(x)=()
A. -xB.- x
C.2-xD.-2x
解析:由题图知f(1)= ,
所以a= ,f(x)= x,
由题意得g(x)=-f(-x)=- -x=-2x.
答案:D
11.已知函数f(x)是奇函数,当x>0时,f(x)=ax(a>0且a≠1),且f(log 4)=-3,则a的值为()
C.(2,3)∪(3,+∞) D.(2,4)∪(4,+∞)
解析:由 得x>2且x≠3,故选C.
答案:C
3.函数f(x)= 的值域是()
A.(-∞,1) B.(0,1)
C.(1,+∞) D.(-∞,1)∪(1,+∞)
解析:∵3x+1>1,∴0< <1,∴函数值域为(0,1).
答案:B
4.下列幂函数中,其图象过点(0,0),(1,1),且为偶函数的是()
解析:方法一 当a>1时,y=xa与y=logax均为增函数,但y=xa递增较快,排除C;当0<a<1时,y=xa为增函数,y=logax为减函数,排除A.由于y=xa递增较慢,所以选D.
方法二 幂函数f(x)=xa的图象不过(0,1)点,故A错;B项中由对数函数f(x)=logax的图象知0<a<1,而此时幂函数f(x)=xa的图象应是增长越来越慢的变化趋势,故B错,D对;C项中由对数函数f(x)=logax的图象知a>1,而此时幂函数f(x)=xa的图象应是增长越来越快的变化趋势,故C错.
(2)因为幂函数y=x-1在(-∞,0)上是单调递减的,
又- <- ,
所以 -1> -1.
基本初等函数练习题
![基本初等函数练习题](https://img.taocdn.com/s3/m/80f31601f90f76c660371a1d.png)
.. - 根本初等函数练习题一、选择题1.如果函数y =(a x -1)-12的定义域为(0,+∞)那么a 的取值范围是( ) A .a >0 B .0<a <1C .a >1 D .a ≥12.函数y =a x 在[0,1]上的最大值与最小值的和为3,那么a 等于( )A.12B .2C .4 D.143.在同一平面直角坐标系中,函数f (x )=ax 与指数函数g (x )=a x 的图象可能是( )4.函数x x y 2221+⎪⎭⎫ ⎝⎛=的值域是( )A .(0,+∞) B.(0,2]C .(12,2] D .(-∞,2] 5.函数y =3x 与y =(13)x 的图象( ) A .关于x 轴对称 B .关于y 轴对称C .关于原点对称 D .关于直线y =x 对称6.假设-1<a <0,那么有( )A .2a>(12)a >0.2a B .(12)a >0.2a >2a C .0.2a >(12)a >2a D .2a >0.2a >(12)a 7.设a 、b 满足0<a <b <1,以下不等式中正确的选项是( )A .a a <a bB .b a <b bC .a a <b aD .b b <a b8.以下式子中正确的个数是( )①log a (b 2-c 2)=2log a b -2log a c ②(log a 3)2=log a 32 ③log a (bc )=(log a b )·(log a c )④log a x 2=2log a xA .0B .1C .2D .39.如果lg x =lg a +2lg b -3lg c ,那么x 等于( )A .a +2b -3cB .a +b 2-c 3C.ab 2c 3D.2ab 3c..-10.的值等于( )A .2+5B .25C .2+52D .1+52 11.设log (a -1)(2x -1)>log (a -1)(x -1),那么( )A .x >1,a >2B .x >1,a >1C .x >0,a >2D .x <0,1<a <212.假设函数y =log (a 2-1)x 在区间(0,1)内的函数值恒为正数,那么a 的取值范围是( )A .|a |>1B .|a |>2C .|a |<2D .1<|a |< 213.集合A ={y |y =log 2x ,x >1},B ={y |y =(12)x ,x >1},那么A ∪B =( ) A .{y |0<y <12} B .{y |y >0}C .∅D .R 14.假设0<a <1,函数y =log a (x +5)的图象不通过( )A.第一象限 B .第二象限C.第三象限 D .第四象限15.如以下图所示的曲线是对数函数y =log a x 的图象,a 的取值分别为3、43、35、110,那么相应于C 1、C 2、C 3、C 4的a 值依次是( ) A.3,43,35,110B.3,43,110,35C.43,3,35,110D.43,3,110,3516.幂函数y =x α (α≠0),当α取不同的正数时,在区间[0,1]上它们的图象是一簇美丽的曲线(如图).设点A (1,0),B (0,1),连结AB ,线段AB 恰好被其中的两个幂函数y =x α,y =x β的图象三等分,即有BM =MN =NA .那么,αβ=( )A .1B .2C .3D .无法确定17.以下函数中在区间[1,2]上有零点的是( )A .f (x )=3x 2-4x +5B .f (x )=x 3-5x -5C .f (x )=ln x -3x +6D .f (x )=e x +3x -618.函数f (x )=mx 2+(m -3)x +1的图象与x 轴的交点至少有一个在原点右侧,那么实数m 的取值范围是( )A .(0,1] B .(0,1)C .(-∞,1) D .(-∞,1].. - 19.函数f (x )=lg x -9x的零点所在的大致区间是( ) A .(6,7) B .(7,8)C .(8,9) D .(9,10)20.f (x )=(x -a )(x -b )-2,并且α、β是函数f (x )的两个零点,那么实数a 、b 、α、β的大小关系可能是( )A .a <α<b <βB .a <α<β<b C .α<a <b <βD .α<a <β<b21.函数f (x )=⎩⎨⎧x 2+2x -3,x ≤0,-2+ln x ,x >0的零点个数为( )A .0 B .1C .2 D .3 22.函数y =x 3与y =⎝ ⎛⎭⎪⎫12x 的图象的交点为(x 0,y 0),那么x 0所在区间为( ) A .(-2,-1) B .(-1,0)C .(0,1) D .(1,2)23.假设函数f (x )是奇函数,且有三个零点x 1、x 2、x 3,那么x 1+x 2+x 3的值为( )A .-1B .0C .3D .不确定24.函数f (x )=(x -1)ln(x -2)x -3的零点有( )A .0个 B .1个C .2个 D .3个 25.假设函数y =f (x )在区间[0,4]上的图象是连续不断的曲线,且方程f (x )=0在(0,4)内仅有一个实数根,那么f (0)·f (4)的值( )A .大于0B .小于0C .等于0 D .无法判断二、填空题1.指数函数y =f (x )的图象过点(-1,12),那么f [f (2)]=________. 2.当x ∈[-1,1]时,函数f (x )=3x -2的值域为__________.3.x >0时,函数y =(a 2-8)x 的值恒大于1,那么实数a 的取值范围是________4.使对数式log (x -1)(3-x )有意义的x 的取值范围是________.5.5lg x =25,那么x =________,log x 8=32,那么x =________. 6.假设log 0.2x >0,那么x 的取值范围是________;假设log x 3<0,那么x 的取值范围是________.7.用“>〞“<〞填空:(1)log 3(x 2+4)___1;(2)log 12(x 2+2)___0;(3)log 56_____log 65;(4)log 34___43. 8.y =log a x 的图象与y =log b x 的图象关于x 轴对称,那么a 与b 满足的关系式为________.9.函数y =a x +1(0<a ≠1)的反函数图象恒过点______.10.幂函数y =f (x )的图象经过点(2,2),那么这个幂函数的解析式为________.11.假设(a +1)13<(2a -2)13,那么实数a 的取值范围是________.12.二次函数y =ax 2+bx +c (x ∈R )的局部对应值如下表:..-x -3-2-10123 4y 60-4-6-6-40 6 那么使ax2+bx+c>0的自变量x的取值范围是______.13.y=x(x-1)(x+1)的图象如下图.令f(x)=x(x-1)(x+1)+0.01,那么以下关于f(x)=0的解表达正确的选项是________.①有三个实根;②x>1时恰有一实根;③当0<x<1时恰有一实根;④当-1<x<0时恰有一实根;⑤当x<-1时恰有一实根(有且仅有一实根).三、解答题1.f(x)=73x+1,g(x)=2x,在同一坐标系中画出这两个函数的图象.试问在哪个区间上,f(x)的值小于g(x)?哪个区间上,f(x)的值大于g(x)?2.函数f(x)=log a(a x-1)(a>0且a≠1)(1)求f(x)的定义域;(2)讨论f(x)的单调性;(3)x为何值时,函数值大于1.3.函数f(x)=(m2+2m)·x m 2+m-1,m为何值时,f(x)是(1)正比例函数;(2)反比例函数;(3)二次函数;(4)幂函数... -4.函数y =x n 2-2n -3(n ∈Z )的图象与两坐标轴都无公共点,且其图象关于y 轴对称,求n 的值,并画出函数的图象.5.假设函数f (x )=log 3(ax 2-x +a )有零点,求a 的取值范围.参考答案:一、选择题:1-5CBBBB 6-10CCACB 11-15ADBAA 16-20ADDDC 21-25CCBAD二、填空题:1.16 2.{y |-53≤y ≤1}3. a >3或a <-34.1<x <3且x ≠25.100;4 6. (0,1),(0,1)8.ab =19.(1,-1)10.y =x 1211. (3,+∞)12.(-∞,-2)∪(3,+∞)13.①⑤三、解答题:.. -1.[解析] 在同一坐标系中,画出函数f (x )=2x 与g (x )=7x 3+1的图象如下图,两函数图象的交点为(0,1)和(3,8),显然当x ∈(-∞,0)或x ∈(3,+∞)时,f (x )>g (x ),当x ∈(0,3)时,f (x )<g (x ).2.[解析] (1)f (x )=log a (a x -1)有意义,应满足a x -1>0即a x >1当a >1时,x >0,当0<a <1时,x <0因此,当a >1时,函数f (x )的定义域为{x |x >0};0<a <1时,函数f (x )的定义域为{x |x <0}.(2)当a >1时y =a x -1为增函数,因此y =log a (a x -1)为增函数;当0<a <1时y =a x -1为减函数,因此y =log a (a x -1)为增函数综上所述,y =log a (a x -1)为增函数.(3)a >1时f (x )>1即a x -1>a∴a x >a +1∴x >log a (a +1)0<a <1时,f (x )>1即0<a x -1<a∴1<a x <a +1∴log a (a +1)<x <0.3.[解析] (1)假设f (x )为正比例函数,那么⎩⎨⎧m 2+m -1=1,m 2+2m ≠0⇒m =1. (2)假设f (x )为反比例函数,那么⎩⎨⎧m 2+m -1=-1,m 2+2m ≠0⇒m =-1. (3)假设f (x )为二次函数,那么⎩⎨⎧m 2+m -1=2,m 2+2m ≠0⇒m =-1+132. (4)假设f (x )为幂函数,那么m 2+2m =1,∴m =-1± 2... - 4.[解析] 因为图象与y 轴无公共点,所以n 2-2n -3≤0,又图象关于y 轴对称,那么n 2-2n -3为偶数,由n 2-2n -3≤0得,-1≤n ≤3,又n ∈Z .∴n =0,±1,2,3当n =0或n =2时,y =x -3为奇函数,其图象不关于y 轴对称,不适合题意. 当n =-1或n =3时,有y =x 0,其图象如图A. 当n =1时,y =x -4,其图象如图B. ∴n 的取值集合为{-1,1,3}.5.[解析] ∵f (x )=log 3(ax 2-x +a )有零点,∴log 3(ax 2-x +a )=0有解.∴ax 2-x +a =1有解. 当a =0时,x =-1.当a ≠0时,假设ax 2-x +a -1=0有解, 那么Δ=1-4a (a -1)≥0,即4a 2-4a -1≤0, 解得1-22≤a ≤1+22且a ≠0. 综上所述,1-22≤a ≤1+22.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基本初等函数综合测试
一、选择题:
1.下列关系中,成立的是( )
A .03131log 4()log 105>>
B .0
1331log 10()log 45>>
C .03131log 4log 10()5>>
D .0
1331log 10log 4()5>>
2
.函数y = )
. A .[1,)+∞ B .2(,)3+∞ C .2[,1]3 D .2(,1]3
3.若11|log |log 44
a a =,且|log |log
b b a a =-,则,a b 满足的关系式是( ). A .1,1a b >>且 B .1,01a b ><<且
C .1,01b a ><<且
D .01,01a b <<<<且
4.已知函数x y e =的图象与函数()y f x =的图象关于直线y x =对称,则( ).
A .2(2)()x f x e x R =∈
B .(2)ln 2ln (0)f x x x =⋅>
C .(2)2()x f x e x R =∈
D .(2)ln 2ln (0)f x x x =+>
5.已知,,x y z 都是大于1的正数,0m >,且log 24,log 40,log 12x y xyz m m m ===,则log z m 的值为
A .160
B .60
C .2003
D .320 6.设函数||()(01)x f x a a a -=>≠且,若(2)4f =,则( ).
A .(2)(1)f f ->-
B .(1)(2)f f ->-
C .(1)(2)f f >
D .(2)(2)f f ->
7.942--=a a x y 是偶函数,且在),0(+∞是减函数,则整数a 组成的集合为( ).
A .{1,3,5}
B .{1,3,5}-
C .{1,1,3}-
D .{1,1,3,5}-
8.若ln 2ln 3ln 5,,235
a b c ===,则( ). A .a b c << B .c b a << C .c a b << D .b a c <<
9.函数2(0)21
x
x y x =>+的值域是( ). A .(1,)+∞ B .1(,)
(1,)2-∞+∞ C .1(,)2-∞ D .1(,1)2
10.若函数122
log (2log )y x =-的值域是(,0)-∞,那么它的定义域是( ). A .(0,2) B .(2,4) C .(0,4) D .(0,1)
11.设1x ,2x 是函数()(1)x f x a a =>定义域内的两个变量,且12x x <, 设121()2
m x x =+.那么下列不等式恒成立的是( ). A .12|()()||()()|f m f x f x f m ->- B .12|()()||()()|f m f x f x f m -<-
C .12|()()||()()|f m f x f x f m -=-
D .212()()()f x f x f m >
12.若函数()log ()m f x m x =-在区间[3,5]上的最大值比最小值大1,则实数m =( ).
A
.3 B
.3 C
.2 D
.2二、填空题:
13.若1a b >>,且10log log 3
a b b a +=,则log log a b b a -=_____________. 14.设0,()x x
e a a
f x a e >=+是R 上的偶函数,则a =________________. 15.若()()()f a b f a f b +=⋅,且(1)2f =,则(2)(3)(2009)...(1)(2)(2008)
f f f f f f +++=______. 16.对于函数f (x )定义域中任意的x 1,x 2(x 1≠x 2),有如下结论:
①)()()(2121x f x f x x f ⋅=+; ②)()()(2121x f x f x x f +=⋅;
③0)]()([)(2121<-⋅-x f x f x x ; ④2)()()2(
2121x f x f x x f +<+ 当x x f -=2
)(时,上述结论正确结论的序号是 .(写出全部正确结论的序号) 三、解答题:
17
.若11222a a
-+=,求11144211241111a a a a ++++-++的值.
18.求函数1
1()()142
x x y =-+在[]3,2x ∈-上的值域.
19.设函数124()lg ()2
x x a f x a R ++⋅=∈,如果当(,1)x ∈-∞时()f x 总有意义,求a 的取值范围.
20.已知11()(),(0)212
x f x x x =+≠-, (1)判断()f x 的奇偶性; (2)证明()0f x >.。