2016年温岭高考理科数学试题卷
2016年浙江省高考数学试卷(理科)及答案
2016年浙江省高考数学试卷(理科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)已知集合P={x∈R|1≤x≤3},Q={x∈R|x2≥4},则P∪(∁R Q)=()A.[2,3]B.(﹣2,3]C.[1,2) D.(﹣∞,﹣2]∪[1,+∞)2.(5分)已知互相垂直的平面α,β交于直线l,若直线m,n满足m∥α,n⊥β,则()A.m∥l B.m∥n C.n⊥l D.m⊥n3.(5分)在平面上,过点P作直线l的垂线所得的垂足称为点P在直线l上的投影,由区域中的点在直线x+y﹣2=0上的投影构成的线段记为AB,则|AB|=()A.2 B.4 C.3 D.64.(5分)命题“∀x∈R,∃n∈N*,使得n≥x2”的否定形式是()A.∀x∈R,∃n∈N*,使得n<x2B.∀x∈R,∀n∈N*,使得n<x2C.∃x∈R,∃n∈N*,使得n<x2D.∃x∈R,∀n∈N*,使得n<x25.(5分)设函数f(x)=sin2x+bsinx+c,则f(x)的最小正周期()A.与b有关,且与c有关B.与b有关,但与c无关C.与b无关,且与c无关D.与b无关,但与c有关6.(5分)如图,点列{A n}、{B n}分别在某锐角的两边上,且|A n A n+1|=|A n+1A n+2|,A n≠A n+1,n∈N*,|B n B n+1|=|B n+1B n+2|,B n≠B n+1,n∈N*,(P≠Q表示点P与Q不重合)若d n=|A n B n|,S n为△A n B n B n+1的面积,则()A.{S n}是等差数列B.{S n2}是等差数列C.{d n}是等差数列 D.{d n2}是等差数列7.(5分)已知椭圆C1:+y2=1(m>1)与双曲线C2:﹣y2=1(n>0)的焦点重合,e1,e2分别为C1,C2的离心率,则()A.m>n且e1e2>1 B.m>n且e1e2<1 C.m<n且e1e2>1 D.m<n且e1e2<1 8.(5分)已知实数a,b,c.()A.若|a2+b+c|+|a+b2+c|≤1,则a2+b2+c2<100B.若|a2+b+c|+|a2+b﹣c|≤1,则a2+b2+c2<100C.若|a+b+c2|+|a+b﹣c2|≤1,则a2+b2+c2<100D.若|a2+b+c|+|a+b2﹣c|≤1,则a2+b2+c2<100二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.(4分)若抛物线y2=4x上的点M到焦点的距离为10,则M到y轴的距离是.10.(6分)已知2cos2x+sin2x=Asin(ωx+φ)+b(A>0),则A=,b=.11.(6分)某几何体的三视图如图所示(单位:cm),则该几何体的表面积是cm2,体积是cm3.12.(6分)已知a>b>1,若log a b+log b a=,a b=b a,则a=,b=.13.(6分)设数列{a n}的前n项和为S n,若S2=4,a n+1=2S n+1,n∈N*,则a1=,S5=.14.(4分)如图,在△ABC中,AB=BC=2,∠ABC=120°.若平面ABC外的点P 和线段AC上的点D,满足PD=DA,PB=BA,则四面体PBCD的体积的最大值是.15.(4分)已知向量,,||=1,||=2,若对任意单位向量,均有|•|+|•|≤,则•的最大值是.三、解答题:本大题共5小题,共74分.解答应写出文字说明,证明过程或演算步骤.16.(14分)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2acosB.(Ⅰ)证明:A=2B(Ⅱ)若△ABC的面积S=,求角A的大小.17.(15分)如图,在三棱台ABC﹣DEF中,已知平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3,(Ⅰ)求证:BF⊥平面ACFD;(Ⅱ)求二面角B﹣AD﹣F的余弦值.18.(15分)已知a≥3,函数F(x)=min{2|x﹣1|,x2﹣2ax+4a﹣2},其中min (p,q)=(Ⅰ)求使得等式F(x)=x2﹣2ax+4a﹣2成立的x的取值范围(Ⅱ)(i)求F(x)的最小值m(a)(ii)求F(x)在[0,6]上的最大值M(a)19.(15分)如图,设椭圆C:+y2=1(a>1)(Ⅰ)求直线y=kx+1被椭圆截得到的弦长(用a,k表示)(Ⅱ)若任意以点A(0,1)为圆心的圆与椭圆至多有三个公共点,求椭圆的离心率的取值范围.20.(15分)设数列满足|a n﹣|≤1,n∈N*.(Ⅰ)求证:|a n|≥2n﹣1(|a1|﹣2)(n∈N*)(Ⅱ)若|a n|≤()n,n∈N*,证明:|a n|≤2,n∈N*.2016年浙江省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)(2016•浙江)已知集合P={x∈R|1≤x≤3},Q={x∈R|x2≥4},则P∪(∁R Q)=()A.[2,3]B.(﹣2,3]C.[1,2) D.(﹣∞,﹣2]∪[1,+∞)【分析】运用二次不等式的解法,求得集合Q,求得Q的补集,再由两集合的并集运算,即可得到所求.【解答】解:Q={x∈R|x2≥4}={x∈R|x≥2或x≤﹣2},即有∁R Q={x∈R|﹣2<x<2},则P∪(∁R Q)=(﹣2,3].故选:B.2.(5分)(2016•浙江)已知互相垂直的平面α,β交于直线l,若直线m,n满足m∥α,n⊥β,则()A.m∥l B.m∥n C.n⊥l D.m⊥n【分析】由已知条件推导出l⊂β,再由n⊥β,推导出n⊥l.【解答】解:∵互相垂直的平面α,β交于直线l,直线m,n满足m∥α,∴m∥β或m⊂β或m与β相交,l⊂β,∵n⊥β,∴n⊥l.故选:C.3.(5分)(2016•浙江)在平面上,过点P作直线l的垂线所得的垂足称为点P 在直线l上的投影,由区域中的点在直线x+y﹣2=0上的投影构成的线段记为AB,则|AB|=()A.2 B.4 C.3 D.6【分析】作出不等式组对应的平面区域,利用投影的定义,利用数形结合进行求解即可.【解答】解:作出不等式组对应的平面区域如图:(阴影部分),区域内的点在直线x+y﹣2=0上的投影构成线段R′Q′,即SAB,而R′Q′=RQ,由得,即Q(﹣1,1),由得,即R(2,﹣2),则|AB|=|QR|===3,故选:C4.(5分)(2016•浙江)命题“∀x∈R,∃n∈N*,使得n≥x2”的否定形式是()A.∀x∈R,∃n∈N*,使得n<x2B.∀x∈R,∀n∈N*,使得n<x2C.∃x∈R,∃n∈N*,使得n<x2D.∃x∈R,∀n∈N*,使得n<x2【分析】直接利用全称命题的否定是特称命题写出结果即可.【解答】解:因为全称命题的否定是特称命题,所以,命题“∀x∈R,∃n∈N*,使得n≥x2”的否定形式是:∃x∈R,∀n∈N*,使得n<x2.故选:D.5.(5分)(2016•浙江)设函数f(x)=sin2x+bsinx+c,则f(x)的最小正周期()A.与b有关,且与c有关B.与b有关,但与c无关C.与b无关,且与c无关D.与b无关,但与c有关【分析】根据三角函数的图象和性质即可判断.【解答】解:∵设函数f(x)=sin2x+bsinx+c,∴c是图象的纵坐标增加了c,横坐标不变,故周期与c无关,当b=0时,f(x)=sin2x+bsinx+c=﹣cos2x++c的最小正周期为T==π,当b≠0时,f(x)=﹣cos2x+bsinx++c,∵y=cos2x的最小正周期为π,y=bsinx的最小正周期为2π,∴f(x)的最小正周期为2π,故f(x)的最小正周期与b有关,故选:B6.(5分)(2016•浙江)如图,点列{A n}、{B n}分别在某锐角的两边上,且|A n A n+1|=|A n+1A n+2|,A n≠A n+1,n∈N*,|B n B n+1|=|B n+1B n+2|,B n≠B n+1,n∈N*,(P ≠Q表示点P与Q不重合)若d n=|A n B n|,S n为△A n B n B n+1的面积,则()A.{S n}是等差数列B.{S n2}是等差数列C.{d n}是等差数列 D.{d n2}是等差数列【分析】设锐角的顶点为O,再设|OA1|=a,|OB1|=c,|A n A n+1|=|A n+1A n+2|=b,|B n B n+1|=|B n+1B n+2|=d,由于a,c不确定,判断C,D不正确,设△A n B n B n+1的底边B n B n+1上的高为h n,运用三角形相似知识,h n+h n+2=2h n+1,由S n=d•h n,可得S n+S n+2=2S n+1,进而得到数列{S n}为等差数列.【解答】解:设锐角的顶点为O,|OA1|=a,|OB1|=c,|A n A n+1|=|A n+1A n+2|=b,|B n B n+1|=|B n+1B n+2|=d,由于a,c不确定,则{d n}不一定是等差数列,{d n2}不一定是等差数列,设△A n B n B n+1的底边B n B n+1上的高为h n,由三角形的相似可得==,==,两式相加可得,==2,即有h n+h n+2=2h n+1,由S n=d•h n,可得S n+S n+2=2S n+1,﹣S n+1=S n+1﹣S n,即为S n+2则数列{S n}为等差数列.故选:A.7.(5分)(2016•浙江)已知椭圆C1:+y2=1(m>1)与双曲线C2:﹣y2=1(n>0)的焦点重合,e1,e2分别为C1,C2的离心率,则()A.m>n且e1e2>1 B.m>n且e1e2<1 C.m<n且e1e2>1 D.m<n且e1e2<1【分析】根据椭圆和双曲线有相同的焦点,得到c2=m2﹣1=n2+1,即m2﹣n2=2,进行判断,能得m>n,求出两个离心率,先平方进行化简进行判断即可.【解答】解:∵椭圆C1:+y2=1(m>1)与双曲线C2:﹣y2=1(n>0)的焦点重合,∴满足c2=m2﹣1=n2+1,即m2﹣n2=2>0,∴m2>n2,则m>n,排除C,D则c2=m2﹣1<m2,c2=n2+1>n2,则c<m.c>n,e1=,e2=,则e1•e2=•=,则(e1•e2)2=()2•()2====1+=1+=1+>1,∴e1e2>1,故选:A.8.(5分)(2016•浙江)已知实数a,b,c.()A.若|a2+b+c|+|a+b2+c|≤1,则a2+b2+c2<100B.若|a2+b+c|+|a2+b﹣c|≤1,则a2+b2+c2<100C.若|a+b+c2|+|a+b﹣c2|≤1,则a2+b2+c2<100D.若|a2+b+c|+|a+b2﹣c|≤1,则a2+b2+c2<100【分析】本题可根据选项特点对a,b,c设定特定值,采用排除法解答.【解答】解:A.设a=b=10,c=﹣110,则|a2+b+c|+|a+b2+c|=0≤1,a2+b2+c2>100;B.设a=10,b=﹣100,c=0,则|a2+b+c|+|a2+b﹣c|=0≤1,a2+b2+c2>100;C.设a=100,b=﹣100,c=0,则|a+b+c2|+|a+b﹣c2|=0≤1,a2+b2+c2>100;故选:D.二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.(4分)(2016•浙江)若抛物线y2=4x上的点M到焦点的距离为10,则M到y轴的距离是9.【分析】根据抛物线的性质得出M到准线x=﹣1的距离为10,故到y轴的距离为9.【解答】解:抛物线的准线为x=﹣1,∵点M到焦点的距离为10,∴点M到准线x=﹣1的距离为10,∴点M到y轴的距离为9.故答案为:9.10.(6分)(2016•浙江)已知2cos2x+sin2x=Asin(ωx+φ)+b(A>0),则A=,b=1.【分析】根据二倍角的余弦公式、两角和的正弦函数化简左边,即可得到答案.【解答】解:∵2cos2x+sin2x=1+cos2x+sin2x=1+(cos2x+sin2x)=sin(2x+)+1,∴A=,b=1,故答案为:;1.11.(6分)(2016•浙江)某几何体的三视图如图所示(单位:cm),则该几何体的表面积是72cm2,体积是32cm3.【分析】由三视图可得,原几何体为由四个棱长为2cm的小正方体所构成的,代入体积公式和面积公式计算即可.【解答】解:由三视图可得,原几何体为由四个棱长为2cm的小正方体所构成的,则其表面积为22×(24﹣6)=72cm2,其体积为4×23=32,故答案为:72,3212.(6分)(2016•浙江)已知a>b>1,若log a b+log b a=,a b=b a,则a=4,b=2.【分析】设t=log b a并由条件求出t的范围,代入log a b+log b a=化简后求出t的值,得到a与b的关系式代入a b=b a化简后列出方程,求出a、b的值.【解答】解:设t=log b a,由a>b>1知t>1,代入log a b+log b a=得,即2t2﹣5t+2=0,解得t=2或t=(舍去),所以log b a=2,即a=b2,因为a b=b a,所以b2b=b a,则a=2b=b2,解得b=2,a=4,故答案为:4;2.13.(6分)(2016•浙江)设数列{a n}的前n项和为S n,若S2=4,a n+1=2S n+1,n ∈N*,则a1=1,S5=121.【分析】运用n=1时,a1=S1,代入条件,结合S2=4,解方程可得首项;再由n =S n+1﹣S n,结合条件,计算即可得到所求和.>1时,a n+1【解答】解:由n=1时,a1=S1,可得a2=2S1+1=2a1+1,又S2=4,即a1+a2=4,即有3a1+1=4,解得a1=1;由a n=S n+1﹣S n,可得+1S n+1=3S n+1,由S2=4,可得S3=3×4+1=13,S4=3×13+1=40,S5=3×40+1=121.故答案为:1,121.14.(4分)(2016•浙江)如图,在△ABC中,AB=BC=2,∠ABC=120°.若平面ABC外的点P和线段AC上的点D,满足PD=DA,PB=BA,则四面体PBCD的体积的最大值是.【分析】由题意,△ABD≌△PBD,可以理解为△PBD是由△ABD绕着BD旋转得到的,对于每段固定的AD,底面积BCD为定值,要使得体积最大,△PBD必定垂直于平面ABC,此时高最大,体积也最大.【解答】解:如图,M是AC的中点.①当AD=t<AM=时,如图,此时高为P到BD的距离,也就是A到BD的距离,即图中AE,DM=﹣t,由△ADE∽△BDM,可得,∴h=,V==,t∈(0,)②当AD=t>AM=时,如图,此时高为P到BD的距离,也就是A到BD的距离,即图中AH,DM=t﹣,由等面积,可得,∴,∴h=,∴V==,t∈(,2)综上所述,V=,t∈(0,2)令m=∈[1,2),则V=,∴m=1时,V max=.故答案为:.15.(4分)(2016•浙江)已知向量,,||=1,||=2,若对任意单位向量,均有|•|+|•|≤,则•的最大值是.【分析】根据向量三角形不等式的关系以及向量数量积的应用进行计算即可得到结论.【解答】解:由绝对值不等式得≥|•|+|•|≥|•+•|=|(+)•|,于是对任意的单位向量,均有|(+)•|≤,∵|(+)|2=||2+||2+2•=5+2•,∴|(+)|=,因此|(+)•|的最大值≤,则•≤,下面证明:•可以取得,(1)若|•|+|•|=|•+•|,则显然满足条件.(2)若|•|+|•|=|•﹣•|,此时|﹣|2=||2+||2﹣2•=5﹣1=4,此时|﹣|=2于是|•|+|•|=|•﹣•|x≤2,符号题意,综上•的最大值是,故答案为:.三、解答题:本大题共5小题,共74分.解答应写出文字说明,证明过程或演算步骤.16.(14分)(2016•浙江)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2acosB.(Ⅰ)证明:A=2B(Ⅱ)若△ABC的面积S=,求角A的大小.【分析】(Ⅰ)利用正弦定理,结合和角的正弦公式,即可证明A=2B(Ⅱ)若△ABC的面积S=,则bcsinA=,结合正弦定理、二倍角公式,即可求角A的大小.【解答】(Ⅰ)证明:∵b+c=2acosB,∴sinB+sinC=2sinAcosB,∴sinB+sin(A+B)=2sinAcosB∴sinB+sinAcosB+cosAsinB=2sinAcosB∴sinB=sinAcosB﹣cosAsinB=sin(A﹣B)∵A,B是三角形中的角,∴B=A﹣B,∴A=2B;(Ⅱ)解:∵△ABC的面积S=,∴bcsinA=,∴2bcsinA=a2,∴2sinBsinC=sinA=sin2B,∴sinC=cosB,∴B+C=90°,或C=B+90°,∴A=90°或A=45°.17.(15分)(2016•浙江)如图,在三棱台ABC﹣DEF中,已知平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3,(Ⅰ)求证:BF⊥平面ACFD;(Ⅱ)求二面角B﹣AD﹣F的余弦值.【分析】(I)先证明BF⊥AC,再证明BF⊥CK,进而得到BF⊥平面ACFD.(II)方法一:先找二面角B﹣AD﹣F的平面角,再在Rt△BQF中计算,即可得出;方法二:通过建立空间直角坐标系,分别计算平面ACK与平面ABK的法向量,进而可得二面角B﹣AD﹣F的平面角的余弦值.【解答】(I)证明:延长AD,BE,CF相交于点K,如图所示,∵平面BCFE⊥平面ABC,∠ACB=90°,∴AC⊥平面BCK,∴BF⊥AC.又EF∥BC,BE=EF=FC=1,BC=2,∴△BCK为等边三角形,且F为CK的中点,则BF⊥CK,∴BF⊥平面ACFD.(II)方法一:过点F作FQ⊥AK,连接BQ,∵BF⊥平面ACFD.∴BF⊥AK,则AK⊥平面BQF,∴BQ⊥AK.∴∠BQF是二面角B﹣AD﹣F的平面角.在Rt△ACK中,AC=3,CK=2,可得FQ=.在Rt△BQF中,BF=,FQ=.可得:cos∠BQF=.∴二面角B﹣AD﹣F的平面角的余弦值为.方法二:如图,延长AD,BE,CF相交于点K,则△BCK为等边三角形,取BC的中点,则KO⊥BC,又平面BCFE⊥平面ABC,∴KO⊥平面BAC,以点O为原点,分别以OB,OK的方向为x,z的正方向,建立空间直角坐标系O﹣xyz.可得:B(1,0,0),C(﹣1,0,0),K(0,0,),A(﹣1,﹣3,0),,.=(0,3,0),=,=(2,3,0).设平面ACK的法向量为=(x1,y1,z1),平面ABK的法向量为=(x2,y2,z2),由,可得,取=.由,可得,取=.∴==.∴二面角B﹣AD﹣F的余弦值为.18.(15分)(2016•浙江)已知a≥3,函数F(x)=min{2|x﹣1|,x2﹣2ax+4a﹣2},其中min(p,q)=(Ⅰ)求使得等式F(x)=x2﹣2ax+4a﹣2成立的x的取值范围(Ⅱ)(i)求F(x)的最小值m(a)(ii)求F(x)在[0,6]上的最大值M(a)【分析】(Ⅰ)由a≥3,讨论x≤1时,x>1,去掉绝对值,化简x2﹣2ax+4a﹣2﹣2|x﹣1|,判断符号,即可得到F(x)=x2﹣2ax+4a﹣2成立的x的取值范围;(Ⅱ)(i)设f(x)=2|x﹣1|,g(x)=x2﹣2ax+4a﹣2,求得f(x)和g(x)的最小值,再由新定义,可得F(x)的最小值;(ii)分别对当0≤x≤2时,当2<x≤6时,讨论F(x)的最大值,即可得到F (x)在[0,6]上的最大值M(a).【解答】解:(Ⅰ)由a≥3,故x≤1时,x2﹣2ax+4a﹣2﹣2|x﹣1|=x2+2(a﹣1)(2﹣x)>0;当x>1时,x2﹣2ax+4a﹣2﹣2|x﹣1|=x2﹣(2+2a)x+4a=(x﹣2)(x﹣2a),则等式F(x)=x2﹣2ax+4a﹣2成立的x的取值范围是[2,2a];(Ⅱ)(i)设f(x)=2|x﹣1|,g(x)=x2﹣2ax+4a﹣2,则f(x)min=f(1)=0,g(x)min=g(a)=﹣a2+4a﹣2.由﹣a2+4a﹣2=0,解得a=2+(负的舍去),由F(x)的定义可得m(a)=min{f(1),g(a)},即m(a)=;(ii)当0≤x≤2时,F(x)≤f(x)≤max{f(0),f(2)}=2=F(2);当2<x≤6时,F(x)≤g(x)≤max{g(2),g(6)}=max{2,34﹣8a}=max{F(2),F(6)}.则M(a)=.19.(15分)(2016•浙江)如图,设椭圆C:+y2=1(a>1)(Ⅰ)求直线y=kx+1被椭圆截得到的弦长(用a,k表示)(Ⅱ)若任意以点A(0,1)为圆心的圆与椭圆至多有三个公共点,求椭圆的离心率的取值范围.【分析】(Ⅰ)联立直线y=kx+1与椭圆方程,利用弦长公式求解即可.(Ⅱ)写出圆的方程,假设圆A与椭圆有4个公共点,再利用对称性有解已知条件可得任意一A(0,1)为圆心的圆与椭圆至多有3个公共点,a的取值范围,进而可得椭圆的离心率的取值范围.【解答】解:(Ⅰ)由题意可得:,可得:(1+a2k2)x2+2ka2x=0,得x1=0或x2=,直线y=kx+1被椭圆截得到的弦长为:=.(Ⅱ)假设圆A与椭圆有4个公共点,由对称性可设y轴左侧的椭圆上有两个不同的点P,Q,满足|AP|=|AQ|,记直线AP,AQ的斜率分别为:k1,k2;且k1,k2>0,k1≠k2,由(1)可知|AP|=,|AQ|=,故:=,所以,(k12﹣k22)[1+k12+k22+a2(2﹣a2)k12k22]=0,由k1≠k2,k1,k2>0,可得:1+k12+k22+a2(2﹣a2)k12k22=0,因此a2(a2﹣2)①,因为①式关于k1,k2;的方程有解的充要条件是:1+a2(a2﹣2)>1,所以a>.因此,任意点A(0,1)为圆心的圆与椭圆至多有三个公共点的充要条件为:1<a<,e==得,所求离心率的取值范围是:.20.(15分)(2016•浙江)设数列满足|a n﹣|≤1,n∈N*.(Ⅰ)求证:|a n|≥2n﹣1(|a1|﹣2)(n∈N*)(Ⅱ)若|a n|≤()n,n∈N*,证明:|a n|≤2,n∈N*.【分析】(I)使用三角不等式得出|a n|﹣|a n+1|≤1,变形得﹣≤,使用累加法可求得<1,即结论成立;(II)利用(I)的结论得出﹣<,进而得出|a n|<2+()m•2n,利用m的任意性可证|a n|≤2.【解答】解:(I)∵|a n﹣|≤1,∴|a n|﹣|a n+1|≤1,∴﹣≤,n∈N*,∴=(﹣)+(﹣)+…+(﹣)≤+++…+==1﹣≤1.∴|a n|≥2n﹣1(|a1|﹣2)(n∈N*).(II)任取n∈N*,由(I)知,对于任意m>n,﹣=(﹣)+(﹣)+…+(﹣)≤++…+=<.∴|a n|<(+)•2n≤[+•()m]•2n=2+()m•2n.①由m的任意性可知|a n|≤2.否则,存在n0∈N*,使得|a|>2,取正整数m0>log且m0>n0,则2•()<2•()=|a|﹣2,与①式矛盾.综上,对于任意n∈N*,都有|a n|≤2.。
2016年浙江省高考数学试卷+理科+解析
D.?x∈R,?n∈N*,使得 n<x2
5.( 5 分)( 2016?浙江)设函数 f (x)=sin2x+bsinx+c ,则 f (x)的最小 正周期( )
A.与 b 有关,且与 c 有关
B .与 b 有关,但与 c 无关
C.与 b 无关,且与 c 无关
D.与 b 无关,但与 c 有关
6.( 5 分)( 2016?浙江)如图,点列 {An} 、{Bn} 分别在某锐角的两边上, 且 |AnAn+1|=|An+1An+2| ,An≠An+1,n∈N*, |BnBn+1|=|Bn+1Bn+2| ,Bn≠Bn+1, n∈N*,( P≠Q表示点 P 与 Q不重合)若 dn=|AnBn| ,Sn 为△ AnBnBn+1的面积,则 ()
, ab=ba,则 a=
,b=
.
13.( 6 分)( 2016?浙江)设数列 {an} 的前 n 项和为 Sn,若 S2=4,
an+1=2Sn+1,n∈N*,则 a1=
, S5=
.
14.( 4 分)( 2016?浙江)如图,在△ ABC中, AB=BC=,2 ∠ ABC=12°0 .若
平面 ABC外的点 P 和线段 AC上的点 D,满足 PD=D,A PB=BA,则四面体 PBCD的体积
18.( 15 分)( 2016?浙江)已知 a≥3,函数 F(x)=min{2|x ﹣1| ,x2﹣ 2ax+4a﹣ 2} ,其中 min(p,q)=
(Ⅰ)求使得等式 F(x)=x2﹣2ax+4a﹣ 2 成立的 x 的取值范围 (Ⅱ)( i )求 F(x)的最小值 m( a) ( ii )求 F(x)在 [0 ,6] 上的最大值 M(a) 19.( 15 分)( 2016?浙江)如图,设椭圆 C: +y2=1(a>1) (Ⅰ)求直线 y=kx+1 被椭圆截得到的弦长(用 a, k 表示) (Ⅱ)若任意以点 A(0,1)为圆心的圆与椭圆至多有三个公共点,求椭圆 的离心率的取值范围.
(完整word版)2016年浙江省高考数学试卷(理科)及解析.doc
2016 年浙江省高考数学试卷(理科)一、选择题:本大题共 8 小题,每小题 5 分,共 40 分.在每小题给出的四个选项中,只有一个是符合题目要求的.2R )1.( 5 分)(2016?浙江)已知集合 P={x ∈R|1≤x ≤3} ,Q={x ∈R|x ≥4} ,则 P ∪(? Q )=(A . [2, 3]B .(﹣ 2, 3]C . [1, 2)D .(﹣ ∞,﹣ 2]∪ [1, +∞)2.( 5 分)( 2016?浙江)已知互相垂直的平面 α,β交于直线 l ,若直线 m ,n 满足 m ∥ α,n ⊥ β,则( ) A . m ∥ l B . m ∥ n C . n ⊥ l D . m ⊥ n3.( 5 分)( 2016?浙江)在平面上,过点 P 作直线 l 的垂线所得的垂足称为点 P 在直线 l 上的投影,由区域 中的点在直线 x+y ﹣ 2=0 上的投影构成的线段记为 AB ,则|AB|= ( )A . 2B . 4C . 3D . 64.( 5 分)( 2016?浙江)命题 “? x ∈R , ?n ∈N * ,使得 n ≥x 2”的否定形式是( )A . ? x ∈R , ?n ∈N * ,使得 n < x 2B . ?x ∈R ,? n ∈N * ,使得 n < x 2C . ?x ∈R , ?n ∈N * ,使得 n < x 2D .? x ∈R , ?n ∈N * ,使得 n < x 25.( 5 分)( 2016?浙江)设函数f ( x ) =sin 2x+bsinx+c ,则 f (x )的最小正周期( )A .与 b 有关,且与 c 有关B .与 b 有关,但与 c 无关C .与 b 无关,且与 c 无关D .与 b 无关,但与 c 有关6.( 5 分)( 2016?浙江)如图,点列 {A n } 、{B n } 分别在某锐角的两边上, 且 |A n A n+1|=|A n+1A n+2|,*,|B *,( P ≠Q 表示点 P 与 Q 不重合)若 d A n ≠A n+1,n ∈Nn B n+1|=|B n+1B n+2|,B n ≠B n+1,n ∈Nn =|A n B n |,S 为 △ A B B的面积,则()n n n n+1A . {S n } 是等差数列 2 } 是等差数列B . {S nC . {d n } 是等差数列2} 是等差数列D .{d n7.( 5 分)( 2016?浙江)已知椭圆C 1: +y 2=1( m > 1)与双曲线 C 2: ﹣ y 2=1(n > 0)的焦点重合, e 1, e 2 分别为 C 1,C 2 的离心率,则()D .m <n 且 e e < 1A . m > n 且 e e > 1B . m >n 且 e e < 1C . m < n 且 e e > 11 21 21 21 28.( 5 分)( 2016?浙江)已知实数 a , b ,c .()A .若 |a 2 +b+c|+|a+b 2+c|≤1,则 a 2+b 2+c 2< 100B .若 |a 2+b+c|+|a 2 +b ﹣ c|≤1,则 a 2+b 2+c 2< 100C .若 |a+b+c 2|+|a+b ﹣ c 2|≤1,则 a 2+b 2+c 2< 1002 2 2 2 2D .若 |a +b+c|+|a+b ﹣ c|≤1,则 a +b +c < 100二、填空题:本大题共7 小题,多空题每题 6 分,单空题每题4 分,共 36 分.9.( 4 分)( 2016?浙江)若抛物线 2y =4x 上的点 M 到焦点的距离为 10,则 M 到 y 轴的距离 是 .10.( 6 分)( 2016?浙江)已知 2cos 2x+sin2x=Asin ( ωx+ φ)+b ( A >0),则 A=,b= .11.( 6 分)( 2016?浙江)某几何体的三视图如图所示(单位: cm ),则该几何体的表面积是cm 2,体积是 cm 3.12.( 6 分)( 2016?浙江)已知 a > b > 1,若 log a b+log b a= , a b =b a,则 a= ,b=.13.( 6 分)( 2016?浙江)设数列{a n } 的前 n 项和为 S n ,若 S 2 =4, a n+1=2S n +1, n ∈N *,则 a 1= , S 5= .14.( 4 分)( 2016?浙江)如图,在 △ ABC 中, AB=BC=2 ,∠ABC=120 °.若平面 ABC 外的点 P 和线段 AC 上的点 D ,满足 PD=DA ,PB=BA ,则四面体 PBCD 的体积的最大值是.15.( 4 分)( 2016?浙江)已知向量 , , | |=1, | |=2,若对任意单位向量 ,均有| ? |+| ? |≤ ,则 ? 的最大值是.三、解答题:本大题共 5 小题,共 74 分.解答应写出文字说明,证明过程或演算步骤.16.( 14 分)( 2016?浙江)在 △ ABC 中,内角 A ,B ,C 所对的边分别为a ,b ,c ,已知 b+c=2acosB .(Ⅰ )证明: A=2B(Ⅱ )若 △ABC 的面积 S=,求角 A 的大小.17.( 15 分)( 2016?浙江)如图,在三棱台 ABC ﹣ DEF 中,已知平面 BCFE ⊥平面 ABC ,∠ A CB=90 °,BE=EF=FC=1 , BC=2 , AC=3 , (Ⅰ )求证: EF ⊥ 平面 ACFD ;(Ⅱ )求二面角 B ﹣ AD ﹣F 的余弦值.18.(15 分)( 2016?浙江)已知a ≥3,函数 F (x ) =min{2|x ﹣ 1|,x 2﹣ 2ax+4a ﹣ 2} ,其中 min( p , q ) =(Ⅰ )求使得等式 F ( x ) =x 2﹣ 2ax+4a ﹣ 2 成立的 x 的取值范围 (Ⅱ )( i )求 F ( x )的最小值 m ( a )(ii )求 F ( x )在 [0,6] 上的最大值 M ( a )19.( 15 分)( 2016?浙江)如图,设椭圆 C :+y 2=1( a > 1)(Ⅰ )求直线 y=kx+1 被椭圆截得到的弦长(用 a ,k 表示)(Ⅱ )若任意以点 A ( 0,1)为圆心的圆与椭圆至多有三个公共点,求椭圆的离心率的取值范围.20.( 15 分)( 2016?浙江)设数列满足n﹣* .|a |≤1, n∈N(Ⅰ )求证: |a n n﹣1( |a1|﹣ 2)( n∈N* )|≥2(Ⅱ )若 |a n|≤()n,n∈N*,证明:|a n|≤2,n∈N*.2016 年浙江省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共 8 小题,每小题 5 分,共 40 分.在每小题给出的四个选项中,只有一个是符合题目要求的. 1.( 5 分)【考点】 并集及其运算.【分析】 运用二次不等式的解法,求得集合 Q ,求得 Q 的补集,再由两集合的并集运算,即可得到所求.【解答】 解: Q={x ∈R|x 2≥4}={x ∈R|x ≥2 或 x ≤﹣ 2} , 即有 ?R Q={x ∈R|﹣ 2< x < 2} ,则 P ∪ ( ?R Q ) =(﹣ 2, 3]. 故选: B .【点评】 本题考查集合的运算, 主要是并集和补集的运算, 考查不等式的解法, 属于基础题.2.( 5 分)【考点】 直线与平面垂直的判定.【分析】 由已知条件推导出 l? β,再由 n ⊥ β,推导出 n ⊥ l .【解答】 解: ∵ 互相垂直的平面 α, β交于直线 l ,直线 m , n 满足 m ∥ α,∴m ∥ β或 m? β或 m ⊥β, l? β, ∵n ⊥ β, ∴n ⊥ l . 故选: C .【点评】 本题考查两直线关系的判断,是基础题, 解题时要认真审题, 注意空间思维能力的培养. 3.( 5 分)【考点】 简单线性规划的应用.【分析】 作出不等式组对应的平面区域,利用投影的定义,利用数形结合进行求解即可. 【解答】 解:作出不等式组对应的平面区域如图: (阴影部分),区域内的点在直线 x+y ﹣ 2=0 上的投影构成线段 R ′Q ′,即 SAB ,而 R ′Q ′=RQ ,由得,即 Q (﹣ 1, 1),由得,即 R ( 2,﹣ 2),则|AB|=|QR|== =3 ,故选: C【点评】 本题主要考查线性规划的应用, 作出不等式组对应的平面区域, 利用投影的定义以及数形结合是解决本题的关键.4.( 5 分)【考点】 命题的否定.【分析】 直接利用全称命题的否定是特称命题写出结果即可.【解答】 解:因为全称命题的否定是特称命题,所以,命题 “?x ∈R , ?n ∈N * ,使得 n ≥x 2”的否定形式是: ?x ∈R ,? n ∈N * ,使得 n < x 2. 故选: D .【点评】 本题考查命题的否定,特称命题与全称命题的否定关系,是基础题. 5.( 5 分)【考点】 三角函数的周期性及其求法.【分析】 根据三角函数的图象和性质即可判断.2∴c 是图象的纵坐标增加了c ,横坐标不变,故周期与 c 无关,当 b=0 时, f ( x ) =sin 2x+bsinx+c= ﹣ cos2x+ +c 的最小正周期为 T==π,当 b ≠0 时, f ( x ) =﹣ cos2x+bsinx+ +c ,∵ y =cos2x 的最小正周期为 π, y=bsinx 的最小正周期为 2π, ∴f (x )的最小正周期为 2π,故 f (x )的最小正周期与 b 有关,故选: B【点评】 本题考查了三额角函数的最小正周期, 关键掌握三角函数的图象和性质, 属于中档题.6.( 5 分) 【考点】 数列与函数的综合.【分析】 设锐角的顶点为 O ,再设 |OA 1|=a , |OB 1|=b , |A n A n+1|=|A n+1A n+2|=b ,|B n B n+1|=|B n+1B n+2|=d ,由于 a ,b 不确定,判断 C ,D 不正确,设 △ A n B n B n+1 的底边 B n B n+1 上的高为 h n n n+2 n+1 n n n n+2 n+1,运用三角形相似知识, h +h =2h ,由 S = d?h ,可得 S +S =2S ,进 而得到数列 {S n } 为等差数列.【解答】 解:设锐角的顶点为 O , |OA 1 |=a , |OB 1|=b ,|A A |=|A A n+2 |=b , |B B n+1 |=|B B |=d ,n n+1 n+1 n n+1 n+2由于 a , b 不确定,则 {d n } 不一定是等差数列,{d n 2} 不一定是等差数列, 设△ A n B n B n+1 的底边 B n B n+1 上的高为 h n ,由三角形的相似可得= = ,= = ,两式相加可得, = =2,即有 h n +h n+2=2h n+1,由 S n = d?h n ,可得 S n +S n+2=2S n+1,即为 S n+2﹣S n+1=S n+1﹣ S n , 则数列 {S n } 为等差数列. 故选: A .【点评】 本题考查等差数列的判断, 注意运用三角形的相似和等差数列的性质, 考查化简整理的推理能力,属于中档题.7.( 5 分)【考点】 椭圆的简单性质;双曲线的简单性质.【分析】 根据椭圆和双曲线有相同的焦点,得到c 2=m 2﹣ 1=n 2+1,即 m 2﹣ n 2=2,进行判断,能得 m > n ,求出两个离心率,先平方进行化简进行判断即可.【解答】 解: ∵ 椭圆 C 1:+y 2=1 (m >1)与双曲线 C 2: ﹣ y 2=1( n >0)的焦点重合,∴满足 c 2=m 2﹣ 1=n 2+1 ,即 m 2﹣n 2=2> 0,∴ m 2> n 2,则 m > n ,排除 C , D则 c 2=m 2﹣ 1< m 2, c 2=n 2+1> n 2,则 c < m . c > n ,e 1= , e 2= , 则 e 1?e 2= ? =,则( e 1?e 2) 2=( )2?( )2= = = =1+ =1+ =1+ > 1,∴ e 1e 2> 1,故选: A .【点评】 本题主要考查圆锥曲线离心率的大小关系的判断, 根据条件结合双曲线和椭圆离心率以及不等式的性质进行转化是解决本题的关键.考查学生的转化能力.8.( 5 分)【考点】 命题的真假判断与应用. 【分析】 本题可根据选项特点对a ,b ,c 设定特定值,采用排除法解答.【解答】 解: A .设 a=b=10, c=﹣ 110,则 |a 2+b+c|+|a+b 2+c|=0 ≤1, a 2+b 2+c 2>100;B .设 a=10, b=﹣ 100, c=0,则 |a 2+b+c|+|a 2+b ﹣ c|=0≤1, a 2+b 2+c 2>100;C .设 a=100, b=﹣100, c=0,则 |a+b+c 2|+|a+b ﹣ c 2|=0≤1, a 2+b 2 +c 2>100;故选: D .【点评】 本题主要考查命题的真假判断, 由于正面证明比较复杂, 故利用特殊值法进行排除是解决本题的关键.二、填空题:本大题共7 小题,多空题每题 6 分,单空题每题 4 分,共 36 分.9.( 4 分)【考点】 抛物线的简单性质. 【分析】 根据抛物线的性质得出 M 到准线 x= ﹣ 1 的距离为 10,故到 y 轴的距离为 9.【解答】 解:抛物线的准线为 x=﹣ 1,∵点 M 到焦点的距离为 10, ∴点 M 到准线 x= ﹣ 1 的距离为 10,∴点 M 到 y 轴的距离为 9.故答案为: 9.【点评】 本题考查了抛物线的性质,属于基础题. 10.( 6 分)【考点】 两角和与差的正弦函数.【分析】 根据二倍角的余弦公式、两角和的正弦函数化简左边,即可得到答案.2=1+ ( cos2x+ sin2x ) +1=sin ( 2x+ ) +1,∴ A =, b=1 , 故答案为:; 1.【点评】 本题考查了二倍角的余弦公式、 两角和的正弦函数的应用, 熟练掌握公式是解题的关键.11.(6 分)【考点】 由三视图求面积、体积.【分析】 由三视图可得,原几何体为由四个棱长为 2cm 的小正方体所构成的,代入体积公式和面积公式计算即可.【解答】 解:由三视图可得,原几何体为由四个棱长为2cm 的小正方体所构成的,则其表面积为 22×( 24﹣ 6) =72cm 2,其体积为 4×23=32 , 故答案为: 72, 32【点评】 本题考查了由三视图求几何体的体积和表面积, 解题的关键是判断几何体的形状及相关数据所对应的几何量,考查空间想象能力. 12.( 6 分) 【考点】 对数的运算性质.【分析】 设 t=log b a 并由条件求出 t 的范围,代入log a b+log ba= 化简后求出 t 的值,得到 ab a化简后列出方程,求出 a 、 b 的值. 与 b 的关系式代入 a =b 【解答】 解:设 t=log b a ,由 a >b > 1 知 t > 1, 代入 log a b+log b a= 得,即 2t 2﹣5t+2=0 ,解得 t=2 或 t= (舍去),所以 log b a=2,即 a=b 2,ba2b a2, 因为 a =b ,所以 b =b ,则 a=2b=b 解得 b=2 ,a=4, 故答案为: 4; 2.【点评】 本题考查对数的运算性质,以及换元法在解方程中的应用,属于基础题.13.( 6 分)【考点】 数列的概念及简单表示法.【分析】运用 n=1 时,a 1=S 1,代入条件, 结合 S 2=4,解方程可得首项; 再由 n > 1 时,a n+1=S n+1﹣S n ,结合条件,计算即可得到所求和.【解答】 解:由 n=1 时, a 1=S 1,可得 a 2=2S 1+1=2a 1+1,又 S 2=4,即 a 1+a 2=4, 即有 3a 1+1=4 ,解得 a 1=1;由 a n+1=S n+1﹣ S n ,可得 S n+1=3S n +1,由 S 2=4,可得 S 3=3×4+1=13 , S 4=3 ×13+1=40 , S 5=3 ×40+1=121 . 故答案为: 1, 121.【点评】本题考查数列的通项和前 n 项和的关系: n=1 时, a1=S1, n>1 时, a n=S n﹣ S n﹣1,考查运算能力,属于中档题.14.( 4 分)【考点】棱柱、棱锥、棱台的体积.【分析】由题意,△ABD ≌△ PBD ,可以理解为△ PBD 是由△ ABD 绕着 BD 旋转得到的,对于每段固定的 AD ,底面积 BCD 为定值,要使得体积最大,△ PBD 必定垂直于平面 ABC ,此时高最大,体积也最大.【解答】解:如图, M 是 AC 的中点.①当 AD=t < AM=时,如图,此时高为P 到 BD 的距离,也就是 A 到 BD 的距离,即图中AE ,DM=﹣ t,由△ ADE ∽ △ BDM ,可得,∴h=,V==,t∈(0,)②当 AD=t > AM=时,如图,此时高为P 到 BD 的距离,也就是 A 到 BD 的距离,即图中AH ,DM=t ﹣,由等面积,可得,∴,∴h=,∴V==,t∈(,2)综上所述, V=,t∈(0,2)令 m=∈[1,2),则V=,∴ m=1时,V max=.故答案为:.【点评】本题考查体积最大值的计算, 考查学生转化问题的能力, 考查分类讨论的数学思想,对思维能力和解题技巧有一定要求,难度大. 15.( 4 分)【考点】 平面向量数量积的运算.【分析】 根据向量三角形不等式的关系以及向量数量积的应用进行计算即可得到结论.【解答】 解: ∵ |( + ) ? |=| ? + ? |≤| ? |+| ? |≤ ,∴ |( + ) ? |≤| + |≤ ,平方得: | |2+| |2+2 ? ≤6,即12+22+2 ? ≤6,则 ? ≤ ,故 ? 的最大值是 ,故答案为: .【点评】 本题主要考查平面向量数量积的应用, 根据绝对值不等式的性质以及向量三角形不等式的关系是解决本题的关键.综合性较强,有一定的难度.三、解答题:本大题共5 小题,共 74 分.解答应写出文字说明,证明过程或演算步骤.16.( 14 分)【考点】 余弦定理;正弦定理.【分析】(Ⅰ )利用正弦定理,结合和角的正弦公式,即可证明 A=2B(Ⅱ )若 △ABC 的面积 S=,则 bcsinA=,结合正弦定理、二倍角公式,即可求角A的大小.【解答】(Ⅰ )证明: ∵ b+c=2acosB ,∴ s inB+sinC=2sinAcosB , ∴ s inB+sin (A+B ) =2sinAcosB ∴ s inB+sinAcosB+cosAsinB=2sinAcosB∴ s inB=2=sinAcosB ﹣ cosAsinB=sin ( A ﹣ B ) ∵A ,B 是三角形中的角, ∴ B =A ﹣ B ,∴ A =2B ;(Ⅱ )解: ∵ △ ABC 的面积 S=,∴ bcsinA=,∴ 2bcsinA=a 2,∴ 2sinBsinC=sinA=sin2B ,∴ s inC=cosB ,∴B+C=90 °,或 C=B+90 °,∴A=90 °或 A=45 °.【点评】本题考查了正弦定理,解三角形,考查三角形面积的计算,考查二倍角公式的运用,属于中档题.17.( 15 分)【考点】二面角的平面角及求法;空间中直线与直线之间的位置关系.【分析】( I )先证明 BF⊥ AC ,再证明BF⊥CK ,进而得到BF⊥平面 ACFD .(II )方法一:先找二面角 B ﹣AD ﹣ F 的平面角,再在Rt△BQF 中计算,即可得出;方法二:通过建立空间直角坐标系,分别计算平面ACK 与平面 ABK 的法向量,进而可得二面角 B﹣ AD ﹣ F 的平面角的余弦值.【解答】( I )证明:延长 AD ,BE ,CF 相交于点 K ,如图所示,∵平面 BCFE ⊥平面 ABC ,∠ACB=90 °,∴AC ⊥平面 BCK ,∴BF ⊥ AC .又EF∥BC ,BE=EF=FC=1 ,BC=2 ,∴△ BCK 为等边三角形,且 F 为 CK 的中点,则 BF⊥ CK ,∴B F ⊥平面 ACFD .(I I )方法一:过点 F 作 FQ⊥ AK ,连接 BQ,∵ BF⊥平面 ACFD .∴ BF⊥ AK ,则 AK ⊥平面BQF ,∴BQ ⊥ AK .∴∠ BQF 是二面角 B﹣ AD ﹣F 的平面角.在 Rt△ ACK 中, AC=3 , CK=2 ,可得 FQ=.在 Rt△ BQF 中, BF=,FQ=.可得:cos∠ BQF=.∴二面角 B ﹣ AD ﹣F 的平面角的余弦值为.方法二:如图,延长AD , BE, CF 相交于点K ,则△BCK 为等边三角形,取 BC 的中点,则KO ⊥ BC ,又平面BCFE ⊥平面 ABC ,∴ KO ⊥平面 BAC ,以点 O 为原点,分别以OB ,OK 的方向为x, z 的正方向,建立空间直角坐标系O﹣xyz.可得: B( 1,0,0),C(﹣ 1,0,0),K( 0,0,),A(﹣1,﹣3,0),,.=( 0, 3, 0),=,(2,3,0).设平面 ACK 的法向量为=( x1,y1,z1),平面 ABK 的法向量为=( x2,y2,z2),由,可得,取=.由,可得 ,取 = .∴= = .∴二面角 B ﹣ AD ﹣F 的余弦值为.【点评】 本题考查了空间位置关系、法向量的应用、空间角,考查了空间想象能力、推理能力与计算能力,属于中档题.18.( 15 分)【考点】 函数最值的应用;函数的最值及其几何意义.【分析】( Ⅰ )由 a ≥3,讨论 x ≤1 时, x > 1,去掉绝对值,化简 x 2﹣ 2ax+4a ﹣ 2﹣ 2|x ﹣ 1|,判断符号,即可得到 F ( x ) =x 2﹣ 2ax+4a ﹣ 2 成立的 x 的取值范围;(Ⅱ )( i )设 f ( x ) =2|x ﹣ 1|, g ( x ) =x 2﹣ 2ax+4a ﹣ 2,求得 f ( x )和 g ( x )的最小值,再 由新定义,可得 F ( x )的最小值;(ii )分别对当 0≤x ≤2 时,当 2< x ≤6 时,讨论 F ( x )的最大值,即可得到F ( x )在 [0, 6] 上的最大值 M ( a ).【解答】 解:( Ⅰ )由 a ≥3,故 x ≤1 时,x 2﹣2ax+4a ﹣ 2﹣ 2|x ﹣ 1|=x 2+2( a ﹣ 1)(2﹣ x )> 0;当 x > 1 时, x 2﹣ 2ax+4a ﹣ 2﹣ 2|x ﹣ 1|=x 2﹣( 2+2a ) x+4a= ( x ﹣ 2)( x ﹣ 2a ),2则等式 F ( x ) =x ﹣ 2ax+4a ﹣ 2 成立的 x 的取值范围是( 2, 2a );则 f (x ) min =f ( 1) =0, g (x ) min =g ( a ) =﹣ a 2+4a ﹣ 2.由﹣ a 2+4a ﹣ 2=0,解得 a=2+ (负的舍去),由 F ( x )的定义可得 m ( a ) =min{f ( 1),g ( a ) } ,即 m ( a ) =;( i i )当 0≤x ≤2 时, F ( x ) ≤f (x ) ≤max{f ( 0), f ( 2) }=2=F ( 2);当 2< x ≤6 时, F ( x ) ≤g ( x ) ≤max{g ( 2), g ( 6) }=max{2 , 34﹣8a}=max{F ( 2), F ( 6) } .则 M ( a ) =.【点评】 本题考查新定义的理解和运用, 考查分类讨论的思想方法, 以及二次函数的最值的求法,不等式的性质,考查化简整理的运算能力,属于中档题.19.( 15 分)【考点】 椭圆的简单性质;圆与圆锥曲线的综合.【分析】(Ⅰ )联立直线 y=kx+1 与椭圆方程,利用弦长公式求解即可.(Ⅱ )写出圆的方程,假设圆 A 与椭圆由 4 个公共点,再利用对称性有解已知条件可得任意一 A ( 0, 1)为圆心的圆与椭圆至多有 3 个公共点, a 的取值范围,进而可得椭圆的离心率的取值范围.【解答】 解:( Ⅰ )由题意可得:,可得:(1+a 2k 2) x 2+2ka 2x=0 ,得 x 1=0 或 x 2=,直线 y=kx+1 被椭圆截得到的弦长为:= .(Ⅱ )假设圆 A 与椭圆由 4 个公共点,由对称性可设 y 轴左侧的椭圆上有两个不同的点P ,Q ,满足 |AP|=|AQ| ,记直线 AP , AQ 的斜率分别为: k 1,k 2;且 k 1,k 2 > 0, k 1≠k 2,由( 1)可知|AP|=, |AQ|=,故: =2 2 2 2 2 2,所以,( k 1 ﹣k 2 ) [1+k 1 +k 2 +a ( 2﹣ a )22,由 k 1≠k 2,k 1 k 2] =0 222222k 1,k 2> 0,可得: 1+k1 +k2 +a ( 2﹣ a )k 1 k 2 =0,因此a 2( a 2﹣ 2) ① ,因为 ① 式关于 k 1, k 2;的方程有解的充要条件是:1+a 2( a 2﹣ 2)> 1,所以 a > .因此,任意点 A (0, 1) 心的 与 至多有三个公共点的充要条件 :1< a <2,e= = 得,所求离心率的取 范 是: .【点 】 本 考 直 与 的位置关系的 合 用, 与 的位置关系的 合 用,考分析 解决 的能力,考 化思想以及 算能力.20.( 15 分)【考点】 数列与不等式的 合.【分析】( I )使用三角不等式得出|a n ||a n+1|≤1, 形得≤,使用累加法可求得< 1,即 成立;(II )利用( I )的 得出< , 而得出 |a n |<2+() m 2n,利用 m的任意性可 |a n |≤2.【解答】 解:( I ) ∵ |a nnn+1,|≤1, ∴ |a | |a |≤1∴≤, n ∈N *,∴=( ) +( )+⋯+( )≤ ++ +⋯+ = =1 < 1.∴ |a n |≥2n ﹣ 1( |a 1| 2)( n ∈N * ).(II )任取 n ∈N *,由( I )知, 于任意m > n ,=() +() +⋯+()≤+ +⋯+ = < .∴|a n |<(+) ?2n ≤[+ ?() m ]?2n=2+( ) m ?2n. ①由 m 的任意性可知 |a n |≤2.否则,存在 n 0∈N *,使得 |a|> 2,取正整数 m 0> log且 m 0> n 0,则2 ?( ) < 2 ?( ) =|a |﹣ 2,与 ① 式矛盾.综上,对于任意 n ∈N *,都有 |a n |≤2.【点评】 本题考查了不等式的应用与证明,等比数列的求和公式, 放缩法证明不等式, 难度较大.。
2016年高考浙江卷数学(理)试题.
2016年高考浙江卷数学(理)试题
一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中只有一项是符合题目要求的.
【答案】A
8.已知实数a,b,c
A.若|a2+b+c|+|a+b2+c|≤1,则a2+b2+c2<100
B.若|a2+b+c|+|a2+b–c|≤1,则a2+b2+c2<100
C.若|a+b+c2|+|a+b–c2|≤1,则a2+b2+c2<100
D.若|a2+b+c|+|a+b2–c|≤1,则a2+b2+c2<100
【答案】D
二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.
9.若抛物线y2=4x上的点M到焦点的距离为10,则M到y轴的距离是_______.
【答案】9
11.某几何体的三视图如图所示(单位:cm),则该几何体的表面积是cm2,体积是cm3.
【答案】72,32
【答案】1,121
14.如图,在△ABC中,AB=BC=2,∠ABC=120°.若平面ABC外的点P和线段AC上的点D,满足PD=DA,PB=BA,则四面体PBCD的体积的最大值是
E
D
C
B
A
P。
2016年高考试题:理科数学(浙江卷)(解析版)
2016年普通高等学校招生全国统一考试(浙江卷)数学(理科)一、选择题:本大题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一个是符合题目要求的。
1.已知集合P=,Q=,则P=A.[2,3]B.(-2,3]C.[1,2)D.2.已知互相垂直的平面交于直线l,若直线m,n满足,则A. B. C. D.3.在平面上,过点P作直线l的垂线所得的垂足称为点P在直线l上的投影,由区域中的点在直线x+y-2=0上的投影构成的线段记为AB,则|AB|=A. B.4 C. D.64.命题“使得”的否定形式是A.使得B.使得C.使得D.使得5.设函数,则的最小正周期A.与b有关,且与c有关B.与b有关,但与c无关C.与b无关,且与c无关D.与b无关,但与c有关6.如图,点列分别在某锐角的两边上,且,,,.(表示点P与Q不重合)若,为的面积,则A.是等差数列B.是等差数列C.是等差数列D.是等差数列7.已知椭圆与双曲线的焦点重合,分别为的离心率,则A.且B.且C.且D.且8.已知实数.A.若则B.若则C.若则D.若则二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
9.若抛物线上的点M到焦点的距离为10,则M到y轴的距离是.10.已知,则A=,b=.11.某几何体的三视图如图所示(单位:cm),则该几何体的表面积是cm2,体积是cm3.12.已知,若,则a=,b=.13.设数列的前n项和为,若,则=,=.14.如图,在中,AB=BC=2,.若平面ABC外的点P和线段AC上的点D,满足PD=DA,PB=BA,则四面体PBCD的体积的最大值是.15.已知向量a,b,|a|=1,|b|=2,若对任意单位向量e,均有|a·e|+|b·e|,则a ·b 的最大值是.三、解答题:本大题共5小题,共74分。
解答应写出文字说明,证明过程或演算步骤。
16.(本题满分14分)在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,已知2cos b c a B +=(Ⅰ)证明:2A B=(Ⅱ)若ABC ∆的面积24a S =,求角A 的大小.17.(本题满分15分)如图,在三棱台ABC DEF -中,已知平面BCFE 平面ABC,90ACB ∠=︒,1BE EF EC ===,2BC =,3AC =,(Ⅰ)求证:ACFD BF ⊥平面(Ⅱ)求二面角B-AD-C 的余弦值.18.(本题满分15分)设3a ≥,函数2()min{2|1|,242}F x x x ax a =--+-,其中(Ⅰ)求使得等式2()242F x x ax a =-+-成立的x 的取值范围(Ⅱ)(i)求()F x 的最小值()m a (ii)求()F x 在[0,6]上的最大值()M a 19.(本题满分15分)如图,设椭圆C:2221(1)x y a a+=>(Ⅰ)求直线1y kx =+被椭圆截得到的弦长(用a,k 表示)(Ⅱ)若任意以点(0,1)A 为圆心的圆与椭圆至多有三个公共点,求椭圆的离心率的取值范围.20、(本题满分15分)设数列满足1||12n n a a +-≤,(Ⅰ)求证:11||2(||2)(*)n n a a n N -≥-∈(Ⅱ)若3||()2nn a ≤,*n N ∈,证明:||2n a ≤,*n N ∈.一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中只有一项是符合题目要求的.1.已知集合{}{}213,4,P x x Q x x =∈≤≤=∈≥R R 则()P Q ⋃=R ð()A .[2,3]B .(-2,3]C .[1,2)D .(,2][1,)-∞-⋃+∞【答案】B考点:1、一元二次不等式;2、集合的并集、补集.【易错点睛】解一元二次不等式时,2x 的系数一定要保证为正数,若2x 的系数是负数,一定要化为正数,否则很容易出错.2.已知互相垂直的平面αβ,交于直线l .若直线m ,n 满足,m n αβ∥⊥,则()A .m ∥lB .m ∥nC .n ⊥lD .m ⊥n【答案】C 【解析】试题分析:由题意知,l l αββ=∴⊂ ,,n n l β⊥∴⊥ .故选C.考点:空间点、线、面的位置关系.【思路点睛】解决这类空间点、线、面的位置关系问题,一般是借助长方体(或正方体),能形象直观地看出空间点、线、面的位置关系.3.在平面上,过点P 作直线l 的垂线所得的垂足称为点P 在直线l 上的投影.由区域200340x x y x y -≤⎧⎪+≥⎨⎪-+≥⎩中的点在直线x +y -2=0上的投影构成的线段记为AB ,则│AB │=()A .B .4C .D .6【答案】C 【解析】考点:线性规划.【思路点睛】先根据不等式组画出可行域,再根据题目中的定义确定AB 的值.画不等式组所表示的平面区域时要注意通过特殊点验证,防止出现错误.4.命题“*x n ∀∈∃∈,R N ,使得2n x >”的否定形式是()A .*x n ∀∈∃∈,R N ,使得2n x <B .*x n ∀∈∀∈,R N ,使得2n x<C .*x n ∃∈∃∈,R N ,使得2n x <D .*x n ∃∈∀∈,R N ,使得2n x<【答案】D 【解析】试题分析:∀的否定是∃,∃的否定是∀,2n x ≥的否定是2n x <.故选D.考点:全称命题与特称命题的否定.【方法点睛】全称命题的否定是特称命题,特称命题的否定是全称命题.对含有存在(全称)量词的命题进行否定需要两步操作:①将存在(全称)量词改成全称(存在)量词;②将结论加以否定.5.设函数2()sin sin f x x b x c =++,则()f x 的最小正周期()A .与b 有关,且与c 有关B .与b 有关,但与c 无关C .与b 无关,且与c 无关D .与b 无关,但与c 有关【答案】B考点:1、降幂公式;2、三角函数的最小正周期.【思路点睛】先利用三角恒等变换(降幂公式)化简函数()f x ,再判断b 和c 的取值是否影响函数()f x 的最小正周期.6.如图,点列{A n },{B n }分别在某锐角的两边上,且1122,,n n n n n n A A A A A A n ++++=≠∈*N ,1122,,n n n n n n B B B B B B n ++++=≠∈*N ,(P Q P Q ≠表示点与不重合).若1n n n n n n n d A B S A B B +=,为△的面积,则()A .{}n S 是等差数列B .2{}n S 是等差数列C .{}n d 是等差数列D .2{}n d 是等差数列【答案】A 【解析】试题分析:n S 表示点n A 到对面直线的距离(设为n h )乘以1n n B B +长度一半,即112n n n n S h B B +=,由题目中条件可知1n n B B +的长度为定值,那么我们需要知道n h 的关系式,过1A 作垂直得到初始距离1h ,那么1,n A A 和两个垂足构成了等腰梯形,那么11tan n n n h h A A θ+=+⋅,其中θ为两条线的夹角,即为定值,那么1111(tan )2n n n n S h A A B B θ+=+⋅,111111(tan )2n n n n S h A A B B θ+++=+⋅,作差后:1111(tan )2n n n n n n S S A A B B θ+++-=⋅,都为定值,所以1n n S S +-为定值.故选A.考点:等差数列的定义.【思路点睛】先求出1n n n +∆A B B 的高,再求出1n n n +∆A B B 和112n n n +++∆A B B 的面积n S 和1n S +,进而根据等差数列的定义可得1n n S S +-为定值,即可得{}n S 是等差数列.7.已知椭圆C 1:22x m +y 2=1(m >1)与双曲线C 2:22x n–y 2=1(n >0)的焦点重合,e 1,e 2分别为C 1,C 2的离心率,则()A .m >n 且e 1e 2>1B .m >n 且e 1e 2<1C .m <n 且e 1e 2>1D .m <n 且e 1e 2<1【答案】A考点:1、椭圆的简单几何性质;2、双曲线的简单几何性质.【易错点睛】计算椭圆1C 的焦点时,要注意222c a b =-;计算双曲线2C 的焦点时,要注意222c a b =+.否则很容易出现错误.8.已知实数a ,b ,c ()A .若|a 2+b +c |+|a +b 2+c |≤1,则a 2+b 2+c 2<100B .若|a 2+b +c |+|a 2+b –c |≤1,则a 2+b 2+c 2<100C .若|a +b +c 2|+|a +b –c 2|≤1,则a 2+b 2+c 2<100D .若|a 2+b +c |+|a +b 2–c |≤1,则a 2+b 2+c 2<100【答案】D 【解析】试题分析:举反例排除法:A.令10,110===-a b c ,排除此选项,B.令10,100,0==-=a b c ,排除此选项,C.令100,100,0==-=a b c ,排除此选项,故选D.考点:不等式的性质.【方法点睛】对于判断不等式恒成立问题,一般采用举反例排除法.解答本题时能够对四个选项逐个利用赋值的方式进行排除,确认成立的不等式.二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.若抛物线y 2=4x 上的点M 到焦点的距离为10,则M 到y 轴的距离是_______.【答案】9【解析】试题分析:1109M M x x +=⇒=考点:抛物线的定义.【思路点睛】当题目中出现抛物线上的点到焦点的距离时,一般会想到转化为抛物线上的点到准线的距离.解答本题时转化为抛物线上的点到准线的距离,进而可得点到y 轴的距离.10.已知2cos 2x +sin 2x =Asin(ωx +φ)+b (A >0),则A =______,b =________.【答案】21考点:1、降幂公式;2、辅助角公式.【思路点睛】解答本题时先用降幂公式化简2cos x ,再用辅助角公式化简cos 2sin 21x x ++,进而对照()sin x b ωϕA ++可得A 和b .11.某几何体的三视图如图所示(单位:cm),则该几何体的表面积是cm 2,体积是cm 3.【答案】7232【解析】试题分析:几何体为两个相同长方体组合,长方体的长宽高分别为4,2,2,所以体积为2(224)32⨯⨯⨯=,由于两个长方体重叠部分为一个边长为2的正方形,所以表面积为2(222244)2(22)72⨯⨯+⨯⨯-⨯=考点:1、三视图;2、空间几何体的表面积与体积.【方法点睛】解决由三视图求空间几何体的表面积与体积问题,一般是先根据三视图确定该几何体的结构特征,再准确利用几何体的表面积与体积公式计算该几何体的表面积与体积.12.已知a >b >1.若log a b +log b a =52,a b =b a ,则a =,b =.【答案】42考点:1、指数运算;2、对数运算.【易错点睛】在解方程5log log 2a b b a +=时,要注意log 1b a >,若没注意到log 1b a >,方程5log log 2a b b a +=的根有两个,由于增根导致错误.13.设数列{a n }的前n 项和为S n .若S 2=4,a n +1=2S n +1,n ∈N *,则a 1=,S 5=.【答案】1121【解析】试题分析:1221124,211,3a a a a a a +==+⇒==,再由111121,21(2)23(2)n n n n n n n n n a S a S n a a a a a n +-++=+=+≥⇒-=⇒=≥,又213a a =,所以515133(1),S 121.13n n a a n +-=≥==-考点:1、等比数列的定义;2、等比数列的前n 项和.【易错点睛】由121n n a S +=+转化为13n n a a +=的过程中,一定要检验当1n =时是否满足13n n a a +=,否则很容易出现错误.14.如图,在△ABC 中,AB =BC =2,∠ABC =120°.若平面ABC 外的点P 和线段AC 上的点D ,满足PD =DA ,PB =BA ,则四面体PBCD 的体积的最大值是.【答案】12由余弦定理可得2222222(234)3cos 2222PD PB BD x x BPD PD PB x +-+--+∠===⋅⋅⋅,所以30BPD ∠=.过P 作直线BD 的垂线,垂足为O .设PO d=则11sin 22PBD S BD d PD PB BPD ∆=⨯=⋅∠,12sin 302d x =⋅ ,解得d =而BCD ∆的面积111sin )2sin 30)222S CD BC BCD x x =⋅∠=-⋅= .(2x <≤时,有|x x -=-=故x =.此时,1(31)[23(31)]6V t=21414()66t t t t-=⋅=-.由(1)可知,函数()V t 在(1,2]单调递减,故141()(1)(1)612V t V <=-=.综上,四面体PBCD 的体积的最大值为12.考点:1、空间几何体的体积;2、用导数研究函数的最值.【思路点睛】先根据已知条件求出四面体的体积,再对x 的取值范围讨论,用导数研究函数的单调性,进而可得四面体的体积的最大值.15.已知向量a 、b ,|a |=1,|b |=2,若对任意单位向量e ,均有|a ·e |+|b ·e |≤6,则a ·b 的最大值是.【答案】12考点:平面向量的数量积.【易错点睛】在6a b +≤ 2226a b a b ++⋅≤ 6进行平方而导致错误.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.(本题满分14分)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b +c =2a cos B.(I )证明:A =2B ;(II )若△ABC 的面积2=4a S ,求角A 的大小.【答案】(I )证明见解析;(II )2π或4π.试题分析:(I )先由正弦定理可得sin sin C 2sin cos B +=A B ,进而由两角和的正弦公式可得()sin sin B =A -B ,再判断A -B 的取值范围,进而可证2A =B ;(II )先由三角形的面积公式可得21sin C 24a ab =,进而由二倍角公式可得sin C cos =B ,再利用三角形的内角和可得角A 的大小.试题解析:(I )由正弦定理得sin sin C 2sin cos B +=A B ,故()2sin cos sin sin sin sin cos cos sin A B =B +A +B =B +A B +A B ,于是()sin sin B =A -B .又A ,()0,πB∈,故0π<A -B <,所以π()B =-A -B 或B =A -B ,因此πA =(舍去)或2A =B ,所以,2A =B .考点:1、正弦定理;2、两角和的正弦公式;3、三角形的面积公式;4、二倍角的正弦公式.【思路点睛】(I )用正弦定理将边转化为角,进而用两角和的正弦公式转化为含有A ,B 的式子,根据角的范围可证2A =B ;(II )先由三角形的面积公式及二倍角公式可得含有B ,C 的式子,再利用三角形的内角和可得角A 的大小.17.(本题满分15分)如图,在三棱台ABC DEF -中,平面BCFE ⊥平面ABC ,=90ACB ∠ ,BE =EF =FC =1,BC =2,AC =3.(I)求证:EF ⊥平面ACFD ;(II)求二面角B -AD -F 的平面角的余弦值.【答案】(I )证明见解析;(II )34.【解析】试题分析:(I )先证F C B ⊥A ,再证F C B ⊥K ,进而可证F B ⊥平面CFD A ;(II )方法一:先找二面角D F B -A -的平面角,再在Rt QF ∆B 中计算,即可得二面角D F B -A -的平面角的余弦值;方法二:先建立空间直角坐标系,再计算平面C A K 和平面ABK 的法向量,进而可得二面角D F B -A -的平面角的余弦值.(II )方法一:过点F 作FQ ⊥AK ,连结Q B .因为F B ⊥平面C A K ,所以F B ⊥AK ,则AK ⊥平面QF B ,所以Q B ⊥AK .所以,QF ∠B 是二面角D F B -A -的平面角.在Rt C ∆A K 中,C 3A =,C 2K =,得313FQ 13=.在Rt QF ∆B 中,313FQ 13=,F B =,得3cos QF 4∠B =.所以,二面角D F B -A -的平面角的余弦值为34.方法二:如图,延长D A ,BE ,CF 相交于一点K ,则C ∆B K 为等边三角形.取C B 的中点O ,则C KO ⊥B ,又平面CF B E ⊥平面C AB ,所以,KO ⊥平面C AB .以点O 为原点,分别以射线OB ,OK 的方向为x ,z 的正方向,建立空间直角坐标系xyz O .由题意得()1,0,0B ,()C 1,0,0-,(K ,()1,3,0A --,13,0,22⎛⎫E ⎪ ⎪⎝⎭,13F ,0,22⎛⎫- ⎪ ⎪⎝⎭.因此,()C 0,3,0A = ,(AK = ,()2,3,0AB = .考点:1、线面垂直;2、二面角.【方法点睛】解题时一定要注意二面角的平面角是锐角还是钝角,否则很容易出现错误.证明线面垂直的关键是证明线线垂直,证明线线垂直常用的方法是直角三角形、等腰三角形的“三线合一”和菱形、正方形的对角线.18.(本小题15分)已知3a ≥,函数F (x )=min{2|x −1|,x 2−2ax +4a −2},其中min{p ,q }=,>p p q q p q.≤⎧⎨⎩,,(I )求使得等式F (x )=x 2−2ax +4a −2成立的x 的取值范围;(II )(i )求F (x )的最小值m (a );(ii )求F (x )在区间[0,6]上的最大值M (a ).【答案】(I )[]2,2a ;(II )(i )()20,3242,2a m a a a a ⎧≤≤+⎪=⎨-+->+⎪⎩;(ii )()348,342,4a a a a -≤<⎧M =⎨≥⎩.(II )(i )设函数()21f x x =-,()2242g x x ax a =-+-,则()()min 10f x f ==,()()2min 42g x g a a a ==-+-,所以,由()F x 的定义知()()()m {}in 1,m a f g a =,即()20,3242,2a m a a a a ⎧≤≤+⎪=⎨-+->+⎪⎩(ii )当02x ≤≤时,()()()(){}()F max 0,22F 2x f x f f ≤≤==,当26x ≤≤时,()()()(){}{}()(){}F max 2,6max 2,348max F 2,F 6x g x g g a ≤≤=-=.所以,()348,342,4a a a a -≤<⎧M =⎨≥⎩.考点:1、函数的单调性与最值;2、分段函数;3、不等式.【思路点睛】(I )根据x 的取值范围化简()F x ,即可得使得等式()2F 242x x ax a =-+-成立的x 的取值范围;(II )(i )先求函数()f x 和()g x 的最小值,再根据()F x 的定义可得()m a ;(ii )根据x 的取值范围求出()F x 的最大值,进而可得()a M .19.(本题满分15分)如图,设椭圆2221x y a+=(a >1).(I )求直线y =kx +1被椭圆截得的线段长(用a 、k 表示);(II )若任意以点A (0,1)为圆心的圆与椭圆至多有3个公共点,求椭圆离心率的取值范围.【答案】(I )22221a k +;(II )02e <≤.(II )假设圆与椭圆的公共点有4个,由对称性可设y 轴左侧的椭圆上有两个不同的点P ,Q ,满足Q AP =A .记直线AP ,Q A 的斜率分别为1k ,2k ,且1k ,20k >,12k k ≠.由(I)知,1AP =,2Q A =,故12=,所以()()22222222121212120k k k k a a k k ⎡⎤-+++-=⎣⎦.由于12k k ≠,1k ,20k >得()2222221212120k k a a k k +++-=,因此2()22212111112a a k k ⎛⎫⎛⎫++=+- ⎪⎪⎝⎭⎝⎭,①因为①式关于1k ,2k 的方程有解的充要条件是2()2121a a +->,所以a >因此,任意以点()0,1A 为圆心的圆与椭圆至多有3个公共点的充要条件为12a <≤,由c e a a==得,所求离心率的取值范围为202e <≤.考点:1、弦长;2、圆与椭圆的位置关系;3、椭圆的离心率.【思路点睛】(I )先联立1y kx =+和2221x y a+=,可得交点的横坐标,再利用弦长公式可得直线1y kx =+被椭圆截得的线段长;(II )利用对称性及已知条件可得任意以点()0,1A 为圆心的圆与椭圆至多有3个公共点时,a 的取值范围,进而可得椭圆离心率的取值范围.20.(本题满分15分)设数列{}n a 满足112n n a a +-≤,n *∈N .(I )证明:()1122n n a a -≥-,n *∈N ;(II )若32n n a ⎛⎫≤ ⎪⎝⎭,n *∈N ,证明:2n a ≤,n *∈N .【答案】(I )证明见解析;(II )证明见解析.(II )任取n *∈N ,由(I )知,对于任意m n >,112122222222nm n n n n m m a a a a a a a a +++-+++-⎛⎫⎛⎫⎛⎫-=-+-+⋅⋅⋅+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭11111222n n m +-≤++⋅⋅⋅+112n -<,故1122m n n n a a -⎛⎫<+⋅ ⎪⎝⎭11132222m n n m -⎡⎤⎛⎫≤+⋅⋅⎢⎥ ⎪⎝⎭⎢⎥⎣⎦3224m n ⎛⎫=+⋅ ⎪⎝⎭.从而对于任意m n >,均有3224mn n a ⎛⎫<+⋅ ⎪⎝⎭.考点:1、数列;2、累加法;3、证明不等式.【思路点睛】(I )先利用三角形不等式及变形得1112nn n n n a a ++-≤,再用累加法可得11n na a -<,进而可证()1122n n a a -≥-;(II )由(I )的结论及已知条件可得3224mn n a ⎛⎫<+⋅ ⎪⎝⎭,再利用m 的任意性可证2n a ≤.。
浙江省温岭市2016年高考模拟数学(理)试题 Word版含答案
2016年高考模拟试卷温岭数学(理科)试题卷1. 若集合{|31}x A x =<,{|01}B x x =≤≤,则()AB = R ðA .(0,1)B .[0,1)C .(0,1]D .[0,1]2. 已知函数()([0f x ax b x =+∈,1]),则“30a b +>”是“()0f x >恒成立”的 A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件3. 某几何体的三视图如图所示(单位:cm ),则该几何体的 体积是A .()24+2πcm 3B .424+π3⎛⎫ ⎪⎝⎭cm 3C .()8+6πcm 3 D.(16+2π3⎛⎫⎪⎝⎭cm 3 4. 点F 是抛物线2:2(0)C y px p =>的焦点,l 是准线,A 是抛物线在第一象限内的点,直线AF 的倾斜角为60,AB l ⊥于B ,ABF ∆p 的值为AB .1 CD .3 5.设集合{()1}P x y x y x y =+≤∈∈,,R,R ,22{()1}Q x y x y x y =+≤∈∈,,R,R ,42{()1}R x y x y x y =+≤∈∈,,R,R ,则下列判断正确的是A .P ⊂≠Q ⊂≠RB .P ⊂≠R ⊂≠QC .Q ⊂≠P ⊂≠RD .R ⊂≠P ⊂≠Q6. 已知数列{}n a 为等差数列,22121a a +=,n S 为{}n a 的前n 项和,则5S 的取值范围是A.[B.[-C .[10-,10] D.[-7. 已知实数x ,y 满足3xy x y -+=,且1x >,则(8)y x +的最小值是 A .33 B .26 C .25 D .218. 如图,在平行四边形ABCD 中,AB a =,1BC =,60BAD ∠=,E 为线段CD (端 点C 、D 除外)上一动点. 将ADE ∆沿直线AE 翻折,在翻折过程中,若存在某个位置使得直线AD 与BC 垂直,则a 的取值范围是俯视图侧视图正视图4(第3题图)A.)+∞ B.)+∞ C.1)+∞, D.1)+∞,9. 1:260l ax y ++=,22:(1)10l x a y a +-+-=.12l l ⊥,则a = ;12//l l ,则a = .10. 设12322()log (1) 2.x e x f x x x -⎧<⎪=⎨-≥⎪⎩,,,则((2))f f 的值为 ;若()f x a =有两个不等 的实数根,则实数a 的取值范围为 .11. 已知实数x ,y 满足4502402250x y x y x y --≤⎧⎪+-≥⎨⎪-+≥⎩,,,则目标函数2x y +的最大值为 ,目标函数224x y +的最小值为 .12. 函数44()sin cos f x x x =+的最小正周期是 ;单调递增区间是 . 13. {}n a 满足*11(n n n a a a n +-=+∈N ,2)n ≥,n S 是{}n a 前n 项和,51a =,则6S = . 14. 已知四个点A ,B ,C ,D ,满足1AC BD ⋅=,2AB DC ⋅=,则AD BC ⋅= .15. 双曲线22221(0x y a a b-=>,0)b >的左、右焦点分别为1F ,2F ,P 为双曲线上一点,且120PF PF ⋅=,12FPF ∆的内切圆半径2r a =,则双曲线的离心率e = . 16. ABC ∆,满足cos sin 0b C C a c --=.(Ⅰ)求角B 的值;(Ⅱ)若2a =,且AC 边上的中线BDABC ∆的面积.(第8题图)A17. 四棱锥P ABCD -中,PD ABCD ⊥底面,//AD BC ,AC DB ⊥,60CAD ∠=,=2AD ,1PD =.(Ⅰ)证明:AC BP ⊥;(Ⅱ)求二面角C AP D --的平面角的余弦值.18. 定义在(0)+∞,上的函数11()()f x a x x xx=+--(R)a ∈.(Ⅰ)当12a =时,求()f x 的单调区间;(Ⅱ)若1()2f x x ≥对任意的0x >恒成立,求a 的取值范围.19.已知椭圆2222:1(0)x y C a b a b+=>>的左顶点为(2-,0),离心率为12.(Ⅰ)求椭圆C的方程;(Ⅱ)已知直线l 过点(4S ,0),与椭圆C 交于P ,Q 两点,点P 关于x 轴的对PDABC(第17题图)称点为P ',P '与Q 两点的连线交x 轴于点T ,当PQT ∆的面积最大时,求直线l 的方程.20.数列{}n a 满足01n a <<,且11112n n n na a a a +++=+*()n ∈N .(Ⅰ)证明:1n n a a +<;(Ⅱ)若112a =,设数列{}n a 的前n 项和为n S 522n S <<.温岭2016年高考模拟试卷数学(理科)参考答案1.D2.B3.A4.B5.A6.B7.C8.D9.23,-1,10.2,[1,2)e 11.10,812.2π,[,]()242k k k Z πππ-∈ 13.4 ,14.3,15.516. 解:(1)由已知条件得: sin cos sin sin sin 0B C B C A C --= ………2分sin cos sin sin()sin 0B C B C B C C ∴-+-=……3分sin cos sin sin 0B C B C C --=sin 0C >得cos 1B B -=1sin()62B π∴-= ………………………5分又5(0,)66B ππ-∈66B ππ∴-=,3B π∴= …………7分 (II)由已知得: 2BA BC BD +=,平方得:22224BA BC BA BC BD ++=,即…10分222cos843c a ca π++=,又2a =,22800c c ∴+-=解得:8c ∴=或2c =-(舍去)…12分1sin 2ABC S ac B ∆=128sin23π=⨯⨯⨯=…14分17. 法一:(Ⅰ)因为PD ⊥面ABCD ,AC ⊂面ABCD , 所以PD AC ⊥………2分 因为BD AC ⊥,所以AC ⊥面BDP . ………………………4分 因为BP ⊂面BDP ,所以BP AC ⊥. ………………………6分(Ⅱ)设BD AC O ⋂=,连接OP ,过D 作DH OP ⊥于H ,过D 作DE AP ⊥于E ,连接EH . 由(Ⅰ)可知AC DH ⊥,所以DH ACP ⊥面,所以DH AP ⊥. 所以AP DEH ⊥面,所以EH AP ⊥,所以DEH ∠是二面角C AP D ——的平面角. ……10分 因为OD =1DP =可知2DH =. ………………12分由2AD =,可知DE =EH (14)分所以1cos 4DEH ∠==. ……15分 法二:以O 为坐标原点,OD ,OA 为,x y 轴建立如图空间直角坐标系Oxyz —,则(0,0,0)O ,D ,(0,1,0)A ,P 所以(0,1,0)OA =,(3,0,1)OP =,(3,1,0)AD =-,(0,0,1)DP = (10)设平面ACP 的法向量111(,,)m x y z =,平面ADP 的法向量222(,,)n x y z =,由00m OA m OP ⎧⋅=⎪⎨⋅=⎪⎩可知11100y z =⎧⎪+=,取(1,0,m =. ……………12分由00n AD n OP ⎧⋅=⎪⎨⋅=⎪⎩可知22200y z -==⎪⎩,取).0,3,1(= …………14分所以1cos ,4m n m n m n⋅==⋅. 所以二面角C A P D ——的平面角的余弦值为14…15分18. 解:(1)当12a =时,3,122()31,122xx x f x x x x⎧-≥⎪⎪=⎨⎪-<⎪⎩……………………….2分所以()f x 的单调递增区间是(0,1],单调递减区间是[1,)+∞.………….6分 (2)由1()2f x x ≥得111()2a x x x x x +--≥ 2221(1)12a x x x ∴+--≥ ①当01x <<时,2221(1)12a x x x ++-≥221121x a x -∴≥+……8分222113112,112(1)24xx x -⎛⎫=-∈ ⎪++⎝⎭1a ∴≥ …………………10分②当1x >时,2221(1)12a x x x +-+≥223121x a x -∴≥+………………12分2223135132[,)122(1)42x x x -=-∈++ 32a ∴≥……………….…14分综上所述,a 的取值范围是3[,)2+∞.……………………………………………15分19. 解:(1) 222132a a c e b a =⎧=⎧⎪⇒⇒⎨⎨===⎩⎪⎩椭圆C 的方程为22143x y +=………………5分 (2)设直线l 的方程为4x my =+,11(,),P x y 22(,),Q x y 则),(11y x P -',联立22434120x my x y =+⎧⎨+-=⎩得 22(34)24360m y my +++=, 则222(24)144(34)144(m 4)0m m ∆=-+=->,即24m >.1221222434,3634m y y m y y m ⎧+=-⎪⎪+⎨⎪=⎪+⎩…………7分 直线P Q '的方程为211121()y y y x x y x x +=---则122112************(4)(4)24()1T x y x y my y my y my y y y x y y y y y y ++++++====+++,则(1,0)T ,故3ST = ……………………9分所以1223234PQT SQT SPT S S S y y m ∆∆∆=-=-=+………………11分令0t =>则21818163163PQT t S t t t ∆==≤++, ……………………13分 当且仅当2163t =即2283m =即m =“=”, 故所求直线l的方程为4x y =+ ……………………15分 20. 证明:(1)11110n n n n n a a a a a ++⎛⎫+-+=> ⎪⎝⎭,又1()f x x x=+在(0,1)单调递减,01n a <<,1n n a a +∴<. …………5分 (2)11112n n n na a a a +++=+, 1111n n n n n a a a a a ++∴=-+-. 11111111152n n n n n S a a a a a a ++++∴=-+-=+-. ………………8分 又22122111244n n n n a a a a ++++=++, 2212211124n n n na a a a ++∴=++-. ……10分 由10n n a a +<<可知212222111112243n n n na a a a a +∴+<<++=+,………14分 即2211123n n a a +<-<,22111123n n n a a +∴<-<, 2112434n n n a +∴+<<+.11n a +<<1102n a +<<,522n S << ………………………15分。
浙江省温岭市2016年高考模拟数学(理)试题 Word版含答案
2016年高考模拟试卷温岭数学(理科)试题卷1. 若集合{|31}x A x =<,{|01}B x x =≤≤,则()A B = R ð A .(0,1) B .[0,1) C .(0,1] D .[0,1]2. 已知函数()([0f x ax b x =+∈,1]),则“30a b +>”是“()0f x >恒成立”的 A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件3. 某几何体的三视图如图所示(单位:cm ),则该几何体的 体积是A .()24+2πcm 3B .424+π3⎛⎫ ⎪⎝⎭cm 3C .()8+6πcm 3D.(16+2π3⎛⎫⎪⎝⎭cm 3 4. 点F 是抛物线2:2(0)C y px p =>的焦点,l 是准线,A 是抛物线在第一象限内的点,直线AF 的倾斜角为60 ,AB l ⊥于B ,ABF ∆p 的值为AB .1 C.3 5.设集合{()1}P x y x y x y =+≤∈∈,,R,R ,22{()1}Q x y x y x y =+≤∈∈,,R,R ,42{()1}R x y x y x y =+≤∈∈,,R,R ,则下列判断正确的是A .P ⊂≠Q ⊂≠RB .P ⊂≠R ⊂≠QC .Q ⊂≠P ⊂≠RD .R ⊂≠P ⊂≠Q6. 已知数列{}n a 为等差数列,22121a a +=,n S 为{}n a 的前n 项和,则5S 的取值范围是A.[-B.[-C .[10-,10] D.[-7. 已知实数x ,y 满足3xy x y -+=,且1x >,则(8)y x +的最小值是 A .33 B .26 C .25 D .218. 如图,在平行四边形ABCD 中,AB a =,1BC =,60BAD ∠=,E 为线段CD (端点C 、D 除外)上一动点. 将ADE ∆沿直线AE 翻折,在翻折过程中,若存在某个位置使得直线AD 与BC 垂直,则a 的取值范围是俯视图侧视图正视图4(第3题图)A.)+∞ B.)+∞ C.1)+∞, D.1)+∞,9. 1:260l ax y ++=,22:(1)10l x a y a +-+-=.12l l ⊥,则a = ;12//l l ,则a = . 10. 设12322()log (1) 2.x e x f x x x -⎧<⎪=⎨-≥⎪⎩,,,则((2))f f 的值为 ;若()f x a =有两个不等 的实数根,则实数a 的取值范围为 .11. 已知实数x ,y 满足4502402250x y x y x y --≤⎧⎪+-≥⎨⎪-+≥⎩,,,则目标函数2x y +的最大值为 ,目标函数224x y +的最小值为 .12. 函数44()sin cos f x x x =+的最小正周期是 ;单调递增区间是 .13. {}n a 满足*11(n n n a a a n +-=+∈N ,2)n ≥,n S 是{}n a 前n 项和,51a =,则6S = .14. 已知四个点A ,B ,C ,D ,满足1AC BD ⋅= ,2AB DC ⋅= ,则AD BC ⋅=.15. 双曲线22221(0x y a a b-=>,0)b >的左、右焦点分别为1F ,2F ,P 为双曲线上一点,且120PF PF ⋅=,12FPF ∆的内切圆半径2r a =,则双曲线的离心率e = . 16. ABC ∆,满足cos sin 0b C C a c --=.(Ⅰ)求角B 的值;(Ⅱ)若2a =,且AC 边上的中线BDABC ∆的面积.(第8题图)A17. 四棱锥P ABCD -中,PD ABCD ⊥底面,//AD BC ,AC DB ⊥,60CAD ∠=,=2AD ,1PD =.(Ⅰ)证明:AC BP ⊥;(Ⅱ)求二面角C AP D --的平面角的余弦值.18. 定义在(0)+∞,上的函数11()()f x a x x xx=+--(R)a ∈.(Ⅰ)当12a =时,求()f x 的单调区间;(Ⅱ)若1()2f x x ≥对任意的0x >恒成立,求a 的取值范围.19.已知椭圆2222:1(0)x y C a b a b+=>>的左顶点为(2-,0),离心率为12.(Ⅰ)求椭圆C的方程;(Ⅱ)已知直线l 过点(4S ,0),与椭圆C 交于P ,Q 两点,点P 关于x 轴的对PDABC(第17题图)称点为P ',P '与Q 两点的连线交x 轴于点T ,当PQT ∆的面积最大时,求直线l 的方程.20.数列{}n a 满足01n a <<,且11112n n n na a a a +++=+*()n ∈N .(Ⅰ)证明:1n n a a +<;(Ⅱ)若112a =,设数列{}n a 的前n 项和为n S 522n S <<.温岭2016年高考模拟试卷数学(理科)参考答案1.D2.B3.A4.B5.A6.B7.C8.D9.23,-1,10.2,[1,2)e 11.10,812.2π,[,]()242k k k Z πππ-∈ 13.4 ,14.3,15.516. 解:(1)由已知条件得: sin cos sin sin sin 0B C B C A C --= ………2分sin cos sin sin()sin 0B C B C B C C ∴-+-=……3分sin cos sin sin 0B C B C C --=sin 0C > cos 1B B -=1sin()62B π∴-= ………………………5分又5(0,)66B ππ-∈66B ππ∴-=,3B π∴= …………7分 (II)由已知得: 2BA BC BD += ,平方得:22224BA BC BA BC BD ++= ,即…10分222cos843c a ca π++= ,又2a =,22800c c ∴+-=解得:8c ∴=或2c =-(舍去)…12分1sin 2ABC S ac B ∆=128sin 23π=⨯⨯⨯=分17. 法一:(Ⅰ)因为PD ⊥面ABCD ,AC ⊂面ABCD , 所以PD AC ⊥………2分 因为BD AC ⊥,所以AC ⊥面BDP . ………………………4分 因为BP ⊂面BDP ,所以BP AC ⊥. ………………………6分(Ⅱ)设BD AC O ⋂=,连接OP ,过D 作DH OP ⊥于H ,过D 作DE AP ⊥于E ,连接EH . 由(Ⅰ)可知AC DH ⊥,所以DH ACP ⊥面,所以DH AP ⊥. 所以AP DEH ⊥面,所以EH AP ⊥,所以DEH ∠是二面角C AP D ——的平面角. ……10分因为OD =1DP =可知2DH =. ………………12分 由2AD =,可知DE =,所以EH . (14)分所以1cos 4DEH ∠. ……15分法二:以O 为坐标原点,OD ,OA 为,x y 轴建立如图空间直角坐标系O xyz —,则(0,0,0)O,D ,(0,1,0)A ,P 所以(0,1,0)OA = ,OP =,1,0)AD =- ,(0,0,1)DP = (10)设平面ACP 的法向量111(,,)m x y z = ,平面ADP 的法向量222(,,)n x y z = ,由0m OA m OP ⎧⋅=⎪⎨⋅=⎪⎩可知11100y z =⎧⎪+=,取(1,0,m = . ……………12分 由00n AD n OP ⎧⋅=⎪⎨⋅=⎪⎩可知22200y z -==⎪⎩,取).0,3,1(= …………14分 所以1cos ,4m n m n m n ⋅==⋅. 所以二面角C AP D ——的平面角的余弦值为14…15分18. 解:(1)当12a =时,3,122()31,122xx x f x x x x⎧-≥⎪⎪=⎨⎪-<⎪⎩……………………….2分所以()f x 的单调递增区间是(0,1],单调递减区间是[1,)+∞.………….6分 (2)由1()2f x x ≥得111()2a x x x x x +--≥ 2221(1)12a x x x ∴+--≥ ①当01x <<时,2221(1)12a x x x ++-≥221121x a x -∴≥+……8分222113112,112(1)24xx x -⎛⎫=-∈ ⎪++⎝⎭ 1a ∴≥ …………………10分②当1x >时,2221(1)12a x x x +-+≥223121x a x -∴≥+………………12分2223135132[,)122(1)42x x x -=-∈++ 32a ∴≥……………….…14分综上所述,a 的取值范围是3[,)2+∞.……………………………………………15分19. 解:(1) 222132a a c e b a =⎧=⎧⎪⇒⇒⎨⎨===⎩⎪⎩椭圆C 的方程为22143x y +=………………5分 (2)设直线l 的方程为4x my =+,11(,),P x y 22(,),Q x y 则),(11y x P -',联立22434120x my x y =+⎧⎨+-=⎩得 22(34)24360m y my +++=, 则222(24)144(34)144(m 4)0m m ∆=-+=->,即24m >.1221222434,3634m y y m y y m ⎧+=-⎪⎪+⎨⎪=⎪+⎩…………7分 直线P Q '的方程为211121()y y y x x y x x +=---则122112************(4)(4)24()1T x y x y my y my y my y y y x y y y y y y ++++++====+++,则(1,0)T ,故3ST = ……………………9分所以1223234PQT SQT SPT S S S y y m ∆∆∆=-=-=+分令0t =>则21818163163PQT t S t t t∆==≤++, ……………………13分当且仅当2163t =即2283m =即m = 故所求直线l的方程为4x y =+ ……………………15分 20. 证明:(1)11110n n n n n a a a a a ++⎛⎫+-+=> ⎪⎝⎭, 又1()f x x x=+在(0,1)单调递减,01n a <<,1n n a a +∴<. …………5分 (2)11112n n n n a a a a +++=+ , 1111n n n n na a a a a ++∴=-+-. 11111111152n n n n n S a a a a a a ++++∴=-+-=+-. ………………8分 又22122111244n n n n a a a a ++++=++ , 2212211124n n n na a a a ++∴=++-. ……10分 由10n n a a +<<可知212222111112243n n n na a a a a +∴+<<++=+,………14分 即2211123n n a a +<-<,22111123n n n a a +∴<-<, 2112434n n n a +∴+<<+.11n a +<<1102n a +<<,522n S << ………………………15分。
2016年温岭高考理科数学试题卷
2016年温岭高考理科数学试题卷D理科数学试题卷第2 页共11 页理科数学试题卷第3 页共11 页理科数学 试题卷 第 4 页 共 11 页A .(0,1)B .[0,1)C .(0,1]D .[0,1]2. 已知函数()([0f x ax b x =+∈,1]),则“30a b +>”是“()0f x >恒成立”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3. 某几何体的三视图如图所示(单位:cm ),则该几何体的 体积是A .()24+2πcm 3B .424+π3⎛⎫ ⎪⎝⎭cm 3C .()8+6πcm 3D.(16+2π3⎛⎫⎪⎝⎭cm 3俯视图侧视图正视图4(第3题图)理科数学 试题卷 第 5 页 共 11 页4. 点F 是抛物线2:2(0)C ypx p =>的焦点,l 是准线,A是抛物线在第一象限内的点,直线AF 的倾斜角为60,AB l ⊥于B ,ABF ∆的面积,则p 的值为A. B .1 C.D .3 5.设集合{()1}P x y x y x y =+≤∈∈,,R,R ,22{()1}Q x y x y x y =+≤∈∈,,R,R ,42{()1}R x y x y x y =+≤∈∈,,R,R ,则下列判断正确的是A .P ⊂≠Q ⊂≠RB .P ⊂≠R ⊂≠QC .Q ⊂≠P ⊂≠RD .R ⊂≠P ⊂≠Q6. 已知数列{}na 为等差数列,22121aa +=,nS 为{}na 的前n 项和,则5S 的取值范围是A.[B.[-,C .[10-,10] D.[-7. 已知实数x ,y 满足3xy x y -+=,且1x >,则(8)y x +的理科数学 试题卷 第 6 页 共 11 页最小值是A .33B .26C .25D .218. 如图,在平行四边形ABCD 中,AB a =,1BC =,60BAD ∠=,E 为线段CD (端点C 、D 除外)上一动点. 将ADE ∆沿直线AE 翻折,在翻折过程中,若存在某个位置使得直线AD 与BC 垂直,则a 的取值范围是 A.)+∞ B.)+∞ C.1)+∞,D.1)+∞,非选择题部分(共110分)二、填空题: 本大题共7小题, 多空题每题6分, 单空题每题4分, 共36分。
2016年温岭高考理科数学试题卷
2016年高考模拟试卷数学(理科)试题卷 (2016.5)本试题卷分选择题和非选择题两部分.全卷共6页,满分150分, 考试时间120分钟. 请考生按规定用笔将所有试题的答案涂、写在答题纸上. 参考公式:球的表面积公式 柱体的体积公式24SR VSh球的体积公式其中S 表示柱体的底面积,h 表示柱体的高343VR台体的体积公式 其中R 表示球的半径 112213V h S S S S锥体的体积公式13VSh其中1S ,2S 分别表示台体的上、下底面积,其中S 表示锥体的底面积,h 表示锥体的高 h 表示台体的高选择题部分(共40分)一、选择题:本大题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 若集合{|31}xA x =<,{|01}B x x =≤≤,则()A B = RA .(0,1)B .[0,1)C .(0,1]D .[0,1]2. 已知函数()([0f x ax b x =+∈,1]),则“30a b +>”是“()0f x >恒成立”的 A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3. 某几何体的三视图如图所示(单位:cm ),则该几何体的 体积是A .()24+2πcm 3B .424+π3⎛⎫ ⎪⎝⎭cm 3 C .()8+6πcm 3D.(16+2π3⎛⎫⎪⎝⎭cm 34. 点F 是抛物线2:2(0)C y px p =>的焦点,l 是准线,A 是抛物线在第一象限内的点, 直线AF 的倾斜角为60,AB l ⊥于B ,ABF ∆p 的值为A.2B .1 CD .3 5.设集合{()1}P x y x y x y =+≤∈∈,,R,R ,22{()1}Q x y x y x y =+≤∈∈,,R,R ,42{()1}R x y x y x y =+≤∈∈,,R,R ,则下列判断正确的是A .P ⊂≠Q ⊂≠RB .P ⊂≠R ⊂≠QC .Q ⊂≠P ⊂≠RD .R ⊂≠P ⊂≠Q6. 已知数列{}n a 为等差数列,22121a a +=,n S 为{}n a 的前n 项和,则5S 的取值范围是A.[B.[-, C .[10-,10] D.[-7. 已知实数x ,y 满足3xy x y -+=,且1x >,则(8)y x +的最小值是俯视图侧视图正视图4(第3题图)A .33B .26C .25D .218. 如图,在平行四边形ABCD 中,AB a =,1BC =,60BAD ∠=,E 为线段CD (端 点C 、D 除外)上一动点. 将ADE ∆沿直线AE 翻折,在翻折过程中,若存在某个位置使得直线AD 与BC 垂直,则a 的取值范围是A.)+∞ B.)+∞ C.1)+∞, D.1)+∞,非选择题部分(共110分)二、填空题: 本大题共7小题, 多空题每题6分, 单空题每题4分, 共36分。
2016年-浙江理数高考试题文档版(含答案)
2016年普通高等学校招生全国统一考试(浙江卷)数学(理科)一、选择题:本大题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一个是符合题目要求的。
1.已知集合P=,Q=,则P=()A.[2,3]B.(-2,3]C.[1,2)D.2.已知互相垂直的平面交于直线l,若直线m,n满足,则()A. B. C. D.3.在平面上,过点P作直线l的垂线所得的垂足称为点P在直线l上的投影,由区域中的点在直线x+y-2=0上的投影构成的线段记为AB,则|AB|=()A. B.4 C. D.64.命题“使得”的否定形式是()A.使得B.使得C.使得D.使得5.设函数,则的最小正周期()A.与b有关,且与c有关B.与b有关,但与c无关C.与b无关,且与c无关D.与b无关,但与c有关6.如图,点列分别在某锐角的两边上,且,,,.(表示点P与Q不重合)学.科.网若,为的面积,则()A.是等差数列B.是等差数列C.是等差数列D.是等差数列7.已知椭圆与双曲线的焦点重合,分别为的离心率,则()A.且B.且C.且D.且8.已知实数. ()A.若则B.若则C.若则D.若则二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
9.若抛物线上的点M到焦点的距离为10,则M到y轴的距离是 .10.已知,则A= ,b= .11.某几何体的三视图如图所示(单位:cm),则该几何体的表面积是 cm2,体积是cm3.12.已知,若,则a= ,b= .13.设数列的前n 项和为,若,则= ,= . 14.如图,在中,AB=BC=2,.若平面ABC 外的点P 和线段AC 上的点D ,满足PD=DA ,PB=BA ,则四面体PBCD 的体积的最大值是 .15.已知向量a ,b ,|a |=1,|b |=2,学.科.网若对任意单位向量e ,均有|a ·e |+|b ·e |,则a ·b 的最大值是 .三、解答题:本大题共5小题,共74分。
2016浙江理科数学高考真题
2016浙江理科数学高考真题2016浙江理科数学高考真题1、已知集合P=,Q=,则P=A[2,3] B(-2,3] C[1,2) D2、已知互相垂直的平面交于直线l,若直线m,n满足,则A B C D3、在平面上,过点P作直线l的垂线所得的垂足称为点P在直线l上的投影,由区域中的点在直线x+y-2=0上的投影构成的线段记为AB,则|AB|=A B4 C D64、命题“使得”的否定形式是A使得B使得C使得D使得5、设函数,则的最小正周期A与b有关,且与c有关B与b有关,但与c无关C与b无关,且与c无关D与b无关,但与c有关6、如图,点列分别在某锐角的两边上,且,,,.(表示点P与Q不重合)若,为的面积,则A是等差数列B是等差数列C是等差数列D是等差数列7、已知椭圆与双曲线的焦点重合,分别为的离心率,则A 且B 且C 且D 且8、已知实数.A若则B若则C若则D若则9、若抛物线上的点M到焦点的距离为10,则M到y轴的距离是______10、已知,则A=____,b=______11、某几何体的三视图如图所示(单位:cm),则该几何体的表面积是cm2,体积是_________12已知,若,则a=_________,b=_________13、设数列的前n项和为,若,则=______,=_______14、如图,在中,AB=BC=2,.若平面ABC外的点P和线段AC上的点D,满足PD=DA,PB=BA,则四面体PBCD的体积的最大值是__________15、已知向量a,b,|a|=1,|b|=2,若对任意单位向量e,均有|a·e|+|b·e|,则a·b的最大值是_________16、在中,内角所对的边分别为,已知(Ⅰ)证明:(Ⅱ)若的面积,求角A的大小17、如图,在三棱台中,已知平面BCFE平面ABC,,,,,(Ⅰ)求证:(Ⅱ)求二面角的余弦值.18、设,函数,其中(Ⅰ)求使得等式成立的x的取值范围(Ⅱ)(i)求的最小值(ii)求在上的最大值19、如图,设椭圆C:(Ⅰ)求直线被椭圆截得到的弦长(用a,k表示)(Ⅱ)若任意以点为圆心的圆与椭圆至多有三个公共点,求椭圆的离心率的取值范围20、设数列满足,(Ⅰ)求证:(Ⅱ)若,,证明:,.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年高考模拟试卷
数学(理科)试题卷 (2016.5)
本试题卷分选择题和非选择题两部分.全卷共6页,满分150分, 考试时间120分钟. 请考生按规定用笔将所有试题的答案涂、写在答题纸上. 参考公式:
球的表面积公式 柱体的体积公式
24S R p = V Sh =
球的体积公式
其中S 表示柱体的底面积,h 表示柱体的高
343
V R p =
台体的体积公式
其中R 表示球的半径 (
)
121
3
V h S S =+
锥体的体积公式13
V Sh =
其中1S ,2S 分别表示台体的上、下底面积,
其中S 表示锥体的底面积,h 表示锥体的高 h 表示台体的高
选择题部分(共40分)
一、选择题:本大题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只
有一项是符合题目要求的。
1. 若集合{|31}x
A x =<,{|01}
B x x =≤≤,则()
A B = R I ð
A .(0,1)
B .[0,1)
C .(0,1]
D .[0,1]
2. 已知函数()([0f x ax b x =+∈,1]),则“30a b +>”是“()0f x >恒成立”的 A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件
3. 某几何体的三视图如图所示(单位:cm ),则该几何体的 体积是
A .()24+2πcm 3
B .424+
π3⎛
⎫ ⎪⎝⎭
cm 3
C .()8+6πcm 3
D
.(16+2π3⎛⎫
⎪⎝⎭
cm 3
4. 点F 是抛物线2
:2(0)C y px p =>的焦点,l 是准线,A 是抛物线在第一象限内的点,
直线AF 的倾斜角为60o
,AB l ⊥于B ,ABF ∆
p 的值为
A
.
2
B .1 C
.3 5.设集合{()1}P x y x y x y =+≤∈∈,,R,R ,22{()1}Q x y x y x y =+≤∈∈,,R,R ,
42{()1}R x y x y x y =+≤∈∈,,R,R ,则下列判断正确的是
A .P ⊂≠Q ⊂≠R
B .P ⊂≠R ⊂≠Q
C .Q ⊂≠P ⊂≠R
D .R ⊂≠P ⊂≠Q
6. 已知数列{}n a 为等差数列,22
121a a +=,n S 为{}n a 的前n 项和,则5S 的取值范围是
A
.[-
B
.[-
, C .[10-,10] D
.[-
7. 已知实数x ,y 满足3xy x y -+=,且1x >,则(8)y x +的最小值是
俯视图
侧视图
正视图
4
(第3题图)
A .33
B .26
C .25
D .21
8. 如图,在平行四边形ABCD 中,AB a =,1BC =,60BAD ∠=o
,E 为线段CD (端 点C 、D 除外)上一动点. 将ADE ∆沿直线AE 翻折,在翻折过程中,若存在某个位置使得直线AD 与BC 垂直,则a 的取值范围是
A
.)+∞ B
.)+∞ C
.1)+∞, D
.1)+∞,
非选择题部分(共110分)
二、填空题: 本大题共7小题, 多空题每题6分, 单空题每题4分, 共36分。
9. 已知直线1:260l ax y ++=,22:(1)10l x a y a +-+-=.若12l l ⊥,则a = ▲ ;
若12//l l ,则a = ▲ .
10. 设1
2
322()log (1) 2.
x e x f x x x -⎧<⎪=⎨-≥⎪⎩,,
,则((2))f f 的值为 ▲ ;若()f x a =有两个不等
的实数根,则实数a 的取值范围为 ▲ .
11. 已知实数x ,y 满足4502402250x y x y x y --≤⎧⎪
+-≥⎨⎪-+≥⎩
,
,,则目标函数2x y +的最大值为 ▲ ,目标
函数22
4x y +的最小值为 ▲ .
12. 函数44
()sin cos f x x x =+的最小正周期是 ▲ ;单调递增区间是 ▲ .
13. 数列{}n a 满足*
11(n n n a a a n +-=+∈N ,2)n ≥,n S 是{}n a 的前n 项和,若51a =,
(第8题图)
E
A
D
则6S = ▲ .
14. 已知四个点A ,B ,C ,D ,满足1AC BD ⋅=u u u r u u u r ,2AB DC ⋅=u u u r u u u r ,则AD BC ⋅=u u u r u u u r
▲ . 15. 双曲线22
221(0x y a a b
-=>,0)b >的左、右焦点分别为1F ,2F ,P 为双曲线上一点,
且120PF PF ⋅=u u u r u u u u r
,
12F PF ∆的内切圆半径2r a =,则双曲线的离心率e = ▲ .
三、解答题:本大题共5小题,共74分。
解答应写出文字说明、证明过程或演算步骤。
16. (本小题满分14分)已知a b c ,,分别为ABC ∆三个内角A B C ,,
的对边,满足
cos sin 0b C C a c +--=.
(Ⅰ)求角B 的值;
(Ⅱ)若2a =,且AC 边上的中线BD
ABC ∆的面积.
17. (本小题满分15分)如图,四棱锥P ABCD -中,侧棱PD ABCD ⊥底面,//AD BC ,
AC DB ⊥,60CAD ∠=o
,=2AD ,1PD =.
(Ⅰ)证明:AC BP ⊥;
(Ⅱ)求二面角C AP D --的平面角的余弦值.
P
D
A
B C
(第17题图)
18. (本小题满分15分)定义在(0)+∞,上的函数1
1
()()f x a x x x x
=+--
(R)a ∈. (Ⅰ)当1
2
a =
时,求()f x 的单调区间; (Ⅱ)若1
()2
f x x ≥对任意的0x >恒成立,求a 的取值范围.
19. (本小题满分15分)已知椭圆22
22:1(0)x y C a b a
+=>>的左顶点为(2-,0),离
心
率为1
2
.
(Ⅰ)求椭圆C 的方程;
(Ⅱ)已知直线l 过点(4S ,0)C 交于P ,Q 两点,点P 关于x 轴的对称
点为P ',P '与Q 两点的连线交x 轴于点T ,当PQT ∆的面积最大时,求直线l 的方 程.
20. (本小题满分
15
分)已知数列{}n a 满足01n a <<,且
11112n n n n
a a a a +++
=+*()n ∈N . (Ⅰ)证明:1n n a a +<; (Ⅱ)若112a =
,设数列{}n a 的前n 项和为n S ,
5
22
n S <<.。