七年级下学期第一次月考数学试题

合集下载

七年级数学下册第一次月考(压轴30题9种题型)(原卷版)

七年级数学下册第一次月考(压轴30题9种题型)(原卷版)

第一次月考(压轴30题9种题型)范围:七年级下册第一-第二单元一.实数与数轴(共5小题)1.如图,数轴上有M,N,P,Q四点,则这四点中所表示的数最接近﹣的是()A.点M B.点N C.点P D.点Q2.正方形纸板ABCD在数轴上的位置如图所示,点A,D对应的数分别为1和0,若正方形纸板ABCD绕着顶点顺时针方向在数轴上连续无滑动翻转,则在数轴上与2022对应的点是()A.D B.C C.B D.A3.如图,周长为14的长方形ABCD,其顶点A、B在数轴上,且点A对应的数为﹣1,CD =6,若将长方形ABCD沿着数轴向右做无滑动的翻滚,经过2023次翻滚后到达数轴上的点P,则P点所对应的数为.4.如图,正方形ABCD的边AB在数轴上,数轴上点A表示的数为﹣1,正方形ABCD的面积为16.(1)数轴上点B表示的数为;(2)将正方形ABCD沿数轴水平移动,移动后的正方形记为A′B′C′D′,移动后的正方形A′B′C′D′与原正方形ABCD重叠部分的面积为S.①当S=4时,画出图形,并求出数轴上点A′表示的数;②设正方形ABCD的移动速度为每秒2个单位长度,点E为线段AA′的中点,点F在线段BB′上,且BF=BB′.经过t秒后,点E,F所表示的数互为相反数,直接写出t的值.5.如图,一只蚂蚁从点A沿数轴向右爬了2个单位长度到达点B,点A表示﹣,设点B 所表示的数为m.(1)实数m的值是;(2)求|m+1|+|m﹣1|的值;(3)在数轴上还有C、D两点分别表示实数c和d,且有|2c+d|与互为相反数,求2c﹣3d的平方根.二.估算无理数的大小(共4小题)6.设[x]表示最接近x的整数(x≠n+0.5,n为整数),则=()A.32B.46C.64D.657.任何实数a,可用[a]表示不超过a的最大整数,如[3]=3,,现对72进行如下操作:,这样对72只需进行3次操作后变为1,类似的,对36只需进行()次操作后变为1.A.1B.2C.3D.48.定义:不超过实数x的最大整数称为x的整数部分,记作[x].例如[3.6]=3,[﹣]=﹣2,按此规定,[1﹣2]=.9.阅读下面的文字,解答问题.大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能完全地写出来,于是小明用﹣1来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为的整数部分是1,用这个数减去其整数部分,差就是小数部分.请解答下列问题:(1)求出+2的整数部分和小数部分;(2)已知:10+=x+y,其中x是整数,且0<y<1,请你求出(x﹣y)的相反数.三.实数的运算(共1小题)10.在实数的原有运算法则中我们定义一个新运算“★”如下:x≤y时,x★y=x2;x>y 时,x★y=y.则当z=﹣3时,代数式(﹣2★z)•z﹣(﹣4★z)的值为.四.相交线(共1小题)11.观察如图,并阅读图形下面的相关文字:两条直线相交,最多有1个交点;三条直线相交,最多有3个交点;4条直线相交,最多有6个交点……像这样,20条直线相交,交点最多的个数是()A.100个B.135个C.190个D.200个五.点到直线的距离(共1小题)12.定义:直线l1与l2相交于点O,对于平面内任意一点M,点M到直线l1、l2的距离分别为p、q,则称有序实数对(p,q)是点M的“距离坐标”,根据上述定义,“距离坐标”是(1,2)的点的个数是()A.2B.3C.4D.5六.平行线的判定(共1小题)13.如图,一副直角三角板中,∠A=60°,∠D=30°,∠E=∠B=45°,现将直角顶点C按照如图方式叠放,点B在直线AC上方,且0°<∠ACE<180°,能使三角形ADC 有一条边与EB平行的所有∠ACE的度数为.七.平行线的性质(共9小题)14.将一直角三角板与两边平行的纸条如图放置.下列结论:(1)∠1=∠2;(2)∠2+∠4=90°;(3)∠3=∠4;(4)∠4+∠5=180°;(5)∠1+∠3=90°.其中正确的共有()A.5个B.4个C.3个D.2个15.如图,a∥b,c⊥d,∠1=25°,则∠2的度数为()A.45°B.55°C.65°D.75°16.如图,ABCD为一长条形纸带,AB∥CD,将ABCD沿EF折叠,A、D两点分别与A′、D′对应,若∠1=2∠2,则∠AEF的度数为()A.60°B.65°C.72°D.75°17.如图,AB∥CD,用含∠1,∠2,∠3的式子表示∠4,则∠4的值为()A.∠1+∠2﹣∠3B.∠1+∠3﹣∠2C.180°+∠3﹣∠1﹣∠2D.∠2+∠3﹣∠1﹣180°18.如图,AB∥CD,E为AB上一点,且EF⊥CD垂足为F,∠CED=90°,CE平分∠AEG,且∠CGE=α,则下列结论:①;②DE平分∠GEB;③∠CEF=∠GED;④∠FED+∠BEC=180°;其中正确有()A.①②B.②③④C.①②③④D.①③④19.在如图所示的四种沿AB进行折叠的方法中,不一定能判断纸带两条边a,b互相平行的是()A.如图1,展开后测得∠1=∠2B.如图3,测得∠1=∠2C.如图2,展开后测得∠1=∠2且∠3=∠4D.在图4,展开后测得∠1+∠2=180°20.如图a是长方形纸带,∠DEF=28°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是()A.94°B.96°C.102°D.128°21.如图,平行于主光轴MN的光线AB和CD经过凹透镜的折射后,折射光线BE,DF的反向延长线交于主光轴MN上一点P.若∠ABE=150°,∠CDF=160°,则∠EPF的度数是.22.如图,AD∥BC,∠BAD的平分线交BC于点G,∠BCD=90°.(1)试说明:∠BAG=∠BGA;(2)如图1,点F在AG的反向延长线上,连接CF交AD于点E,若∠BAG﹣∠F=45°,求证:CF平分∠BCD.(3)如图2,线段AG上有点P,满足∠ABP=3∠PBG,过点C作CH∥AG.若在直线AG上取一点M,使∠PBM=∠DCH,求的值.八.平行线的判定与性质(共3小题)23.如图,工人师傅用角尺画出工件边缘AB的垂线a和b,得到a∥b.理由是()A.连接直线外一点与直线上各点的所有线段中,垂线段最短B.在同一平面内,垂直于同一条直线的两条直线互相平行C.在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线D.经过直线外一点,有且只有一条直线与这条直线平行24.如图,AB∥CD,PM平分∠EPF,∠C+∠PNC=180°,下列结论:①AB∥PN;②∠EPN=∠MPN;③∠AEP+∠DFP=2∠FPM;④∠C+∠CMP+∠AEP﹣∠EPM=180°;其中正确结论是.25.已知,直线EF分别与直线AB、CD相交于点G、H,并且∠AGE+∠DHE=180°.(1)如图1,求证:AB∥CD.(2)如图2,点M在直线AB、CD之间,连接MG、HM,当∠AGM=32°,∠MHC=68°时,求∠GMH的度数.(3)只保持(2)中所求∠GMH的度数不变,如图3,GP是∠AGM的平分线,HQ是∠MHD的平分线,作HN∥PG,则∠QHN的度数是否改变?若不发生改变,请求出它的度数.若发生改变,请说明理由.(本题中的角均为大于0°且小于180°的角)九.平移的性质(共5小题)26.如图,面积为12cm2的△ABC沿BC方向平移到△DEF的位置,平移的距离是边BC长的2倍,则图中四边形ACED的面积为()A.24cm2B.36cm2C.48cm2D.无法确定27.如图,把边长为2的正方形的局部进行图①~图④的变换,拼成图⑤,则图⑤的面积是()A.18B.16C.12D.828.如图1,从一个边长为4的正方形纸片扣掉两个边长为a的正方形得到如2图示的图形,若图2周长为22,则a的值是()A.1B.1.5C.2D.329.如图,将Rt△ABC沿着点B到C的方向平移到△DEF的位置,AB=5,DO=2,平移距离为3,则阴影部分面积为()A.6B.12C.24D.1830.如图所示,某商场重新装修后,准备在门前台阶上铺设地毯,已知这种地毯的批发价为每平方米40元,其台阶的尺寸如图所示,则购买地毯至少需要元.。

人教版七年级数学下学期第一次月考试卷含答案详解

人教版七年级数学下学期第一次月考试卷含答案详解

七年级(下)第一次月考数学试卷一、选择题(注释)1.如图,以下条件能判定GE∥CH的是()A.∥FEB=∥ECD B.∥AEG=∥DCH C.∥GEC=∥HCF D.∥HCE=∥AEG2.如图,已知∥1=∥2=∥3=∥4,则图形中平行的是()A.AB∥CD∥EF B.CD∥EFC.AB∥EF D.AB∥CD∥EF,BC∥DE3.如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,那么这两个角是()A.42°、138°B.都是10°C.42°、138°或42°、10°D.以上都不对4.如图的图形中只能用其中一部分平移可以得到的是()A.B.C.D.5.下列图形不是由平移而得到的是()A.B.C.D.6.如图,哪一个选项的右边图形可由左边图形平移得到()A.B.C.D.7.下列说法中正确的是()A.两直线被第三条直线所截得的同位角相等B.两直线被第三条直线所截得的同旁内角互补C.两平行线被第三条直线所截得的同位角的平分线互相垂直D.两平行线被第三条直线所截得的同旁内角的平分线互相垂直8.下列说法正确的是()A.不相交的两条线段是平行线B.不相交的两条直线是平行线C.不相交的两条射线是平行线D.在同一平面内,不相交的两条直线是平行线9.已知,如图,AB∥CD,则∥α、∥β、∥γ之间的关系为()A.∥α+∥β+∥γ=360°B.∥α﹣∥β+∥γ=180°C.∥α+∥β﹣∥γ=180°D.∥α+∥β+∥γ=180°10.不能判定两直线平行的条件是()A.同位角相等B.内错角相等C.同旁内角相等D.都和第三条直线平行11.一学员在广场上练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是()A.第一次向左拐30°,第二次向右拐30°B.第一次向右拐50°,第二次向左拐130°C.第一次向左拐50°,第二次向右拐130°D.第一次向左拐50°,第二次向左拐13012.如图,CD∥AB,垂足为D,AC∥BC,垂足为C.图中线段的长能表示点到直线(或线段)距离的线段有()A.1条B.3条C.5条D.7条二、填空题(注释)13.如图,设AB∥CD,截线EF与AB、CD分别相交于M、N两点.请你从中选出两个你认为相等的角.14.如图,为了把∥ABC平移得到∥A′B′C′,可以先将∥ABC向右平移格,再向上平移格.15.如图,AE∥BD,∥1=120°,∥2=40°,则∥C的度数是.16.如图,已知AB∥CD,则∥1与∥2,∥3的关系是.17.如图,AB∥CD,∥B=68°,∥E=20°,则∥D的度数为度.18.如图,直线DE交∥ABC的边BA于点D,若DE∥BC,∥B=70°,则∥ADE的度数是度.三、解答题(注释)19.如图,AB∥DE∥GF,∥1:∥D:∥B=2:3:4,求∥1的度数?20.已知:如图所示,∥1=∥2,∥3=∥B,AC∥DE,且B,C,D在一条直线上.求证:AE∥BD.21.如图,已知DE∥BC,EF平分∥AED,EF∥AB,CD∥AB,试说明CD平分∥ACB.22.如图,已知∥DAB+∥D=180°,AC平分∥DAB,且∥CAD=25°,∥B=95°(1)求∥DCA的度数;(2)求∥DCE的度数.23.如图,已知∥1+∥2=180°,∥3=∥B,试说明∥AED=∥ACB.24.如图所示,已知∥1=∥2,AC平分∥DAB,试说明DC∥AB.25.已知∥AGE=∥DHF,∥1=∥2,则图中的平行线有几对?分别是?为什么?26.已知直线a∥b,b∥c,c∥d,则a与d的关系是什么,为什么?-学年七年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(注释)1.如图,以下条件能判定GE∥CH的是()A.∥FEB=∥ECD B.∥AEG=∥DCH C.∥GEC=∥HCF D.∥HCE=∥AEG【考点】平行线的判定.【分析】在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【解答】解:∥FEB=∥ECD,∥AEG=∥DCH,∥HCE=∥AEG错误,因为它们不是GE、CH被截得的同位角或内错角;∥GEC=∥HCF正确,因为它们是GE、CH被截得的内错角.故选C.2.如图,已知∥1=∥2=∥3=∥4,则图形中平行的是()A.AB∥CD∥EF B.CD∥EFC.AB∥EF D.AB∥CD∥EF,BC∥DE【考点】平行线的判定.【分析】根据内错角相等,两直线平行;以及平行线的传递性即可求解.【解答】解:∥∥1=∥2=∥3=∥4,∥AB∥CD,BC∥DE,CD∥EF,∥AB∥CD∥EF.故选:D.3.如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,那么这两个角是()A.42°、138°B.都是10°C.42°、138°或42°、10°D.以上都不对【考点】平行线的性质.【分析】根据两边分别平行的两个角相等或互补列方程求解.【解答】解:设另一个角为x,则这一个角为4x﹣30°,(1)两个角相等,则x=4x﹣30°,解得x=10°,4x﹣30°=4×10°﹣30°=10°;(2)两个角互补,则x+(4x﹣30°)=180°,解得x=42°,4x﹣30°=4×42°﹣30°=138°.所以这两个角是42°、138°或10°、10°.以上答案都不对.故选D.4.如图的图形中只能用其中一部分平移可以得到的是()A.B.C.D.【考点】利用平移设计图案.【分析】根据平移的性质,对选项进行一一分析,排除错误答案.【解答】解:A、图形为轴对称所得到,不属于平移;B、图形的形状和大小没有变化,符合平移性质,是平移;C、图形为旋转所得到,不属于平移;D、最后一个图形形状不同,不属于平移.故选B.5.下列图形不是由平移而得到的是()A.B.C.D.【考点】利用平移设计图案.【分析】根据平移定义:把一个图形整体沿某一方向移动一定的距离,图形的这种移动,叫做平移可得A、B、C都是平移得到的,选项D中的对应点的连线不平行,两个图形需要经过旋转才能得到.【解答】解:A、图形是由平移而得到的,故此选项错误;B、图形是由平移而得到的,故此选项错误;C、图形是由平移而得到的,故此选项错误;D、图形是由旋转而得到的,故此选项正确;故选:D.6.如图,哪一个选项的右边图形可由左边图形平移得到()A.B.C.D.【考点】生活中的平移现象.【分析】根据平移的性质作答.【解答】解:观察图形可知C中的图形是平移得到的.故选C.7.下列说法中正确的是()A.两直线被第三条直线所截得的同位角相等B.两直线被第三条直线所截得的同旁内角互补C.两平行线被第三条直线所截得的同位角的平分线互相垂直D.两平行线被第三条直线所截得的同旁内角的平分线互相垂直【考点】平行线的性质;同位角、内错角、同旁内角.【分析】根据平行线的性质,结合各选项进行判断即可.【解答】解:A、两平行线被第三条直线所截得的同位角相等,原说法错误,故本选项错误;B、两平行线被第三条直线所截得的同旁内角互补,原说法错误,故本选项错误;C、两平行线被第三条直线所截得的同位角的平分线互相平行,原说法错误,故本选项错误;D、两平行线被第三条直线所截得的同旁内角的平分线互相垂直,说法正确,故本选项正确;故选D.8.下列说法正确的是()A.不相交的两条线段是平行线B.不相交的两条直线是平行线C.不相交的两条射线是平行线D.在同一平面内,不相交的两条直线是平行线【考点】平行线.【分析】根据平行线的定义,即可解答.【解答】解:根据平行线的定义:在同一平面内,不相交的两条直线是平行线.A,B,C错误;D正确;故选:D.9.已知,如图,AB∥CD,则∥α、∥β、∥γ之间的关系为()A.∥α+∥β+∥γ=360°B.∥α﹣∥β+∥γ=180°C.∥α+∥β﹣∥γ=180°D.∥α+∥β+∥γ=180°【考点】平行线的性质.【分析】根据两直线平行,同旁内角互补以及内错角相等即可解答,此题在解答过程中,需添加辅助线.【解答】解:过点E作EF∥AB,则EF∥CD.∥EF∥AB∥CD,∥∥α+∥AEF=180°,∥FED=∥γ,∥∥α+∥β=180°+∥γ,即∥α+∥β﹣∥γ=180°.故选C.10.不能判定两直线平行的条件是()A.同位角相等B.内错角相等C.同旁内角相等D.都和第三条直线平行【考点】平行线的判定.【分析】判定两直线平行,我们学习了两种方法:①平行公理的推论,②平行线的判定公理和两个平行线的判定定理判断.【解答】解:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,内错角相等;和第三条直线平行的和两直线平行.故选C.11.一学员在广场上练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是()A.第一次向左拐30°,第二次向右拐30°B.第一次向右拐50°,第二次向左拐130°C.第一次向左拐50°,第二次向右拐130°D.第一次向左拐50°,第二次向左拐130【考点】平行线的性质.【分析】首先根据题意对各选项画出示意图,观察图形,根据同位角相等,两直线平行,即可得出答案.【解答】解:如图:故选:A.12.如图,CD∥AB,垂足为D,AC∥BC,垂足为C.图中线段的长能表示点到直线(或线段)距离的线段有()A.1条B.3条C.5条D.7条【考点】点到直线的距离.【分析】本题图形中共有6条线段,即:AC、BC、CD、AD、BD、AB,其中线段AB的两个端点处没有垂足,不能表示点到直线的距离,其它都可以.【解答】解:表示点C到直线AB的距离的线段为CD,表示点B到直线AC的距离的线段为BC,表示点A到直线BC的距离的线段为AC,表示点A到直线DC的距离的线段为AD,表示点B到直线DC的距离的线段为BD,共五条.故选C.二、填空题(注释)13.如图,设AB∥CD,截线EF与AB、CD分别相交于M、N两点.请你从中选出两个你认为相等的角∥1=∥5.【考点】平行线的性质.【分析】AB∥CD,则这两条平行线被直线EF所截;形成的同位角相等,内错角相等.【解答】解:∥AB∥CD,∥∥1=∥5(答案不唯一).14.如图,为了把∥ABC平移得到∥A′B′C′,可以先将∥ABC向右平移5格,再向上平移3格.【考点】坐标与图形变化-平移.【分析】直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【解答】解:从点A看,向右移动5格,向上移动3格即可得到A′.那么整个图形也是如此移动得到.故两空分别填:5、3.15.如图,AE∥BD,∥1=120°,∥2=40°,则∥C的度数是20°.【考点】平行线的性质.【分析】根据两直线平行,内错角相等的性质求出∥AEC的度数,再根据三角形的内角和等于180°列式进行计算即可得解.【解答】解:∥AE∥BD,∥2=40°,∥∥AEC=∥2=40°,∥∥1=120°,∥∥C=180°﹣∥1﹣∥AEC=180°﹣120°﹣40°=20°.故答案为:20°.16.如图,已知AB∥CD,则∥1与∥2,∥3的关系是∥1=∥2+∥3.【考点】平行线的判定;三角形内角和定理.【分析】根据三角形的内角和等于180°,两直线平行同旁内角互补可得.【解答】解:∥AB∥CD,∥∥1+∥C=180°,又∥∥C+∥2+∥3=180°,∥∥1=∥+∥3.17.如图,AB∥CD,∥B=68°,∥E=20°,则∥D的度数为48度.【考点】三角形的外角性质;平行线的性质.【分析】根据平行线的性质得∥BFD=∥B=68°,再根据三角形的一个外角等于与它不相邻的两个内角和,得∥D=∥BFD﹣∥E,由此即可求∥D.【解答】解:∥AB∥CD,∥B=68°,∥∥BFD=∥B=68°,而∥D=∥BFD﹣∥E=68°﹣20°=48°.故答案为:48.18.如图,直线DE交∥ABC的边BA于点D,若DE∥BC,∥B=70°,则∥ADE的度数是70度.【考点】平行线的性质.【分析】根据两直线平行,同位角相等解答.【解答】解:∥DE∥BC,∥B=70°,∥∥ADE=∥B=70°.故答案为:70.三、解答题(注释)19.如图,AB∥DE∥GF,∥1:∥D:∥B=2:3:4,求∥1的度数?【考点】平行线的性质.【分析】首先设∥1=2x°,∥D=3x°,∥B=4x°,根据两直线平行,同旁内角互补即可表示出∥GCB、∥FCD的度数,再根据∥GCB、∥1、∥FCD的为180°即可求得x的值,进而可得∥1的度数.【解答】解:∥∥1:∥D:∥B=2:3:4,∥设∥1=2x°,∥D=3x°,∥B=4x°,∥AB∥DE,∥∥GCB=°,∥DE∥GF,∥∥FCD=°,∥∥1+∥GCB+∥FCD=180°,∥180﹣4x+x+180﹣3x=180,解得x=30,∥∥1=60°.20.已知:如图所示,∥1=∥2,∥3=∥B,AC∥DE,且B,C,D在一条直线上.求证:AE∥BD.【分析】根据平行线的性质求出∥2=∥4.求出∥1=∥4,根据平行线的判定得出AB∥CE,根据平行线的性质得出∥B+∥BCE=180°,求出∥3+∥BCE=180°,根据平行线的判定得出即可.【解答】证明:∥AC∥DE,∥∥2=∥4.∥∥1=∥2,∥∥1=∥4,∥AB∥CE,∥∥B+∥BCE=180°,∥∥B=∥3,∥∥3+∥BCE=180°,∥AE∥BD.21.如图,已知DE∥BC,EF平分∥AED,EF∥AB,CD∥AB,试说明CD平分∥ACB.【考点】平行线的判定与性质.【分析】求出EF∥CD,根据平行线的性质得出∥AEF=∥ACD,∥EDC=∥BCD,根据角平分线定义得出∥AEF=∥FED,推出∥ACD=∥BCD,即可得出答案.【解答】解:∥DE∥BC,∥∥EDC=∥BCD,∥EF平分∥AED,∥∥AEF=∥FED,∥EF∥AB,CD∥AB,∥EF∥CD,∥∥AEF=∥ACD,∥∥ACD=∥BCD,∥CD平分∥ACB.22.如图,已知∥DAB+∥D=180°,AC平分∥DAB,且∥CAD=25°,∥B=95°(1)求∥DCA的度数;(2)求∥DCE的度数.【分析】(1)利用角平分线的定义可以求得∥DAB的度数,再依据∥DAB+∥D=180°求得∥D 的度数,在∥ACD中利用三角形的内角和定理.即可求得∥DCA的度数;(2)根据(1)可以证得:AB∥DC,利用平行线的性质定理即可求解.【解答】解:(1)∥AC平分∥DAB,∥∥CAB=∥DAC=25°,∥∥DAB=50°,∥∥DAB+∥D=180°,∥∥D=180°﹣50°=130°,∥∥ACD中,∥D+∥DAC+∥DCA=180°,∥∥DCA=180°﹣130°﹣25°=25°.(2)∥∥DAC=25°,∥DCA=25°,∥∥DAC=∥DCA,∥AB∥DC,∥∥DCE=∥B=95°.23.如图,已知∥1+∥2=180°,∥3=∥B,试说明∥AED=∥ACB.【考点】平行线的判定与性质.【分析】首先判断∥AED与∥ACB是一对同位角,然后根据已知条件推出DE∥BC,得出两角相等.【解答】证明:∥∥1+∥4=180°(平角定义),∥1+∥2=180°(已知),∥∥2=∥4,∥EF∥AB(内错角相等,两直线平行),∥∥3=∥ADE(两直线平行,内错角相等),∥∥3=∥B(已知),∥∥B=∥ADE(等量代换),∥DE∥BC(同位角相等,两直线平行),∥∥AED=∥ACB(两直线平行,同位角相等).24.如图所示,已知∥1=∥2,AC平分∥DAB,试说明DC∥AB.【考点】平行线的判定.【分析】根据角平分线的性质可得∥1=∥CAB,再加上条件∥1=∥2,可得∥2=∥CAB,再根据内错角相等两直线平行可得CD∥AB.【解答】证明:∥AC平分∥DAB,∥∥1=∥CAB,∥∥1=∥2,∥∥2=∥CAB,∥CD∥AB.25.已知∥AGE=∥DHF,∥1=∥2,则图中的平行线有几对?分别是?为什么?【考点】平行线的判定.【分析】先由∥AGE=∥DHF根据同位角相等,两直线平行,得到AB∥CD,再根据两直线平行,同位角相等,可得∥AGF=∥CHF,再由∥1=∥2,根据平角的定义可得∥MGF=∥NHF,根据同位角相等,两直线平可得GM∥HN.【解答】解:图中的平行线有2对,分别是AB∥CD,GM∥HN,∥∥AGE=∥DHF,∥AB∥CD,∥∥AGF=∥CHF,∥∥MGF+∥AGF+∥1=180°∥NHF+∥CHF+∥2=180°,又∥∥1=∥2,∥∥MGF=∥NHF,∥GM∥HN.26.已知直线a∥b,b∥c,c∥d,则a与d的关系是什么,为什么?【考点】平行公理及推论.【分析】由平行线的传递性容易得出结论.【解答】解:a与d平行,理由如下:因为a∥b,b∥c,所以a∥c,因为c∥d,所以a∥d,即平行具有传递性.。

七年级下学期第一次月考数学试卷(含参考答案)

七年级下学期第一次月考数学试卷(含参考答案)

七年级下学期第一次月考数学试卷(含参考答案)(满分150分;时间:120分钟)学校:___________班级:___________姓名:___________考号:___________一.选择题(共10小题,每题4分)1.计算:(12)﹣1=()A.2B.-2C.12D.﹣122.地球是人与自然共同生存的家园,在这个家园中,还住着许多常常被人们忽略的微小生命,在冰岛海岸的黄铁矿粘液池中的古菌身上,科学家发现了基因片段,并提取出了最小的生命体,它的直径仅为0.00 000 002米,将数字0.00 000 002用科学记数法表示为()A.2x10﹣7B.2x10﹣8C.2x10﹣9D.20x10﹣83.下面四个图形中,∠1与∠2是对顶角的图形是()A. B. C. D.4.下列计算正确的是( )A.a6+a2=a8B.a6÷a2=a3C.a6·a2=a12D.(a6)2=a125.下列乘法中,不能运用平方差公式进行运算的是( )A.(x+a)(x-a)B.(a+b)(-a-b)C.(-x-b)(x-b)D.(b+m)(m-b )6.如果"□×2ab=4a2b”,那么"口"内应填的代数式是()A.2bB.2abC.aD.2a7.如图,某污水处理厂要从A处把处理过的水引入排水渠PQ,为了节约用料,铺设垂直于排水渠的管道AB.这种铺设方法蕴含的数学原理是()A.两点确定一条直线B.两点之间,线段最短C.过一点可以作无数条直线D.垂线段最短(第7题图) (第10题图)8.如果a=(﹣2024)0,b=(﹣2022)﹣1,c=(-2)2024.则a ,b ,c 三数的大小关系是( ) A.c>a>b B.a>b>c C.a>c>b D.c>b>a9.若(3x+2)(3x+a )的化简结果中不含x 的一次项,则常数a 的值为( ) A.-2 B.-1 C.0 D.210.如图有两张正方形纸片A 和B ,图1将B 放置在A 内部,测得阴影部分面积为2,图2将正方形AB 开列放置后构造新正方形,测得阴影部分面积为20,若将3个正方形A 和2个正方形B 并列放置后构造新正方形如图3,(图2,图3中正方形AB 纸片均无重叠部分)则图3阴影部分面积( )A.22B.24C.42D.44 二.填空题(共6小题,每题4分) 11.计算:a(a+3)= .12.如图,用直尺和三角尺作出直线AB 、CD ,得到AB ∥CD 的理由是 .(第12题图) (第15题图)13.若x 2-kx+4一个完全平方式,则k 的值是 . 14.42020×(﹣0.25)2021= .15.一副三角板按如图方式摆放,且∠1比∠2大50°,则∠1= . 16.观察下列运算并填空: 1×2×3×4+1=25=52; 2×3×4×5+1=121=112; 3×4×5×6+1=361=192;根据以上结果,猜想并研究:(n+1)(n+2)(n+3)(n+4)+1= . 三.解答题(共16小题) 17.(12分)计算:(1)(﹣1)4+(3.14-π)0+(﹣13)﹣1 (2)(-1)3+(3+π)0-|﹣2|+(13)-2(3)(-1)2023-(3.14-π)0-(12)﹣2+|﹣3| (4)﹣12023×|﹣34|+(3.14-π)0-2﹣118.(12分)(1)(a+2b)(3a -b) (2)(12m ³-6m 2+2m)÷2m(3)x 2·x 6-(2x 2)4+x 9÷x (4)m 2·m 4+(m 3)2-m 8÷m 219.(12分)用乘法公式进行简便运算:(1)102x98 (2)10032(3)20242-20232 (4)20232-2023×2048+2024220.(6分)先化简,再求值:(2x+y)(2x -y)-(2x -y )2,其中x=﹣2,y=﹣1221.(4分)如图,已知∠2=∠3,求证:AB∥CD.证明:∵∠2=∠3(已知)又∠1=∠3()∴= ()∴AB∥CD()22.(6分)如图,CE平分∠ACD,若∠1=30°,∠2=60°,求证:AB∥CD.23.(10分)观察以下等式:(x+1)(x2-x+1)=x3+1(x+3)(x2-3x+9)=x3+27(x+6)(x2-6x+36)=x3+216...(1)按以上等式的规律,填空:(a+b)(a2-ab+b2)= ;(2)利用多项式的乘法法则,说明(1)中的等式成立.(3)利用(1)中的公式化简:(x+y)(x2-xy+y2)-(x+2y)(x2-2xy+4y2)24.(12分)实践与探究,如图1,边长为a的大正方形有一个边长为b的小证方形,把图1中的阴影部分折成一个长方形(如图2所示)。

湖南省长沙市长沙县百熙实验学校2023-2024学七年级下学期第一次月考数学试题

湖南省长沙市长沙县百熙实验学校2023-2024学七年级下学期第一次月考数学试题

湖南省长沙市长沙县百熙实验学校2023-2024学七年级下学期第一次月考数学试题一、单选题1.下列四个实数中,是无理数的是( )A B .0 C .0.7⋅ D .272.在平面直角坐标系中,将点()1,1向右平移2个单位后,得到的点的坐标是( ) A .()3,1 B .()1,1- C .()1,3 D .()1,1- 3.如图,AB CD ∥,170=︒∠,则2∠=( )A .120°B .110°C .80°D .70°4.下列计算正确的是( )A 1=-B 3-C 2±D 12- 5.下列命题中是真命题的是( )A .相等的两个角是对顶角B .两条直线被第三条直线所截,同位角相等C .在同-平面内,若//a b ,//b c ,则//a cD .在同平面内,若//a b ,b c ⊥,则//a c6.若a 、b 是两个连续整数,且a b ,则a +b 的值为( )A .6B .7C .8D .97.如图,下列条件中,不能判定AB CD ∥的是( )A .180C ABC ∠+∠=︒B .12∠=∠C .3=4∠∠ D .A CDE ∠=∠ 8.(九章算术)是我国古代经典数学著作,奠定了中国传统数学的基本框架.书中记载:“今有大器五、小器一容三斛;大器一、小器五容二斛,问大、小器各容几何?”译文:“今有大容器5个,小容器1个,总容量为3斛;大容器1个、小容器5个,总容量为2斛.问大、小容器的容积各是多少斛?”设1个大容器的容积为x 斛,1个小容器的容积为y 斛,则根据题意可列方程组为( )A .5352x y x y +=⎧⎨+=⎩B .3552x y x y +=⎧⎨+=⎩C .5325x y x y +=⎧⎨=+⎩D .5235x y x y +=⎧⎨=+⎩9 1.333 2.872≈ )A .28.2B .13.33C .0.2872D .0.133310.将一副三角板按如图放置,其中45B C ∠==︒∠,60E ∠=︒,30D ∠=︒,则下列结论正确的有( )①180BAE CAD ∠+∠=︒;②如果2∠与E ∠互余,则BC DA ∥;③如果BC AD ∥,则有245∠=︒;④如果150CAD ∠=︒,必有4C ∠=∠.A .①③④B .①②④C .②③④D .①②③④二、填空题11.(填“>”、“=”或“<”)12.平面直角坐标系中,点()13A -,在第象限. 13.9的平方根是.14.已知二元一次方程组2425x y x y +=⎧⎨+=⎩,则x y -的值为. 15.点()231A a a --+,在y 轴上,则=a . 16.如图,在平面直角坐标系中,一动点从原点O 出发,沿着箭头所示方向,每次移动1个单位,依次得到点()()()()123450111101121P P P P P --(,),,,,,,,,,()620P ,,…,则点2024P 的坐标是.三、解答题17.计算:(1)26(2)202412-18.解方程(组):(1)()214x -=(2)解方程组125x y x y -=⎧⎨+=⎩190,化简求值:()2222221312a b ab a b ab ⎡⎤+---++⎣⎦. 20.已知ABC V 在平面直角坐标系中的位置如图所示.将ABC V 向右平移6个单位长度,再向下平移6个单位长度得到111A B C △.(图中每个小方格边长均为1个单位长度).(1)在图中画出平移后的111A B C △;(2)写出111A B C △各顶点的坐标;(3)求出111A B C △的面积.21.如图,已知EF ∥AD ,∠1=∠2.求证∠DGA +∠BAC =180°.请将下列证明过程填写完整.证明:∵EF ∥AD (已知),∴∠2=().又∵∠1=∠2(已知),∴∠1=∠3().∴AB ∥().∴∠DGA +∠BAC =180°().22.第19届亚运会将于2023年9月23日至10月8日在杭州举行,某玩具店购进亚运会吉祥物“琮琮”、“莲莲”共100个,总费用为6600元,这两种吉祥物的进价、售价如表:(1)该玩具店购进“琮琮”和“莲莲”各多少个?(2)周老师有幸能参加本次亚运会,然后想买20个琮琮,30个莲莲送给他的学生,现在有两个玩具店在做活动,甲商店打“八折”销售,乙商店总价“满4000元减700元”,请问周老师会选择到哪个商店买更优惠?23.已知,如图,E 在直线DF 上,B 在直线AC 上,若∠AGB =∠EHF ,∠C =∠D .(1)求证:AC //DF .(2)若∠DEC =150°,求∠GB A .24.在平面直角坐标系xOy 中,对于点(),P x y ,若点Q 的坐标为(),ax y x ay ++,则称点Q 是点P 的“a 阶派生点”(其中a 为常数,且0a ≠).例如:点()1,4P 的“2阶派生点”为点()214,124Q ⨯++⨯,即点()6,9Q .(1)若点P 的坐标为()1,5-,则它的“3阶派生点”的坐标为________;(2)若点P 的“5阶派生点”的坐标为()9,3-,求点P 的坐标;(3)若点P ()1,21c c +-先向左平移2个单位长度,再向上平移1个单位长度后得到了点1P ,点1P 的“3-阶派生点”2P 位于坐标轴上,求点P 2的坐标.25.如图,在平面直角坐标系中,AB ∥CD ∥x 轴,BC ∥DE ∥y 轴,且AB =CD =4 cm ,OA =5 cm ,DE =2 cm ,动点P 从点A 出发,以每秒1 cm 的速度,沿ABC 路线向点C 运动;动点Q 从点O 出发,以每秒2 cm 的速度,沿OED 路线向点D 运动.若P ,Q 两点同时出发,其中一点到达终点时,运动停止.(1)直接写出B,C,D三个点的坐标;(2)当P,Q两点出发3 s时,求三角形PQC的面积;(3)设两点运动的时间为t s,用含t的式子表示运动过程中三角形OPQ的面积.。

七年级下第一次月考数学试题

七年级下第一次月考数学试题

七年级下期第一次月考数学试题(时间:120分钟 满分:120分)一、选择题(每题3分,共30分)1. 有下列四种说法:①过一点有且只有一条直线与已知直线垂直;②过一点有且只有一条直线与已知直线平行;③平行于同一条直线的两条直线平行;④垂直于同一条直线的两条直线垂直.其中正确的有( ) A .1种 B .2种 C .3种D .4种2. 如图,直线a ,b 被直线c 所截,下列说法正确的是( )A .当∠1=∠2时,a ∥bB .当a ∥b 时,∠1=∠2C .当a ∥b 时,∠1+∠2 =90°D .当a ∥b 时,∠1+∠2 =180°第2题图 第4题图 第6题图3.若点M (a ,b )在第二象限,则点N (a + b ,- a b )在( )A .第一象限B .第二象限C .第三象限D .第四象限 4. 如图,下列说法不正确的是( )A .如果∠ABD =∠BDC ,则AB ∥CD B .如果∠CAD =∠ACB ,则AD ∥BC C .如果∠BAD +∠ABC =180°,则AD ∥BC D .如果∠CBD =∠ADB ,则AB ∥CD 5. 已知点P 到x 轴的距离是5,到y 轴的距离是3,且点P 在x 轴的下方,则P 点的坐标是( ) A .(5,-3)或(-5,-3) B .(3,-5)或(-3,-5) C .(-3,5) D .(-3,-5) 6.如图所示,把一个长方形纸片沿EF 折叠后,点D ,C 分别落在D ′,C ′的位置.若∠EFB =65°,则∠AED ′等于 ( ) A . 70° B . 65° C . 50°D . 25°7.如图,在55⨯方格纸中,将图①中的三角形甲平移到图②中所示的位置,与三角形乙拼成一个矩形,那么,下面的平移方法中,正确的是( ) A .先向下平移3格,再向右平移1格 B .先向下平移2格,再向右平移1格 C .先向下平移2格,再向右平移2格 D .先向下平移3格,再向右平移2格第8题图 第9题图8. 如图,在平面直角坐标系中,平行四边形ABCD 的顶点A 、B 、D 的坐标分别是(0,0),(5,0),(2,3),则顶点C 的坐标是( )A .(3,7)B .(5,3)C .(7,3)D .(8,2) 9.如图,CD ∥BE ,则∠2+∠3-∠1的度数等于( )A .90°B .120°C .150°D .180° 10.在平面直角坐标系中,对于平面内任一点()a b ,,若规定以下三种变换:EDB C′F CD ′A()()()()1313;f a b a b f -=-如①,=,.,,,()()()()1331;g a b b a g =如②,=,.,,,()()()()1313h a b a b h --=--如③,=,.,,,.按照以上变换有:(())()()233232f g f -=-=,,,,那么()()53f h -,等于( ) A .()53--, B .()53, C .()53-,D .()53-,二、填空题(每题3分,共60分)11. 如图,直线AB 、CD 相交于点O ,O E ⊥AB ,垂足为O ,如果∠EOD =42º,则∠AOC=________.第11题图 第12题图 第13题图 第16题图12.如图,把水渠中的水引到池C ,为了节省工程,通常做法是过点C 作CD ⊥AB (渠岸) .这样做的数学道理是_________________________.13.如图,已知∠1=70°,∠2=70°,∠3=60°,则∠4=________°. 14. 在直角坐标系中,若点A (2 a -1,a +3)在x 轴上,则a =________. 15. 线段AB =5,AB ∥x 轴,若A 点的坐标为(-1,2),则B 点的坐标为________________. 16. 如图是赛车跑道的一段示意图,AB ∥ED ,测得∠B =140°,∠D =120°,则∠C 的度数为___________.17.如图是永州市几个主要景点示意图,根据图中信息可确定九疑山的中心位置C 点的坐标为 .18.已知三条不同的直线a 、b 、c 在同一平面内,下列四条命题:①如果a ∥b ,a ⊥c ,那么b ⊥c ; ②如果b ∥a ,c ∥a ,那么b ∥c ;③如果b ⊥a ,c ⊥a ,那么b ⊥c ;④如果b ⊥a ,c ⊥a ,那么b ∥c .其中真命题的是________ .(填写所有真命题的序号) 19. 如图所示是重叠的两个直角三角形.将其中一个直角三角形沿BC 方向平移得到△DEF .如果AB =8 cm ,BE =4 cm ,DH =3 cm ,则图中阴影部分面积为_________cm 2.20.已知甲运动方式为:先竖直向上运动1个单位长度后,再水平向右运动2个单位长度;乙运动方式为:先竖直向下运动2个单位长度后,再水平向左运动3个单位长度.在平面直角坐标系内,现有一动点P 第1次从原点O 出发按甲方式运动到点P 1,第2次从点P 1出发按乙方式运动到点P 2,第3次从点P 2 出发按甲方式运动到点P 3,第4次从点P 3出发按乙方式运动到点P 4,….依此运动规 律,则经过第11次运动后,动点P 所在位置P 11的坐标是_________. 三、解答题(共60分) 21.(6分)如图AB ∥CD ,AD ∥BC ,∠A =63°,求∠B 、∠C 、∠D 的度数.22.(6分)将如图所示的方格纸中的图形向右平移4格,再向上平移3格,画出平移后的图形.23.(7分)如图,已知∠C=∠A+∠E,求证:AB∥CD.24.(7分)已知四边形ABCD各顶点的坐标为A(1,0), B(2,5), C(7,0), D(5,-2).求四边形ABCD的面积.25.(7分)如图,在DE∥BC、∠1=∠2、∠B=∠C中,任选两个作为题设,另一个作为结论,你能组成几个命题,都是正确的吗?请你都写出来,并选择其中一个加以证明.26.(8分)某飞行监控中心O发现某飞机从某个机场A起飞后沿正南方向飞行100千米,然后向正西方向飞行300千米,又测得该机场的位置位于监控中心西100千米,北300千米的地方.(1)请以监控中心为坐标原点,监控中心O的正东方向和正北方向分别为横坐标和纵坐标的正方向建立直角坐标系(用1个单位表示100千米);(2)用坐标表示飞机飞行的路线;(3)指出飞机最后在监控中心的什么位置.27.(8分)如图,∠ADE=∠B,∠1=∠2,GF⊥AB,试说明判断CD与AB位置关系,并说明理由.28.(11分)如图所示,△ABC的三个顶点位置分别是A(1,0),B(-2,3),C(-3,0).(1)求△ABC的面积.(2)若点A、C的位置不变,当点P在y轴上什么位置时,使S△ACP=2S△ABC;(3)若点B、C的位置不变,当点Q在x轴什么位置时,使S=2S△ABC.△BCQ。

七年级数学下册第一次月考试题及答案

七年级数学下册第一次月考试题及答案

七年级数学第一次月考试题一、选择题(每小题2分:共28分) 1. 计算32x x ⋅的结果是( )A .9xB .8xC .6xD .5x 2. 计算423(3)a b -的结果是( ) A.1269a b -B.7527a b - C.1269a bD.12627a b -3. 若01x <<:则2x :x1x这四个数中( ) A .1x最大:2x 最小B .x 最大:1x最小C .2x最小 D .x 最大:2x 最小4. 下列语句中:正确的是( )A 、无理数都是无限小数B 、无限小数都是无理数C 、带根号的数都是无理数D 、不带根号的数都是无理数 5. 立方根等于它本身的数有( )(A )-1:0:1 (B )0:1 (C )0 (D )1 6. 下列计算正确的是( ) A .(ab 2)2=ab 4 B .(3xy )3=9x 3y 3 C .(-2a 2)2=-4a 4 D .(-3a 2bc 2)2=9a 4b 2c 47. 计算20072007532135⎛⎫⎛⎫-⨯ ⎪⎪⎝⎭⎝⎭结果等于( ).A .1-B .1C .0D .2007 8. 在 1.414-::227:3π:3.142:2- 2.121121112…中:无理数的个数是( )A.1 B.2 C.3 D.4 9. 若实数m 满足0m m -=:则m 的取值范围是( ) A.0m ≥ B.0m > C.0m ≤ D.0m <10. 的平方根是[ ]A 0.4B 0.04C ±0.4D ±11. 若4:则估计m 的值所在的范围是 ( )<m <<m <<m <<m <512. 已知不等①、②、③的解集在数轴上的表示如图所示:则它们的公共部分的解集是( )A.13x -<≤ B.13x <≤ C.11x -<≤ D.无解13. 已知a <b :则下列不等式中不正确的是( ). A.4a <4b B.a +4<b +4 C.-4a <-4b D.a -4<b -414. 下列不等式:是一元一次不等式的是( ) A .2(1)42y y y -+<+B .2210x x --<C .111236+= D .2x y x +<+二、填空题(每小题2分:共20分)15. 若,0ac bc c ><:则a______b .16. 不等式2x -1<3的正整数解是_____________________.17. 5m -3是非负数:用不等式表示为___________________.18. 925的平方根为 :算术平方根为 .19. 若264x =:则x 的立方根为 .20. 用大小完全相同的100块正方形方砖铺一间面积为25米2的卧室地面:则每块方砖的边长为 .的平方根是 .22. 如果3415x -<:那么3154x <+:其根据是 :如果33a b ->-ππ:则a b <:其根据是 . 23. 若2(1)160x --=:则x = .24.化简:11--= .三、计算题25. (12分)求下列各式的值。

七年级数学下第一次月考试题

七年级数学下第一次月考试题

(A )D C B A (B )DC B A (C )D C B A(D )D CB A七年级数学下学期第一次月考试题一、选择题(每题3分,共24分) 1、下列计算中正确的是( )A. B. C.= D.2、已知:2×2x=212,则x 的值为( )A 、5B 、10C 、11D 、12 3、以下列各组线段长为边,能组成三角形的是( )A .1cm ,2cm ,4 cmB .8 crn ,6cm ,4cmC .12 cm ,5 cm ,6 cmD .2 cm ,3 cm ,6 cm4、下列多项式相乘的结果是a 2-a-6的是( )A .(a-2)(a+3)B .(a+2)(a-3)C .(a-6)(a+1)D .(a+6)(a-1)5、下列运算,结果正确的是 ( ) A .B .C .D .6、下列各式是完全平方式的是( ) A .B .C .D .7、在下列各图的△ABC 中,正确画出AC 边上的高的图形是( )8、如图,长方形的长为a ,宽为b ,横向阴影部分为长方形,另一阴影部分为平行四边形,它们的宽都为c,则空白部分的面积是 ( )A. ab -bc +ac -c 2B. ab -bc -ac +c 2C.ab -ac -bcD.ab -ac -bc -c 2二、填空题(每题3分,共30分)9、氢原子中电子和原子核之间的距离为,用科学记数法表示这个距离是 cm. 10、若8x=4x+2,则x=______11、若计算(x+m )(x+2)的结果不含关于字母x 的一次项,则m=_______5322a a a =+532a a a =∙32a a ∙6a 532a a a =+0.00000000529cm12、化简a 4b 3÷(ab )3的结果是_______。

13、写出下列用科学记数法表示的数的原来的数:2.35×10=14、从边长为的大正方形纸板中挖去一个边长为的小正方形后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算阴影部分的面积可以验证公式_________15、当x =___________________时,多项式取得最小值.16、如果16a 2 + Mab +9 b 2是一个完全平方式,则M=_______17、观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…,则89的个位数字是__________________18、已知: ··· , 若(为正整数),则 .三、解答题(本大题共有10小题,共96分.解答时请写出必要的过程) 19.计算(每小题5分,共30分) (1)(2)(﹣2a )3﹣(﹣a )•(3a )2(3)(x+2)2﹣(x ﹣1)(x ﹣2) (4)(a+b )2(a ﹣b )22-,=+,,15441544833833322322222⨯⨯=+⨯=+ba b a ⨯=21010+b a 、=+b a(5)(a﹣3)(a+3)(a2+9)(6)(m﹣2n+3)(m+2n﹣3)20先化简再求值(8分)21.已知:26=a2=4b, 求a+b的值.(8分)22..已知: ,求x的值.(8分)23),6)(2()3)(2(2=-+-+---+bababababa)其中(()1=2-4-2xx23.(10分)我们规定一种运算:,例如,.按照这种运算规定,当x 等于多少时,24. (10分)如图1是一个长为4a 、宽为b 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成的一个“回形”正方形(如图2).(1)图2中的阴影部分的面积为_______________;(用a 、b 的代数式表示)(4分)(2)观察图2请你写出 (a +b ) 2、(a -b ) 2、ab 之间的等量关系是_____________________;(2分) (3)根据(2)中的结论,若, 则;(2分) (4)实际上通过计算图形的面积可以探求相应的等式.如图3,你有什么发现? .(2分)图1 图2 图3b c d a ad bc =- 3 5364524 6=⨯-⨯=- -3462 4x x =+ 1 x 30x-2 x-1x ++=49,5=⋅=+y x y x =-y x25. (本题10分)李叔叔刚分到一套新房,其结构如图所示(单位:m),他打算除卧室外,其余部分铺地砖. (1)至少需要多少平方米地砖? (5分)(2)如果铺的这种地砖的价格为每平方米75元,那么李叔叔至少需要花多少元钱?(5分)26.(本题12分)阅读下列材料:一般地,n个相同的因数a相乘记为a n,记为a n.如2×2×2=23=8,此时,3叫做以2为底8的对数,记为log28(即log28=3).一般地,若a n=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为log a b(即log a b=n).如34=81,则4叫做以3为底81的对数,记为log381(即log381=4).(1)计算以下各对数的值:log24= ,log216= ,log264= .(每空1分)(2)观察(1)中三数4、16、64之间满足怎样的关系式,log24、log216、log264之间又满足怎样的关系式。

七年级数学下册第一次月考试题及答案

七年级数学下册第一次月考试题及答案

七年级下学期月考数 学 试 题考试时间:120分钟 试卷满分:150分 编辑人:丁济亮第Ⅰ卷(本卷满分100分)一、选择题:(共10小题,每小题3分,共30分)下面每小题给出的四个选项中, 有且只有一个是正确的, 请把正确选项前的代号填在答卷指定位置.1.在同一平面内,两条直线的位置关系是A .平行.B .相交.C .平行或相交.D .平行、相交或垂直2.点P (-1,3)在A .第一象限.B .第二象限.C .第三象限.D .第四象限.3.下列各图中,∠1与∠2是对顶角的是4.如图,将左图中的福娃“欢欢”通过平移可得到图为A .B .C .D .5.下列方程是二元一次方程的是A .2xy =.B .6x y z ++=.C .235y x+=. D .230x y -=. 6.若0xy =,则点P (x ,y )一定在A .x 轴上.B .y 轴上.C .坐标轴上.D .原点.7.二元一次方程21-=x y 有无数多组解,下列四组值中不是..该方程的解的是 A .012x y =⎧⎪⎨=-⎪⎩. B .11x y =-⎧⎨=-⎩. C .10x y =⎧⎨=⎩. D .11x y =⎧⎨=⎩. 8.甲原有x 元钱,乙原有y 元钱,若乙给甲10元,则甲所有的钱为乙的3倍;若甲给乙10元,则甲所有的钱为乙的2倍多10元.依题意可得1 2 B . 1 2 A . 1 2 C . 1 2 D .A .103(10)102(10+10x y x y +=-⎧⎨-=+⎩). B .10310210x y x y +=⎧⎨-=+⎩. C .3(10)2(10)x y x y =-⎧⎨=+⎩. D .103(10)102(10)10x y x y -=+⎧⎨+=-+⎩.9.如图,点E 在BC 的延长线上,则下列条件中,不能判定AB ∥CD 的是A .∠3=∠4.B .∠B =∠DCE .C .∠1=∠2.D .∠D+∠DAB =180°.10.下列命题中,是真命题的是A .同位角相等.B .邻补角一定互补.C .相等的角是对顶角.D .有且只有一条直线与已知直线垂直. 二、填空题(共10小题,每小题3分,共30分)下列不需要写出解答过程,请将结果直接填写在答卷指定的位置.11.剧院里5排2号可以用(5,2)表示,则7排4号用 表示.12.如图,已知两直线相交,∠1=30°,则∠2=__ _. 13.如果⎩⎨⎧-==13y x ,是方程38x ay -=的一个解,那么a =_______.14.把方程3x +y –1=0改写成含x 的式子表示y 的形式得 . 15.一个长方形的三个顶点坐标为(-1,-1),(-1,2),(3,-1),则第四个顶点的坐标是____________.16.命题“如果两条直线都与第三条直线平行,那么这两条直线也互相平行”的题设是 ,结论是 .17.如图,AB CD ∥,BC DE ∥,则∠B 与∠D 的关系是_____________.18.如图,象棋盘上,若“将”位于点(0,0),“车”位于点(—4,0),则“马”位于 .19.如图,EG ∥BC ,CD 交EG 于点F ,那么图中与∠1相等的角共有______个.第19题图1FAB CDE G 第18题图 马将车B C E2413D B C 第9题图4321第12题图20.已知x 、y 满足方程组21232x y x y +=⎧⎨-=⎩,则3x +6y +12 +4x -6y +23 的值为 .三、解答题(共40分)下列各题需要在答题卷指定位置写出文字说明、证明过程或计算步骤.21.(每小题4分,共8分)解方程组:(1)⎩⎨⎧y =2x -3,3x +2y =8; (2)743211432x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩ 22.(本题满分8分)如图,∠AOB 内一点P :(1)过点P 画PC ∥OB 交OA 于点C ,画PD ∥OA 交OB 于点D ;(2)写出两个图中与∠O 互补的角;(3)写出两个图中与∠O 相等的角.23.(本题8分)完成下面推理过程:如图,已知∠1 =∠2,∠B =∠C ,可推得AB ∥CD .理由如下:∵∠1 =∠2(已知),且∠1 =∠CGD (______________ _________),∴∠2 =∠CGD (等量代换).∴CE ∥BF (___________________ ________).∴∠ =∠C (__________________________).又∵∠B =∠C (已知),∴∠ =∠B (等量代换).∴AB ∥CD (________________________________).24.(本题8分)如图,EF ∥AD ,AD ∥BC ,CE 平分∠BCF ,∠DAC =120°,∠ACF =20°,求∠FEC 的度数.25.(本题8分)列方程(组)解应用题:一种口服液有大、小盒两种包装,3大盒、4小盒共装108瓶,2大盒、3小盒共装76瓶.大盒与小盒每盒各装多少瓶?第Ⅱ卷(本卷满分50分)四、解答题(共5题,共50分)下列各题需要在答题卷指定位置写出文字说明、证明过程或计算步骤.26.(每小题5分,共10分)解方程组:(1)33(1)022(3)2(1)10x y x y -⎧--=⎪⎨⎪---=⎩ (2)04239328a b c a b c a b c -+=⎧⎪++=⎨⎪-+=⎩27.(本题8分)如图,在三角形ABC 中,点D 、F 在边BC 上,点E 在边AB 上,点G 在边AC 上,AD ∥EF ,∠1+∠FEA =180°.求证:∠CDG =∠B .28.(本题10分) 如图,在平面直角坐标系中有三个点A (-3,2)、B (﹣5,1)、C (-2,0),P (a ,b )是△ABC 的边AC 上一点,△ABC 经平移后得到△A 1B 1C 1,点P 的对应点为P 1(a +6,b +2).(1)画出平移后的△A 1B 1C 1,写出点A 1、C 1的坐标;(2)若以A 、B 、C 、D 为顶点的四边形为平行四边形,直接写出D 点的坐标;(3)求四边形ACC 1A 1的面积.29.(本题10分)江汉区某中学组织七年级同学参加校外活动,原计划租用45座客车若干辆,但有15人没有座位;如果租用同样数量的60座客车,则多出一辆,且其余客车刚好坐满.已知45座和60座客车的租金分别为220元/辆和300元/辆.第28题E 第27题图2图1(1)设原计划租45座客车x 辆,七年级共有学生y 人,则y = (用含x 的式子表示);若租用60座客车,则y = (用含x 的式子表示);(2)七年级共有学生多少人?(3)若同时租用两种型号的客车或只租一种型号的客车,每辆客车恰好坐满并且每个同学都有座位,共有哪几种租车方案?哪种方案更省钱?30.(本题12分)如图1,在平面直角坐标系中,A (a ,0),B (b ,0),C (-1,2),且221(24)0a b a b ++++-=.(1)求a ,b 的值;(2)①在x 轴的正半轴上存在一点M ,使△COM 的面积=12△ABC 的面积,求出点M的坐标;②在坐标轴的其它位置是否存在点M ,使△COM 的面积=12△ABC 的面积仍然成立,若存在,请直接写出符合条件的点M 的坐标;(3)如图2,过点C 作CD ⊥y 轴交y 轴于点D ,点P 为线段CD 延长线上一动点,连接OP ,OE 平分∠AOP ,OF ⊥OE .当点P 运动时,OPDDOE ∠∠的值是否会改变?若不变,求其值;若改变,说明理由.七年级数学试卷参考答案第Ⅰ卷(本卷满分100分)一、1. C2. B3. B4.C5. D6. C7. D8.A9. A10. B二、11. (7,4) 12. 30°13. -1 14.y=1-3x15.(3,2)16.两直线都平行于第三条直线,这两直线互相平行17.互补18.(3,3)19.2 20.4三、21.(1)21xy=⎧⎨=⎩(2)1212xy=⎧⎨=⎩(每小题过程2分,结果2分)22.(1)如图…………………………………………2分(2)∠PDO,∠PCO等,正确即可;……………………………5分(3)∠PDB,∠PCA等,正确即可.……………………………8分23.对顶角相等……………………………2分同位角相等,两直线平行……………………………4分BFD两直线平行,同位角相等……………………………6分BFD内错角相等,两直线平行……………………………8分24.∵EF∥AD,(已知)∴∠ACB+∠DAC=180°.(两直线平行,同旁内角互补) …………2分∵∠DAC=120°,(已知)∴∠ACB=60°.……………………………3分又∵∠ACF=20°,∴∠FCB=∠ACB-∠ACF=40°.……………………………4分∵CE平分∠BCF,∴∠BCE=20°.(角的平分线定义)……5分∵EF∥AD,AD∥BC(已知),∴EF ∥BC .(平行于同一条直线的两条直线互相平行)………………6分∴∠FEC =∠ECB .(两直线平行,同旁内角互补)∴∠FEC=20°. ……………………………8分25.解:设大盒和小盒每盒分别装x 瓶和y 瓶,依题意得……………1分341082376x y x y +=⎧⎨+=⎩ ……………………………4分解之,得2012x y =⎧⎨=⎩ ……………………………7分 答:大盒和小盒每盒分别装20瓶和16瓶.……………………8分第Ⅱ卷(本卷满分50分)26.(1)92x y =⎧⎨=⎩ ; (2)325a b c =⎧⎪=-⎨⎪=-⎩(过程3分,结果2分)27.证明:∵AD ∥EF ,(已知)∴∠2=∠3.(两直线平行,同位角相等)……………………………2分∵∠1+∠FEA=180°,∠2+∠FEA=180°,……………………………3分∴∠1=∠2.(同角的补角相等)……………………………4分∴∠1=∠3.(等量代换)∴DG ∥AB .(内错角相等,两直线平行)……6分∴∠CDG=∠B .(两直线平行,同位角相等)……………………………8分28.解:(1)画图略, ……………………………2分A 1(3,4)、C 1(4,2).……………………………4分(2)(0,1)或(―6,3)或(―4,―1).……………………………7分(3)连接AA 1、CC 1;∵1117272AC A S ∆=⨯⨯= 117272AC C S ∆=⨯⨯= ∴四边形ACC 1 A 1的面积为:7+7=14.也可用长方形的面积减去4个直角三角形的面积:11472622121422⨯-⨯⨯⨯-⨯⨯⨯=. 答:四边形ACC 1 A 1的面积为14.……………………………10分29.(1)4515x +; 60(1)x -; ……………………………2分解:(2)由方程组451560(1)y x y x =+⎧⎨=-⎩ ……………………………4分解得5240x y =⎧⎨=⎩ ……………………………5分答:七年级共有学生240人.……………………………6分(3)设租用45座客车m 辆,60座客车n 辆,依题意得4560240m n += 即3416m n +=其非负整数解有两组为:04m n =⎧⎨=⎩和41m n =⎧⎨=⎩故有两种租车方案:只租用60座客车4辆或同时租用45座客车4辆和60座客车1辆. ……………………………8分当0,4m n ==时,租车费用为:30041200⨯=(元);当4,1m n ==时,租车费用为:220430011180⨯+⨯=(元);∵11801200<,∴同时租用45座客车4辆和60座客车1辆更省钱.………………10分30.解:(1)∵221(24)0a b a b ++++-=,又∵2210,(24)0a b a b ++≥+-≥, ∴2210(24)0a b a b ++=+-=且 .∴ 210240a b a b ++=⎧⎨+-=⎩ ∴ 23a b =-⎧⎨=⎩即2,3a b =-=. ……………………………3分(2)①过点C 做CT ⊥x 轴,CS ⊥y 轴,垂足分别为T 、S .∵A (﹣2,0),B (3,0),∴AB =5,因为C (﹣1,2),∴CT =2,CS =1,△ABC 的面积=12 AB ·CT =5,要使△COM 的面积=12△ABC 的面积,即△COM 的面积=52 ,所以12 OM ·CS =52,∴OM =5.所以M 的坐标为(0,5).……………6分 ②存在.点M 的坐标为5(,0)2-或5(,0)2或(0,5)-.………………9分 (3)OPD DOE∠∠的值不变,理由如下: ∵CD ⊥y 轴,AB ⊥y 轴 ∴∠CDO=∠DOB=90°∴AB ∥AD ∴∠OPD=∠POB∵OF ⊥OE ∴∠POF+∠POE=90°,∠BOF+∠AOE=90°∵OE 平分∠AOP ∴∠POE=∠AOE ∴∠POF=∠BOF∴∠OPD=∠POB=2∠BOF∵∠DOE+∠DOF=∠BOF+∠DOF=90° ∴∠DOE=∠BOF ∴∠OPD =2∠BOF=2∠DOE ∴2OPD DOE ∠=∠.……………………………12分。

山东省淄博市2023-2024学年七年级下学期第一次月考数学试题

山东省淄博市2023-2024学年七年级下学期第一次月考数学试题

山东省淄博市2023-2024学年七年级下学期第一次月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,对于直线AB ,线段CD ,射线EF ,其中能相交的是( ) A . B .C .D .2.下列运算正确的是( )A .23a a a +=B .()236a a =C .()23622a a =D .236a a a ⋅=3.计算:233162xy x y ⎛⎫⋅-= ⎪⎝⎭( ) A .453x y B .453x y - C .363x y D .363x y - 4.已知点C 为线段AB 上一点,若4cm,3cm AB BC ==,则线段AC 等于( ) A .1cm 或7cm B .7cm C .1cm D .7cm 或12cm 5.从五边形的一个顶点出发,可以画出m 条对角线,它们将五边形分成n 个三角形.则m 、n 的值分别为( )A .1,2B .2,3C .3,4D .4,4 6.如图,甲,乙两人同时从A 地出发,沿图示方向分别步行前进到B ,C 两地,现测得BAC ∠为100°,B 地位于A 地的北偏东50°方向,则C 地位于A 地的( )A .北偏西50°方向B .北偏西30°方向C .南偏东50°方向D .南偏东30°方向 7.下列运算正确的是( )A .63.56350'︒=︒B .18181818.33'''︒=︒C .36.153615'︒=︒D .283917314610'''︒+︒=︒ 8.计算()2024404620.25⨯-的结果为( ) A .20222- B .20222 C .14 D .14- 9.两根木条,一根长10,cm 另一根长12,cm 将它们一端重合且放在同一直线上,此时两根木条的中点之间的距离为( )A .1cmB .11cmC .1cm 或 11cmD .点2cm 或 11cm10.已知()()256x x a b x a x x -++=+-,当x 为任意数时该等式都成立,则()()11a b b a -++的值为( )A .17B .7-C .1-D .-17二、填空题11.王小毛同学做教室卫生时,发现座位很不整齐,他思考了一下,将第一座和最后一座固定之后,沿着第一座最后一座这条线就把座位摆整齐了!他利用了数学原理:.12.我国古代数学家祖冲之推算出π的近似值为355113,它与π的误差小于0.0000003用科学记数法表示为.13.计算:63()()x x -÷-=.14.平面内有公共端点的三条射线,,OA OB OC ,构成的角30,70AOB BOC ∠=︒∠=︒,则A O C ∠的度数是.15.若m 满足()211m m -+=,则整数m 的值为.三、解答题16.如图,已知四点A 、B 、C 、D ,请用尺规作图完成.(保留画图痕迹)(1)画直线AB ;(2)画射线AC ;(3)连接BC 并延长BC 到E ,使得CE AB BC =+;(4)在线段BD 上取点P ,使PA PC +的值最小.17.计算: (1)30112-⎛⎫-- ⎪⎝⎭ (2)()()2334458x x x x x x ⋅-+⋅-⋅ (3)()()2243235x y x y x y -- 18.将一个圆分割成三个扇形,它们的圆心角的度数比为1:2:3,求这三个扇形的圆心角的度数.19.先化简,再求值:3a (2a 2﹣4a +3)﹣2a 2(3a +4),其中a =﹣2.20.已知线段6cm AB =,延长AB 至点C ,使2AB BC =,D 是线段AC 的中点.求线段DB 的长.21.如图,已知90AOB ∠=︒,50AOC ∠=︒,ON 是AOC ∠的平分线,OM 是BOC ∠的平分线,求MON ∠的度数.22.(1)已知984162m m ⨯÷=,求m 的值;(2)已知3233m n ==,,求129m n -+的值.23.探究题:如图①,已知线段14cm AB =,点C 为线段AB 上的一个动点,点D 、E 分别是AC 和BC 的中点.(1)若点C 恰好是AB 中点,则DE =cm ;(2)试说明无论点C 在线段AB 的任何位置,DE 的长不变;(3)知识迁移:如图②,已知120AOB ∠=︒,过角的内部任一点C 画射线OC ,若O D O E 、分别平分AOC ∠和BOC ∠,试说明60DOE ∠=︒与射线OC 的位置无关.。

七年级数学下学期第一次月考试卷(含解析)新人教版

七年级数学下学期第一次月考试卷(含解析)新人教版

七年级(下)第一次月考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.下列命题中,是真命题的是()A.同位角相等B.邻补角一定互补C.相等的角是对顶角D.有且只有一条直线与已知直线垂直2.在同一平面内,不重合的两条直线的位置关系是()A.平行 B.相交C.平行或相交D.平行、相交或垂直3.下列各图中,∠1与∠2是对顶角的是()A.B. C.D.4.已知,∠1与∠2互为邻补角,∠1=140°,则∠2的余角的度数为()A.30° B.40° C.50° D.100°5.平面内四条直线最少有a个交点,最多有b个交点,则a+b=()A.6 B.4 C.2 D.06.下列说法正确的是()A.1的平方根是1B.6是36的算术平方根C.同一平面内的三条直线满足a⊥b,b⊥c,则a⊥cD.两直线被第三条直线所截,内错角相等7.已知,如图,三角形ABC中,∠BAC=90°,AD⊥BC于D,则图中相等的锐角的对数有()A.4对B.3对C.2对D.1对8.如图,点E在BC的延长线上,则下列条件中,不能判定AB∥CD的是()A.∠3=50°,∠4=50°B.∠B=40°,∠DCB=140°C.∠1=60°,∠2=60°D.∠D+∠DAB=180°9.如图,AB∥EF,BC∥DE,∠B=70°,则∠E的度数为()A.90° B.110°C.130°D.160°10.如图,AB∥CD∥EF,∠ABE=38°,∠ECD=110°,则∠BEC的度数为()A.42° B.32° C.62° D.38°二、填空题(共8小题,每小题4分,满分32分)11.36的平方根是;的算术平方根是.12.用“<”或“>”填空: +1 4.13.点到直线的距离是指这点到这条直线的.14.把命题“等角的补角相等”改写成“如果…那么…”的形式是.15.一个正数的平方根为2﹣m与3m﹣8,则m的值为.16.在同一平面内如图,EG∥BC,CD交EG于点F,那么图中与∠1相等的角共有个.17.如图,已知:∠1=∠2,∠3=108°,则∠4的度数为.18.如果两条平行线被第三条直线所截,那么同位角的平分线的位置关系是.三、解答题(共5小题,满分58分)19.如图,∠AOB内一点P:(1)过点P画PC∥OB交OA于点C,画PD∥OA交OB于点D;(2)写出两个图中与∠O互补的角;(3)写出两个图中与∠O相等的角.20.求下列各式中的x的值:(1)x2﹣81=0(2)36x2﹣49=0.21.如图,已知∠A=∠F,∠C=∠D,可以证明BD∥CE.在下列括号中填写推理理由证明:∵∠A=∠F∴AC∥DF()∴∠C+∠=180°()∵∠C=∠D∴∠D+∠DEC=180°()∴BD∥CE ().22.小明打算用一块面积为900cm2的正方形木板,沿着边的方向裁出一个长方形面积为588cm2桌面,并且的长宽之比为4:3,你认为能做到吗?如果能,计算出桌面的长和宽;如果不能,请说明理由.23.如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC的度数.2015-2016学年河南省安阳市滑县大寨一中七年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.下列命题中,是真命题的是()A.同位角相等B.邻补角一定互补C.相等的角是对顶角D.有且只有一条直线与已知直线垂直【考点】命题与定理.【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:A、两直线平行,同位角相等,故此选项错误;B、根据邻补角的定义,故此选项正确;C、相等的角不一定是对顶角,故此选项错误;D、过直线外一点,有且只有一条直线与已知直线垂直,故此选项错误.故选:B.【点评】此题主要考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.2.在同一平面内,不重合的两条直线的位置关系是()A.平行 B.相交C.平行或相交D.平行、相交或垂直【考点】平行线.【专题】常规题型.【分析】根据直线的位置关系解答.【解答】解:在同一平面内,不重合的两条直线只有两种位置关系,是平行或相交,所以在同一平面内,不重合的两条直线的位置关系是:平行或相交.故选C.【点评】本题考查了两直线的位置关系,需要特别注意,垂直是相交特殊形式,在同一平面内,不重合的两条直线只有平行或相交两种位置关系.3.下列各图中,∠1与∠2是对顶角的是()A.B. C.D.【考点】对顶角、邻补角.【分析】根据对顶角的定义对各选项分析判断后利用排除法求解.【解答】解:A、∠1与∠2不是对顶角,故A选项错误;B、∠1与∠2是对顶角,故B选项正确;C、∠1与∠2不是对顶角,故C选项错误;D、∠1与∠2不是对顶角,故D选项错误.故选:B.【点评】本题主要考查了对顶角的定义,熟记对顶角的图形是解题的关键.4.已知,∠1与∠2互为邻补角,∠1=140°,则∠2的余角的度数为()A.30° B.40° C.50° D.100°【考点】对顶角、邻补角.【分析】根据互为邻补角的两个角的和等于180°求出∠2,再根据互为余角的两个角的和等于90°列式计算即可得解.【解答】解:∵∠1与∠2互为邻补角,∠1=140°,∴∠2=180°﹣∠1=180°﹣140°=40°,∴∠2的余角的度数为90°﹣40°=50°.故选C.【点评】本题考查了邻补角和余角的定义,是基础题,熟记概念是解题的关键.5.平面内四条直线最少有a个交点,最多有b个交点,则a+b=()A.6 B.4 C.2 D.0【考点】直线、射线、线段.【专题】计算题.【分析】当所有直线两两平行时交点个数最少;交点最多时根据交点个数公式代入计算即可求解;依此得到a、b的值,再相加即可求解.【解答】解:交点个数最多时, ==6,最少有0个.所以b=6,a=0,所以 a+b=6.故选:A.【点评】本题考查了相交线的交点问题,熟记公式是解题的关键.6.下列说法正确的是()A.1的平方根是1B.6是36的算术平方根C.同一平面内的三条直线满足a⊥b,b⊥c,则a⊥cD.两直线被第三条直线所截,内错角相等【考点】算术平方根;平方根;垂线;同位角、内错角、同旁内角.【分析】根据平方根的概念、平行公理和平行线的性质判断即可.【解答】解:1的平方根是±1,A错误;6是36的算术平方根,B正确;同一平面内的三条直线满足a⊥b,b⊥c,则a∥c,C错误;两直线被第三条直线所截,内错角不一定相等,D错误,故选:B.【点评】本题考查的是平方根、算术平方根的概念、垂直的定义,正确理解相关的概念和性质是解题的关键.7.已知,如图,三角形ABC中,∠BAC=90°,AD⊥BC于D,则图中相等的锐角的对数有()A.4对B.3对C.2对D.1对【考点】直角三角形的性质.【分析】根据直角三角形两锐角互余和同角的余角相等写出相等的角即可.【解答】解:相等的锐角有:∠B=∠CAD,∠C=∠BAD共2对.故选C.【点评】本题考查了直角三角形两锐角互余的性质,熟记性质并准确识图是解题的关键.8.如图,点E在BC的延长线上,则下列条件中,不能判定AB∥CD的是()A.∠3=50°,∠4=50°B.∠B=40°,∠DCB=140°C.∠1=60°,∠2=60°D.∠D+∠DAB=180°【考点】平行线的判定.【分析】直接利用平行线的判定定理判定,即可求得答案,注意排除法在解选择题中的应用.【解答】解:A、∵∠3=50°,∠4=50°,∴∠3=∠4,∴AD∥BC,故错误;B、∵∠B=40°,∠DCB=140°,∴∠B+∠DCB=180°,∴AB∥CD,正确;C、∵∠1=60°,∠2=60°,∴∠1=∠2,∴AB∥CD,正确;D、∵∠D+∠DAB=180°,∴AB∥CD,正确.故选A.【点评】此题考查了平行线的判定.此题比较简单,注意掌握数形结合思想的应用.9.如图,AB∥EF,BC∥DE,∠B=70°,则∠E的度数为()A.90° B.110°C.130°D.160°【考点】平行线的性质.【专题】计算题.【分析】首先根据BC∥DE,依据两直线平行,同位角相等求得∠1的度数,然后根据AB∥EF,依据两直线平行,同旁内角互补即可求解.【解答】解:∵BC∥DE,∴∠1=∠B=70°,∵AB∥EF,∴∠E+∠1=180°,∴∠E=180°﹣∠1=180°﹣70°=110°.故选B.【点评】本题利用了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补.10.如图,AB∥CD∥EF,∠ABE=38°,∠ECD=110°,则∠BEC的度数为()A.42° B.32° C.62° D.38°【考点】平行线的性质.【分析】由AB∥CD∥EF,∠ABE=38°,∠ECD=110°,根据平行线的性质,即可求得∠BEF与∠CEF 的度数,继而求得答案.【解答】解:∵AB∥CD∥EF,∠ABE=38°,∠ECD=110°,∴∠BEF=∠ABE=38°,∠CEF=180°﹣∠ECD=70°,∴∠BEC=∠CEF﹣∠BEF=32°.故选B.【点评】此题考查了平行线的性质.此题难度不大,注意掌握数形结合思想的应用.二、填空题(共8小题,每小题4分,满分32分)11.36的平方根是±6 ;的算术平方根是.【考点】算术平方根;平方根.【分析】根据平方根的定义和算术平方根的定义进行计算即可得解.【解答】解:∵(±6)2=36,∴36的平方根是±6;∵()2=,∴的平方根是.故答案为:±6;.【点评】本题考查了算术平方根、平方根的定义,是基础题,熟记概念是解题的关键.12.用“<”或“>”填空: +1 >4.【考点】实数大小比较.【分析】首先估算出的取值范围,再进一步确定+1的范围,进一步得出结论解决问题.【解答】解:∵3<<4,∴4<+1<5,所以+1>4.故答案为:>.【点评】此题考查实数的大小比较,估算的取值范围是解决问题的关键.13.点到直线的距离是指这点到这条直线的垂线段的长度.【考点】点到直线的距离.【分析】根据点到直线的距离的定义解答.【解答】解:点到直线的距离是指这点到这条直线的:垂线段的长度.故答案为:垂线段的长度.【点评】本题考查了点到直线的距离的定义,是基础题,熟记概念是解题的关键.14.把命题“等角的补角相等”改写成“如果…那么…”的形式是如果两个角是等角的补角,那么它们相等.【考点】命题与定理.【分析】命题中的条件是两个角相等,放在“如果”的后面,结论是这两个角的补角相等,应放在“那么”的后面.【解答】解:题设为:两个角是等角的补角,结论为:相等,故写成“如果…那么…”的形式是:如果两个角是等角的补角,那么它们相等.故答案为:如果两个角是等角的补角,那么它们相等.【点评】本题主要考查了将原命题写成条件与结论的形式,“如果”后面是命题的条件,“那么”后面是条件的结论,解决本题的关键是找到相应的条件和结论,比较简单.15.一个正数的平方根为2﹣m与3m﹣8,则m的值为 3 .【考点】平方根.【分析】根据一个正数的平方根有两个,它们互为相反数,根据互为相反数的两个数的和为0,可得答案.【解答】解:一个正数的平方根为2﹣m与3m﹣8,(2﹣m)+(3m﹣8)=0m=3,故答案为:3.【点评】本题考查了平方根,注意一个正数的两个平方根的和为0.16.在同一平面内如图,EG∥BC,CD交EG于点F,那么图中与∠1相等的角共有 2 个.【考点】平行线的性质.【分析】根据两直线平行,同位角相等,内错角相等找出与∠1相等的角即可.【解答】解:如图,∵EG∥BC,∴∠1=∠2,∠1=∠3,∴与∠1相等的角有2个角.故答案为:2.【点评】本题考查了平行线的性质,熟记性质并准确识图,找出∠1的同位角、内错角是解题的关键.17.如图,已知:∠1=∠2,∠3=108°,则∠4的度数为72°.【考点】平行线的判定与性质.【分析】根据“同位角相等,两直线平行”判定AB∥CD,然后由“两直线平行,同旁内角互补”得到∠3+∠4=180°,由此易求∠4的度数.【解答】解:如图,∵∠1=∠2,∴AB∥CD,∴∠3+∠4=180°.又∵∠3=108°,∴∠4=72°.故答案是:72°.【点评】此题考查了平行线的判定与性质.平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.18.如果两条平行线被第三条直线所截,那么同位角的平分线的位置关系是平行.【考点】平行线的性质;同位角、内错角、同旁内角.【分析】根据两直线平行,同位角相等,即可得一组同位角相等即∠FEB=∠GFD,又由角平分线的性质求得∠1=∠2,然后根据同位角相等,两直线平行,即可求得答案.【解答】解:∵AB∥CD,∴∠FEB=∠GFD,∵EM与FN分别是∠FEM与∠GFD的平分线,∴∠1=∠FEB,∠2=∠GFD,∴∠1=∠2,∴EM∥FN.故答案为:平行.【点评】本题考查了平行线性质的应用,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.三、解答题(共5小题,满分58分)19.如图,∠AOB内一点P:(1)过点P画PC∥OB交OA于点C,画PD∥OA交OB于点D;(2)写出两个图中与∠O互补的角;(3)写出两个图中与∠O相等的角.【考点】作图—基本作图;余角和补角;平行线的性质.【分析】(1)根据平行线的画法画图即可;(2)根据平行线的性质:两直线平行,同旁内角互补可得答案;(3)根据平行线的性质:两直线平行,同位角相等可得答案.【解答】解:(1)如图所示:(2)与∠O互补的角有∠PDO,∠PCO;(3)与∠O相等的角有∠PDB,∠PCA.【点评】此题主要考查了平行线的画法,以及平行线的性质,关键是掌握平行线性质定理;定理1:两直线平行,同位角相等.定理2:两直线平行,同旁内角互补.定理3:两直线平行,内错角相等.20.求下列各式中的x的值:(1)x2﹣81=0(2)36x2﹣49=0.【考点】立方根.【分析】(1)根据移项,可得乘方的形式,根据开方,可得答案;(2)根据移项,等式的性质,可得乘方的形式,根据开方,可得答案.【解答】解:(1)x2=81,x=±9;(2)36x2=49,xx=±.【点评】本题考查了平方根,先化成乘方的形式,再开方运算.21.如图,已知∠A=∠F,∠C=∠D,可以证明BD∥CE.在下列括号中填写推理理由证明:∵∠A=∠F∴AC∥DF(内错角相等,两直线平行)∴∠C+∠DEC =180°(两直线平行,同旁内角互补)∵∠C=∠D∴∠D+∠DEC=180°(等量代换)∴BD∥CE (同旁内角互补,两直线平行).【考点】平行线的判定与性质.【专题】推理填空题.【分析】由已知的一对内错角相等,利用内错角相等两直线平行得出AC与DF平行,再由两直线平行内错角相等得到∠D=∠1,而∠C=∠D,等量代换得到一对同位角相等,利用同位角相等两直线平行即可得到BD与CE平行.【解答】证明:∵∠A=∠F∴AC∥DF(内错角相等,两直线平行)∴∠C+∠DEC=180°(两直线平行,同旁内角互补)∵∠C=∠D∴∠D+∠D EC=180°(等量代换)∴BD∥CE (同旁内角互补,两直线平行).故答案是:内错角相等,两直线平行;DEC;两直线平行,同旁内角互补;等量代换;同旁内角互补,两直线平行【点评】此题考查了平行线的判定与性质,属于推理型填空题,熟练掌握平行线的判定与性质是解本题的关键.22.小明打算用一块面积为900cm2的正方形木板,沿着边的方向裁出一个长方形面积为588cm2桌面,并且的长宽之比为4:3,你认为能做到吗?如果能,计算出桌面的长和宽;如果不能,请说明理由.【考点】算术平方根.【专题】计算题.【分析】根据长方形的面积,可得一个元二次方程,根据解方程,可得长方形的边长,根据长方形的边长与正方形的边长的比,可得答案.【解答】解:能做到,理由如下设桌面的长和宽分别为4x(cm)和3x(cm),根据题意得,4x×3x=588.12x2=588x2=49,x>0,x==7∴4x=4×7=28 (cm) 3x=3×7=21(cm)∵面积为900cm2的正方形木板的边长为30cm,28cm<30cm∴能够裁出一个长方形面积为588 cm2并且长宽之比为4:3的桌面,答:桌面长宽分别为28cm和21cm.【点评】本题考查了算术平方根,开平方是求边长的关键,注意算术平方根都是非负数.23.如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC的度数.【考点】平行线的判定与性质.【分析】推出EF∥BC,根据平行线性质求出∠ACB,求出∠FCB,根据角平分线求出∠ECB,根据平行线的性质推出∠FEC=∠ECB,代入即可.【解答】解:∵EF∥AD,AD∥BC,∴EF∥BC,∴∠ACB+∠DAC=180°,∵∠DAC=120°,∴∠ACB=60°,又∵∠ACF=20°,∴∠FCB=∠ACB﹣∠ACF=40°,∵CE平分∠BCF,∴∠BCE=20°,∵EF∥BC,∴∠FEC=∠ECB,∴∠FEC=20°.【点评】本题考查了平行线的性质和判定,平行公理及推论,注意:平行线的性质有①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.。

七年级数学下册第一次月考试卷(附答案)

七年级数学下册第一次月考试卷(附答案)

七年级下学期数学第一次月考试卷满分:150分考试用时:120分钟范围:第五章《相交线与平行线》~第六章《实数》班级姓名得分一、选择题(本大题共10小题,共40.0分)1.如图,直线a,b被直线c,d所截,若∠1=∠2,∠3=125°,则∠4的度数是()A. 65°B. 60°C. 55°D. 75°2.如图,AB//CD,∠FGB=154°,FG平分∠EFD,则∠AEF的度数等于()A. 26°B. 52°C. 54°D. 77°3.下列语句正确的是()A. 4是16的算术平方根,即±√16=4B. −3是27的立方根C. √64的立方根是2D. 1的立方根是−14.已知实数a,b在数轴上的位置如图所示,下列结论中正确的是()A. a>bB. |a|<|b|C. ab>0D. −a>b5.如图,在下列给出的条件中,不能判定AB//DF的是()A. ∠A=∠3B. ∠A+∠2=180°C. ∠1=∠4D. ∠1=∠A6. 如图摆放的一副学生用直角三角板,∠F =30°,∠C =45°,AB 与DE 相交于点G ,当EF//BC 时,∠EGB 的度数是( )A. 135°B. 120°C. 115°D. 105°7. 若a 2=4,b 2=9,且ab <0,则a −b 的值为( )A. −2B. ±5C. 5D. 58. 下列结论正确的是( )A. 数轴上任意一点都表示唯一的有理数B. 数轴上任意一点都表示唯一的无理数C. 两个无理数之和一定是无理数D. 数轴上任意两点之间还有无数个点9. 下列说法中,不正确的有( )①任何数都有算术平方根;②一个数的算术平方根一定是正数;③a 2的算术平方根是a ;④(π−4)2的算术平方根是π−4;⑤算术平方根不可能是负数,A. 2个B. 3个C. 4个D. 5个10. 如图,AF//CD ,CB 平分∠ACD ,BD 平分∠EBF ,且BC ⊥BD ,下列结论:①BC 平分∠ABE ;②AC//BE ;③∠CBE +∠D =90°;④∠DEB =2∠ABC ,其中结论正确的个数有( )A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共10小题,共30.0分)11. 若√3a −23与√2−b 3为相反数,且b ≠0,则ab 的值为________. 12. 已知y =√x −3+√3−x +1,则x +y 的算术平方根是________. 13. 如图,有下列3个结论:①能与∠DEF 构成内错角的角的个数是2;②能与∠EFB 构成同位角的角的个数是1;③能与∠C构成同旁内角的角的个数是4,以上结论正确的是______.14.如图,直线AB、CD相交于点O,OE⊥AB,垂足为点O,∠COE:∠BOD=2:3,则∠AOD=______.15.若√2a−2与|b+2|互为相反数,则(a−b)2的平方根=______.16.一个正数x的两个不同的平方根是2a−3和5−a,则x的值是________.17.如图所示,AB//CD,EC⊥CD.若∠BEC=30°,则∠ABE的度数为______.18.已知直线a//b,将一块含30°角的直角三角板ABC按如图所示方式放置(∠BAC=30°),并且顶点A,C分别落在直线a,b上,若∠1=22°,则∠2的度数是______.19.一副直角三角尺叠放如图1所示,现将45°的三角尺ADE固定不动,将含30°的三角尺ABC绕顶点A顺时针转动(旋转角不超过180度),使两块三角尺至少有一组边互相平行.如图2:当∠BAD=15°时,BC//DE.则∠BAD(0°<∠BAD<180°)其它所有可能符合条件的度数为_____.20.已知一个数的平方根是3a+1和a+11,求这个数的立方根是______.三、解答题(本大题共6小题,共80.0分)21.(12分)计算:3;(1)(−1)3+|1−√2|+√8(2)(−3)2+2×(√2−1)−|−2√2|.22.(12分)阅读下列材料∵√4<√7<√9,即2<√7<3,∴√7的整数部分为2,小数部分为(√7−2).规定实数m的整数部分记为[m],小数部分记为{m).如:[√7]=2,{7}=√7−2.解答以下问题:(1)[√10]=________,{√5}=________;(2)求{√5}+{5−√5}的值.23.(12分)工人师傅准备从一块面积为16平方分米的正方形工料上裁剪出一块面积为12平方分米的长方形的工件。

天津市翔宇力仁学校2023-2024学年七年级下学期第一次月考数学试题

天津市翔宇力仁学校2023-2024学年七年级下学期第一次月考数学试题

天津市翔宇力仁学校2023-2024学年七年级下学期第一次月考数学试题一、单选题1.将下图的箭头平移后可能得到的图形是( )A .B .C .D . 2.如图,直线c 与直线a 、b 都相交,若a b ∥,155∠=︒,则2∠=( )A .60°B .55︒C .50︒D .45︒3.9的算术平方根是( )A .3±B .9±C .3D .94.下列说法错误的是( )A .两点之间线段最短B .直线外一点到这条直线的垂线段叫做点到直线的距离C .对顶角相等D .过直线外一点有且只有一条直线与已知直线平行5.如图,将边长为5的正方形ABCD 沿BC 的方向平移至正方形DCEF ,则图中阴影部分的面积是( )A .25B .30C .35D .506.如图,直线12l l ∥,直线3l 和1l ,2l 交于C 、D 两点,P 为CD 上一点,且130∠=︒,320∠=︒,则2∠的度数为( )A .40︒B .无法确定C .10︒D .50︒7.下列说法正确的是( )A .4-的平方根是2±B .4-的算术平方根是2-C 4±D .0的平方根与算术平方根都是08.如图,直线a b P ,一个含有30︒角的直角三角尺的顶点A 位于直线b 上,若12∠=∠,则3∠的度数为( )A .30︒B .60︒C .90︒D .120︒9.如图,将ABC V 沿BC 方向平移得到A B C '''V .连接AA ',若3c m ,11c m AA B C ''==,则B C '的长为( )A .3cmB .4cmC .5cmD .6cm10.点P 为直线m 外一点,点P 到直线m 上的三点A ,B ,C 的距离分别为4cm PA =,6cm PB =,3cm PC =,则点P 到直线m 的距离可能为( )A .2cmB .4cmC .5cmD .7cm111的值在( )A .1和2之间B .2和3之间C .3和4之间D .4和5之间 12.将一副三角板按如图的方式放置,则下列结论:①13∠=∠;②若230∠=︒,则有AC DE ∥;③若245∠=︒,则有BC AD ∥;④若4C ∠=∠,则必有230∠=︒,其中正确的有( )A .①②③B .①②④C .③④D .①②③④二、填空题13.如图,直线l 表示一段河道,点P 表示村庄,图中有四种方案,其中沿线段PC 路线开挖的水渠长最短,其理由是.14.若一个正数的两个平方根分别是31+m 与26m -,则m 的值是 .15.A ∠与B ∠是一对对顶角,且124A B ∠+∠=︒,则A ∠=度.16.如图,,6,8,10BC AC AC BC AB ⊥===,则点C 到直线AB 的距离是.17.现有四个命题:①同位角相等;②如果a b ⊥r r ,a c ⊥,那么b c ⊥;③在同一平面内,如果两直线不相交,那么它们就平行;④当n 为正整数时,231n n ++的值一定是质数.(只填序号)其中是假命题的是.18.如图,把长方形沿EF 折叠,使D 、C 分别落在D C '',的位置,若65EFB ∠=︒,则D E F ∠'=.三、解答题1930b +=,求2a b +的值.20.如图,方格纸中有一条直线AB 和一格点P .(1)过点P 画直线PM AB ∥;(2)在直线AB 上找一点N ,使得PN 最小.21.如图,直线AB 、CD 相交于O ,OE 平分AOD ∠,90FOC??,140∠=︒,求2∠和3∠的度数.22.已知1234x a y a =-=-,.(1)已知x 的算术平方根为3,求a 的值;(2)如果x ,y 都是同一个数的平方根,求这个数.23.已知,如图,CD AB EF AB ⊥⊥,,垂足分别为180D F B BDG ∠+∠=︒、,,试说明BEF CDG ∠=∠.24.如图,直线,EF CD 相交于点,O OC 平分,2AOF AOE BOD ∠∠=∠.(1)若110DOF ∠=︒,求AOE ∠的度数;(2)猜想OA 与OB 之间的位置关系,并证明.25.综合与实践【问题情境】在综合与实践课上,同学们以“一个含30︒的直角三角尺和两条平行线”为背景开展数学活动.如图1,已知两直线a ,b 且a b ∥和Rt ABC △,90BCA ∠=︒,30BAC ∠=︒,60ABC ∠=︒.(1)在图1中,146∠=︒,求2∠的度数;【深入探究】(2)如图2,创新小组的同学把直线a 向上平移,并把2∠的位置改变,发现21120∠-∠=︒,请说明理由;【拓展应用】(3)缜密小组在创新小组发现结论的基础上,将图2中的图形继续变化得到图3,AC 平分BAM ∠,此时发现1∠与2∠又存在新的数量关系,请直接写出1∠与2∠的数量关系.。

七年级数学下册第一次月考试题及答案

七年级数学下册第一次月考试题及答案

七年级下学期月考数学试题考试时间:120分钟试卷满分:150分第Ⅰ卷(本卷满分100分)一、选择题:(共10小题,每小题3分,共30分)下面每小题给出的四个选项中, 有且只有一个是正确的, 请把正确选项前的代号填在答卷指定位置.1.在同一平面内,两条直线的位置关系是A .平行.B .相交.C .平行或相交.D .平行、相交或垂直2.点P (-1,3)在A .第一象限.B .第二象限.C .第三象限.D .第四象限.3.下列各图中,∠1与∠2是对顶角的是4.如图,将左图中的福娃“欢欢”通过平移可得到图为A .B .C .D .5.下列方程是二元一次方程的是A .2xy .B .6x y z .C .235y x.D .230x y .6.若0xy,则点P (x ,y )一定在A .x 轴上.B .y 轴上.C .坐标轴上.D .原点.7.二元一次方程21xy 有无数多组解,下列四组值中不是..该方程的解的是A .012xy.B .11x y.C .10x y.D .11x y.8.甲原有x 元钱,乙原有y 元钱,若乙给甲10元,则甲所有的钱为乙的3倍;若甲给乙10元,则甲所有的钱为乙的2倍多10元.依题意可得12B .12A .12 C .12D .A .103(10)102(10+10x y x y ).B .10310210x y x y .C .3(10)2(10)x y xy .D .103(10)102(10)10x y x y .9.如图,点E 在BC 的延长线上,则下列条件中,不能判定AB ∥CD 的是A .∠3=∠4.B .∠B =∠DCE .C .∠1=∠2.D .∠D+∠DAB =180°.10.下列命题中,是真命题的是A .同位角相等.B .邻补角一定互补.C .相等的角是对顶角.D .有且只有一条直线与已知直线垂直.二、填空题(共10小题,每小题3分,共30分)下列不需要写出解答过程,请将结果直接填写在答卷指定的位置.11.剧院里5排2号可以用(5,2)表示,则7排4号用表示.12.如图,已知两直线相交,∠1=30°,则∠2=__ _.13.如果13yx ,是方程38x ay 的一个解,那么a =_______.14.把方程3x +y –1=0改写成含x 的式子表示y 的形式得.15.一个长方形的三个顶点坐标为(-1,-1),(-1,2),(3,-1),则第四个顶点的坐标是____________.16.命题“如果两条直线都与第三条直线平行,那么这两条直线也互相平行”的题设是 ,结论是.17.如图,AB CD ∥,BC DE ∥,则∠B 与∠D 的关系是_____________.18.如图,象棋盘上,若“将”位于点(0,0),“车”位于点(—4,0),则“马”位于.19.如图,EG ∥BC ,CD 交EG 于点F ,那么图中与∠1相等的角共有______个.第19题图1FABCDEG第18题图马将车ABCDE2413A DBEC第9题图4321第12题图。

七年级数学下册第一次月考试卷(含答案解析)

七年级数学下册第一次月考试卷(含答案解析)

七年级数学下册第一次月考试卷(含答案解析)班级:________ 姓名:________ 成绩:________一.单选题(共10小题,共30分)1. 在下面各数中,−√5,-3π,12,3.1415,√643,0.1616616661…,√9,√8无理数个数为( ) A.4个 B.3个 C.2个D.1个2. 如图,将三角板的直角顶点放在直尺的一边上.若∠1=65∘,则∠2的度数为( )A.15∘B.35∘C.25∘D.40∘3.下列各式中正确的是( ) A.√36=±6B.√(−3)2=−3C.√8=4D.(√−83)3=−84. 如图,在下列给出的条件下,不能判定AB ∥DF 的是( )A.∠A+∠2=180∘B.∠A=∠3C.∠1=∠4D.∠1=∠A5.下列语句中,真命题有( )①经过直线外一点,有且只有一条直线与已知直线平行;②垂直于同一条直线的两条直线平行;③有理数与数轴上的点是一一对应的;④对顶角相等;⑤平方根等于它本身的数是0,1A.2个B.3个C.4个D.5个6.如图,把一张长方形纸片ABCD沿EF折叠后,点C,D分别落在C,D的位置上,EC交AD于点G,已知∠EFG=58∘,则∠BEG等于( )A.58∘B.116∘C.64∘D.74∘7.直线a上有一点A,直线b上有一点B,且a∥b.点P在直线a,b之间,若PA=3,PB=4,则直线a、b之间的距离()A.等于7B.小于7C.不小于7D.不大于78.如图,两个完全一样的直角三角形重叠在一起,将其中的一个三角形沿着点B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为()A.24B.40C.42D.489.一个自然数的算术平方根是a,则下一个自然数的算术平方根是( )A.√a2+1B.√a+1C.a+1D.√a+110.如图,AB∥CD,∠BED=130∘,BF平分∠ABE,DF平分∠CDE,则∠BFD=()A.135∘B.120∘C.115∘D.110∘二.填空题(共5小题,共15分)11.比较大小:√7+1_______3(填“>”、“<”或“=”).12.如图,AB∥CD,直线EF分别交AB、CD于E、F,EG平分∠BEF,若∠1=72∘,则∠2=_______度.13. 珠江流域某江段江水流向经过B 、C 、D 三点拐弯后与原来相同,如图,若∠ABC =120∘,∠BCD=80∘,则∠CDE =_______度.14. ∠1与∠2有一条边在同一直线上,且另一边互相平行,∠1=60∘,则∠2= _______ . 15. 如图,将面积为3的正方形放在数轴上,以表示实数1的点为圆心,正方形的边长为半径,作圆交数轴于点A 、B ,则点A 表示的数为______.三.解答题(共8小题,共55分)16. (1)计算:√9−√1253+|1−√5|+√214 (5分)(2)解方程:(2x-1)2=25 (5分)17. 如图,直线AB 、CD 相交于点O ,OE 平分∠AOC ,OF ⊥OE 于O ,且∠DOF=75∘,求∠BOD 的度数.(6分)18.已知2a+1的平方根是±3,5a+2b-2的算术平方根是4,求3a-4b的平方根.(7分)19.如图,已知AB∥CD,∠A=∠D,求证:∠CGE=∠BHF.(7分)20.已知实数a、b、c在数轴上的位置如下,化简|a|+|b|+|a+b|−√(c−a)2−2√c2(7分)21.根据下表回答问题:(8分)(1) 272.25的平方根是________ (2分)(2) √259.21=_______,√27889=_______,√2.6244=_______ (3分)(3) 设√270的整数部分为a,求﹣4a的立方根.(3分)22.直线AB∥CD,点P在两平行线之间,点E、F分别在AB、CD上,连接PE,PF.尝试探究并解答:(10分)(1) 若图1中∠1=36∘,∠2=63∘,则∠3=_________;(2分)(2) 探究图1中∠1,∠2与∠3之间的数量关系,并说明理由;(3分)(3) ①如图2所示,∠1与∠3的平分线交于点P1,若∠2=α,试求∠EP1F的度数(用含α的代数式表示);(3分)②如图3所示,在图2的基础上,若∠BEP1与∠DFP1的平分线交于点P2,∠BEP2与∠DFP2的平分线交于点P3…∠BEPn-1与∠DFPn-1的平分线交于点Pn,且∠2=α,直接写出∠EPnF的度数(用含α的代数式表示).(3分)参考答案与解析一.单选题(共10小题)第1题:【正确答案】 A【答案解析】是无理数,-3π是无理数,是分数,是有理数,3.1415是有理数,=4是有理数,0.1616616661…是无理数,是有理数,是无理数.故选:A.第2题:【正确答案】 C【答案解析】∵直尺的两边互相平行,∠1=65°,∴∠3=65°,∴∠2=90°-65°=25°.故选:C.第3题:【正确答案】 D【答案解析】A、,故原题计算错误;B、,故原题计算错误;C、,故原题计算错误;D、,故原题计算正确;故选:D.第4题:【正确答案】 D【答案解析】解:A、∵∠A+∠2=180°,∴AB∥DF,故本选项错误;B、∵∠A=∠3,∴AB∥DF,故本选项错误;C、∵∠1=∠4,∴AB∥DF,故本选项错误;D、∵∠1=∠A,∴AC∥DE,故本选项正确.故选:D.第5题:【正确答案】 A【答案解析】①经过直线外一点,有且只有一条直线与已知直线平行是真命题;②垂直于同一条直线的两条直线平行是假命题;③有理数与数轴上的点是一一对应的是假命题;④对顶角相等是真命题;⑤平方根等于它本身的数是0,1是假命题,故选:A.第6题:【正确答案】 C【答案解析】∵AD∥BC,∴∠AFE=∠FEC=58°.而EF是折痕,∴∠FEG=∠FEC.∴∠BEG=180°-2∠FEC=180°-2×58°=64°.故选:C.第7题:【正确答案】 D【答案解析】如图,当点A、B、P共线,且AB⊥a时,直线a、b之间的最短,所以直线a、b 之间的距离≤PA+PB=3+4=7.即直线a、b之间的距离不大于7.故选:D.第8题:【正确答案】 D【答案解析】∵△ABC沿着点B到C的方向平移到△DEF的位置,平移距离为6,∴S△ABC=S△DEF,BE=6,DE=AB=10,∴OE=DE﹣DO=6,∵S阴影部分+S△OEC=S梯形ABEO+S△OEC,=S梯形ABEO=×(6+10)×6=48.∴S阴影部分故选:D.第9题:【正确答案】 A【答案解析】∵一个自然数的算术平方根是a,∴这个自然数是a2,∴相邻的下一个自然数为:a2+1,∴相邻的下一个自然数的算术平方根是:,故选:A.第10题:【正确答案】 C【答案解析】如图,过点E作EM∥AB,过点F作FN∥AB,∵AB ∥CD ,∴EM ∥AB ∥CD ∥FN ,∴∠ABE+∠BEM =180°,∠CDE+∠DEM =180°, ∴∠ABE+∠BED+∠CDE =360°,∵∠BED =130°,∴∠ABE+∠CDE =230°, ∵BF 平分∠ABE ,DF 平分∠CDE , ∴∠ABF =∠ABE ,∠CDF =∠CDE ,∴∠ABF+∠CDF = (∠ABE+∠CDE)=115°,∵∠DFN =∠CDF ,∠BFN =∠ABF ,∴∠BFD =∠BFN+∠DFN =∠ABF+∠CDF =115°. 故选:C .二.填空题(共5小题) 第11题:【正确答案】 > 无 【答案解析】∵2<<3,∴3<+1<4, 即+1>3,故答案为:>. 第12题:【正确答案】 54 无【答案解析】∵AB ∥CD ,∴∠BEF=180°﹣∠1=180°﹣72°=108°,∠2=∠BEG , 又∵EG 平分∠BEF ,∴∠BEG=12∠BEF=12×108°=54°, 故∠2=∠BEG=54°. 故答案为:54.第13题:【正确答案】 20 无【答案解析】过点C作CF∥AB,已知珠江流域某江段江水流向经过B、C、D三点拐弯后与原来相同,∴AB∥DE,∴CF∥DE,∴∠BCF+∠ABC=180°,∴∠BCF=60°,∴∠DCF=20°,∴∠CDE=∠DCF=20°.故答案为:20.第14题:【正确答案】 60°或120°无【答案解析】如图:当α=∠2时,∠2=∠1=60°,当β=∠2时,∠β=180°-60°=120°,故答案为:60°或120°.第15题:【正确答案】1−√3无【答案解析】∵正方形的面积为3,∴圆的半径为,∴点A表示的数为.故答案为:.三.解答题(共8小题)第16题:【正确答案】解:原式=3﹣5+﹣1+.【答案解析】见答案。

七年级下第一次月考数学试卷含答案解析

七年级下第一次月考数学试卷含答案解析

七年级(下)第一次月考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.若的算术平方根有意义,则a的取值范围是()A.一切数B.正数 C.非负数D.非零数2.下列所示的四个图形中,∠1和∠2是同位角的是()A.②③B.①②③ C.①②④ D.①④3.如图,满足下列条件中的哪一个,可得到AB∥CD()A.∠1=∠2 B.∠3=∠4 C.∠1=∠4 D.∠5=∠1+∠34.如图,下列各数中,数轴上点A表示的可能是()A.4的算术平方根B.4的立方根C.8的算术平方根D.8的立方根5.估计的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间6.如图,在下列给出的条件下,不能判定AB∥DF的是()A.∠A+∠2=180°B.∠A=∠3 C.∠1=∠4 D.∠1=∠A7.如图,已知:a⊥b,b∥c,∠1=130°,则∠2的度数是()A.30°B.40°C.50°D.60°8.有一个数轴转换器,原理如图所示,则当输入的x为64时,输出的y是()A.8 B.C. D.189.在5×5方格纸中将图①中的图形N平移后的位置如图②所示,那么下面平移中正确的是()A.先向下移动1格,再向左移动1格B.先向下移动1格,再向左移动2格C.先向下移动2格,再向左移动1格D.先向下移动2格,再向左移动2格10.实数a,b,c在数轴上的对应点的位置如图所示,下列各项成立的是()A.c﹣b>a B.b+a>c C.ac>b D.ab>c二、填空题(共10小题,每小题2分,满分20分)11.若一个数的算术平方根等于它的本身,则这个数是.12.如图,与∠CAB成内错角的是.13.如图,M、N、P、Q是数轴上的四个点,这四个点中最适合表示的点是.14.若,则a=;若,则a=.15.如图,AB∥CD,EG⊥AB,垂足为G.若∠1=50°,则∠E=度.16.如图,将一副三角板放在一块,AC与EF所夹的钝角的度数为.17.已知,如图,AD与BC相交于点O,AB∥CD,如果∠B=20°,∠D=40°,那么∠BOD 为度.18.如果与互为相反数,那么x2+y=.19.在数轴上与原点的距离是的点所表示的实数是.20.如图,若要AB∥CE,则需满足的条件是.三、解答题(共8小题,满分50分)21.计算:(1)+;(2)×(﹣)2﹣.22.如图所示,∠1=72°,∠2=72°,∠3=60°,求∠4的度数.23.已知ab<0,>0,且|c|>|b|>|a|,数轴上a、b、c对应的点是A、B、C.(1)若|a|=﹣a时,请在数轴上标出A、B、C的大致位置;(2)在(1)的条件下,化简|a﹣b|﹣|b﹣c|+|c+a|.24.已知2a﹣1的平方根是±3,3a+b﹣1的算术平方根是4,求a+2b的值.25.已知(2a+b)3=﹣27,=5,求(3a+b)2n+1.(其中n为正整数)26.如图,已知AB∥CD,∠B=96°,EF平分∠BEC,EG⊥EF,求∠BEG和∠DEG的度数.27.如图,已知∠ABC=52°,∠ACB=60°,BO,CO分别是∠ABC和∠ACB的平分线,EF 过点O,且平行于BC,求∠BOC的度数.28.如图,∠B、∠D的两边分别平行.(1)在图(1)中,∠B与∠D的数量关系是;(2)在图(2)中,∠B与∠D的数量关系是;(3)用一句话归纳的结论为;试分别说明理由.2015-2016学年河南省漯河市召陵二中七年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.若的算术平方根有意义,则a的取值范围是()A.一切数B.正数 C.非负数D.非零数【考点】算术平方根.【分析】根据开平方的被开方数都是非负数,可得答案.【解答】解:的算术平方根有意义,则a的取值范围是非负数,故选:C.2.下列所示的四个图形中,∠1和∠2是同位角的是()A.②③B.①②③ C.①②④ D.①④【考点】同位角、内错角、同旁内角.【分析】此题在于考查同位角的概念,在截线的同侧,并且在被截线的同一方的两个角是同位角,所以①②④符合要求.【解答】解:图①、②、④中,∠1与∠2在截线的同侧,并且在被截线的同一方,是同位角;图③中,∠1与∠2的两条边都不在同一条直线上,不是同位角.故选:C.3.如图,满足下列条件中的哪一个,可得到AB∥CD()A.∠1=∠2 B.∠3=∠4 C.∠1=∠4 D.∠5=∠1+∠3【考点】平行线的判定.【分析】由∠5=∠1+∠3,根据内错角相等,两直线平行可得AB∥CD.【解答】解:∵∠5=∠1+∠3,∴AB∥CD.故选D.4.如图,下列各数中,数轴上点A表示的可能是()A.4的算术平方根B.4的立方根C.8的算术平方根D.8的立方根【考点】估算无理数的大小.【分析】先根据数轴判断A的范围,再根据下列选项分别求得其具体值,选取最符合题意的值即可.【解答】解:根据数轴可知点A的位置在2和3之间,且靠近3,而=2,<2,2<=2<3,=2,只有8的算术平方根符合题意.故选C.5.估计的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间【考点】估算无理数的大小.【分析】利用”夹逼法“得出的范围,继而也可得出的范围.【解答】解:∵2=<=3,∴3<<4,故选B.6.如图,在下列给出的条件下,不能判定AB∥DF的是()A.∠A+∠2=180°B.∠A=∠3 C.∠1=∠4 D.∠1=∠A【考点】平行线的判定.【分析】根据平行线的判定定理对各选项进行逐一判断即可.【解答】解:A、∵∠A+∠2=180°,∴AB∥DF,故本选项错误;B、∵∠A=∠3,∴AB∥DF,故本选项错误;C、∵∠1=∠4,∴AB∥DF,故本选项错误;D、∵∠1=∠A,∴AC∥DE,故本选项正确.故选D.7.如图,已知:a⊥b,b∥c,∠1=130°,则∠2的度数是()A.30°B.40°C.50°D.60°【考点】平行线的性质.【分析】根据一条直线垂直两平行线中一条直线,那么它也垂直于另一条直线,由a⊥b,b∥c 可得a⊥c,即∠3=90°,然后根据三角形外角的性质得到∠1=∠3+∠2,则∠2=∠1﹣∠3=130°﹣90°=40°.【解答】解:a与b交于点A,如图,∵a⊥b,b∥c,∴a⊥c,∴∠3=90°,而∠1=∠3+∠2,∴∠2=∠1﹣∠3=130°﹣90°=40°.故选B.8.有一个数轴转换器,原理如图所示,则当输入的x为64时,输出的y是()A.8 B.C. D.18【考点】算术平方根.【分析】根据算术平方根,即可解答.【解答】解:64的算术平方根是8,8的算术平方根是.故选:B.9.在5×5方格纸中将图①中的图形N平移后的位置如图②所示,那么下面平移中正确的是()A.先向下移动1格,再向左移动1格B.先向下移动1格,再向左移动2格C.先向下移动2格,再向左移动1格D.先向下移动2格,再向左移动2格【考点】平移的性质.【分析】根据题意,结合图形,由平移的概念求解.【解答】解:根据平移的概念,图形先向下移动2格,再向左移动1格或先向左移动1格,再向下移动2格.结合选项,只有C符合.故选:C.10.实数a,b,c在数轴上的对应点的位置如图所示,下列各项成立的是()A.c﹣b>a B.b+a>c C.ac>b D.ab>c【考点】实数与数轴.【分析】根据数轴可以判断a、b、c的大小与正负情况,从而判断选项中的式子是否正确,本题得以解决.【解答】解:由数轴可得,a<0<b<c,∴c﹣b>0>a,故选项A正确;b+a<c,故选项B错误;ac<0<b,故选项C错误;ab<0<c,故选项D错误;故选A.二、填空题(共10小题,每小题2分,满分20分)11.若一个数的算术平方根等于它的本身,则这个数是0,1.【考点】算术平方根.【分析】根据开方运算,可得答案.【解答】解:若一个数的算术平方根等于它的本身,则这个数是0,1,故答案为:0,1.12.如图,与∠CAB成内错角的是∠HCA,∠ABI.【考点】同位角、内错角、同旁内角.【分析】根据内错角是在截线两旁,被截线之内的两角,内错角的边构成”Z“形作答即可.【解答】解:根据内错角定义,直线BH与直线DE被直线GF所截,与∠CAB成内错角的是∠HCA,直线GF与直线HB被直线DE所截,与∠CAB成内错角的是∠ABI,故答案为:∠HCA,∠ABI.13.如图,M、N、P、Q是数轴上的四个点,这四个点中最适合表示的点是P.【考点】估算无理数的大小;实数与数轴.【分析】先估算出的取值范围,再找出符合条件的点即可.【解答】解:∵4<7<9,∴2<<3,∴在2与3之间,且更靠近3.故答案为:P.14.若,则a=10;若,则a=﹣1.【考点】算术平方根.【分析】根据算术平方根的概念列出算式,计算即可.【解答】解:∵=3,∴a﹣1=9,解得,a=10;∵=0,∴a+1=0,解得a=﹣1.故答案为:10;﹣1.15.如图,AB∥CD,EG⊥AB,垂足为G.若∠1=50°,则∠E=40度.【考点】平行线的性质;对顶角、邻补角;垂线.【分析】∠1和∠2是对顶角相等,∠2和∠3为同位角,根据两直线平行,同位角相等可求出∠3,在直角三角形中,两锐角互余,即可求解.【解答】解:∵∠1=50°,∴∠1=∠2(对顶角相等),∵AB∥CD,∴∠3=∠2=50°,又∵EG⊥AB,∴∠E=90°﹣∠3=90°﹣∠50°=40°.故答案为:40.16.如图,将一副三角板放在一块,AC与EF所夹的钝角的度数为165°.【考点】三角形的外角性质.【分析】根据三角形的外角性质解答即可.【解答】解:∵∠A=30°,∠FEB=45°,∴AC与EF所夹的锐角的度数为15°,∴AC与EF所夹的钝角的度数为165°,故答案为:165°17.已知,如图,AD与BC相交于点O,AB∥CD,如果∠B=20°,∠D=40°,那么∠BOD 为60度.【考点】三角形的外角性质;平行线的性质.【分析】由两直线平行可知∠B=∠C=20°,由外角定义可知∠BOD=∠C+∠D=60°.【解答】解:∵AB∥CD,∠B=20°,∴∠C=∠B=20°,又∵∠BOD=∠D+∠C,且∠D=40°,∴∠BOD=60°.18.如果与互为相反数,那么x2+y=7.【考点】非负数的性质:算术平方根.【分析】与互为相反数,即两个式子的和是0,根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.【解答】解:根据题意得:,解得:,则x2+y=9﹣2=7.故答案是:7.19.在数轴上与原点的距离是的点所表示的实数是.【考点】实数与数轴.【分析】分点在原点的左边与右边两种情况求解.【解答】解:①原点左边到原点的距离为的点是﹣;②原点右边到原点的距离为的点是.所以数轴上到原点的距离是的点所表示的实数是.故答案为:.20.如图,若要AB∥CE,则需满足的条件是∠DCE=∠B(答案不唯一).【考点】平行线的判定.【分析】能判定AB∥CE的,根据判别两条直线平行的方法:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.得出需满足的条件是:∠DCE=∠B 或∠ECA=∠A或∠B+∠BCE=180°.【解答】解:若要AB∥CE,则需满足的条件是:∠DCE=∠B或∠ECA=∠A或∠B+∠BCE=180°.故答案为:∠DCE=∠B(答案不唯一).三、解答题(共8小题,满分50分)21.计算:(1)+;(2)×(﹣)2﹣.【考点】实数的运算.【分析】(1)原式利用算术平方根、立方根定义,以及二次根式性质计算即可得到结果;(2)原式利用平方根及立方根定义计算即可得到结果.【解答】解:(1)原式=2﹣2+2=2;(2)原式=4+1﹣4=1.22.如图所示,∠1=72°,∠2=72°,∠3=60°,求∠4的度数.【考点】平行线的判定与性质.【分析】先根据∠1=∠2,易证a∥b,那么有∠3+∠4=180°,而∠3=60°,易求∠4.【解答】解:如右图所示,∵∠1=∠2,∴a∥b,∴∠3+∠4=180°,∵∠3=60°,∴∠4=120°.23.已知ab<0,>0,且|c|>|b|>|a|,数轴上a、b、c对应的点是A、B、C.(1)若|a|=﹣a时,请在数轴上标出A、B、C的大致位置;(2)在(1)的条件下,化简|a﹣b|﹣|b﹣c|+|c+a|.【考点】数轴;绝对值.【分析】(1)根据题意判断出abc的符号及大小,再在数轴上表示出各数即可;(2)根据各点在数轴上的位置去绝对值符号,合并同类项即可.【解答】解:(1)∵ab<0,∴a,b异号.∵>0,∴a,c同号.∵|a|=﹣a,∴a<0,∴b>0,c<0.∵|c|>|b|>|a|,∴c<a<0,且点B到原点的距离大于点a到原点的距离,小于点C到原点的距离,∴各点在数轴上表示为:;(2)∵由图可知,a﹣b<0,b﹣c>0,c+a<0,∴原式=b﹣a﹣(b﹣c)+(﹣c﹣a)=b﹣a﹣b+c﹣c﹣a=﹣2a.24.已知2a﹣1的平方根是±3,3a+b﹣1的算术平方根是4,求a+2b的值.【考点】算术平方根;平方根.【分析】根据平方根的定义列式求出a的值,再根据算术平方根的定义列式求出b的值,然后代入代数式进行计算即可得解.【解答】解:∵2a﹣1的平方根是±3,∴2a﹣1=9,∴a=5,∵3a+b﹣1的算术平方根是4,∴3a+b﹣1=16,∴3×5+b﹣1=16,∴b=2,∴a+2b=5+2×2=9.25.已知(2a+b)3=﹣27,=5,求(3a+b)2n+1.(其中n为正整数)【考点】立方根;算术平方根.【分析】利用立方根及算术平方根定义求出a与b的值,代入原式计算即可得到结果.【解答】解:∵(2a+b)3=﹣27,=5,∴,解得:,则原式=﹣1.26.如图,已知AB∥CD,∠B=96°,EF平分∠BEC,EG⊥EF,求∠BEG和∠DEG的度数.【考点】平行线的性质.【分析】首先根据平行线的性质可得∠B+∠CEB=180°,进而可得∠CEB的度数,再根据角平分线的定义可得∠FEB的度数,然后再根据垂直定义可得∠GEB的度数;利用邻补角的性质可得∠BED,再根据角的和差关系可得∠DEG的度数.【解答】解:∵AB∥CD,∴∠B+∠CEB=180°,∵∠B=96°,∴∠CEB=180°﹣96°=84°,∵EF平分∠BEC,∴∠BEF=84°÷2=42°,∵EG⊥EF,∴∠FEG=90°,∴∠BEG=90°﹣42°=48°,∵∠CEB=84°,∴∠BED=96°,∴∠DEG=96°﹣48°=48°.27.如图,已知∠ABC=52°,∠ACB=60°,BO,CO分别是∠ABC和∠ACB的平分线,EF 过点O,且平行于BC,求∠BOC的度数.【考点】三角形内角和定理;平行线的性质.【分析】先根据角平分线的性质求出∠OBC+∠OCB的度数,再由三角形内角和定理即可得出结论.【解答】解:∵∠ABC=52°,∠ACB=60°,BO、CO分别是∠ABC和∠ACB的平分线,∴∠OBC+∠OCB=(∠ABC+∠ACB)=(52°+60°)=56°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣56°=124°.28.如图,∠B、∠D的两边分别平行.(1)在图(1)中,∠B与∠D的数量关系是相等;(2)在图(2)中,∠B与∠D的数量关系是互补;(3)用一句话归纳的结论为如果两个角的两条边分别平行,那么这两个角的关系是相等或互补;试分别说明理由.【考点】平行线的性质.【分析】本题主要利用两直线平行,同位角相等,两直线平行,同旁内角互补及两直线平行内错角相等进行做题.【解答】解:(1)相等;(2)互补;(3)如果两个角的两条边分别平行,那么这两个角的关系是相等或互补.图(1)中,∵AB∥CD,∴∠B=∠1,∵BE∥DF,∴∠1=∠D,∴∠B=∠D.图(2)中,∵AB∥CD,∴∠B=∠2,∵BE∥DF,∴∠2+∠D=180°,∴∠B+∠D=180°.2016年4月30日。

七年级数学下册数学第一次月考试题及答案

七年级数学下册数学第一次月考试题及答案

七年下第一次月考数学试题一、填空题(每小题2分;共20分) 1.如图;若∠1=35°;则∠2= ;∠3= . 2.如图;AC ⊥BC ;C 为垂足;CD ⊥AB ;D 为垂足;BC=8;CD=4.8; BD=6.4;AD=3.6;AC=6;点A 到BC 的距离是 ; A ;B 两点间的距离是 . 3.把命题“平行于同一条直线的两条直线平行”;改写成“如果……;那么……”的形式为 .4.如图;直线AB 、CD 相交于点O ;OA 平分∠EOC ;∠EOC=80°;则∠BOD= .5.如图;已知直线a ∥b ;∠4=40°;则∠2= .6.如图;直线AB ∥CD ;EF 交AB 于点M ;M N ⊥EF 于点M ;MN 交CD 于点N ;若∠BME=125°;则∠MND= .7.如图;已知∠1=70°;∠2=110°;∠3=80°;则∠4= .8.如图;AB ∥CD ;BC ∥DE ;则∠B 与∠D 的关系是 .9.小强将两把直尺按如图所示叠放;使其中一把直尺的一个顶点恰好落在另一把直尺的边上;则∠1+∠2 = 度.10如图;DH ∥EG ∥BC ;且DC ∥EF ;则图中与∠1相等的角有 个.二、单项选择题(每小题3分;共18分)11.下列各图中;∠1和∠2是对顶角的是( )12.如图;点A 到直线CD 的距离是指哪一条线段的长( )D C B AE O D C BA c b a 42DE D C BA 21F G H E D CB A 12121DC BA 21D CB A 43D 1C 1B 1A 1D C B A 521FE D C B A 431题图 2题图 4题图 5题图 6题图 8题图 9题图 10题图B D13.下列四组图形中;有一组中的两个图形经过平移;其中一个能得到另一个;这组图形是()14.如图;下列条件中能判定AB∥CD的是()A. ∠1=∠2B. ∠2=∠4C. ∠1=∠3D. ∠B+∠BCD=180°15.在如图所示的长方体中;和棱AB平行的梭有()16.在如图;已知∠1=∠2;∠3=∠4;求证:AC∥DF;BC∥EF.证明过程如下:∵∠1=∠2(已知);∴AC∥DF(A.同位角相等;两直线平行);∴∠3=∠5(B.内错角相等;两直线平行).又∵∠3=∠4(已知)∴∠5=∠4(C.等量代换);∴BC∥EF(D.内错角相等;两直线平行).上述过程中判定依据错误的是()三、解答题(每小题5分;共20分)17.如图;离河岸不远处有一个村庄;村民到岸边取水;怎样走最近?这什么?如果要到码头乘船;怎样走最近?为什么?18.O;∠1=∠2;∠3:∠1=8:1;求∠4的度数.村庄12题图14题图15题图16题图A B C D19.如图;已知AB ∥CD ;∠1=50°;BD 平分∠ADC ;求∠A 的度数.20.一个角的补角是这个角的余角的3倍;求这个角的度数.四、解答题(每小题6分;共12)21.如图;已知直线a ;b 被直线c 所截;在括号内为下面各小题的推理填上适当的根据.(1)∵a ∥b ;∴∠1=∠3( ); (2)∵∠1=∠3;∴a ∥b ( );(3)∵a ∥b ;∴∠1=∠2( ); (4)∵a ∥b ;∴∠1+∠4=180°( ); (5)∵∠1=∠2;∴a ∥b ( ); (6)∵∠1+∠4=180°;∴a ∥b ( ).22.如图;已知∠AOB=152°;∠AOC=∠BOD=90°;求∠COD 的度数.五、解答题(每小题7分;共14分)23.如图所示;BE 是∠ABC 的平分线;∠1=∠2;试说明DE ∥BC.D C B A 1D C B AO E D C B A 2119题图21题图 23题图 22题图24.如图;C 点在B 处的北偏东85°方向;A 点在C 处的北偏西45°方向;求∠BCA 的度数.六、解答题(每小题8分;共16分)25.已知:如图AB ∥CD ;BE ∥CF.试说明:∠1=∠4.26.如图;原来是重叠的两个直角三角形;将其中一个三角形沿BC 方向平移BE 的距离;就得到此图形;求阴影部分面积(单位:厘米).七、解答题(每小题10分;共20分)27.如图;EF ∥AD ;∠1=∠2;∠BAC=80°.求∠AGD 的度数.北北E D C B A F E D CB A 432158F E C B G FE D CB A 32124题图 25题图 26题图 27题图28.如图;已知AB ∥CD ;猜想图1、图2、图3中∠B ;∠BED ;∠D 之间分别有什么关系?请分别用等式表示出它们的关系;并证明.E DC B A ED CB A E DC B A 28题图 图1图2 图3参考答案°;35°;2.6;10;3.如果两条直线都与第三条直线平行;那么这两条直线也互相平行;°°°°;8. ∠B+∠D=180°°;10.5个;11.A;12.C;13.D;14.D;15.A;16.B;17.如图所示:村民取水AB最近;理由:垂线段最短;到码头AC最近;理由:两点之间;线段最短;BAC18. ∠4=36°;°°21.(1)两直线平行;同位角相等;(2)同位角相等;两直线平行;(3)两直线平行;内错角相等;(4)两直线平行;同旁内角互补;(5)内错角相等;两直线平行;(6)同旁内角互补;两直线平行;°23. ∵BE是∠ABC的平分线;∴∠1=∠EBC∵∠1=∠2∴∠2=∠EBC∴DE∥BC°;25. ∵AB∥CD∴∠ABC=∠BCD∵BE∥CF∴∠2=∠3∴∠ABC-∠2=∠BCD-∠3∴∠1=∠4.26. ∵AB=DE=8;DH=3∴HL=5∴阴影部分的面积是(5+8)×5÷27. ∵EF∥AD∴∠1=∠2∵∠1=∠2;∠1=∠3∴∠2=∠3∴DG∥AB∴∠DCA+∠BAC=180°∴∠AGD=180°-80°=100°28.图1:∠B+∠D=∠BED;图2:∠B-∠D=∠BED;∠D=∠B+∠DEBFF F。

四川省内江市第一中学2023-2024学年七年级下学期第一次月考数学试题

四川省内江市第一中学2023-2024学年七年级下学期第一次月考数学试题

四川省内江市第一中学2023-2024学年七年级下学期第一次月考数学试题一、单选题1.下列是二元一次方程组的是( ) A .141y x x y ⎧+=⎪⎨⎪-=⎩B .12x y =⎧⎨=⎩C .2132x y y z -=⎧⎨+=⎩D .521x y xy +=⎧⎨=⎩2.下列是二元一次方程235x y +=的解的是( ) A .22x y =⎧⎨=-⎩B .32x y =⎧⎨=-⎩C .23x y =-⎧⎨=⎩D .53x y =⎧⎨=-⎩3.解方程组323321x y x y +=⎧⎨-=-⎩①②时,-①②,得( )A .44y =B .42y =C .44y -=D .42y -=4.312m x y +与23n x y 是同类项,则m 与n 的值为( ) A .13m n =⎧⎨=⎩B .31m n =⎧⎨=⎩C .23m n =⎧⎨=⎩D .32m n =⎧⎨=⎩5.若()()20233202442023m n m x n y---++=是关于x ,y 的二元一次方程,则( )A .2024,4m n =±=±B .20244m n =-=±,C .20244m n =±=-,D .20244m n =-=,6.根据等式的性质,下列各式变形正确的是( ) A .若a bc c=,则a b = B .若ac bc =,则a b = C .若22a b =则a b =D .若a b =,则11a b +=-7.若21x y =-⎧⎨=⎩是方程组17ax by bx ay +=⎧⎨+=⎩的解,则a b -的值为( )A . 8-B .0C .2D .88.甲、乙两工程队开挖一条水渠各需10天、15天,两队合作2天后,甲有其他任务,剩下的工作由乙队单独做,还需多少天能完成任务?设还需x 天,可得方程( )A .11()21101515x +⨯+=B .11015x x+= C .2211015x ++= D .2211015x ++= 9.商店对某种手机的售价作了调整,按原售价的8折出售,此时的利润率为14%,若此种手机的进价为1200元,设该手机的原售价为x 元,则下列方程正确的是( ) A .0.8x ﹣1200=1200×14% B .0.8x ﹣1200=14%x C .x ﹣0.8x =1200×14%D .0.8x ﹣1200=14%×0.8x10.某单位组织34人分别到井冈山和瑞金进行革命传统教育,到井冈山的人数是到瑞金的人数的2倍多1人,求到两地的人数各是多少?设到井冈山的人数为x 人,到瑞金的人数为y 人.下面所列的方程组正确的是A .x y 34{x 12y+=+=B .x y 34{x 2y 1+==+C .x y 34{2x y 1+==+D .x 2y 34{x 2y 1+==+11.用“※”定义一种新运算:对于任意有理数a 和b ,规定()a b a a b =+※.例如:()12112133=⨯+=⨯=※.若()3253x x -=-※,则x 的值为( )A .1-B .2-C .1D .212.已知关于x 的一元一次方程1322020x x b +=+的解为2x =,那么关于y 的一元一次方程()11252020y y b -=+-的解为( ) A .1y = B .2y = C .3y = D .4y =二、填空题13.已知4560x y --=,用含x 的代数式表示y ,得. 14.当x =时,代数式2x +3与2-5x 的值互为相反数. 15.已知:31x y =⎧⎨=⎩是方程32x ay -=的解,则=a .16.若关于a b 、的二元一次方程组254a b k a b k +=⎧⎨-=⎩①②的解也是二元一次方程8a b +=的解,则k的值为.三、解答题17.解方程(1)()2932x x -+=-. (2)321352x x+-=-. 18.解方程组 (1)28437x y x y +=⎧⎨+=⎩;(2)2387+55x y x y -=⎧⎨-=⎩;(3)484217x y z x y z x y z ++=⎧⎪-+=⎨⎪++=⎩. 19.已知关于x ,y 的方程组228x y ax by +=-⎧⎨-=-⎩和4312bx ay x y +=-⎧⎨-=⎩的解相同,求()20232a b +的值.20.已知方程组51542ax y x by -=⎧⎨-=-⎩①②由于甲看错了方程①中的a ,得到方程组的解为31x y =-⎧⎨=-⎩;乙看错了方程②中的b ,得到方程组的解为54x y =⎧⎨=⎩,(1)求a ,b 的值; (2)求原方程组正确的解.21.一辆汽车从甲地开往乙地,每小时行40千米,开出5小时后,一列火车以每小时90千米的速度也从甲地开往乙地,在甲、乙两地的中点处火车追上汽车,甲、乙两地相距多少千米?22.随着“低碳生活,绿色出行”理念的普及,新能源汽车正逐渐成为人们喜爱的交通工具,某汽车4S 店计划购进一批新能源汽车进行销售.据了解,购进2辆A 型新能源汽车、3辆B 型新能源汽车共需80万元;购进3辆A 型新能源汽车、2辆B 型新能源汽车共需95万元. (1)问A 、B 两种型号的新能源汽车每辆进价分别为多少万元?(2)若该公司计划正好用180万元购进以上两种型号的新能源汽车(两种型号的汽车均购买),销售1辆A 型汽车可获利1.2万元,销售1辆B 型汽车可获利0.8万元.假如这些新能源汽车全部售出,请设计出符合要求的所有购买方案,并分别求出每个方案所获得的利润.四、填空题 23.小玉在解方程21132x x a-+=-去分母时,方程右边的“1-”项没有乘6,因而求得的解是10x =,试求原方程的解为.24.若关于x ,y 的二元一次方程组4232512x y m x y m +=-⎧⎨-+=-⎩的解x ,y 互为相反数,则m 的值为 .25.若关于x 的不等式组152(3)3()22x x x a x +>-⎧⎨+>+⎩只有4个整数解,则a 的取值范围为.五、解答题26.定义:把ax y b +=(其中a ,b 是常数,x ,y 是未知数)这样的方程称为“优美二元一次方程”.当2y x =时,“优美二元一次方程ax y b +=”中x 的值称为“优美二元一次方程”的“优美值”.例如:当2y x =时,“优美二元一次方程”34x y -=化为324x x -=,解得:4x =,故其“优美值”为4.(1)求“优美二元一次方程”51-=x y 的“优美值”;(2)若“优美二元一次方程”13x y m +=的“优美值”是﹣3,求m 的值;(3)是否存在n ,使得优美二元一次方程52x y n +=与优美二元一次方程42x y n -=-的“优美值”相同?若存在,请求出n 的值及此时的“优美值”;若不存在,请说明理由.27.在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级下学期第一次月考数学试题
姓名:________ 班级:________ 成绩:________
一、单选题
1 . 某校开展社团活动,参加活动的同学要分组活动,若每组7人,则余3人;若每组8人,则少5人;求课外活动小组的人数x和分成的组数y,可列方程组为()
A.B.C.D.
2 . 如图,按下面的程序进行运算.规定:程序运行到“判断结果是否大于35”为一次运算.若运算进行了3次才停止,则x的取值范围是()
A.7<x≤11B.7≤x<11
C.7<x<11D.7≤x≤11
3 . 方程组的解是()
A.B.C.D.
4 . 不等式组的解集是()
A.x>﹣B.x<﹣
C.x<1
D.﹣<x<1
5 . 下列表述中,错误的是………………………………………………………………()
A.B.-1是1的平方根
C.-1没有立方根D.1是1的立方根
6 . 下列各式中是二元一次方程组的是()
D.
A.B.
C.
7 . 如图所示,三架飞机保持编队飞行,某时刻在坐标系中的坐标分别为(-1,1),(-3,1),(-1,-1),30秒后,飞机飞到位置,则飞机的位置分别为()
A.B.C.D.
8 . 如果(0<x<150)是一个整数,那么整数x可取得的值共有()
A.3个B.4个C.5个D.6个
9 . 下列计算中正确的是()
A.
B.;C.;D.
10 . 在实数-,0.,,,0.80108,中,无理数的个数为()
A.1个B.2个C.3个D.4个
11 . 不等式组的解集在数轴上表示正确的是()
A.B.
C.D.
12 . 如果a(a>0)的平方根是±m,那么()
A.a2=±m B.a=±m2C.=±m D.±=±m
二、填空题
13 . 已知实数x,y满足+|x﹣2y+2|=0,则2x﹣y的平方根为____.
14 . ︱-2︱的相反数为__;的倒数为__;的平方根是__
15 . 如果关于的方程组的解是二元一次方程的一个解,则直线不经过第________象限.
16 . 已知二元一次方程5x-2y=14,用含x的代数式表示y,则y=______.
17 . 比较大小:______3.
18 . 若与是同一个数的两个平方根,则这个数是__________.
19 . 一张桌子由一个桌面和四条脚组成,1立方米的木材可制成桌面50张或制作桌脚300条,现有10立方米的木材,问应如何分配木材,可以使桌面和桌脚配套?设用x立方米的木材做桌面,可列方程________.
三、解答题
20 . 已知a﹣4的立方根是1,3a﹣b﹣2的算术平方根是3,的整数部分是c,求2a﹣3b+c的平方根.
21 . 方程组的解满足,,求的取值范围.
22 . (1)如图,∠1=75°,∠2=105°,∠C=∠D.判断∠A与∠F的大小关系,并说明理由.
(2)对于某些数学问题,灵活运用整体思想,可以化难为易.在解二元一次方程组时,就可以运用整体代入法:如解方程组:.
解:把②代入①得,解得把代入②得,
所以方程组的解为
请用同样的方法解方程组:.
23 . 计算:.
24 . 学校为表彰在“了不起我的国”演讲比赛中获奖的选手,决定购买甲、乙两种图书作为奖品.已知购买30本甲种图书,50本乙种图书共需1350元;购买50本甲种图书,30本乙种图书共需1450元.(1)求甲、乙两种图书的单价分别是多少元?
(2)学校要求购买甲、乙两种图书共40本,且甲种图书的数量不少于乙种图书数量的,请设计最省钱的购书方案.
25 . 解方程组
26 . 已知关于x,y的方程组的解满足x>0,y<0,求满足条件的整数m的值.。

相关文档
最新文档