(高三数学二轮专题复习)圆锥曲线中定点与定值、最值与范围问题
高考数学专题复习圆锥曲线定点定值和最值问题
圆锥曲线的定点、定值问题1、已知平面内的动点P 到定直线l :22x =的距离与点P 到定点()2,0F 之比为2.(1)求动点P 的轨迹C 的方程;(2)若点N 为轨迹C 上任意一点(不在x 轴上),过原点O 作直线AB 交(1)中轨迹C 于点A 、B ,且直线AN 、BN 的斜率都存在,分别为1k 、2k ,问21k k •是否为定值?(3)若点M 为圆O :422=+y x 上任意一点(不在x 轴上),过M 作圆O 的切线,交直线l 于点Q ,问MF 与OQ 是否始终保持垂直关系?2、已知椭圆2222:1x y C a b +=(0)a b >>的离心率为12,一条准线为:4l x =,若椭圆C 与x 轴交于,A B 两点,P 是椭圆C 上异于,A B 的任意一点,直线PA 交直线l 于点M ,直线PB 交直线l 于点N ,记直线,PA PB 的斜率分别为12,k k .(1)求椭圆C 的方程;(2)求12,k k 的值;(3)求证:以MN 为直径的圆过x 轴上的定点,并求出定点的坐标.3、已知圆22:9C x y +=,点(5,0)A -,直线:20l x y -=.⑴求与圆C 相切,且与直线l 垂直的直线方程;⑵在直线OA 上(O 为坐标原点),存在定点B (不同于点A ),满足:对于圆C 上任一点P ,都有PAPB为一常数,试求所有满足条件的点B 的坐标.4、已知椭圆E :22184x y +=的左焦点为F ,左准线l 与x 轴的交点是圆C 的圆心,圆C 恰好经过坐标原点O ,设G 是圆C 上任意一点. (1)求圆C 的方程;(2)若直线FG 与直线l 交于点T ,且G 为线段FT 的中点,求直线FG 被圆C 所截得的弦长; (3)在平面上是否存在定点P ,使得12GF GP =?若存在,求出点P 坐标;若不存在,请说明理由.5、已知221(5)5(13)C x y A ++=-e :,点,. (Ⅰ)求过点A 与1C e 相切的直线l 的方程;(Ⅱ)设21C C e e 为关于直线l 对称的圆,则在x 轴上是否存在点P ,使得P 到两圆的切?荐存在,求出点P 的坐标;若不存在,试说明理由.6、已知椭圆)0(12222>>=+b a by a x 的左、右焦点分别为21F F 、,其半焦距为c ,圆M 的方程为.916)35(222c y c x =+-(Ⅰ)若P 是圆M 上的任意一点,求证:21PF PF 为定值;(Ⅱ)若椭圆经过圆上一点Q ,且1611cos 21=∠QF F ,求椭圆的离心率;(Ⅲ)在(Ⅱ)的条件下,若O OQ (331=为坐标原点),求圆M 的方程。
圆锥曲线的定点、定值、范围和最值问题
课题:圆锥曲线的定点、定值、范围和最值问题教学目标:会处理动曲线(含直线)过定点的问题;会证明与曲线上动点有关的定值问题;会按条件建立目标函数,研究变量的最值问题及变量的取值范围问题,注意运用“数形结合”“几何法”求某些量的最值.(一) 主要知识及主要方法:1.在几何问题中,有些几何量与参数无关,这就构成了定值问题,解决这类问题一种思路是进行一般计算推理求出其结果;另一种是通过考查极端位置,探索出“定值”是多少,然后再进行一般性证明或计算,即将该问题涉及的几何式转化为代数式或三角形式,证明该式是恒定的.如果试题以客观题形式出现,特殊方法往往比较奏效.2.对满足一定条件曲线上两点连结所得直线过定点或满足一定条件的曲线过定点问题,设该直线(曲线)上两点的坐标,利用坐标在直线(或曲线)上,建立点的坐标满足的方程(组),求出相应的直线(或曲线),然后再利用直线(或曲线)过定点的知识加以解决.3.解析几何的最值和范围问题,一般先根据条件列出所求目标的函数关系式,然后根据函数关系式的特征选用参数法、配方法、判别式法、不等式法、单调性法、导数法以及三角函数最值法等求出它的最大值和最小值.(二)典例分析:问题1.在平面直角坐标系xOy 中,抛物线2y x =上异于坐标原点O 的两不同动点A 、B 满足AO(Ⅰ)求AOB △得重心G 的轨迹方程;(Ⅱ)AOB △若不存在,请说明理由.问题2.已知椭圆22142x y +=上的两个动点,P Q 及定点M ⎛ ⎝,MF ,QF 成等差数列.()1求证:线段PQ 的垂直平分线经过一个定点A ;()2设点A 关于原点O 的对称点是B ,求PB 的最小值及相应的P 点坐标.问题3.已知抛物线24x y =的焦点为F ,A 、B 是抛物线上的两动点,且AF FB λ=(0λ>).过A 、B 两点分别作抛物线的切线,设其交点为M .(Ⅰ)证明FM AB ⋅为定值;(Ⅱ)设ABM △的面积为S ,写出()S f λ=的表达式,并求S 的最小值.问题4.直线m :1y kx =+和双曲线221x y -=的左支交于A 、B 两点,直线l 过点()2,0P -和线段AB的中点M ,求l 在y 轴上的截距b 的取值范围.(四)课后作业:1.已知椭圆22221x y a b+=(0a b >>)的右焦点为F ,过F 作直线与椭圆相交于A 、B 两点,若有2BF AF =,求椭圆离心率的取值范围.2.过抛物线22y px =的顶点任意作两条互相垂直的弦OA 、OB 求证:AB 交抛物线的对称轴上一定点.3.如图,在双曲线2211213y x -=的上支上有三点()11,A x y ,()2,6B x ,()33,C x y ,它们与点()0,5F 的距离成等差数列.()1求13y y +的值;()2证明:线段AC 的垂直平分线经过某一定点,并求此点坐标.4.已知椭圆1C 的方程为1422=+y x ,双曲线2C 的左、右焦点分别为1C 的左、右顶点,而2C 的左、右顶点分别是1C 的左、右焦点.(Ⅰ)求双曲线2C 的方程;(Ⅱ)若直线l :y kx =1C 及双曲线2C 都恒有两个不同的交点,且l 与2C 的两个交点A 和B 满足6<⋅(其中O 为原点),求k 的取值范围.5.P 是双曲线221916x y -=的右支上一点,,M N 分别是圆()2254x y ++=和()2251x y -+=上的点,则PM PN -的最大值为 .A 6 .B 7 .C 8 .D 96.如图,中心在原点O 的椭圆的右焦点为()3,0F ,右准线l 的方程为:12x =.()1求椭圆的方程;()2在椭圆上任取三个不同点321,,P P P ,使133221FP P FP P FP P ∠=∠=∠证明:123111FP FP FP ++为定值,并求此定值.7.已知椭圆的中心为坐标原点O ,焦点在x 轴上,斜率为1且过椭圆右焦点F 的直线交椭圆于A 、B 两点,OA OB + 与(3,1)a =-共线。
专题:圆锥曲线中的最值、范围、定点和定值问题(二合一版)
专题:圆锥曲线中的最值、范围、定点、定值问题题型一:定点问题解题的关健在于寻找题中用来联系已知量,未知量的垂直关系、中点关系、方程、不等式,然后将已知量,未知量代入上述关系,通过整理,变形转化为过定点的直线系、曲线系来解决.例1、已知椭圆C :22221(0)x y a b a b +=>>,以原点为圆心,椭圆的短半轴长为半径的圆与直线0x y -=相切.(1)求椭圆C 的方程;(2)设(4,0)P ,M 、N 是椭圆C 上关于x 轴对称的任意两个不同的点,连结PN 交椭圆C 于另一点E ,求直线PN 的斜率的取值范围;(3)在(2)的条件下,证明直线ME 与x 轴相交于定点.解析:(1)2214x y +=;(2)0k <<或0k <<(3)(1,0)例2、在直角坐标系xOy 中,点M 到点()1,0F ,)2,0F 的距离之和是4,点M 的轨迹是C 与x 轴的负半轴交于点A ,不过点A 的直线:l y kx b =+与轨迹C 交于不同的两点P 和Q . (1)求轨迹C 的方程;(2)当0AP AQ ⋅=时,求k 与b 的关系,并证明直线l 过定点.解析:(1)2214x y +=;(2)k 与b 的关系是:65b k =,且直线l 经过定点6,05⎛⎫- ⎪⎝⎭点例3、已知椭圆C 中心在原点,焦点在x 轴上,焦距为2,短轴长为 (1)求椭圆C 的标准方程;(2)若直线l :()0y kx m k =+≠与椭圆交于不同的两点M N 、(M N 、不是椭圆的左、右顶点),且以MN 为直径的圆经过椭圆的右顶点A .求证:直线l 过定点,并求出定点的坐标.解析: (1)22143x y +=(2)直线l 的方程为 27y k x ⎛⎫=- ⎪⎝⎭,过定点2(,0)7题型二:定值问题在解析几何中,有些几何量与参数无关,这就构成了定值问题,解决这类问题时,一种思路是进行一般计算推理求出其结果,选定一个适合该题设的参变量,用题中已知量和参变量表示题中所涉及的定义,方程,几何性质,再用韦达定理,点差法等导出所求定值关系所需要的表达式,并将其代入定值关系式,化简整理求出结果;另一种思路是通过考查极端位置,探索出“定值”是多少,用特殊探索法(特殊值、特殊位置、特殊图形等)先确定出定值,这样可将盲目的探索问题转化为有方向有目标的一般性证明题,从而找到解决问题的突破口,将该问题涉及的几何形式转化为代数形式或三角形式,证明该式是恒定的.同时有许多定值问题,通过特殊探索法不但能够确定出定值,还可以为我们提供解题的线索. 例1、已知椭圆的中心为坐标原点O ,焦点在x 轴上,斜率为1且过椭圆右焦点的直线交椭圆于A 、B 两点,)1,3(-=+与共线.(1)求椭圆的离心率;(2)设M 为椭圆上任意一点,且),(R ∈+=μλμλ,证明22μλ+为定值. 解析:(1)36=e (2)122=+μλ例2、已知,椭圆C 过点A 3(1,)2,两个焦点为(-1,0),(1,0).(1)求椭圆C 的方程;(2)E,F 是椭圆C 上的两个动点,如果直线AE 的斜率与AF 的斜率互为相反数,证明直线EF 的斜率为定值,并求出这个定值.解析:(1)22143x y += (2)12例3、已知椭圆的中心在原点,焦点F 在y 轴的非负半轴上,点F 到短轴端点的距离是4,椭圆上的点到焦点F 距离的最大值是6.(1)求椭圆的标准方程和离心率e ;(2)若F '为焦点F 关于直线32y =的对称点,动点M 满足MF e MF ||='||,问是否存在一个定点A ,使M 到点A 的距离为定值?若存在,求出点A 的坐标及此定值;若不存在,请说明理由.解析:(1)椭圆的标准方程为2211612y x +=. 离心率21.42e ==(2)存在一个定点7(0,)3A ,使M 到A 点的距离为定值,其定值为2.3题型三:最值、范围问题例1、设椭圆E :x a y ba b 222210+=>>()的左、右焦点分别为F F 12、,如果椭圆上存在点M ,使∠=︒F PF 1290(1)求离心率e 的取值范围;(2)当离心率取最小值是,点N (0,3)到椭圆上的点的最远距离为 ①求椭圆E 的方程;②设斜率为(0)k k ≠的直线与椭圆E 交于不同的两点A 、B ,Q 为AB 的中点,问A 、B 两点能否关于过点(0,3P -、Q 的直线对称. 解析:(1)1e ∈) 解法1:利用椭圆自身的范围求解 解法2:利用根的判别式求解 解法3:利用三角函数有界性求解 解法4:利用焦半径公式求解 解法5:利用基本不等式求解 解法6:利用平面几何知识求解解法7:利用椭圆中的焦点三角形求解 解法8:利用椭圆中的焦点三角形面积公式(2)①2213216x y +=②((0,22-⋃例2、设椭圆:x a y ba b 222210+=>>()的左顶点为A 、上顶点为D ,点P 是线段AD 上任一点,左、右焦点分别为F F 12、,且12PF PF 的最大值为1,最小值为115- (1)求椭圆方程;(2)设椭圆右顶点为B ,点S 是椭圆上位于x 轴上方的一点,直线AS 、BS 与直线34:15l x =分别交于M 、N 两点,求|MN|的最小值.解析:(1)2214x y +=(2)1615例3、已知椭圆22221x y a b+=(a >b >0),O 为坐标原点,P 、Q 为椭圆上两动点,且OP OQ ⊥.(1)22221111||||OP OQ a b+=+(2)|OP|2+|OQ|2的最小值为22224a b a b +(3)OPQ S ∆的最小值是2222a b a b +.专题:椭圆中的最值、范围、定点、定值问题题型一:定点问题解题的关健在于寻找题中用来联系已知量,未知量的垂直关系、中点关系、方程、不等式,然后将已知量,未知量代入上述关系,通过整理,变形转化为过定点的直线系、曲线系来解决。
高考圆锥曲线中的最值和范围问题的专题
高考专题圆锥曲线中的最值和范围问题★★★高考要考什么1 圆锥曲线的最值与范围问题(1)圆锥曲线上本身存在的最值问题:①椭圆上两点间最大距离为2a(长轴长).②双曲线上不同支的两点间最小距离为2a(实轴长).③椭圆焦半径的取值范围为[a-c,a+c],a-c与a+c别离表示椭圆核心到椭圆上的点的最小距离与最大距离.④抛物线上的点中极点与抛物线的准线距离最近.(2)圆锥曲线上的点到定点的距离的最值问题,经常使用两点间的距离公式转化为区间上的二次函数的最值问题解决,有时也用圆锥曲线的参数方程,化为三角函数的最值问题或用三角形的两边之和(或差)与第三边的不等关系求解.(3)圆锥曲线上的点到定直线的距离的最值问题解法同上或用平行切线法.(4)点在圆锥曲线上(非线性约束条件)的条件下,求相关式子(目标函数)的取值范围问题,经常使用参数方程代入转化为三角函数的最值问题,或依照平面几何知识或引入一个参数(有几何意义)化为函数进行处置.(5)由直线(系)和圆锥曲线(系)的位置关系,求直线或圆锥曲线中某个参数(系数)的范围问题,常把所求参数作为函数,另一个元作为自变量求解.与圆锥曲线有关的最值和范围问题的讨论经常使用以下方式解决:(1)结合概念利用图形中几何量之间的大小关系;(2)不等式(组)求解法:利用题意结合图形(如点在曲线内等)列出所讨论的参数适合的不等式(组),通过解不等式组得出参数的转变范围;(3)函数值域求解法:把所讨论的参数作为一个函数、一个适当的参数作为自变量来表示那个函数,通过讨论函数的值域来求参数的转变范围。
(4)利用代数大体不等式。
代数大体不等式的应用,往往需要制造条件,并进行巧妙的构思;(5)结合参数方程,利用三角函数的有界性。
直线、圆或椭圆的参数方程,它们的一个一起特点是均含有三角式。
因此,它们的应用价值在于:①通过参数θ简明地表示曲线上点的坐标;②利用三角函数的有界性及其变形公式来帮忙求解诸如最值、范围等问题;(6)构造一个二次方程,利用判别式0。
届数学二轮复习第二部分专题篇素养提升文理专题五解析几何第3讲圆锥曲线的综合应用学案含解析
第3讲圆锥曲线的综合应用JIE TI CE LUE MING FANG XIANG解题策略·明方向⊙︱考情分析︱1.圆锥曲线中的定点与定值、最值与范围问题是高考必考的问题之一,主要以解答题形式考查,往往作为试卷的压轴题之一.2.以椭圆或抛物线为背景,尤其是与条件或结论相关存在性开放问题.对考生的代数恒等变形能力、计算能力有较高的要求,并突出数学思想方法考查.⊙︱真题分布︱(理科)年份卷别题号考查角度分值202 0Ⅰ卷20椭圆的简单性质及方程思想、定点问题12Ⅱ卷19椭圆离心率的求解,利用抛物线的定义求抛物线和椭圆的标准方程12Ⅲ20椭圆标准方程和求三角形12(文科)Ⅲ卷21椭圆标准方程和求三角形面积问题,椭圆的离心率定义和数形结合求三角形面积,12201 9Ⅰ卷21直线与圆的位置关系,定值问题12Ⅱ卷20椭圆的定义及其几何性质、参数的范围12Ⅲ卷21直线与抛物线的位置关系、定点问题12201 8Ⅰ卷20直线的方程,直线与抛物线的位置关系、证明问题12Ⅱ卷20直线的方程,直线与抛物线的位置关系、圆的方程12Ⅲ卷20直线与椭圆的位置关系、证明问题12KAO DIAN FEN LEI XI ZHONG DIAN考点分类·析重点考点一圆锥曲线中的最值、范围问题错误!错误!错误!错误!典例1(2020·青海省玉树州高三联考)已知直线l:x-y+1=0与焦点为F的抛物线C:y2=2px(p〉0)相切.(1)求抛物线C的方程;(2)过点F的直线m与抛物线C交于A,B两点,求A,B两点到直线l的距离之和的最小值.【解析】(1)将l:x-y+1=0与抛物线C:y2=2px联立得:y2-2py+2p=0,∵l与C相切,∴Δ=4p2-8p=0,解得:p=2,∴抛物线C的方程为:y2=4x。
(2)由题意知,直线m斜率不为0,可设直线m方程为:x =ty+1,联立{y2=4x,x=ty+1得:y2-4ty-4=0.设A(x1,y1),B(x2,y2),则y1+y2=4t,∴x1+x2=ty1+1+ty2+1=4t2+2,∴线段AB中点M(2t2+1,2t).设A,B,M到直线l距离分别为d A,d B,d M,则d A+d B=2d M=2·错误!=2错误!错误!=2错误!错误!,∵(t-错误!)2+错误!≥错误!,∴当t=错误!时,错误!min=错误!,∴A,B两点到直线l的距离之和的最小值为:22×错误!=错误!。
新高考方案二轮-数学(新高考版)大题专攻(二) 第1课时 圆锥曲线中的最值、范围、证明问题
(2)已知 O 为坐标原点,M,N 为椭圆上不重合两点,且 M,N 的中点 H
落在直线 y=12x 上,求△MNO 面积的最大值.
[解题微“点”]
(1)利用―A→G ·―B→G =0 及 e= 23构建方程组求 a,b, 即得椭圆方程; 切入点 (2)设出点 M,N 与 H 的坐标,表示出直线 MN 的方 程,与椭圆联立,利用弦长公式和点到直线的距离 公式表示△MNO 的面积后求最大值 障碍点 不要漏掉 Δ>0,利用此条件可求参数的取值范围
解:(1)依题意,2c=6,则 b= 9-5=2,
则双曲线 C:x52-y42=1,B1(0,-2),F2(3,0).
设直线 l:4x+3y+m=0,将 B1(0,-2)代入解得 m=6,
此时 l:4x+3y+6=0,F2 到 l 的距离为 d=158.
(2)设双曲线上的点 P(x,y)满足―PB→1 ·―PB→2 =-2, 即 x2+y2=b2-2,又xa22-by22=1⇒y2=ba22x2-b2,
[对点训练] (2021·济南三模)已知抛物线C:x2=4y,过点P(1,-2)作斜率为k(k>0)的直线l1与 抛物线C相交于A,B两点. (1)求k的取值范围; (2)过P点且斜率为-k的直线l2与抛物线C相交于M,N两点,求证:直线AM、BN 及y轴围成等腰三角形.
解:(1)由题意设直线 l1 的方程为 y+2=k(x-1), 由xy+2=24=y,kx-1, 得到:x2-4kx+4k+8=0, 由题意知 Δ>0,所以 k2-k-2>0,即 k<-1 或 k>2. 因为 k>0,所以 k 的取值范围为(2,+∞).
[提分技巧] 解决范围问题的常用方法
利用待求量的几何意义,确定出极端位置后,利 数形结合法
圆锥曲线中的最值、定值和范围问题
圆锥曲线中的最值、定值和范围问题与圆锥曲线有关的最值、定值和范围问题,因其考查的知识容量大、分析能力要求高、区分度高而成为高考命题者青睐的一个热点。
下面我们探讨与圆锥曲线有关的最值、定值和范围问题的常用方法。
一. 最值问题求解的基本策略有二:一是从几何角度考虑,当题目中的条件和结论明显体现几何特征及意义时,可用图形性质来解;二是从代数角度考虑,通过建立目标函数,求其目标函数的最值,求函数最值的常用方法有:二次函数法、基本不等式法、判别式法、定义法、函数单调性法等。
例1:如图所示,设点1F ,2F 是22132xy+=的两个焦点,过2F 的直线与椭圆相交于A 、B两点,求△1F AB 的面积的最大值,并求出此时直线的方程。
分析:12112F F B F AB F FAS S S =+ ,设11(,)A x y ,22(,)B x y ,则11212121||||||(1)2F AB F F y y y y c S =⋅-=- =设直线A B 的方程为1x ky =+代入椭圆方程得22(23)440k y ky ++-=12122244,2323k y y y y k k --⇒+==++即122||123y y k - ==+令1t =≥,∴12FA Bt tS +=12t t+(1t ≥)利用均值不等式不能区取“=”∴利用1()2f t t t=+(1t ≥)的单调性易得在1t =时取最小值1F AB S 在1t =即0k =时取最大值为3,此时直线A B 的方程为1x =例2.设椭圆方程为1422=+yx ,过点M (0,1)的直线l 交椭圆于点A 、B ,O 是坐标原点,点P 满足OP (21=OA + )O B ,点N 的坐标为)21,21(,当l 绕点M 旋转时,求(1)动点P 的轨迹方程;(2)||N P的最小值与最大值.解(1)法1:直线l 过点M (0,1)设其斜率为k ,则l 的方程为y=kx+1.记A (x 1,y 1),B (x 2,y 2),由题设可得点A 、B 的坐标 (x 1,y 1)、 (x 2,y 2)是方程组⎪⎩⎪⎨⎧=++=14122yx kx y 的解. 将①代入②并化简得(4+k 2)x 2+2kx -3=0, 所以⎪⎪⎩⎪⎪⎨⎧+=++-=+.48,42221221k y y k k x x于是).44,4()2,2()(21222121kkk y y x x OB OA OP ++-=++=+=设点P 的坐标为(x,y ), 则⎪⎪⎩⎪⎪⎨⎧+=+-=.44,422k y kk x 消去参数k 得4x 2+y 2-y =0 ③ 当k 不存在时,A 、B 中点为坐标原点(0,0),也满足方程③,所以点P 的轨迹方程为4x 2+y 2-y =0解法二:设点P 的坐标为(x ,y ),因A (x 1,y 1),B (x 2,y 2)在椭圆上,所以,142121=+y x ④ .142222=+y x ⑤④—⑤得0)(4122212221=-+-y y x x ,所以.0))((41))((21212121=+-++-y y y y x x x x 当21x x ≠时,有.0)(4121212121=--⋅+++x x y y y y x x ⑥并且⎪⎪⎪⎩⎪⎪⎪⎨⎧--=-+=+=.1,2,221212121x x y y xy y y y x x x ⑦ 将⑦代入⑥并整理得 4x 2+y 2-y =0 ⑧ 当x 1=x 2时,点A 、B 的坐标为(0,2)、(0,-2),这时点P 的坐标为 (0,0)也满足⑧,所以点P 的轨迹方程为.141)21(16122=-+y x(2)由点P 的轨迹方程知.4141,1612≤≤-≤x x 即所以 127)61(3441)21()21()21(||222222++-=-+-=-+-=x xx y x NP故当41=x ,||NP 取得最小值,最小值为1;4① ②当16x =-时,||NP 取得最大值,最大值为.621对于()*,有∆=m 2+4b =10-m 2>0,所以m <<。
2022年高考数学二轮考点复习专题四 解析几何第2课时 圆锥曲线中的定点、定值问题
圆锥曲线中的定值问题 【典例 2】(16 分)(2021·新高考Ⅰ卷)在平面直角坐标系 xOy 中,已知点 F1(- 17 , 0),F2( 17 ,0),点 M 满足|MF1|-|MF2|=2,记 M 的轨迹为 C. (1)求 C 的方程; (2)设点 T 在直线 x=21 上,过 T 的两条直线分别交 C 于 A,B 两点和 P,Q 两点,且 |TA|·|TB|=|TP|·|TQ|,求直线 AB 的斜率与直线 PQ 的斜率之和.
=(n2+1k212)-(116+k21 ) ,……10 分
设 PQ:y-n=k2x-12 , 同理|TP|·|TQ|=(n2+1k222)-(116+k22 ) ,
因为|TA|·|TB|=|TP|·|TQ|,
所以k112+-k1216
=k122+-k2216
,1+k21
17 -16
=1+k22
17 -16
所以 Δ=(4kt)2-8(2k2+1)(t2-2)=8[2(2k2+1)-t2]>0.设 A(x1,y1),B(x2,y2),
则 x1+x2=-2k42+kt 1
2(t2-2) ,x1x2= 2k2+1
,
所以 y1+y2=k(x1+x2)+2t=2k22+t 1 .
因为四边形 OAPB 是平行四边形, 所以O→P =O→A +O→B =(x1+x2,y1+y2)=(-2k42k+t 1 ,2k22+t 1 ),则 P(-2k42k+t 1 ,
第2课时 圆锥曲线中的定点、定值问题
圆锥曲线中的定点问题 【典例 1】(2021·滨州一模)已知点 A(0,-1),B(0,1),动点 P 满足|P→B ||A→B |=P→A ·B→A . 记点 P 的轨迹为曲线 C. (1)求 C 的方程; (2)设 D 为直线 y=-2 上的动点,过 D 作 C 的两条切线,切点分别是 E,F.证明:直 线 EF 过定点.
圆锥曲线中的定点、定值问题讲义-2023届高三数学二轮专题复习
专题复习:圆锥曲线中的定点、定值问题一、方法指导圆锥曲线是高考数学中的重点和难点,其中定点问题更是难点中的难点。
通过对近几年高考数学试卷的分析,可以发现圆锥曲线定点问题一直是高频考点,且题目难度较大,对学生的数学思维和解题能力要求较高。
因此,在高三二轮复习中,学生需要加强对圆锥曲线定点问题的复习,掌握其解题方法和技巧。
二、知识梳理圆锥曲线的定义和性质直线与圆锥曲线的位置关系圆锥曲线的定点问题及其解法三、方法总结直接法:通过联立直线和圆锥曲线的方程,消元后得到一元二次方程,再利用根与系数的关系进行求解。
这种方法适用于直线过定点但不与x轴平行的情况。
参数法:引入参数来表示直线的斜率或截距,再通过参数的取值范围来确定定点。
这种方法适用于直线过定点且与x轴平行或重合的情况。
反证法:假设定点不是坐标原点,则过该定点的直线与圆锥曲线有两个交点。
根据韦达定理,这两个交点的横坐标之和等于两倍的定点横坐标,这与题意矛盾。
因此,定点必须是坐标原点。
这种方法适用于直线过定点且与x轴垂直的情况。
由特殊到一般法如果要解决的问题是一个定值(定点)问题,而题设条件又没有给出这个定值(定点),那么我们可以这样思考:由于这个定值(定点)对符合要求的一些特殊情况必然成立,那么我们根据特殊情况先找到这个定值(定点),明确了解决问题的目标,然后进行一般情况下的推理证明.3.利用推论解题推论1过圆锥曲线上的任意一点P(x0,y0)作互相垂直的直线交圆锥曲线于点A,B,则直线AB必过一定点(等轴双曲线除外).推论2过圆锥曲线的准线上任意一点P作圆锥曲线上的两条切线,切点分别为点A,B,则直线AB必过焦点.推论3过圆锥曲线外一点P作圆锥曲线上的两条切线,切点分别为点A,B,则直线AB已知且必过定点.推论4过圆锥曲线上的任意一点P(x0,y0)作斜率和为0的两条直线交圆锥曲线于A,B两点,则k AB为定值.推论5设点A,B是椭圆x 2a2+y2b2=1(a>b>0)上关于原点对称的两点,点P是该椭圆上不同于A,B两点的任意一点,直线PA,PB的斜率分别是k1,k2,则k1·k2=-b 2a2推论6过圆锥曲线的焦点F的直线(斜率存在)交圆锥曲线于P,Q两点,PQ的中垂线交x轴于点M,则MFPQ=e2,e为圆锥曲线的离心率.推论7过圆锥曲线的焦点F的直线交圆锥曲线于A,B两点,过点A,B分别作较近准线l 的垂线AA1,BB1,垂足分别为点A1,B1,设准线l与焦点所在轴交于点P,M为PF中点,则(1)AA1与BB1过点M;(2)A1F+B1F为定值.一、动直线过定点1、齐次式:例1、椭圆C :x 24+y 2=1,C (0,1),设直线l 不过点P ,且与C 交于A 、B 两点,若k PA +k PB =−1,证明:直线l 过定点.2、参数法:例2、(2021·湖北襄阳市高三期末)已知A ,B 分别为椭圆()222:11x C y a a+=>的左、右顶点,P 为C 的上顶点,8AP PB ⋅=. (1)求椭圆C 的方程;(2)过点()6,0作关于x 轴对称的两条不同直线1l ,2l 分别交椭圆于()11,M x y 与()22,N x y ,且12x x ≠,证明:直线MN 过定点,并求出该定点坐标.3、特殊到一般例2、(2022·全国·统考高考真题)已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过()30,2,,12A B ⎛--⎫⎪⎝⎭两点.(1)求E 的方程;(2)设过点()1,2P -的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT TH =.证明:直线HN 过定点.4、待定系数法例3、椭圆C :22143x y +=左右顶点分别为A 、B ,k ≠0的直线与C 交于M 、N 两点,K BM =2K AN ,证明:直线过定点,并求出该定点.解:A (−2,0) B (2,0)设直线:y =kx +b (k ≠0) M (x 1,y 1) N (x 2,y 2) 直线与曲线联立得:(3+4k 2)x 2+8kbx +4b 2−120 则x 1x 2=4b 2−123+4k 2x 1+x 2=−8kb3+4k 2K BM =2K AN 所以y 1x1−2= 2y 2x 2−2x 2y 1+2y 1=2x 1y 2−4y 2即k x 1x 2−(4k +b )x 2+2(b −k )x 1−6b =0代入得:−12b 2k −8k 2b −12k −18b −(6k +8k 3+9b +12k 2b )x 2=0待定系数有:{−12b 2k −8k 2b −12k −18b =06k +8k 3+9b +12k 2b =0得(2k −b )(2k +3b ) =0若b =2k ,则过定点(−2,0),不成立; 若−3b =2k ,则过定点(23,0),成立.5、y 1−y 2或x 1−x 2型例4、已知双曲线C :x 23−y 2=1,过(3,0)的直线l 交C 于P 、Q 两点,过P 作直线x =1的垂线,垂足为A ,证明:AQ 过定点解:当l 斜率不存在时P (3,√2) Q (3,−√2) 或P (3,−√2) Q (3,√2)过P 作x =1垂线:A (1,√2)或A(1,−√2)此时AQ :y =√2x −2√2或y = −√2x +2√2 过定点(2,0) 当l 斜率存在时 l :y =k (x −3) P (x 1,y 1) Q (x 2,y 2) 与双曲线联立得:(1−3k 2)x 2+18k 2x −27k 2−3=0 有x 1x 2=−27k 2−31−3k 2x 1+x 2=−18k 21−3k 2AQ :y =y 1+y 2x 2−1x −x 2(y 2−y 1)x 2−1+y 2令y =0 x =y 2−x 2y 1y 2−y 1= −kx 1x 2+4kx 2−3k2−x 1)=−x 1x 2+4x 2−3x 2−x 1= 27k 2=31−3k 2−3+4x 2−(x 1+x 2−2x 2)= 36k 21−3k 2+4x 218k 21−3k 2+2x 2=2过定点(2,0)二、动点在定直线上的问题例3、(2021·山东威海市高三期末)已知椭圆()2222:10x y C a b a b+=>>的离心率为1,,2A B 分别是它的左、右顶点,F 是它的右焦点,过点F 作直线与C 交于,P Q (异于,A B )两点,当PQ x ⊥轴时,APQ ∆的面积为92.(1)求C 的标准方程;(2)设直线AP 与直线BQ 交于点M ,求证:点M 在定直线上.解:(1)由题意知12c a =,所以2a c =,又222a b c =+, 所以3b c =当PQ x ⊥轴时,APQ 的面积为92, 所以()212922b ac a +⋅=解得21,c =所以224,3a b ==,所以椭圆C 的标准方程为22143x y +=.(2)由(1)知()1,0F ,设直线PQ 的方程为1x my =+,与椭圆22143x y +=联立,得()2234690m y my ++-=.显然0∆>恒成立. 设1122(,),(,)P x y Q x y , 所以有12122269,3434m y y y y m m +=-=-++ ()* 直线AP 的方程为()112+2y y x x =+,直线BO 的方程为()2222y y x x =--, 联立两方程可得,所以()()121222+22y y x x x x +=-- ()()121212212121213232221my y x y my y y x x y x y my my y y ++++=⋅==---- 由()*式可得()121232y y y y m=+, 代入上式可得()()1212121221339222233322232y y y y x y y x y y y y +++==-+-=++, 解得4,x = 故点M 在定直线4x =上.三、其他曲线过定点例4、(2021·湖北武汉市高三月考)设P 是椭圆C :22221(0)x y a b a b+=>>上异于长轴顶点A 1,A 2的任意一点,过P 作C 的切线与分别过A 1,A 2的切线交于B 1,B 2两点,已知|A 1A 2|=4,椭圆C 的离心率为12. (1)求椭圆C 的方程;(2)以B 1B 2为直径的圆是否过x 轴上的定点?如果过定点,请予以证明,并求出定点;如果不过定点,说明理由.解:(1)由题可知122412A A a c e a ⎧==⎪⎨==⎪⎩,解得2,1a c ==,由222a b c =+得23b =, 椭圆C 的方程为22143x y +=.(2)设00(,)P x y ,由于P 是异于长轴顶点12,A A 的任意一点,故切线斜率存在.设过P 的椭圆的切线为y kx b =+,联立方程22143y kx bx y =+⎧⎪⎨+=⎪⎩,得222(34)84120k x kbx b +++-=,222(8)4(34)(412)0kb k b ∆=-+-=,得2234b k =+,由002200143y kx bx y =+⎧⎪⎨+=⎪⎩ 所以()220034y kx k -=+,则()22200004230x k y x k y --+-=,即222000016290y k y x k x ++=所以()200430y k x +=,则034x k y =-解得过P 点的切线方程为()000034x y y x x y -=--,即000334x x y y y =-+ 由于分别过12,A A 的切线分别为2,2x x =-=, 解得12,B B 的坐标为0012006363(2,),(2,)22x x B B y y +--.在x 轴上取点(),0M t ,则010632,2x MB t y ⎛⎫+=-- ⎪⎝⎭,020632,2x MB t y ⎛⎫-=-+ ⎪⎝⎭, 所以2220122369414x MB MB t t y -⋅=-+=-. 当1t =±时,120MB MB ⋅=.所以,以12B B 为直径的圆过x 轴上的定点为12(1,0),(1,0)F F -.二、例题讲解例1A ,B 是抛物线y 2=2px (p >0)上的两点,且OA ⊥OB (O 为坐标原点),求证: (1)A ,B 两点的横坐标之积,纵坐标之积分别都是定值; (2)直线AB 经过一定点.例2如图,直线y =12x 与抛物线y =18x 2-4交于A ,B 两点,线段AB 的垂直平分线与直线y =-5交于Q 点. (1)求点Q 的坐标;(2)当P 为抛物线上位于线段AB 下方(含A ,B )的动点时,求△OPQ 面积的最大值.例3如图,设P (x 1,y 1),Q (x 2,y 2)是抛物线y 2=2px (p >0)上的相异两点,Q ,P 到y 轴的距离的积为4,且OP →·OQ →=0. (1)求该抛物线的标准方程;(2)过Q 的直线与抛物线的另一交点为R ,与x 轴的交点为T ,且Q 为线段RT 的中点,试求弦PR 长度的最小值.三、课时练习1.已知λ∈R ,则不论λ取何值,曲线C :λx 2-x -λy +1=0恒过定点( ) A .(0,1) B .(-1,1) C .(1,0) D .(1,1)2.若AB 是过椭圆x 2a 2+y 2b2=1(a >b >0)中心的一条弦,M 是椭圆上任意一点,且AM 、BM 与两坐标轴均不平行,k AM 、k BM 分别表示直线AM 、BM 的斜率,则k AM ·k BM =( )A .-c 2a 2B .-b 2a 2C .-c 2b 2D .-a 2b23.直线y =kx -1与椭圆x 24+y 2a=1相切,则k ,a 的取值范围分别是( )A .a ∈(0,1),k ∈⎝ ⎛⎭⎪⎫-12,12B .a ∈(0,1],k ∈⎝ ⎛⎭⎪⎫-12,12 C .a ∈(0,1),k ∈⎝ ⎛⎭⎪⎫-12,0∪⎝ ⎛⎭⎪⎫0,12 D .a ∈(0,1],k ∈⎝ ⎛⎦⎥⎤-12,12 4.已知点P 是抛物线y 2=4x 上的点,设点P 到抛物线的准线的距离为d 1,到圆(x +3)2+(y-3)2=1上一动点Q 的距离为d 2,则d 1+d 2的最小值是( ) A .3 B .4 C .5 D .32+15.抛物线y 2=12x 与直线3x -y +5=0的最近距离为______.6.已知动点P (x ,y )在椭圆x 225+y 216=1上,若A 点坐标为(3,0),|AM →|=1,且PM →·AM →=0,则|PM →|的最小值是____.7.已知椭圆x 2a 2+y 2b2=1(a >b >0)的左,右焦点分别为F 1,F 2,左顶点为A ,若|F 1F 2|=2,椭圆的离心率为e =12.(1)求椭圆的标准方程;(2)若P 是椭圆上的任意一点,求PF 1→·PA →的取值范围;(3)直线l :y =kx +m 与椭圆相交于不同的两点M ,N (均不是长轴的顶点),AH ⊥MN ,垂足为H ,且AH →2=MH →·HN →,求证:直线l 恒过定点.。
圆锥曲线中的定点、定值、最值、范围问题专题训练
第2讲圆锥曲线中的定点、定值、最值、范围问题一、选择题1.若双曲线错误!-错误!=1(a>0,b>0)与直线y=错误!x无交点,则离心率e的取值范围是().A.(1,2) B.(1,2]C.(1,5)D。
(1,错误!]解析因为双曲线的渐近线为y=±错误!x,要使直线y=错误!x与双曲线无交点,则直线y=3x应在两渐近线之间,所以有错误!≤错误!,即b≤错误!a,所以b2≤3a2,c2-a2≤3a2,即c2≤4a2,e2≤4,所以1<e≤2.答案 B2.已知椭圆错误!+错误!=1(0<b<2),左、右焦点分别为F1,F2,过F1的直线l 交椭圆于A,B两点,若|BF2|+|AF2|的最大值为5,则b的值是().A.1B。
错误!C。
错误! D.错误!解析由椭圆的方程,可知长半轴长为a=2;由椭圆的定义,可知|AF2|+|BF2|+|AB|=4a=8,所以|AB|=8-(|AF2|+|BF2|)≥3,由椭圆的性质,可知过椭圆焦点的弦中,通径最短,即错误!=3,可求得b2=3,即b=3.答案 D3.(2014·湖北卷)已知F1,F2是椭圆和双曲线的公共焦点,P是它们的一个公共点,且∠F1PF2=错误!,则椭圆和双曲线的离心率的倒数之和的最大值为().A。
错误!B。
错误!C.3 D.2解析设|PF1|=r1,|PF2|=r2(r1>r2),|F1F2|=2c,椭圆长半轴长为a1,双曲线实半轴长为a2,椭圆、双曲线的离心率分别为e1,e2,则(2c)2=r错误!+r错误!-2r1r2cos 错误!,得4c2=r错误!+r错误!-r1r2.由错误!得错误!∴错误!+错误!=错误!=错误!。
令m=错误!=错误!=错误!=错误!,当错误!=错误!时,m max=错误!,∴错误!max=错误!,即错误!+错误!的最大值为错误!。
答案 A4.(2014·福建卷)设P,Q分别为圆x2+(y-6)2=2和椭圆x210+y2=1上的点,则P,Q两点间的最大距离是().A.5错误!B。
圆锥曲线的定值、最值与定点问题和圆锥曲线中的“定值”问题
探讨圆锥曲线的定值、最值与定点问题圆锥曲线中的最值与定值问题,是解析几何中的综合问题,是一种典型题型,将函数与解析融为一体,要求有较强的综合能力,例析如下。
一、 定值问题解决定值问题的方法:将问题涉及的几何式转化为代数式或三角式,证明该式的值与参数无关。
例1 A 、B 是抛物线22y px =(p >0)上的两点,且OA ⊥OB ,求证: (1)A 、B 两点的横坐标之积,纵坐标之积分别都是定值; (2)直线AB 经过一个定点。
证明:(1)设A (11,x y )、B (22,x y ),则2112y px =,2222y px =。
∵22121222y y px px ⋅=⋅=22121244p x x p y y =-,∴2124y y p =-为定值,212124x x y y p =-=也为定值。
(2)∵2221212112()()2()y y y y y y p x x -=+-=-,∵12x x ≠,∴2121122y y px x y y -=-+ ∴直线AB 的方程为:211112122y p y y x y y y y y -=-+++2121224p p x y y y y =-++ 122(2)px p y y =-+,∴直线AB 过定点(2p ,0)。
例2 已知抛物线方程为212y x h =-+,点A 、B 及点P(2,4)都在抛物线上,直线PA 与PB 的倾斜角互补。
(1)试证明直线AB 的斜率为定值;(2)当直线AB 的纵截距为m (m >0)时,求△PAB 的面积的最大值。
分析:这类问题一般运算量大,要注意函数与方程、数形结合、分类讨论等思想方法的灵活运用。
解析:(1)证明:把P(2,4)代入212y x h =-+,得h=6。
所以抛物线方程为:y -4=k(x -2),由24(2)162y k x y x -=-⎧⎪⎨=-+⎪⎩,消去y ,得22440x kx k +--=。
(圆锥曲线)范围、最值、定值、定点、定直线问题
圆锥曲线专题(一)范围、最值问题1.已知(4,0),(2,2)A B 是椭圆221259x y +=内的两个点,M 是椭圆上的动点,则a 的最大值为 ,最小值为 .2.已知动点P (x ,y )在椭圆1162522=+y x 上,若A (3,0),0,1=⋅=AM PM AM ,的最小值为3.已知抛物线C :22(0)y px p =>的焦点为F ,过点F 垂直于x 轴的直线与抛物线C 相交于A ,B 两点,抛物线C 在A ,B 两点处的切线及直线AB 所围成的三角形面积为4.(1)求抛物线C 的方程.(2)设M ,N 是抛物线C 上异于原点O 的两个动点,且满足OM ON OA OB k k k k ⋅=⋅,求OMN ∆面积的取值范围.4.在平面直角坐标系中,过椭圆C :22221(0)x y a b a b+=>>右焦点的直线03=-+y x 交椭圆C 与A ,B 两点,P 为AB 的中点,且OP 的斜率为21. (1)求椭圆C 的方程.(2)C ,D 为椭圆C 上两点,若四边形ACBD 的对角线AB CD ⊥,求四边形ACBD 面积的最大值.5.设圆015222=-++x y x 的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E .(1)证明:EB EA +为定值,并写出点E 的轨迹方程.(2)设点E 的轨迹为曲线1C ,直线l 交1C 于M ,N 两点,过B 且与l 垂直的直线与圆A交于P ,Q 两点,求四边形MNPQ 面积的取值范围.6.已知F 为椭圆E :22221(0)x y a b a b+=>>的左焦点,且两焦点与短轴的一个顶点构成一个等边三角形,直线024=+y x 与椭圆E 有且仅有一个交点M . (1)求椭圆E 的方程.(2)设直线024=+y x 与y 轴交于P ,过点P 的直线l 与椭圆E 交于两个不同点A,B ,若PB PA PM =2λ,求实数λ的取值范围.(二)定值问题7.已知椭圆C :22221(0)x y a b a b +=>>的离心率为12,以原点为圆心,椭圆的短半轴长为半径的圆与直线-0x y +=相切.(1)求椭圆C 的标准方程.(2)若直线:l y kx m =+与椭圆C 相交于A ,B 两点,且22=-OA OB b k k a⋅,求证: AOB ∆的面积为定值.8.已知椭圆C :22221(0)x y a b a b+=>>经过点A (0,-1),且离心率为2,经过点(1,1),且斜率为k 的直线与椭圆C 交于不同的两点P ,Q (均异于点A ),求证:直线AP 与AQ 的斜率之和为定值.9.已知椭圆C :22221(0)x y a b a b+=>>的离心率为23,A (a ,0),B (0,b ),O (0,0).OAB ∆的面积为1.设P 是椭圆C 上一点,直线P A 与y 轴交于点M ,直线PB 与x 轴交于点N.(1)求证:BM AN ⋅为定值.(2)求四边形ABMN 面积的最小值.10.已知离心率为22的椭圆C :22221(0)x y a b a b+=>>,过点M ),(16. (1)求椭圆C 的方程.(2)已知圆3822=+y x 相切的直线l 与椭圆C 交于A,B 两点,证明:OB OA ⋅为定值.11.已知椭圆C :22221(0)x y a b a b+=>>的离心率为23,过点A (2,1). (1)求椭圆C 的方程;(2)若P ,Q 是C 上的两个动点,且使PAQ ∠的角平分线总是垂直于x 轴,试判断直线PQ 的斜率是否为定值.12.已知抛物线关于x 轴对称,顶点在原点,P (2,4)在抛物线上.(1)求抛物线的标准方程及准线方程;(2)过点P 作两条倾斜角互补的直线与抛物线分别交于不同点A ,B ,求证:直线AB 的斜率为定值.13.已知椭圆C :22221(0)x y a b a b+=>>的离心率为23,过点M (2,1),O 为原点,平行于OM 的直线l 交C 于不同的两点A ,B .(1)求椭圆C 的方程;(2)证明:MA ,MB 的斜率之和为定值.14.(2018·合肥二模)已知点A (1,0)和动点B ,以线段AB 为直径的圆内切于圆4:22=+y x O .(1)求动点B 的轨迹方程;(2)已知点P (2,0),Q (2,-1),经过点Q 的直线l 与动点B 的轨迹交于M ,N ,求证:直线PM 和直线PN 的斜率之和为定值.15.已知椭圆C :22221(0)x y a b a b+=>>的离心率为22,且以焦点为直径的圆的内接正方形面积为2.(1)求椭圆C 的方程;(2)若直线2:+=kx y l 与椭圆C 相交于A,B ,在y 轴上是否存在点D ,使直线AD 与BD的斜率之和为定值?若存在,求出点D 的坐标及定值;若不存在,请说明理由.16.已知圆C :422=+y x 与x 轴交于21,F F (2F 在原点右侧),动点P 到21,F F 的距离之和为定值)2(2>a a ,且21cos PF F ∠的最小值为31-. (1)求动点P 的轨迹方程;(2)过2F 且斜率不为0的直线l 与点P 的轨迹交于A ,B ,若存在点E ,使得AB EA EA ⋅+2是与直线l 的斜率无关的定值,则称E 为“恒点”,问在x 轴上是否存在这样的“恒点”?若存在,求出该点坐标;若不存在,请说明理由.(三)定点问题17. 已知椭圆C :22221(0)x y a b a b+=>>过点M e =. (1)求椭圆C 的标准方程.(2)已知点0)P ,若AB 为椭圆上的两个动点,且2PA PB ⋅=-,求证:直线AB 恒过定点.18.已知椭圆C :22221(0)x y a b a b+=>>的离心率为22,左右焦点分别为21,F F ,点P )3,2(,点2F 在线段1PF 的中垂线上.(1)求椭圆C 的标准方程.(2)设直线m kx y l +=:与C 交于M ,N ,直线M F 2与N F 2的倾斜角互补,求证:直线l 过定点.19.(2018·合肥三模)已知抛物线)0(2:2>=p px y C 的焦点为F ,以抛物线上动点M 为圆心的圆过点F ,若圆M 的面积最小值为π.(1)求p 的值;(2)当点M 的横坐标为1且位于第一象限时,过M 作抛物线的两条弦MA ,MB ,且满足BMF AMF ∠=∠,若直线AB 恰好与圆M 相切,求直线AB 的方程.20. 已知离心率为e 的椭圆M : 22221(0)x y a b a b+=>>,过点A (-2,0)和(1,)P e . (1)求椭圆M 的标准方程.(2)设点B 是椭圆M 的右顶点,直线1l 过点B 且垂直于x 轴,点Q 是椭圆上异于A ,B 的任意一点,直线AQ 交1l 于点N ,设经过N 且垂直于BQ 的直线为2l ,求证:直线2l 过定点.21.在平面直角坐标系中,直线02=+-m y x 不过原点,且与椭圆12422=+x y 有两个不同的公共点A ,B .(1)求m 的取值集合M .(2)是否存在定点P 使得M m ∈∀,都有直线P A ,PB 的倾斜角互补,若存在,求出所有定点P的坐标;若不存在,请说明理由.(四)定直线问题22.已知)0,1(),0,1(21F F -,动点M 到点2F 的距离是22,线段1MF 的中垂线交线段2MF 于点P .(1)当点M 变化时,求动点P 的轨迹G 的方程;(2)直线l 与曲线G 相切于点N ,过2F 作2NF 的垂线与直线l 相交于点Q ,求证:点Q 落在一条定直线m 上,并求直线m 的方程.23.设点P 是抛物线y x E 2:2=上的动点,且位于第一象限,E 在点P 处的切线l 与椭圆14:22=+y x C 交于不同的两点A ,B ,线段AB 的中点为D ,直线OD 与过P 且垂直于x 轴的直线交于点M .(1)求证:点M 在定直线;(2)直线l 与y 轴交于点G ,求PDMPFG S S ∆∆的最大值及取得最大值时点P 的坐标.24.已知椭圆C :22221(0)x y a b a b+=>>的左右顶点分别为21,A A ,左右焦点分别为21,F F ,离心率为21,2F 为线段B A 1的中点. (1)求椭圆C 的标准方程.(2)若过点B 且斜率不为0的直线l 与椭圆C 交于M ,N 两点,已知直线M A 1与N A 2相交于点G ,试判断点G 是否在定直线上?若是,求出定直线的方程;若不是,请说明理由.。
高考数学二轮复习专题五解析几何1.5.3圆锥曲线中的定点、定值、最值与范围问题课件文
量积的坐标运算,即可求得定点.
【规范解答】(1)由已知得 所以椭圆C 的方程为
解得
(2)由(1)知A(-2,0),设P(x1 ,y1 ),Q(x2 ,y2 ).
①当PQ⊥x 轴时,不妨设l1 ,l2 的斜率分别为1,-1,则 l1 :y=x+2,
与椭圆方程联立得x1 =- , 此时直线PQ 与x 宝鸡质检)已知椭圆C:
(1,1)与
两点.
(a>b>0) 经过
(1)求椭圆C 的方程.
(2)过原点的直线l与椭圆C 交于A,B 两点,椭圆C 上一
点M 满足|MA|=|MB|.
求证
为定值.
【解析】(1)将(1,1)与
两点代入椭圆C 的方程,
得
解得
所以椭圆C 的方程为
(2)由|MA|=|MB|, 知M 在线段AB 的垂直平分线上,由 椭圆的对称性知A,B 关于原点对称. ①若点A,B 是椭圆的短轴顶点,则点M 是椭圆的一个长 轴顶点, 此时
同理,若点A,B 是椭圆的长轴顶点,则点M 是椭圆的一个 短轴顶点,此时
②若点A,B,M 不是椭圆的顶点,设直线l的方程为
y=kx(k≠0), 则直线OM 的方程为y=- x,设
A(x 1 ,y1 ),B(-x1 ,-y1 ),
由
消去y得,x2 +2k 2 x2 -3=0, 解得
所以|OA| 2 =|OB| 2 =
【规律方法】 1.定点问题的求解策略 (1)假设定点坐标,根据题意选择参数,建立一个直线 系或曲线系方程,而该方程与参数无关,故得到一个关 于定点坐标的方程组,以这个方程组的解为坐标的点 即所求定点. (2)从特殊位置入手,找出定点,再证明该点适合题意.
2019届高三理科数学第二轮专题复习配套文档专题五 第3讲圆锥曲线中的定点与定值
第3讲圆锥曲线中的定点与定值、范围与存在性问题[真题再现]1.(2017·课标Ⅱ)设O为坐标原点,动点M在椭圆C:错误!+y2=1上,过M作x轴的垂线,垂足为N,点P满足错误!=错误!错误!.(1)求点P的轨迹方程;(2)设点Q在直线x=-3上,且错误!·错误!=1.证明:过点P且垂直于OQ的直线l过C的左焦点F。
[解析](1)设P(x,y),M(x0,y0),设N(x0,0),错误!=(x-x0,y),错误!=(0,y0).由NP,→= 2 错误!得x0=x,y0=错误!y0.因为M(x0,y0)在C上,所以错误!+错误!=1.因此点P的轨迹方程为x2+y2=2.(2)由题意知F(-1,0).设Q(-3,t),P(m,n),则错误!=(-3,t),错误!=(-1-m,-n),错误!·错误!=3+3m-tn,错误!=(m,n),错误!=(-3-m,t-n).由错误!·错误!=1得-3m-m2+tn-n2=1,又由(1)知m2+n2=2,故3+3m-tn=0。
所以错误!·错误!=0,即错误!⊥错误!。
又过点P存在唯一直线垂直于OQ,所以过点P且垂直于OQ的直线l过C的左焦点F。
2.(2018·已知点P是y轴左侧(不含y轴)一点,抛物线C:y2=4x上存在不同的两点A,B满足P A,PB的中点均在C上.(1)设AB中点为M,证明:PM垂直于y轴;(2)若P是半椭圆x2+错误!=1(x<0)上的动点,求△P AB面积的取值范围.[解](1)解:设P(x0,y0),A错误!,B错误!。
因为P A,PB的中点在抛物线上,所以y1,y2为方程错误!2=4·错误!即y2-2y0y+8x0-y错误!=0的两个不同的实根.所以y1+y2=2y0,因此,PM垂直于y轴.(2)解:由(1)可知错误!所以|PM|=错误!(y错误!+y错误!)-x0=错误!y错误!-3x0,|y1-y2|=2错误!。
高三数学二轮复习 必考问题专项突破17 与圆锥曲线有关的定点、定值、最值、范围问题 理.pdf
17 与圆锥曲线有关的定点、定值、最值、范围问题 1.(2011·新课标全国)已知直线l过抛物线C的焦点,且与C的对称轴垂直,l与C交于A,B两点,|AB|=12,P为C的准线上一点,则ABP的面积为( ). A.18 B.24 C.36 D.48 C [不妨设抛物线的标准方程为y2=2px(p>0),由于l垂直于对称轴且过焦点,故直线l的方程为x=.代入y2=2px得y=±p,即|AB|=2p,又|AB|=12,故p=6,所以抛物线的准线方程为x=-3,故SABP=×6×12=36.]2.(2011·山东)设M(x0,y0)为抛物线C:x2=8y上一点,F为抛物线C的焦点,以F为圆心、|FM|为半径的圆和抛物线C的准线相交,则y0的取值范围是( ). A.(0,2) B.[0,2] C.(2,+∞) D.[2,+∞)C [x2=8y,焦点F的坐标为(0,2),准线方程为y=-2.由抛物线的定义知|MF|=y0+2.以F为圆心、|FM|为半径的圆的标准方程为x2+(y-2)2=(y0+2)2. 由于以F为圆心、|FM|为半径的圆与准线相交,又圆心F到准线的距离为4,故4<y0+2,y0>2.]3.(2010·福建)若点O和点F(-2,0)分别为双曲线-y2=1(a>0)的中心和左焦点,点P为双曲线右支上的任意一点,则O·F的取值范围为( ). A.[3-2,+∞) B.[3+2,+∞) C. D. 答案:B [如图,由c=2得a2+1=4,a2=3, ∴双曲线方程为-y2=1. 设P(x,y)(x≥), O·F=(x,y)·(x+2,y)=x2+2x+y2 =x2+2x+-1=x2+2x-1(x≥). 令g(x)=x2+2x-1(x≥),则g(x)在[,+∞)上单调递增.g(x)min=g()=3+2.O·F的取值范围为[3+2,+∞).]4.(2012·浙江)定义:曲线C上的点到直线l的距离的最小值称为曲线C到直线l的距离.已知曲线C1:y=x2+a到直线l:y=x的距离等于曲线C2:x2+(y+4)2=2到直线l:y=x的距离,则实数a=________.解析 因曲线C2:x2+(y+4)2=2到直线l:y=x的距离为- =2 -=,则曲线C1与直线l不能相交,即x2+a>x,x2+a-x>0. 设C1:y=x2+a上一点为(x0,y0), 则点(x0,y0)到直线l的距离d===≥=,所以a=. 答案 本部分主要以解答题形式考查,往往是试卷的压轴题之一,一般以椭圆或抛物线为背景,考查定点、定值、最值、范围问题或探索性问题,试题难度较大. 复习时不能把目标仅仅定位在知识的掌握上,要在解题方法、解题思想上深入下去.解析几何中基本的解题方法是使用代数方程的方法研究直线、曲线的某些几何性质,代数方程是解题的桥梁,要掌握一些解方程(组)的方法,掌握一元二次方程的知识在解析几何中的应用,掌握使用韦达定理进行整体代入的解题方法;其次注意分类讨论思想、函数与方程思想、化归与转化思想等的应用,如解析几何中的最值问题往往需建立求解目标的函数,通过函数的最值研究几何中的最值. 必备知识 有关弦长问题 有关弦长问题,应注意运用弦长公式及韦达定理,“设而不求”;有关焦点弦长问题,要重视圆锥曲线定义的运用,以简化运算. (1)斜率为k的直线与圆锥曲线交于两点P1(x1,y1),P2(x2,y2),则所得弦长|P1P2|= |x2-x1|或|P1P2|=|y2-y1|,其中求|x2-x1|与|y2-y1|时通常使用韦达定理,即作如下变形: |x2-x1|= ; |y2-y1|= . (2)弦的中点问题 有关弦的中点问题,应灵活运用“点差法”,“设而不求法”来简化运算. 圆锥曲线中的最值 (1)椭圆中的最值 F1、F2为椭圆+=1(a>b>0)的左、右焦点,P为椭圆的任意一点,B为短轴的一个端点,O为坐标原点,则有 |OP|∈[b,a]; |PF1|∈[a-c,a+c]; |PF1|·|PF2|∈[b2,a2]; F1PF2≤∠F1BF2. (2)双曲线中的最值 F1、F2为双曲线-=1(a>0,b>0)的左、右焦点,P为双曲线上的任一点,O为坐标原点,则有 |OP|≥a; |PF1|≥c-a. (3)抛物线中的最值 点P为抛物线y2=2px(p>0)上的任一点,F为焦点,则有 |PF|≥; A(m,n)为一定点,则|PA|+|PF|有最小值. 必备方法 1.定点、定值问题必然是在变化中所表现出来的不变的量,那么就可以用变化的量表示问题的直线方程、数量积、比例关系等,这些直线方程、数量积、比例关系不受变化的量所影响的一个点、一个值,就是要求的定点、定值.化解这类问题的关键就是引进变的参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量. 2.解决圆锥曲线中最值、范围问题的基本思想是建立目标函数和建立不等关系,根据目标函数和不等式求最值、范围,因此这类问题的难点,就是如何建立目标函数和不等关系.建立目标函数或不等关系的关键是选用一个合适变量,其原则是这个变量能够表达要解决的问题,这个变量可以是直线的斜率、直线的截距、点的坐标等,要根据问题的实际情况灵活处理. 该类问题多以直线与圆锥曲线为背景,常与函数与方程、向量等知识交汇,形成了过定点、定值等问题的证明.难度较大. 【例1】 (2012·湖南)在直角坐标系xOy中,曲线C1上的点均在圆C2:(x-5)2+y2=9外,且对C1上任意一点M,M到直线x=-2的距离等于该点与圆C2上点的距离的最小值. (1)求曲线C1的方程; (2)设P(x0,y0)(y0≠±3)为圆C2外一点,过P作圆C2的两条切线,分别与曲线C1相交于点A,B和C,D.证明:当P在直线x=-4上运动时,四点A,B,C,D的纵坐标之积为定值. [审题视点] [听课记录] [审题视点] (1)直接根据曲线与方程的概念求解,或者转化为根据抛物线的定义求解均可;(2)首先建立圆的两条切线的斜率与点的坐标之间的关系,其次把圆的切线方程与抛物线方程联立消元,根据根与系数的关系得出纵坐标之和和纵坐标之积,最后从整体上消去参数(圆的切线斜率)即可得证. (1)解 法一 设M的坐标为(x,y),由已知得|x+2|=-3. 易知圆C2上的点位于直线x=-2的右侧,于是x+2>0, 所以=x+5. 化简得曲线C1的方程为y2=20x. 法二 由题设知,曲线C1上任意一点M到圆心C2(5,0)的距离等于它到直线x=-5的距离.因此,曲线C1是以(5,0)为焦点,直线x=-5为准线的抛物线.故其方程为y2=20x. (2)证明 当点P在直线x=-4上运动时,P的坐标为(-4,y0),又y0≠±3,则过P且与圆C2相切的直线的斜率k存在且不为0,每条切线都与抛物线有两个交点,切线方程为y-y0=k(x+4),即kx-y+y0+4k=0.于是=3. 整理得72k2+18y0k+y-9=0. 设过P所作的两条切线PA,PC的斜率分别为k1,k2,则k1,k2是方程的两个实根,故k1+k2=-=-. 由得k1y2-20y+20(y0+4k1)=0. 设四点A,B,C,D的纵坐标分别为y1,y2,y3,y4,则y1,y2是方程的两个实根,所以y1y2=. 同理可得y3y4=. 于是由,,三式得 y1y2y3y4= = ==6 400. 所以,当P在直线x=-4上运动时,四点A,B,C,D的纵坐标之积为定值6 400. 解圆锥曲线中的定点、定值问题可以先研究一下特殊情况,找出定点或定值,再视具体情况进行研究.同时,也要掌握巧妙利用特殊值解决相关的定值、定点问题的选择题或填空题,如将过焦点的弦特殊化,变成垂直于对称轴的弦来研究等. 【突破训练1】 设抛物线C:y2=4x,F为C的焦点,过F的直线L与C相交于A,B两点. (1)设L的斜率为1,求|AB|的大小; (2)求证:·是一个定值. (1)解 F(1,0),直线L的方程为y=x-1, 设A(x1,y1),B(x2,y2),由得x2-6x+1=0, x1+x2=6,x1x2=1. |AB|= =· =·=8. (2)证明 设直线L的方程为x=ky+1, 由得y2-4ky-4=0. y1+y2=4k,y1y2=-4,=(x1,y1),=(x2,y2). O·=x1x2+y1y2 =(ky1+1)(ky2+1)+y1y2 =k2y1y2+k(y1+y2)+1+y1y2 =-4k2+4k2+1-4=-3. ·是一个定值. 该类试题设计巧妙、命制新颖别致,常求特定量、特定式子的最值或范围.常与函数解析式的求法、函数最值、不等式等知识交汇,成为近年高考热点. 【例2】 (2012·浙江)如图,椭圆C:+=1(a>b>0)的离心率为,其左焦点到点P(2,1)的距离为.不过原点O的直线l与C相交于A,B两点,且线段AB被直线OP平分. (1)求椭圆C的方程; (2)求ABP面积取最大值时直线l的方程. [审题视点] [听课记录] [审题视点] (1)利用椭圆的离心率为,其左焦点到点P(2,1)的距离为求解. (2)由题意可知直线l的斜率存在,设为y=kx+m,结合椭圆方程,线段AB被直线OP平分可求k值.然后以AB为底,点P到直线AB的距离为高表示出SABP的表达式,借助导数求最值. 解 (1)设椭圆左焦点为F(-c,0),则由题意得 得 所以椭圆方程为+=1. (2)设A(x1,y1),B(x2,y2),线段AB的中点为M. 当直线AB与x轴垂直时,直线AB的方程为x=0,与不过原点的条件不符,舍去.故可设直线AB的方程为y=kx+m(m≠0), 由消去y,整理得 (3+4k2)x2+8kmx+4m2-12=0,(1) 则Δ=64k2m2-4(3+4k2)(4m2-12)>0, 所以线段AB的中点M. 因为M在直线OP:y=x上,所以=. 得m=0(舍去)或k=-. 此时方程(1)为3x2-3mx+m2-3=0,则 Δ=3(12-m2)>0, 所以|AB|=·|x1-x2|=·. 设点P到直线AB距离为d,则 d==. 设ABP的面积为S,则 S=|AB|·d=·. 其中m(-2 ,0)(0,2 ). 令u(m)=(12-m2)(m-4)2,m[-2 ,2 ], u′(m)=-4(m-4)(m2-2m-6) =-4(m-4)(m-1-)(m-1+). 所以当且仅当m=1-,u(m)取到最大值. 故当且仅当m=1-,S取到最大值. 综上,所求直线l方程为3x+2y+2 -2=0. 求最值或范围常见的解法:(1)几何法.若题目的条件和结论能明显体现几何特征及意义,可考虑利用图形性质来解决;(2)代数法.若题目的条件和结论能体现一种明确的函数关系,则可首先建立目标函数,再求最值;(3)求函数最值常用的代数法有配方法、判别式法、导数法、基本不等式法及函数的单调性、有界性法等. 【突破训练2】 (2012·陕西五校联考)已知双曲线x2-=1的左顶点为A1,右焦点为F2,P为双曲线右支上一点,则·的最小值为( ). A.-2 B.- C.1 D.0 A [由已知得A1(-1,0),F2(2,0).设P(x,y)(x≥1),则·=(-1-x,-y)·(2-x,-y)=4x2-x-5.令f(x)=4x2-x-5,则f(x)在[1,+∞)上单调递增,所以当x=1时,函数f(x)取最小值,即·取最小值,最小值为-2.] 此类问题命题背景宽,涉及知识点多,综合性强,探究平分面积的线、平分线段的线,或探究等式成立的参数值.常与距离、倾斜角、斜率及方程恒成立问题综合,形成知识的交汇. 【例3】 (2011·重庆卷改编)如图,椭圆的中心为原点O,离心率e=,且=2. (1)求该椭圆的标准方程; (2)设动点P满足:=+2,其中M、N是椭圆上的点,直线OM与ON的斜率之积为-.问:是否存在两个定点F1,F2,使得|PF1|+|PF2|为定值?若存在,求F1,F2的坐标;若不存在,说明理由. [审题视点] [听课记录] [审题视点] (1)利用e=,=2求a,c. (2)设P(x,y),M(x1,y1),N(x2,y2),由=+2可得x=x1+2x2,y=y1+2y2,又点M、N在椭圆x2+2y2=4上,可得x+2y=4,x+2y=4,再结合直线OM与ON的斜率之积为-.可求得点P满足方程x2+2y2=20.由椭圆的定义可求解. 解 (1)由e==,=2,解得a=2,c=,b2=a2-c2=2,故椭圆的标准方程为+=1. (2)设P(x,y),M(x1,y1),N(x2,y2),则由=+2,得(x,y)=(x1,y1)+2(x2,y2)=(x1+2x2,y1+2y2), 即x=x1+2x2,y=y1+2y2.因为点M、N在椭圆x2+2y2=4上, 所以x+2y=4,x+2y=4, 故x2+2y2=(x+4x+4x1x2)+2(y+4y+4y1y2) =(x+2y)+4(x+2y)+4(x1x2+2y1y2) =20+4(x1x2+2y1y2). 设kOM,kON分别为直线OM,ON的斜率,由题设条件知 kOM·kON==-,因此x1x2+2y1y2=0, 所以x2+2y2=20. 所以P点是椭圆+=1上的点,设该椭圆的左、右焦点为F1,F2,则由椭圆的定义|PF1|+|PF2|为定值,又因c==,因此两焦点的坐标为F1(-,0),F2(,0). 探究是否存在的问题,一般均是先假设存在,然后寻找理由去确定结论,如果真的存在,则能得出相应结论,如果不存在,则会由条件得出相互矛盾的结论. 【突破训练3】 (2012·济南模拟)在平面直角坐标系xOy中,经过点(0,)且斜率为k的直线l与椭圆+y2=1有两个不同的交点P和Q. (1)求k的取值范围; (2)设椭圆与x轴正半轴、y轴正半轴的交点分别为A、B,是否存在常数k,使得向量+与共线?如果存在,求k的值;如果不存在,请说明理由. 解 (1)由已知,得直线l的方程为y=kx+, 代入椭圆方程,得+(kx+)2=1, 整理,得x2+2kx+1=0, 直线l与椭圆有两个不同的交点P和Q等价于 Δ=8k2-4×=4k2-2>0, 解得k<-或k>, 即k的取值范围为. (2)设P(x1,y1),Q(x2,y2), 由方程,得x1+x2=-, 又y1+y2=k(x1+x2)+2. 而A(,0),B(0,1),=(-,1), 所以+与共线等价于 x1+x2=-(y1+y2), 将代入上式,解得k=, 由(1)知k<-或k>,故没有符合题意的常数k. 圆锥曲线“最”有应得 椭圆、双曲线、抛物线的最值问题的解题方法较灵活,学生时常感到无从下手.常遇到面积最大最小问题,距离的最长最短问题,不定量的最大最小问题等等,下面给同学们提供两种解法,只要掌握了它们,就可以“最”有应得. 一、几何法求最值 【示例1】 抛物线的顶点O在坐标原点,焦点在y轴负半轴上,过点M(0,-2)作直线l与抛物线相交于A,B两点,且满足+=(-4,-12). (1)求直线l和抛物线的方程; (2)当抛物线上一动点P从点A运动到点B时,求ABP面积的最大值. [满分解答] (1)根据题意可设直线l的方程为y=kx-2,抛物线方程为x2=-2py(p>0). 由得x2+2pkx-4p=0.(2分) 设点A(x1,y1),B(x2,y2),则x1+x2=-2pk,y1+y2=k(x1+x2)-4=-2pk2-4. 所以+=(-4,-12),所以 解得故直线l的方程为y=2x-2,抛物线方程为x2=-2y.(6分) (2)设P(x0,y0),依题意,知当抛物线过点P的切线与l平行时,ABP的面积最大. 对y=-x2求导,得y′=-x,所以-x0=2,即x0=-2,y0=-x=-2,即P(-2,-2). 此时点P到直线l的距离 d===.(9分) 由得x2+4x-4=0, 则x1+x2=-4,x1x2=-4, |AB|= · = · =4 . 于是,ABP面积的最大值为 ×4 ×=8 .(12分) 老师叮咛:当所求的最值是圆锥曲线上的点到某条直线的距离的最值问题时,可以通过作与这条直线平行的圆锥曲线的切线,则两条平行线间的距离,就是所求的最值,切点就是曲线上取得最值的点,这种求最值的方法称为切线法. 切线法的基本思想是数形结合,其中求曲线的切线方程需要利用导数知识,判断切线与曲线的最值需要借助几何图形的直观性,通过图形来确定何时取得最大值,何时取得最小值. 二、函数法求最值 【示例2】 (2012·广东)在平面直角坐标系xOy中,已知椭圆C:+=1(a>b>0)的离心率e= ,且椭圆C上的点到点Q(0,2)的距离的最大值为3. (1)求椭圆C的方程; (2)在椭圆C上,是否存在点M(m,n),使得直线l:mx+ny=1与圆O:x2+y2=1相交于不同的两点A、B,且OAB的面积最大?若存在,求出点M的坐标及对应的OAB的面积;若不存在,请说明理由. [满分解答] (1)由e== = ,得a=b, 椭圆C:+=1,即x2+3y2=3b2, 设P(x,y)为C上任意一点, 则|PQ|= = , -b≤y≤b. 若b<1,则-b>-1,当y=-b时,|PQ|max= =3,又b>0,得b=1(舍去), 若b≥1,则-b≤-1,当y=-1时,|PQ|max= =3,得b=1. 椭圆C的方程为+y2=1.(6分) (2)法一 假设存在这样的点M(m,n)满足题意,则有+n2=1,即n2=1-,-≤m≤.由题意可得SAOB=|OA|·|OB|sinAOB=sinAOB≤, 当AOB=90°时取等号,这时AOB为等腰直角三角形, 此时圆心(0,0)到直线mx+ny=1的距离为, 则=,得m2+n2=2,又+n2=1,解得m2=,n2=,即存点M的坐标为,,,满足题意,且AOB的最大面积为.(12分) 法二 假设存在这样的点M(m,n)满足题意,则有+n2=1,即n2=1-,-≤m≤, 又设A(x1,y1)、B(x2,y2),由,消去y得(m2+n2)x2-2mx+1-n2=0, 把n2=1-代入整理得(3+2m2)x2-6mx+m2=0, 则Δ=8m2(3-m2)≥0, ② 而SAOB=|OA|·|OB|sinAOB=sinAOB, 当AOB=90°,SAOB取得最大值, 此时·=x1x2+y1y2=0,又y1y2=·=, x1x2+=0, 即3-3m(x1+x2)+(3+2m2)·x1x2=0, 把代入上式整理得2m4-9m2+9=0, 解得m2=或m2=3(舍去), m=±,n=± =±, M点的坐标为,,,,使得SAOB取得最大值.(12分) 老师叮咛:当所求的最值可以表示成某个变量的函数关系式时,我们常常先建立对应的函数关系式,然后利用函数方法求出对应的最值,称这种方法为函数法,这是解析几何问题中求最值的常用方法.函数法是研究数学问题的一种最重要的方法,用这种方法求解圆锥曲线的最值问题时,除了重视建立函数关系式这个关键点外,还要密切注意所建立的函数式中的变量是否有限制范围,这些限制范围恰好制约了最值的取得,因此在解题时要予以高度关注. 【试一试】 抛物线y=-x2上的点到直线4x+3y-8=0的距离的最小值是( ). A. B. C. D.3 A [可知过抛物线点的切线与直线4x+3y-8=0平行时,所求的距离最小,y′=-2x.令-2x=-,解得x=,从而切点坐标为,切线方程为y+=-,即4x+3y-=0,由两平行线间距离公式,得点到直线的距离的最小值为d==.故选A.]。
高考数学(理)二轮复习:专题五 第3讲 圆锥曲线中的定点、定值、最值与范围问题
第3讲 圆锥曲线中的定点、定值、最值与范围问题一、选择题1.在平面直角坐标系xOy 中,经过点(0,2)且斜率为k 的直线l 与椭圆x 22+y 2=1有两个不同的交点,则k 的取值范围为( ) A.⎝⎛⎭⎪⎫-∞,-22B.⎝ ⎛⎭⎪⎫22,+∞ C.⎣⎢⎡⎭⎪⎫22,+∞ D.⎝ ⎛⎭⎪⎫-∞,-22∪⎝ ⎛⎭⎪⎫22,+∞解析 由已知可得直线l 的方程为y =kx +2, 与椭圆的方程联立,整理得⎝ ⎛⎭⎪⎫12+k 2x 2+22kx +1=0,因为直线l 与椭圆有两个不同的交点,所以Δ=8k 2-4⎝ ⎛⎭⎪⎫12+k 2=4k 2-2>0,解得k <-22或k >22,即k 的取值范围为⎝ ⎛⎭⎪⎫-∞,-22∪⎝ ⎛⎭⎪⎫22,+∞.答案 D2.F 1,F 2是椭圆x 24+y 2=1的左、右焦点,点P 在椭圆上运动,则PF 1→·PF 2→的最大值是( ) A.-2 B.1 C.2D.4解析 设P (x ,y ),依题意得点F 1(-3,0),F 2(3,0),PF 1→·PF 2→=(-3-x )(3-x )+y 2=x 2+y 2-3=34x 2-2,注意到-2≤34x 2-2≤1,因此PF 1→·PF 2→的最大值是1. 答案 B3.已知椭圆x 24+y 2b 2=1(0<b <2)的左、右焦点分别为F 1,F 2,过F 1的直线l 交椭圆于A ,B 两点,若|BF 2|+|AF 2|的最大值为5,则b 的值是( ) A.1 B. 2 C.32D. 3解析 由椭圆的方程,可知长半轴长a =2;由椭圆的定义,可知|AF 2|+|BF 2|+|AB |=4a =8,所以|AB |=8-(|AF 2|+|BF 2|)≥3.由椭圆的性质,可知过椭圆焦点的弦中通径最短,即2b 2a =3,可求得b 2=3,即b = 3. 答案 D4.(2017·榆林模拟)若双曲线x 2a 2-y 2b 2=1(a >0,b >0)与直线y =3x 无交点,则离心率e 的取值范围是( ) A.(1,2) B.(1,2] C.(1,5)D.(1,5]解析 因为双曲线的渐近线为y =±b a x ,要使直线y =3x 与双曲线无交点,则直线y =3x 应在两渐近线之间,所以有ba ≤3,即b ≤3a ,所以b 2≤3a 2,c 2-a 2≤3a 2,即c 2≤4a 2,e 2≤4,所以1<e ≤2. 答案 B5.抛物线y 2=8x 的焦点为F ,点P (x ,y )为该抛物线上的动点,又点A (-2,0),则|P A ||PF |的最大值为( ) A.1 B. 2 C. 3D.2解析 由点P (x ,y )在抛物线y 2=8x 上,得y 2=8x (x ≥0). 由抛物线的定义可得|PF |=x +2,又|P A |=(x +2)2+y 2=(x +2)2+8x , 所以|P A ||PF |=(x +2)2+8x x +2=(x +2)2+8x(x +2)2=1+8xx 2+4x +4.当x =0时,|P A ||PF |=1; 当x ≠0时,|P A ||PF |=1+8x +4x +4,因为x +4x ≥2x ·4x =4,当且仅当x =4x ,即x =2时取等号,故x +4x +4≥8,0<8x +4x +4≤1, 所以1+8x +4x +4∈(1,2]. 综上,|P A ||PF |∈[1,2].所以|P A ||PF |的最大值为 2. 答案 B 二、填空题6.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线与圆x 2-4x +y 2+2=0相交,则双曲线的离心率的取值范围是______.解析 双曲线的渐近线方程为y =±b a x ,即bx ±ay =0,圆x 2-4x +y 2+2=0可化为(x -2)2+y 2=2,其圆心为(2,0),半径为 2. 因为直线bx ±ay =0和圆(x -2)2+y 2=2相交,所以|2b |a 2+b2<2,整理得b 2<a 2,从而c 2-a 2<a 2,即c 2<2a 2,所以e 2<2.又e >1,故双曲线的离心率的取值范围是(1,2). 答案 (1,2)7.已知椭圆x 225+y 216=1内有两点A (1,3),B (3,0),P 为椭圆上一点,则|P A |+|PB |的最大值为________.解析 在椭圆中,由a =5,b =4,得c =3,故焦点为(-3,0)和(3,0),点B 是右焦点,记左焦点为C (-3,0),由椭圆的定义得|PB |+|PC |=10,所以|P A |+|PB |=10+|P A |-|PC |,因为||P A |-|PC ||≤|AC |=5,所以当点P ,A ,C 三点共线时,|P A |+|PB |取得最大值15. 答案 158.(2016·江苏卷)如图,在平面直角坐标系xOy 中,F 是椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点,直线y =b2与椭圆交于B ,C 两点,且∠BFC =90°,则该椭圆的离心率是________.解析 联立方程组⎩⎪⎨⎪⎧x 2a 2+y 2b 2=1,y =b 2,解得B 、C 两点坐标为B ⎝ ⎛⎭⎪⎫-32a ,b 2,C ⎝ ⎛⎭⎪⎫32a ,b 2,又F (c ,0),则FB →=⎝ ⎛⎭⎪⎫-32a -c ,b 2,FC →=⎝ ⎛⎭⎪⎫3a 2-c ,b 2, 又由∠BFC =90°,可得FB →·FC →=0,代入坐标可得:c 2-34a 2+b 24=0,①又因为b 2=a 2-c 2.代入①式可化简为c 2a 2=23,则椭圆离心率为e =ca =23=63.答案 63 三、解答题9.(2015·陕西)如图,椭圆E :x 2a 2+y 2b 2=1(a >b >0),经过点A (0,-1),且离心率为22. (1)求椭圆E 的方程;(2)经过点(1,1),且斜率为k 的直线与椭圆E 交于不同的两点P ,Q (均异于点A ),证明:直线AP 与AQ 的斜率之和为2. (1)解 由题设知c a =22,b =1, 结合a 2=b 2+c 2,解得a =2, 所以椭圆的方程为x 22+y 2=1.(2)证明 由题设知,直线PQ 的方程为y =k (x -1)+1(k ≠2),代入x 22+y 2=1, 得(1+2k 2)x 2-4k (k -1)x +2k (k -2)=0,由已知Δ>0,设P (x 1,y 1),Q (x 2,y 2),x 1x 2≠0,则x 1+x 2=4k (k -1)1+2k 2,x 1x 2=2k (k -2)1+2k 2, 从而直线AP ,AQ 的斜率之和k AP +k AQ =y 1+1x 1+y 2+1x 2=kx 1+2-k x 1+kx 2+2-kx 2=2k +(2-k )⎝ ⎛⎭⎪⎫1x 1+1x 2=2k +(2-k )x 1+x 2x 1x 2=2k +(2-k )4k (k -1)2k (k -2)=2k -2(k -1)=2.10.(2016·重庆诊断二)已知点A (0,-2),椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,F 是椭圆E 的右焦点,直线AF 的斜率为233,O 为坐标原点. (1)求E 的方程;(2)设过点A 的动直线l 与E 相交于P ,Q 两点.当△OPQ 的面积最大时,求l 的方程.解 (1)设F (c ,0),由条件知2c =233,得c = 3.又c a =32,所以a =2,b 2=a 2-c 2=1. 故E 的方程为x 24+y 2=1. (2)当l ⊥x 轴时不合题意,故设l :y =kx -2,P (x 1,y 1),Q (x 2,y 2). 将y =kx -2代入x 24+y 2=1, 得(1+4k 2)x 2-16kx +12=0. 当Δ=16(4k 2-3)>0,即k 2>34时,x 1,2=8k ±24k 2-34k 2+1.从而|PQ |=k 2+1|x 1-x 2|=4k 2+1·4k 2-34k 2+1.又点O 到直线PQ 的距离d =2k 2+1. 所以△OPQ 的面积S △OPQ =12d ·|PQ |=44k 2-34k 2+1.设4k 2-3=t ,则t >0,S △OPQ =4t t 2+4=4t +4t.因为t +4t ≥4,当且仅当t =2,即k =±72时等号成立,且满足Δ>0. 所以当△OPQ 的面积最大时,l 的方程为y =72x -2或y =-72x -2. 11.在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,左、右焦点分别是F 1,F 2.以F 1为圆心,以3为半径的圆与以F 2为圆心以1为半径的圆相交,且交点在椭圆C 上. (1)求椭圆C 的方程;(2)设椭圆E :x 24a 2+y 24b 2=1,P 为椭圆C 上任意一点,过点P 的直线y =kx +m 交椭圆E 于A ,B 两点,射线PO 交椭圆E 于点Q . (ⅰ)求|OQ ||OP |的值;(ⅱ)求△ABQ 面积的最大值. 解 (1)由题意知2a =4,则a =2, 又c a =32,a 2-c 2=b 2, 可得b =1,所以椭圆C 的方程为x 24+y 2=1. (2)由(1)知椭圆E 的方程为x 216+y 24=1. (ⅰ)设P (x 0,y 0),|OQ ||OP |=λ, 由题意知Q (-λx 0,-λy 0). 因为x 204+y 20=1,又(-λx 0)216+(-λy 0)24=1,即λ24⎝ ⎛⎭⎪⎫x 24+y 20=1, 所以λ=2,即|OQ ||OP |=2. (ⅱ)设A (x 1,y 1),B (x 2,y 2). 将y =kx +m 代入椭圆E 的方程, 可得(1+4k 2)x 2+8kmx +4m 2-16=0, 由Δ>0,可得m 2<4+16k 2,① 则有x 1+x 2=-8km1+4k 2,x 1x 2=4m 2-161+4k 2.所以|x 1-x 2|=416k 2+4-m 21+4k 2.因为直线y =kx +m 与y 轴交点的坐标为(0,m ), 所以△OAB 的面积S =12|m ||x 1-x 2| =216k 2+4-m 2|m |1+4k 2=2(16k 2+4-m 2)m 21+4k 2=2⎝ ⎛⎭⎪⎫4-m 21+4k 2m 21+4k 2. 设m 21+4k 2=t , 将y =kx +m 代入椭圆C 的方程, 可得(1+4k 2)x 2+8kmx +4m 2-4=0, 由Δ≥0,可得m 2≤1+4k 2.② 由①②可知0<t ≤1,因此S =2(4-t )t =2-t 2+4t , 故S ≤23,当且仅当t =1,即m 2=1+4k 2时取得最大值2 3. 由(ⅰ)知,△ABQ 面积为3S ,所在△ABQ面积的最大值为6 3.。
高三数学二轮专题复习第23练 圆锥曲线中的定点、定值与存在性问题
第23练圆锥曲线中的定点、定值与存在性问题[压轴大题突破练][明晰考情] 1.命题角度:圆锥曲线中的定点与定值、最值与范围问题是高考常考的问题;以椭圆或抛物线为背景,尤其是与条件或结论相关存在性开放问题.2.题目难度:偏难题.考点一圆锥曲线中的定值问题方法技巧(1)求定值问题常见的方法有两种①从特殊入手,求出定值,再证明这个值与变量无关;②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.(2)定值问题求解的基本思路是使用参数表示要解决的问题,然后证明与参数无关,这类问题选择消元的方向是非常关键的.1.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的长轴长为4,且过点⎝⎛⎭⎫3,12. (1)求椭圆的方程;(2)设A ,B ,M 是椭圆上的三点.若OM →=35OA →+45OB →,点N 为线段AB 的中点,C ⎝⎛⎭⎫-62,0,D ⎝⎛⎭⎫62,0,求证:|NC |+|ND |=2 2.(1)解 由已知可得⎩⎪⎨⎪⎧a =2,3a 2+14b 2=1, 故⎩⎪⎨⎪⎧a =2,b =1,所以椭圆的方程为x 24+y 2=1.(2)证明 设A (x 1,y 1),B (x 2,y 2),则x 214+y 21=1,x 224+y 22=1. 由OM →=35OA →+45OB →,得M ⎝⎛⎭⎫35x 1+45x 2,35y 1+45y 2. 因为M 是椭圆C 上一点,所以⎝⎛⎭⎫35x 1+45x 224+⎝⎛⎭⎫35y 1+45y 22=1, 即⎝⎛⎭⎫x 214+y 21⎝⎛⎭⎫352+⎝⎛⎭⎫x 224+y 22⎝⎛⎭⎫452+2×35×45×⎝⎛⎭⎫x 1x 24+y 1y 2=1, 得⎝⎛⎭⎫352+⎝⎛⎭⎫452+2×35×45×⎝⎛⎭⎫x 1x 24+y 1y 2=1, 故x 1x 24+y 1y 2=0. 又线段AB 的中点N 的坐标为⎝⎛⎭⎪⎫x 1+x 22,y 1+y 22,所以⎝ ⎛⎭⎪⎫x 1+x 2222+2⎝⎛⎭⎪⎫y 1+y 222=12⎝⎛⎭⎫x 214+y 21+12⎝⎛⎭⎫x 224+y 22+x 1x 24+y 1y 2=1. 从而线段AB 的中点N ⎝ ⎛⎭⎪⎫x 1+x 22,y 1+y 22在椭圆x 22+2y 2=1上. 又椭圆x 22+2y 2=1的两焦点恰为C ⎝⎛⎭⎫-62,0,D ⎝⎛⎭⎫62,0,所以|NC |+|ND |=2 2.2.(2018·北京)已知抛物线C :y 2=2px 经过点P (1,2),过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线P A 交y 轴于M ,直线PB 交y 轴于N . (1)求直线l 的斜率的取值范围;(2)设O 为原点,QM →=λQO →,QN →=μQO →,求证:1λ+1μ为定值.(1)解 因为抛物线y 2=2px 过点(1,2), 所以2p =4,即p =2. 故抛物线C 的方程为y 2=4x .由题意知,直线l 的斜率存在且不为0. 设直线l 的方程为y =kx +1(k ≠0),由⎩⎪⎨⎪⎧y 2=4x ,y =kx +1,得k 2x 2+(2k -4)x +1=0. 依题意知Δ=(2k -4)2-4×k 2×1>0,解得k <0或0<k <1.又P A ,PB 与y 轴相交,故直线l 不过点(1,-2). 从而k ≠-3.所以直线l 的斜率的取值范围是(-∞,-3)∪(-3,0)∪(0,1). (2)证明 设A (x 1,y 1),B (x 2,y 2), 由(1)知x 1+x 2=-2k -4k 2,x 1x 2=1k 2.直线P A 的方程为y -2=y 1-2x 1-1(x -1),令x =0,得点M 的纵坐标为y M =-y 1+2x 1-1+2=-kx 1+1x 1-1+2.同理得点N 的纵坐标为y N =-kx 2+1x 2-1+2. 由QM →=λQO →,QN →=μQO →,得λ=1-y M ,μ=1-y N . 所以1λ+1μ=11-y M +11-y N=x 1-1(k -1)x 1+x 2-1(k -1)x 2=1k -1·2x 1x 2-(x 1+x 2)x 1x 2=1k -1·2k 2+2k -4k 21k 2=2.所以1λ+1μ为定值.3. 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,点Q ⎝⎛⎭⎫b ,a b 在椭圆上,O 为坐标原点. (1)求椭圆C 的方程;(2)已知点P ,M ,N 为椭圆C 上的三点,若四边形OPMN 为平行四边形,证明四边形OPMN 的面积S 为定值,并求该定值.解 (1)∵椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为22,∴e 2=c 2a 2=a 2-b 2a 2=12,得a 2=2b 2,①又点Q ⎝⎛⎭⎫b ,ab 在椭圆C 上, ∴b 2a 2+a 2b 4=1,② 联立①②得a 2=8,b 2=4. ∴椭圆C 的方程为x 28+y 24=1.(2)当直线PN 的斜率k 不存在时,PN 的方程为x =2或x =-2,从而有|PN |=23, ∴S =12|PN |·|OM |=12×23×22=26;当直线PN 的斜率k 存在时,设直线PN 的方程为y =kx +m (m ≠0),P (x 1,y 1),N (x 2,y 2), 将PN 的方程代入椭圆C 的方程, 整理得(1+2k 2)x 2+4kmx +2m 2-8=0,Δ=16k 2m 2-4(2m 2-8)(1+2k 2)>0,即m 2<4+8k 2, ∴x 1+x 2=-4km1+2k 2,x 1·x 2=2m 2-81+2k 2,y 1+y 2=k (x 1+x 2)+2m =2m1+2k 2,由OM →=OP →+ON →,得M ⎝ ⎛⎭⎪⎫-4km 1+2k 2,2m 1+2k 2. 将M 点坐标代入椭圆C 的方程,得m 2=1+2k 2. 又点O 到直线PN 的距离为d =|m |1+k 2,|PN |=1+k 2|x 1-x 2|,∴S =d ·|PN |=|m |·|x 1-x 2|=1+2k 2·(x 1+x 2)2-4x 1x 2=48k 2+242k 2+1=2 6.综上,平行四边形OPMN 的面积S 为定值2 6. 考点二 圆锥曲线中的定点问题方法技巧(1)动直线l 过定点问题.设动直线方程(斜率存在)为y =kx +t ,由题设条件将t 用k 表示为t =mk ,得y =k (x +m ),故动直线过定点(-m ,0).(2)动曲线C 过定点问题.引入参变量建立曲线C 的方程,再根据其对参变量恒成立,令其系数等于零,得出定点.4.已知两点A (-2,0),B (2,0),动点P 在y 轴上的投影是Q ,且2P A →·PB →=|PQ →|2. (1)求动点P 的轨迹C 的方程;(2)过F (1,0)作互相垂直的两条直线分别交轨迹C 于点G ,H 和M ,N ,且E 1,E 2分别是GH ,MN 的中点.求证:直线E 1E 2恒过定点.(1)解 设点P 的坐标为(x ,y ),∴点Q 的坐标为(0,y ).∵2P A →·PB →=|PQ →|2,P A →=(-2-x ,-y ), PB →=(2-x ,-y ),|PQ →|=|x |, ∴2[(-2-x )(2-x )+y 2]=x 2, 化简得点P 的轨迹方程为x 24+y 22=1.(2)证明 当两直线的斜率都存在且不为0时, 设l GH :y =k (x -1),G (x 1,y 1),H (x 2,y 2), l MN :y =-1k (x -1),M (x 3,y 3),N (x 4,y 4),联立⎩⎪⎨⎪⎧x 24+y 22=1,y =k (x -1),消去y 得(2k 2+1)x 2-4k 2x +2k 2-4=0. 则Δ>0恒成立.∴x 1+x 2=4k 22k 2+1,x 1x 2=2k 2-42k 2+1.∴GH 中点E 1的坐标为⎝ ⎛⎭⎪⎫2k 22k 2+1,-k 2k 2+1.同理,MN 中点E 2的坐标为⎝ ⎛⎭⎪⎫2k 2+2,k k 2+2,∴12E E k =-3k2(k 2-1),∴12E E l 的方程为y -k k 2+2=-3k 2(k 2-1)⎝ ⎛⎭⎪⎫x -2k 2+2, 即y =-3k2(k 2-1)⎝⎛⎭⎫x -23, ∴直线E 1E 2恒过定点⎝⎛⎭⎫23,0;当两直线的斜率分别为0和不存在时,12E E l 的方程为y =0,也过点⎝⎛⎭⎫23,0. 综上所述,12E E l 过定点⎝⎛⎭⎫23,0.5.已知焦距为22的椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右顶点为A ,直线y =43与椭圆C 交于P ,Q两点(P 在Q 的左边),Q 在x 轴上的射影为B ,且四边形ABPQ 是平行四边形. (1)求椭圆C 的方程;(2)斜率为k 的直线l 与椭圆C 交于两个不同的点M ,N .若M 是椭圆的左顶点,D 是直线MN 上一点,且DA ⊥AM .点G 是x 轴上异于点M 的点,且以DN 为直径的圆恒过直线AN 和DG 的交点,求证:点G 是定点. (1)解 设坐标原点为O ,∵四边形ABPQ 是平行四边形,∴|AB →|=|PQ →|, ∵|PQ →|=2|OB →|,∴|AB →|=2|OB →|,则点B 的横坐标为a 3,∴点Q 的坐标为⎝⎛⎭⎫a 3,43,代入椭圆C 的方程得b 2=2, 又c 2=2,∴a 2=4,即椭圆C 的方程为x 24+y 22=1.(2)证明 设直线MN 的方程为y =k (x +2),N (x 0,y 0),DA ⊥AM ,∴D (2,4k ).由⎩⎪⎨⎪⎧x 24+y 22=1,y =k (x +2),消去y 得(1+2k 2)x 2+8k 2x +8k 2-4=0, 则-2x 0=8k 2-41+2k 2,即x 0=2-4k 21+2k 2,∴y 0=k (x 0+2)=4k1+2k 2,则N ⎝ ⎛⎭⎪⎫2-4k 21+2k 2,4k 1+2k 2,设G (t ,0),则t ≠-2,若以DN 为直径的圆恒过直线AN 和DG 的交点, 则DG ⊥AN ,∴GD →·AN →=0恒成立.∵GD →=(2-t ,4k ),AN →=⎝ ⎛⎭⎪⎫-8k21+2k 2,4k 1+2k 2, ∴GD →·AN →=(2-t )·-8k 21+2k 2+4k ·4k 1+2k 2=0恒成立,即8k 2t1+2k 2=0恒成立, ∴t =0,∴点G 是定点(0,0).6.(2017·全国Ⅰ)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),四点P 1(1,1),P 2(0,1),P 3⎝⎛⎭⎫-1,32,P 4⎝⎛⎭⎫1,32中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为-1,证明:l 过定点.(1)解 由于P 3,P 4两点关于y 轴对称,故由题设知椭圆C 经过P 3,P 4两点. 又由1a 2+1b 2>1a 2+34b 2知,椭圆C 不经过点P 1,所以点P 2在椭圆C 上.因此⎩⎨⎧1b 2=1,1a 2+34b 2=1,解得⎩⎪⎨⎪⎧a 2=4,b 2=1.故椭圆C 的方程为x 24+y 2=1.(2)证明 设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2.如果l 与x 轴垂直,设l :x =t ,由题设知t ≠0,且|t |<2,可得A ,B 的坐标分别为⎝⎛⎭⎪⎫t ,4-t 22,⎝⎛⎭⎪⎫t ,-4-t 22,则k 1+k 2=4-t 2-22t -4-t 2+22t =-1,得t =2,不符合题设. 从而可设l :y =kx +m (m ≠1). 将y =kx +m 代入x 24+y 2=1,得(4k 2+1)x 2+8kmx +4m 2-4=0. 由题设可知Δ=16(4k 2-m 2+1)>0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8km4k 2+1,x 1x 2=4m 2-44k 2+1.而k 1+k 2=y 1-1x 1+y 2-1x 2=kx 1+m -1x 1+kx 2+m -1x 2=2kx 1x 2+(m -1)(x 1+x 2)x 1x 2.由题设k 1+k 2=-1,故(2k +1)x 1x 2+(m -1)(x 1+x 2)=0, 即(2k +1)·4m 2-44k 2+1+(m -1)·-8km4k 2+1=0,解得k =-m +12.当且仅当m >-1时,Δ>0, 于是l :y =-m +12x +m ,即y +1=-m +12(x -2),所以l 过定点(2,-1).考点三 圆锥曲线中的存在性问题方法技巧解决存在性问题的一般思路:假设满足条件的元素(点、直线、曲线或参数)存在,用待定系数法设出,列出关于待定系数的方程组,若方程组有实数解,则元素(点、直线、曲线或参数)存在,否则,元素(点、直线、曲线或参数)不存在.7.(2016·全国Ⅰ)在直角坐标系xOy 中,直线l :y =t (t ≠0)交y 轴于点M ,交抛物线C :y 2=2px (p >0)于点P ,M 关于点P 的对称点为N ,连接ON 并延长交C 于点H . (1)求|OH ||ON |;(2)除H 以外,直线MH 与C 是否有其它公共点?说明理由. 解 (1)如图,由已知得M (0,t ),P ⎝⎛⎭⎫t22p ,t ,又N 为M 关于点P 的对称点, 故N ⎝⎛⎭⎫t 2p ,t ,ON 的方程为y =p t x , 代入y 2=2px ,整理得px 2-2t 2x =0,解得x 1=0,x 2=2t 2p,因此H ⎝⎛⎭⎫2t 2p ,2t . 所以N 为OH 的中点,即|OH ||ON |=2.(2)直线MH 与C 除H 以外没有其他公共点,理由如下: 直线MH 的方程为y -t =p 2t x ,即x =2tp (y -t ).代入y 2=2px ,得y 2-4ty +4t 2=0,解得y 1=y 2=2t , 即直线MH 与C 只有一个公共点,所以除H 以外,直线MH 与C 没有其他公共点.8.已知椭圆E :x 2a 2+y 2b 2=1的右焦点为F (c ,0)且a >b >c >0,设短轴的一个端点D ,原点O到直线DF 的距离为32,过原点和x 轴不重合的直线与椭圆E 相交于C ,G 两点,且|GF →|+|CF →|=4.(1)求椭圆E 的方程;(2)是否存在过点P (2,1)的直线l 与椭圆E 相交于不同的两点A ,B 且使得OP →2=4P A →·PB →成立?若存在,试求出直线l 的方程;若不存在,请说明理由. 解 (1)由椭圆的对称性知,|GF →|+|CF →|=2a =4,∴a =2.又原点O 到直线DF 的距离为32, ∴bc a =32,∴bc =3,又a 2=b 2+c 2=4, a >b >c >0,∴b =3,c =1. 故椭圆E 的方程为x 24+y 23=1.(2)当直线l 与x 轴垂直时不满足条件.故可设A (x 1,y 1),B (x 2,y 2),直线l 的方程为y =k (x -2)+1,代入椭圆方程得(3+4k 2)x 2-8k (2k -1)x +16k 2-16k -8=0, ∴x 1+x 2=8k (2k -1)3+4k2, x 1x 2=16k 2-16k -83+4k 2,Δ=32(6k +3)>0,∴k >-12.∵OP 2→=4P A →·PB →,即4[(x 1-2)(x 2-2)+(y 1-1)(y 2-1)]=5, ∴4(x 1-2)(x 2-2)(1+k 2)=5, 即4[x 1x 2-2(x 1+x 2)+4](1+k 2)=5,∴4⎣⎢⎡⎦⎥⎤16k 2-16k -83+4k 2-2×8k (2k -1)3+4k 2+4(1+k 2) =4×4+4k 23+4k 2=5,解得k =±12,k =-12不符合题意,舍去,∴存在满足条件的直线l ,其方程为x -2y =0.典例 (12分)已知椭圆C :9x 2+y 2=m 2(m >0),直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .(1)证明:直线OM 的斜率与l 的斜率的乘积为定值;(2)若l 过点⎝⎛⎭⎫m 3,m ,延长线段OM 与C 交于点P ,四边形OAPB 能否为平行四边形?若能,求此时l 的斜率;若不能,说明理由.审题路线图(1)联立直线方程与椭圆方程―→一元二次方程―→中点坐标―→求出斜率乘积(2)先假定四边形OAPB能为平行四边形―→找几何关系:平行四边形的对角线互相平分―→转化成代数关系:x P=2x M―→求k规范解答·评分标准(1)证明 设直线l :y =kx +b (k ≠0,b ≠0),A (x 1,y 1),B (x 2,y 2),M (x M ,y M ).…………2分 将y =kx +b 代入9x 2+y 2=m 2, 得(k 2+9)x 2+2kbx +b 2-m 2=0, Δ=4k 2b 2-4(k 2+9)(b 2-m 2)>0,故x M =x 1+x 22=-kb k 2+9,y M =kx M +b =9bk 2+9.………………………………………………4分于是直线OM 的斜率k OM =y M x M =-9k,即k OM ·k =-9.所以直线OM 的斜率与l 的斜率的乘积为定值. ……………………………………………6分 (2)解 四边形OAPB 能为平行四边形. ………………………………………………………7分因为直线l 过点⎝⎛⎭⎫m3,m ,所以l 不过原点且与C 有两个交点的充要条件是k >0,k ≠3. 由(1)得OM 的方程为y =-9k x .设点P 的横坐标为x P ,由⎩⎪⎨⎪⎧y =-9k x ,9x 2+y 2=m 2,得x 2P =k 2m 29k 2+81,即x P =±km 3k 2+9 . ……………………………………9分将点⎝⎛⎭⎫m 3,m 的坐标代入l 的方程,得b =m (3-k )3,因此x M =k (k -3)m3(k 2+9).……………………………………………………………………………10分四边形OAPB 为平行四边形,当且仅当线段AB 与线段OP 互相平分,即x P =2x M . 于是±km3k 2+9=2×k (k -3)m3(k 2+9), 解得k 1=4-7,k 2=4+7.因为k i >0,k i ≠3,i =1,2,所以当l 的斜率为4-7或4+7时,四边形OAPB 为平行四边形. ………………………………………………………………………………………12分构建答题模板[第一步] 先假定:假设结论成立;[第二步] 再推理:以假设结论成立为条件,进行推理求解;[第三步] 下结论:若推出合理结果,经验证成立则肯定假设;若推出矛盾则否定假设; [第四步] 再回顾:查看关键点,易错点(特殊情况、隐含条件等),审视解题规范性.1.(2017·全国Ⅱ)设O 为坐标原点,动点M 在椭圆C :x 22+y 2=1上,过M 作x 轴的垂线,垂足为N ,点P 满足NP →=2NM →. (1)求点P 的轨迹方程;(2)设点Q 在直线x =-3上,且OP →·PQ →=1.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .(1)解 设P (x ,y ),M (x 0,y 0),则N (x 0,0), NP →=(x -x 0,y ),NM →=(0,y 0). 由NP →= 2 NM →得x 0=x ,y 0=22y .因为M (x 0,y 0)在C 上,所以x 22+y 22=1.因此点P 的轨迹方程为x 2+y 2=2. (2)证明 由题意知F (-1,0).设Q (-3,t ),P (m ,n ),则OQ →=(-3,t ), PF →=(-1-m ,-n ),OQ →·PF →=3+3m -tn , OP →=(m ,n ),PQ →=(-3-m ,t -n ). 由OP →·PQ →=1,得-3m -m 2+tn -n 2=1. 又由(1)知m 2+n 2=2,故3+3m -tn =0. 所以OQ →·PF →=0,即OQ →⊥PF →. 又过点P 存在唯一直线垂直于OQ ,所以过点P 且垂直于OQ 的直线l 过C 的左焦点F .2.如图,椭圆E :x 2a 2+y 2b 2=1(a >b >0),经过点A (0,-1),且离心率为22.(1)求椭圆E 的方程;(2)经过点(1,1),且斜率为k 的直线与椭圆E 交于不同的两点P ,Q (均异于点A ),证明:直线AP 与AQ 的斜率之和为定值. (1)解 由题设知c a =22,b =1,结合a 2=b 2+c 2,解得a =2, 所以椭圆的方程为x 22+y 2=1.(2)证明 由题设知,直线PQ 的方程为y =k (x -1)+1(k ≠2),代入x 22+y 2=1,得(1+2k 2)x 2-4k (k -1)x +2k (k -2)=0,由已知Δ>0, 设P (x 1,y 1),Q (x 2,y 2),x 1x 2≠0, 则x 1+x 2=4k (k -1)1+2k 2,x 1x 2=2k (k -2)1+2k 2,从而直线AP ,AQ 的斜率之和 k AP +k AQ =y 1+1x 1+y 2+1x 2=kx 1+2-k x 1+kx 2+2-kx 2=2k +(2-k )⎝⎛⎭⎫1x 1+1x 2=2k +(2-k )x 1+x 2x 1x 2, =2k +(2-k )4k (k -1)2k (k -2)=2k -2(k -1)=2.故k AP +k AQ 为定值2.3.已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率是32,点P ⎝⎛⎭⎫1,32在椭圆E 上.(1)求椭圆E 的方程;(2)过点P 且斜率为k 的直线l 交椭圆E 于点Q (x Q ,y Q )(点Q 异于点P ),若0<x Q <1,求直线l 的斜率k 的取值范围.解 (1)由题意得⎩⎪⎨⎪⎧c a =32,1a 2+34b 2=1,a 2=b 2+c 2,解得⎩⎪⎨⎪⎧a =2,b =1,c =3,∴椭圆E 的方程为x 24+y 2=1.(2)设直线l 的方程为y -32=k (x -1), 代入方程x 24+y 2=1. 消去y 得(1+4k 2)x 2+(43k -8k 2)x +4k 2-43k -1=0,∴x Q ·1=4k 2-43k -11+4k 2, ∵0<x Q <1,∴0<4k 2-43k -11+4k 2<1,即⎩⎪⎨⎪⎧ 4k 2-43k -11+4k 2>0,4k 2-43k -11+4k 2<1,解得-36<k <3-22或k >3+22,经检验,满足题意. ∴直线l 的斜率k 的取值范围是⎝ ⎛⎭⎪⎫-36,3-22∪⎝ ⎛⎭⎪⎫3+22,+∞. 4.如图所示,已知椭圆M :y 2a 2+x 2b2=1(a >b >0)的四个顶点构成边长为5的菱形,原点O 到直线AB 的距离为125,其中A (0,a ),B (-b ,0).直线l :x =my +n 与椭圆M 相交于C ,D 两点,且以CD 为直径的圆过椭圆的右顶点P (其中点C ,D 与点P 不重合).(1)求椭圆M 的方程;(2)证明:直线l 与x 轴交于定点,并求出定点的坐标.解 (1)由已知,得a 2+b 2=52,由点A (0,a ),B (-b ,0)知,直线AB 的方程为x -b +y a=1,即ax -by +ab =0. 又原点O 到直线AB 的距离为125,即 |0-0+ab |a 2+b2=125, 所以a 2=16,b 2=9,c 2=16-9=7.故椭圆M 的方程为y 216+x 29=1. (2)由(1)知P (3,0),设C (x 1,y 1),D (x 2,y 2),将x =my +n 代入y 216+x 29=1, 整理,得(16m 2+9)y 2+32mny +16n 2-144=0,则y 1+y 2=-32mn 16m 2+9,y 1y 2=16n 2-14416m 2+9. 因为以CD 为直径的圆过椭圆的右顶点P ,所以PC →·PD →=0,即(x 1-3,y 1)·(x 2-3,y 2)=0,所以(x 1-3)(x 2-3)+y 1y 2=0.又x 1=my 1+n ,x 2=my 2+n ,所以(my 1+n -3)(my 2+n -3)+y 1y 2=0,整理,得(m 2+1)y 1y 2+m (n -3)(y 1+y 2)+(n -3)2=0,即(m 2+1)·16n 2-14416m 2+9+m (n -3)·-32mn 16m 2+9+(n -3)2=0, 所以16(m 2+1)(n 2-9)16m 2+9-32m 2n (n -3)16m 2+9+(n -3)2=0, 易知n ≠3,所以16(m 2+1)(n +3)-32m 2n +(16m 2+9)·(n -3)=0,整理,得25n +21=0,即n =-2125. 经检验,n =-2125符合题意.所以直线l 与x 轴交于定点,定点的坐标为⎝⎛⎭⎫-2125,0. 5.已知抛物线C :x 2=2py (p >0)的焦点为F ,直线2x -y +2=0交抛物线C 于A ,B 两点,P 是线段AB 的中点,过P 作x 轴的垂线交抛物线C 于点Q .(1)D 是抛物线C 上的动点,点E (-1,3),若直线AB 过焦点F ,求|DF |+|DE |的最小值;(2)是否存在实数p ,使|2QA →+QB →|=|2QA →-QB →|?若存在,求出p 的值;若不存在,说明理由.解 (1)∵直线2x -y +2=0与y 轴的交点为(0,2),∴F (0,2),则抛物线C 的方程为x 2=8y ,准线l :y =-2.设过D 作DG ⊥l 于G ,则|DF |+|DE |=|DG |+|DE |,当E ,D ,G 三点共线时,|DF |+|DE |取最小值2+3=5.(2)假设存在,抛物线x 2=2py 与直线y =2x +2联立,得x 2-4px -4p =0,设A (x 1,y 1),B (x 2,y 2),Δ=(4p )2+16p =16(p 2+p )>0,则x 1+x 2=4p ,x 1x 2=-4p , ∴Q (2p ,2p ).∵|2QA →+QB →|=|2QA →-QB →|,∴QA →⊥QB →.则QA →·QB →=0,得(x 1-2p )(x 2-2p )+(y 1-2p )(y 2-2p )=(x 1-2p )(x 2-2p )+(2x 1+2-2p )(2x 2+2-2p )=5x 1x 2+(4-6p )(x 1+x 2)+8p 2-8p +4=0,代入得4p 2+3p -1=0,解得p =14或p =-1(舍去). 因此存在实数p =14,且满足Δ>0,使得|2QA →+QB →|=|2QA →-QB →|成立.。
高考数学二轮复习 专题五 第3讲 圆锥曲线中的定点与定值、最值与范围问题课件 文
真题感悟·考点整合
热点聚焦·题型突破
归纳总结·思维升华
3.求解圆锥曲线中的范围问题的关键是选取合适的变量建立 目标函数和不等关系.该问题主要有以下三种情况: (1)距离型:若涉及焦点,则可以考虑将圆锥曲线定义和 平面几何性质结合起来求解;若是圆锥曲线上的点到直线 的距离,则可设出与已知直线平行的直线方程,再代入圆 锥曲线方程中,用判别式等于零求得切点坐标,这个切点 就是距离取得最值的点,若是在圆或椭圆上,则可将点的 坐标以参数形式设出,转化为三角函数的最值求解.
真题感悟·考点整合
热点聚焦·题型突破
归纳总结·思维升华
从而直线 AP,AQ 的斜率之和 kAP+kAQ=y1x+1 1+y2x+2 1=kx1+x12-k+kx2+x22-k =2k+(2-k)x11+x12=2k+(2-k)x1x+1x2x2 =2k+(2-k)42kk((kk--12))=2k-2(k-1)=2.
真题感悟·考点整合
热点聚焦·题型突破
归纳总结·思维升华
(1)解 由题意得 a2a-b2= 22,a42+b22=1, 解得 a2=8,b2=4.所以 C 的方程为x82+y42=1. (2)证明 设直线 l:y=kx+b(k≠0,b≠0),A(x1,y1),B(x2,y2), M(xM,yM).将 y=kx+b 代入x82+y42=1 得 (2k2+1)x2+4kbx+2b2-8=0. 故 xM=x1+2 x2=2-k22+kb1,yM=k·xM+b=2k2b+1.
真题感悟·考点整合
热点聚焦·题型突破
归纳总结·思维升华
(2)双曲线中的最值 F1、F2 分别为双曲线ax22-by22=1(a>0,b>0)的左、右焦点,P 为双 曲线上的任一点,O 为坐标原点,则有 ①|OP|≥a;②|PF1|≥c-a. (3)抛物线中的最值 点 P 为抛物线 y2=2px(p>0)上的任一点,F 为焦点,则有 ①|PF|≥p2; ②A(m,n)为一定点,则|PA|+|PF|有最小值.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考总复习第二轮 ·数学(文)
(2)设直线 l 的方程为 y=k(x-1),由yy2==k4xx-1 ,消去 x 得 y2-4ky-4=0. 设 A(x1,y1),B(x2,y2),则 y1+y2=4k,y1y2=-4. 假设存在点 C(m,0)满足条件,则C→A=(x1-m,y1),C→B=(x2-m,y2), ∴C→A·C→B=x1x2-m(x1+x2)+m2+y1y2=y14y22-my21+4 y22+m2-4=-m4 [(y1+y2)2 -2y1y2]+m2-3=m2-mk42+2-3>0. ∴Δ=k42+22+12, ∴关于 m 的方程 m2-mk42+2-3=0 有解. ∴假设成立,即在 x 轴上存在点 C,使得|CA|2+|CB|2=|AB|2 成立.
第一部分 专题六 解析几何
高考总复习第二轮 ·数学(文)
【方法技巧】 圆锥曲线中定点、定值问题必然是变化中所表现出来的不变的量, 那么就用变化的量表示问题的直线方程、数量积、比例关系等,这些直线方程、数量 积、比例关系不受变化的量所影响的一个点、一个值,就是要求的定点、定值.解决 这类问题的一般思路是:(1)引进变化的参数表示直线方程、数量积、比例关系等,(2) 根据等式的恒成立、数式变换等寻找不受参数影响的量.(3)求解定点、定值问题, 如果事先不知道定点、定值,可以先对参数取特殊值,通过特殊情况求出这个定点、 定值,然后再对一般情况进行证明.
第一部分 专题六 解析几何
高考总复习第二轮 ·数学(文)
解:(1)由题意可得 a=2,2c=2,即 c=1, b= a2-c2= 3, 则椭圆的标准方程为x42+y32=1. (2)设直线 AE 的方程为 y=k(x-2), 代入椭圆方程,可得(3+4k2)x2-16k2x+16k2-12=0, 由 2+xE=31+6k42k2,可得 xE=83k+2-4k62, yE=k(xE-2)=3-+142kk2, 由于 AE⊥AF,只要将上式的 k 换为-1k,
第一部分 专题六 解析几何
高考总复习第二轮 ·数学(文)
1.(2016·邯郸市模拟)已知右焦点为 F 的椭圆 M:ax22+y32=1(a>
3)与直线
y=
3相 7
交于 P,Q 两点,且 PF⊥QF.
(1)求椭圆 M 的方程; (2)O 为坐标原点,A,B,C 是椭圆 E 上不同的三点,并且 O 为△ABC 的重心, 试探究△ABC 的面积是否为定值,若是,求出这个定值;若不是,说明理由.
PN 的方程为:y=kx+m,
联立x42+y22=1 ,可得:x2+2(kx+m)2=4, y=kx+m
第一部分 专题六 解析几何
高考总复习第二轮 ·数学(文)
即:(1+2k2)x2+4mkx+2m2-4=0 可得 xB=22km2+2-12x0,yB=22km2+2-12x0+m, 同理解得 xA=128mk22+-12x0, yA=-168kk2m+2-1x20+m, xB-xA=22km2+2-12x0-128mk22+-12x0=18-k23+2k12m2k22-+21x0,
第一部分 专题六 解析几何
高考总复习第二轮 ·数学(文)
再令 s=1k-k,可得 t=4s2+s 14,
当
s=0
时,t=0;当
s>0
时,t=4s+1 1s4≤2
1= 56
5164,
当且仅当 4s=1s4时,取得最大值;
当 s<0 时,t=--41s+-14s≥- 5164, 综上可得直线 AP 的斜率的取值范围是- 5164, 5164.
第一部分 专题六 解析几何
高考总复习第二轮 ·数学(文)
【思路点拨】第(1)问,先设出椭圆的标准方程,根据离心率求出 a 和 c 的关系, 进而根据抛物线的焦点求得 c,进而求得 a,则 b 可得,进而求得椭圆的标准方程; 第(2)问,若直线 l 与 x 轴重合,则以 AB 为直径的圆是 x2+y2=1.若直线 l 垂直于 x 轴, 则以 AB 为直径的圆是x+132+y2=196,联立两个圆的方程求得其交点的坐标,推断 两圆相切,进而可判断所求的点 T 如果存在,只能是(1,0).当直线 l 不垂直于 x 轴时, 可设直线方程,与圆方程联立消去 y,根据韦达定理求得 x1+x2 和 x1x2 的表达式,代 入T→A·T→B的表达式中,求得T→A·T→B=0,进而推断T→A⊥T→B,即以 AB 为直径的圆恒过点 T(1,0).
第一部分 专题六 解析几何
高考总复习第二轮 ·数学(文)
yB-yA=22km2+2-12x0+m--168kk2m+2-1x20+m =-188kk26+k21+21k2m+2-1x20, kAB=yxBB- -yxAA=6k42+k 1=146k+1k,由 m>0,x0>0,可知 k>0, 所以 6k+1k≥2 6,当且仅当 k= 66时取等号. 此时 4-m8m2= 66,即 m= 714,符号题意. 所以,直线 AB 的斜率+k2
3-+84kmk22-443m+2-4k122=43+1+4kk22 12k2+9-3m2,
d=|kxc+1+m-k2yc|= |13+m|k2(或利用 d 是 O 到 AB 距离的 3 倍得到),
所以 S△ABC=12|AB|·d=3+6|m4|k2 12k2+9-3m2=64|mm2| 12m2-3m2=92,
第一部分 专题六 解析几何
高考总复习第二轮 ·数学(文)
可得 xF=84- +63kk22,yF=4+123kk2, 由 2O→P=O→E+O→F,可得 P 为 EF 的中点, 即有 P4+3k124k32+4k2,4+63kkk22-3+14k2, 则直线 AP 的斜率为 t=xPy-P 2=4kk4+1-4+k26k2, 当 k=0 时,t=0; 当 k≠0 时,t=4k2+1k-k12k+6,
(1)求椭圆的标准方程; (2)O 为坐标原点,若点 P 满足 2O→P=O→E+O→F,求直线 AP 的斜率的取值范围. 【思路点拨】(1)由题意可得a=2,c=1,由a,b,c的关系可得b,进而得到椭 圆方程; (2)设直线AE的方程为y=k(x-2),代入椭圆方程,运用韦达定理,可得E的坐 标,由两直线垂直可得F的坐标,再由直线的斜率公式,结合基本不等式即可得到 斜率的最值,进而得到所求范围.
当直线 AB 斜率不存在时,|AB|=3,d=3,S△ABC=92.
所以△ABC 的面积为定值92.
第一部分 专题六 解析几何
高考总复习第二轮 ·数学(文)
难点二 圆锥曲线中的最值范围问题
(2016·釜山一模)已知椭圆:ax22+by22=1(a>b>0)的一个顶点为 A(2,0),且 焦距为 2,直线 l 交椭圆于 E、F 两点(E、F 与 A 点不重合),且满足 AE⊥AF.
第一部分 专题六 解析几何
高考总复习第二轮 ·数学(文)
【方法技巧】 解决圆锥曲线中最值、范围问题的基本思想是建立目标函数和不 等关系,根据目标函数和不等关系求最值、范围,建立目标函数和不等关系的关键是 选用一个合适变量(可以是直线的斜率、直线的截距、点的坐标等),用这个变量表达 要解决的问题.常用方法如下:
①函数法,如通过二次函数、对数函数求最值; ②三角代换法,转化为正余弦函数,利用正余弦函数的有界性求最值; ③不等式法,利用基本不等式求最值. ④数形结合法,要特别关注利用切线的性质求最值.
第一部分 专题六 解析几何
高考总复习第二轮 ·数学(文)
2.(2016·延边州模拟)已知点 P 为 y 轴上的动点,点 M 为 x 轴上的动点,点 F(1,0) 为定点,且满足P→N+12N→M=0,P→M·P→F=0.
第一部分 专题六 解析几何
高考总复习第二轮 ·数学(文)
难点三 圆锥曲线中的存在性问题
(2016·惠州二模)已知椭圆 C 的中心在坐标原点,离心率 e= 22,且其中 一个焦点与抛物线 y=14x2 的焦点重合.
(1)求椭圆 C 的方程; (2)过点 S-13,0的动直线 l 交椭圆 C 于 A,B 两点,试问:在坐标平面上是否 存在一个定点 T,使得无论 l 如何转动,以 AB 为直径的圆恒过点 T?若存在,求出点 T 的坐标;若不存在,请说明理由.
第一部分 专题六 解析几何
高考总复习第二轮 ·数学(文)
解:(1)设 F(c,0),Pt, 37,则 Q-t, 37,
所以at22+37=1,即 t2=47a2,
①
33
因为 PF⊥QF,所以t-7c·-t-7 c=-1,
即 c2-t2=-97,
②
所以由①②得 c2-47a2=-97,
第一部分 专题六 解析几何
高考总复习第二轮 ·数学(文)
①证明:设直线 PM,QM 的斜率分别为 k,k′,
k=2mt--0m=mt ,k′=-2t-m-0 m=-3tm,
-3m
k′k =
t m
=-3.为定值;
t
②解:由题意可得t42+m22=1,m2=2-12t2,QM 的方程为:y=-3kx+m,
(1)求动点 N 的轨迹 E 的方程; (2)过点 F 且斜率为 k 的直线 l 与曲线 E 交于两点 A,B,试判断在 x 轴上是否存 在点 C,使得|CA|2+|CB|2=|AB|2 成立,请说明理由.
第一部分 专题六 解析几何
高考总复习第二轮 ·数学(文)
解:(1)设 N(x,y),则由P→N+12N→M=0,得 P 为 MN 的中点. ∴P0,2y,M(-x,0). ∴P→M=-x,-2y,P→F=1,-2y. ∴P→M·P→F=-x+y42=0,即 y2=4x. ∴动点 N 的轨迹 E 的方程 y2=4x.
第一部分 专题六 解析几何
高考总复习第二轮 ·数学(文)
【思路点拨】(1)利用已知条件求出椭圆的几何量,即可求解椭圆 C 的方程; (2)①设出 N 的坐标,求出 PQ 坐标,求出直线的斜率,即可推出结果 ②求出直线 PM,QM 的方程,然后求解 B,A 坐标,利用 AB 的斜率求解最小值. (1)解:椭圆 C:ax22+by22=1(a>b>0)的长轴长为 4,焦距为 2 2.可得 a=2,c= 2, b= 2, 可得椭圆 C 的方程:x42+y22=1. (2)过动点 M(0,m)(m>0)的直线交 x 轴于点 N,交 C 于点 A,P(P 在第一象限), 设 N(-t,0)t>0,M 是线段 PN 的中点,则 P(t,2m),过点 P 作 x 轴的垂线交 C 于另一 点 Q,Q(t,-2m),