2018_2019高中数学第三章空间向量与立体几何疑难规律方法学案新人教A版选修2_1

合集下载

2018版高中数学第三章空间向量与立体几何疑难规律方法学案人教B版2-1

2018版高中数学第三章空间向量与立体几何疑难规律方法学案人教B版2-1

第三章 空间向量与立体几何1 空间向量加减法运用的三个层次空间向量是处理立体几何问题的有力工具,但要用好向量这一工具解题,必须熟练运用加减法运算. 第1层 用已知向量表示未知向量例1 如图所示,M ,N 分别是四面体OABC 的边OA ,BC 的中点,P ,Q 是MN 的三等分点,用向量错误!,错误!,错误!表示错误!和错误!。

解 错误!=错误!+错误!=错误!错误!+错误!错误!=12错误!+错误!(错误!-错误!)=错误!错误!+错误!(错误!-错误!错误!)=错误!错误!+错误!×错误!(错误!+错误!)=错误!错误!+错误!错误!+错误!错误!;错误!=错误!+错误!=错误!错误!+错误!错误!=错误!错误!+错误!(错误!-错误!)=错误!错误!+错误!(错误!-错误!错误!)=错误!错误!+错误!×错误!(错误!+错误!)=错误!错误!+错误!错误!+错误!错误!。

点评用已知向量来表示未知向量,一定要结合图形,以图形为指导是解题的关键.要正确理解向量加法、减法与数乘运算的几何意义.首尾相接的若干向量之和,等于由起始向量的始点指向末尾向量的终点的向量,我们可把这个法则称为向量加法的多边形法则.在立体几何中要灵活应用三角形法则,向量加法的平行四边形法则在空间仍然成立.第2层化简向量例2如图,已知空间四边形ABCD,连接AC、BD.设M、G分别是BC、CD的中点,化简下列各表达式,并标出化简结果的向量.(1)错误!+错误!+错误!;(2)错误!+错误!(错误!+错误!);(3)错误!-错误!(错误!+错误!).解(1)错误!+错误!+错误!=错误!+错误!=错误!。

(2)错误!+错误!(错误!+错误!)=错误!+错误!错误!+错误!错误!=错误!+错误!+错误!=错误!.(3) 错误!-错误!(错误!+错误!)=错误!-错误!=错误!。

错误!、错误!、错误!如图所示.点评要求空间若干向量之和,可以通过平移,将它们转化为首尾相接的向量,如果首尾相接的若干向量构成一个封闭图形,则它们的和为0。

新人教A版高中数学选修2-1第三章《空间向量与立体几何》知识点汇总及解题方法总计

新人教A版高中数学选修2-1第三章《空间向量与立体几何》知识点汇总及解题方法总计

第三章 空间向量与立体几何单元小结[核心速填]1.空间向量的有关定理和推论(1)共线向量定理:对空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ,使得a =λb .(2)共线向量定理的推论:若OA →,OB →不共线,则P ,A ,B 三点共线的充要条件是OP →=λOA →+μOB →,且λ+μ=1.(3)共面向量定理:如果两个向量a ,b 不共线,那么向量p 与向量a ,b 共面的充要条件是存在惟一的有序实数对(x ,y ),使得p =x a +y b .(4)共面向量定理的推论:已知空间任意一点O 和不共线的三点A ,B ,C ,则P ,A ,B ,C 四点共面的充要条件是OP →=xOA →+yOB →+zOC →(其中x +y +z =1).(5)空间向量基本定理:如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =x a +y b +z c ,其中{a ,b ,c }叫做空间的一个基底.2.空间向量运算的坐标表示设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3). (1)a +b =(a 1+b 1,a 2+b 2,a 3+b 3),a -b =(a 1-b 1,a 2-b 2,a 3-b 3),λa =(λa 1,λa 2,λa 3),a ·b =a 1b 1+a 2b 2+a 3b 3.(2)重要结论:a ∥b ⇔a =λb ⇔a 1=λb 1,a 2=λb 2,a 3=λb 3(λ∈R ); a ⊥b ⇔a ·b =0⇔a 1b 1+a 2b 2+a 3b 3=0.3.模、夹角和距离公式(1)设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则①|a |=a ·a②cos 〈a ,b 〉=a ·b |a ||b |=(2)设A (a 1,b 1,c 1),B (a 2,b 2,c 2),则d AB =|AB →|4.空间向量的结论与线面位置关系的对应关系(1)设直线l 的方向向量是u =(a 1,b 1,c 1),平面α的法向量v =(a 2,b 2,c 2), 则l ∥α⇔u ⊥v ⇔u ·v =0⇔a 1a 2+b 1b 2+c 1c 2=0,l ⊥α⇔u ∥v ⇔u =k v ⇔(a 1,b 1,c 1)=k (a 2,b 2,c 2)⇔a 1=ka 2,b 1=kb 2,c 1=kc 2(k ∈R ).(2)设直线l ,m 的方向向量分别为a ,b ,平面α,β的法向量分别为u ,v ,则l ∥m ⇔a ∥b ⇔a =k b ,k ∈R ; l ⊥m ⇔a ⊥b ⇔a ·b =0; l ∥α⇔a ⊥u ⇔a ·u =0; l ⊥α⇔a ∥u ⇔a =k u ,k ∈R ;α∥β⇔u ∥v ⇔u =k v ,k ∈R ; α⊥β⇔u ⊥v ⇔u ·v =0. 5.空间向量与空间角的关系(1)设异面直线l 1,l 2的方向向量分别为m 1,m 2,则l 1与l 2的夹角θ满足cos θ=|cos 〈m 1,m 2〉|.(2)设直线l 的方向向量和平面α的法向量分别为m ,n ,则直线l 与平面α的夹角θ满足sin θ=|cos 〈m ,n 〉|.(3)求二面角的大小:(ⅰ)如图3­1①,AB ,CD 是二面角α­l ­β的两个半平面α,β内与棱l 垂直的直线,则二面角的大小θ=〈AB →,CD →〉.图3­1(ⅱ)如图3­1②③,n 1,n 2分别是二面角α­l ­β的两个半平面α,β的法向量,则二面角的大小θ满足cos θ=cos 〈n 1,n 2〉或-cos 〈n 1,n 2〉.[体系构建][题型探究]类型一、空间向量的基本概念及运算例1、如图3­2,在四棱锥S ­ABCD 中,底面ABCD 是边长为1的正方形,S 到A 、B 、C 、D 的距离都等于2.给出以下结论:图3­2①SA →+SB →+SC →+SD →=0; ②SA →+SB →-SC →-SD →=0; ③SA →-SB →+SC →-SD →=0; ④SA →·SB →=SC →·SD →; ⑤SA →·SC →=0.其中正确结论的序号是________. 【答案】 ③④【解析】容易推出SA →-SB →+SC →-SD →=BA →+DC →=0,所以③正确;又因为底面ABCD 是边长为1的正方形,SA =SB =SC =SD =2,所以SA →·SB →=2·2·cos∠ASB ,SC →·SD →=2·2·cos ∠CSD ,而∠ASB =∠CSD ,于是SA →·SB →=SC →·SD →,因此④正确,其余三个都不正确,故正确结论的序号是③④.[规律方法] 1.空间向量的线性运算包括加、减及数乘运算,选定空间不共面的三个向量作为基向量,并用它们表示出目标向量,这是用向量法解决立体几何问题的基本要求,解题时可结合已知和所求,根据图形,利用向量运算法则表示所需向量.2.空间向量的数量积(1)空间向量的数量积的定义表达式a ·b =|a |·|b |·cos 〈a ,b 〉及其变式cos 〈a ,b 〉=a ·b|a | ·|b |是两个重要公式. (2)空间向量的数量积的其他变式是解决立体几何问题的重要公式,如a 2=|a |2,a 在b 上的投影a ·b|b |=|a |·cos θ等.[跟踪训练]1.如图3­3,已知ABCD ­A ′B ′C ′D ′是平行六面体.设M 是底面ABCD 的中心,N 是侧面BCC ′B ′对角线BC ′上的34分点,设MN →=αAB →+βAD→+γAA ′→,则α+β+γ=________.图3­3【答案】32[连接BD ,则M 为BD 的中点,MN →=MB →+BN →=12DB →+34BC ′→=12(DA →+AB →)+34(BC →+CC ′→)=12(-AD →+AB →)+34(AD →+AA ′→)=12AB →+14AD →+34AA ′→.∴α=12,β=14,γ=34.∴α+β+γ=32.]类型二、空间向量的坐标运算例2、(1)已知a =(2,3,-4),b =(-4,-3,-2),b =12x -2a ,则x =( )A .(0,3,-6)B .(0,6,-20)C .(0,6,-6)D .(6,6,-6)(2)已知向量a =(x,1,2),b =(1,y ,-2),c =(3,1,z ),a ∥b ,b ⊥C . ①求向量a ,b ,c ;②求a +c 与b +c 所成角的余弦值.【答案】(1)B [由b =12x -2a 得x =4a +2b ,又4a +2b =4(2,3,-4)+2(-4,-3,-2)=(0,6,-20), 所以x =(0,6,-20).](2)①∵向量a =(x,1,2),b =(1,y ,-2),c =(3,1,z ),且a ∥b ,b ⊥c ,∴⎩⎪⎨⎪⎧x 1=1y =2-23+y -2z =0,解得⎩⎪⎨⎪⎧x =-1,y =-1,z =1,∴向量a =(-1,1,2),b =(1,-1,-2),c =(3,1,1). ②∵a +c =(2,2,3),b +c =(4,0,-1), ∴(a +c )·(b +c )=2×4+2×0+3×(-1)=5,|a +c |=22+22+32=17,|b +c |=42+02+(-1)2=17, ∴a +c 与b +c 所成角的余弦值为(a +c )·(b +c )|a +c ||b +c |=517.[规律方法] 熟记空间向量的坐标运算公式 设a =(x 1,y 1,z 1),b =(x 2,y 2,z 2), (1)加减运算:a ±b =(x 1±x 2,y 1±y 2,z 1±z 2). (2)数量积运算:a ·b =x 1x 2+y 1y 2+z 1z 2. (3)向量夹角:cos 〈a ,b 〉=x 1x 2+y 1y 2+z 1z 2x 21+y 21+z 21x 22+y 22+z 22. (4)向量长度:设M 1(x 1,y 1,z 1),M 2(x 2,y 2,z 2),则|M 1M 2→|=(x 1-x 2)2+(y 1-y 2)2+(z 1-z 2)2. 提醒:在利用坐标运算公式时注意先对向量式子进行化简再运算. [跟踪训练]2.在空间直角坐标系中,已知点A (1,-2,11),B (4,2,3),C (6,-1,4),则△ABC 一定是( )A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形【答案】C [∵AB →=(3,4,-8),AC →=(5,1,-7),BC →=(2,-3,1),∴|AB →|=32+42+(-8)2=89,|AC →|=52+12+(-7)2=75,|BC →|=22+(-3)2+1=14,∴|AC →|2+|BC →|2=|AB →|2,∴△ABC 一定为直角三角形.]类型三、利用空间向量证明平行、垂直问题例3、 在四棱锥P ­ABCD 中,AB ⊥AD ,CD ⊥AD ,PA ⊥底面ABCD ,PA =AD =CD =2AB =2,M 为PC 的中点.(1)求证:BM ∥平面PAD ;(2)平面PAD 内是否存在一点N ,使MN ⊥平面PBD ?若存在,确定N 的位置;若不存在,说明理由.[思路探究] (1)证明向量BM →垂直于平面PAD 的一个法向量即可;(2)假设存在点N ,设出其坐标,利用MN →⊥BD →,MN →⊥PB →,列方程求其坐标即可. 【答案】以A 为原点,以AB ,AD ,AP 分别为x 轴、y 轴、z 轴建立空间直角坐标系如图所示,则B (1,0,0),D (0,2,0),P (0,0,2),C (2,2,0),M (1,1,1),(1)证明:∵BM →=(0,1,1),平面PAD 的一个法向量为n =(1,0,0), ∴BM →·n =0,即BM →⊥n ,又BM ⊄平面PAD ,∴BM ∥平面PAD . (2)BD →=(-1,2,0),PB →=(1,0,-2), 假设平面PAD 内存在一点N ,使MN ⊥平面PBD . 设N (0,y ,z ),则MN →=(-1,y -1,z -1), 从而MN ⊥BD ,MN ⊥PB , ∴⎩⎪⎨⎪⎧MN →·BD →=0,MN →·PB →=0,即⎩⎪⎨⎪⎧1+2(y -1)=0,-1-2(z -1)=0,∴⎩⎪⎨⎪⎧y =12,z =12,∴N ⎝ ⎛⎭⎪⎫0,12,12,∴在平面PAD 内存在一点N ⎝ ⎛⎭⎪⎫0,12,12,使MN ⊥平面PBD .[规律方法]利用空间向量证明空间中的位置关系(1)线线平行:证明两条直线平行,只需证明两条直线的方向向量是共线向量. (2)线线垂直:证明两条直线垂直,只需证明两直线的方向向量垂直. (3)线面平行:①证明直线的方向向量与平面的法向量垂直;②证明可在平面内找到一个向量与直线的方向向量是共线向量;③利用共面向量定理,即证明直线的方向向量可用平面内两不共线向量线性表示.(4)线面垂直:①证明直线的方向向量与平面的法向量平行;②利用线面垂直的判定定理转化为线线垂直问题.(5)面面平行:①证明两个平面的法向量平行(即是共线向量);②转化为线面平行、线线平行问题.(6)面面垂直:①证明两个平面的法向量互相垂直;②转化为线面垂直、线线垂直问题.[跟踪训练]3.如图3­4,长方体ABCD­A1B1C1D1中,点M,N分别在BB1,DD1上,且AM⊥A1B,AN⊥A1D.图3­4(1)求证:A1C⊥平面AMN.(2)当AB=2,AD=2,A1A=3时,问在线段AA1上是否存在一点P使得C1P∥平面AMN,若存在,试确定P的位置.【答案】(1)证明:因为CB⊥平面AA1B1B,AM⊂平面AA1B1B,所以CB⊥AM,又因为AM⊥A1B,A1B∩CB=B,所以AM⊥平面A1BC,所以A1C⊥AM,同理可证A1C⊥AN,又AM∩AN=A,所以A1C⊥平面AMN.(2)以C 为原点,CD 所在直线为x 轴,CB 所在直线为y 轴,CC 1所在直线为z 轴,建立空间直角坐标系,因为AB =2,AD =2,A 1A =3,所以C (0,0,0),A 1(2,2,3),C 1(0,0,3),CA 1→=(2,2,3), 由(1)知CA 1⊥平面AMN ,故平面AMN 的一个法向量为CA 1→=(2,2,3).设线段AA 1上存在一点P (2,2,t ),使得C 1P ∥平面AMN ,则C 1P →=(2,2,t -3), 因为C 1P ∥平面AMN ,所以C 1P →·CA 1→=4+4+3t -9=0, 解得t =13.所以P ⎝⎛⎭⎪⎫2,2,13, 所以线段AA 1上存在一点P ⎝ ⎛⎭⎪⎫2,2,13,使得C 1P ∥平面AMN .类型四、利用空间向量求空间角例4、如图3­5,在等腰直角三角形ABC 中,∠A =90°,BC =6,D ,E 分别是AC ,AB 上的点,CD =BE =2,O 为BC 的中点.将△ADE 沿DE 折起,得到如图(2)所示的四棱锥A ′­BCDE ,其中A ′O = 3.(1) (2)图3­5(1)证明:A ′O ⊥平面BCDE ;(2)求二面角A ′­CD ­B 的平面角的余弦值.[思路探究] (1)利用勾股定理可证A ′O ⊥OD ,A ′O ⊥OE ,从而证得A ′O ⊥平面BCDE ;(2)用“三垂线”法作二面角的平面角后求解或用向量法求两个平面的法向量的夹角.【答案】(1)证明:由题意,得OC =3,AC =32,AD =2 2. 如图,连接OD ,OE ,在△OCD 中,由余弦定理,得OD =OC 2+CD 2-2OC ·CD cos 45°= 5.由翻折不变性,知A ′D =22,所以A ′O 2+OD 2=A ′D 2,所以A ′O ⊥OD . 同理可证A ′O ⊥OE .又因为OD ∩OE =O ,所以A ′O ⊥平面BCDE .(2)如图,过点O 作OH ⊥CD 交CD 的延长线于点H ,连接A ′H .因为A ′O ⊥平面BCDE ,OH ⊥CD , 所以A ′H ⊥CD .所以∠A ′HO 为二面角A ′­CD ­B 的平面角. 结合图(1)可知,H 为AC 的中点,故OH =322,从而A ′H =OH 2+A ′O 2=302. 所以cos ∠A ′HO =OH A ′H =155. 所以二面角A ′­CD ­B 的平面角的余弦值为155. [规律方法] 用向量法求空间角的注意点(1)异面直线所成角:两异面直线所成角的范围为0°<θ≤90°,需找到两异面直线的方向向量,借助方向向量所成角求解.(2)直线与平面所成的角:要求直线a 与平面α所成的角θ,先求这个平面α的法向量n 与直线a 的方向向量a 夹角的余弦cos 〈n ,a 〉,易知θ=〈n ,a 〉-π2或者π2-〈n ,a 〉.(3)二面角:如图3­6,有两个平面α与β,分别作这两个平面的法向量n 1与n 2,则平面α与β所成的角跟法向量n 1与n 2所成的角相等或互补,所以首先应判断二面角是锐角还是钝角.图3­6[跟踪训练]4.在如图3­7所示的圆台中,AC 是下底面圆O 的直径,EF 是上底面圆O ′的直径,FB是圆台的一条母线.图3­7(1)已知G ,H 分别为EC ,FB 的中点,求证:GH ∥平面ABC . (2)已知EF =FB =12AC =23,AB =BC ,求二面角F ­BC ­A 的余弦值.【答案】 (1)证明:设CF 的中点为I ,连接GI ,HI .在△CEF 中,因为点G ,I 分别是CE ,CF 的中点, 所以GI ∥EF .又EF ∥OB ,所以GI ∥OB .在△CFB 中,因为H ,I 分别是FB ,CF 的中点, 所以HI ∥BC .又HI ∩GI =I ,BC ∩OB =B , 所以平面GHI ∥平面ABC . 因为GH ⊂平面GHI , 所以GH ∥平面ABC .(2)连接OO ′,则OO ′⊥平面ABC .又AB =BC ,且AC 是圆O 的直径, 所以BO ⊥AC .以O 为坐标原点,建立如图所示的空间直角坐标系. 由题意得B (0,23,0),C (-23,0,0). 过点F 作FM ⊥OB 于点M , 所以FM =FB 2-BM 2=3, 可得F (0,3,3).11 故BC →=(-23,-23,0),BF →=(0,-3,3). 设m =(x ,y ,z )是平面BCF 的法向量.由⎩⎪⎨⎪⎧m ·BC →=0,m ·BF →=0可得⎩⎨⎧ -23x -23y =0,-3y +3z =0.可得平面BCF 的一个法向量m =⎝ ⎛⎭⎪⎫-1,1,33.因为平面ABC 的一个法向量n =(0,0,1), 所以cos 〈m ,n 〉=m ·n|m |·|n |=77,所以二面角F ­BC ­A 的余弦值为77.。

高中数学人教A版选修1-1第3章3-2立体几何中的向量方法教案

高中数学人教A版选修1-1第3章3-2立体几何中的向量方法教案

即 a2 = 3x2 + 2(3x2 cos )
x=
1a
3 + 6 cos
∴ 这个四棱柱的对角线的长可以确定棱长。
(3)本题的晶体中相对的两个平面之间的距离是多少?(提示:求
两个平行平面的距离,通常归结为求两点间的距离)
分析:面面距离 点面距离 向量的模 回归图形
解: 过 A1点作 A1H ⊥ 平面 AC 于点 H.
解:
设平面 AEF 的法向量为
则有
6,如图所示建立坐标系,有
为平面 AEF 的单位法向量。
分别求平面 SAB 与平面 SDC 的法向量,并求出它们夹角的余弦。 解:因为 y 轴 平面 SAB,所以平面 SAB 的法向量为 设平面 SDC 的法向量为, 由
§3.2.2 空间角与距离的计算举例
【学情分析】:
空间中的几何元素
如图,在空间中,我们取一点 O 作为基点,那么空间中任意一点 P 点、直线、平面的
的位置就可以用向量 OP 来表示.称向量 OP 为点的位置向量。
位置的向量表示方 法。
●P
基点 O●
2. 思考:在空间中给定一个定点 A 和一个定方向(向量),能确定一条直
线在空间的位置吗? l
a
P
A
AP = a( R)
∴ sin BAD = 1− 9 = 32 , 105 35
五、小结 六、作业
∴ S ABCD =| AB | | AD | sin BAD = 8 6 .
1. 点、直线、平面的位置的向量表示。 2. 线线、线面、面面间的平行与垂直关系的向量表示。 A,预习课本 105~110 的例题。 B,书面作业:
(1)求证: AP 是平面 ABCD 的法向量; (2)求平行四边形 ABCD 的面积.

高中数学第三章空间向量与立体几何1空间向量及其运算2空间向量的数乘运算3作业含解析新人教A版选修2_

高中数学第三章空间向量与立体几何1空间向量及其运算2空间向量的数乘运算3作业含解析新人教A版选修2_

空间向量的数乘运算时间:45分钟 分值:100分A 学习达标一、选择题(每小题6分,共36分)1.对于空间的任意三个向量a ,b,2a -b ,它们一定是( ) A .共面向量 B .共线向量 C .不共面向量D .既不共线也不共面的向量 解析:∵2a -b =2·a +(-1)·b , ∴2a -b 与a ,b 共面. 答案:A2.已知空间四边形ABCD ,E 、F 分别是AB 与AD 边上的点,M 、N 分别是BC 与CD 边上的点,若AE →=λAB →,AF →=λAD →,CM →=μCB →,CN →=μCD →,则向量EF →与MN →满足的关系为( )A.EF →=MN →B.EF →∥MN → C .|EF →|=|MN →| D .|EF →|≠|MN →|解析:AE →-AF →=λAB →-λAD →=λDB →,即FE →=λDB →.同理NM →=μDB →.因为μDB →∥λDB →,所以FE →∥NM →,即EF →∥MN →.又λ与μ不一定相等,故|MN →|不一定等于|EF →|.答案:B3.设M 是△ABC 的重心,记BC →=a ,CA →=b ,AB →=c ,且a +b +c =0,则AM →=( ) A.b -c2 B.c -b2 C.b -c 3D.c -b3解析:设D 是BC 边中点,∵M 是△ABC 的重心, ∴AM →=23AD →.而AD →=12(AB →+AC →)=12(c -b ),∴AM →=13(c -b ).答案:D4.已知两非零向量e 1,e 2,且e 1与e 2不共线,设a =λe 1+μe 2(λ,μ∈R ,且λ2+μ2≠0),则( )A .a ∥e 1B .a ∥e 2C .a 与e 1、e 2共面D .以上三种情况均有可能解析:a 与e 1共线,则设a =ke 1,所以a =λe 1+μe 2可变为(k -λ)e 1=μe 2,所以e 1与e 2共线,这与e 1与e 2不共线相矛盾,故假设不成立,即A 不正确,同理B 不正确,则D 也错误,故选C.答案:C5.对于空间任意一点O 和不共线的三点A 、B 、C ,且有OP →=xOA →+yOB →+zOC →(x 、y 、z ∈R),则x +y +z =1是四点P 、A 、B 、C 共面的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件 解析:若x +y +z =1,则原式可变形为 OP →=(1-y -z )OA →+yOB →+zOC →, OP →-OA →=y (OB →-OA →)+z (OC →-OA →),∴AP →=yAB →+zAC →,∴P 、A 、B 、C 四点共面.反之,若P 、A 、B 、C 四点共面,由共面向量定理的推论知对空间任一点O ,有OP →=OM →+sMA →+tMB →(其中s 、t 是唯一的一对有序实数).∵MA →=OA →-OM →,MB →=OB →-OM →,则OP →=(1-s-t )OM →+sOA →+tOB →.令x =1-s -t ,y =s ,z =t ,则有x +y +z =1.答案:C6.下列条件中使M 与A 、B 、C 一定共面的是( ) A.OM →=2OA →-OB →-OC → B.OM →=15OA →+13OB →+12OC →C.MA →+MB →+MC →=0D.OM →+OA →+OB →+OC →=0解析:C 选项中MA →=-MB →-MC →, ∴点M 、A 、B 、C 共面,故选C. 答案:C二、填空题(每小题8分,共24分)图17.如图1,在空间四边形OABC 中,OA →=a ,OB →=b ,OC →=c ,点M 在OA 边上,且OM →=2MA →,N 为BC 的中点,则MN →=________(用a ,b ,c 表示).解析:MN →=MO →+ON →=23AO →+12(OB →+OC →)=-23OA →+12OB →+12OC →=-23a +12b +12c .答案:-23a +12b +12c8.已知两个非零向量e 1,e 2不共线,如果AB →=e 1+e 2,AC →=2e 1+8e 2,AD →=3e 1-3e 2,则点A 、B 、C 、D 四点________(共面、不共面).解析:显然AB →、AD →不共线,否则,存在λ∈R ,使AB →=λAD →(λ≠0),则e 1+e 2=λ(3e 1-3e 2)=3λe 1-3λe 2.∵e 1,e 2是不共线的非零向量,∴3λ=1与-3λ=1矛盾,故AB →、AD →不共线. 设AC →=xAB →+yAD →⇔2e 1+8e 2=x (e 1+e 2)+y (3e 1-3e 2)⇔2e 1+8e 2=(x +3y )e 1+(x -3y )e 2,∴⎩⎪⎨⎪⎧x +3y =2,x -3y =8,解得⎩⎪⎨⎪⎧x =5,y =-1,∴AC →=5AB →+(-1)·AD →,∴A 、B 、C 、D 四点共面. 答案:共面9.已知O 是空间任一点,A 、B 、C 、D 四点满足任三点均不共线,但四点共面,且OA →=2x ·BO →+3y ·CO →+4z ·DO →,则2x +3y +4z =________.解析:OA →=-2x ·OB →+(-3y )·OC →+(-4z )·OD →,由A 、B 、C 、D 四点共面,则有-2x -3y -4z =1,即2x +3y +4z =-1.答案:-1三、解答题(共40分)图210.(10分)如图2,在四边形ABCD 中,E 、F 分别为AD 、BC 的中点,试证:EF →=12(AB →+DC →).证明:EF →=EA →+AB →+BF →,① EF →=ED →+DC →+CF →,②①+②,得2EF →=(EA →+AB →+BF →)+(ED →+DC →+CF →)=AB →+DC →. ∴EF →=12(AB →+DC →).11.(15分)如图3,在平行六面体ABCD -A 1B 1C 1D 1中,O 是B 1D 1的中点. 求证:B 1C ∥平面ODC 1.图3证明:设C 1B 1→=a ,C 1D 1→=b ,C 1C →=c , ∵四边形B 1BCC 1为平行四边形, ∴B 1C →=c -a . 又O 是B 1D 1的中点, ∴C 1O →=12(a +b ),OD 1→=C 1D 1→-C 1O →=b -12(a +b )=12(b -a ),∴OD →=OD 1→+D 1D →=12(b -a )+c .若存在实数x 、y ,使B 1C →=xOD →+yOC 1→(x 、y ∈R)成立,则c -a =x [12(b -a )+c ]+y [-12(a+b )]=-12(x +y )a +12(x -y )b +xc .∵a 、b 、c 不共线,∴⎩⎪⎨⎪⎧12x +y =1,12x -y =0,x =1,∴⎩⎪⎨⎪⎧x =1,y =1.∴B 1C →=OD →+OC 1→,∴B 1C →、OD →、OC 1→是共面向量. 又B 1C ⊄平面ODC 1,∴B 1C ∥平面ODC 1.B 创新探索图412.(15分)如图4,已知O 、A 、B 、C 、D 、E 、F 、G 、H 为空间的9个点,且OE →=kOA →,OF →=kOB →,OH →=kOD →,AC →=AD →+mAB →,EG →=EH →+mEF →.求证:(1)A 、B 、C 、D 四点共面,E 、F 、G 、H 四点共面; (2)AC →∥EG →;(3)OG →=kOC →.证明:(1)∵AC →=AD →+mAB →,∴A 、B 、C 、D 四点共面. ∵EG →=EH →+mEF →,∴E 、F 、G 、H 四点共面. (2)EG →=EH →+mEF →=OH →-OE →+m(OF →-OE →) =k(OD →-OA →)+km(OB →-OA →)=kAD →+kmAB →=k(AD →+mAB →)=kAC →,∴AC →∥EG →.(3)OG →=OE →+EG →=kOA →+kAC →=k(OA →+AC →)=kOC →.。

高中数学 第三章第1节空间向量及其运算知识精讲 理 新人教版A版选修2-1

高中数学 第三章第1节空间向量及其运算知识精讲 理 新人教版A版选修2-1

高二数学选修2-1第三章第1节空间向量及其运算人教新课标A 版(理)一、学习目标:1. 理解空间向量的概念,了解共线或平行向量的概念,掌握其表示方法;会用图形说明空间向量的加法、减法、数乘向量及它们的运算律;能用空间向量的运算意义及运算律解决简单的立体几何中的问题.2. 理解共线向量的定理及其推论.3. 掌握空间向量的夹角和模的概念及其表示方法;掌握两个向量数量积的概念、性质和计算方法及运算律;掌握两个向量数量积的主要用途,会用它解决立体几何中的一些简单问题.4. 掌握空间向量的正交分解,空间向量的基本定理及其坐标表示;掌握空间向量的坐标运算的规律;会根据向量的坐标,判断两个向量共线或垂直.二、重点、难点:重点:空间向量的加减与数乘运算及运算律,空间直线、平面的向量参数方程及线段中点的向量公式,点在已知平面内的充要条件,两个向量的数量积的计算方法及其应用,空间向量的基本定理、向量的坐标运算.难点:由平面向量类比学习空间向量,对点在已知平面内的充要条件的理解与运用,向量运算在几何证明与计算中的应用,理解空间向量的基本定理.三、考点分析:本讲知识主要为由平面向量类比学习空间向量的概念及其基本运算,涉及到空间向量中的共线向量和共面向量,以及空间向量的基本定理和空间向量的坐标运算.数量积的运用,是我们学习的重点.一、空间向量的概念:模(或长度)为0的向量称为零向量;模为1的向量称为单位向量.与向量a 长度相等且方向相反的向量称为a 的相反向量,记作a -.方向相同且模相等的向量称为相等向量.二、空间向量的加法和减法、数乘运算1. 求两个向量和的运算称为向量的加法,它遵循平行四边形法则.2. 求两个向量差的运算称为向量的减法,它遵循三角形法则.3. 实数λ与空间向量a 的乘积a λ是一个向量,称为向量的数乘运算.当0λ>时,a λ与a 方向相同;当0λ<时,a λ与a 方向相反;当0λ=时,a λ为零向量,记为0.a λ的长度是a 的长度的λ倍.三、共线向量与共面向量1. 向量共线的充要条件:对于空间任意两个向量a ,()0b b ≠,//a b 的充要条件是存在实数λ,使a b λ=.2. 向量共面定理:平行与同一平面的向量是共面向量.四、向量的数量积1. 已知两个非零向量a 和b ,在空间任取一点O ,作a OA =,b OB =,则∠AOB 称为向量a ,b 的夹角,记作,a b 〈〉.两个向量夹角的取值范围是:[],0,a b π〈〉∈.2. 对于两个非零向量a 和b ,若,2a b π〈〉=,则向量a ,b 互相垂直,记作a b ⊥.3. 已知两个非零向量a 和b ,则cos ,a b a b 〈〉称为a ,b 的数量积,记作a b ⋅.即cos ,a b a b a b ⋅=〈〉.零向量与任何向量的数量积为0.五、空间向量的坐标表示和运算设()111,,a x y z =,()222,,b x y z =,则 1. ()121212,,a b x x y y z z +=+++. 2. ()121212,,a b x x y y z z -=---. 3. ()111,,a x y z λλλλ=. 4. 121212a b x x y y z z ⋅=++.5. 若a 、b 为非零向量,则12121200a b a b x x y y z z ⊥⇔⋅=⇔++=.6. 若0b ≠,则121212//,,a b a b x x y y z z λλλλ⇔=⇔===.7. 222111a a a x y z =⋅=++.8. 121212222222111222cos ,a b a b a bx y z x y z⋅〈〉==++⋅++.9. ()111,,x y z A ,()222,,x y z B ,则()()()222212121d x x y y z z AB =AB =-+-+-知识点一 空间向量的概念的运用例1、与向量(1,3,2)a =-平行的一个向量的坐标是( )A .(31,1,1) B .(-1,-3,2) C .(-21,23,-1)D .(2,-3,-22)思路分析:1)题意分析:本题主要考查共线向量的概念的运用.2)解题思路:利用共线向量的概念,如果b a b a b λ=⇔≠//,0,那么说向量→→b a ,共线.也可观察坐标的系数是不是成比例.解答过程:解析:向量的共线和平行是一样的,可利用空间向量共线定理写成数乘的形式. 即b a b a b λ=⇔≠//,0,因为(1,3,2)a =-=-2(-21,23,-1),故答案为C . 解题后的思考:对于空间共线向量的判定,要么利用坐标对应成比例,要么利用向量的线性关系来判定.例2、在平行六面体ABCD —A 1B 1C 1D 1中,M 为AC 与BD 的交点,若11B A =a ,11D A =b ,A A 1=c ,则下列向量中与MB 1相等的向量是( )A .++-2121B .++2121 C .c b a +-2121D .c b a +--2121思路分析:1)题意分析:本题考查的是基本的向量相等与向量的加法,考查学生的空间想象能力. 2)解题思路:把未知向量表示为已知向量,可利用三角形或平行四边形法则解决.用向量的方法处理立体几何问题,使复杂的线面空间关系代数化.解答过程:解析:)(21111BC BA A A BM B B MB ++=+==+21(-+)=-21+21+.故选A . 解题后的思考:对于空间向量的线性表示,我们本着把所求的向量与已知向量尽量放在一个封闭图形中的原则,再结合向量的加法得到.例3、在下列条件中,使M 与A 、B 、C 一定共面的是 ( )A .OM --=2B .213151++=C .=++MC MB MA 0D .=+++OC OB OA OM 0 思路分析:1)题意分析:本题主要考查共面向量的概念的运用.2)解题思路:空间的四点P 、A 、B 、C 共面只需满足,OC z OB y OA x OP ++=且1=++z y x 即可,或者AC y AB x AP +=.解答过程:由于空间的四点P 、A 、B 、C 共面只需满足,OC z OB y OA x OP ++=且1=++z y x 即可,首先判定A ,B ,D 项都不符合题意,由排除法可知只有选C .利用向量的加法和减法我们可以把+-+-=++)()(OM OB OM OA MC MB MA03)()(=-++=-OM OC OB OA OM OC ,)(31++=,显然满足题意. 解题后的思考:对空间向量的共面问题,我们只需利用课本中的两个结论判定即可.,z y x ++=且1=++z y x 或,y x +=都可判定P ,A ,B ,C 共面.例4、①如果向量,a b 与任何向量都不能构成空间向量的一组基底,那么,a b 的关系是不共线;②,,,O A B C 为空间四点,且向量,,OA OB OC 不构成空间的一个基底,那么点,,,O A B C 一定共面;③已知向量,,a b c 是空间的一个基底,则向量,,a b a b c +-也是空间的一个基底. 其中正确的命题是( )A .①②B .①③C .②③D .①②③ 思路分析:1)题意分析:本题考查空间向量的基底.2)解题思路:结合空间向量基底的概念,我们逐一的判定.解答过程:命题①中,由于,a b 与任何向量都共面,说明,a b 是共线向量.因此①是错误的.命题②中,由四点确定的、共起点的三个向量不能构成基底,说明了这四点是共面的,因此②是正确的.命题③中,要判定三个向量是否可构成基底,关键是看这三个向量是不是不共面,共面与是共面的,,→→→→→→-+b a b a b a ,因此③是正确的.选C .解题后的思考:理解空间向量的基底是由不共面的四点,或者说不共面的三个向量构成的.知识点二 空间向量的坐标运算的运用例5、在ΔABC 中,已知)0,4,2(=AB ,)0,3,1(-=BC ,则∠ABC =___.思路分析:1)题意分析:本题考查用向量数量积求夹角.2)解题思路:首先要注意夹角的概念,是共起点,因此在求角的时候,要注意向量的方向,否则容易出错.解答过程:(2,4,0),(1,3,0),BA BC =--=-2cos ,2||||2510BA BC BA BC BA BC ⋅∴===-⋅ ∴∠ABC =145°解题后的思考:向量夹角的求解是高考中的常考题型,因此,同学们要注意准确运用.例6、已知空间三点A (0,2,3),B (-2,1,6),C (1,-1,5). ⑴求以向量AC AB ,为一组邻边的平行四边形的面积S ;⑵若向量a 分别与向量AC AB ,垂直,且|a |=3,求向量a 的坐标思路分析:1)题意分析:本题综合运用向量的数量积来判定垂直,求解夹角.2)解题思路:首先分析平行四边形的面积实际上是三角形面积的2倍,于是可转化为求三角形的面积,需先结合数量积求出夹角的余弦值,然后得到夹角的正弦值,再求面积;求向量的坐标,一般是先设出其坐标,然后结合已知条件,列出关系式,进而求解.解答过程:⑴21||||cos ),2,3,1(),3,1,2(==∠∴-=--=AC AB AC AB BAC AC AB . ∴∠BAC =60°,3760sin ||||==∴ AC AB S . ⑵设a =(x ,y ,z ),则,032=+--⇒⊥z y x AB a33||,023222=++⇒==+-⇒⊥z y x a z y x AC a解得x =y =z =1或x =y =z =-1,∴a =(1,1,1)或a =(-1,-1,-1).解题后的思考:向量的数量积是高考中的一个热点话题,出题形式较灵活,只要同学们抓住数量积解决的问题一般是有关夹角、距离的问题这个本质即可.例7、如图所示,直三棱柱ABC —A 1B 1C 1中,CA =CB =1,∠BCA =90°,棱AA 1=2,M 、N 分别是A 1B 1、A 1A 的中点.(1)求的长;(2)求cos<11,CB BA >的值; (3)求证:M C B A 11⊥思路分析:1)题意分析:本题主要考查空间向量的概念及其运算的基本知识.考查空间两向量垂直的充要条件.2)解题思路:先建立空间直角坐标系,然后写出坐标,利用坐标的运算进行求解. 解答过程:如图,建立空间直角坐标系O -xyz .(1)解:依题意得B (0,1,0)、N (1,0,1) ∴|BN |=3)01()10()01(222=-+-+-.(2)解:依题意得A 1(1,0,2)、B (0,1,0)、C (0,0,0)、B 1(0,1,2) ∴1BA ={1,-1,2},1CB ={0,1,2},1BA ·1CB =3,|1BA |=6,|1CB |=5∴cos<1BA ,1CB >=30101||||1111=⋅⋅CB BA CB BA .(3)证明:依题意,得C 1(0,0,2)、M (21,21,2),B A 1={-1,1,-2},MC 1={21,21,0}.∴B A 1·M C 1=-2121++0=0,∴B A 1⊥M C 1.解题后的思考:对于空间中的角和垂直的判定,如果不能直接利用定义,我们可以运用代数的方法,结合坐标运算进行.例8、已知正方体''''ABCD A B C D -的棱长为a ,M 为'BD 的中点,点N 在'A C '上,且|'|3|'|A N NC =,试求MN 的长.思路分析:1)题意分析:本题考查向量的概念及向量的坐标运算,求解有关距离的问题.2)解题思路:对于空间向量的距离的求解,可借助于向量的数量积的性质来解,也可利用坐标运算进行求解.解答过程: 以D 为原点,建立如图所示的空间直角坐标系.因为正方体棱长为a ,所以B (a ,a ,0),A'(a ,0,a ),'C (0,a ,a ),'D (0,0,a ).由于M 为'BD 的中点,取''A C 的中点O',所以M (2a ,2a ,2a ),O'(2a ,2a,a ).因为|'|3|'|A N NC =,所以N 为''A C 的四等分点,从而N 为''O C 的中点,故N (4a ,34a ,a ).根据空间两点间的距离公式,可得22236||()()()242424a a a a a MN a a =-+-+-=.解题后的思考:本题是求解空间几何体中距离的问题,我们一般利用坐标的运算进行求解.解题关键是能把坐标准确地表示出来.小结:通过以上的典型例题,同学们应熟练掌握以下基本概念:共线向量与共面向量,空间向量的基底,以及运用向量的坐标运算解决有关的距离和夹角问题.注意处理以上问题的两个方法:向量法与坐标法.空间向量及其运算是解决立体几何的一种重要工具,同学们要理解基本概念,并能对比平面向量进行加、减运算和数乘运算及数量积的运算和应用.数量积问题是向量问题中经常考查的知识点,要能灵活解决有关的夹角和距离问题,从而为后面的学习打下坚实的基础.一、预习新知本讲学习了空间向量的概念及其基本运算,那么能否利用向量解决空间中有关角与距离的问题呢?二、预习点拨探究与反思:探究任务一:用空间向量解决立体几何中有关角的问题 【反思】(1)如何用向量表示线面角、二面角及异面直线所成的角 (2)具体的求角的公式应如何怎么表示?探究任务二:用空间向量解决立体几何中有关距离的问题 【反思】(1)如何用空间向量表示空间的点线的距离、异面直线的距离、线面的距离、面面的距离?(2)求解距离的具体的计算公式是什么?(答题时间:50分钟)一、选择题1.下列命题正确的是( )A .若a 与b 共线,b 与c 共线,则a 与c 共线B .向量,,a b c 共面就是它们所在的直线共面C .零向量没有确定的方向D .若//a b ,则存在唯一的实数λ使得a b λ=2. 已知A (-1,-2,6),B (1,2,-6),O 为坐标原点,则向量OA OB 与的夹角是( )A .0B .2πC .πD .32π 3. 已知空间四边形ABCO 中,c OC ,b OB ,a OA ===,点M 在OA 上,且OM =2MA ,N 为BC 中点,则MN =( )A .c b a 213221+- B .c b a 212132++- C .c b a 212121-+ D .c b a 213232-+4. 设A 、B 、C 、D 是空间不共面的四点,且满足000=⋅=⋅=⋅AD AB ,AD AC ,AC AB ,则△BCD 是( )A .钝角三角形B .锐角三角形C .直角三角形D .不确定5. 空间四边形OABC 中,OB =OC ,∠AOB =∠AOC =60°,则cos BC ,OA =( ) A .21B .22C .-21D .06. 已知A (1,1,1)、B (2,2,2)、C (3,2,4),则△ABC 的面积为( ) A .3B .32C .6D .267. 已知),,2(),,1,1(t t b t t t a =--=,则||b a -的最小值为( ) A .55 B .555 C .553 D .511二、填空题8.若)1,3,2(-=a ,)3,1,2(-=b ,则以b a ,为邻边的平行四边形的面积为 . 9.已知空间四边形OABC ,其对角线为OB 、AC ,M 、N 分别是对边OA 、BC 的中点,点G 在线段MN 上,且GN MG 2=,现用基组{}OC OB OA ,,表示向量OG ,有OG =x OC z OB y OA ++,则x 、y 、z 的值分别为 .10.已知点A (1,-2,11)、B (4,2,3),C (6,-1,4),则△ABC 的形状是 . 11.已知向量)0,3,2(-=a ,)3,0,(k b =,若b a ,成120°的角,则k = .三、解答题12.如图,在空间直角坐标系中BC =2,原点O 是BC 的中点,点A 的坐标是(21,23,0),点D 在平面yOz 上,且∠BDC =90°,∠DCB =30°.(1)求向量OD 的坐标;(2)设向量AD 和BC 的夹角为θ,求cos θ的值13.四棱锥P -ABCD 中,底面ABCD 是一个平行四边形,AB =(2,-1,-4),AD =(4,2,0),AP =(-1,2,-1). (1)求证:PA ⊥底面ABCD ; (2)求四棱锥P -ABCD 的体积;(3)对于向量a =(x 1,y 1,z 1),b =(x 2,y 2,z 2),c =(x 3,y 3,z 3),定义一种运算:(a ×b )·c =x 1y 2z 3+x 2y 3z 1+x 3y 1z 2-x 1y 3z 2-x 2y 1z 3-x 3y 2z 1,试计算(AB ×AD )·AP 的绝对值的值;说明其与四棱锥P -ABCD 体积的关系,并由此猜想向量这一运算(AB ×AD )·AP 的绝对值的几何意义.14.若四面体对应棱的中点间的距离都相等,证明这个四面体的对棱两两垂直.1.C ;解析:由于选项A 中当b =→0时,就不符合题意,因此A 错误.选项B ,向量共面,但向量所在的直线不一定共面,可以是平行.选项D ,应说明b ≠→0. 2.C ;解析:||||cos b a ⋅=θ,计算结果为-1.3.B ;解析:显然OA OC OB OM ON MN 32)(21-+=-=. 4.B ;解析:过点A 的棱两两垂直,通过设棱长、应用余弦定理可得△BCD 为锐角三角形. 5.D ;解析:先建立一组基向量OC OB OA ,,,再处理⋅的值. 6.D ;解析:应用向量的运算,显然><⇒>=<AC AB AC AB ,sin ,cos ,从而得><=S ,sin ||||21. 7.C ;解析:利用向量数量积的性质求解模的平方的最小值,然后再开方即可得到. 8.56;解析:72||||,cos -=>=<b a ,得753,sin >=<b a ,从而可得结果.9.313161、、; 解析:OM ON OA MN OA MG OM OG 313161]21)(21[3221)(32213221++=-++=-+=+=+= 10.直角三角形;解析:利用空间两点间的距离公式得:222||||||AC BC AB +=.11.39-;解析:219132,cos 2-=+=>=<k k b a ,得39±=k . 12.解:(1)过D 作DE ⊥BC ,垂足为E ,在Rt △BDC 中,由∠BDC =90°,∠DCB =30°,BC =2,得BD =1,CD =3,∴DE =CD ·sin30°=23. OE =OB -BE =OB -BD ·cos60°=1-2121=. ∴D 点坐标为(0,-23,21),即向量的坐标为(0,-23,21). (2)依题意:)()()(0,1,0,0,1,0,0,21,23=-==, 所以)()(0,2,0,23,1,23=-=--=-=OB OC BC OA OD AD .设向量和BC 的夹角为θ,则cos θ222222020)23()1()23(0232)1(023||||++⋅+-+-⨯+⨯-+⨯-=⋅BC AD BC AD 1051-=. 13.(1)证明:∵AB AP ⋅=-2-2+4=0,∴AP ⊥AB . 又∵AD AP ⋅=-4+4+0=0,∴AP ⊥AD .∵AB 、AD 是底面ABCD 上的两条相交直线,∴PA ⊥底面ABCD . (2)解:设AB 与AD 的夹角为θ,则 cos θ1053416161428||||=+⋅++-=⋅AD AB AD ABABCD P V -=31|AB |·|AD |·sin θ·|AP |=161411059110532=++⋅-⋅ (3)解:|(AB ×AD )·AP |=|-4-32-4-8|=48,它是四棱锥P -ABCD 体积的3倍.猜测:|(AB ×AD )·AP |在几何上可表示以AB 、AD 、AP 为棱的平行六面体的体积(或以AB 、AD 、AP 为棱的直四棱柱的体积). 14.证明:如图,设321,,r SC r SB r SA ===,则SN SM SH SG SF SE ,,,,,分别为121r ,)(2132r r +,)(2121r r +,321r ,)(2131r r +,221r ,由条件EF =GH =MN 得: 223123212132)2()2()2(r r r r r r r r r -+=-+=-+展开得313221r r r r r r ⋅=⋅=⋅∴0)(231=-⋅r r r ,∵1r ≠,23r r -≠, ∴1r ⊥(23r r -),即SA ⊥BC .同理可证SB ⊥AC ,SC ⊥AB .。

【专业资料】新版高中数学人教A版选修2-1习题:第三章空间向量与立体几何 3.2.3 含解析

【专业资料】新版高中数学人教A版选修2-1习题:第三章空间向量与立体几何 3.2.3 含解析

第3课时 用向量方法求空间中的角课时过关·能力提升基础巩固1若直线l 的方向向量与平面α的法向量的夹角等于120°,则直线l 与平面α所成的角等于( ) A.120° B.60°C.30°D.以上均错l 的方向向量与平面α的法向量的夹角为120°,∴它们所在直线的夹角为60°.则直线l 与平面α所成的角为90°-60°=30°.2设四边形ABCD ,ABEF 都是边长为1的正方形,FA ⊥平面ABCD ,则异面直线AC 与BF 所成的角等于 ( )A.45°B.30°C.90°D.60°,则A (0,0,0),F (0,0,1),B (0,1,0),C (1,1,0), ∴AC⃗⃗⃗⃗⃗ =(1,1,0),BF ⃗⃗⃗⃗⃗ =(0,-1,1). ∴AC ⃗⃗⃗⃗⃗ ·BF⃗⃗⃗⃗⃗ =-1. 设异面直线AC 与BF 所成的角为θ, ∴cos θ=|cos <AC ⃗⃗⃗⃗⃗ ,BF ⃗⃗⃗⃗⃗ >|=12. 又∵θ∈(0°,90°],∴θ=60°.3若a =(λ,1,2)与b =(2,-1,-2)的夹角为钝角,则实数λ的取值范围为( ) A.λ<52B.λ<52,且λ≠-2C.λ≥52,且λ≠4D.λ≥52,得a ·b =2λ+(-1)-4<0,即λ<52.而|a |=√5+λ2,|b |=3,又<a ,b >为钝角,∴3√5+λ≠-1,即λ≠-2.4若斜线段与它在平面α内射影的长之比是2∶1,则AB 与平面α所成角为( ) A.π6 B.π3C.23πD.56πAB 与平面α所成角为θ,由题意知cos θ=12,则AB 与平面α所成角为π3.5若平面α的一个法向量为n =(4,1,1),直线l 的一个方向向量为a =(-2,-3,3),则l 与α所成角的余弦值为 ( )A.-√11B.√11C.-√110D.√913<a ,n >=√4+9+9√16+1+1=3√11=-4√1133, 故l 与α所成角的余弦值为√1-(-4√1133)2=√91333.6在正方体ABCD-A 1B 1C 1D 1中,二面角A-BD 1-B 1的大小为 .,以点C 为原点建立空间直角坐标系.设正方体的边长为a ,则A (a ,a ,0),B (a ,0,0),D 1(0,a ,a ),B 1(a ,0,a ), ∴BA ⃗⃗⃗⃗⃗ =(0,a ,0),BD 1⃗⃗⃗⃗⃗⃗⃗⃗ =(-a ,a ,a ),BB 1⃗⃗⃗⃗⃗⃗⃗ =(0,0,a ). 设平面ABD 1的法向量为n =(x ,y ,z ), 则n ·BA ⃗⃗⃗⃗⃗ =(x ,y ,z )·(0,a ,0)=ay=0, n ·BD 1⃗⃗⃗⃗⃗⃗⃗⃗ =(x ,y ,z )·(-a ,a ,a )=-ax+ay+az=0. ∵a ≠0,∴y=0,x=z.令x=z=1,则n =(1,0,1),同理,求得平面B 1BD 1的法向量m =(1,1,0),∴cos <n ,m >=n ·m |n ||m |=12,∴<n ,m >=60°.而二面角A-BD 1-B 1为钝角,故为120°.°7在正四棱锥P-ABCD 中,高为1,底面边长为2,E 为BC 的中点,则异面直线PE 与DB 所成的角为 .,则B (1,1,0),D (-1,-1,0),E (0,1,0),P (0,0,1),∴DB⃗⃗⃗⃗⃗⃗ =(2,2,0),PE ⃗⃗⃗⃗⃗ =(0,1,-1). ∴cos <DB ⃗⃗⃗⃗⃗⃗ ,PE ⃗⃗⃗⃗⃗ >=DB ⃗⃗⃗⃗⃗⃗ ·PE ⃗⃗⃗⃗⃗⃗|DB ⃗⃗⃗⃗⃗⃗ ||PE ⃗⃗⃗⃗⃗⃗|=√8×√2=12.∴<DB ⃗⃗⃗⃗⃗⃗ ,PE ⃗⃗⃗⃗⃗ >=π.∴PE 与DB 所成的角为π.8在长方体ABCD-A 1B 1C 1D 1中,已知DA=DC=4,DD 1=3,则异面直线A 1B 与B 1C 所成角的余弦值为 .9如图,在长方体ABCD-A 1B 1C 1D 1中,AD=AA 1=1,AB=2,点E 是棱AB 上的动点.若异面直线AD 1与EC 所成角为60°,试确定此时动点E 的位置.DA 所在直线为x 轴,以DC 所在直线为y 轴,以DD 1所在直线为z 轴,建立空间直角坐标系.设E (1,t ,0)(0≤t ≤2),则A (1,0,0),D (0,0,0),D 1(0,0,1),C (0,2,0),D 1A ⃗⃗⃗⃗⃗⃗⃗ =(1,0,-1),CE ⃗⃗⃗⃗⃗ =(1,t-2,0), 根据数量积的定义及已知得:1+0×(t-2)+0=√2×√1+(t -2)2·cos 60°, 所以t=1.所以点E 的位置是AB 的中点. 10如图,在四棱锥P-ABCD 中,已知PA ⊥平面ABCD ,且四边形ABCD 为直角梯形,∠ABC=∠BAD=π,PA=AD=2,AB=BC=1.求平面PAB 与平面PCD 所成二面角的余弦值.{AB ⃗⃗⃗⃗⃗ ,AD ⃗⃗⃗⃗⃗ ,AP ⃗⃗⃗⃗⃗ }为正交基底建立如图所示的空间直角坐标系Axyz ,则各点的坐标为B (1,0,0),C (1,1,0),D (0,2,0),P (0,0,2).因为AD ⊥平面PAB ,所以AD ⃗⃗⃗⃗⃗ 是平面PAB 的一个法向量,AD ⃗⃗⃗⃗⃗ =(0,2,0).因为PC⃗⃗⃗⃗⃗ =(1,1,-2),PD ⃗⃗⃗⃗⃗ =(0,2,-2).设平面PCD 的法向量为m =(x ,y ,z ), 则m ·PC ⃗⃗⃗⃗⃗ =0,m ·PD ⃗⃗⃗⃗⃗ =0. 即{x +y -2z =0,2y -2z =0. 令y=1,解得z=1,x=1.所以m =(1,1,1)是平面PCD 的一个法向量.从而cos <AD ⃗⃗⃗⃗⃗ ,m >=AD ⃗⃗⃗⃗⃗⃗·m |AD ⃗⃗⃗⃗⃗⃗ ||m |=√33,所以平面PAB 与平面PCD 所成二面角的余弦值为√33.能力提升1已知E ,F 分别是棱长为1的正方体ABCD-A 1B 1C 1D 1的棱BC ,CC 1的中点,则截面AEFD 1与底面ABCD 所成二面角的正弦值是( ) A.23B.√23C.√53D.2√33D 为坐标原点,以DA ⃗⃗⃗⃗⃗ ,DC ⃗⃗⃗⃗⃗ ,DD 1⃗⃗⃗⃗⃗⃗⃗⃗ 的方向分别为x 轴、y 轴、z 轴的正方向建立空间直角坐标系,如图,则A (1,0,0),E (12,1,0),F (0,1,12),D 1(0,0,1),∴AD 1⃗⃗⃗⃗⃗⃗⃗ =(-1,0,1),AE ⃗⃗⃗⃗⃗ =(-12,1,0). 设平面AEFD 1的法向量为n =(x ,y ,z ),则 {n ·AD 1⃗⃗⃗⃗⃗⃗⃗ =0,n ·AE ⃗⃗⃗⃗⃗ =0⇒{-x +z =0,-x 2+y =0,∴x=2y=z. 取y=1,则n =(2,1,2),而平面ABCD 的一个法向量为u =(0,0,1),∴cos <n ,u >=2,∴sin <n ,u >=√5.2在棱长为1的正方体ABCD-A 1B 1C 1D 1中,M ,N 分别是A 1B 1,BB 1的中点,那么直线AM 与CN 所成角的余弦值是( )A.√32B.√1010C.35D.25,建立空间直角坐标系,则A (1,0,0),M (1,12,1),C (0,1,0),N (1,1,12),∴AM ⃗⃗⃗⃗⃗⃗ =(0,12,1),CN ⃗⃗⃗⃗⃗ =(1,0,12).∴AM ⃗⃗⃗⃗⃗⃗ ·CN ⃗⃗⃗⃗⃗ =12,|AM ⃗⃗⃗⃗⃗⃗ |=|CN ⃗⃗⃗⃗⃗ |=√52. ∴cos <AM ⃗⃗⃗⃗⃗⃗ ,CN ⃗⃗⃗⃗⃗ >=1252×52=25.3在正方体ABCD-A 1B 1C 1D 1中,EF ⊥AC ,EF ⊥A 1D ,则EF 与BD 1所成的角是( ) A.90°B.60°C.30°D.0°,以D 为原点建立空间直角坐标系,设正方体的棱长为a ,则A 1(a ,0,a ),D (0,0,0),A (a ,0,0),C (0,a ,0),B (a ,a ,0),D 1(0,0,a ), ∴DA 1⃗⃗⃗⃗⃗⃗⃗⃗ =(a ,0,a ),AC ⃗⃗⃗⃗⃗ =(-a ,a ,0),BD 1⃗⃗⃗⃗⃗⃗⃗⃗ =(-a ,-a ,a ). ∵EF ⊥AC ,EF ⊥A 1D ,设EF ⃗⃗⃗⃗⃗ =(x ,y ,z ), ∴EF ⃗⃗⃗⃗⃗ ·DA 1⃗⃗⃗⃗⃗⃗⃗⃗ =(x ,y ,z )·(a ,0,a )=ax+az=0, EF ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ =(x ,y ,z )·(-a ,a ,0)=-ax+ay=0.∵a ≠0,∴x=y=-z (x ≠0).∴EF ⃗⃗⃗⃗⃗ =(x ,x ,-x ).∴BD 1⃗⃗⃗⃗⃗⃗⃗⃗ =-aEF ⃗⃗⃗⃗⃗ . ∴BD 1⃗⃗⃗⃗⃗⃗⃗⃗ ∥EF ⃗⃗⃗⃗⃗ ,即BD 1∥EF. 故EF 与BD 1所成的角是0°.4二面角α-l-β内有一点P ,若点P 到平面α,β的距离分别是5,8,且点P 在平面α,β内的射影间的距离为7,则二面角的度数是( ) A.30°B.60°C.120°D.150°,PA ⊥α,PB ⊥β,∠ADB 为二面角α-l-β的平面角.由题意知PA=5,PB=8,AB=7, 由余弦定理,可得cos ∠APB=52+82-72=1,则∠APB=60°,故∠ADB=120°.5在空间中,已知平面α过点(3,0,0)和(0,4,0)及z 轴上一点(0,0,a )(a>0),若平面α与平面xOy 的夹角为45°,则a= .6在长方体ABCD-A 1B 1C 1D 1中,B 1C 和C 1D 与底面所成的角分别为60°和45°,则异面直线B 1C 和C 1D 所成角的余弦值为 .,可知∠CB 1C 1=60°,∠DC 1D 1=45°.设B 1C 1=1,则CC 1=√3=DD 1.∴C 1D 1=√3,则有B 1(√3,0,0),C (√3,1,√3),C 1(√3,1,0),D (0,1,√3).∴B 1C ⃗⃗⃗⃗⃗⃗⃗ =(0,1,√3),C 1D ⃗⃗⃗⃗⃗⃗⃗ =(-√3,0,√3). ∴cos <B 1C ⃗⃗⃗⃗⃗⃗⃗ ,C 1D ⃗⃗⃗⃗⃗⃗⃗ >=B 1C ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·C 1D⃗⃗⃗⃗⃗⃗⃗⃗⃗ |B 1C ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ||C 1D ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=2√6=√64.7如图,在三棱锥P-ABC 中,PA=PB=PC=BC ,且∠BAC=π2,则PA 与底面ABC 所成角的大小为 .,∵PA=PB=PC ,∴P 在底面上的射影O 是△ABC 的外心.又∠BAC=π2,∴O 在BC 上且为BC 的中点.∴AO 为PA 在底面上的射影,∠PAO 即为所求的角.在△PAO 中,PO=√32PB=√32PA ,∴sin ∠PAO=PO =√3.∴∠PAO=π3.8在正方体ABCD-A 1B 1C 1D 1中,直线BC 1与平面A 1BD 所成角的余弦值是 .,设棱长为1,则B (1,1,0),C 1(0,1,1),A 1(1,0,1),D (0,0,0). BC 1⃗⃗⃗⃗⃗⃗⃗ =(-1,0,1),A 1D ⃗⃗⃗⃗⃗⃗⃗⃗ =(-1,0,-1),BD ⃗⃗⃗⃗⃗⃗ =(-1,-1,0). 设平面A 1BD 的一个法向量为n =(1,x ,y ),设BC 1与平面A 1BD 所成的角为θ,n ⊥A 1D ⃗⃗⃗⃗⃗⃗⃗⃗ ,n ⊥BD⃗⃗⃗⃗⃗⃗ , 所以n ·A 1D ⃗⃗⃗⃗⃗⃗⃗⃗ =0,n ·BD ⃗⃗⃗⃗⃗⃗ =0, 所以{-1-y =0,-1-x =0,解得{x =-1,y =-1.所以n =(1,-1,-1),则cos <BC 1⃗⃗⃗⃗⃗⃗⃗ ,n >=BC 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·n|BC 1⃗⃗⃗⃗⃗⃗⃗⃗⃗|·|n |=-√63,所以sin θ=√63.所以cos θ=√1-(√63)2=√33.9如图,在直三棱柱ABC-A 1B 1C 1中,AA 1=BC=AB=2,AB ⊥BC ,求二面角B 1-A 1C-C 1的大小.,则A (2,0,0),C (0,2,0),A 1(2,0,2),B 1(0,0,2),C 1(0,2,2).设AC 的中点为M ,连接BM.∵BM ⊥AC ,BM ⊥CC 1,∴BM ⊥平面AA 1C 1C ,即BM ⃗⃗⃗⃗⃗⃗ =(1,1,0)是平面AA 1C 1C 的一个法向量.设平面A 1B 1C 的一个法向量是n =(x ,y ,z ).A 1C ⃗⃗⃗⃗⃗⃗⃗ =(-2,2,-2),A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(-2,0,0),∴n ·A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =-2x=0,n ·A 1C ⃗⃗⃗⃗⃗⃗⃗ =-2x+2y-2z=0,令z=1,解得x=0,y=1.∴n =(0,1,1).设法向量n 与BM⃗⃗⃗⃗⃗⃗ 的夹角为φ,二面角B 1-A 1C-C 1为θ,显然θ为锐角.∴cos θ=|cos φ|=|n ·BM ⃗⃗⃗⃗⃗⃗⃗ ||n ||BM ⃗⃗⃗⃗⃗⃗⃗ |=12,解得θ=π3.∴二面角B 1-A 1C-C 1的大小为π3.★10四棱柱ABCD-A 1B 1C 1D 1的侧棱AA 1垂直于底面,底面ABCD 为直角梯形,AD ∥BC ,AD ⊥AB ,AD=AB=AA 1=2BC ,E 为DD 1的中点,F 为A 1D 的中点. (1)求证:EF ∥平面A 1BC ;(2)求直线EF 与平面A 1CD 所成角θ的正弦值.E ,F 分别是DD 1,DA 1的中点,∴EF ∥A 1D 1.又A 1D 1∥B 1C 1∥BC ,∴EF ∥BC ,且EF ⊄平面A 1BC ,BC ⊂平面A 1BC , ∴EF ∥平面A 1BC.AB ,AD ,AA 1两两垂直,以AB 所在直线为x 轴,以AD 所在直线为y 轴,以AA 1所在直线为z 轴,建立空间直角坐标系,如图.设BC=1,则A (0,0,0),A 1(0,0,2),C (2,1,0),D (0,2,0),D 1(0,2,2),F (0,1,1),E (0,2,1), 故FE ⃗⃗⃗⃗⃗ =(0,1,0),A 1D ⃗⃗⃗⃗⃗⃗⃗⃗ =(0,2,-2),CD ⃗⃗⃗⃗⃗ =(-2,1,0). 设平面A 1CD 的法向量n =(x ,y ,z ), 则{n ·A 1D⃗⃗⃗⃗⃗⃗⃗⃗ =(x ,y ,z )·(0,2,-2)=2y -2z =0,n ·CD ⃗⃗⃗⃗⃗ =(x ,y ,z )·(-2,1,0)=-2x +y =0.取n =(1,2,2),则sin θ=|cos <n ,FE ⃗⃗⃗⃗⃗ >|=|n ·FE ⃗⃗⃗⃗⃗⃗|n ||FE ⃗⃗⃗⃗⃗⃗ || =|√1+4+4·√0+1+0|=23,故直线EF 与平面A 1CD 所成角θ的正弦值等于23.。

人教A版数学选修21-空间向量与立体几何-【完整版】

人教A版数学选修21-空间向量与立体几何-【完整版】
表示如图.
人教A 版数学选修2 1 : 空间向量与立 体几何- 精品课 件p pt( 实用版)
人教A 版数学选修2 1 : 空间向量与立 体几何- 精品课 件p pt( 实用版)
类型3 空间向量加减运算的应用(误区警示)
[典例3]
在长方体ABCD-A1B1C1D1中,化简
→ DA

→ DB
+B→1C-B→1B+A→1B1-A→1B.
证明:如图所示,平行六面体 ABCD-A′B′C′D′,设点O是AC′的中点,
则A→O=12A→C′=12(A→B+A→D+A→A′). 设P、M、N分别是BD′、CA′、DB′的中点. 则A→P=A→B+B→P=A→B+12B→D′=A→B+12·(B→A+B→C+
人教A 版数学选修2 1 : 空间向量与立 体几何- 精品课 件p pt( 实用版)
(3)用已知向量表示指定向量的方法. 用已知向量来表示指定向量时,常结合具体图形.通 过向量的平移等手段将指定向量放在与已知向量有关的三 角形或四边形中,通过向量的运算性质将指定向量表示出 来,然后转化为已知向量的线性式.
人教A 版数学选修2 1 : 空间向量与立 体几何- 精品课 件p pt( 实用版)
人教A 版数学选修2 1 : 空间向量与立 体几何- 精品课 件p pt( 实用版)
[变式训练] (1)下列命题中假命题的个数是( )
①向量A→B与B→A的长度相等;
②空间向量就是空间中的一条有向线段;
③不相等的两个空间向量的模必不相等.
A.1
B.2
C.3
D.0
(2)如图,在长方体ABCD-A1B1C1D1中, AB=4,AD=2,AA1=1,以该长方体的八 个顶点中的两点为起点和终点的所有向量

新人教A版高中数学教材目录(必修+选修)【很全面】

新人教A版高中数学教材目录(必修+选修)【很全面】

人教A版高中数学教材目录(必修+选修)必修1第一章集合与函数概念1.1 集合1.2 函数及其表示1.3 函数的基本性质实习作业小结复习参考题第二章基本初等函数(Ⅰ)2.1 指数函数2.2 对数函数2.3 幂函数小结复习参考题第三章函数的应用3.1 函数与方程3.2 函数模型及其应用实习作业小结复习参考题必修2第一章空间几何体1.1 空间几何体的结构1.2 空间几何体的三视图和直观图1.3 空间几何体的表面积与体积实习作业小结复习参考题第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质小结复习参考题第三章直线与方程3.1 直线的倾斜角与斜率3.2 直线的方程3.3 直线的交点坐标与距离公式小结复习参考题第四章圆与方程4.1 圆的方程4.2 直线、圆的位置关系4.3 空间直角坐标系小结复习参考题必修3第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 算法案例阅读与思考割圆术小结复习参考题第二章统计2.1 随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2.2 用样本估计总体阅读与思考生产过程中的质量控制图2.3 变量间的相关关系阅读与思考相关关系的强与弱实习作业小结复习参考题第三章概率3.1 随机事件的概率阅读与思考天气变化的认识过程3.2 古典概型3.3 几何概型阅读与思考概率与密码小结复习参考题必修4第一章三角函数1.1 任意角和弧度制1.2 任意角的三角函数1.3 三角函数的诱导公式1.4 三角函数的图象与性质1.5 函数y=Asin(ωx+ψ) 的图象1.6 三角函数模型的简单应用小结复习参考题第二章平面向量2.1 平面向量的实际背景及基本概念2.2 平面向量的线性运算2.3 平面向量的基本定理及坐标表示2.4 平面向量的数量积2.5 平面向量应用举例小结复习参考题第三章三角恒等变换3.1两角和与差的正弦、余弦和正切公式3.2 简单的三角恒等变换小结复习参考题必修5第一章解三角形1.1 正弦定理和余弦定理探究与发现解三角形的进一步讨论1.2 应用举例阅读与思考海伦和秦九韶1.3 实习作业小结复习参考题第二章数列2.1 数列的概念与简单表示法阅读与思考斐波那契数列阅读与思考估计根号下2的值2.2 等差数列2.3 等差数列的前n项和2.4 等比数列2.5 等比数列前n项和阅读与思考九连环探究与发现购房中的数学小结复习参考题第三章不等式3.1 不等关系与不等式3.2 一元二次不等式及其解法3.3 二元一次不等式(组)与简单的线性规划问题阅读与思考错在哪儿信息技术应用用Excel解线性规划问题举例3.4 基本不等式2abba+≤小结复习参考题选修1-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词小结复习参考题第二章圆锥曲线与方程2.1 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.2 双曲线2.3 抛物线阅读与思考圆锥曲线的光学性质及其应用小结复习参考题第三章导数及其应用3.1 变化率与导数3.2 导数的计算探究与发现牛顿法──用导数方法求方程的近似解3.3 导数在研究函数中的应用信息技术应用图形技术与函数性质3.4 生活中的优化问题举例实习作业走进微积分小结复习参考题选修1-2第一章统计案例1.1 回归分析的基本思想及其初步应用1.2 独立性检验的基本思想及其初步应用实习作业小结复习参考题第二章推理与证明2.1 合情推理与演绎推理阅读与思考科学发现中的推理2.2 直接证明与间接证明小结复习参考题第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算小结复习参考题第四章框图4.1 流程图4.2 结构图信息技术应用用Word2002绘制流程图小结复习参考题选修2-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词小结复习参考题第二章圆锥曲线与方程2.1 曲线与方程2.2 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.3 双曲线探究与发现2.4 抛物线探究与发现阅读与思考小结复习参考题第三章空间向量与立体几何3.1 空间向量及其运算阅读与思考向量概念的推广与应用3.2 立体几何中的向量方法小结复习参考题选修 2-2第一章导数及其应用1.1 变化率与导数1.2 导数的计算1.3 导数在研究函数中的应用1.4 生活中的优化问题举例1.5 定积分的概念1.6 微积分基本定理1.7 定积分的简单应用小结复习参考题第二章推理与证明2.1 合情推理与演绎推理2.2 直接证明与间接证明2.3 数学归纳法小结复习参考题第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算小结复习参考题选修2-3第一章计数原理1.1 分类加法计数原理与分步乘法计数原理探究与发现子集的个数有多少1.2 排列与组合探究与发现组合数的两个性质1.3 二项式定理探究与发现“杨辉三角”中的一些秘密小结复习参考题第二章随机变量及其分布2.1 离散型随机变量及其分布列2.2 二项分布及其应用探究与发现服从二项分布的随机变量取何值时概率最大2.3 离散型随机变量的均值与方差2.4 正态分布信息技术应用μ,σ对正态分布的影响小结复习参考题第三章统计案例3.1 回归分析的基本思想及其初步应用3.2 独立性检验的基本思想及其初步应用实习作业小结复习参考题选修3-1数学史选讲第一讲早期的算术与几何一古埃及的数学二两河流域的数学三丰富多彩的记数制度第二讲古希腊数学一希腊数学的先行者二毕达哥拉斯学派三欧几里得与《原本》四数学之神──阿基米德第三讲中国古代数学瑰宝一《周髀算经》与赵爽弦图二《九章算术》三大衍求一术四中国古代数学家第四讲平面解析几何的产生一坐标思想的早期萌芽二笛卡儿坐标系三费马的解析几何思想四解析几何的进一步发展第五讲微积分的诞生一微积分产生的历史背景二科学巨人牛顿的工作三莱布尼茨的“微积分”第六讲近代数学两巨星一分析的化身──欧拉二数学王子──高斯第七讲千古谜题一三次、四次方程求根公式的发现二高次方程可解性问题的解决三伽罗瓦与群论四古希腊三大几何问题的解决第八讲对无穷的深入思考一古代的无穷观念二无穷集合论的创立三集合论的进一步发展与完善第九讲中国现代数学的开拓与发展一中国现代数学发展概观二人民的数学家──华罗庚三当代几何大师──陈省身学习总结报告选修3-3球面上的几何第一讲从欧氏几何看球面一平面与球面的位置关系二直线与球面的位置关系和球幂定理三球面的对称性思考题第二讲球面上的距离和角一球面上的距离二球面上的角思考题第三讲球面上的基本图形一极与赤道二球面二角形三球面三角形1.球面三角形2.三面角3.对顶三角形4.球极三角形思考题第四讲球面三角形一球面三角形三边之间的关系二、球面“等腰”三角形三球面三角形的周长四球面三角形的内角和思考题第五讲球面三角形的全等1.“边边边”(s.s.s)判定定理2.“边角边”(s.a.s.)判定定理3.“角边角”(a.s.a.)判定定理4.“角角角”(a.a.a.)判定定理思考题第六讲球面多边形与欧拉公式一球面多边形及其内角和公式二简单多面体的欧拉公式三用球面多边形的内角和公式证明欧拉公式思考题第七讲球面三角形的边角关系一球面上的正弦定理和余弦定理二用向量方法证明球面上的余弦定理1.向量的向量积2.球面上余弦定理的向量证法三从球面上的正弦定理看球面与平面四球面上余弦定理的应用──求地球上两城市间的距离思考题第八讲欧氏几何与非欧几何一平面几何与球面几何的比较二欧氏平行公理与非欧几何模型──庞加莱模型三欧氏几何与非欧几何的意义阅读与思考非欧几何简史学习总结报告选修3-4对称与群第一讲平面图形的对称群一平面刚体运动1.平面刚体运动的定义2.平面刚体运动的性质思考题二对称变换1.对称变换的定义2.正多边形的对称变换3.对称变换的合成4.对称变换的性质5.对称变换的逆变换思考题三平面图形的对称群思考题第二讲代数学中的对称与抽象群的概念一n元对称群Sn思考题二多项式的对称变换思考题三抽象群的概念1.群的一般概念2.直积思考题第三讲对称与群的故事一带饰和面饰二化学分子的对称群三晶体的分类四伽罗瓦理论学习总结报告附录一附录二选修4-1 几何证明选讲第一讲相似三角形的判定及有关性质一平行线等分线段定理二平行线分线段成比例定理三相似三角形的判定及性质1.相似三角形的判定2.相似三角形的性质四直角三角形的射影定理第二讲直线与圆的位置关系一圆周角定理二圆内接四边形的性质与判定定理三圆的切线的性质及判定定理四弦切角的性质五与圆有关的比例线段第三讲圆锥曲线性质的探讨一平行射影二平面与圆柱面的截线三平面与圆锥面的截线学习总结报告选修 4-2矩阵与变换第一讲线性变换与二阶矩阵一线性变换与二阶矩阵(一)几类特殊线性变换及其二阶矩阵1.旋转变换2.反射变换3.伸缩变换4.投影变换5.切变变换(二)变换、矩阵的相等二二阶矩阵与平面向量的乘法三线性变换的基本性质(一)线性变换的基本性质(二)一些重要线性变换对单位正方形区域的作用第二讲变换的复合与二阶矩阵的乘法一复合变换与二阶矩阵的乘法二矩阵乘法的性质第三讲逆变换与逆矩阵一逆变换与逆矩阵1.逆变换与逆矩阵2.逆矩阵的性质二二阶行列式与逆矩阵三逆矩阵与二元一次方程组1.二元一次方程组的矩阵形式2.逆矩阵与二元一次方程组探究与发现三阶矩阵与三阶行列式第四讲变换的不变量与矩阵的特征向量一变换的不变量——矩阵的特征向量1.特征值与特征向量2.特征值与特征向量的计算二特征向量的应用1.Anα的简单表示2.特征向量在实际问题中的应用学习总结报告选修4-4 坐标系与参数方程引言第一讲坐标系一平面直角坐标系二极坐标系三简单曲线的极坐标方程四柱坐标系与球坐标系简介第二讲参数方程一曲线的参数方程二圆锥曲线的参数方程三直线的参数方程四渐开线与摆线学习总结报告选修4-5 不等式选讲引言第一讲不等式和绝对值不等式一不等式1.不等式的基本性质2.基本不等式3.三个正数的算术-几何平均不等式二绝对值不等式1.绝对值三角不等式2.绝对值不等式的解法第二讲证明不等式的基本方法一比较法二综合法与分析法三反证法与放缩法第三讲柯西不等式与排序不等式一二维形式柯西不等式阅读与思考法国科学家柯西二一般形式的柯西不等式三排序不等式第四讲数学归纳法证明不等式一数学归纳法二用数学归纳法证明不等式学习总结报告选修4-6 初等数论初步引言第一讲整数的整除一整除1.整除的概念和性质2.带余除法3.素数及其判别法二最大公因数与最小公倍数1.最大公因数2.最小公倍数三算术基本定理第二讲同余与同余方程一同余1.同余的概念2.同余的性质二剩余类及其运算三费马小定理和欧拉定理四一次同余方程1.一次同余方程2.大衍求一术五拉格朗日插值法和孙子定理六弃九验算法第三讲一次不定方程一二元一次不定方程二二元一次不定方程的特解三多元一次不定方程第四讲数论在密码中的应用一信息的加密与去密二大数分解和公开密钥学习总结报告附录一剩余系和欧拉函数附录二多项式的整除性选修4-7 优选法与试验设计初步引言第一讲优选法一什么叫优选法二单峰函数三黄金分割法——0.618法1.黄金分割常数2.黄金分割法——0.618法阅读与思考黄金分割研究简史四分数法1.分数法阅读与思考斐波那契数列和黄金分割2.分数法的最优性五其他几种常用的优越法1.对分法2.盲人爬山法3.分批试验法4.多峰的情形六多因素方法1.纵横对折法和从好点出发法2.平行线法3.双因素盲人爬山法第二讲试验设计初步一正交试验设计法1.正交表2.正交试验设计3.试验结果的分析4.正交表的特性二正交试验的应用学习总结报告附录一、附录二、附录三选修4-9 风险与决策引言第一讲风险与决策的基本概念一风险与决策的关系二风险与决策的基本概念1.风险(平均损失)2.平均收益3.损益矩阵4.风险型决策探究与发现风险相差不大时该如何决策第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介一马尔可夫链简介1.马尔可夫性与马尔可夫链2.转移概率与转移概率矩阵二马尔可夫型决策简介三长期准则下的马尔可夫型决策理论1.马尔可夫链的平稳分布2.平稳分布与马尔可夫型决策的长期准则3.平稳准则的应用案例学习总结报告附录。

人教A版高中数学教科书目录(2019新版)

人教A版高中数学教科书目录(2019新版)

人教A 版高中数学教科书目录(2019新版)人教A 版(2019)必修第一册第一章 集合与常用逻辑用语 1.1集合的概念 1.2集合间的基本关系 1.3集合的基本运算1.4充分条件与必要条件 1.5全称量词与存在量词第二章 一元二次函数、方程和不等式 2.1等式性质与不等式性质 2.2基本不等式2.3二次函数与一元二次方程、不等式 第三章 函数的概念与性质3.1函数的概念及其表示 3.2函数的基本性质 3.3幂函数3.4函数的应用(一) 第四章 指数函数与对数函数4.1指数 4.2指数函数 4.3对数 4.4对数函数 4.5函数的应用(二) 第五章 三角图数5.1任意角和孤度制 5.2三角函数的概念 5.3诱导公式5.4三角函数的图象与性质 5.5三角恒等变换 5.6函数sin()yA x ωϕ+5.7三角函数的应用人教A 版(2019)必修第二册第六章 平面向量及其应用 6.1平面向量的概念 6.2平面向量的运算6.3平面向量的基本定理及坐标表示 6.4平面向量的应用 第七章 复数7.1复数的概念 7.2复数的四则运算 7.3*复数的三角表示 第八章 立体几何初步8.1基本立体图形 8.2立体图形的直观图 8.3简单几何体的表面积与体积 8.4空间点、直线、平面的位置关系 8.5空间直线、平面的平行 8.6空间直线、平面的垂直 第九章 统计9.1随机抽样 9.2用样本估计总体 第十章 概率 10.1随机事件与概率 10.2事件的相互独立型 10.3频率与概率人教A版(2019)选择性必修第一册第一章空间向量与立体几何1.1空间向量及其运算1.2空间向量基本定理1.3空间向量及其运算的坐标表示第二章直线与圆的方程2.1直线的倾斜角与斜率2.2直线方程2.3直线的交点坐标与距离公式2.4圆的方程2.5直线与圆、圆与圆的位置关第三章圆锥曲线的方程3.1椭圆3.2双曲线3.3抛物线人教A版(2019)选择性必修第二册第四章数列4.1数列的概念4.2等比数列4.3等差数列4.4数学归纳法第五章一元函数的导数及其应用5.1导数的概念及其意义5.2导数的运算5.3导数在研究函数中的应用人教A版(2019)选择性必修第三册第六章计数原理6.1分类加法计数原理与分步乘法计数原理6.2排列与组合6.3二项式定理第七章随机变量及其分布7.1条件概率与全概率公式7.2离散型随机变量及其分布7.3离散型随机变量的数字特征7.4二项分布与超几何分布7.5正态分布第八章成对数据的统计分析8.1成对数据的统计相关性8.2一元线性回归模型及其应用8.3列联表与独立检验。

黑龙江省绥化市第九中学高二理科新人教A版选修2-1第三章空间向量与立体几何导学案

黑龙江省绥化市第九中学高二理科新人教A版选修2-1第三章空间向量与立体几何导学案

⿊龙江省绥化市第九中学⾼⼆理科新⼈教A版选修2-1第三章空间向量与⽴体⼏何导学案1. 理解空间向量的概念,掌握其表⽰⽅法;2. 会⽤图形说明空间向量加法、减法、数乘向量及它们的运算律;3. 能⽤空间向量的运算意义及运算律解决简单的⽴体⼏何中的问题.8486 复习1:平⾯向量基本概念:具有和的量叫向量,叫向量的模(或长度);叫零向量,记着;叫单位向量.叫相反向量, a的相反向量记着 .叫相等向量. 向量的表⽰⽅法有,,和共三种⽅法.复习2:平⾯向量有加减以及数乘向量运算:1. 向量的加法和减法的运算法则有法则和法则.2. 实数与向量的积:实数λ与向量a 的积是⼀个量,记作,其长度和⽅向规定如下: (1)|λa |= .(2)当λ>0时,λa 与A. ;当λ<0时,λa 与A. ;当λ=0时,λa = .3. 向量加法和数乘向量,以下运算律成⽴吗?加法交换律:a +b =b +a加法结合律:(a +b )+c =a +(b +c )数乘分配律:λ(a +b )=λa +λb⼆、新课导学※学习探究探究任务⼀:空间向量的相关概念问题:什么叫空间向量?空间向量中有零向量,单位向量,相等向量吗?空间向量如何表⽰?新知:空间向量的加法和减法运算:空间任意两个向量都可以平移到同⼀平⾯内,变为OB =, AB = ,试试:1. 分别⽤平⾏四边形法则和三⾓形法则求,.a b a b +-.2. 点C 在线段AB 上,且52AC CB =,则AC = AB , BC = AB . 反思:空间向量加法与数乘向量有如下运算律吗?⑴加法交换律:A. + B. = B. + a ;⑵加法结合律:(A. + b ) + C. =A. + (B. + c );⑶数乘分配律:λ(A. + b ) =λA. +λb .※典型例题例 1 已知平⾏六⾯体''''ABCD A B C D -(如图),化简下列向量表达式,并标出化简结果的向量:AB BC + ⑴;'AB AD AA ++⑵;1'2AB AD CC ++ ⑶1(')2AB AD AA ++ ⑷.变式:在上图中,⽤',,AB AD AA 表⽰'',AC BD 和'DB.⼩结:空间向量加法的运算要注意:⾸尾相接的若⼲向量之和,等于由起始向量的起点指向末尾向量的终点的向量,求空间若⼲向量之和时,可通过平移使它们转化为⾸尾相接的向量.. b1. 掌握空间向量的数乘运算律,能进⾏简单的代数式化简;2. 理解共线向量定理和共⾯向量定理及它们的推论;3. 能⽤空间向量的运算意义及运算律解决简单的⽴体⼏何中的问题.⼀、课前准备(预习教材P 86~ P 87,找出疑惑之处)复习1:化简:⑴ 5(32a b - )+4(23b a -);⑵ ()()63a b c a b c -+--+- .复习2:在平⾯上,什么叫做两个向量平⾏?在平⾯上有两个向量,a b ,若b 是⾮零向量,则a与b平⾏的充要条件是⼆、新课导学※学习探究探究任务⼀:空间向量的共线问题:空间任意两个向量有⼏种位置关系?如何判定它们的位置关系?新知:空间向量的共线:1. 如果表⽰空间向量的所在的直线互相或,则这些向量叫共线向量,也叫平⾏向量.2. 空间向量共线:定理:对空间任意两个向量,a b (0b ≠ ), //a b的充要条件是存在唯⼀实数λ,使得推论:如图,l 为经过已知点A 且平⾏于已知⾮零向量的直线,对空间的任意⼀点O ,点P 在直线l 上的充要条件是试试:已知5,28,AB a b BC a b =+=-+()3CD a b =-,求证: A,B,C 三点共线.反思:充分理解两个向量,a b共线向量的充要条件中的0b ≠,注意零向量与任何向量共线.※典型例题例 1 已知直线AB ,点O 是直线AB 外⼀点,若OP xOA yOB =+,且x +y =1,试判断A,B,P 三点是否共线?变式:已知A,B,P 三点共线,点O 是直线AB 外⼀点,若12OP OA tOB =+,那么t =例2 已知平⾏六⾯体''''ABCD A B C D -,点M 是棱AA '的中点,点G 在对⾓线A 'C 上,且CG:GA '=2:1,设CD =a ,',CB b CC c ==,试⽤向量,,a b c 表⽰向量',,,CA CA CM CG .变式1:已知长⽅体''''ABCD A B C D -,M 是对⾓线AC '中点,化简下列表达式:⑴ 'AA CB - ;⑵ '''''AB B C C D ++⑶ '111222AD AB A A +-D试试:若空间任意⼀点O 和不共线的三点A,B,C 满⾜关系式111236OP OA OB OC =++,则点P 与 A,B,C共⾯吗?反思:若空间任意⼀点O 和不共线的三点A,B,C 满⾜关系式OP xOA yOB zOC =++,且点P 与 A,B,C 共⾯,则x y z ++= .※典型例题例1 下列等式中,使M ,A ,B ,C 四点共⾯的个数是()①;OM OA OB OC =--②111;532OM OA OB OC =++③0;MA MB MC ++=④0OM OA OB OC +++= . A. 1 B. 2 C. 3 D. 4变式:已知A,B,C 三点不共线,O 为平⾯ABC 外⼀点,若向量()17,53OP OA OB OC R λλ=++∈则P ,A,B,C 四点共⾯的条件是λ=例2 如图,已知平⾏四边形ABCD,过平⾯AC 外⼀点O 作射线OA,OB,OC,OD,在四条射线上分别取点E,,F ,G ,H,并且使,OE OF OG OHk OA OB OC OD==== 求证:E,F ,G ,H 四点共⾯.变式:已知空间四边形ABCD 的四个顶点A,B,C,D 不共⾯,E,F ,G ,H 分别是AB,BC,CD,AD 的中点,求证:E,F ,G ,H 四点共⾯.⼩结:空间向量的化简与平⾯向量的化简⼀样,加法注意向量的⾸尾相接,减法注意向量要共起点,并且要注意向量的⽅向.※动⼿试试练1. 已知,,A B C 三点不共线,对平⾯外任⼀点,满⾜条件122555OP OA OB OC =++,试判断:点P 与,,A B C 是否⼀定共⾯?练 2. 已知32,(1)8a m n b x m n =-=++ ,0a ≠,若//a b ,求实数.x三、总结提升※学习⼩结 1. 空间向量的数乘运算法则及它们的运算律; 2. 空间两个向量共线的充要条件及推论. ※知识拓展平⾯向量仅限于研究平⾯图形在它所在的平⾯内的平移,⽽空间向量研究的是空间的平移,它们的共同点都是指“将图形上所有点沿相同的⽅向移动相.※⾃我评价你完成本节导学案的情况为(). A. 很好 B. 较好 C. ⼀般 D. 较差※当堂检测(时量:5分钟满分:10分)计分:1. 在平⾏六⾯体ABCD -A 1B 1C 1D 1中,向量1D A、1D C 、11AC是() A. 有相同起点的向量 B .等长向量 C .共⾯向量 D .不共⾯向量.2. 正⽅体''''ABCD A B C D -中,点E 是上底⾯''''A B C D 的中⼼,若''BB xAD yAB zAA =++, 则x =,y =,z = .3. 若点P 是线段AB 的中点,点O 在直线AB 外,则OP OA + OB .4. 平⾏六⾯体''''ABCD A B C D -, O 为A 1C 与B 1D的交点,则'1()3AB AD AA ++=AO .5. 在下列命题中:①若a 、b 共线,则a 、b 所在的直线平⾏;②若a 、b 所在的直线是异⾯直线,则a 、b ⼀定不共⾯;③若a 、b 、c 三向量两两共⾯,则a 、b 、c 三向量⼀定也共⾯;④已知三向量a 、b 、c ,则空间任意⼀个向量p 总可以唯⼀表⽰为p =x a +y b +z c .其中正确命题的个数为().A .0 B.1 C. 2D. 3 1. 若324,(1)82a m n p b x m n yp =--=+++, 0a ≠ ,若//a b ,求实数,x y .2.已知两个⾮零向量21,e e不共线,12,AB e e =+ 121228,33AC e e AD e e =+=-. 求证:,,,A B C D 共⾯.A B C D F E G H§3.1.3.空间向量的数量积(1)1. 掌握空间向量夹⾓和模的概念及表⽰⽅法;2.复习1:什么是平⾯向量a 与b的数量积?复习2:在边长为1的正三⾓形⊿ABC 中,求AB BC ?⼆、新课导学※学习探究探究任务⼀:空间向量的数量积定义和性质问题夹⾓和空间线段的长度问题?新知:1) 两个向量的夹⾓的定义:已知两⾮零向量,a b在空间⼀点O ,作,OA a OB b ==,则AOB ∠做向量a 与b 的夹⾓,记作 .试试:⑴范围: ,a b ≤<>≤,a b ?? =0时,a b 与 ;,a b ?? =π时,a b 与⑵ ,,a b b a <>=<>成⽴吗?⑶,a b <>=,则称a 与b 互相垂直,记作 .2) 向量的数量积:已知向量,a b ,则叫做,a b作a b ? ,即a b ?=.规定:零向量与任意向量的数量积等于零.反思:⑴两个向量的数量积是数量还是向量?⑵ 0a ?= (选0还是0 )⑶你能说出a b ?的⼏何意义吗? 3) 空间向量数量积的性质:(1)设单位向量e ,则||cos ,a e a a e ?=<>.(2)a b a b ⊥??=.= .4) 空间向量数量积运算律:(1)()()()a b a b a b λλλ?=?=?.(2)a b b a ?=?(交换律).(3)()a b c a b a c ?+=?+?(分配律反思:⑴ )()a b c a b c ??=??(吗?举例说明.⑵若a b a c ?=? ,则b c =吗?举例说明.⑶若0a b ?= ,则00a b ==或吗?为什么?※典型例题例1 ⽤向量⽅法证明:在平⾯上的⼀条直线,如果和这个平⾯的⼀条斜线的射影垂直,那么它也和这条斜线垂直.变式1:⽤向量⽅法证明:已知:,m n 是平⾯α内的两条相交直线,直线l 与平⾯α的交点为B ,且,l m l n ⊥⊥. 求证:l α⊥.例2 如图,在空间四边形ABCD 中,2AB =,3BC =,BD =,3CD =,30ABD ∠= ,60ABC ∠= ,求AB 与CD 的夹⾓的余弦值变式:如图,在正三棱柱ABC-A 1B 1C 1中,若AB =2BB 1,则AB 1与C 1B 所成的⾓为()A. 60°B. 90°C. 105°D. 75°例3 如图,在平⾏四边形ABCD-A 1B 1C 1D 1中,4,3AB AD ==,'5AA =,90BAD ∠=?,'BAA ∠='DAA ∠=60°,求'AC 的长.※动⼿试试练1. 已知向量,a b满⾜1a = ,2b = ,3a b +=,则a b -= ____.练 2. 222,,22a b a b ==?=-已知, 则a b 与的夹⾓⼤⼩为_____. 三、总结提升※学习⼩结1..向量的数量积的定义和⼏何意义.2. 向量的数量积的性质和运算律的运⽤.※知识拓展向量给出了⼀种解决⽴体⼏何中证明垂直问题,求两条直线的夹⾓和线段长度的新⽅法.学习评价※⾃我评价你完成本节导学案的情况为().A. 很好B. 较好C. ⼀般D. 较差※当堂检测(时量:5分钟满分:10分)计分: 1. 下列命题中:①若0a b ?= ,则a ,b 中⾄少⼀个为0②若a 0≠ 且a b a c ?=? ,则b c =③()()a b c a b c ??=??④22(32)(32)94a b a b a b +?-=-正确有个数为()A. 0个B. 1个C. 2个D. 3个2. 已知1e 和2e 是两个单位向量,夹⾓为3π,则下⾯向量中与212e e -垂直的是()A. 12e e +B. 12e e -C. 1eD. 2e 3.已知ABC ?中,,,A B C ∠∠∠所对的边为,,a b c ,且3,1a b ==,30C ∠=?,则BC CA ?=4. 已知4a = ,2b =,且a 和b 不共线,当 a b λ+ 与a b λ-的夹⾓是锐⾓时,λ的取值范围是 .5. 已知向量,a b满⾜4a = ,2b = ,3a b -= ,则a b +=____课后作业:1. 已知空间四边形ABCD 中,AB CD ⊥,AC BD ⊥,求证:AD BC ⊥.2. 已知线段AB 、BD 在平⾯α内,BD ⊥AB , 线段AC α⊥,如果AB =a ,BD =b ,AC =c ,求C 、D 间的距离.D B C§3.1.4 空间向量的正交分解及其坐标表⽰1. 掌握空间向量的正交分解及空间向量基本定理和坐标表⽰;2. 掌握空间向量的坐标运算的规律;⼀、课前准备(预习教材P 92-96找出疑惑之处)复习1:平⾯向量基本定理:对平⾯上的任意⼀个向量P ,,a b 是平⾯上两个向量,总是存在实数对(),x y ,使得向量P 可以⽤,a b 来表⽰,表达式为,其中,a b 叫做 . 若a b ⊥,则称向量P 正交分解.复习2:平⾯向量的坐标表⽰:平⾯直⾓坐标系中,分别取x 轴和y 轴上的向量,i j 作为基底,对平⾯上任意向量a ,有且只有⼀对实数x ,y ,使得a xi y j =+,,则称有序对(),x y 为向量a 的,即a = .⼆、新课导学※学习探究探究任务⼀:空间向量的正交分解问题:对空间的任意向量a ,能否⽤空间的⼏个向量唯⼀表⽰?如果能,那需要⼏个向量?这⼏个向量有何位置关系?新知:⑴空间向量的正交分解:空间的任意向量a,均可分解为不共⾯的三个向量11a λ、22a λ、33a λ,使112233a a a a λλλ=++ . 如果123,,a a a两两,这种分解就是空间向量的正交分解.(2)空间向量基本定理:如果三个向量,,a b c ,对空间任⼀向量p ,存在有序实数组{,,}x y z ,使得p xa yb zc =++. 把的⼀个基底,,,a b c 都叫做基向量.反思:空间任意⼀个向量的基底有个.⑶单位正交分解:如果空间⼀个基底的三个基向量互相,长度都为,则这个基底叫做单位正交基⑷空间向量的坐标表⽰:给定⼀个空间直⾓坐标系O -xyz 和向量a ,且设i 、j 、k 为 x 轴、y 轴、z 轴正⽅向的单位向量,则存在有序实数组{,,}x y z ,使得a xi y j zk =++,则称有序实数组{,,}x y z 为向量a的坐标,记着p =.⑸设A 111(,,)x y z ,B 222(,,)x y z ,则AB= .⑹向量的直⾓坐标运算:设a =123(,,)a a a ,b =123(,,)b b b ,则⑴a +b =112233(,,)a b a b a b +++;⑵a -b =112233(,,)a b a b a b ---;⑶λa =123(,,)a a a λλλ()R λ∈;⑷a ·b =112233a b a b a b ++.试试: 1. 设23a i j k =-+,则向量a 的坐标为 .2. 若A (1,0,2),B (3,1,1)-,则AB= . 3. 已知a =(2,3,5)-,b =(3,1,4)--,求a +b ,a -b ,8a ,a ·b※典型例题例1 已知向量,,a b c 是空间的⼀个基底,从向量,,a b c 中选哪⼀个向量,⼀定可以与向量,p a b =+q a b =-构成空间的另⼀个基底?变式:已知O,A,B,C 为空间四点,且向量,,OA OB OC不构成空间的⼀个基底,那么点O,A,B,C 是否共⾯?⼩结:判定空间三个向量是否构成空间的⼀个基底的⽅法是:这三个向量⼀定不共⾯. 例2 如图,M,N 分别是四⾯体QABC 的边OA,BC 的中点,P ,Q 是MN 的三等分点,⽤,,OA OB OC表⽰OP 和OQ .变式:已知平⾏六⾯体''''ABCD A B C D -,点G是侧⾯''BB C C 的中⼼,且OA a =,',OC b OO c == ,试⽤向量,,a b c 表⽰下列向量: ⑴''',,;OB BA CA ⑵ OG .※动⼿试试练1. 已知()()()2,3,1,2,0,3,0,0,2a b c =-==,求:⑴()a b c ?+ ;⑵68a b c +- .练2. 正⽅体''''ABCD A B C D -的棱长为2,以A 为坐标原点,以'AB,AD,AA 为x 轴、y 轴、z 轴正⽅向建⽴空间直⾓坐标系,则点1D ,',AC AC 的坐标分别是,, .三、总结提升※学习⼩结1. 空间向量的正交分解及空间向量基本定理;2. 空间向量坐标表⽰及其运算※知识拓展建⽴空间直⾓坐标系前,⼀定要验证三条轴的垂直关系,若图中没有建系的环境,则根据已知条件,.※⾃我评价你完成本节导学案的情况为(). A. 很好 B. 较好 C. ⼀般 D. 较差※当堂检测(时量:5分钟满分:10分)计分:1. 若{}a,,b c为空间向量的⼀组基底,则下列各项中,能构成基底的是()A.,,a a b a b +-B. ,,b a b a b +-C. ,,c a b a b +-D. 2,,a b a b a b ++-2. 设i 、j 、k 为空间直⾓坐标系O -xyz 中x 轴、y 轴、z 轴正⽅向的单位向量,且AB i j k =-+-,则点B 的坐标是 3. 在三棱锥OABC 中,G 是ABC ?的重⼼(三条中线的交点),选取,,OA OB OC 为基底,试⽤基底表⽰OG =4. 正⽅体''''ABCD A B C D -的棱长为2,以A 为坐标原点,以'AB,AD,AA为x 轴、y 轴、z 轴正⽅向建⽴空间直⾓坐标系,E 为BB 1中点,则E 的坐标是 .5. 已知关于x 的⽅程()222350x t x t t --+++=有两个实根,c a tb =+ ,且()()1,1,3,1,0,2a b =-=-,当t =时,c的模取得最⼤值. 1. 已知()()3,5,7,2,4,3A B =-=-,求,,AB BA线段AB的中点坐标及线段AB 的长度.2. 已知,,a b c 是空间的⼀个正交基底,向量,,a b a b c +- 是另⼀组基底,若p 在,,a b c 的坐标是()1,2,3,求p 在,,a b a b c +-的坐标.§3.1.5空间向量运算的坐标表⽰1. 掌握空间向量的长度公式、夹⾓公式、两点间距离公式、中点坐标公式;※典型例题例1. 如图,在正⽅体1111ABCD A B C D -中,点11,E F 分别是1111,A B C D 的⼀个四等分点,求1BE 与1DF 所成的⾓的余弦值.变式:如上图,在正⽅体1111A B C D A B C D -中,1111113A BB E D F ==,求1BE 与1DF 所成⾓的余弦值.例2. 如图,正⽅体1111ABCD A B C D -中,点E,F 分别是111,BB D B 的中点,求证:1EF DA ⊥.变式:如图,正⽅体1111ABCD A B C D -中,点M 是AB 的中点,求1DB 与CM 所成⾓的余弦值.1. 若a =123(,,)a a a ,b =123(,,)b b b ,则312123a a ab b b ==是//a b的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分⼜不不要条件2. 已知()()2,1,3,4,2,a b x =-=-,且a b ⊥,则x = .3. 已知()()1,0,0,0,1,1A B -,OA OB λ+ 与OB 的夹⾓为120°,则λ的值为()A. B. C. D. 4. 若()()2,2,0,3,2,a x b x x ==-,且,a b 的夹⾓为钝⾓,则x 的取值范围是()A. 4x <-B. 40x -<<C. 04x <<D. 4x >5. 已知 ()()1,2,,,1,2a y b x =-=,且(2)//(2)a b a b +-,则()A. 1,13x y ==B. 1,42x y ==-C. 12,4x y ==- D. 1,1x y ==-1. 如图,正⽅体''''ABCD ABC D -棱长为a ,⑴求'',A B B C 的夹⾓;⑵求证:''A B AC ⊥.2. 如图,正⽅体1111ABCD A B C D -中,点M,N 分别为棱11,A A B B 的中点,求CM 和1D N 所成⾓的余弦值.§3.1 空间向量及其运算(练习)1. 熟练掌握空间向量的加法,减法,向量的数乘运算,向量的数量积运算及其坐标表⽰;a xi y j zk =++,则称有序实数组{,,}x y z 为向量a的坐标,记着p =.10. 设A 111(,,)x y z ,B 222(,,)x y z ,则AB = .11. 向量的直⾓坐标运算:设a =123(,,)a a a ,b =123(,,)b b b ,则⑴a +b =;⑵a -b =;⑶λa =;⑷a ·b =※动⼿试试 1.在下列命题中:①若a 、b 共线,则a 、b 所在的直线平⾏;②若a 、b 所在的直线是异⾯直线,则a 、b ⼀定不共⾯;③若a 、b 、c 三向量两两共⾯,则a 、b 、c 三向量⼀定也共⾯;④已知三向量a 、b 、c ,则空间任意⼀个向量p 总可以唯⼀表⽰为p =x a +y b +z c .其中正确命题的个数为()A .0 B. 1 C. 2 D. 3 2.在平⾏六⾯体ABCD -A 1B 1C 1D 1中,向量1D A、1D C 、11AC 是() A .有相同起点的向量 B .等长向量C .共⾯向量D .不共⾯向量3.已知a =(2,-1,3),b =(-1,4,-2), c =(7,5,λ),若a 、b 、c 三向量共⾯,则实数λ=() A. 627 B. 637 C. 647 D. 657 4.若a 、b 均为⾮零向量,则||||?=a b a b 是a 与b 共线的() A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分⼜不必要条件5.已知△ABC 的三个顶点为A (3,3,2),B (4,-3,7),C (0,5,1),则BC 边上的中线长为() A .2 B .3C .4D .56. 32,2,a i j k b i j k =+-=-+ 则53a b ?= ()A .-15B .-5C .-3D .-1※典型例题例1 如图,空间四边形OABC 中,,OA a OB b == , OC c =,点M 在OA 上,且OM =2MA ,点N 为BC 的中点,则MN = .变式:如图,平⾏六⾯体''''ABCD A B C D -中,,AB a AD b ==,'AA c = ,点,,P M N 分别是'''',,CA CD C D 的中点,点Q 在'CA 上,且'41CQ QA =,⽤基底,,a b c表⽰下列向量:⑴ AP ; ⑵ AM ; ⑶ AN ; ⑷ AQ .例2 如图,在直三棱柱ABC —A 1B 1C 1中,190,1,2,6ABC CB CA ∠=?==,点M 是1CC 的中点,求证:1AM BA ⊥.变式:正三棱柱ABC —A 1B 1C 1的侧棱长为2,底⾯边长为1,点M 是BC 的中点,在直线1CC 上求⼀点N ,使得1MN AB ⊥※⾃我评价你完成本节导学案的情况为(). A. 很好 B. 较好 C. ⼀般 D. 较差※当堂检测(时量:5分钟满分:10分)计分:1.直三棱柱ABC —A 1B 1C 1中,若CA = a ,CB =b ,1CC = c ,则1A B =() A. +-a b c B. -+a b c C. -++a b c D.-+-a b c 2.,,m a m b ⊥⊥ (,n a b R λµλµλ=+∈向量且、0)µ≠则()A .//m nB . m 与n不平⾏也不垂直C. m n ⊥, D .以上情况都可能.3. 已知a +b +c =0 ,|a |=2,|b |=3,|c|则向量a 与b之间的夹⾓,a b <> 为()A .30°B .45°C .60°D .以上都不对4.已知()()1,1,0,1,0,2,a b==-且ka b + 与2a b - 互相垂直,则k 的值是()A. .1B. 15C. 35D. 755. 若A (m +1,n -1,3), B. (2m ,n ,m -2n ),C (m +3,n -3,9)三点共线,则m +n =如图,在棱长为1的正⽅体1111ABCD A B C D -中,点,,E F G 分别是11,,DD BD BB 的中点. ⑴求证:EF CF ⊥;⑵求EF 与CG 所成⾓的余弦;⑶求CE 的长.§3.2⽴体⼏何中的向量⽅法(1)1. 掌握直线的⽅向向量及平⾯的法向量的概念;⾏、垂直、夹⾓等⽴体⼏何问题.⼀、课前准备(预习教材P 102~ P 104,找出疑惑之处)复习1:可以确定⼀条直线;确定⼀个平⾯的⽅法有哪些?复习2:如何判定空间A ,B ,C 三点在⼀条直线上?复习3:设a =123(,,)a a a ,b =123(,,)b b b ,a ·b =⼆、新课导学※学习探究探究任务⼀:向量表⽰空间的点、直线、平⾯问题:怎样⽤向量来表⽰点、直线、平⾯在空间中的位置?新知:⑴点:在空间中,我们取⼀定点O 作为基点,那么空间中任意⼀点P 的位置就可以⽤向量OP来表⽰,我们把向量OP称为点P 的位置向量. ⑵直线:①直线的⽅向向量:和这条直线平⾏或共线的⾮零向量.②对于直线l 上的任⼀点P ,存在实数t ,使得AP t AB =,此⽅程称为直线的向量参数⽅程. ⑶平⾯:①空间中平⾯α的位置可以由α内两个不共线向量确定.对于平⾯α上的任⼀点P ,,a b是平⾯α内两个不共线向量,则存在有序实数对(,)x y ,使得OP x a y b =+ .②空间中平⾯α的位置还可以⽤垂直于平⾯的直线的⽅向向量表⽰空间中平⾯的位置.⑷平⾯的法向量:如果表⽰向量n的有向线段所在直线垂直于平⾯α,则称这个向量n垂直于平⾯α,记作n ⊥α,那么向量n叫做平⾯α的法向量.试试: .1.如果,a b 都是平⾯α的法向量,则,a b的关系 .2.向量n是平⾯α的法向量,向量a 是与平⾯α平⾏或在平⾯内,则n 与a的关系是 .反思:1. ⼀个平⾯的法向量是唯⼀的吗?2. 平⾯的法向量可以是零向量吗?⑸向量表⽰平⾏、垂直关系:设直线,l m 的⽅向向量分别为,a b,平⾯,αβ的法向量分别为,u v,则① l ∥m ?a ∥b a kb ?=② l ∥α?a u ⊥ 0a u ??=③α∥β?u ∥v .u kv ?=※典型例题例1 已知两点()()1,2,3,2,1,3A B --,求直线AB与坐标平⾯YOZ 的交点.变式:已知三点()()1,2,3,2,1,2,A B ()1,1,2P ,点Q 在OP 上运动(O 为坐标原点),求当QA QB ?取得最⼩值时,点Q 的坐标.⼩结:解决有关三点共线问题直接利⽤直线的参数⽅程即可.例2 ⽤向量⽅法证明两个平⾯平⾏的判定定理:⼀个平⾯内的两条相交直线与另⼀个平⾯平⾏,则这两个平⾯平⾏.变式:在空间直⾓坐标系中,已知()()()3,0,0,0,4,0,0,0,2A B C ,试求平⾯ABC 的⼀个法向量.⼩结:平⾯的法向量与平⾯内的任意向量都垂直.※动⼿试试练1. 设,a b分别是直线12,l l 的⽅向向量,判断直线12,l l 的位置关系:⑴ ()()1,2,2,2,3,2a b =-=-;⑵ ()()0,0,1,0,0,3a b ==.练2. 设,u v分别是平⾯,αβ的法向量,判断平⾯,αβ的位置关系:⑴ ()()1,2,2,2,4,4u v =-=--;⑵ ()()2,3,5,3,1,4u v =-=--.三、总结提升※学习⼩结1. 空间点,直线和平⾯的向量表⽰⽅法2. 平⾯的法向量求法和性质.※知识拓展:求平⾯的法向量步骤:⑴设平⾯的法向量为(,,)n x y z =;⑵找出(求出)平⾯内的两个不共线的向量的坐标;⑶根据法向量的定义建⽴关于,,x y z 的⽅程组;,即得法向量.※⾃我评价你完成本节导学案的情况为(). A. 很好 B. 较好 C. ⼀般 D. 较差※当堂检测(时量:5分钟满分:10分)计分:1. 设()()2,1,2,6,3,6a b =--=--分别是直线12,l l 的⽅向向量,则直线12,l l 的位置关系是 .2. 设()()2,2,5,6,4,4u v =-=-分别是平⾯,αβ的法向量,则平⾯,αβ的位置关系是 .3. 已知n α⊥,下列说法错误的是()A. 若a α?,则n a ⊥B.若//a α,则n a ⊥C.若,m α⊥,则//n mD.若,m α⊥,则n m = 4.下列说法正确的是()A.平⾯的法向量是唯⼀确定的B.⼀条直线的⽅向向量是唯⼀确定的C.平⾯法向量和直线的⽅向向量⼀定不是零向量D.若m 是直线l 的⽅向向量,//l α,则//m α5. 已知()()1,0,1,0,3,1AB AC =-=-,能做平⾯ABC 的法向量的是()A. ()1,2,1B.11,,13??C.()1,0,0D. ()2,1,31. 在正⽅体1111ABCD A B C D -中,求证:1DB是平⾯1ACD 的⼀个法向量.2.已知()()2,2,1,4,5,3AB AC ==,求平⾯ABC 的⼀个法向量.§3.2⽴体⼏何中的向量⽅法(2)的⽴体⼏何问题;2. 掌握向量运算在⼏何中求两点间距离和求空间图形中的⾓度的计算⽅法.⼀、课前准备(预习教材P 105~ P 107,找出疑惑之处.复习1:已知1a b ?= ,1,2a b ==,且2m a b =+ ,求m .复习2:什么叫⼆⾯⾓?⼆⾯⾓的⼤⼩如何度量?⼆⾯⾓的范围是什么?⼆、新课导学※学习探究探究任务⼀:⽤向量求空间线段的长度问题:如何⽤向量⽅法求空间线段的长度?新知:⽤空间向量表⽰空间线段,然后利⽤公式a = 求出线段长度.试试:在长⽅体''''A B C DA B C D -中,已知'1,2,1AB BC CC ===,求'AC 的长.反思:⽤向量⽅法求线段的长度,关键在于把未知量⽤已知条件中的向量表⽰.※典型例题例1 如图,⼀个结晶体的形状为平⾏六⾯体,其中,以顶点A 为端点的三条棱长都相等,且它们彼此的夹⾓都是60°,那么以这个顶点为端点的晶体的对⾓线的长与棱长有什么关系?变式1:上题中平⾏六⾯体的对⾓线1BD 的长与棱长有什么关系?变式2:如果⼀个平⾏六⾯体的各条棱长都相等,并且以某⼀顶点为端点的各棱间的夹⾓都等于α, 那么由这个平⾏六⾯体的对⾓线的长可以确定棱长吗?探究任务⼆:⽤向量求空间图形中的⾓度例2 如图,甲站在⽔库底⾯上的点A 处,⼄站在⽔坝斜⾯上的点B 处.从A ,B 到直线l (库底与⽔坝的交线)的距离,AC BD 分别为,a b ,CD 的长为c ,AB 的长为d .求库底与⽔坝所成⼆⾯⾓的余弦值.变式:如图,60?的⼆⾯⾓的棱上有,A B 两点,直线,AC BD 分别在这个⼆⾯⾓的两个半平⾯内,且都垂直于,AB 已知4,6,8AB AC BD ===,求CD 的长.※动⼿试试练1. 如图,已知线段AB 在平⾯α内,线段AC α⊥,线段BD ⊥AB ,线段'DD α⊥,'30DBD∠= ,如果AB =a ,AC =BD =b ,求C 、D 间的距离.练2. 如图,M 、N 分别是棱长为1的正⽅体''''ABCD A B C D -的棱'BB 、''B C 的中点.求异⾯直线MN 与'CD 所成的⾓.三、总结提升※学习⼩结 1. 求出空间线段的长度:⽤空间向量表⽰空间线段,然后利⽤公式a ; 2. 空间的⼆⾯⾓或异⾯直线的夹⾓,都可以转化为利⽤公式cos ,a ba b a b= 求解.※知识拓展解空间图形问题时,可以分为三步完成:(1)建⽴⽴体图形与空间向量的联系,⽤空间向量表⽰问题中涉及的点、直线、平⾯,把⽴体⼏何问题转化为向量问题(还常建⽴坐标系来辅助);(2)通过向量运算,研究点、直线、平⾯之间的位置关系以及它们之间距离和夹⾓等问题;“翻译”成相应的⼏何意义.※⾃我评价你完成本节导学案的情况为().A. 很好B. 较好C. ⼀般D. 较差※当堂检测(时量:5分钟满分:10分)计分: 1. 已知()()1,02,1,1,3A B -,则AB = .2. 已知1cos ,2a b =- ,则,a b 的夹⾓为 .3. 若M 、N 分别是棱长为1的正⽅体''''ABCD A B C D-的棱''',A B BB 的中点,那么直线,AM CN 所成的⾓的余弦为()C.35D.25 4.将锐⾓为60?边长为a 的菱形ABCD 沿较短的对⾓线折成60?的⼆⾯⾓,则,AC BD 间的距离是()A.32a C.34a 5.正⽅体'''A B C D AB C D -中棱长为a ,'13AM AC=,N 是'BB 的中点,则MN 为()1. 如图,正⽅体''''ABCD A B C D -的棱长为1, ,M N 分别是''',BB B C 的中点,求:⑴ ',MN CD 所成⾓的⼤⼩;⑵ ,MN AD 所成⾓的⼤⼩;⑶ AN 的长度.§3.2⽴体⼏何中的向量⽅法(3)C。

高中数学 第三章 空间向量与立体几何 3.2 第1课时 空间向量与平行、垂直关系学案 新人教A版选修

高中数学 第三章 空间向量与立体几何 3.2 第1课时 空间向量与平行、垂直关系学案 新人教A版选修

第1课时空间向量与平行、垂直关系1.理解直线的方向向量与平面的法向量的概念.2.会求平面的法向量.3.能利用直线的方向向量和平面的法向量判断并证明空间中的平行、垂直关系.1.直线的方向向量和平面的法向量(1)直线的方向向量直线的方向向量是指和这条直线平行或共线的向量,一条直线的方向向量有无数个.(2)平面的法向量直线l⊥α,取直线l的方向向量a,则向量a叫做平面α的法向量.2.空间平行关系的向量表示(1)线线平行设直线l,m的方向向量分别为a=(a1,b1,c1),b=(a2,b2,c2),则l∥m⇔a∥b⇔a =λb⇔a1=λa2,b1=λb2,c1=λc2(λ∈R).(2)线面平行设直线l的方向向量为a=(a1,b1,c1),平面α的法向量为u=(a2,b2,c2),则l∥α⇔a⊥u⇔a·u=0⇔a1a2+b1b2+c1c2=0.(3)面面平行设平面α,β的法向量分别为u=(a1,b1,c1),v=(a2,b2,c2),则α∥β⇔u∥v⇔u =λv⇔a1=λa2,b1=λb2,c1=λc2(λ∈R).3.空间垂直关系的向量表示(1)线线垂直设直线l的方向向量为a=(a1,a2,a3),直线m的方向向量为b=(b1,b2,b3),则l⊥m⇔a⊥b⇔a·b=0⇔a1b1+a2b2+a3b3=0.(2)线面垂直设直线l的方向向量是a=(a1,b1,c1),平面α的法向量是u=(a2,b2,c2),则l⊥α⇔a∥u⇔a=λu⇔a1=λa2,b1=λb2,c1=λc2(λ∈R).(3)面面垂直若平面α的法向量u=(a1,b1,c1),平面β的法向量v=(a2,b2,c2),则α⊥β⇔u⊥v⇔u·v=0 ⇔a1a2+b1b2+c1c2=0.判断(正确的打“√”,错误的打“×”)(1)若两条直线平行,则它们的方向向量方向相同或相反.( )(2)平面α的法向量是惟一的,即一个平面不可能存在两个不同的法向量.( ) (3)两直线的方向向量平行,则两直线平行.( )(4)直线的方向向量与平面的法向量的方向相同或相反时,直线与平面垂直.( ) 答案:(1)√ (2)× (3)× (4)√若A (1,0,-1),B (2,1,2)在直线l 上,则直线l 的一个方向向量是( ) A .(2,2,6) B .(-1,1,3) C .(3,1,1) D.(-3,0,1)答案:A若平面α⊥β,且平面α的一个法向量为n =⎝ ⎛⎭⎪⎫-2,1,12,则平面β的法向量可以是( )A.⎝⎛⎭⎪⎫-1,12,14B .(2,-1,0)C .(1,2,0) D.⎝ ⎛⎭⎪⎫12,1,2答案:C若直线的方向向量为u 1=⎝ ⎛⎭⎪⎫2,43,1,平面的法向量为u 2=(3,2,z ),则当直线与平面垂直时z =________.答案:32设平面α的法向量为(1,3,-2),平面β的法向量为(-2,-6,k ),若α∥β,则k =__________.答案:4探究点1 求直线的方向向量与平面的法向量[学生用书P64]如图,四棱锥P ABCD 中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点,AB =AP =1,AD =3,试建立恰当的空间直角坐标系,求平面ACE 的一个法向量.【解】因为PA ⊥平面ABCD ,底面ABCD 为矩形,所以AB ,AD ,AP 两两垂直.如图,以A 为坐标原点,AB →的方向为x 轴的正方向,建立空间直角坐标系,则D (0,3,0),E ⎝ ⎛⎭⎪⎫0,32,12,B (1,0,0),C (1,3,0),于是AE →=⎝⎛⎭⎪⎫0,32,12, AC →=(1,3,0).设n =(x ,y ,z )为平面ACE 的法向量,则⎩⎪⎨⎪⎧n ·AC →=0,n ·AE →=0,即⎩⎪⎨⎪⎧x +3y =0,32y +12z =0,所以⎩⎨⎧x =-3y ,z =-3y ,令y =-1,则x =z = 3.所以平面ACE 的一个法向量为n =(3,-1,3).[变问法]本例条件不变,试求直线PC 的一个方向向量和平面PCD 的一个法向量. 解:如图所示,建立空间直角坐标系,则P (0,0,1),C (1,3,0),所以PC →=(1,3,-1),即为直线PC 的一个方向向量.设平面PCD 的法向量为n =(x ,y ,z ).因为D (0,3,0),所以PD →=(0,3,-1). 由⎩⎪⎨⎪⎧n ·PC →=0,n ·PD →=0,即⎩⎨⎧x +3y -z =0,3y -z =0,所以⎩⎨⎧x =0,z =3y ,令y =1,则z = 3.所以平面PCD 的一个法向量为(0,1,3).待定系数法求平面法向量的步骤(1)设向量:设平面的法向量为n =(x ,y ,z ). (2)选向量:在平面内选取两不共线向量AB →,AC →. (3)列方程组:由⎩⎪⎨⎪⎧n ·AB →=0,n ·AC →=0列出方程组.(4)解方程组:⎩⎪⎨⎪⎧n ·AB →=0,n ·AC →=0.(5)赋非零值:取其中一个为非零值(常取±1). (6)得结论:得到平面的一个法向量.1.已知A (0,y ,3),B (-1,-2,z ),若直线l 的方向向量v =(2,1,3)与直线AB 的方向向量平行,则y +z 等于( )A .-3B .0C .1D.3解析:选B.由题意,得AB →=(-1,-2-y ,z -3),则-12=-2-y 1=z -33,解得y =-32,z =32,所以y +z =0,故选B. 2.在△ABC 中,A (1,-1,2),B (3,3,1),C (3,1,3),设M (x ,y ,z )是平面ABC 内任意一点.(1)求平面ABC 的一个法向量; (2)求x ,y ,z 满足的关系式.解:(1)设平面ABC 的法向量n =(a ,b ,c ). 因为AB →=(2,4,-1),AC →=(2,2,1),所以⎩⎪⎨⎪⎧n ·AB →=2a +4b -c =0n ·AC →=2a +2b +c =0,所以⎩⎪⎨⎪⎧c =b a =-32b ,令b =2,则a =-3,c =2.所以平面ABC 的一个法向量为n =(-3,2,2). (2)因为点M (x ,y ,z )是平面ABC 内任意一点,所以AM →⊥n ,所以-3(x -1)+2(y +1)+2(z -2)=0, 所以3x -2y -2z -1=0.故x ,y ,z 满足的关系式为3x -2y -2z -1=0. 探究点2 利用空间向量证明平行关系[学生用书P64]已知正方体ABCD ­A 1B 1C 1D 1的棱长为2,E ,F 分别是BB 1,DD 1的中点.求证:FC 1∥平面ADE .【证明】 如图所示,建立空间直角坐标系Dxyz ,则有D (0,0,0),A (2,0,0),C (0,2,0),C 1(0,2,2),E (2,2,1),F (0,0,1),B 1(2,2,2).FC 1→=(0,2,1),DA →=(2,0,0),AE →=(0,2,1).设n 1=(x 1,y 1,z 1)是平面ADE 的法向量, 则⎩⎪⎨⎪⎧n 1⊥DA →,n 1⊥AE →,即⎩⎪⎨⎪⎧n 1·DA →=2x 1=0,n 1·AE →=2y 1+z 1=0,解得⎩⎪⎨⎪⎧x 1=0,z 1=-2y 1,令z 1=2,则y 1=-1. 所以n 1=(0,-1,2). 因为FC 1→·n 1=-2+2=0. 所以FC 1→⊥n 1.因为FC 1⊄平面ADE ,所以FC 1∥平面ADE .[变问法]在本例条件下,求证:平面ADE ∥平面B 1C 1F .证明:由本例证明知C 1B 1→=(2,0,0), 设n 2=(x 2,y 2,z 2)是平面B 1C 1F 的法向量. 由n 2⊥FC 1→,n 2⊥C 1B 1→,得⎩⎪⎨⎪⎧n 2·FC 1→=2y 2+z 2=0,n 2·C 1B 1→=2x 2=0,得⎩⎪⎨⎪⎧x 2=0,z 2=-2y 2. 令z 2=2得y 2=-1,所以n 2=(0,-1,2),因为n 1=n 2, 所以平面ADE ∥平面B 1C 1F .证明线、面平行问题的方法(1)用向量法证明线面平行:①是证明直线的方向向量与平面内的某一向量是共线向量且直线不在平面内;②是证明直线的方向向量可以用平面内两个不共线向量表示;③是证明直线的方向向量与平面的法向量垂直且直线不在平面内.(2)利用空间向量证明面面平行,通常是证明两平面的法向量平行.在长方体ABCD ­A 1B 1C 1D 1中,AB =3,AD =4,AA 1=2,点M 在棱BB 1上,且BM =2MB 1,点S 在DD 1上,且SD 1=2SD ,点N ,R 分别为A 1D 1,BC 的中点.求证:MN ∥RS .证明:法一:如图所示,建立空间直角坐标系,根据题意得M (3,0,43),N (0,2,2),R (3,2,0),S (0,4,23).所以MN →=(-3,2,23),RS →=(-3,2,23),所以MN →=RS →,所以MN →∥RS →,因为M ∉RS ,所以MN ∥RS . 法二:设AB →=a ,AD →=b ,AA 1→=c ,则MN →=MB 1→+B 1A 1→+A 1N →=13c -a +12b ,RS →=RC →+CD →+DS →=12b -a +13c .所以MN →=RS →,所以MN →∥RS →. 又R ∉MN ,所以MN ∥RS .探究点3 利用空间向量证明垂直关系[学生用书P65]在四棱锥S ABCD 中,底面ABCD 是正方形,AS ⊥底面ABCD ,且AS =AB ,E 是SC 的中点.求证:平面BDE ⊥平面ABCD .【证明】 设AS =AB =1,建立如图所示的空间直角坐标系Axyz ,则B (1,0,0),D (0,1,0),A (0,0,0),S (0,0,1),E ⎝ ⎛⎭⎪⎫12,12,12.法一:如图,连接AC ,交BD 于点O ,连接OE ,则点O 的坐标为⎝ ⎛⎭⎪⎫12,12,0.易知AS →=(0,0,1),OE →=⎝⎛⎭⎪⎫0,0,12,所以OE →=12AS →,所以OE ∥AS .又AS ⊥底面ABCD ,所以OE ⊥平面ABCD . 又OE ⊂平面BDE ,所以平面BDE ⊥平面ABCD . 法二:设平面BDE 的法向量为n 1=(x ,y ,z ). 易知BD →=(-1,1,0),BE →=⎝ ⎛⎭⎪⎫-12,12,12,所以⎩⎪⎨⎪⎧n 1⊥BD →,n 1⊥BE →,即⎩⎨⎧n 1·BD →=-x +y =0,n 1·BE →=-12x +12y +12z =0.令x =1,可得平面BDE 的一个法向量为n 1=(1,1,0). 因为AS ⊥底面ABCD ,所以平面ABCD 的一个法向量为n 2=AS →=(0,0,1). 因为n 1·n 2=0,所以平面BDE ⊥平面ABCD .证明线、面垂直问题的方法(1)用向量法判定线面垂直,只需直线的方向向量与平面的法向量平行或直线的方向向量与平面内两相交的直线的方向向量垂直即可.(2)用向量法判定两个平面垂直,只需求出这两个平面的法向量,再看它们的数量积是否为0即可.如图,△ABC 中,AC =BC ,D 为AB 边中点,PO ⊥平面ABC ,垂足O 在CD上,求证:AB ⊥PC .证明:设CA →=a ,CB →=b ,OP →=v .由条件知,v 是平面ABC 的法向量, 所以v ·a =0,v ·b =0, 因为D 为AB 中点,所以CD →=12(a +b ),因为O 在CD 上,所以存在实数λ,使CO →=λCD →=λ2(a +b ).因为CA =CB , 所以|a |=|b |, 所以AB →·CP →=(b -a )·⎣⎢⎡⎦⎥⎤λ2(a +b )+v =λ2(a +b )·(b -a )+(b -a )·v=λ2(|b |2-|a |2)+b ·v -a ·v =0, 所以AB →⊥CP →, 所以AB ⊥PC .1.在正方体ABCD ­A 1B 1C 1D 1中,M 是棱DD 1的中点,O 是正方形ABCD 的中心,证明:OA 1⊥AM . 证明:设正方体棱长为1,建立空间直角坐标系,如图,则A (1,0,0),A 1(1,0,1),M ⎝⎛⎭⎪⎫0,0,12,O ⎝⎛⎭⎪⎫12,12,0,所以OA 1→=(1,0,1)-⎝ ⎛⎭⎪⎫12,12,0=⎝ ⎛⎭⎪⎫12,-12,1,AM →=⎝⎛⎭⎪⎫0,0,12-(1,0,0)=⎝⎛⎭⎪⎫-1,0,12,所以OA 1→·AM →=12×(-1)+⎝ ⎛⎭⎪⎫-12×0+1×12=0,即OA 1⊥AM .2.在长方体ABCD ­A 1B 1C 1D 1中,AA 1=2AB =2BC ,E ,F ,E 1分别是棱AA 1,BB 1,A 1B 1的中点.求证:CE ∥平面C 1E 1F .证明:以D 为原点,以DA ,DC ,DD 1所在的直线分别为x ,y ,z 轴,建立如图所示的空间直角坐标系.设BC =1,则C (0,1,0),E (1,0,1),C 1(0,1,2),F (1,1,1),E 1⎝⎛⎭⎪⎫1,12,2.设平面C 1E 1F 的法向量为n =(x ,y ,z ), 因为C 1E 1→=⎝ ⎛⎭⎪⎫1,-12,0,FC 1→=(-1,0,1),所以⎩⎪⎨⎪⎧n ·C 1E 1→=0,n ·FC 1→=0,即⎩⎪⎨⎪⎧x =12y ,x =z , 取n =(1,2,1).因为CE →=(1,-1,1),n ·CE →=1-2+1=0,所以CE →⊥n ,且CE ⊄平面C 1E 1F . 所以CE ∥平面C 1E 1F .[学生用书P66]知识结构深化拓展用空间向量解决立体几何的问题有三步(1)首先建立适当的空间坐标系,一般是用互相垂直的直线为x ,y ,z 轴,设出点的坐标.(2)通过向量的坐标运算,来研究点、直线、平面之间的关系,把几何问题转化为代数问题.(3)把向量的运算结果“翻译”为相应的几何意义,据几何意义求出结果.[学生用书P137(单独成册)])[A 基础达标]1.已知a =⎝ ⎛⎭⎪⎫1,2,52,b =⎝ ⎛⎭⎪⎫32,x ,y 分别是直线l 1,l 2的一个方向向量.若l 1∥l 2,则( )A .x =3,y =152B .x =32,y =154C .x =3,y =15D.x =3,y =154解析:选D.因为l 1∥l 2,所以321=x 2=y 52,所以x =3,y =154,故选D.2.直线l 的一个方向向量和平面β的一个法向量分别是m =(-1,1,3),n =⎝ ⎛⎭⎪⎫13,0,19,则直线l 与平面β的位置关系是( )A .l ∥βB .l ⊥βC .l ∥β或l ⊂βD.无法判断解析:选C.因为m ·n =-13+0+13=0,所以m ⊥n .所以l ∥β或l ⊂β.3.设直线l 的方向向量u =(-2,2,t ),平面α的一个法向量v =(6,-6,12),若直线l ⊥平面α,则实数t 等于( )A .4B .-4C .2D.-2解析:选B.因为直线l ⊥平面α,所以u ∥v ,则-26=2-6=t12,解得t =-4,故选B.4.已知平面α内有一个点A (2,-1,2),α的一个法向量为n =(3,1,2),则下列点P 中,在平面α内的是( )A .(1,-1,1) B.⎝⎛⎭⎪⎫1,3,32C.⎝⎛⎭⎪⎫1,-3,32 D.⎝⎛⎭⎪⎫-1,3,-32解析:选B.要判断点P 是否在平面α内,只需判断向量PA →与平面α的法向量n 是否垂直,即PA →·n 是否为0,因此,要对各个选项进行检验. 对于选项A ,PA →=(1,0,1),则PA →·n =(1,0,1)·(3,1,2)=5≠0,故排除A ; 对于选项B ,PA →=⎝⎛⎭⎪⎫1,-4,12,则PA →·n =⎝ ⎛⎭⎪⎫1,-4,12·(3,1,2)=0,故B 正确;同理可排除C ,D.故选B.5.如图,PA ⊥平面ABCD ,四边形ABCD 为正方形,E 是CD 的中点,F 是AD 上一点,当BF ⊥PE 时,AF ∶FD 的值为( )A .1∶2B .1∶1C .3∶1D.2∶1解析:选B.建立如图所示的空间直角坐标系,设正方形边长为1,PA =a ,则B (1,0,0),E ⎝ ⎛⎭⎪⎫12,1,0,P (0,0,a ).设点F 的坐标为(0,y ,0),则BF →=(-1,y ,0),PE →=⎝ ⎛⎭⎪⎫12,1,-a .因为BF ⊥PE , 所以BF →·PE →=0,解得y =12,即点F 的坐标为⎝ ⎛⎭⎪⎫0,12,0, 所以F 为AD 的中点, 所以AF ∶FD =1∶1.6.已知平面α的一个法向量a =(x ,1,-2),平面β的一个法向量b =⎝ ⎛⎭⎪⎫-1,y ,12,若α⊥β,则x -y =________.解析:因为α⊥β,所以a ⊥b ,所以-x +y -1=0,得x -y =-1. 答案:-17.已知点P 是平行四边形ABCD 所在平面外一点,如果AB →=(2,-1,-4),AD →=(4,2,0),AP →=(-1,2,-1).给出下列结论:①AP ⊥AB ;②AP ⊥AD ;③AP →是平面ABCD 的一个法向量.其中正确的是________(填序号).解析:AB →·AP →=2×(-1)+(-1)×2+(-4)×(-1)=-2-2+4=0,则AB →⊥AP →,则AB ⊥AP .AD →·AP →=4×(-1)+2×2+0=0,则AP →⊥AD →,则AP ⊥AD .又AB ∩AD =A ,所以AP ⊥平面ABCD ,故AP →是平面ABCD 的一个法向量.答案:①②③8.已知AB →=(1,5,-2),BC →=(3,1,z ),若AB →⊥BC →,BP →=(x -1,y ,-3),且BP →⊥平面ABC ,则BP →=________.解析:因为AB →⊥BC →,所以AB →·BC →=0, 所以3+5-2z =0, 所以z =4.因为BP →=(x -1,y ,-3),且BP →⊥平面ABC , 所以⎩⎪⎨⎪⎧BP →·AB →=0,BP →·BC →=0,即⎩⎪⎨⎪⎧x -1+5y +6=0,3x -3+y -12=0,解得⎩⎪⎨⎪⎧x =407,y =-157, 故BP →=⎝ ⎛⎭⎪⎫337,-157,-3.答案:⎝⎛⎭⎪⎫337,-157,-39.已知正三棱柱ABC ­A 1B 1C 1的各棱长都为1,M 是底面上BC 边的中点,N 是侧棱CC 1上的点,且CN =14CC 1.求证:AB 1⊥MN .证明:设AB 中点为O ,作OO 1∥AA 1.以O 为坐标原点,OB 所在直线为x 轴,OC 所在直线为y 轴,OO 1所在直线为z 轴建立如图所示的空间直角坐标系.由已知得A ⎝ ⎛⎭⎪⎫-12,0,0,B ⎝ ⎛⎭⎪⎫12,0,0,C ⎝ ⎛⎭⎪⎫0,32,0,N ⎝⎛⎭⎪⎫0,32,14, B 1⎝⎛⎭⎪⎫12,0,1,M ⎝ ⎛⎭⎪⎫14,34,0. 所以MN →=⎝ ⎛⎭⎪⎫-14,34,14,AB 1→=(1,0,1),所以MN →·AB 1→=-14+0+14=0.所以MN →⊥AB 1→,所以AB 1⊥MN .10.如图所示,在正方体ABCD ­A 1B 1C 1D 1中,E 、F 分别是BB 1、D 1B 1的中点.求证:EF ⊥平面B 1AC .证明:设正方体的棱长为2a ,建立如图所示的空间直角坐标系.则A (2a ,0,0),C (0,2a ,0),B 1(2a ,2a ,2a ),E (2a ,2a ,a ),F (a ,a ,2a ). 所以EF →=(a ,a ,2a )-(2a ,2a ,a )=(-a ,-a ,a ),AB 1→=(2a ,2a ,2a )-(2a ,0,0)=(0,2a ,2a ),AC →=(0,2a ,0)-(2a ,0,0)=(-2a ,2a ,0).因为EF →·AB 1→=(-a ,-a ,a )·(0,2a ,2a )=(-a )×0+(-a )×2a +a ×2a =0,EF →·AC →=(-a ,-a ,a )·(-2a ,2a ,0)=2a 2-2a 2+0=0,所以EF ⊥AB 1,EF ⊥AC . 又AB 1∩AC =A ,所以EF ⊥平面B 1AC .[B 能力提升]11.如图,在正方体ABCD ­A 1B 1C 1D 1中,M ,N ,P 分别是AD 1,BD 和B 1C 的中点,利用向量法证明:(1)MN ∥平面CC 1D 1D ; (2)平面MNP ∥平面CC 1D 1D .证明:(1)以D 为坐标原点,DA →,DC →,DD 1→分别为x ,y ,z 轴的正方向,建立空间直角坐标系(图略),并设正方体的棱长为2,则A (2,0,0),D (0,0,0),M (1,0,1),N (1,1,0),P (1,2,1).由正方体的性质知AD ⊥平面CC 1D 1D ,所以DA →=(2,0,0)为平面CC 1D 1D 的一个法向量.由于MN →=(0,1,-1),则MN →·DA →=0×2+1×0+(-1)×0=0,所以MN →⊥DA →. 又MN ⊄平面CC 1D 1D , 所以MN ∥平面CC 1D 1D .(2)由于MP →=(0,2,0),DC →=(0,2,0), 所以MP →∥DC →,即MP ∥DC . 由于MP ⊄平面CC 1D 1D , 所以MP ∥平面CC 1D 1D .又由(1),知MN ∥平面CC 1D 1D ,MN ∩MP =M ,所以由两个平面平行的判定定理,知平面MNP ∥平面CC 1D 1D .12.如图,在棱长为1的正方体ABCD ­A 1B 1C 1D 1中,点E 为BC 的中点.(1)在B 1B 上是否存在一点P ,使D 1P ⊥平面B 1AE? (2)在平面AA 1B 1B 上是否存在一点N ,使D 1N ⊥平面B 1AE? 解:(1)如图,以D 为坐标原点,分别以DA ,DC ,DD 1所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,则点A (1,0,0),E ⎝ ⎛⎭⎪⎫12,1,0,B 1(1,1,1),D 1(0,0,1),B 1A →=(0,-1,-1),B 1E →=⎝ ⎛⎭⎪⎫-12,0,-1.假设存在点P (1,1,z )满足题意,于是D 1P →=(1,1,z -1),所以⎩⎪⎨⎪⎧D 1P →·B 1A →=0,D 1P →·B 1E →=0,所以⎩⎪⎨⎪⎧0-1-z +1=0,-12+0-z +1=0,解得⎩⎪⎨⎪⎧z =0,z =12,矛盾.故在B 1B 上不存在点P 使D 1P ⊥平面B 1AE .(2)假设在平面AA 1B 1B 上存在点N ,使D 1N ⊥平面B 1AE . 设N (1,y ,z ),则⎩⎪⎨⎪⎧D 1N →·B 1A →=0,D 1N →·B 1E →=0.因为D 1N →=(1,y ,z -1),所以⎩⎪⎨⎪⎧0-y -z +1=0,-12+0-z +1=0,解得⎩⎪⎨⎪⎧y =12,z =12,故平面AA 1B 1B 上存在点N ⎝ ⎛⎭⎪⎫1,12,12,使D 1N ⊥平面B 1AE .13.(选做题)如图所示,在四棱锥P ABCD 中,PC ⊥平面ABCD ,PC =2,在四边形ABCD 中,∠B =∠BCD =90°,AB =4,CD =1,点M在PB 上,PB =4PM ,PB 与平面ABCD 成30°角.(1)求证:CM ∥平面PAD ; (2)求证:平面PAB ⊥平面PAD .证明:以点C 为坐标原点,CB 所在直线为x 轴,CD 所在直线为y 轴,CP 所在直线为z 轴建立如图所示的空间直角坐标系Cxyz ,因为PC ⊥平面ABCD ,所以∠PBC 为PB 与平面ABCD 所成的角,所以∠PBC =30°.因为PC =2,所以BC =23,PB =4.所以D (0,1,0),B (23,0,0),A (23,4,0),P (0,0,2),M ⎝ ⎛⎭⎪⎫32,0,32.所以DP →=(0,-1,2),DA →=(23,3,0),CM →=⎝ ⎛⎭⎪⎫32,0,32.(1)令n =(x ,y ,z )为平面PAD 的法向量,则⎩⎪⎨⎪⎧DP →·n =0,DA →·n =0,即⎩⎨⎧-y +2z =0,23x +3y =0,所以⎩⎪⎨⎪⎧z =12y ,x =-32y ,令y =2,得n =(-3,2,1).因为n ·CM →=-3×32+2×0+1×32=0,所以n ⊥CM →,又CM ⊄平面PAD , 所以CM ∥平面PAD .(2)取AP 的中点E ,则E (3,2,1),BE →=(-3,2,1).因为PB =AB , 所以BE ⊥PA .又因为BE →·DA →=(-3,2,1)·(23,3,0)=0. 所以BE →⊥DA →,所以BE ⊥DA , 又因为PA ∩DA =A , 所以BE ⊥平面PAD , 又因为BE ⊂平面PAB , 所以平面PAB ⊥平面PAD .。

高中数学_《空间向量与立体几何》讲评课教学设计学情分析教材分析课后反思

高中数学_《空间向量与立体几何》讲评课教学设计学情分析教材分析课后反思

第三章《空间向量与立体几何》测试讲评一、讲评目的1、通过讲评,使学生明确自己出现的问题,并进一步改正试卷中的问题;2、加深对所学知识的掌握和理解,进而提高自己的能力。

二、讲评的重点、难点1、重点(1)测试中出现的错误题目;(2)在分析问题的过程中强调有关的知识。

2、难点如何在解题中快速的找到解决问题的方法和思路,并能规范地解答所给问题。

三、课前准备1、批阅试卷,完成对成绩、存在问题的分析。

2、多媒体、展台。

四、讲评过程(一)基本情况介绍1、测试内容及试卷来源本次测试的内容为高中数学选修2-1第三章《空间向量在立体几何中的应用》。

主要是通过该试卷来检测一下学生对空间向量在立体几何中应用的掌握程度,以及运用知识解决问题的能力。

试卷是由老师根据平时的教学情况自己组成的,试卷的结构、题量与高考的形式相同。

试题难度适中,主要侧重于对基本知识、基本方法和学生运算能力的考查。

设计意图:让学生明确考试的有关背景,对所考内容有所了解,同时对本章内容的掌握程度、主要题型都有所了解。

2、相关数据(1)选择题正答率(2)成绩统计各分数段人数设计意图:让学生明确自己在考试中所处的位次及自己的成绩情况,鼓励学生树立学习的自信心。

(3)考试中暴露的问题①对所学知识、常用方法掌握不熟练,有遗忘现象;②运算速度、准确度仍存在较大的缺陷;③答卷中的规范性问题,乱写、乱画的现象仍存在。

设计意图:让学生了解自己在考试中暴露出的问题,明确自己的问题所在。

(二)试卷讲评设计意图:本次的讲评采用相同类型的问题集中讲解的方法,可使学生对相关中出现的错误有整体的了解,从总体上把握该类问题的知识及解法,便于学生对知识的掌握。

本次测试的试题从总体上分为三个部分:(1)空间向量的线性运算、空间向量基本定理、向量的共线。

包括第1、2、4、11、13、15题。

(2)数量积及其应用。

包括:3、5、6、7、9、12、14、16题。

(3)空间向量在立体几何中的应用。

高中数学第三章空间向量与立体几何3.2.1空间向量与平行关系课件新人教A版选修21

高中数学第三章空间向量与立体几何3.2.1空间向量与平行关系课件新人教A版选修21

(1)设 n1=(x1,y1,z1)是平面 ADE 的法向量,则 n1⊥D→A,n1⊥A→E, 即nn11· ·AD→→EA==22yx11+=z01,=0,得xz11==-0,2y1, 令 z1=2,则 y1=-1,所以 n1=(0,-1,2). 因为F→C1·n1=-2+2=0,所以F→C1⊥n1. 又因为 FC1⊄平面 ADE,所以 FC1∥平面 ADE.
(2)D→B=(2,2,0),D→E=(1,0,2). 设平面 BDEF 的一个法向量为 n=(x,y,z). ∴nn··DD→→BE==00,, ∴2x+x+22z=y=0,0,∴yz==--12x, x. 令 x=2,得 y=-2,z=-1. ∴n=(2,-2,-1)即为平面 BDEF 的一个法向量.
【自主解答】 以点 A 为原点,AD、AB、AS 所在的直线分别为 x 轴、 y 轴、z 轴,建立如图所示的坐标系,则 A(0,0,0),B(0,1,0),C(1,1, 0),D12,0,0,S(0,0,1).
(1)∵SA⊥平面 ABCD, ∴A→S=(0,0,1)是平面 ABCD 的一个法向量.
第九页,共47页。
图322
【解】 设正方体 ABCD-A1B1C1D1 的棱长为 2,则 D(0,0,0),B(2, 2,0),A(2,0,0),C(0,2,0),E(1,0,2).
(1)连接 AC,因为 AC⊥平面 BDD1B1,所以A→C=(-2,2,0)为平面 BDD1B1 的一个法向量.
第十五页,共47页。
-x1+4z1=0, 即32y1+4z1=0. 令 x1=1,得 z1=14,y1=-23.
第二十八页,共47页。
nn22· ·DD→→EF==00,,即32x2y+2+34y2z+2=40z2,=0, 令 y2=-1,得 z2=38,x2=32. ∴n1=1,-23,14,n2=32,-1,38, ∴n1=23n2,即 n1∥n2, ∴平面 AMN∥平面 EFBD.

2018-2019学年高中数学 第三章 空间向量与立体几何 3.1.4 空间向量的正交分解及其坐

2018-2019学年高中数学 第三章 空间向量与立体几何 3.1.4 空间向量的正交分解及其坐

3.1.4 空间向量的正交分解及其坐标表示1.理解空间向量基本定理,并能用基本定理解决一些几何问题.2.理解基底、基向量的概念.3.掌握空间向量的坐标表示,能在适当的坐标系中正确写出向量的坐标.[学生用书P57]1.空间向量基本定理条件 三个不共面的向量a ,b ,c 和空间任一向量p 结论 存在有序实数组{x ,y ,z },使得p =x a +y b +z c2.基底(1)条件:三个向量a ,b ,c 不共面. (2)结论:{a ,b ,c }叫做空间的一个基底. (3)基向量:基底中的向量a ,b ,c 都叫做基向量.(1)基底选定后,空间所有向量均可由基底惟一表示.(2)构成基底的三个向量a ,b ,c 中,没有零向量,其中的每个向量称为基向量. 3.空间向量的正交分解及其坐标表示单位正交基底有公共起点O 的三个两两垂直的单位向量,记作e 1,e 2,e 3空间直角坐标系以e 1,e 2,e 3的公共起点O 为原点,分别以e 1,e 2,e 3的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系Oxyz空间向量的坐标表示对于空间任意一个向量p ,存在有序实数组{x ,y ,z },使得p =x e 1+y e 2+z e 3,则把x ,y ,z 称作向量p 在单位正交基底e 1,e 2,e 3下的坐标,记作p =(x ,y ,z )判断(正确的打“√”,错误的打“×”)(1)只有两两垂直的三个向量才能作为空间向量的一组基底.( )(2)若{a ,b ,c }为空间一个基底,则{-a ,b ,2c }也可构成空间一个基底.( ) (3)若向量AP →的坐标为(x ,y ,z ),则点P 的坐标也为(x ,y ,z ).( )(4)若三个非零向量a ,b ,c 不能构成空间的一个基底,则a ,b ,c 共面.( ) 答案:(1)× (2)√ (3)× (4)√ 下列各组向量能构成一个基底的是( ) A .长方体ABCD ­A 1B 1C 1D 1中的向量AB →,AC →,AD →B .三棱锥A ­BCD 中的向量AB →,AC →,AD →C .三棱柱ABC ­A 1B 1C 1中(E 是A 1C 1的中点)的向量AA 1→,AE →,AC 1→D .四棱锥S ­ABCD 中的向量DA →,DB →,DC →答案:B已知正方体OABC ­O ′A ′B ′C ′的棱长为1,若以OA →,OC →,OO ′→为基底,则向量OB ′→的坐标是( )A .(1,1,1)B .(1,0,1)C .(-1,-1,-1)D .(-1,0,1) 答案:A探究点1 空间向量的基底[学生用书P58]已知{e 1,e 2,e 3}是空间的一个基底,且OA →=e 1+2e 2-e 3,OB →=-3e 1+e 2+2e 3,OC →=e 1+e 2-e 3,试判断{OA →,OB →,OC →}能否作为空间的一个基底.【解】 假设OA →,OB →,OC →共面,由向量共面的充要条件知,存在实数x ,y ,使得OA →=xOB →+y OC →成立,即e 1+2e 2-e 3=x (-3e 1+e 2+2e 3)+y (e 1+e 2-e 3)=(-3x +y )e 1+(x +y )e 2+(2x -y )e 3.因为{e 1,e 2,e 3}是空间的一个基底,所以e 1,e 2,e 3不共面,所以⎩⎪⎨⎪⎧-3x +y =1x +y =22x -y =-1,此方程组无解.即不存在实数x ,y ,使得OA →=xOB →+yOC →成立,所以OA →,OB →,OC →不共面. 故{OA →,OB →,OC →}能作为空间的一个基底.基底的判断思路判断给出的三个向量能否构成基底,关键是要判断这三个向量是否共面.首先应考虑三个向量中是否有零向量,其次判断三个非零向量是否共面.如果从正面难以入手判断,可假设三个向量共面,利用向量共面的充要条件建立方程组,若方程组有解,则三个向量共面;若方程组无解,则三个向量不共面.设x =a +b ,y =b +c ,z =c +a ,且{a ,b ,c }是空间的一个基底,给出下列向量组:①{a ,b ,x },②{b ,c ,z },③{x ,y ,a +b +c },其中可以作为空间一个基底的向量组有( )A .1个B .2个C .3个D.0个解析:选B.因为x =a +b , 所以向量x ,a ,b 共面. 如图,令a =AB →,b =AA 1→,c =AD →, 则x =AB 1→,y =AD 1→,z =AC →,a +b +c =AC 1→.可知向量b ,c ,z 和x ,y ,a +b +c 不共面,故选B. 探究点2 空间向量基本定理[学生用书P58]如图,在三棱柱ABC ­A ′B ′C ′中,已知AA ′→=a ,AB →=b ,AC →=c ,点M ,N 分别是BC ′,B ′C ′的中点,试用基底{a ,b ,c }表示向量AM →,AN →.【解】 连接A ′N (图略). AM →=AB →+12BC ′→=AB →+12(BC →+CC ′→)=AB →+12BC →+12CC ′→=AB →+12(AC →-AB →)+12AA ′→=12AB →+12AC →+12AA ′→ =12(a +b +c ). AN →=AA ′→+A ′N →=AA ′→+12(A ′B ′→+A ′C ′→)=AA ′→+12(AB →+AC →)=a +12b +12c .[变条件]若把本例中的“AA ′→=a ”改为“AC ′→=a ”,其他条件不变,则结果是什么? 解:因为M 为BC ′的中点,N 为B ′C ′的中点, 所以AM →=12(AB →+AC ′→)=12a +12b . AN →=12(AB ′→+AC ′→)=12(AB →+BB ′→+AC ′→) =12AB →+12CC ′→+12AC ′→ =12AB →+12(AC ′→-AC →)+12AC ′→ =12AB →+AC ′→-12AC → =12b +a -12c.用基底表示向量的步骤(1)定基底:根据已知条件,确定三个不共面的向量构成空间的一个基底.(2)找目标:用确定的基底(或已知基底)表示目标向量,需要根据三角形法则及平行四边形法则,结合相等向量的代换、向量的运算进行变形、化简,最后求出结果.(3)下结论:利用空间向量的一个基底{a ,b ,c }可以表示出空间所有向量.表示要彻底,结果中只能含有a ,b ,c ,不能含有其他形式的向量.已知矩形ABCD ,P 为平面ABCD 外一点,M ,N 分别为PC ,PD 上的点,且M 分PC 成定比2,N 为PD 的中点,求满足MN →=xAB →+yAD →+zAP →的实数x ,y ,z 的值.解:法一:如图所示,取PC 的中点E , 连接NE ,则MN →=EN →-EM →. 因为EN →=12CD →=12BA →=-12AB →.EM →=PM →-PE →=23PC →-12PC →=16PC →.连接AC ,则PC →=AC →-AP →=AB →+AD →-AP →,所以MN →=-12AB →-16(AB →+AD →-AP →)=-23AB →-16AD →+16AP →,因为AB →,AD →,AP →不共面. 所以x =-23,y =-16,z =16.法二:MN →=PN →-PM →=12PD →-23PC →=12(PA →+AD →)-23(PA →+AC →) =-12AP →+12AD →-23(-AP →+AB →+AD →)=-23AB →-16AD →+16AP →,因为AB →、AD →、AP →不共面, 所以x =-23,y =-16,z =16.探究点3 空间向量的坐标表示[学生用书P59]在正三棱柱ABC ­A 1B 1C 1中,已知△ABC 的边长为1,三棱柱的高为2,建立适当的空间直角坐标系,并写出AA 1→,AB 1→,AC 1→的坐标.【解】分别取BC ,B 1C 1的中点D ,D 1,以D 为坐标原点,分别以DC →,DA →,DD 1→的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,如图所示,则A (0,32,0),A 1(0,32,2),B 1(-12,0,2),C 1(12,0,2),所以AA 1→=(0,0,2), AB 1→=(-12,-32,2),AC 1→=(12,-32,2).用坐标表示空间向量的方法步骤如图,PA 垂直于正方形ABCD 所在的平面,M ,N 分别是AB ,PC 的中点,并且PA =AB =1,试建立适当的空间直角坐标系,求向量MN →的坐标.解:因为PA =AB =AD =1,PA ⊥平面ABCD ,AB ⊥AD , 所以AB →,AD →,AP →是两两垂直的单位向量.设AB →=e 1,AD →=e 2,AP →=e 3,以{e 1,e 2,e 3}为基底建立空间直角坐标系Axyz . 因为MN →=MA →+AP →+PN →=-12AB →+AP →+12PC →=-12AB →+AP →+12(PA →+AC →)=-12AB →+AP →+12(PA →+AB →+AD →)=12AD →+12AP →=12e 2+12e 3, 所以MN →=⎝ ⎛⎭⎪⎫0,12,12.1.设p :a ,b ,c 是三个非零向量;q :{a ,b ,c }为空间的一个基底,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D.既不充分也不必要条件解析:选B.当非零向量a ,b ,c 不共面时,{a ,b ,c }可以当基底,否则不能当基底.当{a ,b ,c }为基底时,一定有a ,b ,c 为非零向量.因此p ⇒q ,q ⇒p .2.三棱锥P ­ABC 中,∠ABC 为直角,PB ⊥平面ABC ,AB =BC =PB =1,M 为PC 的中点,N 为AC 的中点,以{BA →,BC →,BP →}为基底,则MN →的坐标为________.解析:MN →=BN →-BM →=12(BA →+BC →)-12(BP →+BC →) =12BA →-12BP →, 故MN →=⎝ ⎛⎭⎪⎫12,0,-12.答案:⎝ ⎛⎭⎪⎫12,0,-12 3.如图,平行六面体ABCD ­A 1B 1C 1D 1中,AB →=a ,AD →=b ,AA 1→=c ,E 为A 1D 1的中点,F 为BC 1与B 1C 的交点.(1)用基底{a ,b ,c }表示向量DB 1→,BE →,AF →; (2)化简DD 1→+DB →+CD →,并在图中标出化简结果. 解:(1)DB 1→=DC →+CB 1→=DC →+BB 1→-BC →=a -b +c . BE →=BA →+AA 1→+A 1E →=-a+12b +c . AF →=AB →+BF →=a +12(b +c )=a +12b +12c .(2)DD 1→+DB →+CD →=DD 1→+(CD →+DB →)=DD 1→+CB →=DD 1→+D 1A 1→=DA 1→. 如图,连接DA 1,则DA 1→即为所求.[学生用书P60]知识结构深化拓展1.对空间向量基本定理的两点说明(1)任意性:用空间三个不共面的向量可以线性表示出空间中任意一个向量.(2)惟一性:基底确定后,空间向量基本定理中实数组{x ,y ,z }是惟一的. 2.空间向量坐标表示注意点(1)空间向量的坐标顺序必须与基底中的基向量对应,即若基底为{e 1,e 2,e 3},b =λe 1+μe 2+k e 3,则b 的坐标为(λ,μ,k ).(2)点的坐标反映了点在空间直角坐标系中的位置,而向量的坐标实质上是该向量在标准正交基底下的分解式的一种简化表示,它也能间接反映向量的方向与大小.[学生用书P133(单独成册)])[A 基础达标]1.已知O 、A 、B 、C 为空间四点,且向量OA →,OB →,OC →不能构成空间的一个基底,则( ) A.OA →,OB →,OC →共线 B.OA →,OB →共线 C.OB →,OC →共线D .O 、A 、B 、C 四点共面解析:选D.由OA →,OB →,OC →不能构成基底知OA →、OB →、OC →三向量共面,所以一定有O 、A 、B 、C 四点共面.2.已知{a ,b ,c }是空间一组基底,p =a +b ,q =a -b ,一定可以与向量p ,q 构成空间另一组基底的是( )A .aB .bC .cD.13p -2q 解析:选C.因为a ,b ,c 不共面,所以p ,q ,c 不共面.若存在x ,y ∈R ,使c =x p +y q =(x +y )a +(x -y )b 成立,则a ,b ,c 共面,这与已知{a ,b ,c }是空间一组基底矛盾,故p ,q ,c 不共面.3.已知A (1,2,-1)关于平面xOy 的对称点为B ,而B 关于x 轴的对称点为C ,则BC →=( )A .(0,4,2)B .(0,4,0)C .(0,-4,-2)D.(2,0,-2)解析:选C.易知B (1,2,1),C (1,-2,-1),所以BC →=(0,-4,-2). 4.如图,梯形ABCD 中,AB ∥CD ,AB =2CD ,点O 为空间内任意一点,设OA →=a ,OB →=b ,OC →=c ,则向量OD →可用a ,b ,c 表示为( )A .a -b +2cB .a -b -2cC .-12a +12b +cD.12a -12b +c 解析:选D.OD →=OC →+CD →=OC →+12BA →=OC →+12(OA →-OB →)=12a -12b +c .5.设{i ,j ,k }是单位正交基底,已知向量p 在基底{a ,b ,c }下的坐标为(8,6,4),其中a =i +j ,b =j +k ,c =k +i ,则向量p 在基底{i ,j ,k }下的坐标是( )A .(12,14,10)B .(10,12,14)C .(14,12,10)D.(4,3,2)解析:选A.依题意,知p =8a +6b +4c =8(i +j )+6(j +k )+4(k +i )=12i +14j +10k ,故向量p 在基底{i ,j ,k }下的坐标是(12,14,10).6.在长方体ABCD ­A 1B 1C 1D 1中,若AB →=3i ,AD →=2j ,AA 1→=5k ,则向量AC 1→在基底{i ,j ,k }下的坐标是________.解析:AC 1→=AB →+BC →+CC 1→=AB →+AD →+AA 1→=3i +2j +5k ,所以向量AC 1→在基底{i ,j ,k }下的坐标是(3,2,5).答案:(3,2,5)7.已知空间的一个基底{a ,b ,c },m =a -b +c ,n =x a +y b +c ,若m 与n 共线,则x =________,y =________.解析:因为m 与n 共线,所以存在实数λ,使m =λn ,即a -b +c =λx a +λy b +λc ,于是有⎩⎪⎨⎪⎧1=λx ,-1=λy ,1=λ,解得⎩⎪⎨⎪⎧x =1,y =-1.答案:1 -18.正方体ABCD ­A 1B 1C 1D 1中,点E 、F 分别是底面A 1C 1和侧面CD 1的中心,若EF →+λA 1D →=0(λ∈R ),则λ=________.解析:如图,连接A 1C 1,C 1D ,则E 在A 1C 1上,F 在C 1D 上,易知EF 綊12A 1D ,所以EF →=12A 1D →, 即EF →-12A 1D →=0,所以λ=-12.答案:-129.如图所示,在三棱锥O ­ABC 中,OA ,OB ,OC 两两垂直,OA =1,OB =2,OC =3,E ,F 分别为AC ,BC 的中点,建立以OA →,OB →,OC →方向上的单位向量为正交基底的空间坐标系Oxyz ,求EF 中点P 的坐标.解:令Ox ,Oy ,Oz 轴方向上的单位向量分别为i ,j ,k ,因为OP →=OE →+EP →=12(OA →+OC →)+12EF → =12(OA →+OC →)+14(OB →-OA →) =14OA →+14OB →+12OC → =14i +14×2j +12×3k =14i +12j +32k , 所以P 点的坐标为⎝ ⎛⎭⎪⎫14,12,32. 10.已知平行六面体OABC ­O ′A ′B ′C ′,且OA →=a ,OC →=b ,OO ′→=c .(1)用a ,b ,c 表示向量AC ′→;(2)设G ,H 分别是侧面BB ′C ′C 和O ′A ′B ′C ′的中心,用a ,b ,c 表示GH →.解:(1)AC ′→=AC →+CC ′→=OC →-OA →+OO ′→=b +c -a .(2)GH →=GO →+OH →=-OG →+OH →=-12(OB →+OC ′→)+12(OB ′→+OO ′→) =-12(a +b +c +b )+12(a +b +c +c )=12(c -b ). [B 能力提升]11.如图所示,平行六面体ABCD ­A 1B 1C 1D 1中,E ,F 分别在B 1B 和D 1D 上,且BE =13BB 1,DF =23DD 1.若EF →=xAB →+yAD →+zAA 1→,则x +y +z =( )A .-1B .0 C.13 D.1解析:选 C.因为EF →=AF →-AE →=AD →+DF →-(AB →+BE →)=AD →+23DD 1→-AB →-13BB 1→=-AB →+AD →+13AA 1→,所以x =-1,y =1,z =13,所以x +y +z =13. 12.已知i ,j ,k 是空间直角坐标系Oxyz 中x 轴,y 轴,z 轴正方向上的单位向量,且向量p =i -3j +12k ,则p 的坐标为________. 答案:⎝⎛⎭⎪⎫1,-3,12 13.(选做题)(2018·黑龙江哈师大附中高二(上)期末考试)已知{e 1,e 2,e 3}为空间的一个基底,且OP →=2e 1-e 2+3e 3,OA →=e 1+2e 2-e 3,OB →=-3e 1+e 2+2e 3,OC →=e 1+e 2-e 3.(1)判断P ,A ,B ,C 四点是否共面;(2)能否以{OA →,OB →,OC →}作为空间的一个基底?若能,试以这一基底表示OP →;若不能,请说明理由.解:(1)假设P ,A ,B ,C 四点共面,则存在实数x ,y ,z ,使OP →=xOA →+yOB →+zOC →,且x +y +z =1,即2e 1-e 2+3e 3=x (e 1+2e 2-e 3)+y (-3e 1+e 2+2e 3)+z (e 1+e 2-e 3).比较对应的系数,得到关于x ,y ,z 的方程组 ⎩⎪⎨⎪⎧x -3y +z =22x +y +z =-1,-x +2y -z =3解得⎩⎪⎨⎪⎧x =17y =-5z =-30,与x +y +z =1矛盾,故P ,A ,B ,C 四点不共面.(2)若OA →,OB →,OC →共面,则存在实数m ,n ,使OA →=mOB →+nOC →,同(1)可证,OA →,OB →,OC →不共面,因此{OA →,OB →,OC →}可以作为空间的一个基底,令OA →=a ,OB →=b ,OC →=c ,由e 1+2e 2-e 3=a ,-3e 1+e 2+2e 3=b ,e 1+e 2-e 3=c ,得⎩⎪⎨⎪⎧e 1=3a -b -5c e 2=a -c e 3=4a -b -7c,所以OP →=2e 1-e 2+3e 3=2(3a -b -5c )-(a -c )+3(4a -b -7c )=17a -5b -30c =17OA →-5OB →-30OC →.。

最新人教A版高中数学教材目录(全)

最新人教A版高中数学教材目录(全)

人教A版高中数学目录必修1第一章集合与函数概念1.1 集合1.2 函数及其表示1.3 函数的基本性质第二章基本初等函数(Ⅰ)2.1 指数函数2.2 对数函数2.3 幂函数第三章函数的应用3.1 函数与方程3.2 函数模型及其应用必修2第一章空间几何体1.1 空间几何体的结构1.2 空间几何体的三视图和直观图 1.3 空间几何体的表面积与体积第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质第三章直线与方程3.1 直线的倾斜角与斜率3.2 直线的方程3.3 直线的交点坐标与距离公式必修3第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 算法案例阅读与思考割圆术第二章统计2.1 随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2.2 用样本估计总体阅读与思考生产过程中的质量控制图2.3 变量间的相关关系阅读与思考相关关系的强与弱第三章概率3.1 随机事件的概率阅读与思考天气变化的认识过程3.2 古典概型3.3 几何概型必修4第一章三角函数1.1 任意角和弧度制1.2 任意角的三角函数1.3 三角函数的诱导公式1.4 三角函数的图象与性质1.5 函数y=Asin(ωx+ψ)1.6 三角函数模型的简单应用第二章平面向量2.1 平面向量的实际背景及基本概念2.2 平面向量的线性运算2.3 平面向量的基本定理及坐标表示2.4 平面向量的数量积2.5 平面向量应用举例第三章三角恒等变换3.1 两角和与差的正弦、余弦和正切公式3.2 简单的三角恒等变换必修5第一章解三角形1.1正弦定理和余弦定理1.2应用举例1.3实习作业第二章数列2.1数列的概念与简单表示法2.2等差数列2.3等差数列的前n项和2.4等比数列2.5等比数列的前n项和第三章不等式3.1不等关系与不等式3.2一元二次不等式及其解法3.3二元一次不等式(组)与简单的线性规划问题3.3.1二元一次不等式(组)与平面区域3.3.2简单的线性规划问题3.4基本不等式选修1-1第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词第二章圆锥曲线与方程2.1椭圆2.2双曲线2.3抛物线第三章导数及其应用3.1变化率与导数3.2导数的计算3.3导数在研究函数中的应用3.4生活中的优化问题举例选修1-2第一章统计案例1.1回归分析的基本思想及其初步应用1.2独立性检验的基本思想及其初步应用第二章推理与证明2.1 合情推理与演绎证明2.2 直接证明与间接证明第三章数系的扩充与复数的引入3.1数系的扩充和复数的概念3.2复数代数形式的四则运算第四章框图4.1流程图4.2结构图选修2-1第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词第二章圆锥曲线与方程2.1曲线与方程2.2椭圆2.3双曲线2.4抛物线第三章空间向量与立体几何3.1空间向量及其运算3.2立体几何中的向量方法选修2-2第一章导数及其应用1.1变化率与导数1.2导数的计算1.3导数在研究函数中的应用1.4生活中的优化问题举例1.5定积分的概念1.6微积分基本定理1.7定积分的简单应用第二章推理与证明2.1合情推理与演绎推理2.2直接证明与间接证明2.3数学归纳法第三章数系的扩充与复数的引入3.1数系的扩充和复数的概念3.2复数代数形式的四则运算选修2-3第一章计数原理1.1分类加法计数原理与分步乘法计数原理1.2排列与组合1.3二项式定理第二章随机变量及其分布2.1离散型随机变量及其分布列2.2二项分布及其应用2.3离散型随机变量的均值与方差2.4正态分布第三章统计案例3.1回归分析的基本思想及其初步应用3.2独立性检验的基本思想及其初步应用选修3-1第一讲早期的算术与几何第二讲古希腊数学第三讲中国古代数学瑰宝第四讲平面解析几何的产生五讲微积分的诞生第六讲近代数学两巨星第七讲千古谜题第八讲对无穷的深入思考第九讲中国现代数学的开拓与发展选修3-2选修3-3第一讲从欧氏几何看球面第二讲球面上的距离和角第三讲球面上的基本图形第四讲球面三角形第五讲球面三角形的全等第六讲球面多边形与欧拉公式第七讲球面三角形的边角关系第八讲欧氏几何与非欧几何选修3-4第一讲平面图形的对称群第二讲代数学中的对称与抽象群的概念第三讲对称与群的故事选修4-1第一讲相似三角形的判定及有关性质第二讲直线与圆的位置关系第三讲圆锥曲线性质的探讨选修4-2第一讲线性变换与二阶矩阵第二讲变换的复合与二阶矩阵的乘法第三讲逆变换与逆矩阵第四讲变换的不变量与矩阵的特征向量选修4-3选修4-4第一讲坐标系第二讲参数方程选修4-5第一讲不等式和绝对值不等式第二讲证明不等式的基本方法第三讲柯西不等式与排序不等式第四讲数学归纳法证明不等式选修4-6第一讲整数的整除第二讲同余与同余方程第三讲一次不定方程第四讲数伦在密码中的应用选修4-7第一讲优选法第二讲试验设计初步选修4-8选修4-9第一讲风险与决策的基本概念第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介高中人教版(B)教材目录介绍必修一第一章集合1.1 集合与集合的表示方法1.2 集合之间的关系与运算第二章函数2.1 函数2.2 一次函数和二次函数2.3 函数的应用(Ⅰ)2.4 函数与方程第三章基本初等函数(Ⅰ)3.1 指数与指数函数3.2 对数与对数函数3.3 幂函数3.4 函数的应用(Ⅱ)必修二第一章立体几何初步1.1 空间几何体1.2 点、线、面之间的位置关系第二章平面解析几何初步2.1 平面真角坐标系中的基本公式 2.2 直线方程2.3 圆的方程2.4 空间直角坐标系必修三第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 中国古代数学中的算法案例第二章统计2.1 随机抽样2.2 用样本估计总体2.3 变量的相关性第三章概率3.1 随机现象3.2 古典概型3.3 随机数的含义与应用3.4 概率的应用必修四第一章基本初等函(Ⅱ)1.1 任意角的概念与弧度制1.2 任意角的三角函数 1.3 三角函数的图象与性质第二章平面向量2.1 向量的线性运算2.2 向量的分解与向量的坐标运算2.3 平面向量的数量积2.4 向量的应用第三章三角恒等变换3.1 和角公式3.2 倍角公式和半角公式3.3 三角函数的积化和差与和差化积必修五第一章解直角三角形1.1 正弦定理和余弦定理1.2 应用举例第二章数列2.1 数列2.2 等差数列2.3 等比数列第三章不等式3.1 不等关系与不等式3.2 均值不等式3.3 一元二次不等式及其解法3.4 不等式的实际应用3.5 二元一次不等式(组)与简单线性规划问题选修1-1第一章常用逻辑用语1.1 命题与量词1.2 基本逻辑联结词1.3 充分条件、必要条件与命题的四种形式第二章圆锥曲线与方程2.1 椭圆2.2 双曲线2.3 抛物线第三章导数及其应用3.1 导数3.2 导数的运算3.3 导数的应用选修1-2第一章统计案例第二章推理与证明第三章数系的扩充与复数的引入第四章框图选修4-5第一章不等式的基本性质和证明的基本方法1.1 不等式的基本性质和一元二次不等式的解法1.2 基本不等式1.3 绝对值不等式的解法1.4 绝对值的三角不等式1.5 不等式证明的基本方法第二章柯西不等式与排序不等式及其应用2.1 柯西不等式2.2 排序不等式2.3 平均值不等式(选学)2.4 最大值与最小值问题,优化的数学模型第三章数学归纳法与贝努利不等式3.1 数学归纳法原理3.2 用数学归纳法证明不等式,贝努利不等式。

高中数学2-1学案:第三章 空间向量与立体几何3

高中数学2-1学案:第三章 空间向量与立体几何3

3.1。

1空间向量及其线性运算[学习目标]1。

了解空间向量的概念,掌握空间向量的几何表示和字母表示.2。

掌握空间向量的线性运算及运算律,理解空间向量线性运算及其运算律的几何意义.知识点一空间向量的概念在空间中,我们把像位移、力、速度、加速度这样既有大小又有方向的量叫做空间向量,向量的大小叫向量的长度或模.知识点二空间向量的加减法(1)加减法定义空间中任意两个向量都是共面的,它们的加、减法运算类似于平面向量的加减法.(如图)错误!=错误!+错误!=a+b;错误!=错误!-错误!=a-b.(2)运算律交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c).知识点三空间向量的数乘运算(1)定义实数λ与空间向量a的乘积λa仍是一个向量,称为向量的数乘运算.当λ>0时,λa与a方向相同;当λ〈0时,λa与a方向相反;当λ=0时,λa=0。

λa的长度是a的长度的|λ|倍.如图所示.(2)运算律分配律:λ(a+b)=λa+λb;结合律:λ(μa)=(λμ)a。

知识点四共线向量定理(1)共线向量的定义与平面向量一样,如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量,记作a∥b。

(2)充要条件对空间任意两个向量a,b(a≠0),b与a共线的充要条件是存在实数λ,使b=λa.思考(1)若表示两个相等空间向量的有向线段的起点相同,则终点也相同.对吗?(2)零向量没有方向.对吗?(3)空间两个向量的加减法与平面内两向量的加减法完全一致.对吗?答案(1)正确.起点相同,终点也相同的两个向量相等.(2)错误.不是没有方向,而是方向任意.(3)正确.题型一空间向量的概念例1判断下列命题的真假.(1)空间中任意两个单位向量必相等;(2)方向相反的两个向量是相反向量;(3)若|a|=|b|,则a=b或a=-b;(4)向量错误!与错误!的长度相等.解(1)假命题.因为两个单位向量,只有模相等,但方向不一定相同.(2)假命题.因为方向相反的两个向量模不一定相等.(3)假命题.因为两个向量模相等时,方向不一定相同或相反,也可以是任意的.(4)真命题.因为错误!与错误!仅是方向相反,但长度是相等的.反思与感悟空间向量的概念与平面向量的概念相类似,平面向量的其他相关概念,如向量的模、相等向量、平行向量、相反向量、单位向量等都可以拓展为空间向量的相关概念.跟踪训练1如图所示,以长方体ABCD-A1B1C1D1的八个顶点的两点为始点和终点的向量中,(1)试写出与错误!相等的所有向量;(2)试写出错误!的相反向量;(3)若AB=AD=2,AA1=1,求向量错误!的模.解(1)与向量AB,→相等的所有向量(除它自身之外)有错误!,错误!及错误!共3个.(2)向量错误!的相反向量为错误!,错误!,错误!,错误!。

高中数学人教A版选修2-1第三章 空间向量与立体几何

高中数学人教A版选修2-1第三章 空间向量与立体几何

高中数学学习材料(灿若寒星 精心整理制作)第三章 空间向量与立体几何§3.1 空间向量及其运算3.1.1 空间向量及其加减运算 课时目标1.理解空间向量的概念,掌握空间向量的几何表示和字母表示.2.掌握空间向量的加减运算及其运算律,能借助图形理解空间向量及其运算的意义.2.几类特殊向量(1)零向量:____________的向量叫做零向量,记为________.(2)单位向量:________的向量称为单位向量.(3)相等向量:方向________且模________的向量称为相等向量.在空间,同向且等长的有向线段表示同一向量或相等向量.(4)相反向量:与向量a 长度______而方向________的向量,称为a 的相反向量,记为________. 3.空间向量的加减法与运算律空间向量的加减法 类似平面向量,定义空间向量的加、减法运算(如图):OB →=OA →+AB →=__________;CA →=OA →-OC →=________.加法运算律 (1)交换律:a +b =________ (2)结合律:(a +b )+c =____________.;一、选择题1.下列命题中,假命题是( )A. 向量AB →与BA →的长度相等B .两个相等的向量,若起点相同,则终点也相同C .只有零向量的模等于0D .共线的单位向量都相等2.如图所示,平行四边形ABCD 的对角线的交点为O ,则下列等式成立的是( )A. OA →+OB →=AB →B. OA →+OB →=BA →C. AO →-OB →=AB →D. OA →-OB →=CD →3.已知O 是△ABC 所在平面内一点,D 为BC 边中点且2OA →+OB →+OC →=0,则AO →等于( )A. OB →B. OC →C. OD → D .2OD → 4.已知向量AB →,AC →,BC →满足|AB →|=|AC →|+|BC →|,则( )A. AB →=AC →+BC →B. AB →=-AC →-BC →C. AC →与BC →同向D. 与AC →与CB →同向5.在正方体ABCD —A 1B 1C 1D 1中,向量表达式DD 1→-AB →+BC →化简后的结果是( )A. BD 1→B. 1D BC.1B DD. 1DB6.平行六面体ABCD —A 1B 1C 1D 1中,E ,F ,G ,H ,P ,Q 分别是A 1A ,AB ,BC ,CC 1,C 1D 1,D 1A 1的中点,则( )A.EF →+GH →+PQ →=0B. EF→-GH →-PQ →=0 C.EF→+GH →-PQ →=0 D.EF →-GH →+PQ →=0 二、填空题7.在平行六面体ABCD -A ’B’C ’D ’中,与向量''A B 的模相等的向量有________个.8.若G 为△ABC 内一点,且满足AG +BG →+CG →=0,则G 为△ABC 的________.(填“外心”“内心”“垂心”或“重心”)9.判断下列各命题的真假:①向量AB →的长度与向量BA →的长度相等;②向量a 与b 平行,则a 与b 的方向相同或相反;③两个有共同起点而且相等的向量,其终点必相同;④两个有公共终点的向量,一定是共线向量;⑤有向线段就是向量,向量就是有向线段.其中假命题的个数为________.三、解答题10.判断下列命题是否正确,若不正确,请简述理由.①向量AB →与CD →是共线向量,则A 、B 、C 、D 四点必在一条直线上;②单位向量都相等;③任一向量与它的相反向量不相等;④四边形ABCD 是平行四边形的充要条件是AB →=DC →;⑤模为0是一个向量方向不确定的充要条件.11.如图所示,已知空间四边形ABCD ,连结AC,BD,E,F,G 分别是BC,CD,DB 的中点,请化简:AB →+BC →+CD →,(2)AB →+GD →+EC →,并标出化简结果的向量.能力提升12.在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F.若AC →=a ,BD →=b ,则AF →等于( )A.14a +12bB.13a +23b C.12a +14b D.23a +13b 13.证明:平行六面体的对角线交于一点,并且在交点处互相平分.1.在掌握向量加减法的同时,应首先掌握有特殊位置关系的两个向量的和或差,如共线、共起点、共终点等.2.通过掌握相反向量,理解两个向量的减法可以转化为加法.3.注意向量的三角形法则和平行四边形法则的要点.对于向量加法运用平行四边形法则要求两向量有共同起点,运用三角形法则要求向量首尾顺次相连.对于向量减法要求两向量有共同的起点.4.a -b 表示的是由b 的终点指向a 的终点的一条有向线段.第三章 空间向量与立体几何§3.1 空间向量及其运算3.1.1 空间向量及其加减运算知识梳理1.大小 方向 (2)大小 模 (3)①有向线段②AB →2.(1)长度为0 0 (2)模为1 (3)相同 相等(4)相等 相反 -a3.a +b a -b (1)b +a (2)a +(b +c )作业设计1.D [共线的单位向量是相等向量或相反向量.]2.D [OA →-OB →=BA →=CD →.]3.C [∵D 为BC 边中点,∴OB →+OC →=2OD →,∴OA →+OD →=0,∴AO →=OD →.]4.D [由|AB →|=|AC →|+|BC →|=|AC →|+|CB →|,知C 点在线段AB 上,否则与三角形两边之和大于第三边矛盾,所以AC →与CB →同向.]5.A[如图所示,∵DD 1→=AA 1→,DD →1-AB →=AA 1→-AB →=BA 1→,BA 1→+BC →=BD →1,∴DD 1→-AB →+BC →=BD 1→.]6.A [观察平行六面体ABCD —A 1B 1C 1D 1可知,向量EF →,GH →,PQ →平移后可以首尾相连,于是EF →+GH →+PQ →=0.]7.7解析 |D'C'→|=|DC →|=|C'D'→|=|CD →|=|BA →|=|AB →|=|B'A'→|=|A'B'→|.8.重心解析如图,取BC 的中点O ,AC 的中点D ,连结OG 、DG .由题意知AG →=-BG →-CG →=GB →+GC →=2GO →,同理BG →=2GD →,故G 为△ABC 的重心.9.3解析 ①真命题;②假命题,若a 与b 中有一个为零向量时,其方向是不确定的;③真命题;④假命题,终点相同并不能说明这两个向量的方向相同或相反;⑤假命题,向量可用有向线段来表示,但并不是有向线段.10.解 ①不正确,共线向量即平行向量,只要求两个向量方向相同或相反即可,并不要求两个向量AB ,CD 在同一条直线上.②不正确,单位向量模均相等且为1,但方向并不一定相同.③不正确,零向量的相反向量仍是零向量,但零向量与零向量是相等的.④正确.⑤正确.11.解 (1) AB →+BC →+CD →=AC →+CD →=AD →.(2)∵E ,F ,G 分别为BC ,CD ,DB 的中点.∴BE →=EC →,EF →=GD →.∴AB →+GD →+EC →=AB →+EF →+BE →=AF →.故所求向量AD →,AF →,如图所示.12.D [AF →=AC →+CF →=a +23CD → =a +13(b -a )=23a +13b .]13.证明如图所示,平行六面体ABCD —A ′B ′C ′D ′,设点O 是AC ′的中点,则AO →=12AC'→ =12(AB →+AD →+AA'→). 设P 、M 、N 分别是BD ′、CA ′、DB ′的中点.则AP =AB →+BP →=AB →+12BD'→ =AB →+12(BA →+BC →+B B'→) =AB →+12(-AB →+AD →+AA'→) =12(AB →+AD →+AA'→). 同理可证:AM →=12(AB →+AD →+AA'→) AN →=12(AB →+AD →+AA'→). 由此可知O ,P ,M ,N 四点重合.故平行六面体的对角线相交于一点,且在交点处互相平分.。

高中数学 第三章《空间向量与立体几何》同步练习二 新人教A版选修2-1

高中数学 第三章《空间向量与立体几何》同步练习二 新人教A版选修2-1

空间向量与立体几何一选择题:1. 下列说法中正确的是(B )A. 若∣a ∣=∣b ∣,则a ,b 的长度相同,方向相反或相同;B. 若a 与b 是相反向量,则∣a ∣=∣b ∣;C. 空间向量的减法满足结合律;D. 在四边形ABCD 中,一定有AB AD AC +=.2. 已知向量a ,b 是两个非零向量,00,a b 是与a ,b 同方向的单位向量,那么下列各式正确的是( D )A. 00a b =B. 00a b =或00a b =-C. 01a =D. ∣0a ∣=∣0b ∣3. 在四边形ABCD 中,若AC AB AD =+,则四边形是( D ) A. 矩形 B. 菱形 C. 正方形 D. 平行四边形4. 下列说法正确的是( D ) A. 零向量没有方向B. 空间向量不可以平行移动C. 如果两个向量不相同,那么它们的长度不相等D. 同向且等长的有向线段表示同一向量 5.以下四个命题中正确的是( C )A.空间的任何一个向量都可用其他三个向量表示B.若{→a ,→b ,→c }为空间向量的一组基底,则{→a +→b ,→b +→c ,→c -→a }构成空间向量的另一组基底C.△ABC 为直角三角形的充要条件为→AB ·→AC =0D.任何三个不共线的向量都可构成空间向量的一组基底6. 在平行六面体ABCD -A 1B 1C 1D 1中,与向量→A 1B 1模相等的向量有(C ) A .7个 B .3个C .5个D .6个7.如图所示,在正方体ABCD -A 1B 1C 1D 1中,下列各式中运算结果为向量AC 1→的是( D )①(AB →+BC →)+CC 1→;②(AA 1→+A 1D 1→)+D 1C 1→; ③(AB →+BB 1→)+B 1C 1→;④(AA 1→+A 1B 1→)+B 1C 1→. A .①③ B .②④ C .③④D .①②③④8. 对于向量a 、b 、c 和实数λ,下列命题中的真命题是( B ) A 若a ·b =0,则a =0或b =0 B 若λa =0,则λ=0或a =0 C 若a 2=b 2,则a =b 或a =-b D 若a ·b =a ·c ,则b =c9.P 为正六边形ABCDEF 外一点,O 为ABCDEF 的中心则→PA +→PB +→PC +→PD +→PE +→PF 等于( C ) A.→PO B.3→PO C.6→PO D.→0 10. 下列说法正确的是( A )A.a 与非零向量b 共线,b 与c 共线,则a 与c 共线B. 任意两个相等向量不一定共线C. 任意两个共线向量相等D. 若向量a 与b 共线,则a b λ=11. 将边长为1的正方形ABCD 沿角线BD 折成直二面角,若点P 满足→BP =12→BA -12→BC +→BD ,则|→BP|的值为( D )A.32B.2C.10-24D.9412.已知平行六面体''''ABCD A B C D -,M 是AC 与BD 交点,若',,AB a AD b AA c ===,则与'B M 相等的向量是( A )A. 11-22a b c -+;B. 11-22a b c +;C. 1122a b c -+;D. 1122a b c --+.13. 下列等式中,使M,A,B,C 四点共面的个数是( B )①;OM OA OB OC =--②111;532OM OA OB OC =++③0;MA MB MC ++=④0OM OA OB OC +++=.A. 1B. 2C. 3D. 414. 在下列命题中:①若a 、b 共线,则a 、b 所在的直线平行;②若a 、b 所在的直线是异面直线,则a 、b 一定不共面;③若a 、b 、c 三向量两两共面,则a 、b 、c 三向量一定也共面;④已知三向量a 、b 、c ,则空间任意一个向量p 总可以唯一表示为p =x a +y b +z c .其中正确命题的个数为 ( A ). A .0 B.1 C. 2 D. 3 15. 下列命题中:①若0a b •=,则a ,b 中至少一个为0 ②若a 0≠且a b a c •=•,则b c = ③()()a b c a b c ••=••④22(32)(32)94a b a b a b +•-=-正确有个数为( B )A. 0个B. 1个C. 2个D. 3个 16. 已知1e 和2e 是两个单位向量,夹角为3π,则下面向量中与212e e -垂直的是( C ) A. 12e e + B. 12e e - C. 1e D. 2e17.若a =123(,,)a a a ,b =123(,,)b b b ,则312123a a ab b b ==是//a b 的( A )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不不要条件18已知()()1,0,0,0,1,1A B -,OA OB λ+与OB 的夹角为120°,则λ的值为( C )A. D. 19.若()()2,2,0,3,2,a x b x x ==-,且,a b 的夹角为钝角,则x 的取值范围是( A )A. 4x <-B. 40x -<<C. 04x <<D. 4x >20.已知 ()()1,2,,,1,2a y b x =-=, 且(2)//(2)a b a b +-,则( B )A. 1,13x y ==B. 1,42x y ==-C. 12,4x y ==- D. 1,1x y ==-21. 已知两非零向量e 1,e 2不共线,设a =λe 1+μe 2(λ、μ∈R 且λ2+μ2≠0),则( D ) A .a ∥e 1 B .a ∥e 2 C .a 与e 1,e 2共面D .以上三种情况均有可能22正方体ABCD -A ′B ′C ′D ′中,向量AB ′→与BC ′→的夹角是( C )A .30° B .45° C .60°D .90°23设A ,B ,C ,D 是空间不共面的四点,且满足A B →·A C →=0,A C →·A D →=0,A B →·A D →=0,则△BCD 是( B )A .钝角三角形B .锐角三角形C .直角三角形D .不确定24.平行六面体ABCD -A 1B 1C 1D 1中,AB =1,AD =2,AA 1=3,∠BAD =90°,∠BAA 1=∠DAA 1=60°,则AC 1的长为 ( D )A.13B.43C.33D.2325. 已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a 、b 、c 三向量共面,则实数λ=( D ) A. 627 B. 637 C. 647 D. 65726 若a 、b 均为非零向量,则||||⋅=a b a b 是a 与b 共线的( A ) A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分又不必要条件 27.已知△ABC 的三个顶点为A (3,3,2),B (4,-3,7),C (0,5,1),则BC 边上的中线长为( B )A .2B .3C .4D .528 已知a +b +c =0,|a |=2,|b |=3,|c |=a 与b 之间的夹角,a b <>为( C )A .30°B .45°C .60°D .以上都不对29 .已知()()1,1,0,1,0,2,a b ==-且ka b +与2a b -互相垂直,则k 的值是(D )A. .1B. 15C. 35D. 7530.若A )12,5,(--x x x ,B )2,2,1(x x -+,当B A取最小值时,x 的值等于( C )A .19B .78-C .78D .141931.空间四边形OABC 中,OB OC =,3AOB AOC π∠=∠=,则cos <,OA BC >的值是(D )A .21 B .22 C .-21D .032.已知(1,2,3)OA =,(2,1,2)OB =,(1,1,2)OP =,点Q 在直线OP 上运动,则当QA QB ⋅取得最小值时,点Q 的坐标为 ( C ) (A).131(,,)243(B)123(,,)234(C)448(,,)333(D)447(,,)333二填空题:33.已知ABCD ,顶点A(1,0,0),B(0,1,0),C(0,0,2)则顶点D 的坐标为_____.(1,-1,2) 34.Rt ABC 中,,∠BAC=90°, A(2,1,1),B(1,1,2), C(x,0,1)则x=______2 35已知A(3,5,-7),B(-2,4,3),则AB 在坐标平面yoz 上的射影的长度为_____101 36已知正方形ABCD 的边长为1,AB →=a ,BC →=b ,AC →=c ,则|a +b +c|等于________. 3 37已知O 是空间任一点,A 、B 、C 、D 四点满足任三点均不共线,但四点共面,且OA →=2xBO →+3yCO →+4zDO →, 则2x +3y +4z =____138.已知A ,B ,C 三点共线,则对空间任一点O ,存在三个不为0的实数λ,m ,n ,使λOA →+mOB →+nOC →=0,那么λ+m +n 的值为________. 139.已知矩形ABCD ,P 为平面ABCD 外一点,M 、N 分别为BC 、PD 的中点,且满足M N →=xAB →+yAD →+zAP →则实数x ,y ,z 的值分别为________.-1,0,1240.在空间四边形ABCD 中,A B →·C D →+B C →·A D →+C A →·B D →=________→0.41.已知|a|=32,|b|=4,a 与b 的夹角为135°,m =a +b ,n =a +λb ,则m ⊥n ,则λ=________.11642.若向量)2,3,6(),4,2,4(-=-=b a,则(23)(2)a b a b -+=__________________。

高中数学第三章空间向量与立体几何 空间向量与平行、垂直的关系练习(含解析)新人教A版选修2-1

高中数学第三章空间向量与立体几何 空间向量与平行、垂直的关系练习(含解析)新人教A版选修2-1

第1课时 空间向量与平行、垂直的关系[学生用书P141(单独成册)][A 基础达标]1.若n =(2,-3,1)是平面α的一个法向量,则下列向量中能作为平面α的法向量的是( )A .(0,-3,1)B .(2,0,1)C .(-2,-3,1)D .(-2,3,-1)解析:选D.问题即求与n 共线的一个向量.即n =(2,-3,1)=-(-2,3,-1). 2.已知A (1,0,0),B (0,1,0),C (0,0,1),则平面ABC 的一个法向量是( ) A .(1,1,-1) B .(1,-1,1) C .(-1,1,1)D .(-1,-1,-1)解析:选D.AB →=(-1,1,0),AC →=(-1,0,1).设平面ABC 的一个法向量为n =(x ,y ,z ),则有⎩⎪⎨⎪⎧-x +y =0,-x +z =0,取x =-1,则y =-1,z =-1.故平面ABC 的一个法向量是(-1,-1,-1).3.若平面α,β的一个法向量分别为m =⎝ ⎛⎭⎪⎫-16,13,-1,n =⎝ ⎛⎭⎪⎫12,-1,3,则( )A .α∥βB .α⊥βC .α与β相交但不垂直D .α∥β或α与β重合解析:选D.因为n =-3m ,所以m ∥n ,所以α∥β或α与β重合.4.已知平面α内有一点A (2,-1,2),α的一个法向量为n =(3,1,2),则下列点P 中,在平面α内的是( )A .(1,-1,1)B .⎝ ⎛⎭⎪⎫1,3,32C.⎝⎛⎭⎪⎫1,-3,32D .⎝⎛⎭⎪⎫-1,3,-32解析:选B.要判断点P 是否在平面α内,只需判断向量PA →与平面α的法向量n 是否垂直,即PA →·n 是否为0,因此,要对各个选项进行检验. 对于选项A ,PA →=(1,0,1),则PA →·n =(1,0,1)·(3,1,2)=5≠0,故排除A ; 对于选项B ,PA →=⎝⎛⎭⎪⎫1,-4,12,则PA →·n =⎝ ⎛⎭⎪⎫1,-4,12·(3,1,2)=0,故B 正确;同理可排除C ,D.故选B.5.如图,PA ⊥平面ABCD ,四边形ABCD 为正方形,E 是CD 的中点,F 是AD 上一点,当BF ⊥PE 时,AF ∶FD 的值为( )A .1∶2B .1∶1C .3∶1D .2∶1解析:选B.建立如图所示的空间直角坐标系,设正方形的边长为1,PA =a ,则B (1,0,0),E ⎝ ⎛⎭⎪⎫12,1,0,P (0,0,a ).设点F 的坐标为(0,y ,0),则BF →=(-1,y ,0),PE →=⎝ ⎛⎭⎪⎫12,1,-a .因为BF ⊥PE , 所以BF →·PE →=0,解得y =12,即点F 的坐标为⎝ ⎛⎭⎪⎫0,12,0, 所以F 为AD 的中点, 所以AF ∶FD =1∶1.6.已知平面α的一个法向量a =(x ,1,-2),平面β的一个法向量b =⎝ ⎛⎭⎪⎫-1,y ,12,若α⊥β,则x -y =________.解析:因为α⊥β,所以a ⊥b ,所以-x +y -1=0,得x -y =-1. 答案:-17.已知点P 是平行四边形ABCD 所在平面外一点,如果AB →=(2,-1,-4),AD →=(4,2,0),AP →=(-1,2,-1).给出下列结论:①AP ⊥AB ;②AP ⊥AD ;③AP →是平面ABCD 的一个法向量.其中正确的是________(填序号).解析:AB →·AP →=2×(-1)+(-1)×2+(-4)×(-1)=-2-2+4=0,则AB →⊥AP →,则AB ⊥AP .AD →·AP →=4×(-1)+2×2+0=0,则AP →⊥AD →,则AP ⊥AD .又AB ∩AD =A ,所以AP ⊥平面ABCD ,故AP →是平面ABCD 的一个法向量.答案:①②③8.已知AB →=(1,5,-2),BC →=(3,1,z ),若AB →⊥BC →,BP →=(x -1,y ,-3),且BP →⊥平面ABC ,则BP →=________.解析:因为AB →⊥BC →,所以AB →·BC →=0, 所以3+5-2z =0, 所以z =4.因为BP →=(x -1,y ,-3),且BP →⊥平面ABC , 所以⎩⎪⎨⎪⎧BP →·AB →=0,BP →·BC →=0,即⎩⎪⎨⎪⎧x -1+5y +6=0,3x -3+y -12=0,解得⎩⎪⎨⎪⎧x =407,y =-157, 故BP →=⎝ ⎛⎭⎪⎫337,-157,-3.答案:⎝⎛⎭⎪⎫337,-157,-39.如图,在三棱柱ABC ­A 1B 1C 1中,侧棱垂直于底面,AB ⊥BC ,E ,F 分别为A 1C 1和BC 的中点.求证:(1)平面ABE ⊥平面B 1BCC 1; (2)C 1F ∥平面ABE .证明:如图,以B 为坐标原点,分别以BC ,BA ,BB 1所在直线为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系.设BC =a ,AB =b ,BB 1=c ,则B (0,0,0),A (0,b ,0),C 1(a ,0,c ),F ⎝ ⎛⎭⎪⎫a 2,0,0,E ⎝ ⎛⎭⎪⎫a 2,b 2,c .(1)AB →=(0,-b ,0),AE →=⎝ ⎛⎭⎪⎫a2,-b 2,c .设平面ABE 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·AB →=0,n ·AE →=0,即⎩⎨⎧-by =0,a 2x +⎝ ⎛⎭⎪⎫-b 2y +cz =0,令x =2,则y =0,z =-a c,即n =⎝⎛⎭⎪⎫2,0,-a c . 又平面B 1BCC 1的一个法向量为n 1=(0,1,0). 因为n 1·n =2×0+0×1+⎝ ⎛⎭⎪⎫-a c ×0=0,所以平面ABE ⊥平面B 1BCC 1.(2)C 1F →=⎝ ⎛⎭⎪⎫-a 2,0,-c ,且n ·C 1F →=0,所以C 1F →∥平面ABE . 又因为C 1F ⊄平面ABE . 所以C 1F ∥平面ABE .10.如图,在四棱锥P ­ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD =DC ,E 为PC 的中点,EF ⊥BP 于点F .求证:(1)PA ∥平面EDB ; (2)PB ⊥平面EFD .证明:由题意得,DA ,DC ,DP 两两垂直,所以以D 为坐标原点,DA ,DC ,DP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系Dxyz ,如图,设DC =PD =1,则P (0,0,1),A (1,0,0),D (0,0,0),B (1,1,0),E ⎝ ⎛⎭⎪⎫0,12,12.所以PB →=(1,1,-1), DE →=⎝ ⎛⎭⎪⎫0,12,12,EB →=⎝⎛⎭⎪⎫1,12,-12,设F (x ,y ,z ),则PF →=(x ,y ,z -1),EF →=⎝⎛⎭⎪⎫x ,y -12,z -12.因为EF →⊥PB →,所以x +⎝ ⎛⎭⎪⎫y -12-⎝ ⎛⎭⎪⎫z -12=0, 即x +y -z =0. ①又因为PF →∥PB →,可设PF →=λPB →, 所以x =λ,y =λ,z -1=-λ. ② 由①②可知,x =13,y =13,z =23,所以EF →=⎝ ⎛⎭⎪⎫13,-16,16.(1)设n 1=(x 1,y 1,z 1)为平面EDB 的法向量, 则有⎩⎪⎨⎪⎧n 1·DE →=0,n 1·EB →=0,即⎩⎪⎨⎪⎧12y 1+12z 1=0,x 1+12y 1-12z 1=0,所以⎩⎪⎨⎪⎧x 1=z 1,y 1=-z 1.取z 1=-1,则n 1=(-1,1,-1).因为PA →=(1,0,-1),所以PA ·n 1=0. 又因为PA ⊄平面EDB ,所以PA ∥平面EDB . (2)设n 2=(x 2,y 2,z 2)为平面EFD 的法向量, 则有⎩⎪⎨⎪⎧n 2·EF →=0,n 2·DE →=0,即⎩⎪⎨⎪⎧13x 2-16y 2+16z 2=0,12y 2+12z 2=0,所以⎩⎪⎨⎪⎧x 2=-z 2,y 2=-z 2.取z 2=1,则n 2=(-1,-1,1).所以PB →∥n 2,所以PB ⊥平面EFD .[B 能力提升]11.在正方体ABCD ­A 1B 1C 1D 1中,M ,N 分别为A 1B ,AC 的中点,则MN 与平面BB 1C 1C 的位置关系是( )A .相交B .平行C .垂直D .不能确定解析:选B.建系如图,设正方体的棱长为2,则A (2,2,2),A 1(2,2,0),C (0,0,2),B (2,0,2),所以M (2,1,1),N (1,1,2),所以MN →=(-1,0,1).又平面BB 1C 1C 的一个法向量为n =(0,1,0), 因为MN →·n =-1×0+0×1+1×0=0, 所以MN →⊥n ,又因为MN ⊄平面BB 1C 1C , 所以MN ∥平面BB 1C 1C .故选B.12.如图,在正四棱柱ABCD ­A 1B 1C 1D 1中,底面边长为22,侧棱长为4,E ,F 分别是棱AB ,BC 的中点.求证:平面B 1EF ⊥平面BDD 1B 1.证明:由题意得,DA ,DC ,DD 1两两垂直,所以以D 为坐标原点,DA ,DC ,DD 1所在的直线分别为x 轴、y 轴、z 轴建立空间直角坐标系如图,由题意,知D (0,0,0),A (22,0,0),C (0,22,0),B 1(22,22,4),E (22,2,0),F (2,22,0),则B 1E →=(0,-2,-4),EF →=(-2,2,0).设平面B 1EF 的法向量为n =(x ,y ,z ),则n ·B 1E →=-2y -4z =0,n ·EF →=-2x +2y =0,得x =y ,z =-24y ,令y =1,得n =⎝ ⎛⎭⎪⎫1,1,-24. 又平面BDD 1B 1的一个法向量为AC →=(-22,22,0), 而n ·AC →=1×(-22)+1×22+⎝ ⎛⎭⎪⎫-24×0=0,即n ⊥AC →,所以平面B 1EF ⊥平面BDD 1B 1.13.(选做题)如图所示,在四棱锥P -ABCD 中,PC ⊥平面ABCD ,PC =2,在四边形ABCD 中,∠B =∠BCD =90°,AB =4,CD =1,点M 在PB 上,PB =4PM ,PB 与平面ABCD 成30°角.(1)求证:CM ∥平面PAD ; (2)求证:平面PAB ⊥平面PAD . 证明:由题意得CB ,CD ,CP 两两垂直,所以以点C 为坐标原点,CB 所在直线为x 轴,CD 所在直线为y 轴,CP 所在直线为z 轴建立如图所示的空间直角坐标系Cxyz ,因为PC ⊥平面ABCD ,所以∠PBC 为PB 与平面ABCD 所成的角,所以∠PBC =30°.因为PC =2,所以BC =23,PB =4.所以D (0,1,0),B (23,0,0),A (23,4,0),P (0,0,2),M ⎝ ⎛⎭⎪⎫32,0,32.所以DP →=(0,-1,2),DA →=(23,3,0),CM →=⎝ ⎛⎭⎪⎫32,0,32.(1)令n =(x ,y ,z )为平面PAD 的法向量,则⎩⎪⎨⎪⎧DP →·n =0,DA →·n =0,即⎩⎨⎧-y +2z =0,23x +3y =0,所以⎩⎪⎨⎪⎧z =12y ,x =-32y ,令y =2,得n =(-3,2,1).因为n ·CM →=-3×32+2×0+1×32=0,所以n ⊥CM →,又CM ⊄平面PAD , 所以CM ∥平面PAD .(2)取AP 的中点E ,则E (3,2,1),BE →=(-3,2,1).因为PB =AB ,所以BE ⊥PA .又因为BE →·DA →=(-3,2,1)·(23,3,0)=0. 所以BE →⊥DA →,所以BE ⊥DA , 又因为PA ∩DA =A , 所以BE ⊥平面PAD , 又因为BE ⊂平面PAB , 所以平面PAB ⊥平面PAD .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 空间向量与立体几何1 空间向量加减法运用的三个层次空间向量是处理立体几何问题的有力工具,但要用好向量这一工具解题,必须熟练运用加减法运算.第1层 用已知向量表示未知向量例1 如图所示,M ,N 分别是四面体OABC 的边OA ,BC 的中点,P ,Q 是MN 的三等分点,用向量OA →,OB →,OC →表示OP →和OQ →.解 OP →=OM →+MP → =12OA →+23MN → =12OA →+23(ON →-OM →) =12OA →+23(ON →-12OA →) =16OA →+23×12(OB →+OC →) =16OA →+13OB →+13OC →; OQ →=OM →+MQ →=12OA →+13MN →=12OA →+13(ON →-OM →) =12OA →+13(ON →-12OA →) =13OA →+13×12(OB →+OC →)=13OA →+16OB →+16OC →.点评 用已知向量来表示未知向量,一定要结合图形,以图形为指导是解题的关键.要正确理解向量加法、减法与数乘运算的几何意义.首尾相接的若干向量之和,等于由起始向量的始点指向末尾向量的终点的向量,我们可把这个法则称为向量加法的多边形法则.在立体几何中要灵活应用三角形法则,向量加法的平行四边形法则在空间仍然成立. 第2层 化简向量例2 如图,已知空间四边形ABCD ,连接AC ,BD .设M ,G 分别是BC ,CD 的中点,化简下列各表达式,并标出化简结果的向量.(1)AB →+BC →+CD →;(2)AB →+12(BD →+BC →);(3)AG →-12(AB →+AC →).解 (1)AB →+BC →+CD →=AC →+CD →=AD →. (2)AB →+12(BD →+BC →)=AB →+12BC →+12BD →=AB →+BM →+MG →=AG →. (3)AG →-12(AB →+AC →)=AG →-AM →=MG →. AD →,AG →,MG →如图所示.点评 要求空间若干向量之和,可以通过平移,将它们转化为首尾相接的向量,如果首尾相接的若干向量构成一个封闭图形,则它们的和为0.两个向量相加的平行四边形法则在空间仍成立,求始点相同的两个向量之和时,可以考虑运用平行四边形法则. 第3层 证明立体几何问题例3 如图,已知M ,N 分别为四面体ABCD 的面BCD 与面ACD 的重心,且G 为AM 上一点,且GM ∶GA =1∶3.求证:B ,G ,N 三点共线. 证明 设AB →=a ,AC →=b ,AD →=c , 则BG →=BA →+AG →=BA →+34AM →=-a +14(a +b +c )=-34a +14b +14c ,BN →=BA →+AN →=BA →+13(AC →+AD →)=-a +13b +13c =43BG →.∴BN →∥BG →,即B ,G ,N 三点共线.2 空间向量易错点扫描易错点1 对向量夹角与数量积的关系理解不清例1 “a·b <0”是“〈a ,b 〉为钝角”的________条件.(填“充分不必要”“必要不充分”“充要”“既不充分也不必要”) 错解 a·b <0⇔cos 〈a ,b 〉=a·b|a||b |<0⇔〈a ,b 〉为钝角,所以“a·b <0”是“〈a ,b 〉为钝角”的充要条件.错因分析 错解中忽略了两个向量共线且反向的情况.剖析 当〈a ,b 〉=π时,a·b <0,但此时夹角不为钝角,所以“a·b <0”是“〈a ,b 〉为钝角”的必要不充分条件. 正解 必要不充分总结 a·b <0⇔a 与b 夹角为钝角或a 与b 方向相反,a·b >0⇔a 与b 夹角为锐角或a 与b 方向相同.易错点2 忽略两向量的夹角的定义例2 如图所示,在120°的二面角α—AB —β中,AC ⊂α,BD ⊂β,且AC ⊥AB ,BD ⊥AB ,垂足分别为A ,B .已知AC =AB =BD =6,试求线段CD 的长.错解 ∵AC ⊥AB ,BD ⊥AB , ∴CA →·AB →=0,BD →·AB →=0,∵二面角α—AB —β的平面角为120°, ∴〈CA →,BD →〉=120°. ∴CD 2=CD →2=(CA →+AB →+BD →)2=CA →2+AB →2+BD →2+2CA →·AB →+2CA →·BD →+2BD →·AB →=3×62+2×62×cos120°=72,∴CD =错因分析 错解中混淆了二面角的平面角与向量夹角的概念.向量CA →,BD →的夹角与二面角α—AB —β的平面角互补,而不是相等. 正解 ∵AC ⊥AB ,BD ⊥AB , ∴CA →·AB →=0,BD →·AB →=0,∵二面角α—AB —β的平面角为120°, ∴〈CA →,BD →〉=180°-120°=60°. ∴CD 2=CD →2=(CA →+AB →+BD →)2=CA →2+AB →2+BD →2+2CA →·AB →+2CA →·BD →+2BD →·AB →=3×62+2×62×cos60°=144,∴CD =12. 易错点3 判断是否共面出错例3 已知O ,A ,B ,C 为空间不共面的四点,a =OA →+OB →+OC →,b =OA →+OB →-OC →,则与a ,b 不能构成空间的一个基底的是( ) A.OA →B.OB →C.OC →D.OA →或OB →错解 a =OA →+OB →+OC →,b =OA →+OB →-OC →, 相加得OA →+OB →=12(a +b ),所以OA →,OB →都与a ,b 共面,不能构成空间的一个基底,故选D.剖析 OA →+OB →=12(a +b ),说明OA →+OB →与a ,b 共面,但不能认为OA →,OB →都与a ,b 共面.对A ,B :设OA →=x a +y b ,因为a =OA →+OB →+OC →,b =OA →+OB →-OC →,代入整理得(x +y -1)OA →+(x +y )OB →+(x -y )OC →=0,因为O ,A ,B ,C 四点不共面, 所以OA →,OB →,OC →不共面,所以x +y -1=0,x +y =0,x -y =0, 此时,x ,y 不存在,所以a 、b 与OA →不共面, 故a ,b 与OA →可构成空间的一个基底. 同理a ,b 与OB →也可构成空间的一个基底.对C :因为a =OA →+OB →+OC →,b =OA →+OB →-OC →,相减有OC →=12(a -b ),所以OC →与a ,b 共面,故不能构成空间的一个基底.易错点4 混淆向量运算和实数运算 例4 下列各式中正确的是( ) A .a ·b =b ·c (b ≠0)⇒a =c B .a ·b =0⇒a =0或b =0 C .(a ·b )·c =a ·(b ·c )D.OA →·BO →=|OA →||BO →|cos(180°-∠AOB ) 错解 A(或B 或C)剖析 想当然地将向量的数量积运算和实数运算等价,以致出错.向量的数量积运算不满足消去律、结合律,故A 、C 错误;若a ·b =0⇒a =0或b =0或a ⊥b ,故B 错误;OA →·BO →的夹角是180°-∠AOB . 正解 D易错点5 忽略建系的前提例5 四边形ABCD 是边长为2的菱形,∠ABC =60°,AE ⊥平面ABCD ,AE =2,F 为CE 中点,试合理建立坐标系,求AF →与BC →所成角的余弦值.错解 以A 为坐标原点,以AB →,AD →,AE →的方向分别为x ,y ,z 轴的正方向,建立空间直角坐标系Axyz .此时AF →=(1,1,1),BC →=(0,2,0),所以cos 〈AF →,BC →〉=33.剖析 空间直角坐标系的建立的前提是三条直线两两垂直,而本题中直线AB 与AD 不垂直. 正解 设AC ,BD 交于点O ,则AC ⊥BD . 因为F 为CE 中点,所以OF ∥AE , 因为AE ⊥平面ABCD ,所以OF ⊥平面ABCD ,OF ⊥AC ,OF ⊥BD ,以O 为坐标原点,以OC →,OD →,OF →的方向分别为x ,y ,z 轴的正方向,建立空间直角坐标系Oxyz .此时AF →=(1,0,1),BC →=(1,3,0), 所以cos 〈AF →,BC →〉=24.易错点6 求空间角时,因对所求角与向量夹角的关系不理解致误例6 在正方体ABCD -A 1B 1C 1D 1中,求二面角A -BD 1-C 的大小.错解 以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系Dxyz , 设正方体的棱长为1, 则D (0,0,0),A 1(1,0,1),C 1(0,1,1).由题意知DA 1→是平面ABD 1的一个法向量,DA 1→=(1,0,1),DC 1→是平面BCD 1的一个法向量,DC 1→=(0,1,1),所以cos 〈DA 1→,DC 1→〉=DC 1→·DA 1→|DC 1→||DA 1→|=12.所以〈DA 1→,DC 1→〉=60°.所以二面角A -BD 1-C 的大小为60°.剖析 利用向量法求所成角问题,需注意所求的角的确切位置.正解 以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系Dxyz ,设正方体的棱长为1, 则D (0,0,0),A 1(1,0,1),C 1(0,1,1).由题意知DA 1→=(1,0,1)是平面ABD 1的一个法向量,DC 1→=(0,1,1)是平面BCD 1的一个法向量. 所以cos 〈DA 1→,DC 1→〉=DC 1→·DA 1→|DC 1→||DA 1→|=12,所以〈DA 1→,DC 1→〉=60°.结合图形知二面角A -BD 1-C 的大小为120°.3 空间直角坐标系构建三策略利用空间向量的方法解决立体几何问题,关键是依托图形建立空间直角坐标系,将其他向量用坐标表示,通过向量运算,判定或证明空间元素的位置关系,以及空间角、空间距离问题的探求.所以如何建立空间直角坐标系显得非常重要,下面简述空间建系的三种方法,希望同学们面对空间几何问题能做到有的放矢,化解自如. 1.利用共顶点的互相垂直的三条棱例1 已知直四棱柱中,AA 1=2,底面ABCD 是直角梯形,∠DAB 为直角,AB ∥CD ,AB =4,AD =2,DC =1,试求异面直线BC 1与DC 所成角的余弦值.解 如图,以D 为坐标原点,分别以DA ,DC ,DD 1所在的直线为x 轴,y 轴,z 轴,建立空间直角坐标系Dxyz ,则D (0,0,0),C 1(0,1,2),B (2,4,0),C (0,1,0), 所以BC 1→=(-2,-3,2),CD →=(0,-1,0). 所以cos 〈BC 1→,CD →〉=BC 1→·CD →|BC 1→||CD →|=31717.故异面直线BC 1与DC 所成角的余弦值为31717.点评 本例以直四棱柱为背景,求异面直线所成角.求解关键是从直四棱柱图形中的共点的三条棱互相垂直关系处着眼,建立空间直角坐标系,写出有关点的坐标和相关向量的坐标,再求两异面直线的方向向量的夹角即可. 2.利用线面垂直关系例2 如图,在三棱柱ABC -A 1B 1C 1中,AB ⊥平面BB 1C 1C ,E 为棱C 1C 的中点,已知AB =2,BB 1=2,BC =1,∠BCC 1=π3.试建立合适的空间直角坐标系,求出图中所有点的坐标.解 过点B 作BP 垂直BB 1交C 1C 于点P , 因为AB ⊥平面BB 1C 1C ,所以AB ⊥BP , 又BP ⊥BB 1,BB 1∩AB =B ,且BB 1,AB ⊂平面ABB 1A 1,所以BP ⊥平面ABB 1A 1,以B 为坐标原点,分别以BP ,BB 1,BA 所在的直线为x 轴,y 轴,z 轴,建立空间直角坐标系Bxyz .因为AB =2,BB 1=2,BC =1,∠BCC 1=π3,所以CP =12,C 1P =32,BP =32,则各点坐标分别为B (0,0,0),A (0,0,2),B 1(0,2,0),C ⎝⎛⎭⎪⎫32,-12,0,C 1⎝⎛⎭⎪⎫32,32,0,E ⎝ ⎛⎭⎪⎫32,12,0,A 1(0,2,2),p ⎝ ⎛⎭⎪⎫32,0,0. 点评 空间直角坐标系的建立,要尽量地使尽可能多的点落在坐标轴上,这样建成的坐标系,既能迅速写出各点的坐标,又由于坐标轴上的点的坐标含有0,也为后续的运算带来了方便.本题已知条件中的垂直关系“AB ⊥平面BB 1C 1C ”,可作为建系的突破口.3.利用面面垂直关系例3 如图1,在等腰梯形ABCD 中,AD ∥BC ,AB =AD =2,∠ABC =60°,E 是BC 的中点.将△ABE 沿AE 折起,使平面BAE ⊥平面AEC (如图2),连接BC ,BD .求平面ABE 与平面BCD 所成的锐角的大小.解 取AE 中点M ,连接BM ,DM .因为在等腰梯形ABCD 中,AD ∥BC ,AB =AD ,∠ABC =60°,E 是BC 的中点, 所以△ABE 与△ADE 都是等边三角形, 所以BM ⊥AE ,DM ⊥AE .又平面BAE ⊥平面AEC ,所以BM ⊥MD .以M 为坐标原点,分别以ME ,MD ,MB 所在的直线为x ,y ,z 轴,建立空间直角坐标系Mxyz ,如图,则B (0,0,3),C (2,3,0),D (0,3,0),M (0,0,0), 所以DC →=(2,0,0),BD →=(0,3,-3),MD →=(0,3,0), 设平面BCD 的法向量为m =(x ,y ,z ), 由⎩⎪⎨⎪⎧m ·DC →=2x =0,m ·BD →=3y -3z =0.取y =1,得m =(0,1,1),又因平面ABE 的一个法向量MD →=(0,3,0), 所以cos 〈m ,MD →〉=m ·MD →|m ||MD →|=22,所以平面ABE 与平面BCD 所成的锐角为45°.点评 本题求解关键是利用面面垂直关系,先证在两平面内共点的三线垂直,再构建空间直角坐标系,然后分别求出两个平面的法向量,求出两法向量夹角的余弦值,即可得所求的两平面所成的锐角的大小.用法向量的夹角求二面角时应注意:平面的法向量有两个相反的方向,取的方向不同求出来的角度就不同,所以最后还应该根据这个二面角的实际形态确定其大小.4 用向量法研究“动态”立体几何问题“动态”立体几何问题是在静态几何问题中渗透了一些“动态”的点、线、面等元素,同时由于“动态”的存在,使得问题的处理趋于灵活.本文介绍巧解“动态”立体几何问题的法宝——向量法,教你如何以静制动. 1.求解、证明问题例1 在棱长为a 的正方体OABC —O 1A 1B 1C 1中,E ,F 分别是AB ,BC 上的动点,且AE =BF ,求证:A 1F ⊥C 1E .证明 以O 为坐标原点,OA ,OC ,OO 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系Oxyz ,则A 1(a,0,a ),C 1(0,a ,a ). 设AE =BF =x ,∴E (a ,x,0),F (a -x ,a,0).∴A 1F -→=(-x ,a ,-a ),C 1E -→=(a ,x -a ,-a ). ∵A 1F -→·C 1E -→=(-x ,a ,-a )·(a ,x -a ,-a ) =-ax +ax -a 2+a 2=0, ∴A 1F -→⊥C 1E -→,即A 1F ⊥C 1E . 2.定位问题例2 如图,已知四边形ABCD ,CDGF ,ADGE 均为正方形,且边长为1,在DG 上是否存在点M ,使得直线MB 与平面BEF 的夹角为45°?若存在,求出点M 的位置;若不存在,请说明理由.解题提示 假设存在点M ,设平面BEF 的法向量为n ,设BM 与平面BEF 所成的角为θ,利用sin θ=|BM →·n ||BM →||n |求出点M 的坐标,若满足条件则存在.解 存在点M ,使得直线MB 与平面BEF 的夹角为45°.因为四边形CDGF ,ADGE 均为正方形,所以GD ⊥DA ,GD ⊥DC .又DA ∩DC =D ,所以GD ⊥平面ABCD .又DA ⊥DC ,所以DA ,DG ,DC 两两垂直,如图,以D 为坐标原点,DA ,DC ,DG 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系Dxyz , 则B (1,1,0),E (1,0,1),F (0,1,1).因为点M 在DG 上,假设存在点M (0,0,t )(0≤t ≤1)使得直线BM 与平面BEF 的夹角为45°.设平面BEF 的法向量为n =(x ,y ,z ).因为BE →=(0,-1,1),BF →=(-1,0,1),则⎩⎪⎨⎪⎧ n ·BE →=0,n ·BF →=0,即⎩⎪⎨⎪⎧ -y +z =0,-x +z =0,令z =1,得x =y =1,所以n =(1,1,1)为平面BEF 的一个法向量.又BM →=(-1,-1,t ),直线BM 与平面BEF 所成的角为45°,所以si n45°=|BM →·n ||BM →||n |=|-2+t |t 2+2×3=22, 解得t =-4±3 2.又0≤t ≤1,所以t =32-4.故在DG 上存在点M (0,0,32-4),且DM =32-4时,直线MB 与平面BEF 所成的角为45°.点评 由于立体几何题中“动态”性的存在,使有些问题的结果变得不确定,这时我们要以不变应万变,抓住问题的实质,引入参量,利用空间垂直关系及数量积将几何问题代数化,达到以静制动的效果.5 向量与立体几何中的数学思想1.数形结合思想向量方法是解决问题的一种重要方法,坐标是研究向量问题的有效工具,利用空间向量的坐标表示可以把向量问题转化为代数运算,从而沟通了几何与代数的联系,体现了数形结合的重要思想.向量具有数形兼备的特点,因此,它能将几何中的“形”和代数中的“数”有机地结合在一起.例1 如图,在四棱柱ABCD -A 1B 1C 1D 1中,A 1A ⊥底面ABCD ,∠BAD =90°,AD ∥BC ,且A 1A =AB =AD =2BC =2,点E 在棱AB 上,平面A 1EC 与棱C 1D 1相交于点F .(1)证明:A 1F ∥平面B 1CE ;(2)若E 是棱AB 的中点,求二面角A 1-EC -D 的余弦值;(3)求三棱锥B 1-A 1EF 的体积的最大值.(1)证明 因为ABCD -A 1B 1C 1D 1是棱柱,所以平面ABCD ∥平面A 1B 1C 1D 1.又因为平面ABCD ∩平面A 1ECF =EC ,平面A 1B 1C 1D 1∩平面A 1ECF =A 1F ,所以A 1F ∥EC .又因为A 1F ⊄平面B 1CE ,EC ⊂平面B 1CE ,所以A 1F ∥平面B 1CE .(2)解 因为AA 1⊥底面ABCD ,∠BAD =90°,所以AA 1,AB ,AD 两两垂直,以A 为坐标原点,以AB ,AD ,AA 1所在直线分别为x 轴,y 轴和z 轴,建立如图所示空间直角坐标系Axyz .则A 1(0,0,2),E (1,0,0),C (2,1,0),A (0,0,0),所以A 1E -→=(1,0,-2),A 1C -→=(2,1,-2),AA 1→=(0,0,1).设平面A 1EC 的法向量为m =(x ,y ,z ),由A 1E -→·m =0,A 1C -→·m =0,得⎩⎪⎨⎪⎧ x -2z =0,2x +y -2z =0.令z =1,得m =(2,-2,1).又因为平面DEC 的法向量为n =AA 1→=(0,0,1),所以cos 〈m ,n 〉=m ·n |m ||n |=13, 由图可知,二面角A 1-EC -D 的平面角为锐角,所以二面角A 1-EC -D 的余弦值为13. (3)解 过点F 作FM ⊥A 1B 1于点M ,因为平面A 1ABB 1⊥平面A 1B 1C 1D 1,平面A 1ABB 1∩A 1B 1C 1D 1=A 1B 1,FM ⊥A 1B 1,所以FM ⊥平面A 1ABB 1,所以11B A EF V -=11F B A E V -=13×11A B E S ×FM=13×2×22×FM =23FM . 因为当F 与点D 1重合时,FM 取到最大值2(此时点E 与点B 重合),所以当F 与点D 1重合时,三棱锥B 1-A 1EF 的体积的最大值为43. 2.转化与化归思想空间向量的坐标及运算为解决立体几何中的夹角、距离、垂直、平行等问题提供了工具,因此我们要善于把这些问题转化为向量的夹角、模、垂直、平行等问题,利用向量方法解决.将几何问题化归为向量问题,然后利用向量的性质进行运算和论证,再将结果转化为几何问题.这种“从几何到向量,再从向量到几何”的思想方法,在本章尤为重要.例2 如图,在长方体ABCD -A 1B 1C 1D 1中,AA 1=AB =2AD =2,E 为AB 的中点,F 为D 1E 上的一点,D 1F =2FE .(1)证明:平面DFC ⊥平面D 1EC ;(2)求二面角A -DF -C 的平面角的余弦值.分析 求二面角最常用的办法就是分别求出二面角的两个面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角.(1)证明 以D 为坐标原点,分别以DA ,DC ,DD 1所在的直线为x 轴,y 轴,z 轴建立如图所示空间直角坐标系Dxyz ,则A (1,0,0),B (1,2,0),C (0,2,0),D 1(0,0,2),D (0,0,0).∵E 为AB 的中点,∴E (1,1,0),∵D 1F =2FE ,∴D 1F -→=23D 1E -→=23(1,1,-2)=⎝ ⎛⎭⎪⎫23,23,-43,∴DF →=DD 1→+D 1F -→=(0,0,2)+⎝ ⎛⎭⎪⎫23,23,-43=⎝ ⎛⎭⎪⎫23,23,23.设n =(x 1,y 1,z 1)是平面DFC 的法向量,则⎩⎪⎨⎪⎧ n ·DF →=0,n ·DC →=0,∴⎩⎪⎨⎪⎧23x 1+23y 1+23z 1=0,2y 1=0.取x 1=1得平面DFC 的一个法向量n =(1,0,-1).设p =(x 2,y 2,z 2)是平面D 1EC 的法向量,则⎩⎪⎨⎪⎧p ·D 1F -→=0,p ·D 1C -→=0,∴⎩⎪⎨⎪⎧ 23x 2+23y 2-43z 2=0,2y 2-2z 2=0,取y 2=1得平面D 1EC 的一个法向量p =(1,1,1),∵n ·p =(1,0,-1)·(1,1,1)=0,∴n ⊥p ,∴平面DFC ⊥平面D 1EC .(2)解 设q =(x 3,y 3,z 3)是平面ADF 的法向量,则⎩⎪⎨⎪⎧ q ·DF →=0,q ·DA →=0,∴⎩⎪⎨⎪⎧23x 3+23y 3+23z 3=0,x 3=0,取y 3=1得平面ADF 的一个法向量q =(0,1,-1),设二面角A -DF -C 的平面角为θ,由题中条件可知θ∈⎝⎛⎭⎪⎫π2,π,则cos θ=-|n ·q ||n ||q |=-0+0+12×2=-12, ∴二面角A -DF -C 的平面角的余弦值为-12. 3.函数思想例3 已知关于x 的方程x 2-(t -2)x +t 2+3t +5=0有两个实根,且c =a +t b ,a =(-1,1,3),b =(1,0,-2).问|c |能否取得最大值?若能,求出实数t 的值及对应的向量b 与c 夹角的余弦值;若不能,请说明理由.分析 写出|c |关于t 的函数关系式,再利用函数观点求解. 解 由题意知Δ≥0,得-4≤t ≤-43, 又c =(-1,1,3)+t (1,0,-2)=(-1+t,1,3-2t ),∴|c |=(-1+t )2+(3-2t )2+1=5⎝ ⎛⎭⎪⎫t -752+65. 当t ∈⎣⎢⎡⎦⎥⎤-4,-43时,f (t )=5⎝ ⎛⎭⎪⎫t -752+65是单调递减函数,∴f (t )max =f (-4),即|c |的最大值存在, 此时c =(-5,1,11).b·c =-27,|c |=7 3.而|b |=5,∴cos 〈b ,c 〉=b·c |b||c |=-275×73=-91535. 点评 凡涉及向量中的最值问题,若可用向量坐标形式,一般可考虑写出函数关系式,利用函数思想求解.4.分类讨论思想例4 如图,在矩形ABCD 中,AB =1,BC =a (a >0),PA ⊥平面ABCD (点P 位于平面ABCD 的上方),问BC 边上是否存在点Q ,使PQ →⊥QD →?分析 由PQ →⊥QD →,得PQ ⊥QD ,所以平面ABCD 内,点Q 在以边AD 为直径的圆上,若此圆与边BC 相切或相交,则BC 边上存在点Q ,否则不存在.解 假设存在点Q (Q 点在边BC 上),使PQ →⊥QD →,即PQ ⊥QD ,连接AQ .∵PA ⊥平面ABCD ,∴PA ⊥QD . 又PQ →=PA →+AQ →且PQ →⊥QD →,∴PQ →·QD →=0, 即PA →·QD →+AQ →·QD →=0.又由PA →·QD →=0,∴AQ →·QD →=0,∴AQ →⊥QD →. 即点Q 在以边AD 为直径的圆上,圆的半径为a 2.又∵AB =1,由题图知,当a 2=1,即a =2时,该圆与边BC 相切,存在1个点Q 满足题意; 当a 2>1,即a >2时,该圆与边BC 相交,存在2个点Q 满足题意; 当a 2<1,即0<a <2时,该圆与边BC 相离,不存在点Q 满足题意. 综上所述,当a ≥2时,存在点Q ,使PQ →⊥QD →; 当0<a <2时,不存在点Q ,使PQ →⊥QD →.。

相关文档
最新文档