20届成都七中高三文科数学热身考试试卷(含答案)
成都七中2020届三诊模拟文科数学试卷(含答案)
成都七中2020届三诊模拟数 学(文科)一、选择题:(本大题共12小题,每小题5分,共60分.) 1. 已知集合2{1,0,1,2,3,4},{|,}A B y y x x A =-==∈,则AB =( )(A){0,1,2} (B){0,1,4} (C){1,0,1,2}- (D){1,0,1,4}- 2. 已知复数11iz =+,则||z =( )(B)1 (D)2 3. 设函数()f x 为奇函数,当0x >时,2()2,f x x =-则((1))f f =( ) (A)1- (B)2- (C)1 (D)24. 已知单位向量12,e e 的夹角为2π3,则122e e -=( )(A)3 (B)7 (C)5. 已知双曲线22221(0,0)x y a b a b-=>>的渐近线方程为3y x =±,则双曲线的离心率是( )(C)10 (D)1096. 在等比数列{}n a 中,10,a >则“41a a <”是“53a a <”的( )(A)充分不必要条件 (B)必要不充分条件 (C)充要条件 (D)既不充分也不必要条件7. 如图所示的程序框图,当其运行结果为31时,则图中判断框①处应填入的是( )(A)6?i ≤ (B)5?i ≤ (C)4?i ≤ (D)3?i ≤8. 已知,a b 为两条不同直线,,,αβγ为三个不同平面,下列命题:①若///,,/ααγβ则//βγ;②若//,//,a a αβ则//αβ;③若,,αγγβ⊥⊥则αβ⊥;④若,,a b αα⊥⊥则//a b .其中正确命题序号为( ) (A)②③(B)②③④(C)①④(D)①②③9. 南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为1,5,11,21,37,61,95,则该数列的第8项为( ) (A)99(B)131 (C)139 (D)14110. 已知2πlog e ,a =πln ,eb =2e ln ,πc =则( )得分(A)a b c << (B)b c a << (C)b a c << (D)c b a <<11. 已知一个四面体的每一个面都是以3,3,2为边长的锐角三角形,则这个四面体的外接球的表面积为( ) (A)11π4 (B)11π2(C)11π (D)22π 12. 已知P 是椭圆2214x y +=上一动点,(2,1),(2,1)A B -,则cos ,PAPB 的最大值是( )(D)14二、填空题:(本大题共4小题,每小题5分,共20分.)13.已知数列{}n a 的前n 项和为,n S 且111,1(2),n n a a S n -==+≥则4a =14. 已知实数,x y 满足线性约束条件117x y x y ≥⎧⎪≥-⎨⎪+≤⎩,则目标函数2z x y =+的最大值是15. 如图是一种圆内接六边形ABCDEF ,其中BC CD DE EF FA ====且.AB BC ⊥则在圆内随机取一点,则此点取自六边形ABCDEF 内的概率是16. 若指数函数xy a =(0a >且1)a ≠与一次函数y x =的图象恰好有两个不同的交点,则实数a 的取值范围是三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)在ABC ∆中,内角,,A B C 的对边分别为,,.a b c 已知2.tan sin a bA B= (1)求角A 的大小; (2)若2,a b ==求ABC ∆的面积.18.(本小题满分12分) 成都七中为了解班级卫生教育系列活动的成效,对全校40个班级进行了一次突击班级卫生量化打分检查(满分100分,最低分20分).根据检查结果:得分在[80,100]评定为“优”,奖励3面小红旗;得分在[60,80)评定为“良”,奖励2面小红旗;得分在[40,60)评定为“中”,奖励1面小红旗;得分在[20,40)评定为“差”,不奖励小红旗.已知统计结果的部分频率分布直方图如下图:(1)依据统计结果的部分频率分布直方图,求班级卫生量化打分检查得分的中位数;(2)学校用分层抽样的方法,从评定等级为“良”、“中”的班级中抽取6个班级,再从这6个班级中随机抽取2个班级进行抽样复核,求所抽取的2个班级获得的奖励小红旗面数和不少于3的概率.19.(本小题满分12分) 如图,在四棱锥M ABCD -中,2,,AB AM AD MB MD AB AD =====⊥(1)证明:AB ⊥平面ADM ;(2)若//CD AB 且23CD AB =,E 为线段BM 上一点,且 2BE EM =,求三棱锥A CEM -的体积.20.(本小题满分12分)已知函数22e (),(e,).ln x xf x x x x ++=∈+∞ (1)证明:当(e,)x ∈+∞时,3eln ex x x ->+;(2)证明:()f x 在1[2e ,)2++∞单调递增.(其中e 2.71828=是自然对数的底数).21.(本小题满分12分)已知点P 是抛物线21:2C y x =上的一点,其焦点为点,F 且抛物线C 在点P 处的切线l 交圆:O 221x y +=于不同的两点,A B .(1)若点(2,2),P 求||AB 的值;(2)设点M 为弦AB 的中点,焦点F 关于圆心O 的对称点为,F '求||F M '的取值范围.请考生在第22,23题中任选择一题作答,如果多做,则按所做的第一题记分.作答时,用2B 铅笔在答题卡上将所选题目对应的标号涂黑.22.(本小题满分10分)选修44-:坐标系与参数方程在平面直角坐标系xOy 中,曲线C 的参数方程为233x y αα⎧=+⎪⎨=⎪⎩(α为参数,0πα≤≤).在以坐标原点为极点,x 轴的非负半轴为极轴的极坐标系中,射线l 的极坐标方程是π6θ=.(1)求曲线C 的极坐标方程;(2)若射线l 与曲线C 相交于,A B 两点,求||||OA OB ⋅的值.23.(本小题满分10分)选修45-:不等式选讲已知0,0,a b >>且24,a b +=函数()2f x x a x b =++-在R 上的最小值为.m (1)求m 的值;(2)若22a mb tab +≥恒成立,求实数t 的最大值.参考答案一、选择题(每小题5分,共60分)1.B ;2.A ;3.C ;4.D ;5.A ;6.A ;7.B ;8.C ;9.D ; 10.B ; 11.C ; 12.A.二、填空题(每小题5分,共20分)13.8; 14.15; ; 16.1e (1,e ).三、解答题(共70分) 17. 解:(1)由正弦定理知sin sin a b A B =,又2,tan sin a b A B =所以2.sin tan a aA A= 于是1cos ,2A =因为0π,A <<所以π.3A =6分(2)因为π2,,3a b A ===22π222cos ,3c c =+-⨯⨯即2230.c c --=又0c >,所以 3.c =故ABC ∆的面积为11πsin 23sin223bc A =⨯⨯⨯= 12分18.解:(1)得分[20,40)的频率为0.005200.1⨯=;得分[40,60)的频率为0.010200.2⨯=; 得分[80,100]的频率为0.015200.3⨯=;所以得分[60,80)的频率为1(0.10.20.3)0.4.-++=设班级得分的中位数为x 分,于是600.10.20.40.520x -++⨯=,解得70.x = 所以班级卫生量化打分检查得分的中位数为70分. 6分(2)由(1)知题意 “良”、“中”的频率分别为0.4,0.2.又班级总数为40.于是“良”、“中”的班级个数分别为16,8.分层抽样的方法抽取的 “良”、“中”的班级个数分别为4,2. 因为评定为“良”,奖励2面小红旗,评定为“中”,奖励1面小红旗.所以抽取的2个班级获得的奖励小红旗面数和不少于3为两个评定为“良”的班级或一个评定为“良”与一个评定为“中”的班级.记这个事件为.A 则A 为两个评定为“中”的班级.把4个评定为“良”的班级标记为1,2,3,4. 2个评定为“中”的班级标记为5,6.从这6个班级中随机抽取2个班级用点(,)i j 表示,其中16i j ≤<≤.这些点恰好为66⨯方格格点上半部分(不含i j =对角线上的点),于是有366152-=种. 事件A 仅有(5,6)一个基本事件. 所以114()1()1.1515P A P A =-=-= 所抽取的2个班级获得的奖励小红旗面数和不少于3的概率为14.1512分19.解:(1)因为2AB AM ==,MB =所以222.AM AB MB +=于是.AB AM ⊥ 又,AB AD ⊥且,AMAD A AM =⊂平面ABD ,AD ⊂平面ADM ,所以AB ⊥平面.ADM 5分(2)因为2,AM AD MD ===所以ADM S ∆=因为2BE EM =,所以1.3C AEM C ABM V V --=又//,CD AB AB ⊥平面.ADM 所以111333A CEM C AEM C ABM D ABMB ADM V V V V V -----====111123333ADM S AB =⨯⋅⋅=⨯=所以三棱锥A CEM -的体积为912分20.解:(1)令3e ()ln ,(e,).e x g x x x x -=-∈+∞+则22214e (e)()0.(e)(e)x g x x x x x -'=-=>++于是()g x 在(e,)+∞单调递增,所以()(e)0,g x g >= 即3eln ,(e,).ex x x x ->∈+∞+ 5分(2)22222222(21)ln (e )(ln 1)(e )ln (e )().(ln )(ln )x x x x x x x x x x f x x x x x +-+++--++'== 令2222()(e )ln (e ),(e,).h x x x x x x =--++∈+∞ 当(e,)x ∈+∞时,由(1)知3eln .e x x x ->+则222223e 1()(e )(e )2(4e 1)2[(2e )],e 2x h x x x x x x x x x ->--++=-+=-++ 当1[2e ,)2x ∈++∞时,()0h x >,从而()0.f x '> 故()f x 在1[2e ,)2++∞严格单调递增. 12分21.解:设点00(,)P x y ,其中2001.2y x =因为,y x '=所以切线l 的斜率为0,x 于是切线2001:.2l y x x x =-(1)因为(2,2),P 于是切线:2 2.l y x =-故圆心O 到切线l 的距离为d =于是||AB===5分(2)联立22200112x yy x x x⎧+=⎪⎨=-⎪⎩得22340001(1)10.4x x x x x+-+-=设1122(,),(,),(,).A x yB x y M x y则3122,1xx xx+=+32240001()4(1)(1)0.4x x x∆=--+->又20,x≥于是202x≤<+于是32200120022001,.22(1)22(1)x xx xx y x x xx x+===-=-++又C的焦点1(0,),2F于是1(0,).2F'-故||F M'===9分令21,t x=+则13t≤<+于是||F M'==因为3tt+在单调递减,在+单调递增.又当1t=时,1||2F M'=;当t=时,||F M'=;当3t=+时,11||.22F M'=>所以||F M'的取值范围为1).212分22.解:(1)消去参数α得22(2)3(0)x y y-+=≥将cos,sinx yρθρθ==代入得22(cos2)(sin)3,ρθρθ-+=即24cos10.ρρθ-+=所以曲线C的极坐标方程为2π4cos10(0).3ρρθθ-+=≤≤5分(2)法1:将π6θ=代入2π4cos10(0)3ρρθθ-+=≤≤得210ρ-+=,设12ππ(,),(,),66A Bρρ则121.ρρ=于是12|||| 1.OA OBρρ⋅==10分法2:π3θ=与曲线C相切于点,Mπ||2sin1,3OM==由切割线定理知2|||||| 1.OA OB OM⋅==10分23.解:(1)3, (,),2()2, [,],23, (,).a x a b x a f x x a x b x a b x b x a b x b ⎧--+∈-∞-⎪⎪⎪=++-=++∈-⎨⎪+-∈+∞⎪⎪⎩.当(,)2a x ∈-∞-时,函数()f x 单调递减;当(,)xb ∈+∞时,函数()f x 单调递增. 所以m 只能在[,]2a b -上取到.当[,]2ax b ∈-时,函数()f x 单调递增. 所以2() 2.222a a a bm f a b +=-=-++==5分(2)因为22a mb tab +≥恒成立,且0,0a b >>,所以22a mb t ab +≤恒成立即mina b mb t a ⎛⎫≤+ ⎪⎝⎭.由(1)知2m =,于是a b a mb +≥== 当且仅当2a b ab =时等号成立即1)0,2(20.a b =>=>所以t ≤,故实数t的最大值为10分。
2020届四川省成都市第七中学高三高中毕业班三诊模拟数学(文)试题(解析版)
,cos
1),
P 点位于左顶点,
tan 当 t (0,2] ,
4 3t 4 8 8
t
4 4
3t t
4
2
8 43
3
4 ,当且仅当 3t
4
即
t
t 2 3 时取等号, 3
则 cos
1 1 tan2
1
2
12 3
1
2
62
62 4.
uuur uuur 综上所述, cos PA, PB 的最大值是
6 2. 4
故选: A
【详解】
Q 所给数列为高阶等差数列 设该数列的第 8 项为 x
根据所给定义:用数列的后一项减去前一项得到一个新数列,
得到的新数列也用后一项减去前一项得到一个新数列
即得到了一个等差数列,如图:
8 项;
根据图象可得: y 34 12 ,解得 y 46 x 95 y 46 解得: x 141
故选: D . 【点睛】 本题主要考查了数列的新定义,解题关键是理解题意和掌握等差数列定义,考查了分析能力和 计算能力,属于中档题.
D. 14 14
90o ,当直线 AP、BP 之中有一条直线的斜率不存在时
tan AB 4 ,当直线 AP、 BP 斜率都存在时由 tan
k AP kBP 求出 tan 关于 y 的表达
AP
1 k AP k BP
式,利用换元法和基本不等式即可求得 tan 的范围,再由 cos
1 1 tan2
转化为 cos 的
范围即可求得最大值 .
【详解】
uuur uuur
记 PA, PB
,若
90o,则 cos
0 ;若
90o ,则 cos =0 ;
四川省成都七中2020届高三数学三诊模拟试题文
四川省成都七中2020届高三数学三诊模拟试题 文本试卷分选择题和非选择题两部分. 第Ⅰ卷(选择题)1至2页,第Ⅱ卷 (非选择题)3至4页,共4页,满分150分,考试时间120分钟. 注意事项:1.答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上.2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其它答案标号.3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定位置上.4.所有题目必须在答题卡上作答,在试题卷上答题无效.5.考试结束后,只将答题卡交回.第Ⅰ卷 (选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合2{1,0,1,2,3,4},{|,}A B y y x x A =-==∈,则A B =I(A){0,1,2} (B){0,1,4} (C){1,0,1,2}- (D){1,0,1,4}- 2. 已知复数11iz =+,则||z =(A)2(D)2 3. 设函数()f x 为奇函数,当0x >时,2()2,f x x =-则((1))f f = (A)1- (B)2- (C)1 (D)24. 已知单位向量12,e e 的夹角为2π3,则122e e -=5. 已知双曲线22221(0,0)x y a b a b-=>>的渐近线方程为3y x =±,则双曲线的离心率是(C)10 (D)1096. 在等比数列{}n a 中,10,a >则“41a a <”是“53a a <”的(A)充分不必要条件 (B)必要不充分条件 (C)充要条件 (D)既不充分也不必要条件7. 如图所示的程序框图,当其运行结果为31时,则图中判断框①处应填入的是(A)6?i ≤ (B)5?i ≤ (C)4?i ≤ (D)3?i ≤8. 已知,a b 为两条不同直线,,,αβγ为三个不同平面,下列命题:①若///,,/ααγβ则//βγ;②若//,//,a a αβ则//αβ;③若,,αγγβ⊥⊥则αβ⊥;④若,,a b αα⊥⊥则//a b .其中正确命题序号为 (A)②③(B)②③④(C)①④(D)①②③9. 南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为1,5,11,21,37,61,95,则该数列的第8项为 (A)99(B)131 (C)139 (D)14110. 已知2πlog e ,a =πln ,eb =2e ln ,πc =则(A)a b c <<(B)b c a <<(C)b a c <<(D)c b a <<11. 已知一个四面体的每一个面都是以3,3,2为边长的锐角三角形,则这个四面体的外接球的表面积为 (A)11π4 (B)11π2(C)11π (D)22π 12. 已知P 是椭圆2214x y +=上一动点,(2,1),(2,1)A B -,则cos ,PA PB u u u r u u u r 的最大值是14第Ⅱ卷 (非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡上.13.已知数列{}n a 的前n 项和为,n S 且111,1(2),n n a a S n -==+≥则4a =14. 已知实数,x y 满足线性约束条件117x y x y ≥⎧⎪≥-⎨⎪+≤⎩,则目标函数2z x y =+的最大值是15. 如图是一种圆内接六边形ABCDEF ,其中BC CD DE EF FA ====且.AB BC ⊥则在圆内随机取一点,则此点取自六边形ABCDEF 内的概率是16. 若指数函数xy a =(0a >且1)a ≠与一次函数y x =的图象恰好有两个不同的交点,则实数a 的取值范围是三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)在ABC ∆中,内角,,A B C 的对边分别为,,.a b c 已知2.tan sin a bA B= (1)求角A 的大小; (2)若2,a b ==求ABC ∆的面积.18.(本小题满分12分)成都七中为了解班级卫生教育系列活动的成效,对全校40个班级进行了一次突击班级卫生量化打分检查(满分100分,最低分20分).根据检查结果:得分在[80,100]评定为“优”,奖励3面小红旗;得分在[60,80)评定为“良”,奖励2面小红旗;得分在[40,60)评定为“中”,奖励1面小红旗;得分在[20,40)评定为“差”,不奖励小红旗.已知统计结果的部分频率分布直方图如下图:(1)依据统计结果的部分频率分布直方图,求班级卫生量化打分检查得分的中位数;(2)学校用分层抽样的方法,从评定等级为“良”、“中”的班级中抽取6个班级,再从这6个班级中随机抽取2个班级进行抽样复核,求所抽取的2个班级获得的奖励小红旗面数和不少于3的概率.19.(本小题满分12分) 如图,在四棱锥M ABCD-中,2,2.,,3AB AM AD MB MD AB AD =====⊥ (1)证明:AB ⊥平面ADM ; (2)若//CD AB 且23CD AB =,E 为线段BM 上一点,且 2BE EM =,求三棱锥A CEM -的体积.20.(本小题满分12分)已知函数22e (),(e,).ln x xf x x x x++=∈+∞ (1)证明:当(e,)x ∈+∞时,3eln ex x x ->+; (2)证明:()f x 在1[2e ,)2++∞单调递增.(其中e 2.71828=L 是自然对数的底数).21.(本小题满分12分)已知点P 是抛物线21:2C y x =上的一点,其焦点为点,F 且抛物线C 在点P 处的切线l 交圆:O 221x y +=于不同的两点,A B .(1)若点(2,2),P 求||AB 的值;(2)设点M 为弦AB 的中点,焦点F 关于圆心O 的对称点为,F '求||F M '的取值范围.请考生在第22,23题中任选择一题作答,如果多做,则按所做的第一题记分.作答时,用2B 铅笔在答题卡上将所选题目对应的标号涂黑.22.(本小题满分10分)选修44-:坐标系与参数方程在平面直角坐标系xOy 中,曲线C 的参数方程为233x y αα⎧=+⎪⎨=⎪⎩(α为参数,0πα≤≤).在以坐标原点为极点,x 轴的非负半轴为极轴的极坐标系中,射线l 的极坐标方程是π6θ=.(1)求曲线C 的极坐标方程;(2)若射线l 与曲线C 相交于,A B 两点,求||||OA OB ⋅的值.23.(本小题满分10分)选修45-:不等式选讲已知0,0,a b >>且24,a b +=函数()2f x x a x b =++-在R 上的最小值为.m (1)求m 的值;(2)若22a mb tab +≥恒成立,求实数t 的最大值.成都七中2020届高中毕业班三诊模拟数 学(文科)参考答案及评分意见第Ⅰ卷 (选择题,共60分)一、选择题(每小题5分,共60分)1.B ;2.A ;3.C ;4.D ;5.A ;6.A ;7.B ;8.C ;9.D ; 10.B ; 11.C ; 12.A.第Ⅱ卷 (非选择题,共90分)二、填空题(每小题5分,共20分)13.8; 14.15; 15.2π; 16.1e (1,e ).三、解答题(共70分)17. 解:(1)由正弦定理知sin sin a b A B =,又2,tan sin a b A B =所以2.sin tan a aA A=于是1cos ,2A =因为0π,A <<所以π.3A = L L 6分(2)因为π2,,3a b A ===22π222cos ,3c c =+-⨯⨯即2230.c c --=又0c >,所以 3.c =故ABC ∆的面积为11πsin 23sin 2232bc A =⨯⨯⨯= L L 12分18.解:(1)得分[20,40)的频率为0.005200.1⨯=;得分[40,60)的频率为0.010200.2⨯=;得分[80,100]的频率为0.015200.3⨯=;所以得分[60,80)的频率为1(0.10.20.3)0.4.-++=设班级得分的中位数为x 分,于是600.10.20.40.520x -++⨯=,解得70.x = 所以班级卫生量化打分检查得分的中位数为70分. L L 6分(2)由(1)知题意 “良”、“中”的频率分别为0.4,0.2.又班级总数为40. 于是“良”、“中”的班级个数分别为16,8.分层抽样的方法抽取的 “良”、“中”的班级个数分别为4,2.因为评定为“良”,奖励2面小红旗,评定为“中”,奖励1面小红旗.所以抽取的2个班级获得的奖励小红旗面数和不少于3为两个评定为“良”的班级或一个评定为“良”与一个评定为“中”的班级.记这个事件为.A 则A 为两个评定为“中”的班级.把4个评定为“良”的班级标记为1,2,3,4. 2个评定为“中”的班级标记为5,6.从这6个班级中随机抽取2个班级用点(,)i j 表示,其中16i j ≤<≤.这些点恰好为66⨯方格格点上半部分(不含i j =对角线上的点),于是有366152-=种. 事件A 仅有(5,6)一个基本事件. 所以114()1()1.1515P A P A =-=-=所抽取的2个班级获得的奖励小红旗面数和不少于3的概率为14.15L L 12分19.解:(1)因为2AB AM ==,MB =, 所以222.AM AB MB +=于是.AB AM ⊥又,AB AD ⊥且,AM AD A AM =⊂I 平面ABD ,AD ⊂平面ADM ,所以AB ⊥平面.ADM L L 5分(2)因为2,AM AD MD ===所以ADM S ∆=因为2BE EM =,所以1.3C AEM C ABM V V --=又//,CD AB AB ⊥平面.ADM所以111333A CEM C AEM C ABM D ABM B ADM V V V V V -----==== 111123333ADM S AB =⨯⋅⋅=⨯=所以三棱锥A CEM -的体积为9L L 12分20.解:(1)令3e ()ln ,(e,).e x g x x x x -=-∈+∞+则22214e (e)()0.(e)(e)x g x x x x x -'=-=>++于是()g x 在(e,)+∞单调递增,所以()(e)0,g x g >=即3eln ,(e,).ex x x x ->∈+∞+ L L 5分 (2)22222222(21)ln (e )(ln 1)(e )ln (e )().(ln )(ln )x x x x x x x x x x f x x x x x +-+++--++'== 令2222()(e )ln (e ),(e,).h x x x x x x =--++∈+∞当(e,)x ∈+∞时,由(1)知3eln .e x x x ->+则222223e 1()(e )(e )2(4e 1)2[(2e )],e 2x h x x x x x x x x x ->--++=-+=-++ 当1[2e ,)2x ∈++∞时,()0h x >,从而()0.f x '>故()f x 在1[2e ,)2++∞严格单调递增. L L 12分21.解:设点00(,)P x y ,其中2001.2y x =因为,y x '=所以切线l 的斜率为0,x 于是切线2001:.2l y x x x =-(1)因为(2,2),P 于是切线:2 2.l y x =-故圆心O 到切线l的距离为d =于是||AB === L L 5分(2)联立22200112x y y x x x ⎧+=⎪⎨=-⎪⎩得22340001(1)10.4x x x x x +-+-= 设1122(,),(,),(,).A x y B x y M x y 则301220,1x x x x +=+32240001()4(1)(1)0.4x x x ∆=--+-> 又200,x ≥于是2002x ≤<+于是32200120022001,.22(1)22(1)x x x x x y x x x x x +===-=-++ 又C 的焦点1(0,),F 于是1(0,).F '-故||F M '===L L 9分 令201,t x =+则13t ≤<+于是||F M'==因为3t t+在单调递减,在+单调递增.又当1t =时,1||2F M '=;当t =时,||F M '=当3t =+时,1||.2F M'=> 所以||F M '的取值范围为1).2L L 12分22.解:(1)消去参数α得22(2)3(0)x y y -+=≥将cos ,sin x y ρθρθ==代入得22(cos 2)(sin )3,ρθρθ-+=即24cos 10.ρρθ-+=所以曲线C 的极坐标方程为2π4cos 10(0).3ρρθθ-+=≤≤L L 5分 (2)法1:将π6θ=代入2π4cos 10(0)3ρρθθ-+=≤≤得210ρ-+=,设12ππ(,),(,),66A B ρρ则12 1.ρρ=于是12|||| 1.OA OB ρρ⋅== L L 10分法2:π3θ=与曲线C 相切于点,M π||2sin 1,3OM ==由切割线定理知2|||||| 1.OA OB OM ⋅== L L 10分23.解:(1)3, (,),2()2, [,],23, (,).a x a b x a f x x a x b x a b x b x a b x b ⎧--+∈-∞-⎪⎪⎪=++-=++∈-⎨⎪+-∈+∞⎪⎪⎩.当(,)2ax ∈-∞-时,函数()f x 单调递减;当(,)x b ∈+∞时,函数()f x 单调递增.所以m 只能在[,]2a b -上取到.当[,]2ax b ∈-时,函数()f x 单调递增.所以2() 2.222a a a bm f a b +=-=-++== L L 5分(2)因为22a mb tab +≥恒成立,且0,0a b >>,所以22a mb t ab +≤恒成立即mina b mb t a ⎛⎫≤+ ⎪⎝⎭.由(1)知2m =,于是a b a mb +≥== 当且仅当2aab=时等号成立即1)0,2(20.a b =>=> 所以t ≤,故实数t 的最大值为 L L 10分。
成都七中2019-2020学年下期高三热身考试文科数学试题(7月1日)
(B) x k (k Z ) 26
(C) x k (k Z ) 2 12
(D) x k (k Z ) 2 12
用 使 学 中 赤 长 县 江 南 市 中 巴 省 川 四 供 仅
第 II 卷
本卷包括必考题和选考题两部分.第(13)~(21)题为必考题,每个试题考生都必须作答.第 (22)~(24)题为选考题,考生根据要求作答. 二、填空题:本题共 4 小题,每小题 5 分.
(A)1 3
江县长(B)12
(C)2 3
(D)3 4
(4)设向量 a
市(m南,1), b
(1,2) ,且
a
b
2
a
2
b
2
,则 m
(
)
中 (A)巴1
(B)2
(C) 1
(D) 2
省
川 (5四)若将函数
y
2
sin
2x
的图像向左平移
个单位长度,则平移后图象的对称轴为(
)
供
12
仅 (A) x k (k Z )
(13)已知函数 f (x) (2x+1)ex , f (x) 为 f (x) 的导函数,则 f (0) 的值为__________.
x y 1 0
(14)若
x,
y
满足约束条件
ቤተ መጻሕፍቲ ባይዱ
x
2
y
0
则 z x y 的最大值为_____________.
x 2y 2 0
(15)在 ABC 中, A 60 , BC 2 3 , D 为 BC 中点,则 AD 最长为
19.(本小题满分 12 分)如图,ABCD 是块矩形硬纸板,其中 AB 2 AD 2 2 ,E 为 DC
2020届四川省成都市第七中学高三普通高等学校招生统一热身考试数学(文)试题(解析版)
2020届四川省成都市第七中学高三普通高等学校招生统一热身考试数学(文)试题一、单选题1.设集合{}2430A x x x =-+<,{}230B x x =->,则A B =( )A .33,2⎛⎫--⎪⎝⎭B .33,2⎛⎫- ⎪⎝⎭C .31,2⎛⎫ ⎪⎝⎭D .()1,+∞【答案】D【解析】先解不等式,化简集合A 、B ,再求并集,即可得出结果. 【详解】∵{}{}243013A x x x x x =-+<=<<,{}32302B x x x x ⎧⎫=->=>⎨⎬⎩⎭, 所以{}1A B x x ⋃=>. 故选:D. 【点睛】本题主要考查求集合的并集,熟记并集的概念,以及一元二次不等式的解法即可,属于基础题型. 2.已知在复平面内对应的点在第四象限,则实数m 的取值范围是 A .B .C .D .【答案】A【解析】试题分析:要使复数对应的点在第四象限,应满足,解得,故选A.【考点】 复数的几何意义【名师点睛】复数的分类及对应点的位置问题都可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式)组即可. 复数z =a +bi复平面内的点Z (a ,b )(a ,b ∈R ).复数z =a +bi (a ,b ∈R )平面向量.3.某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是 A .13B .12C .23D .34【答案】B【解析】试题分析:由题意,这是几何概型问题,班车每30分钟发出一辆,到达发车站的时间总长度为40,等车不超过10分钟的时间长度为20,故所求概率为201402=,选B.【考点】几何概型【名师点睛】这是全国卷首次考查几何概型,求解几何概型问题的关键是确定“测度”,常见的测度有长度、面积、体积等.4.设向量(),1a m =,()1,2b =,且222a b a b +=+,则m =( )A .1B .2C .1-D .2-【答案】D 【解析】先由222a b a b +=+得到0a b ⋅=,再由向量数量积的坐标表示列出方程,即可得出结果. 【详解】 因为222a ba b +=+,所以22222a b a b a b ++⋅=+,因此0a b ⋅=,又向量(),1a m =,()1,2b =, 所以20a b m ⋅=+=,解得2m =-. 故选:D. 【点睛】本题主要考查由向量数量积求参数,熟记向量数量积的坐标表示即可,属于基础题型. 5.若将函数y=2sin2x 的图像向左平移12π个单位长度,则平移后图像的对称轴为A .x=26k ππ-(k ∈Z ) B .x=26k ππ+(k ∈Z )C .x=212k ππ-(k ∈Z )D .x=212k ππ+(k ∈Z )【答案】B【解析】【详解】试题分析:由题意得,将函数2sin 2y x =的图象向左平移12π个单位长度,得到2sin(2)6y x π=+,由2,62x k k Z πππ+=+∈,得,26k x k Z ππ=+∈,即平移后的函数的对称轴方程为,26k x k Z ππ=+∈,故选B . 【考点】三角函数的图象与性质. 【方法点晴】本题主要考查了三角函数()sin()f x A wx ϕ=+的图象与性质,着重考查了三角函数的图象变换及三角函数的对称轴方程的求解,通过将函数2sin 2y x =的图象向左平移12π个单位长度,得到函数的解析式2sin(2)6y x π=+,即可求解三角函数的性质,同时考查了学生分析问题和解答问题的能力以及推理与运算能力.6.某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A 点表示十月的平均最高气温约为15℃,B 点表示四月的平均最低气温约为5℃.下面叙述不正确的是 ( )A .各月的平均最低气温都在0℃以上B .七月的平均温差比一月的平均温差大C .三月和十一月的平均最高气温基本相同D .平均最高气温高于20℃的月份有5个 【答案】D【解析】【详解】试题分析:由图可知各月的平均最低气温都在0℃以上,A 正确;由图可知在七月的平均温差大于7.5C ︒,而一月的平均温差小于7.5C ︒,所以七月的平均温差比一月的平均温差大,B 正确;由图可知三月和十一月的平均最高气温都大约在10C ︒,基本相同,C 正确;由图可知平均最高气温高于20℃的月份有7,8两个月,所以不正确.故选D . 【考点】 统计图 【易错警示】解答本题时易错可能有两种:(1)对图形中的线条认识不明确,不知所措,只觉得是两把雨伞重叠在一起,找不到解决问题的方法;(2)估计平均温差时易出现错误,错选B .7.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是( )A .2B .4C .6D .8【答案】C【解析】先还原几何体为一直四棱柱,再根据柱体体积公式求结果. 【详解】根据三视图可得几何体为一个直四棱柱,高为2,底面为直角梯形,上下底分别为1、2,梯形的高为2,因此几何体的体积为()1122262⨯+⨯⨯=,选C. 【点睛】先由几何体的三视图还原几何体的形状,再在具体几何体中求体积或表面积等. 8.已知432a =,254b =,1325c =,则 A .b a c << B .a b c << C .b c a << D .c a b <<【答案】A 【解析】【详解】因为4133216a ==,2155416b ==,1325c =,因为幂函数13y x =在R 上单调递增,所以a c <, 因为指数函数16xy =在R 上单调递增,所以b a <, 即b <a <c . 故选:A.9.在ABC △中,4B π=,BC 边上的高等于13BC ,则cos A =( ) A .310B .10 C .1010-D .310-【答案】C【解析】试题分析:设22,2,5sin cos ,sin ,cos cos 55AD a AB a CD a AC a A ααββ=⇒===⇒====⇒10cos()10αβ=+=-,故选C.【考点】解三角形.10.已知P (x 0,y 0)是椭圆C :24x +y 2=1上的一点,F 1,F 2分别是椭圆C 的左、右焦点,若12PF PF ⋅<0,则x 0的取值范围是A .2626⎛ ⎝⎭B .2323⎛ ⎝⎭C .33⎛ ⎝⎭D .66⎛ ⎝⎭【答案】A【解析】将原问题转化为椭圆与圆的交点问题,求得临界值,然后求解x 0的取值范围即可. 【详解】如图,设以O 为原点、半焦距3c =为半径的圆x 2+y 2=3与椭圆交于A ,B 两点.由2222314x y x y ⎧+⎪⎨+⎪⎩==得263x ±=, 要使12PF PF ⋅<0,则点P 在A 、B 之间, ∴x 0的取值范围是2626,33⎛⎫- ⎪ ⎪⎝⎭.故选A .【点睛】本题考查了椭圆的方程、性质,向量的数量积的运算,属于中档题. 11.点P 是棱长为2的正四面体ABCD 的面ABC 内一动点,3DP =DP 与BC 所成的角α,则sin α的最大值为( ) A .1 B .33C .34D 62-【答案】A【解析】作DO ⊥平面BAC 于O , O 是ABC 的中心,DO OB ⊥,DO OP ⊥,计算出下在四面体的高是263,33OP =,从而平面ABC 内,P 在以O 为圆心,3为半径的圆上,P 运动时,DP 是圆锥的母线,BC 平移到圆锥底面圆直径位置,利用圆锥的性质,这个角的最大值是直角,由此可得结论. 【详解】如图1,作DO ⊥平面BAC 于O ,∵ABCD 是正四面体,∴O 是ABC 的中心,DO OB ⊥,DO OP ⊥,易知222326423DO DB BO ⎛⎫=-=-⨯= ⎪ ⎪⎝⎭,∴()22226333OP DP DO ⎛⎫=-=-= ⎪ ⎪⎝⎭,所以平面ABC 内,P 在以O 为圆心,3为半径的圆上,P 运动时,DP 是圆锥的母线,如图2,把圆锥PO 平移到四面体外部,不妨设//BC MN ,MN 是圆锥底面圆的一条直径,母线DP 与MN 所成角的最大值2π, 所以异面直线DP 与BC 所成的角的正弦的最大值是1. 故选:A .图1 图2 【点睛】本题考查异面直线所成的角,解题关键是找到在平面ABC 内P 点的轨迹.DP 所形成的空间图形,把BC 平移到圆直径位置,母线与底面直径所成角的最大值是2π,由此可得结论.12.定义在R 上的函数()[]22f x x x =--有( )个零点?(其中[]x 表示不大于实数x 的最大整数) A .0 B .1C .2D .3【答案】D【解析】令()[]220f x x x =--=,得[]22x x -=,令()212f x x =-,()[]1g x x =,在同一坐标系做出两函数的图像,由两函数图像的交点个数可得选项. 【详解】令()[]220f x x x =--=,得[]22x x -=,令()212f x x =-,()[]1g x x =,在同一坐标系做出两函数的图像如下图所示, 两函数图像有3个交点,所以函数()[]22f x x x =--有3个零点,即221x -=-或221x -=或222x -=, 解得1x =-或3x =或2x = 故选:D.【点睛】本题考查函数的零点,将函数的零点问题转化为两函数的交点问题是处理此类问题的常用方法,属于中档题.二、填空题13.已知函数()(2+1)e ,()x f x x f x ='为()f x 的导函数,则(0)f '的值为__________. 【答案】3【解析】试题分析:()(2+3),(0) 3.x f x x e f =∴'='【考点】导数【名师点睛】求函数的导数的方法:(1)连乘积的形式:先展开化为多项式的形式,再求导; (2)根式形式:先化为分数指数幂,再求导;(3)复杂公式:通过分子上凑分母,化为简单分式的和、差,再求导;(4)复合函数:确定复合关系,由外向内逐层求导;(5)不能直接求导:适当恒等变形,转化为能求导的形式再求导.14.若,x y满足约束条件10{20220x yx yx y-+≥-≤+-≤,则z x y=+的最大值为_____________.【答案】3 2【解析】试题分析:由下图可得在1(1,)2A处取得最大值,即max13122z=+=.【考点】线性规划.【方法点晴】本题考查线性规划问题,灵活性较强,属于较难题型.考生应注总结解决线性规划问题的一般步骤(1)在直角坐标系中画出对应的平面区域,即可行域;(2)将目标函数变形为a zy xb b=-+;(3)作平行线:将直线0ax by+=平移,使直线与可行域有交点,且观察在可行域中使zb最大(或最小)时所经过的点,求出该点的坐标;(4)求出最优解:将(3)中求出的坐标代入目标函数,从而求出z的最大(小)值. 15.在ABC中,60A∠=︒,23BC=D为BC中点,则AD最长为_________.【答案】3【解析】在ABD∆和ADC∆中,分别利用余弦定理,求得22262b c x+=+,再在ABC∆中,利用余弦定理和基本不等式,即可求解.【详解】如图所示,设AD x=,ADBθ∠=,则ADCπθ∠=-,在ABD∆中,由余弦定理,可得2222cosAB BD AD BD ADθ=+-⋅,即22323cos c x x θ=+-,①在ADC ∆中,由余弦定理,可得2222cos()AC CD AD CD AD πθ=+-⋅-, 即22323cos b x x θ=++,② 由①+②,可得22262b c x +=+,在ABC ∆中,由余弦定理,可得2222cos60BC AB AC AB AC =+-⋅,即22222222221(23)()322b c c b bc c b b c x +=+-≥+-=+=+,解得29x ≤,所以3x ≤,即AC 的最大值为3. 故答案为:3.【点睛】本题主要考查了余弦定理的应用,以及利用基本不等式求解最值问题,其中解答中熟练应用余弦定理得到22262b c x +=+,结合基本不等式求解是解答的关键,着重考查推理与运算能力.16.抛物线()220y px p =>上点A 与焦点F 距离为2,以AF 为直径的圆与y 轴交于点()0,1H ,则p =_________. 【答案】2【解析】法一:首先根据抛物线方程和焦半径公式表示点A 的坐标,再根据0HF HA ⋅=求解点A 的坐标和p 值;法二:利用以AF 为直径的圆与y 轴相切,利用切点为()0,1H ,求得点A 的坐标和p 值.【详解】 法一:根据,02p F ⎛⎫⎪⎝⎭,根据点A 与焦点F 距离为2,所以A 点横坐标为22p -,所以A 点纵坐标222242p y p p p ⎛⎫=-=- ⎪⎝⎭①;即,12p HF ⎛⎫=-⎪⎝⎭,2,12p HA y ⎛⎫=-- ⎪⎝⎭根据0HF HA ⋅=,得到24104p p y --+=从而根据①解得2y =,从而带入①解得2p =. 法二:设()00,A x y ,,02p F ⎛⎫⎪⎝⎭,由焦半径公式可知022p x +=则线段AF 的中点到y 轴的距离022122px d +===, 所以以AF 为直径的圆与y 轴相切,由题意可知切点为()0,1H , 则点A 的纵坐标为2,横坐标22p -, 则2242p p ⎛⎫-= ⎪⎝⎭,解得:2p =. 故答案为:2 【点睛】本题考查抛物线方程,几何性质,意在考查转化与化归的思想,计算能力,属于中档题型,本题的关键利用焦半径公式表示点A 的横坐标,以及点A 在抛物线上,建立方程求解.三、解答题17.已知等差数列{}n a 满足:12a =,且1a ,2a ,5a 成等比数列. (1)求数列{}n a 的通项公式;(2)记n S 为数列{}n a 的前n 项和,是否存在正整数n ,使得60800n S n >+ ?若存在,求n 的最小值;若不存在,说明理由.【答案】(1) 通项公式为2n a = 或42n a n =-;(2) 当2n a = 时,不存在满足题意的正整数n ;当42n a n =- 时,存在满足题意的正整数n ,其最小值为41. 【解析】【详解】(1)依题意,2,2,24d d ++成等比数列,故有()()22224d d +=+, ∴240d d -=,解得4d =或0d =. ∴()21442n a n n =+-⋅=-或2n a =.(2)当2n a = 时,不存在满足题意的正整数n ; 当42n a n =-,∴()224222n n n S n ⎡⎤+-⎣⎦==.令2260800n n >+,即2304000n n -->, 解得40n >或10n <-(舍去), ∴最小正整数41n =.18.已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动. (Ⅰ)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(Ⅱ)设抽出的7名同学分别用A ,B ,C ,D ,E ,F ,G 表示,现从中随机抽取2名同学承担敬老院的卫生工作.(i )试用所给字母列举出所有可能的抽取结果;(ii )设M 为事件“抽取的2名同学来自同一年级”,求事件M 发生的概率. 【答案】(1)3,2,2(2)(i )见解析(ii )521【解析】【详解】分析:(Ⅰ)结合人数的比值可知应从甲、乙、丙三个年级的学生志愿者中分别抽取3人,2人,2人.(Ⅱ)(i )由题意列出所有可能的结果即可,共有21种.(ii )由题意结合(i )中的结果和古典概型计算公式可得事件M 发生的概率为P (M )=521. 详解:(Ⅰ)由已知,甲、乙、丙三个年级的学生志愿者人数之比为3∶2∶2,由于采用分层抽样的方法从中抽取7名同学,因此应从甲、乙、丙三个年级的学生志愿者中分别抽取3人,2人,2人.(Ⅱ)(i )从抽出的7名同学中随机抽取2名同学的所有可能结果为{A ,B },{A ,C },{A ,D },{A ,E },{A ,F },{A ,G },{B ,C },{B ,D },{B ,E },{B ,F },{B ,G },{C ,D },{C ,E },{C ,F },{C ,G },{D ,E },{D ,F },{D ,G },{E ,F },{E ,G },{F ,G },共21种.(ii )由(Ⅰ),不妨设抽出的7名同学中,来自甲年级的是A ,B ,C ,来自乙年级的是D ,E ,来自丙年级的是F ,G ,则从抽出的7名同学中随机抽取的2名同学来自同一年级的所有可能结果为{A ,B },{A ,C },{B ,C },{D ,E },{F ,G },共5种. 所以,事件M 发生的概率为P (M )=521. 点睛:本小题主要考查随机抽样、用列举法计算随机事件所含的基本事件数、古典概型及其概率计算公式等基本知识.考查运用概率知识解决简单实际问题的能力. 19.如图,ABCD 是块矩形硬纸板,其中222AB AD ==,E 为DC 中点,将它沿AE 折成直二面角D AE B --.(1)求证:AD ⊥平面BDE ; (2)求四棱锥D ABCE -体积. 【答案】(1)证明见解析;(2)1.【解析】(1)先证AE BE ⊥,由面面垂直(直二面角)得BE ⊥平面ADE ,再得线线垂直BE AD ⊥,然后可得线面垂直;(2)由直二面角即面面垂直,可求得D 到平面ABCE 的距离,从而可求得体积. 【详解】(1)由题意22(2)(2)2AE BE ==+=,所以222AE BE AB +=,所以AE BE ⊥,又二面角D AE B --是直二面角,即平面DAE ⊥平面ABE ,平面DAE平面ABE AE =,BE ⊂平面ABE ,所以BE ⊥平面ADE ,又AD ⊂平面ADE ,所以AD BE ⊥,又因为AD DE ⊥,DE BE E ⋂=,所以AD ⊥平面BDE ;(2)以AE 中点M ,连接DM ,因为AD DE =,所以DM AE ⊥,又平面DAE ⊥平面ABE ,平面DAE平面ABE AE =,DM ⊂平面ADE ,所以DM ⊥平面ABE ,直角三角形ADE 中,112DM AE ==,11()(222)2322ABCE S AB CE BC =+⋅=+⨯=,所以1131133D ABCE ABCE V S DM -==⨯⨯=.【点睛】本题考查证明线面垂直,考查求棱锥的体积,掌握线面垂直的判定定理和面面垂直的性质定理是解题关键.20.已知椭圆22221x y a b+=,O 为坐标原点,长轴长为4,离心率12e =.(1)求椭圆方程;(2)若点A ,B ,C 都在椭圆上,D 为AB 中点,且 2CO OD =,求ABC 的面积?【答案】(1)22143x y +=;(2)92. 【解析】(1)直接根据离心率和长轴长定义得到答案.(2)考虑斜率存在和不存在两种情况,联立方程根据韦达定理得到根与系数关系,根据向量运算和中点坐标公式得到CD 坐标,计算弦长和点到直线距离,代入面积公式得到答案. 【详解】(1)根据题意知:24a =,2a =,12c e a ==,故1c =,3b =22143x y +=. (2)①若直线AB 垂直于x 轴,则AB 中点在x 轴上,不妨取点()2,0C ,根据2CO OD =得()1,0D -,故31,2A ⎛⎫- ⎪⎝⎭,31,2B ⎛⎫-- ⎪⎝⎭,故3AB =,11933222ABCSAB CD =⋅=⨯⨯=. ②若直线斜率存在,设直线:AB y kx m =+,设()11,A x y ,()22,B x y ,联立椭圆得22143y kx m x y =+⎧⎪⎨+=⎪⎩,化简得到()()222438430k x kmx m +++-=,判别式()2204834k m ∆+->=,即22340k m +->,()12221228434343km x x k m x x k ⎧+=-⎪+⎪⎨-⎪=⎪+⎩, AB 中点2243,4343km m D k k -⎛⎫⎪++⎝⎭,根据2CO OD =得到点2286,4343km m C k k -⎛⎫ ⎪++⎝⎭, 因为点C 在椭圆上,代入椭圆2222864343143km m k k -⎛⎫⎛⎫⎪ ⎪++⎝⎭⎝⎭+=,整理得22344k m +=.验证满足>0∆,则12x AB =-=3m ==,又原点O 到直线AB的距离d =所以1322ABO S d AB ==△,所以932ABC ABO S S ==△△. 综上所述:ABC 的面积为92. 【点睛】本题考查了椭圆的标准方程,椭圆内的面积问题,意在考查学生的计算能力和综合应用能力.21.已知()()1xf x e ax a R =--∈.(1)若()0f x ≥对x ∈R 恒成立,求实数a 的范围;(2)求证:对*n N ∀∈,都有111112311111n n n n n n n n n ++++⎛⎫⎛⎫⎛⎫⎛⎫++++< ⎪ ⎪ ⎪ ⎪++++⎝⎭⎝⎭⎝⎭⎝⎭.【答案】(1){}1;(2)证明见解析.【解析】(1)求得函数()f x 的导数,分0a ≤和0a >两种情况讨论,利用导数分析函数()f x 的单调性,求得函数()f x 的最小值()min f x ,由题意得出()min 0f x ≥,解该不等式即可得出实数a 的取值范围;(2)由(1)知,当1a =时,1x x e +≤,可得出()()111n n x x e +++≤,令()11,2,3,,1kx k n n +==+,可推导出()111,2,3,,1n kn k e k n n e++⎛⎫<= ⎪+⎝⎭,进而可推导出()111123112311111n n n n n n n e ee e n n n n e+++++⎛⎫⎛⎫⎛⎫⎛⎫++++<++++ ⎪ ⎪ ⎪ ⎪++++⎝⎭⎝⎭⎝⎭⎝⎭结合等比数列求和公式可证得所证不等式成立. 【详解】 (1)()1x f x e ax =--,则()x f x e a '=-.①当0a ≤时,()0f x '>对任意的x ∈R 恒成立,则()f x 在(),-∞+∞上单调递增, 由()1110f a e-=+-<,与题设矛盾; ②当0a >时,令()0xf x e a '=-=,得ln x a =. 由()0f x '<,得ln x a <;由()0f x '>,得ln x a >.∴函数()f x 在(),ln a -∞单调递减,在()ln ,a +∞单调递增,()()ln min ln ln 1ln 10a f x f a e a a a a a ∴==--=--≥,令()()ln 10g a a a a a =-->,()()1ln 1ln g a a a '∴=-+=-, 由()0g a '>,得01a <<;由()0g a '<,得1a >.()g a ∴在()0,1单调递增,在()1,+∞单调递减,()()max 10g a g ∴==,∴只有1a =适合题意,综上,实数a 的取值范围是{}1;(2)由(1)可知,当1a =时,()10xx e f x =--≥,则1x x e +≤,()()111n n x x e ++∴+≤,令()11,2,3,,1kx k n n +==+,则()()11n x k n +=-+,()()1111,2,3,,1n kk n n k e ek n n e+-++⎛⎫∴<== ⎪+⎝⎭,()111123112311111n n n n n n n e ee e n n n n e +++++⎛⎫⎛⎫⎛⎫⎛⎫++++<++++ ⎪ ⎪ ⎪ ⎪++++⎝⎭⎝⎭⎝⎭⎝⎭()()1111111111nn n n n e e e e e e e e e e +++---=⋅==---, 由12n e e +>,知111n e e-<-,则1111ne e -<-,因此,111112311111n n n n n n n n n ++++⎛⎫⎛⎫⎛⎫⎛⎫++++< ⎪ ⎪ ⎪ ⎪++++⎝⎭⎝⎭⎝⎭⎝⎭.【点睛】本题考查利用导数研究函数不等式恒成立,同时也考查了利用导数证明函数不等式,考查推理能力与计算能力,属于难题.22.在直角坐标系xoy 中,以坐标原点为极点,x 轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ρθ=,0,2π⎡⎤θ∈⎢⎥⎣⎦.(1)求C 的参数方程;(2)设点D 在C 上,C 在D 处的切线与直线:2l y =+垂直,根据(1)中你得到的参数方程,确定D 的坐标.【答案】(1)[]1,0,.x cos y sin ααπα=+⎧∈⎨=⎩为参数;(2)3(2【解析】(1)先求出半圆C 的直角坐标方程,由此能求出半圆C 的参数方程; (2)设点D 对应的参数为α,则点D 的坐标为()1+cos ,sin αα,且[]0,απ∈ ,半圆C 的圆心是()1,0C 因半圆C 在D 处的切线与直线l 垂直,故直线DC 的斜率与直线l 的斜率相等,由此能求出点D 的坐标.【详解】(1)由ρ2cos θ=,得[]2220,01x y xy +-=∈, ,所以C 的参数方程为[]1,0,.x cos y sin ααπα=+⎧∈⎨=⎩为参数 (2)[]sin 0πtan 0,,,1+cos 12332D αααπαα⎛-=⇒=∈∴= -⎝⎭【点睛】本题主要考查参数方程与极坐标方程,熟记直角坐标方程与参数方程的互化以及普通方程与参数方程的互化即可,属于常考题型.23.若0,0a b >>,且11a b+= (1)求33+a b 的最小值;(2)是否存在,a b ,使得236a b +=?并说明理由.【答案】(1)(2)不存在.【解析】(1)由已知11a b+=,利用基本不等式的和积转化可求2ab ≥,利用基本不等式可将33+a b 转化为ab ,由不等式的传递性,可求33+a b 的最小值;(2)由基本不等式可求23a b +的最小值为6>,故不存在. 【详解】(111a b =+≥,得2ab ≥,且当a b ==故33+a b ≥≥a b ==所以33+a b 的最小值为;(2)由(1)知,23a b +≥≥由于6>,从而不存在,a b ,使得236a b +=成立. 【考点定位】 基本不等式.。
2020年四川省成都七中高考数学三诊试卷(文科)(含答案解析)
2020年四川省成都七中高考数学三诊试卷(文科)一、选择题(本大题共12小题,共60.0分)1.已知集合0,1,2,3,,,则A. 1,B. 1,C. 0,1,D. 0,1,2.已知复数,则A. B. 1 C. D. 23.设函数为奇函数,当时,,则A. B. C. 1 D. 24.已知单位向量,的夹角为,则A. 3B. 7C.D.5.已知双曲线的渐近线方程为,则双曲线的离心率是A. B. C. D.6.在等比数列中,,则“”是“”的A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件7.如图所示的程序框图,当其运行结果为31时,则图中判断框处应填入的是A. B. C. D.8.已知a,b为两条不同直线,,,为三个不同平面,下列命题:若,,则若,,则若,,则若,,则其中正确命题序号为A. B. C. D.9.南宋数学家杨辉在详解九章算法和算法通变本末中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”现有高阶等差数列,其前7项分别为1,5,11,21,37,61,95,则该数列的第8项为A. 99B. 131C. 139D. 14110.已知,,,则A. B. C. D.11.已知一个四面体的每一个面都是以3,3,2为边长的锐角三角形,则这个四面体的外接球的表面积为A. B. C. D.12.已知P是椭圆上一动点,,,则的最大值是A. B. C. D.二、填空题(本大题共4小题,共20.0分)13.已知数列的前n项和为,且,,则______.14.已知实数x,y满足线性约束条件,则目标函数的最大值是______.15.如图是一种圆内接六边形ABCDEF,其中且则在圆内随机取一点,则此点取自六边形ABCDEF内的概率是______.16.若指数函数且与一次函数的图象恰好有两个不同的交点,则实数a的取值范围是______.三、解答题(本大题共7小题,共82.0分)17.在中,内角A,B,C的对边分别为a,b,已知.求角A的大小;若,,求的面积.18.成都七中为了解班级卫生教育系列活动的成效,对全校40个班级进行了一次突击班级卫生量化打分检查满分100分,最低分20分根据检查结果:得分在评定为“优”,奖励3面小红旗;得分在评定为“良”,奖励2面小红旗;得分在评定为“中”,奖励1面小红旗;得分在评定为“差”,不奖励小红旗.已知统计结果的部分频率分布直方图如图:依据统计结果的部分频率分布直方图,求班级卫生量化打分检查得分的中位数;学校用分层抽样的方法,从评定等级为“良”、“中”的班级中抽取6个班级,再从这6个班级中随机抽取2个班级进行抽样复核,求所抽取的2个班级获得的奖励小红旗面数和不少于3的概率.19.如图,在四棱锥中,,,,.证明:平面ADM;若且,E为线段BM上一点,且,求三棱锥的体积.20.已知函数,.证明:当时,;证明:在单调递增.其中是自然对数的底数.21.已知点P是抛物线C:上的一点,其焦点为点F,且抛物线C在点P处的切线l交圆O:于不同的两点A,B.若点,求的值;设点M为弦AB的中点,焦点F关于圆心O的对称点为,求的取值范围.22.在平面直角坐标系xOy中,曲线C的参数方程为为参数,在以坐标原点为极点,x轴的非负半轴为极轴的极坐标系中,射线l的极坐标方程是.求曲线C的极坐标方程;若射线l与曲线C相交于A,B两点,求的值.23.已知,,且,函数在R上的最小值为m.求m的值;若恒成立,求实数t的最大值.-------- 答案与解析 --------1.答案:B解析:解:0,1,2,3,,1,4,9,,1,.故选:B.可以求出集合B,然后进行交集的运算即可.本题考查了列举法、描述法的定义,交集的运算,考查了计算能力,属于基础题.2.答案:A解析:解:,则.故选:A.利用复数模的运算性质即可得出.本题考查了复数模的运算性质,考查了推理能力与计算能力,属于基础题.3.答案:C解析:解:根据题意,当时,,则,又由为奇函数,则,则;故选:C.根据题意,由函数的解析式可得,由函数的奇偶性可得的值,据此可得,即可得答案.本题考查函数的奇偶性的性质以及应用,涉及函数值的计算,属于基础题.4.答案:D解析:解:根据题意,单位向量,的夹角为,则,则,故;故选:D.根据题意,求出的值,由数量积的运算性质可得,代入数据计算可得的值,变形可得答案.本题考查向量数量积的计算,涉及向量模的计算,属于基础题.5.答案:A解析:解:由双曲线的方程可得渐近线为:,所以由题意可得:,所以离心率,故选:A.由双曲线的方程可得渐近线的方程,再由椭圆可得a,b的关系,由a,b,c之间的关系进而求出离心率.考查双曲线的性质,属于基础题.6.答案:A解析:【分析】本题主要考查充分条件和必要条件的判断,结合等比数列的性质是解决本题的关键.根据充分条件和必要条件的定义结合等比数列的性质进行判断即可.【解答】解:在等比数列中,若,即,,,即,则,即成立,若等比数列1,,4,,16,满足,但不成立,故“”是“”的充分不必要条件,故选:A7.答案:C解析:【分析】本题考查解决程序框图中的循环结构时,常采用写出前几次循环的结果,找规律,属于基础题.按照程序框图的流程,写出前几次循环的结果判断出当i为何值时输出,得到判断框中的条件.【解答】解:初始值,模拟执行程序框图,可得,不满足条件,继续循环;,不满足条件,继续循环;,不满足条件,继续循环;,,此时,由题意,应该满足条件,退出循环,输出S的值为31.故判断框中应填入的关于i的条件是?故选C.8.答案:C解析:解:若,,则,故正确;若,,则或与相交,故错误;若,,则或与相交,故错误;若,,则,故正确.正确命题序号为.由空间中直线与直线、直线与平面位置关系的判定逐一核对四个命题得答案.本题考查空间中直线与直线、直线与平面位置关系的判定,考查空间想象能力与思维能力,是中档题.9.答案:D解析:解:由题意可知:1,5,11,21,37,61,95,的差的数列为:4,6,10,16,24,34,这个数列的差组成的数列为:2,4,6,8,10,是等差数列,所以前7项分别为1,5,11,21,37,61,95,则该数列的第8项为:.故选:D.利用已知条件,推出数列的差数列的差组成的数列是等差数列,转化求解即可.本题考查数列的递推关系式的应用,等差数列的定义的应用,是中档题.10.答案:C解析:解:,,..又..故选:C.利用对数函数的单调性即可得出.本题考查了对数函数的单调性,考查了推理能力与计算能力,属于基础题.11.答案:C解析:解:设长方体的长宽高分别是a,b,c,其四个顶点就构成一个四面体满足每个面的边长为3,3,2,则,,,则,即长方体的外接球直径,故外接球的表面积,故选:C.考虑一个长方体,其四个顶点就构成一个四面体恰好就是每个三角形边长为3,3,2,则四面体的外接球即为长方体的外接球,进而计算出其外接球的直径,可得外接本题考查求一个几何体的外接球表面积,关键是求出外接球的半径,将几何体补成一个长方体是解题的关键,考查数形结合思想,属于中档题.12.答案:A解析:解:过点P作,垂足为H,设,则,,令,当时,,,;当时,,当且仅当,即时取等号,此时最大,且.故选:A.过点P作,垂足为H,设,可得,由正切的和角公式可得,通过换元令,结合基本不等式可得当时最大,由此得解.本题考查圆锥曲线中的最值求解,涉及了正切的和角公式,基本不等式的运用等基础知识点,考查转化思想,换元思想,数形结合思想等,考查运算求解能力,属于较难题目.13.答案:8解析:解:数列的前n项和为,且,,可得,,,故答案为:8.利用数列的递推关系式,逐步求解即可.本题考查数列的递推关系式的应用,数列项的求法,是基本知识的考查.14.答案:15解析:解:先根据实数x,y满足线性约束条件,画出可行域,然后平移直线,当直线过点时,目标函数的纵焦距取得最大值,此时z取得最大值,z 最大值为.故答案为:15.先根据约束条件画出可行域,再利用几何意义求最值,只需求出直线过点时,z 最大值即可.本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.15.答案:解析:解:因为且.所以该图形是该圆的内接正六边形AMNBCDEF的一部分.易知,以O为顶点,正八边形的各边为底边的八个等腰三角形全等.且它们的腰长为圆的半径r,顶角为.故每个小等腰三角形的面积为.内接六边形ABCDEF的面积为,由正八边形的性质知:四边形ABCF是矩形,且,所以.又,故所求概率为:.故答案为:.易知,题中所给的多边形是该圆的内接正八边形的一部分,并且整个正八边形是由八个全等的等腰三角形组合而成.结合正八边形的对称性,可知内接六边形ABCDEF部分,其面积是六个等腰三角形的面积,由此可求出结果.本题考查几何概型概率的计算,以及圆的内接正八边形的性质.属于中档题.16.答案:解析:解:当时,函数且的图象与一次函数的图象没有交点,设当时,指数函数且与一次函数的图象恰好有两个不同的交点,,且与相切于,,则有,故,,即,,,实数a的取值范围是:.故答案为:.判断,利用函数的导数,转化求解a的最大值,从而求出a的取值范围.本题考查了指数函数的性质,函数的导数的应用,切线方程的求法,考查转化思想以及计算能力,是中档题.17.答案:解:由正弦定理知,又,所以.于是,因为,所以.因为,由余弦定理得,即.又,所以.故的面积为.解析:由正弦定理,同角三角函数基本关系式化简已知等式可得,结合范围,可求A的值.由已知利用余弦定理得,结合,可求c的值,进而根据三角形的面积公式即可求解.本题主要考查了正弦定理,同角三角函数基本关系式,余弦定理,三角形的面积公式在解三角形中的应用,考查了计算能力和转化思想,属于基础题.18.答案:解:得分的频率为;得分的频率为;得分的频率为;所以得分的频率为.设班级得分的中位数为x分,于是,解得.所以班级卫生量化打分检查得分的中位数为70分.由知题意“良”、“中”的频率分别为,又班级总数为40.于是“良”、“中”的班级个数分别为16,8.分层抽样的方法抽取的“良”、“中”的班级个数分别为4,2.因为评定为“良”,奖励2面小红旗,评定为“中”,奖励1面小红旗.所以抽取的2个班级获得的奖励小红旗面数和不少于3为两个评定为“良”的班级或一个评定为“良”与一个评定为“中”的班级.记这个事件为A.则为两个评定为“中”的班级.把4个评定为“良”的班级标记为1,2,3,4,2个评定为“中”的班级标记为5,6.从这6个班级中随机抽取2个班级用点表示,其中.这些点恰好为方格格点上半部分不含对角线上的点,于是有种.事件仅有一个基本事件.所以.所抽取的2个班级获得的奖励小红旗面数和不少于3的概率为.解析:利用频率分布直方图,能求出班级卫生量化打分检查得分的中位数.“良”、“中”的频率分别为,又班级总数为从而“良”、“中”的班级个数分别为16,分层抽样的方法抽取的“良”、“中”的班级个数分别为4,由此利用对立事件概率计算公式能求出抽取的2个班级获得的奖励小红旗面数和不少于3的概率.本题考查中位数、概率的求法,考查分层抽样、频率分布直方图、古典概型等基础知识,考查运算求解能力,是基础题.19.答案:解:因为,,所以于是.又,且,平面ABD,平面ADM,所以平面ADM.因为,所以.因为,所以.又,平面ADM.所以.所以三棱锥的体积为.解析:推导出,由此能证明平面ADM.推导出,,由此能求出三棱锥的体积.本题考查线面垂直的证明,考查三棱锥的体积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.20.答案:证明:令,则.于是在单调递增,,即;.令,.当时,由知.则,当时,,从而.故在上单调递增.解析:令,求其导函数,可得导函数大于0,由得结论;求出原函数的导函数,再令,结合中,把导函数缩小,再由缩小后的解析式在上大于0恒成立,可得在单调递增.本题考查利用导数研究函数的单调性,正确求导是解答该题的关键,考查计算能力,是中档题.21.答案:解:设点,其中.因为,所以切线l的斜率为,于是切线.因为,于是切线l:故圆心O到切线l的距离为.于是.联立得.设,,则,.又,于是.于是.又C的焦点,于是.故.令,则于是.因为在单调递减,在单调递增.又当时,;当时,;当时,.所以的取值范围为.解析:设点,其中利用函数的导数求出切线的斜率,得到切线方程,通过圆心O到切线l的距离为转化求解即可.联立得设,,利用韦达定理,求出中点坐标,求出的表达式,令,则于是利用函数的单调性求解范围即可.本题考查直线与抛物线的位置关系的综合应用,圆的方程的应用,考查转化思想以及计算能力,是中档题.22.答案:解:消去参数得将,代入得,即.所以曲线C的极坐标方程为.法1:将代入,得,设,则.于是.法2:与曲线C相切于点M,,由切割线定理知.解析:直接利用转换关系,把参数方程极坐标方程和直角坐标方程之间进行转换.利用极径的应用和一元二次方程根和系数关系式的应用求出结果.本题考查的知识要点:参数方程极坐标方程和直角坐标方程之间的转换,一元二次方程根和系数关系式的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.23.答案:解:,当时,函数单调递减;当时,函数单调递增,所以m只能在上取到.当时,函数单调递增.所以;因为恒成立,且,,所以恒成立即.由知,于是.当且仅当时等号成立即.所以,故实数t的最大值为.解析:由绝对值的意义,去绝对值,可得的分段函数式,由一次函数的单调性,可得的最小值,进而得到m的值;由参数分离可得恒成立即,运用基本不等式可得此不等式右边的最小值,进而得到所求t的最大值.本题考查含绝对值的函数的最值求法,注意结合一次函数的单调性,考查不等式恒成立问题解法,注意运用转化思想和基本不等式,考查运算能力和推理能力,属于中档题.。
四川省成都七中2020届高三二诊模拟考试试题 文科数学【含解析】
【解析】
【分析】
作出不等式组表示的平面区域,作出直线 ,根据目标函数 的几何意义平移直线 ,当直线 经过平面区域内的点A时目标函数 有最小值,联立方程求出点A 坐标,代入目标函数求解即可.
【详解】根据题意,作出不等式组表示的平面区域如图所示:
作出直线 ,因为目标函数 的几何意义为直线 的纵截距,
解得 或 (舍去),
所以
;
(Ⅱ)因为
所以
.
【点睛】本题考查等比中项、等差数列的通项公式和前n项和公式及裂项相消法求和;考查运算求解能力;利用等比中项和等差数列通项公式正确求出 是求解本题的关键;属于中档题.
18.某家庭记录了未使用节水龙头 天 日用水量数据(单位: )和使用了节水龙头 天的日用水量数据,得到频数分布表如下:
对于选项C:因为 ,故选项C排除;
故选:B
【点睛】本题考查利用函数的奇偶性和特殊点函数值符号判断函数图象;考查运算求解能力和逻辑推理能力;选取合适的特殊点并判断其函数值符号是求解本题的关键;属于中档题、常考题型.
10.对任意 ,不等式 恒成立,则实数 的取值范围是( )
A. B. C. D.
【答案】C
3.已知 是第二象限的角, ,则 ( )
A. B. C. D.
【答案】D
【解析】
【分析】
利用诱导公式和同角三角函数的基本关系求出 ,再利用二倍角的正弦公式代入求解即可.
【详解】因为 ,
由诱导公式可得, ,
即 ,
因为 ,
所以 ,
由二倍角的正弦公式可得,
,
所以 .
故选:D
【点睛】本题考查诱导公式、同角三角函数的基本关系和二倍角的正弦公式;考查运算求解能力和知识的综合运用能力;属于中档题.
四川省成都市第七中学高中2020届高三高中毕业班三诊模拟数学(文科)试题附答案
成都七中2020届高中毕业班三诊模拟数 学(文科)本试卷分选择题和非选择题两部分. 第Ⅰ卷(选择题)1至2页,第Ⅱ卷 (非选择题)3至4页,共4页,满分150分,考试时间120分钟. 注意事项:1.答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上.2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其它答案标号.3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定位置上.4.所有题目必须在答题卡上作答,在试题卷上答题无效.5.考试结束后,只将答题卡交回.第Ⅰ卷 (选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合2{1,0,1,2,3,4},{|,}A B y y x x A =-==∈,则A B =I(A){0,1,2} (B){0,1,4} (C){1,0,1,2}- (D){1,0,1,4}- 2. 已知复数11iz =+,则||z =(A)2(B)1 (D)2 3. 设函数()f x 为奇函数,当0x >时,2()2,f x x =-则((1))f f = (A)1- (B)2- (C)1 (D)24. 已知单位向量12,e e 的夹角为2π3,则122e e -=(A)3 (B)75. 已知双曲线22221(0,0)x y a b a b-=>>的渐近线方程为3y x =±,则双曲线的离心率是(B)3 (C)10 (D)1096. 在等比数列{}n a 中,10,a >则“41a a <”是“53a a <”的(A)充分不必要条件 (B)必要不充分条件 (C)充要条件 (D)既不充分也不必要条件7. 如图所示的程序框图,当其运行结果为31时,则图中判断框①处应填入的是(A)6?i ≤ (B)5?i ≤ (C)4?i ≤ (D)3?i ≤8. 已知,a b 为两条不同直线,,,αβγ为三个不同平面,下列命题:①若///,,/ααγβ则//βγ;②若//,//,a a αβ则//αβ;③若,,αγγβ⊥⊥则αβ⊥;④若,,a b αα⊥⊥则//a b .其中正确命题序号为 (A)②③(B)②③④(C)①④(D)①②③9. 南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为1,5,11,21,37,61,95,则该数列的第8项为 (A)99(B)131 (C)139 (D)14110. 已知2πlog e ,a =πln ,eb =2e ln ,πc =则(A)a b c <<(B)b c a <<(C)b a c <<(D)c b a <<11. 已知一个四面体的每一个面都是以3,3,2为边长的锐角三角形,则这个四面体的外接球的表面积为 (A)11π4 (B)11π2(C)11π (D)22π 12. 已知P 是椭圆2214x y +=上一动点,(2,1),(2,1)A B -,则cos ,PA PB u u u r u u u r 的最大值是(A)4 (B)17 (C)6- (D)14第Ⅱ卷 (非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡上. 13.已知数列{}n a 的前n 项和为,n S 且111,1(2),n n a a S n -==+≥则4a =14. 已知实数,x y 满足线性约束条件117x y x y ≥⎧⎪≥-⎨⎪+≤⎩,则目标函数2z x y =+的最大值是15. 如图是一种圆内接六边形ABCDEF ,其中BC CD DE EF FA ====且.AB BC ⊥则在圆内随机取一点,则此点取自六边形ABCDEF 内的概率是16. 若指数函数xy a =(0a >且1)a ≠与一次函数y x =的图象恰好有两个不同的交点,则实数a 的取值范围是三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)在ABC ∆中,内角,,A B C 的对边分别为,,.a b c 已知2.tan sin a bA B= (1)求角A 的大小; (2)若2,a b ==求ABC ∆的面积.18.(本小题满分12分)成都七中为了解班级卫生教育系列活动的成效,对全校40个班级进行了一次突击班级卫生量化打分检查(满分100分,最低分20分).根据检查结果:得分在[80,100]评定为“优”,奖励3面小红旗;得分在[60,80)评定为“良”,奖励2面小红旗;得分在[40,60)评定为“中”,奖励1面小红旗;得分在[20,40)评定为“差”,不奖励小红旗.已知统计结果的部分频率分布直方图如下图:(1)依据统计结果的部分频率分布直方图,求班级卫生量化打分检查得分的中位数;(2)学校用分层抽样的方法,从评定等级为“良”、“中”的班级中抽取6个班级,再从这6个班级中随机抽取2个班级进行抽样复核,求所抽取的2个班级获得的奖励小红旗面数和不少于3的概率.19.(本小题满分12分)如图,在四棱锥M ABCD -中,2,2.,,3AB AM AD MB MD AB AD =====⊥ (1)证明:AB ⊥平面ADM ; (2)若//CD AB 且23CD AB =,E 为线段BM 上一点,且 2BE EM =,求三棱锥A CEM -的体积.20.(本小题满分12分)已知函数22e (),(e,).ln x xf x x x x++=∈+∞ (1)证明:当(e,)x ∈+∞时,3eln ex x x ->+; (2)证明:()f x 在1[2e ,)2++∞单调递增.(其中e 2.71828=L 是自然对数的底数).21.(本小题满分12分)已知点P 是抛物线21:2C y x =上的一点,其焦点为点,F 且抛物线C 在点P 处的切线l 交圆:O 221x y +=于不同的两点,A B .(1)若点(2,2),P 求||AB 的值;(2)设点M 为弦AB 的中点,焦点F 关于圆心O 的对称点为,F '求||F M '的取值范围.请考生在第22,23题中任选择一题作答,如果多做,则按所做的第一题记分.作答时,用2B 铅笔在答题卡上将所选题目对应的标号涂黑.22.(本小题满分10分)选修44-:坐标系与参数方程在平面直角坐标系xOy 中,曲线C 的参数方程为233x y αα⎧=⎪⎨=⎪⎩(α为参数,0πα≤≤).在以坐标原点为极点,x 轴的非负半轴为极轴的极坐标系中,射线l 的极坐标方程是π6θ=.(1)求曲线C 的极坐标方程;(2)若射线l 与曲线C 相交于,A B 两点,求||||OA OB ⋅的值.23.(本小题满分10分)选修45-:不等式选讲已知0,0,a b >>且24,a b +=函数()2f x x a x b =++-在R 上的最小值为.m(1)求m 的值;(2)若22a mb tab +≥恒成立,求实数t 的最大值.成都七中2020届高中毕业班三诊模拟数 学(文科)参考答案及评分意见第Ⅰ卷 (选择题,共60分)一、选择题(每小题5分,共60分)1.B ;2.A ;3.C ;4.D ;5.A ;6.A ;7.B ;8.C ;9.D ; 10.B ; 11.C ; 12.A.第Ⅱ卷 (非选择题,共90分)二、填空题(每小题5分,共20分)13.8; 14.15; 15.2π; 16.1e (1,e ).三、解答题(共70分) 17. 解:(1)由正弦定理知sin sin a b A B =,又2,tan sin a b A B =所以2.sin tan a aA A= 于是1cos ,2A =因为0π,A <<所以π.3A = L L 6分(2)因为π2,,3a b A ===22π222cos,3c c =+-⨯⨯即2230.c c --=又0c >,所以 3.c =故ABC ∆的面积为11πsin 23sin 223bc A =⨯⨯⨯= L L 12分18.解:(1)得分[20,40)的频率为0.005200.1⨯=;得分[40,60)的频率为0.010200.2⨯=; 得分[80,100]的频率为0.015200.3⨯=;所以得分[60,80)的频率为1(0.10.20.3)0.4.-++=设班级得分的中位数为x 分,于是600.10.20.40.520x -++⨯=,解得70.x = 所以班级卫生量化打分检查得分的中位数为70分. L L 6分 (2)由(1)知题意 “良”、“中”的频率分别为0.4,0.2.又班级总数为40.于是“良”、“中”的班级个数分别为16,8.分层抽样的方法抽取的 “良”、“中”的班级个数分别为4,2.因为评定为“良”,奖励2面小红旗,评定为“中”,奖励1面小红旗.所以抽取的2个班级获得的奖励小红旗面数和不少于3为两个评定为“良”的班级或一个评定为“良”与一个评定为“中”的班级.记这个事件为.A 则A 为两个评定为“中”的班级.把4个评定为“良”的班级标记为1,2,3,4. 2个评定为“中”的班级标记为5,6.从这6个班级中随机抽取2个班级用点(,)i j 表示,其中16i j ≤<≤.这些点恰好为66⨯方格格点上半部分(不含i j =对角线上的点),于是有366152-=种. 事件A 仅有(5,6)一个基本事件. 所以114()1()1.1515P A P A =-=-= 所抽取的2个班级获得的奖励小红旗面数和不少于3的概率为14.15L L 12分19.解:(1)因为2AB AM==,MB =所以222.AM AB MB +=于是.AB AM ⊥又,AB AD ⊥且,AM AD A AM =⊂I 平面ABD ,AD ⊂平面ADM ,所以AB ⊥平面.ADM L L 5分(2)因为2,AM AD MD ===所以ADM S ∆=因为2BE EM =,所以1.3C AEM C ABM V V --=又//,CD AB AB ⊥平面.ADM所以111333A CEM C AEM C ABM D ABM B ADM V V V V V -----==== 111123333ADM S AB =⨯⋅⋅=⨯=所以三棱锥A CEM -L L 12分20.解:(1)令3e ()ln ,(e,).e x g x x x x -=-∈+∞+则22214e (e)()0.(e)(e)x g x x x x x -'=-=>++于是()g x 在(e,)+∞单调递增,所以()(e)0,g x g >=即3eln ,(e,).ex x x x ->∈+∞+ L L 5分 (2)22222222(21)ln (e )(ln 1)(e )ln (e )().(ln )(ln )x x x x x x x x x x f x x x x x +-+++--++'== 令2222()(e )ln (e ),(e,).h x x x x x x =--++∈+∞当(e,)x ∈+∞时,由(1)知3eln .e x x x ->+则222223e 1()(e )(e )2(4e 1)2[(2e )],e 2x h x x x x x x x x x ->--++=-+=-++ 当1[2e ,)2x ∈++∞时,()0h x >,从而()0.f x '> 故()f x 在1[2e ,)2++∞严格单调递增. L L 12分21.解:设点00(,)P x y ,其中2001.2y x =因为,y x '=所以切线l 的斜率为0,x 于是切线2001:.2l y x x x =-(1)因为(2,2),P 于是切线:2 2.l y x =-故圆心O 到切线l的距离为d =于是||5AB === L L 5分(2)联立22200112x y y x x x ⎧+=⎪⎨=-⎪⎩得22340001(1)10.4x x x x x +-+-= 设1122(,),(,),(,).A x y B x y M x y 则301220,1x x x x +=+32240001()4(1)(1)0.4x x x ∆=--+-> 又200,x ≥于是2002x ≤<+于是32200120022001,.22(1)22(1)x x x x x y x x x x x +===-=-++ 又C 的焦点1(0,),F 于是1(0,).F '-故||F M '===L L 9分 令201,t x =+则13t ≤<+于是||F M'==因为3t t+在单调递减,在+单调递增.又当1t =时,1||2F M '=;当t =时,||F M '=;当3t =+时,11||.22F M '=> 所以||F M '的取值范围为1).2L L 12分22.解:(1)消去参数α得22(2)3(0)x y y -+=≥将cos ,sin x y ρθρθ==代入得22(cos 2)(sin )3,ρθρθ-+=即24cos 10.ρρθ-+=所以曲线C 的极坐标方程为2π4cos 10(0).3ρρθθ-+=≤≤L L 5分 (2)法1:将π6θ=代入2π4cos 10(0)3ρρθθ-+=≤≤得210ρ-+=,设12ππ(,),(,),66A B ρρ则12 1.ρρ=于是12|||| 1.OA OB ρρ⋅== L L 10分法2:π3θ=与曲线C 相切于点,M π||2sin 1,3OM ==由切割线定理知2|||||| 1.OA OB OM ⋅== L L 10分23.解:(1)3, (,),2()2, [,],23, (,).a x a b x a f x x a x b x a b x b x a b x b ⎧--+∈-∞-⎪⎪⎪=++-=++∈-⎨⎪+-∈+∞⎪⎪⎩.当(,)2ax ∈-∞-时,函数()f x 单调递减;当(,)x b ∈+∞时,函数()f x 单调递增.所以m 只能在[,]2a b -上取到.当[,]2ax b ∈-时,函数()f x 单调递增.所以2() 2.222a a a bm f a b +=-=-++== L L 5分(2)因为22a mb tab +≥恒成立,且0,0a b >>,所以22a mb t ab +≤恒成立即mina b mb t a ⎛⎫≤+ ⎪⎝⎭.由(1)知2m =,于是a b a mb +≥== 当且仅当2aab =时等号成立即1)0,2(20.a b =>=> 所以t ≤,故实数t 的最大值为 L L 10分。
四川省成都市第七中学2020届高三零诊模拟数学(文)试题
成都七中高2020届零诊热身试卷数学(文史类)考试时间:120分钟总分:150分注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答题前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每个小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上,答在本试题上无效.4.考试结束,将答题卡交回.第Ⅰ卷一.选择题:共12小题,每小题5分,共60分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
1.已知集合{}11A x x =-<,{}210B x x =-<,则A B =U ( ) A.()1,1-B.()1,2-C.()1,2D.()0,12.若1122aii i+=++,则复数a =( ) A.5i --B.5i -+C.5i -D.5i +3.设()f x 是定义在R 上周期为2的奇函数,当01x <<时,()2f x x x =-,则52f ⎛⎫-= ⎪⎝⎭( ) A.14-B.12-C.14D.124.为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:根据上表可得回归直线方程$$y bxa =+$,其中0.76b =$,$a y bx =-$,据此估计,该社区一户收入为15万元家庭年支出为( ) A.11.4万元B.11.8万元C.12.0万元D.12.2万元5.设D 为ABC ∆中BC 边上的中点,且O 为AD 边上靠近点A 的三等分点,则( )A.5166BO AB AC =-+u u u r u u ur u u u rB.1162BO AB AC =-u u u r u u u r u u u rC.5166BO AB AC =-u u u r u u u r u u u rD.1162BO AB AC =-+u u u r u u ur u u u r6.执行如图的程序框图,则输出x 的值是()A.1B.2C.12D.1-7.等差数列{}n a 中的2a 、4032a 是函数()3214613f x x x x =-+-的两个极值点,则()2220174032log a a a ⋅⋅= A. 24log 6+B. 5C. 23log 3+D. 24log 3+8.以下三个命题正确的个数有( )个①:若225a b +≠,则1a ≠或2b ≠;②:定义域为R 的函数()f x ,函数()f x 为奇函数是()00f =的充分不必要条件;③:若0x >,0y >且21x y +=,则11x y+的最小值为3+ A.0个B.1个C.2个D.3个9.甲、乙、丙、丁四位同学一起去向老师询问毕业会考数学成绩。
20届高三文科数学热身考试试卷答案(2)
2020年普通高等学校招生成都七中统一热身考试文科数学答案一、选择题:1.【答案】D 解析:3(1,3),=(,)(1,)2A B A B =+∞∴⋃=+∞ ,2.【答案】A 解析:由3010m m +>⎧⎨-<⎩,得31m -<<3.【答案】B 解析:等车时间不超过10分钟的时间段为7:50-8:00,8:20-8:30,一共20分钟,而7:50-8:30一共40分钟,则他等车时间不超过10分钟的概率是201(A)402P ==4.【答案】D=+,等式左边展开后化简整理,得0a b ⋅= ,那么20a b m ⋅=+= ,得2m =-5.【答案】B[解析:平移后的解析式为2sin(2)6y x π=+令2,()622626k k x k x x k Z πππππππ+=+=+=+∈则,故对称轴方程为6.【答案】D 解析:对A ,由雷达图知各月平均最低气温都在00C 以上,故正确对B ,7月的平均温差约为100C 左右,1月的平均温差约为50C 左右,故7月的平均温差比1月的平均温差大,故正确对C ,3月和11月的平均最高气温基本相同,都为100C ,故正确对D ,平均最高气温高于200C 的月份有7,8月两个月,故错误,符合题意7.【答案】C.解析:由三视图,该几何体为底面为直角梯形的四棱柱,故该几何体的体积为122262V +=⨯⨯=8.【答案】A 解析:∵423324a ==,233b =,1233255c ==,则b a c <<.9.【答案】C 解析:作AD BC ⊥于D ,令DAC θ∠=,=3a AD ,则==3a BD AD ,23CD a =,在Rt ADC ∆中,3cos 5a AD AC θ===,故sin 5θ=,10.10.【答案】B 解析:由题意可知3,1,2===c b a ,于是焦点坐标)03(),0,3(21F F -,又因为021<⋅PF PF ,即032020<+-y x ,又142020=+y x ,故024320<-x ,所以3623620<<-x .11.【答案】A 解析:设D 在底面ABC 的垂足为O ,P 的轨迹是以DO 为轴的圆锥底面圆上,由最小角定理可知,sin α的取最大值时的角为90度时。
2020年普通高等学校招生考试成都七中热身数学考试(文科答案)
故 a3 b3 2 a3b3 4 2 ,且当 a b 2 时取等号.
所以 a3 b3 的最小值为 4 2 .
……………………(5 分)
(II)由(I)知, 2a 3b 2 6 ab 4 3 .
由于 4 3 6 ,从而不存在 a,b ,使得 2a 3b 6 .
……………………(10 分)
n 1
n 1
n 1
n 1
……………………(12 分)
22.解:(I)C 的普通方程为 (x 1)2 y2 1(0 y 1) .
可得
C
的参数方程为
x
y
1 cos sin ,
,(
为参数
,0
)
……………………(5 分)
(Ⅱ)设 D(1 cos , sin ) .由(I)知 C 是以 G(1,0)为圆心,1 为半径的上半圆。
∴ AD ⊥平面 BDE .
……………………………………(7 分)
(Ⅱ)根据条件四棱锥的高就是 OD ,可以算出来 OD h 1 ……………(9 分)
底面四边形 ABCE 为梯形,面积算出来为 S 3 2
……………(10 分)
所以VD ABCE
1 Sh 3
……………(12 分)
20.解:(1) x2 y2 1 43
,即
x02 3 y02 0
,又
x02 4
y02 1 , 故
3 4
x02
2
0
,所以
26 3
x0
26 3
.
11.【答案】A 解析:设 D 在底面 ABC 的垂足为 O,P 的轨迹是以 DO 为轴的圆锥底面圆
上,由最小角定理可知, sin 的取最大值时的角为 90 度时。
2020年四川省成都七中高考数学一诊试卷(文科)
2020年四川省成都七中高考数学一诊试卷(文科)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)复数z=a+bi(a,b∈R)的虚部记作Im(z)=b,则Im()=()A.﹣2B.﹣1C.1D.22.(5分)执行如图所示的程序框图,输出的S值为()A.3B.﹣6C.10D.﹣153.(5分)关于函数f(x)=|tan x|的性质,下列叙述不正确的是()A.f(x)的最小正周期为B.f(x)是偶函数C.f(x)的图象关于直线x=(k∈Z)对称D.f(x)在每一个区间(kπ,kπ+)(k∈Z)内单调递增4.(5分)已知a>0,b>0,则“a≤1且b≤1”是“a+b≤2且ab≤1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.(5分)某几何体的三视图如图所示,则该几何体的表面积为()A.36+12πB.36+16πC.40+12πD.40+16π6.(5分)在约束条件:下,目标函数z=ax+by(a>0,b>0)的最大值为1,则ab的最大值等于()A.B.C.D.7.(5分)已知正项等比数列{a n}中,S n为其前n项和,且a2a4=1,S3=7,则S5=()A.B.C.D.8.(5分)双曲线﹣=1的渐近线与圆(x﹣3)2+y2=r2(r>0)相切,则r=()A.B.2C.3D.69.(5分)已知函数f(x)对∀x∈R都有f(x)=f(4﹣x),且其导函数f′(x)满足当x≠2时,(x﹣2)f′(x)>0,则当2<a<4时,有()A.f(2a)<f(2)<f(log2a)B.f(2)<f(2a)<f(log2a)C.f(log2a)<f(2a)<f(2)D.f(2)<f(log2a)<f(2a)10.(5分)对圆(x﹣1)2+(y﹣1)2=1上任意一点P(x,y),若点P到直线l1:3x﹣4y﹣9=0和l2:3x ﹣4y+a=0的距离和都与x,y无关,则a的取值区间为()A.[6,+∞)B.[﹣4,6]C.(﹣4,6)D.(﹣∞,﹣4]11.(5分)若,,满足,|,则的最大值为()A.10B.12C.D.12.(5分)点M,N分别是棱长为1的正方体ABCD﹣A1B1C1D1中棱BC,CC1的中点,动点P在正方形BCC1B1(包括边界)内运动,且P A1∥面AMN,则P A1的长度范围为()A.B.C.D.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在答题卡相应位置上)13.(5分)命题“∀x∈N,x2>1”的否定为.14.(5分)在样本的频率分布直方图中,共有9个小长方形,若第一个长方形的面积为0.02,前五个与后五个长方形的面积分别成等差数列且公差是互为相反数,若样本容量为1600,则中间一组(即第五组)的频数为.15.(5分)设O、F分别是抛物线y2=2x的顶点和焦点,M是抛物线上的动点,则的最大值为.16.(5分)若实数a,b∈(0,1)且,则的最小值为.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(12分)设△ABC的内角A、B、C的对边分别为a、b、c,已知c=3,且sin(C﹣)•cos C=.(1)求角C的大小;(2)若向量=(1,sin A)与=(2,sin B)共线,求a、b的值.18.(12分)学校为了了解高三学生每天自主学习中国古典文学的时间,随机抽取了高三男生和女生各50名进行问卷调查,其中每天自主学习中国古典文学的时间超过3小时的学生称为“古文迷”,否则为“非古文迷”,调查结果如表:古文迷非古文迷合计男生262450女生302050合计5644100(Ⅰ)根据表中数据能否判断有60%的把握认为“古文迷”与性别有关?(Ⅱ)现从调查的女生中按分层抽样的方法抽出5人进行调查,求所抽取的5人中“古文迷”和“非古文迷”的人数;(Ⅲ)现从(Ⅱ)中所抽取的5人中再随机抽取3人进行调查,记这3人中“古文迷”的人数为ξ,求随机变量ξ的分布列与数学期望.参考公式:K2=,其中n=a+b+c+d.参考数据:P(K2≥k0)0.500.400.250.050.0250.010k00.4550.708 1.321 3.841 5.024 6.63519.(12分)如图,在三棱柱ABC﹣A1B1C1中,每个侧面均为正方形,D为底边AB的中点,E为侧棱CC1的中点.(1)求证:CD∥平面A1EB;(2)求证:AB1⊥平面A1EB;(3)若AB=2,求三棱锥A1﹣B1BE的体积.20.(12分)已知椭圆C:+=1(a>b>0)的两个焦点分别为F1(﹣,0),F2(,0),以椭圆短轴为直径的圆经过点M(1,0).(1)求椭圆C的方程;(2)过点M的直线l与椭圆C相交于A、B两点,设点N(3,2),记直线AN,BN的斜率分别为k1,k2,问:k1+k2是否为定值?并证明你的结论.21.(12分)已知函数f(x)=tx+lnx(t∈R).(1)当t=﹣1时,证明:f(x)≤﹣1;(2)若对于定义域内任意x,f(x)≤x•e x﹣1恒成立,求t的范围?请考生在第22、23两题中任选一题作答.注意:只能做选定的题目.如果多做,则按所做的第一个题目计分.(本小题满分10分).[选修4-4:坐标系与参数方程]22.(10分)在极坐标系下,知圆O:ρ=cosθ+sinθ和直线.(1)求圆O与直线l的直角坐标方程;(2)当θ∈(0,π)时,求圆O和直线l的公共点的极坐标.[选修4-5:不等式选讲](本小题满分0分)23.已知函数f(x)=|2x+3|+|2x﹣1|.(Ⅰ)求不等式f(x)≤5的解集;(Ⅱ)若关于x的不等式f(x)<|m﹣1|的解集非空,求实数m的取值范围.参考答案一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)复数z=a+bi(a,b∈R)的虚部记作Im(z)=b,则Im()=()A.﹣2B.﹣1C.1D.2【答案】B2.(5分)执行如图所示的程序框图,输出的S值为()A.3B.﹣6C.10D.﹣15【答案】C3.(5分)关于函数f(x)=|tan x|的性质,下列叙述不正确的是()A.f(x)的最小正周期为B.f(x)是偶函数C.f(x)的图象关于直线x=(k∈Z)对称D.f(x)在每一个区间(kπ,kπ+)(k∈Z)内单调递增【答案】A4.(5分)已知a>0,b>0,则“a≤1且b≤1”是“a+b≤2且ab≤1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A5.(5分)某几何体的三视图如图所示,则该几何体的表面积为()A.36+12πB.36+16πC.40+12πD.40+16π【答案】C6.(5分)在约束条件:下,目标函数z=ax+by(a>0,b>0)的最大值为1,则ab的最大值等于()A.B.C.D.【答案】D7.(5分)已知正项等比数列{a n}中,S n为其前n项和,且a2a4=1,S3=7,则S5=()A.B.C.D.【答案】B8.(5分)双曲线﹣=1的渐近线与圆(x﹣3)2+y2=r2(r>0)相切,则r=()A.B.2C.3D.6【答案】A9.(5分)已知函数f(x)对∀x∈R都有f(x)=f(4﹣x),且其导函数f′(x)满足当x≠2时,(x﹣2)f′(x)>0,则当2<a<4时,有()A.f(2a)<f(2)<f(log2a)B.f(2)<f(2a)<f(log2a)C.f(log2a)<f(2a)<f(2)D.f(2)<f(log2a)<f(2a)【答案】D10.(5分)对圆(x﹣1)2+(y﹣1)2=1上任意一点P(x,y),若点P到直线l1:3x﹣4y﹣9=0和l2:3x ﹣4y+a=0的距离和都与x,y无关,则a的取值区间为()A.[6,+∞)B.[﹣4,6]C.(﹣4,6)D.(﹣∞,﹣4]【答案】A11.(5分)若,,满足,|,则的最大值为()A.10B.12C.D.【答案】B12.(5分)点M,N分别是棱长为1的正方体ABCD﹣A1B1C1D1中棱BC,CC1的中点,动点P在正方形BCC1B1(包括边界)内运动,且P A1∥面AMN,则P A1的长度范围为()A.B.C.D.【答案】B二、填空题(本大题共4小题,每小题5分,共20分.把答案填在答题卡相应位置上)13.(5分)命题“∀x∈N,x2>1”的否定为∃x0∈N,x02≤1.14.(5分)在样本的频率分布直方图中,共有9个小长方形,若第一个长方形的面积为0.02,前五个与后五个长方形的面积分别成等差数列且公差是互为相反数,若样本容量为1600,则中间一组(即第五组)的频数为360.15.(5分)设O、F分别是抛物线y2=2x的顶点和焦点,M是抛物线上的动点,则的最大值为..16.(5分)若实数a,b∈(0,1)且,则的最小值为.。
四川省成都七中2020届高三高中毕业班三诊模拟数学(文科)试题 word版含答案及评分意见
成都七中2020届高中毕业班三诊模拟数 学(文科)命题:巢中俊 审题:钟梁骏 张世永本试卷分选择题和非选择题两部分. 第Ⅰ卷(选择题)1至2页,第Ⅱ卷 (非选择题)3至4页,共4页,满分150分,考试时间120分钟. 注意事项:1.答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上.2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其它答案标号.3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定位置上.4.所有题目必须在答题卡上作答,在试题卷上答题无效.5.考试结束后,只将答题卡交回.第Ⅰ卷 (选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合2{1,0,1,2,3,4},{|,}A B y y x x A =-==∈,则A B =I(A){0,1,2} (B){0,1,4} (C){1,0,1,2}- (D){1,0,1,4}- 2. 已知复数11iz =+,则||z =(A)2(B)1 (D)2 3. 设函数()f x 为奇函数,当0x >时,2()2,f x x =-则((1))f f = (A)1- (B)2- (C)1 (D)24. 已知单位向量12,e e 的夹角为2π3,则122e e -=(A)3 (B)7 (C)5. 已知双曲线22221(0,0)x y a b a b-=>>的渐近线方程为3y x =±,则双曲线的离心率是(C)10 (D)1096. 在等比数列{}n a 中,10,a >则“41a a <”是“53a a <”的(A)充分不必要条件 (B)必要不充分条件 (C)充要条件 (D)既不充分也不必要条件7. 如图所示的程序框图,当其运行结果为31时,则图中判断框①处应填入的是(A)6?i ≤ (B)5?i ≤ (C)4?i ≤ (D)3?i ≤8. 已知,a b 为两条不同直线,,,αβγ为三个不同平面,下列命题:①若///,,/ααγβ则//βγ;②若//,//,a a αβ则//αβ;③若,,αγγβ⊥⊥则αβ⊥;④若,,a b αα⊥⊥则//a b .其中正确命题序号为 (A)②③(B)②③④(C)①④(D)①②③9. 南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为1,5,11,21,37,61,95,则该数列的第8项为 (A)99(B)131 (C)139 (D)14110. 已知2πlog e ,a =πln ,eb =2e ln ,πc =则(A)a b c <<(B)b c a <<(C)b a c <<(D)c b a <<11. 已知一个四面体的每一个面都是以3,3,2为边长的锐角三角形,则这个四面体的外接球的表面积为 (A)11π4 (B)11π2(C)11π (D)22π 12. 已知P 是椭圆2214x y +=上一动点,(2,1),(2,1)A B -,则cos ,PA PB u u u r u u u r 的最大值是(D)14第Ⅱ卷 (非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡上. 13.已知数列{}n a 的前n 项和为,n S 且111,1(2),n n a a S n -==+≥则4a =14. 已知实数,x y 满足线性约束条件117x y x y ≥⎧⎪≥-⎨⎪+≤⎩,则目标函数2z x y =+的最大值是15. 如图是一种圆内接六边形ABCDEF ,其中BC CD DE EF FA ====且.AB BC ⊥则在圆内随机取一点,则此点取自六边形ABCDEF 内的概率是16. 若指数函数xy a =(0a >且1)a ≠与一次函数y x =的图象恰好有两个不同的交点,则实数a 的取值范围是三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)在ABC ∆中,内角,,A B C 的对边分别为,,.a b c 已知2.tan sin a bA B= (1)求角A 的大小; (2)若2,a b ==求ABC ∆的面积.18.(本小题满分12分)成都七中为了解班级卫生教育系列活动的成效,对全校40个班级进行了一次突击班级卫生量化打分检查(满分100分,最低分20分).根据检查结果:得分在[80,100]评定为“优”,奖励3面小红旗;得分在[60,80)评定为“良”,奖励2面小红旗;得分在[40,60)评定为“中”,奖励1面小红旗;得分在[20,40)评定为“差”,不奖励小红旗.已知统计结果的部分频率分布直方图如下图:(1)依据统计结果的部分频率分布直方图,求班级卫生量化打分检查得分的中位数;(2)学校用分层抽样的方法,从评定等级为“良”、“中”的班级中抽取6个班级,再从这6个班级中随机抽取2个班级进行抽样复核,求所抽取的2个班级获得的奖励小红旗面数和不少于3的概率.19.(本小题满分12分)如图,在四棱锥M ABCD -中,2,22.,,23AB AM AD MB MD AB AD =====⊥ (1)证明:AB ⊥平面ADM ; (2)若//CD AB 且23CD AB =,E 为线段BM 上一点,且 2BE EM =,求三棱锥A CEM -的体积.20.(本小题满分12分)已知函数22e (),(e,).ln x xf x x x x++=∈+∞ (1)证明:当(e,)x ∈+∞时,3eln ex x x ->+; (2)证明:()f x 在1[2e ,)2++∞单调递增.(其中e 2.71828=L 是自然对数的底数).21.(本小题满分12分)已知点P 是抛物线21:2C y x =上的一点,其焦点为点,F 且抛物线C 在点P 处的切线l 交圆:O 221x y +=于不同的两点,A B .(1)若点(2,2),P 求||AB 的值;(2)设点M 为弦AB 的中点,焦点F 关于圆心O 的对称点为,F '求||F M '的取值范围.请考生在第22,23题中任选择一题作答,如果多做,则按所做的第一题记分.作答时,用2B 铅笔在答题卡上将所选题目对应的标号涂黑.22.(本小题满分10分)选修44-:坐标系与参数方程在平面直角坐标系xOy 中,曲线C 的参数方程为233x y αα⎧=⎪⎨=⎪⎩(α为参数,0πα≤≤).在以坐标原点为极点,x 轴的非负半轴为极轴的极坐标系中,射线l 的极坐标方程是π6θ=.(1)求曲线C 的极坐标方程;(2)若射线l 与曲线C 相交于,A B 两点,求||||OA OB ⋅的值.23.(本小题满分10分)选修45-:不等式选讲已知0,0,a b >>且24,a b +=函数()2f x x a x b =++-在R 上的最小值为.m (1)求m 的值;(2)若22a mb tab +≥恒成立,求实数t 的最大值.成都七中2020届高中毕业班三诊模拟数 学(文科)参考答案及评分意见第Ⅰ卷 (选择题,共60分)一、选择题(每小题5分,共60分)1.B ;2.A ;3.C ;4.D ;5.A ;6.A ;7.B ;8.C ;9.D ; 10.B ; 11.C ; 12.A.第Ⅱ卷 (非选择题,共90分)二、填空题(每小题5分,共20分)13.8; 14.15; ; 16.1e (1,e ).三、解答题(共70分)17. 解:(1)由正弦定理知sin sin a b A B =,又2,tan sin a b A B =所以2.sin tan a aA A=于是1cos ,2A =因为0π,A <<所以π.3A = L L 6分(2)因为π2,,3a b A ===22π222cos ,3c c =+-⨯⨯即2230.c c --=又0c >,所以 3.c =故ABC ∆的面积为11πsin 23sin 223bc A =⨯⨯⨯= L L 12分18.解:(1)得分[20,40)的频率为0.005200.1⨯=;得分[40,60)的频率为0.010200.2⨯=; 得分[80,100]的频率为0.015200.3⨯=;所以得分[60,80)的频率为1(0.10.20.3)0.4.-++=设班级得分的中位数为x 分,于是600.10.20.40.520x -++⨯=,解得70.x = 所以班级卫生量化打分检查得分的中位数为70分. L L 6分(2)由(1)知题意 “良”、“中”的频率分别为0.4,0.2.又班级总数为40. 于是“良”、“中”的班级个数分别为16,8.分层抽样的方法抽取的 “良”、“中”的班级个数分别为4,2.因为评定为“良”,奖励2面小红旗,评定为“中”,奖励1面小红旗.所以抽取的2个班级获得的奖励小红旗面数和不少于3为两个评定为“良”的班级或一个评定为“良”与一个评定为“中”的班级.记这个事件为.A 则A 为两个评定为“中”的班级.把4个评定为“良”的班级标记为1,2,3,4. 2个评定为“中”的班级标记为5,6.从这6个班级中随机抽取2个班级用点(,)i j 表示,其中16i j ≤<≤.这些点恰好为66⨯方格格点上半部分(不含i j =对角线上的点),于是有366152-=种. 事件A 仅有(5,6)一个基本事件. 所以114()1()1.1515P A P A =-=-=所抽取的2个班级获得的奖励小红旗面数和不少于3的概率为14.15L L 12分19.解:(1)因为2AB AM ==,MB = 所以222.AM AB MB +=于是.AB AM ⊥又,AB AD ⊥且,AM AD A AM =⊂I 平面ABD ,AD ⊂平面ADM ,所以AB ⊥平面.ADM L L 5分(2)因为2,AM AD MD ===所以ADM S ∆=因为2BE EM =,所以1.3C AEM C ABM V V --=又//,CD AB AB ⊥平面.ADM所以111333A CEM C AEM C ABM D ABM B ADM V V V V V -----==== 111123333ADM S AB =⨯⋅⋅=⨯=所以三棱锥A CEM -的体积为9L L 12分20.解:(1)令3e ()ln ,(e,).e x g x x x x -=-∈+∞+则22214e (e)()0.(e)(e)x g x x x x x -'=-=>++于是()g x 在(e,)+∞单调递增,所以()(e)0,g x g >=即3eln ,(e,).ex x x x ->∈+∞+ L L 5分 (2)22222222(21)ln (e )(ln 1)(e )ln (e )().(ln )(ln )x x x x x x x x x x f x x x x x +-+++--++'== 令2222()(e )ln (e ),(e,).h x x x x x x =--++∈+∞当(e,)x ∈+∞时,由(1)知3eln .e x x x ->+则222223e 1()(e )(e )2(4e 1)2[(2e )],e 2x h x x x x x x x x x ->--++=-+=-++ 当1[2e ,)2x ∈++∞时,()0h x >,从而()0.f x '>故()f x 在1[2e ,)2++∞严格单调递增. L L 12分21.解:设点00(,)P x y ,其中2001.2y x =因为,y x '=所以切线l 的斜率为0,x 于是切线2001:.2l y x x x =-(1)因为(2,2),P 于是切线:2 2.l y x =-故圆心O 到切线l的距离为d =于是||AB === L L 5分(2)联立22200112x y y x x x ⎧+=⎪⎨=-⎪⎩得22340001(1)10.4x x x x x +-+-= 设1122(,),(,),(,).A x y B x y M x y 则301220,1x x x x +=+32240001()4(1)(1)0.4x x x ∆=--+-> 又200,x ≥于是2002x ≤<+于是32200120022001,.22(1)22(1)x x x x x y x x x x x +===-=-++ 又C 的焦点1(0,),F 于是1(0,).F '-故||F M '===L L 9分 令201,t x =+则13t ≤<+于是||F M'==因为3t t+在单调递减,在+单调递增.又当1t =时,1||2F M '=;当t =时,||F M '=;当3t =+时,1||.2F M'=> 所以||F M '的取值范围为1).2L L 12分22.解:(1)消去参数α得22(2)3(0)x y y -+=≥将cos ,sin x y ρθρθ==代入得22(cos 2)(sin )3,ρθρθ-+=即24cos 10.ρρθ-+=所以曲线C 的极坐标方程为2π4cos 10(0).3ρρθθ-+=≤≤L L 5分 (2)法1:将π6θ=代入2π4cos 10(0)3ρρθθ-+=≤≤得210ρ-+=,设12ππ(,),(,),66A B ρρ则12 1.ρρ=于是12|||| 1.OA OB ρρ⋅== L L 10分法2:π3θ=与曲线C 相切于点,M π||2sin 1,3OM ==由切割线定理知2|||||| 1.OA OB OM ⋅== L L 10分23.解:(1)3, (,),2()2, [,],23, (,).a x a b x a f x x a x b x a b x b x a b x b ⎧--+∈-∞-⎪⎪⎪=++-=++∈-⎨⎪+-∈+∞⎪⎪⎩.当(,)2ax ∈-∞-时,函数()f x 单调递减;当(,)x b ∈+∞时,函数()f x 单调递增.所以m 只能在[,]2a b -上取到.当[,]2ax b ∈-时,函数()f x 单调递增.所以2() 2.222a a a bm f a b +=-=-++== L L 5分(2)因为22a mb tab +≥恒成立,且0,0a b >>,所以22a mb t ab +≤恒成立即mina b mb t a ⎛⎫≤+ ⎪⎝⎭.由(1)知2m =,于是a b a mb +≥== 当且仅当2aab =时等号成立即1)0,2(20.a b =>=> 所以t ≤,故实数t 的最大值为 L L 10分。
2020年四川省成都七中高考数学热身试卷(文科)(7月份) (解析版)
2020年四川省成都七中高考数学热身试卷(文科)(7月份)一、选择题(本大题共12小题,共60.0分)1. 设集合A ={x|x 2−4x +3<0},B ={x|2x −3>0},则A ∪B =( )A. (1,32)B. (1,+∞)C. (1,3)D. (32,3)2. 已知z =(m +3)+(m −1)i 在复平面内对应的点在第四象限,则实数m 的取值范围是( )A. (−3,1)B. (−1,3)C. (1,+∞)D. (−∞,−3)3. 某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( )A. 13B. 12C. 23D. 344. 已知向量a ⃗ ,b ⃗ 的夹角为34π,且a ⃗ =(−1,1),|b ⃗ |=2,则|2a ⃗ +b ⃗ |=( )A. 1B. √2C. 4D. 25. 若将函数y =2sin2x 的图象向左平移π12个单位长度,则平移后的图象的对称轴为( )A. x =kπ2−π6(k ∈Z) B. x =kπ2+π6(k ∈Z) C. x =kπ2−π12(k ∈Z)D. x =kπ2+π12(k ∈Z)6. 某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图.图中A 点表示十月的平均最高气温约为15 ℃,B 点表示四月的平均最低气温约为5 ℃.下面叙述不正确的是( )A. 各月的平均最低气温都在0 ℃以上B. 七月的平均温差比一月的平均温差大C. 三月和十一月的平均最高气温基本相同D. 平均气温高于20 ℃的月份有5个7.某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A. 2B. 4C. 6D. 88.已知a=243,b=525,c=2513,则()A. c<a<bB. a<b<cC. b<c<aD. b<a<c9.在△ABC中,∠B=π4,BC边上的高等于13BC,则cos A=( ).A. 3√1010B. √1010C. −√1010D. −3√101010.已知P(x0,y0)是椭圆C:x24+y2=1上的一点,F1,F2是C的两个焦点,若PF1⃗⃗⃗⃗⃗⃗⃗ ⋅PF2⃗⃗⃗⃗⃗⃗⃗ <0,则x0的取值范围是()A. (−2√63,2√63) B. (−2√33,2√33) C. (−√33,√33) D. (−√63,√63)11.已知四面体OABC各棱长为1,D是棱OA的中点,则异面直线BD与AC所成角的余弦值为()A. √33B. 14C. √36D. √2812.函数f(x)=lnx−x2+4x+5的零点个数为()A. 0B. 1C. 2D. 3二、填空题(本大题共4小题,共20.0分)13.已知函数f(x)=(2x+1)e x,f′(x)为f(x)的导函数,则f′(0)的值为______.14.若x,y满足约束条件{x−y+4≥0x−2≤0x+y−2≥0,则z=x+3y的最大值为________.15.已知△ABC中,AB=√3,BC=1,A=30°,则AC=______ .16.抛物线y2=2px(p>0)上点A与焦点F距离为2,以AF为直径的圆与y轴交于点H(0,1),则p=____.三、解答题(本大题共7小题,共82.0分)17.已知等差数列{a n},a2=4,a5=10.(1)求数列{a n}的通项公式;(2)若b n=(√3)a n,求数列{b n}的前n项和S n.18.某高中高一,高二,高三的模联社团的人数分别为35,28,21,现采用分层抽样的方法从中抽取部分学生参加模联会议,已知在高二年级和高三年级中共抽取7名同学.(1)应从高一年级选出参加会议的学生多少名?(2)设高二,高三年级抽出的7名同学分别用A,B,C,D,E,F,G表示,现从中随机抽取2名同学承担文件翻译工作.(i)试用所给字母列举出所有可能的抽取结果;(ii)设M为事件“抽取的两名同学来自同一年级”,求事件M发生的概率.19.在四棱锥P−ABCD中,平面PAD⊥平面ABCD,底面ABCD是菱形,PA=PD=AB=2.(1)若PB=√6,求证:AD⊥PB;(2)若E是AB的中点,PC=√10,求四棱锥P−ABCD的体积.20.已知椭圆C:x2a2+y2b2=1(a>b>0)的长轴长为2√2,离心率为√22,A,B为椭圆C上的两点.(1)求椭圆C的方程;(2)若A为椭圆的上顶点,M为AB中点,O为坐标原点,连接OM并延长交椭圆C于N,ON⃗⃗⃗⃗⃗⃗ =√6 2OM⃗⃗⃗⃗⃗⃗⃗ ,求直线AB的方程;(3)设直线AB过椭圆C的右焦点F,若点C是点A关于x轴的对称点,证明直线BC过定点,并求该定点的坐标.21.设函数f(x)=e x−ax−1,对∀x∈R,f(x)≥0恒成立.(1)求a的取值集合;(2)求证:1+12+13+⋯+1n>ln(n+1)(n∈N∗).22. 已知在直角坐标系xOy 中,圆C 的参数方程为{x =3+2cosθy =−4+2sinθ(θ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为ρcos (θ−π4)=√2. (1)求圆C 的普通方程和直线l 的直角坐标方程;(2)设M 是直线l 上任意一点,过M 做圆C 切线,切点为A 、B ,求四边形AMBC 面积的最小值.23. 已知a >0,b >0,1a 2+1b 2+2ab 的最小值为m .(Ⅰ)求m 的值;(Ⅱ)若正实数x ,y 满足xy =m ,是否存在x ,y ,使得√x +√y +x +y =6?并说明理由.-------- 答案与解析 --------1.答案:B解析:解:∵A ={x|1<x <3},B ={x|x >32}, ∴A ∪B =(1,+∞). 故选:B .可以求出集合A ,B ,然后进行并集的运算即可.本题考查了描述法、区间的定义,一元二次不等式的解法,并集的运算,考查了计算能力,属于基础题.2.答案:A解析:本题考查复数的几何意义,考查计算能力,属于基础题. 利用复数对应点所在象限,列出不等式组求解即可.解:z =(m +3)+(m −1)i 在复平面内对应的点在第四象限, 可得:{m +3>0m −1<0,解得−3<m <1.故选A .3.答案:B解析:本题考查的知识点是几何概型,难度不大,属于基础题.设小明到达时间为y ,当y 在7:50至8:00,或8:20至8:30时,小明等车时间不超过10分钟,代入几何概型概率计算公式,可得答案. 解:设小明到达时间为y ,当y 在7:50至8:00,或8:20至8:30时, 小明等车时间不超过10分钟,故他等车时间不超过10分钟的概率是2040=12, 故选B .4.答案:D解析:解:根据题意,a ⃗ =(−1,1),则|a ⃗ |=√2,则|2a ⃗ +b ⃗ |2=4a ⃗ 2+4a ⃗ ⋅b ⃗ +b ⃗ 2=8+8√2×(−√22)+4=4,故|2a ⃗ +b ⃗ |=2; 故选:D .根据题意,由向量a ⃗ 的坐标求出|a ⃗ |的值,又由|2a ⃗ +b ⃗ |2=4a ⃗ 2+4a ⃗ ⋅b ⃗ +b ⃗ 2计算可得|2a⃗ +b ⃗ |2的值,变形即可得答案.本题考查向量数量积的计算,关键是掌握向量数量积的计算公式.5.答案:B解析:本题考查函数y =Asin(ωx +φ)(A >0,ω>0)图象的变换规律的应用及正弦函数的图象性质,属于基础题.由函数图象变换法则得出平移后的函数的解析式,然后利用正弦函数的性质求解即可.解:将函数y =2sin2x 的图象向左平移π12个单位长度,得到y =2sin[2(x +π12)]=2sin(2x +π6)的图象,令2x +π6=kπ+π2(k ∈Z), 得:x =kπ2+π6(k ∈Z),即平移后的图象的对称轴方程为x =kπ2+π6(k ∈Z),故选B .6.答案:D解析:。
四川省成都七中2020届高三高中毕业班三诊模拟数学(文科)试题与答案
e1
,
e2
的夹角为
2π 3
,则
e1
2e2Leabharlann (A)3(B)7(C) 3
(D) 7
5.
已知双曲线 x2 a2
y2
b2
1(a 0, b 0) 的渐近线方程为 y 3x ,则双曲线的离心率是
(A) 10
10
(B)
3
(C)10
10
(D)
9
第1页
6. 在等比数列{an} 中, a1 0, 则“ a1 a4 ”是“ a3 a5 ”的
11. 已知一个四面体的每一个面都是以 3,3,2 为边长的锐角三角形,则这个四面体的外接球的
表面积为
11π
(A)
4
11π
(B)
2
(C)11π
(D) 22π
12. 已知 P 是椭圆 x2 y2 1上一动点, A(2,1), B(2,1) ,则 cos PA, PB 的最大值是 4
6 2
(A)
4
17
有两个不同的交点,则实数 a 的取值范围是
A
B
三、解答题:本大题共 6 小题,共 70 分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分 12 分)
在 ABC 中,内角 A, B, C 的对边分别为 a, b, c. 已知 2a b . tan A sin B
(1)求角 A 的大小;
(A)充分不必要条件
(B)必要不充分条件
(C)充要条件
(D)既不充分也不必要条件
7. 如图所示的程序框图,当其运行结果为 31 时,则图中判断框①处应填入的是
(A) i 6 ?
(B) i 5?
(C) i 4 ?
2020届四川省成都市第七中学高三普通高等学校招生统一热身考试数学(文)试题解析
2020届四川省成都市第七中学高三普通高等学校招生统一热身考试数学(文)试题一、单选题1.设集合{}2430A x x x =-+<,{}230B x x =->,则A B =( )A .33,2⎛⎫-- ⎪⎝⎭B .33,2⎛⎫- ⎪⎝⎭C .31,2⎛⎫ ⎪⎝⎭D .()1,+∞答案:D先解不等式,化简集合A 、B ,再求并集,即可得出结果. 解:∵{}{}243013A x x x x x =-+<=<<,{}32302B x x x x ⎧⎫=->=>⎨⎬⎩⎭, 所以{}1A B x x ⋃=>. 故选:D. 点评:本题主要考查求集合的并集,熟记并集的概念,以及一元二次不等式的解法即可,属于基础题型. 2.已知在复平面内对应的点在第四象限,则实数m 的取值范围是 A .B .C .D .答案:A 试题分析:要使复数对应的点在第四象限,应满足,解得,故选A.【考点】 复数的几何意义【名师点睛】复数的分类及对应点的位置问题都可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式)组即可. 复数z =a +bi复平面内的点Z (a ,b )(a ,b ∈R ).复数z =a +bi (a ,b ∈R )平面向量.3.某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是 A .13B .12C .23D .34答案:B试题分析:由题意,这是几何概型问题,班车每30分钟发出一辆,到达发车站的时间总长度为40,等车不超过10分钟的时间长度为20,故所求概率为201402=,选B. 【考点】几何概型【名师点睛】这是全国卷首次考查几何概型,求解几何概型问题的关键是确定“测度”,常见的测度有长度、面积、体积等.4.设向量(),1a m =,()1,2b =,且222a b a b +=+,则m =( )A .1B .2C .1-D .2-答案:D 先由222a b a b +=+得到0a b ⋅=,再由向量数量积的坐标表示列出方程,即可得出结果. 解: 因为222a ba b +=+,所以22222a b a b a b ++⋅=+,因此0a b ⋅=,又向量(),1a m =,()1,2b =, 所以20a b m ⋅=+=,解得2m =-. 故选:D. 点评:本题主要考查由向量数量积求参数,熟记向量数量积的坐标表示即可,属于基础题型. 5.若将函数y=2sin2x 的图像向左平移12π个单位长度,则平移后图像的对称轴为A .x=26k ππ-(k ∈Z ) B .x=26k ππ+(k ∈Z ) C .x=212k ππ-(k ∈Z )D .x=212k ππ+(k ∈Z ) 答案:B解:试题分析:由题意得,将函数2sin 2y x =的图象向左平移12π个单位长度,得到2sin(2)6y x π=+,由2,62x k k Z πππ+=+∈,得,26k x k Z ππ=+∈,即平移后的函数的对称轴方程为,26k x k Z ππ=+∈,故选B . 【考点】三角函数的图象与性质. 【方法点晴】本题主要考查了三角函数()sin()f x A wx ϕ=+的图象与性质,着重考查了三角函数的图象变换及三角函数的对称轴方程的求解,通过将函数2sin 2y x =的图象向左平移12π个单位长度,得到函数的解析式2sin(2)6y x π=+,即可求解三角函数的性质,同时考查了学生分析问题和解答问题的能力以及推理与运算能力.6.某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A 点表示十月的平均最高气温约为15℃,B 点表示四月的平均最低气温约为5℃.下面叙述不正确的是 ( )A .各月的平均最低气温都在0℃以上B .七月的平均温差比一月的平均温差大C .三月和十一月的平均最高气温基本相同D .平均最高气温高于20℃的月份有5个 答案:D解:试题分析:由图可知各月的平均最低气温都在0℃以上,A 正确;由图可知在七月的平均温差大于7.5C ︒,而一月的平均温差小于7.5C ︒,所以七月的平均温差比一月的平均温差大,B 正确;由图可知三月和十一月的平均最高气温都大约在10C ︒,基本相同,C 正确;由图可知平均最高气温高于20℃的月份有7,8两个月,所以不正确.故选D . 【考点】 统计图 【易错警示】解答本题时易错可能有两种:(1)对图形中的线条认识不明确,不知所措,只觉得是两把雨伞重叠在一起,找不到解决问题的方法;(2)估计平均温差时易出现错误,错选B .7.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是( )A .2B .4C .6D .8答案:C先还原几何体为一直四棱柱,再根据柱体体积公式求结果. 解:根据三视图可得几何体为一个直四棱柱,高为2,底面为直角梯形,上下底分别为1、2,梯形的高为2,因此几何体的体积为()1122262⨯+⨯⨯=,选C. 点评:先由几何体的三视图还原几何体的形状,再在具体几何体中求体积或表面积等. 8.已知432a =,254b =,1325c =,则 A .b a c << B .a b c << C .b c a << D .c a b <<答案:A 解:因为4133216a ==,2155416b ==,1325c =, 因为幂函数13y x =在R 上单调递增,所以a c <,因为指数函数16x y =在R 上单调递增,所以b a <, 即b <a <c . 故选:A.9.在ABC △中,4B π=,BC 边上的高等于13BC ,则cos A =( ) A .310B .10 C .10-D .310-答案:C 试题分析:设22,2,5sin cos ,sin ,cos cos 55AD a AB a CD a AC a A ααββ=⇒===⇒====⇒10cos()αβ=+=-,故选C.【考点】解三角形.10.已知P (x 0,y 0)是椭圆C :24x +y 2=1上的一点,F 1,F 2分别是椭圆C 的左、右焦点,若12PF PF ⋅<0,则x 0的取值范围是A .2626⎛ ⎝⎭B .2323⎛ ⎝⎭C .33⎛ ⎝⎭D .66⎛ ⎝⎭答案:A将原问题转化为椭圆与圆的交点问题,求得临界值,然后求解x 0的取值范围即可. 解:如图,设以O 为原点、半焦距3c =为半径的圆x2+y 2=3与椭圆交于A ,B 两点.由2222314x y x y ⎧+⎪⎨+⎪⎩==得26x ±=, 要使12PF PF ⋅<0,则点P 在A 、B 之间, ∴x 0的取值范围是2626,⎛⎫-⎪ ⎪⎝⎭.故选A .点评:本题考查了椭圆的方程、性质,向量的数量积的运算,属于中档题. 11.点P 是棱长为2的正四面体ABCD 的面ABC 内一动点,3DP =DP 与BC 所成的角α,则sin α的最大值为( ) A .1 B 3C 3D 62-答案:A作DO ⊥平面BAC 于O , O 是ABC 的中心,DO OB ⊥,DO OP ⊥,计算出下在四面体的高是263,3OP =,从而平面ABC 内,P 在以O 为圆心,33为半径的圆上,P 运动时,DP 是圆锥的母线,BC 平移到圆锥底面圆直径位置,利用圆锥的性质,这个角的最大值是直角,由此可得结论. 解:如图1,作DO ⊥平面BAC 于O ,∵ABCD 是正四面体,∴O 是ABC 的中心,DO OB ⊥,DO OP ⊥,易知2223264233DO DB BO ⎛⎫=-=-⨯= ⎪ ⎪⎝⎭,∴()222263333OP DP DO ⎛⎫=-=-= ⎪ ⎪⎝⎭,所以平面ABC 内,P 在以O 为圆心,3为半径的圆上,P 运动时,DP 是圆锥的母线,如图2,把圆锥PO 平移到四面体外部,不妨设//BC MN ,MN 是圆锥底面圆的一条直径,母线DP 与MN 所成角的最大值2π, 所以异面直线DP 与BC 所成的角的正弦的最大值是1. 故选:A .图1 图2 点评:本题考查异面直线所成的角,解题关键是找到在平面ABC 内P 点的轨迹.DP 所形成的空间图形,把BC 平移到圆直径位置,母线与底面直径所成角的最大值是2π,由此可得结论.12.定义在R 上的函数()[]22f x x x =--有( )个零点?(其中[]x 表示不大于实数x 的最大整数) A .0 B .1 C .2 D .3答案:D令()[]220f x x x =--=,得[]22x x -=,令()212f x x =-,()[]1g x x =,在同一坐标系做出两函数的图像,由两函数图像的交点个数可得选项. 解:令()[]220f x x x =--=,得[]22x x -=,令()212f x x =-,()[]1g x x =,在同一坐标系做出两函数的图像如下图所示, 两函数图像有3个交点,所以函数()[]22f x x x =--有3个零点,即221x -=-或221x -=或222x -=, 解得1x =-或3x =或2x = 故选:D.点评:本题考查函数的零点,将函数的零点问题转化为两函数的交点问题是处理此类问题的常用方法,属于中档题.二、填空题13.已知函数()(2+1)e ,()x f x x f x ='为()f x 的导函数,则(0)f '的值为__________. 答案:3 试题分析:()(2+3),(0) 3.x f x x e f =∴'='【考点】导数【名师点睛】求函数的导数的方法:(1)连乘积的形式:先展开化为多项式的形式,再求导; (2)根式形式:先化为分数指数幂,再求导;(3)复杂公式:通过分子上凑分母,化为简单分式的和、差,再求导; (4)复合函数:确定复合关系,由外向内逐层求导;(5)不能直接求导:适当恒等变形,转化为能求导的形式再求导.14.若,x y满足约束条件10{20220x yx yx y-+≥-≤+-≤,则z x y=+的最大值为_____________.答案:3 2试题分析:由下图可得在1(1,)2A处取得最大值,即max13122z=+=.【考点】线性规划.【方法点晴】本题考查线性规划问题,灵活性较强,属于较难题型.考生应注总结解决线性规划问题的一般步骤(1)在直角坐标系中画出对应的平面区域,即可行域;(2)将目标函数变形为a zy xb b=-+;(3)作平行线:将直线0ax by+=平移,使直线与可行域有交点,且观察在可行域中使zb最大(或最小)时所经过的点,求出该点的坐标;(4)求出最优解:将(3)中求出的坐标代入目标函数,从而求出z的最大(小)值. 15.在ABC中,60A∠=︒,23BC=D为BC中点,则AD最长为_________.答案:3在ABD∆和ADC∆中,分别利用余弦定理,求得22262b c x+=+,再在ABC∆中,利用余弦定理和基本不等式,即可求解.解:如图所示,设AD x=,ADBθ∠=,则ADCπθ∠=-,在ABD∆中,由余弦定理,可得2222cosAB BD AD BD ADθ=+-⋅,即22323cosc x xθ=+-,①在ADC∆中,由余弦定理,可得2222cos()AC CD AD CD ADπθ=+-⋅-,即22323cos b x x θ=++,② 由①+②,可得22262b c x +=+,在ABC ∆中,由余弦定理,可得2222cos60BC AB AC AB AC =+-⋅,即22222222221(23)()322b c c b bc c b b c x +=+-≥+-=+=+,解得29x ≤,所以3x ≤,即AC 的最大值为3. 故答案为:3.点评:本题主要考查了余弦定理的应用,以及利用基本不等式求解最值问题,其中解答中熟练应用余弦定理得到22262b c x +=+,结合基本不等式求解是解答的关键,着重考查推理与运算能力.16.抛物线()220y px p =>上点A 与焦点F 距离为2,以AF 为直径的圆与y 轴交于点()0,1H ,则p =_________. 答案:2法一:首先根据抛物线方程和焦半径公式表示点A 的坐标,再根据0HF HA ⋅=求解点A 的坐标和p 值;法二:利用以AF 为直径的圆与y 轴相切,利用切点为()0,1H ,求得点A 的坐标和p 值. 解:法一:根据,02p F ⎛⎫⎪⎝⎭,根据点A 与焦点F 距离为2, 所以A 点横坐标为22p -,所以A 点纵坐标222242p y p p p ⎛⎫=-=- ⎪⎝⎭①;即,12p HF ⎛⎫=-⎪⎝⎭,2,12p HA y ⎛⎫=-- ⎪⎝⎭根据0HF HA ⋅=,得到24104p p y --+=从而根据①解得2y =,从而带入①解得2p =. 法二:设()00,A x y ,,02p F ⎛⎫⎪⎝⎭,由焦半径公式可知022p x +=则线段AF 的中点到y 轴的距离022122px d +===, 所以以AF 为直径的圆与y 轴相切,由题意可知切点为()0,1H , 则点A 的纵坐标为2,横坐标22p -, 则2242p p ⎛⎫-= ⎪⎝⎭,解得:2p =. 故答案为:2 点评:本题考查抛物线方程,几何性质,意在考查转化与化归的思想,计算能力,属于中档题型,本题的关键利用焦半径公式表示点A 的横坐标,以及点A 在抛物线上,建立方程求解.三、解答题17.已知等差数列{}n a 满足:12a =,且1a ,2a ,5a 成等比数列. (1)求数列{}n a 的通项公式;(2)记n S 为数列{}n a 的前n 项和,是否存在正整数n ,使得60800n S n >+ ?若存在,求n 的最小值;若不存在,说明理由.答案:(1) 通项公式为2n a = 或42n a n =-;(2) 当2n a = 时,不存在满足题意的正整数n ;当42n a n =- 时,存在满足题意的正整数n ,其最小值为41. 解:(1)依题意,2,2,24d d ++成等比数列, 故有()()22224d d +=+, ∴240d d -=,解得4d =或0d =. ∴()21442n a n n =+-⋅=-或2n a =.(2)当2n a = 时,不存在满足题意的正整数n ; 当42n a n =-,∴()224222n n n S n ⎡⎤+-⎣⎦==.令2260800n n >+,即2304000n n -->, 解得40n >或10n <-(舍去), ∴最小正整数41n =.18.已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动. (Ⅰ)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(Ⅱ)设抽出的7名同学分别用A ,B ,C ,D ,E ,F ,G 表示,现从中随机抽取2名同学承担敬老院的卫生工作.(i )试用所给字母列举出所有可能的抽取结果;(ii )设M 为事件“抽取的2名同学来自同一年级”,求事件M 发生的概率. 答案:(1)3,2,2(2)(i )见解析(ii )521解:分析:(Ⅰ)结合人数的比值可知应从甲、乙、丙三个年级的学生志愿者中分别抽取3人,2人,2人.(Ⅱ)(i )由题意列出所有可能的结果即可,共有21种.(ii )由题意结合(i )中的结果和古典概型计算公式可得事件M 发生的概率为P (M )=521. 详解:(Ⅰ)由已知,甲、乙、丙三个年级的学生志愿者人数之比为3∶2∶2,由于采用分层抽样的方法从中抽取7名同学,因此应从甲、乙、丙三个年级的学生志愿者中分别抽取3人,2人,2人.(Ⅱ)(i )从抽出的7名同学中随机抽取2名同学的所有可能结果为{A ,B },{A ,C },{A ,D },{A ,E },{A ,F },{A ,G },{B ,C },{B ,D },{B ,E },{B ,F },{B ,G },{C ,D },{C ,E },{C ,F },{C ,G },{D ,E },{D ,F },{D ,G },{E ,F },{E ,G },{F ,G },共21种.(ii )由(Ⅰ),不妨设抽出的7名同学中,来自甲年级的是A ,B ,C ,来自乙年级的是D ,E ,来自丙年级的是F ,G ,则从抽出的7名同学中随机抽取的2名同学来自同一年级的所有可能结果为{A ,B },{A ,C },{B ,C },{D ,E },{F ,G },共5种.所以,事件M 发生的概率为P (M )=521. 点睛:本小题主要考查随机抽样、用列举法计算随机事件所含的基本事件数、古典概型及其概率计算公式等基本知识.考查运用概率知识解决简单实际问题的能力. 19.如图,ABCD 是块矩形硬纸板,其中222AB AD ==,E 为DC 中点,将它沿AE 折成直二面角D AE B --.(1)求证:AD ⊥平面BDE ; (2)求四棱锥D ABCE -体积. 答案:(1)证明见解析;(2)1.(1)先证AE BE ⊥,由面面垂直(直二面角)得BE ⊥平面ADE ,再得线线垂直BE AD ⊥,然后可得线面垂直;(2)由直二面角即面面垂直,可求得D 到平面ABCE 的距离,从而可求得体积. 解:(1)由题意22(2)(2)2AE BE ==+=,所以222AE BE AB +=,所以AE BE ⊥,又二面角D AE B --是直二面角,即平面DAE ⊥平面ABE ,平面DAE平面ABE AE =,BE ⊂平面ABE ,所以BE ⊥平面ADE ,又AD ⊂平面ADE ,所以AD BE ⊥,又因为AD DE ⊥,DE BE E ⋂=,所以AD ⊥平面BDE ;(2)以AE 中点M ,连接DM ,因为AD DE =,所以DM AE ⊥,又平面DAE ⊥平面ABE ,平面DAE平面ABE AE =,DM ⊂平面ADE ,所以DM ⊥平面ABE ,直角三角形ADE 中,112DM AE ==, 11()(222)2322ABCE S AB CE BC =+⋅==,所以1131133D ABCE ABCE V S DM -==⨯⨯=.点评:本题考查证明线面垂直,考查求棱锥的体积,掌握线面垂直的判定定理和面面垂直的性质定理是解题关键.20.已知椭圆22221x y a b+=,O 为坐标原点,长轴长为4,离心率12e =.(1)求椭圆方程;(2)若点A ,B ,C 都在椭圆上,D 为AB 中点,且 2CO OD =,求ABC 的面积?答案:(1)22143x y +=;(2)92. (1)直接根据离心率和长轴长定义得到答案.(2)考虑斜率存在和不存在两种情况,联立方程根据韦达定理得到根与系数关系,根据向量运算和中点坐标公式得到CD 坐标,计算弦长和点到直线距离,代入面积公式得到答案. 解:(1)根据题意知:24a =,2a =,12c e a ==,故1c =,3b =22143x y +=. (2)①若直线AB 垂直于x 轴,则AB 中点在x 轴上,不妨取点()2,0C , 根据2CO OD =得()1,0D -,故31,2A ⎛⎫- ⎪⎝⎭,31,2B ⎛⎫--⎪⎝⎭,故3AB =, 11933222ABCSAB CD =⋅=⨯⨯=. ②若直线斜率存在,设直线:AB y kx m =+,设()11,A x y ,()22,B x y ,联立椭圆得22143y kx m x y =+⎧⎪⎨+=⎪⎩,化简得到()()222438430k x kmx m +++-=,判别式()2204834k m ∆+->=,即22340k m +->,()12221228434343km x x k m x x k ⎧+=-⎪+⎪⎨-⎪=⎪+⎩, AB 中点2243,4343km m D k k -⎛⎫⎪++⎝⎭,根据2CO OD =得到点2286,4343km m C k k -⎛⎫ ⎪++⎝⎭, 因为点C 在椭圆上,代入椭圆2222864343143km m k k -⎛⎫⎛⎫⎪ ⎪++⎝⎭⎝⎭+=,整理得22344k m +=.验证满足>0∆,则12x AB =-=3m ==,又原点O 到直线AB的距离d =所以1322ABO S d AB ==△,所以932ABC ABO S S ==△△.综上所述:ABC 的面积为92. 点评:本题考查了椭圆的标准方程,椭圆内的面积问题,意在考查学生的计算能力和综合应用能力.21.已知()()1xf x e ax a R =--∈.(1)若()0f x ≥对x ∈R 恒成立,求实数a 的范围;(2)求证:对*n N ∀∈,都有111112311111n n n n n n n n n ++++⎛⎫⎛⎫⎛⎫⎛⎫++++< ⎪ ⎪ ⎪ ⎪++++⎝⎭⎝⎭⎝⎭⎝⎭.答案:(1){}1;(2)证明见解析.(1)求得函数()f x 的导数,分0a ≤和0a >两种情况讨论,利用导数分析函数()f x 的单调性,求得函数()f x 的最小值()min f x ,由题意得出()min 0f x ≥,解该不等式即可得出实数a 的取值范围;(2)由(1)知,当1a =时,1x x e +≤,可得出()()111n n x x e +++≤,令()11,2,3,,1kx k n n +==+,可推导出()111,2,3,,1n kn k e k n n e++⎛⎫<= ⎪+⎝⎭,进而可推导出()111123112311111n n n n n n n e ee e n n n n e +++++⎛⎫⎛⎫⎛⎫⎛⎫++++<++++ ⎪ ⎪ ⎪ ⎪++++⎝⎭⎝⎭⎝⎭⎝⎭结合等比数列求和公式可证得所证不等式成立. 解: (1)()1x f x e ax =--,则()x f x e a '=-.①当0a ≤时,()0f x '>对任意的x ∈R 恒成立,则()f x 在(),-∞+∞上单调递增, 由()1110f a e-=+-<,与题设矛盾; ②当0a >时,令()0xf x e a '=-=,得ln x a =. 由()0f x '<,得ln x a <;由()0f x '>,得ln x a >.∴函数()f x 在(),ln a -∞单调递减,在()ln ,a +∞单调递增,()()ln min ln ln 1ln 10a f x f a e a a a a a ∴==--=--≥,令()()ln 10g a a a a a =-->,()()1ln 1ln g a a a '∴=-+=-, 由()0g a '>,得01a <<;由()0g a '<,得1a >.()g a ∴在()0,1单调递增,在()1,+∞单调递减,()()max 10g a g ∴==,∴只有1a =适合题意,综上,实数a 的取值范围是{}1;(2)由(1)可知,当1a =时,()10xx e f x =--≥,则1x x e +≤,()()111n n x x e ++∴+≤,令()11,2,3,,1kx k n n +==+,则()()11n x k n +=-+,()()1111,2,3,,1n kk n n k e ek n n e+-++⎛⎫∴<== ⎪+⎝⎭,()111123112311111n n n n n n n e ee e n n n n e+++++⎛⎫⎛⎫⎛⎫⎛⎫++++<++++ ⎪ ⎪ ⎪ ⎪++++⎝⎭⎝⎭⎝⎭⎝⎭()()1111111111nn n n n e e e e e e e e e e +++---=⋅==---,由12n e e +>,知111n e e-<-,则1111ne e -<-,因此,111112311111n n n n n n n n n ++++⎛⎫⎛⎫⎛⎫⎛⎫++++< ⎪ ⎪ ⎪ ⎪++++⎝⎭⎝⎭⎝⎭⎝⎭.点评:本题考查利用导数研究函数不等式恒成立,同时也考查了利用导数证明函数不等式,考查推理能力与计算能力,属于难题.22.在直角坐标系xoy 中,以坐标原点为极点,x 轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ρθ=,0,2π⎡⎤θ∈⎢⎥⎣⎦.(1)求C 的参数方程;(2)设点D 在C 上,C 在D 处的切线与直线:2l y =+垂直,根据(1)中你得到的参数方程,确定D 的坐标. 答案:(1)[]1,0,.x cos y sin ααπα=+⎧∈⎨=⎩为参数;(2)3(,22(1)先求出半圆C 的直角坐标方程,由此能求出半圆C 的参数方程;(2)设点D 对应的参数为α,则点D 的坐标为()1+cos ,sin αα,且[]0,απ∈ ,半圆C 的圆心是()1,0C 因半圆C 在D 处的切线与直线l 垂直,故直线DC 的斜率与直线l 的斜率相等,由此能求出点D 的坐标.解:(1)由ρ2cos θ=,得[]2220,01x y xy +-=∈, ,所以C 的参数方程为[]1,0,.x cos y sin ααπα=+⎧∈⎨=⎩为参数(2)[]sin 0πtan 0,,1+cos 1233D αααπαα⎛-=⇒=∈∴= -⎝⎭点评:本题主要考查参数方程与极坐标方程,熟记直角坐标方程与参数方程的互化以及普通方程与参数方程的互化即可,属于常考题型. 23.若0,0a b >>,且11a b+=(1)求33+a b 的最小值;(2)是否存在,a b ,使得236a b +=?并说明理由.答案:(1)(2)不存在.(1)由已知11a b+=,利用基本不等式的和积转化可求2ab ≥,利用基本不等式可将33+a b 转化为ab ,由不等式的传递性,可求33+a b 的最小值;(2)由基本不等式可求23a b +的最小值为6>,故不存在. 解:(111a b =+≥,得2ab ≥,且当a b ==故33+a b ≥≥a b ==所以33+a b 的最小值为;(2)由(1)知,23a b +≥≥由于6>,从而不存在,a b ,使得236a b +=成立. 【考点定位】 基本不等式.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n 的最小值;若不存在,说明理由.
用 18. (本小题满分 12 分)已知学某使校甲、乙、丙三个年级的学生志愿者人数分别为 240,160,
中 160.现采用分层抽样的方法从中抽取 7 名同学去某敬老院参加献爱心活动. (1)应从甲、乙、丙三第个六年级的学生志愿者中分别抽取多少人? (2)设抽出的 7 宾名市同学分别用 A,B,C,D,E,F,G 表示,现从中随机抽取 2 名同学承
本卷包括必考题和选考题两部分.第(13)~(21)题为必考题,每个试题考生都必须作答.第 (22)~(24)题为选考题,考生根据要求作答. 二、填空题:本题共 4 小题,每小题 5 分.
(13)已知函数 f (x) (2x+1)ex , f (x) 为 f (x) 的导函数,则 f (0) 的值为__________.
1 k2 4
3 3 4k 2 m2 3 4k 2
1 k2 3 m
又原点 O 到直线 AB 的距离 d 使用m
学
所以 SABO
1 2
d
AB
3六中 第2
1 k2
宜宾市 所以 SABC
3SABO
9 2
…………………………………(12 分)
省
21.21.解:川(1)易得 f (x) ex a , 当 a 供 0四时, f (x) 0 对 x R 恒成立,则 f (x) 在 (, ) 上单调递增,
D(1,0) ,所以解得
AB
3 ,所以解得 SABC
9 2
。…………………………………(4
分)
② 设 直 线 AB : y kx m , 联 立 椭 圆 得 (4k 2 3)x2 8kmx 4(m2 3) 0 , 判 别 式
48(3
4k
2
m2)
,
AB
中点
D
(
4km 4k 2 3
,
3m 4k 2
x y 1 0
(14)若
x,
y
满足约束条件
x
2
y
0
则 z x y 的最大值为_____________.
x 2y 2 0
(15)在 ABC 中, A 60 , BC 2 3 , D 为 BC 中点,则 AD 最长为
(16)抛物线 y2 2 px( p 0) 上点 A 与焦点 F 距离为 2 ,以 AF 为直径的圆与 y 轴交于 点 H (0,1) ,则 p
) 3
,
根据 CO
2OD
得到点 C
(
8km 4k 2
3
,
4k
6m 2 3
)
,
因为点 C 在椭圆上,代入椭圆整理得 3 4k 2 4m2 (*) ……………………………(7 分)
设 A(x1, y1), B(x2 , y2 ), 则 AB 1 k 2 x1 x2 1 k 2 (x1 x2 )2 4x1 x2
∴ g(a) 1 (ln a 1) ln a(a 0) 由 g(a) 0 ,得 0 a 1;由 g(a) 0 ,得 a 1. ∴ g(a) 在 (0,1) 单调递增,在 (1, ) 单调递减
∴ g(a)max g(1) 0
7.【答案】C. 解析:由三视图,该几何体为底面为直角梯形的四棱柱,
故该几何体的体积为V 1 2 2 2 6 2
4
2
2
1
2
8.【答案】A 解析:∵ a 2 3 4 3 , b 33 , c 253 53 ,则 b a c .
9【. 答案】C 解析:作 AD BC 于 D ,令 DAC ,AD= a ,则 BD=AD= a , CD 2 a ,
钟,而 7:50-8:30 一共 40 分钟,则他等车时间不超过 10 分钟的概率是 P(A) 20 1 40 2
4.【答案】D
解析:由
2
ab
2
a
b
2
,等式左边展开后化简整理,得
a
b
0
,那么
a
b
m
2
0
,得
m
2
5.【答案】B
解析:平移后的解析式为
[
y
2
sin(2 x
)
6
令 2x k ,则x k ,故对称轴方程为x k (k Z )
2020 年普通高等学校招生成都七中统一热身考试
文科数学答案
一、选择题:
1.【答案】D 解析: A (1, 3), B=( 3 , ), A B (1, ) 2
2.【答案】A
解析:由
m m
30 1 0
,得
3
m
1
3.【答案】B 解析:等车时间不超过 10 分钟的时间段为 7:50-8:00,8:20-8:30,一共 20 分
由仅f (1) 1 a 1 0 ,与题设矛盾
e
当 a 0 时,由 f (x) 0 ,得 x ln a ,由 f (x) 0 ,得 x ln a
∴ f (x) 在 (, ln a) 单调递减,在 (ln a, ) 单调递增
∴ f (x)min f (ln a) elna a ln a 1 a a ln a 1 0 对 a 0 恒成立 令 g(a) a a ln a 1(a 0)
6
2
26
26
6.【答案】D 解析:对 A,由雷达图知各月平均最低气温都在 00C 以上,故正确
对 B,7 月的平均温差约为 100C 左右,1 月的平均温差约为 50C 左右,故 7 月的平均
温差比 1 月的平均温差大,故正确
对 C,3 月和 11 月的平均最高气温基本相同,都为 100C,故正确
对 D,平均最高气温高于 200C 的月份有 7,8 月两个月,故错误,符合题意
∴ OD BE , AE BE 2, AB 2 2 ,
∴ AB2 AE 2 BE 2 , AE BE , OD AE O , ∴ BE ⊥平面 ADE ,∴ BE AD , BE DE E ,
∴ AD ⊥平面 BDE .
……………………………………(7 分)
(Ⅱ)根据条件四棱锥的高就是 OD ,可以算出来 OD h 1 ……………(9 分)
中 且到达发车站的时刻是随机的,则他等车时间不超过 10 分钟的概率是( )
(A)1 3
市第六(B)12
(C)2 3
(D)3 4
宾
2
2
2
(4)设向量 a宜 (m,1),b (1,2) ,且 a b a b ,则 m ( )
省 (A)川1
(B)2
(C) 1
(D) 2
四
供 (仅5)若将函数
y
2
担敬老院省的宜卫生工作. 川
(i四)试用所给字母列举出所有可能的抽取结果; 供 仅(ii)设 M 为事件“抽取的 2 名同学来自同一年级”,求事件 M 发生的概率.
19.(本小题满分 12 分)如图,ABCD 是块矩形硬纸板,其中 AB 2 AD 2 2 ,E 为 DC
中点,将它沿 AE 折成直二面角 D AE B .
第Ⅰ卷
一、选择题:本大题共 12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符 合题目要求的.
(1)设集合 A {x | x2 4x 3 0} , B {x | 2x 3 0} ,则 A B ( )
(A)
(3,
3 2
)
(B)
(3,
3 2
)
(C)
(1,
3 2
)
(D) (1, )
sin
2x
的图像向左平移
个单位长度,则平移后图象的对称轴为(
)
12
(A) x k (k Z ) 26
(B) x k (k Z ) 26
(C) x k (k Z ) 2 12
(D) x k (k Z ) 2 12
用 使 学 中 六 第 市 宾 宜 省 川 四 供 仅
第 II 卷
21. (本小题满分 12 分)已知 f (x) ex ax 1(a R)
(1)若 f (x) 0 对 x R 恒成立,求实数 a 范围;
(2)求证:对 n N * ,都有 ( 1 )n1 ( 2 )n1 ( 3 )n1 ( n )n1 1
n 1
n 1
n 1
n 1
请考生在[22]、[23]题中任选一题作答。作答时用 2B 铅笔在答题卡上把所选题
2020 年普通高等学校招生成都七中统一热身考试 文科数学
本试题卷共 4 页,24 题(含选考题)。全卷满分 150 分。考试用时 120 分钟。 注意事项:
1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上. 2、选择题的作答:每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂 黑。写在试题卷、草稿纸和答题卡上的非答题区域均无效。 3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。写在试题 卷、草稿纸和答题卡上的非答题区域均无效。 4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用 2B 铅笔涂黑。答案 写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。 5、本次考试结束后,不.用.将本试题卷和答题卡一并上交。
又
,于是焦点坐标 F1(
x02 4
y02
1
,故
3 4
x02
3,0), F2 20
( 3,0) ,
,所以
仅2 6
3
x0
26 3
.
11.【答案】A 解析:设 D 在底面 ABC 的垂足为 O,P 的轨迹是以 DO 为轴的圆锥底面圆
上,由最小角定理可知, sin 的取最大值时的角为 90 度时。