合并同类项与移项练习题二
人教版七年级上册数学第3章3.2.1移项合并同类项同步练习d
人教版七年级上册数学第3章 一元一次方程3.2.1移项与合并一、填空题1.解方程中的移项就是“把等式_______某项_______后移到_______.”例如,把方程3x +20=8x 中的3x 移到等号的右边,得_______.在2.解实际问题列方程时用到的一个基本的相等关系是“表示____________的_________ ______相等.”3.目前,合并含相同字母的项的基本法则是ax +bx +cx =_______,它的理论依据是______. 4.解形如ax +b =cx +d 的一元一次方程就是通过_______、_______、_______等步骤使方程向着____的形式转化,从而求出未知数.5.若3x +2a =12和方程3x -4=2的解相同,则a =______.6.已知x ,y 互为相反数,且(x +y +3)(x -y -2)=6,则x =______. 7.列出方程,再求x 的值:(1) x 的25%比它的2倍少7.方程:___________,解得x =_______.(2) x 的3倍与9的和等于x 的31与23的差.方程:________________,解得x =______;8.一元一次方程t t 213=-化为t =a 形式的方程为___________. 二、解答题9.(1) 3x =-12(2)6x =-2(3)-2x =4(4) 214-=x(5) -x =-2 (6) -3x =0(7) 421=-x (8)3232=-x三、选择题10.下列两个方程的解相同的是( ).(A) 方程021=+x 与方程021=+x (B)方程3x =x +1与方程2x =4x -1 (C) 方程5x +3=6与方程2x =4 (D)方程6x -3(5x -2)=5与方程6x -15x =3 11.方程3141=x 正确的解是( ). (A)x =12 (B)121=x (C)34=x(D)43=x12.下列说法中正确的是( ).(A) 1-x =2x -1移项后得1-1=2x +x (B) 3x =5+2可以由3x +2=5移项得到(C)由5x =15得515=x 这种变形也叫移项 (D)1-7x =2-6x 移项后得1-2=7x -6x 二、解答题 13.解下列方程(1)21132-=-x x (2)21323-=-x(3) x +13=5x +37 (4) 3x +14=-714.你能在日历上圈出一个竖列上相邻的3个数,使得它们的和是15吗?说明理由.。
人教版初一数学上册合并同类项与移项.2课后作业
3.2 解一元一次方程(一)基础检测
1.当x=_______时,式子4x+8与3x-10相等.
2.某个体户到农贸市场进一批黄瓜,•卖掉1
3
后还剩48kg,••则该个体户卖掉______kg黄瓜.
3.甲比乙大15岁,5年前甲的年龄是乙的年龄的2倍,乙现在年龄是()
A.30岁 B.20岁 C.15岁 D.10岁
4.若干本书分给某班同学,每人6本则余18本,每人7本则少24本.•设该班有学生x人,或设共有图书y本,分别得方程()
A.6x+18=7x-24与
2418 77 y y
--
=
B.7x-24=6x+18与
2418 76 y y
+-
=
C.
2418
76
y y
+-
=与7x+24=6x+18 D.以上都不对
5.(教材变式题)解下列方程:(用移项,合并法)
(1)0.3x+1.2-2x=1.2-27x
(2)40×10%·x-5=100×20%+12x
6.一架飞机飞行在两个城市之间,风速为24千米/小时,顺风飞行需要2小时50分,逆风飞行需要3小时,求两个城市之间的距离.
7.煤油连桶重8千克,从桶中倒出一半煤油后,连桶重4,5千克,•求煤油和桶各多少千克?。
第4课 解一元一次方程合并同类项移项(移项) (2)
3x 20 4x 25
方程的两边都有含x的项(3x和4x)和不含字母的常
数项(20与-25),怎样才能使它向 x=a(常数) 的形式转化呢?
x – 7 = 5
解1:方程两边都加7,得 x-7+7=5+7 x=5+7 x=12 检验:方程的两边都代入x=12,得 左边=12–7=5, 右边=5,左边=右边 所以x=12是原方程的解.
解法二:设这个班共有同学x人.则 x x 1 1 6 9 得出 x=36
答:这个班共有36人.
• 教材P90、例4
1、已知2x+1与-12x+5的值是相反数, 求x的值. 2、已知:y1 = 2x+1, y2 = 3 -x.当x取 何值时, y1 = y2 ?
阿尔-花拉子米(约780——约850) 中世纪阿拉伯数学家。出生波斯北部城 市花拉子模(现属俄罗斯),曾长期生 活于巴格达,对天文、地理、历法等方 面均有所贡献。它的著作通过后来的拉 丁文译本,对欧洲近代科学的诞生产生 过积极影响。
义务教育课程标准实验教科书 七年级上册
人民教育出版社出版
第三章一元一次方程
——合并同类项与移项(2)
潼南县大佛中学2015级
1.理解移项法,并知道移项法的依据,会用移项法则 解方程.
2.经历运用方程解决实际问题的过程,发展抽象、概
括、分析问题和解决问题的能力,认识用方程解决实际 问题的关键是建立相等关系. 3.鼓励学生自主探索与合作交流,发展思维策略,体 会方程的应用价值.
移项
3x-4x=-25-20
合并同类项
-x=-45
系数化为1
X=45
提问5:以上解方程“移项”的依据是什么?
移项的依据是等式的性质1
数学解方程去括号练习题
数学解方程去括号练习题在学习数学解方程的过程中,我们经常会遇到需要去括号的情况。
括号的存在往往会增加方程的复杂度,因此我们需要通过合适的方法去掉括号,以便更方便地解题。
本文将提供一系列数学解方程去括号练习题,帮助你巩固相关的解题技巧。
练习题1:解方程:2x + 3(x - 4) = 5解题步骤:1. 先将方程中的括号去掉,得到:2x + 3x - 12 = 52. 合并同类项,得到:5x - 12 = 53. 移项,得到:5x = 5 + 124. 简化等式,得到:5x = 175. 解方程,得到:x = 17 ÷ 5练习题2:解方程:2(3x - 5) + 4x = 2(2x - 1) + 6解题步骤:1. 先将方程中的括号去掉,得到:6x - 10 + 4x = 4x - 2 + 62. 合并同类项,得到:10x - 10 = 4x + 43. 移项,得到:10x - 4x = 4 + 104. 简化等式,得到:6x = 145. 解方程,得到:x = 14 ÷ 6练习题3:解方程:3(2x + 1) - 2(x + 4) = 20解题步骤:1. 先将方程中的括号去掉,得到:6x + 3 - 2x - 8 = 202. 合并同类项,得到:4x - 5 = 203. 移项,得到:4x = 20 + 54. 简化等式,得到:4x = 255. 解方程,得到:x = 25 ÷ 4练习题4:解方程:2(x - 3) + 5(x + 2) = 4(2x - 1) + 3解题步骤:1. 先将方程中的括号去掉,得到:2x - 6 + 5x + 10 = 8x - 4 + 32. 合并同类项,得到:7x + 4 = 8x - 13. 移项,得到:7x - 8x = -1 - 44. 简化等式,得到:-x = -55. 解方程,得到:x = -5 ÷ -1练习题5:解方程:4(2x - 3) - 3(4 - 5x) = 2(3x + 4) - 5解题步骤:1. 先将方程中的括号去掉,得到:8x - 12 - 12 + 15x = 6x + 8 - 52. 合并同类项,得到:23x - 24 = 6x + 33. 移项,得到:23x - 6x = 3 + 244. 简化等式,得到:17x = 275. 解方程,得到:x = 27 ÷ 17通过这些练习题,相信你对数学解方程去括号有了更深入的理解。
五年级解方程同号移项变号练习题
五年级解方程同号移项变号练习题解方程同号移项变号是五年级数学中的基础内容,通过解这类练习题,可以帮助学生巩固和理解同号移项变号的思想和方法。
下面是一些五年级解方程同号移项变号练习题,希望能对你的学习有所帮助。
1. 将下列方程中的同类项合并后,解方程:a) 3x + 5x + 2 - 4x = 10b) 4y - 2y + 3y + 9 + 5y = 27解法:a) 合并同类项得:4x + 2 = 10再将2从等式两边移动到一边得:4x = 10 - 2化简得:4x = 8最后除以4得:x = 2b) 合并同类项得:10y + 9 = 27再将9从等式两边移动到一边得:10y = 27 - 9化简得:10y = 18最后除以10得:y = 1.82. 解下列方程:a) 6x + 3 - 4(2x - 1) = 5x + 12b) 7y + 5 - 3(4y - 2) = 2(3y + 1) - 6y解法:a) 将式子进行分配得:6x + 3 - 8x + 4 = 5x + 12合并同类项得:-2x + 7 = 5x + 12将7从等式两边移动到一边得:-2x = 5x + 12 - 7化简得:-2x = 5x + 5将5x从等式两边移动到一边得:-7x = 5最后除以-7得:x = -5/7b) 将式子进行分配得:7y + 5 - 12y + 6 = 6y + 2 - 6y 合并同类项得:-5y + 11 = 2将11从等式两边移动到一边得:-5y = 2 - 11化简得:-5y = -9最后除以-5得:y = 9/53. 根据下列方程,解方程:a) 2(3x + 4) + 5 = 3(2x - 1) - 2b) 4(2y - 1) - (5y + 2) = 3(2y - 4) + 6解法:a) 将式子进行分配得:6x + 8 + 5 = 6x - 3 - 2合并同类项得:6x + 13 = 6x - 5将6x从等式两边移动到一边得:13 = - 5由此可知此方程无解。
解一元一次方程(一)——合并同类项与移项
慧眼识金
判断下列移项是否正确,看谁又快又准 (1)若x-4=8,则x=8-4× x=8+4
(2)若3a=2a+5,则-3a-2a=5
×
3a-2a=5
(3)若5s-2=4s+1,则5s-4s=1+2
√
动手做一做 请你来给下列一元一次方程移项 (1)9-3y=5y+5 (2) 0.5x-0.7=6.5-1.3x (3)3x+5=4x+1 (4)6x-7=4x-5
解一元一次方程(一)—— 合并同类项与移项
第1课时 合并同类项
约公元820年,中亚细亚数学 家阿尔-花拉子米写了一本代 数书,重点论述怎样解方程. 这本书的拉丁文译本取名为 《对消与还原》.“对消”与 “还原”是什么意思呢?
某校三年共购买计算机140台,去 年购买数量是前年的2倍,今年购买的 数量又是去年的2倍.前年这个学校购 买了多少台计算机?
练习1 解下列方程: (1)6x – 7 = 4x – 5 (2)6 – 3x = 7x – 14
例4 把一些图书分给某班学生阅读,如果每 人分3本,则剩余20本;如果每人分4本, 则还缺25本.这个班有多少学生?
解;设这个班有x名学生 分析:
每人分3本,共分出3x本,加上剩余的20本,这批书共 (3x+20)本. 每人分4本,需要4x本,减去缺的25本,这批书共(4x25)本.
3x + 20 = 4x - 25
2. 对于方程– 3x – 7=12x+6,下列移项正确的是 A ()
A. – 3x – 12x=6+7
B. – 3x+12x= – 7+6
合并同类项与移项(2)(完成)
3.2.1解一元一次方程---合并同类项与移项(2)学习目标:1、自主探索、归纳解一元一次方程的一般步骤。
2、正确、熟练地运用解一元一次方程的三个基本步骤解简单的一元一次方程。
学习重点: 应用移项、合并同类项、系数化为1解一元一次方程。
学习难点: 建立方程解决实际问题及用移项解方程。
学习过程:一、自主学习问题2 把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.这个班有多少学生?每人分3本,共分出 本,这批书共有 ;每人分4本,需要 本,减去缺少的25本,就是这批书共 本,这批书是一个定值,因此可得方程: 。
二、探究新知探究:如何将方程 3x +20=4x-25 转化为x=a 的形式,求出方程x +2x +4x=140的解?移项:把等式一边的某项 后移到 ,叫做 。
移项的根据是: 。
解方程 3x +20=4x-25 的一般步骤:解:移项,得 . --------合并同类项, 得 . --------系数化为1,得 =x . -------归纳:解形如ax+b=cx+d 的方程步骤是:① ;② ③ .三、应用新知 例 解下列方程:(1)2385--=-x x ; (2)x x 23273-=+。
(3)x x -=-32; (4)5476-=-x x ;(5)x x 43621=-; (6) x x x 3212-=-;(7) x x x 58.42.13-=--四、相关练习: 1、方程12422412+=-+=-k k k k 变形为,这种变形称为______,变形要注意________。
移项变形的依据是________________。
2、(1)方程1253+=-x x ,移项,得_________=1+5 (2)方程4.15.07.01-=-y y ,移项,得=--y y 5.07.0_________。
3、下列四组变形属于移项变形的是 ( ) A. 由122342=-=-x x 得 B. 由2332==x x 得 C. 由124124-=--=x x x x 得 D. 由3233)2(3=+-=--y y y y 得 4、把方程x x 3735-=+进行移项,正确的是 ( ) A. 3735-=-x x B. 3735-=+x xC. 7335-=-x xD. 7335-=+x x 5、方程x x -=-22的解是 ( ) A. x=1 B. x=-1 C. x=2 D. x=0 A 层:用移项的方法解一元一次方程 6、解方程x x 23421=-,移项,得__________;合并同类项,得________; 系数化为1,得_________。
人教版七年级数学上册第三章解一元一次方程——合并同类项与移项复习题(含答案) (145)
人教版七年级数学上册第三章解一元一次方程——合并同类项与移项复习题(含答案)按规律排列的一列数:2,-4,8,-16,32,-64,…,其中某四个相邻数的和是-640,这四个数中最大数与最小数的差是多少?【答案】设相邻四个数中的第1个数为x,则后三个数依次为−2x,4x,−8x.由题意得:x−2x+4x−8x=−640,解得:x=128.则−2x=−256,4x=512,−8x=−1024.∴512−(−1024)=1536.即这四个数中最大数与最小数的差是1536.【解析】分析:设相邻四个数中的第1个数为x,则后三个数依次为−2x,4x,−8x.依题意可列方程:x−2x+4x−8x=−640,解此方程,可求出这四个数,再求解.详解:设相邻四个数中的第1个数为x,则后三个数依次为−2x,4x,−8x.由题意得:x−2x+4x−8x=−640,解得:x=128.则−2x=−256,4x =512,−8x =−1024.∴512−(−1024)=1536.即这四个数中最大数与最小数的差是1536.点睛:考查一元一次方程的应用,观察所给数列,发现它们之间的关系是解题的关键.42.解方程:16 3.5 6.57x x x --=【答案】x=76【解析】【分析】先合并同类项,再系数化为1.【详解】16x -3.5x -6.5x=7.解:合并同类项,得6x=7,系数化为1,得x=76【点睛】掌握一元一次方程的一般解法.43.2008年10月24日我国“嫦娥一号”发射成功,中国人实现千年的飞天梦想,卫星在绕地球飞行过程中进行了三次变轨,如图.已知第一次变轨后的飞行周期比第二次变轨后飞行周期少8小时,•而第三次飞行周期又比第二次飞行周期扩大1倍.已知三次飞行周期和为88小时,求第一、二、•三次轨道飞行的周期各是多少小时?【答案】轨道一周期为16小时,轨道二周期为24小时,轨道三周期为48小时【解析】本题主要考查一元一次方程的应用.根据题意可知本题利用“三次飞行周期和为88小时”作为相等关系,设第二周期为x小时,分别把其他2个周期用x 表示出来,列方程可求解.解:设轨道=周期为xh,则得方程x-8+x+2x=88解得x=24所以轨道一周期为16小时,轨道二周期为24小时,轨道三周期为48小时44.解方程(1)x+3x=-12(2)3x+7=32-2x【答案】(1)x=-3;(2)x=5【解析】【分析】(1)先合并同类项,然后方程两边同除未知数的系数解出方程的根;(2)先移项合并同类项,然后方程两边同除未知数的系数解出方程的根.解:(1)移项4x=-12系数化为1x=-3(2)3x+2x=32-75x=25x=5【点睛】掌握解一元一次方程的一般步骤.45.如图,这是一个数据转换器的示意图,三个滚珠可以在槽内左右滚动.输入x 的值,当滚珠发生撞击,就输出相撞滚珠上的代数式所表示数的和y .已知当三个滚珠同时相撞时,不论输入x 的值为多大,输出y 的值总不变.(1)求a 的值;(2)若输入一个整数x ,某些滚珠相撞,输出y 值恰好为1-,求x 的值.【答案】(1)2a =-;(2)2x =.【解析】【分析】(1)由题意得到三个代数式的和值与x 无关得到答案,(2)分类讨论:前两个滚珠相撞,后两个滚珠相撞,列出方程求解并检验得到答案.(1)(21)3213(2)2x ax x ax a x -++=-++=++当三个滚珠同时相撞时,不论输入x 的值为多大,输出y 的值不变, 20a ∴+=得2a =-(2)当21322y x x =-+=+时,令1y =-,则122x -=+,得 1.5x =-(舍去),当3(2)23y x x =+-=-+时,令1y =-,则123x -=-+,得2x =.【点睛】本题考查代数式的值与字母的取值无关,考查解一元一次方程方程,根据题意列出方程是解题关键.46.解方程(本题8分)532x x -=【答案】1x =5x -2x =33x =3X =1【解析】5x -2x =33x =3X =147.解方程:2﹣2(x ﹣1)=3x+4.【答案】x=0【解析】试题分析:方程去括号,移项合并,把x系数化为1,即可求出解.试题解析:去括号得:2﹣2x+2=3x+4,移项合并得:5x=0,解得:x=0.考点:解一元一次方程.48.数学课上,高老师和同学们做一个游戏:他在三张硬纸片上分别写出一个代数式,背面分别标上序号①、②、③,摆成如图所示的一个等式.然后翻开纸片②是4x2+5x+6,翻开纸片③是-3x2-x-2.解答下列问题:(1)求纸片①上的代数式;(2)若x是方程2x=-x-9的解,求纸片①上代数式的值.【答案】(1)244++;(2)1.x x【解析】【分析】(1)由①=②+③即可求解;(2)由方程2x=-x-9求出x值,再代入纸片①上的代数式求值即可.【详解】解:(1)222-+①②③++,=+=+--=+x x x x x x456(32)44所以纸片①上的代数式为244++;x xx=-,(2)解2x=-x-9得3将3x =-代入244x x ++得2(3)4(3)491241-+⨯-+=-+=,所以纸片①上代数式的值为1.【点睛】本题考查了整式的加减运算及代入求值,同时涉及了解一元一次方程,灵活掌握整式的加减运算是解题的关键.49.(12分)规定一种新运算a ⊙b=a 2 -2b.(1)求(-1)⊙2的值;(2)若2⊙)(x -=6,求x 的值。
七年级数学上册解一元一次方程合并同类项与移项练习题
七年级数学上册解一元一次方程合并同类项与移项练习题(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、填空题1.若关于x 的方程()22x m x +=-的解满足方程112x -=,则m 的值是________. 2.已知21x y =⎧⎨=-⎩是方程7mx y +=的解,则m =______. 3.若3x =是关于x 的方程3250x m --=的解,则m 的值为_________.4.求代数式的值的步骤:_______和计算.5.已知x =1是关于x 的方程6-(m -x )=5x 的解,则代数式m 2-6m +2=___________.6.有一个两位数,其数字之和是8,个位上的数字与十位上的数字互换后所得新数比原数小36,求原数.分析:设个位上和十位上的数字分别为x 、y ,则原数表示为________,新数表示为________;题目中的相等关系是:①________;①_______,故列方程组为_______.二、单选题7.方程185x =-的解为( )A .13-B .13C .23D .23-8.如果方程24=x 与方程310x k +=的解相同,则k 的值为( )A .2B .-2C .4D .-49.在物理学中,导体中的电流①跟导体两端的电压U ,导体的电阻R 之间有以下关系:U I R =去分母得IR U =,那么其变形的依据是( )A .等式的性质1B .等式的性质2C .分式的基本性质D .不等式的性质210.下列解方程变形:①由3x +4=4x -5,得3x +4x =4-5;①由1132x x +-=,去分母得2x -3x +3=6;①由()()221331x x ---=,去括号得4x -2-3x +9=1;①由344x =,得x =3.其中正确的有( ) A .0个 B .1个 C .2个 D .3个11.下列说法中,正确的是( )A .2与2-互为倒数B .2与12互为相反数C .0的相反数是0D .2的绝对值是2-12.已知点P 的坐标为(2,36)a a +-,且P 到两坐标轴的距离相等,则点P 的坐标为( )A .(3,3)B .(3,3)-C .(6,6)D .(6,6)或(3,3)-三、解答题13.已知关于x 的方程372x x a -=+的解与方程427x x +=-的解相同,试求a 的值.14.已知:a 、b 互为相反数,c 、d 互为倒数,m 的倒数等于它本身,则()||cd a b m m m++-的结果是多少? 15.如图是某小区的一块长为b 米、宽为2a 米的长方形草地,现在在该长方形的四个顶点处分别修建一个半径为a 米的扇形花台.(1)求修建后剩余草坪(阴影部分)的面积:(用含a ,b 的式子表示)(2)当a =10,b =40时,草坪的面积是多少平方米?(π取3.14)参考答案:1.14或134 【分析】根据112x -=解出x 的值,代入()22x m x +=-,即可求解 【详解】解112x -=,得 112x -=±, 112x ∴=±+, 32x ∴= 或12x =-, 代入()22x m x +=-,得22x m x +=+, 134m ∴= 或14, 故答案为14或134. 【点睛】本题考查解绝对值方程与根据解的情况求解参数,属于基础题.2.4【分析】把21x y =⎧⎨=-⎩代入方程7mx y +=,求解即可. 【详解】解:把21x y =⎧⎨=-⎩代入方程7mx y +=,得 2m -1=7,解得:m =4,故答案为:4.【点睛】本题考查方程的解,解一元一次方程,熟练掌握方程的解的定义:能使方程左右两边相等的未知数值叫方程的解是解题的关键.3.2【分析】将x =3代入方程计算即可求出m 的值.【详解】解:将x =3代入方程得:9-2m -5=0,解得m =2.故答案为:2.【点睛】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.4.代数【解析】略5.-6【分析】根据一元一次方程的解的定义可知m 的值,然后代入求值即可.【详解】解:把x =1代入6-(m -x )=5x ,得6-(m -1)=5×1.解得m =2.所以m 2-6m +2=22-6×2+2=-6.故答案为:-6.【点睛】本题主要考查了方程的解、代数式求值.解答关键是理解方程的解的定义:就是能够使方程左右两边相等的未知数的值.6. 10y x + 10x y + 8x y += ()()101036x y x y +-+= 8(10)(10)36x y x y x y +=⎧⎨+-+=⎩【分析】设个位上和十位上的数字分别为x ,y ,则可分别表示原数和新数,再找出两个等量关系,列方程组;【详解】依题意,原数表示为10y x +,新数表示为10x y +,两个等量关系为:①个位上的数字+十位上的数字=8;①新数+36=原数;列方程组为8103610x y x y y x ⎧+=⎨++=+⎩; 故答案为:10y x +;10x y +;8x y +=;()()101036x y x y +-+=;8(10)(10)36x y x y x y +=⎧⎨+-+=⎩. 【点睛】本题主要考查了由实际问题抽象出二元一次方程组,准确计算是解题的关键.7.A【分析】先移项,再合并同类项,即可求解.【详解】解:185x =-,移项得:518x =-,解得:13x =-.故选:A【点睛】本题主要考查了解一元一次方程,熟练掌握解一元一次方程的基本步骤是解题的关键. 8.C【分析】首先求出方程24=x 的解,然后代入方程310x k +=即可求出k 的值.【详解】解:①2x =4,①x =2,①方程2x =4与方程3x +k =-2的解相同,①将x =2代入方程310x k +=得:3×2+k =10,解得,k =4,故选:C .【点睛】此题考查了一元一次方程的解的含义,已知方程的解求参数问题,解题的关键是熟练掌握解得含义并根据题意求出方程24=x 的解.9.B【分析】根据等式的性质2可得答案. 【详解】解:U I R =去分母得IR U =,其变形的依据是等式的性质2, 故选:B .【点睛】本题考查了等式的性质2:等式的两边同时乘以或除以同一个不为零的数,等式仍然成立. 10.B【分析】根据解一元一次方程的步骤进行逐一求解判断即可.【详解】解:①由3x +4=4x -5,得3x -4x =-5-4;方程变形错误,不符合题意;①由1132x x +-=,去分母得2x -3x -3=6;方程变形错误,不符合题意; ①由()()221331x x ---=,去括号得4x -2-3x +9=1;正确,符合题意;①由344x =,得x =163.方程变形错误,不符合题意; 综上,正确的是①,只1个,故选:B .【点睛】本题主要考查了解一元一次方程,解题的关键在于能够熟练掌握解一元一次方程的方法. 11.C【分析】根据相反数定义,倒数定义,绝对值定义对各选项进行一一判断即可.【详解】解:A. 2与2-互为相反数,故选项A 不正确B. 2与12互为倒数,故选项B 不正确;C. 0的相反数是0,故选项C 正确;D. 2的绝对值是2,故选项D 不正确.故选C .【点睛】本题考查相反数定义,倒数定义,绝对值定义,掌握相关定义是解题关键.12.D【分析】由点P 到两坐标轴的距离相等,建立绝对值方程236a a +=-,再解方程即可得到答案. 【详解】解: 点P 到两坐标轴的距离相等,236a a ∴+=-,236a a ∴+=-或2360a a ++-=,当236a a +=-时,解得:4a =,()6,6P ∴;当2360a a ++-=时,解得:1a =,()3,3P ∴-;综上分析可知,P 的坐标为:()6,6P 或()3,3P -,故D 正确.故选:D .【点睛】本题考查的是平面直角坐标系内点的坐标特点,点到坐标轴的距离与坐标的关系,一元一次方程的解法,掌握以上知识是解题的关键.13.-6【分析】先解方程4x +2=7-x ,然后将解代入方程3x -7=2x +a 中,求出a 的值.【详解】解:解方程427x x +=-,得:1x =,方程372x x a -=+的解与方程427x x +=-的解相同,把1x =代入372x x a -=+,得:372a -=+,解得6a =-.a ∴的值为6-.【点睛】本题考查了方程的解,需要抓住“方程的解就是使方程成立的未知数的值”这个定义进行“求解——代入——求解”的过程,从而得到a 的值.14.0或-2【分析】由互为相反数两数之和为0得到a +b =0,由互为倒数两数之积为1得到cd =1,再根据倒数等于本身的数为-1和1得到m =1或m =-1,代入所求式子中计算即可求出值.【详解】解:由题意得a +b =0,cd =1,m =1或m =-1.当m =1时,原式101|1|01=+⨯-=; 当m =-1时,原式10(1)|1|21=+⨯---=--; 综上:()||cd a b m m m++-的结果是0或-2. 【点睛】此题考查了代数式求值,有理数的混合运算,相反数,以及倒数,熟练掌握相反数及倒数的定义是解本题的关键.15.(1)2ab ﹣πa 2平方米(2)486平方米【分析】(1)由图可知,四个扇形的面积等于一个圆的面积,用矩形的面积减去一个圆的面积即可, (2)将a 和b 的值代入(1)中的式子进行计算即可.(1)修建后剩余草坪的面积为22ab a π-(平方米).(2)当a =10,b =40时,22ab a π-≈221040 3.1410⨯⨯-⨯=800﹣314=486(平方米).【点睛】本题主要考查了用字母表示数,熟练掌握各个图形的面积公式是解题的关键.。
3.2合并同类项移项(移项)
你运用了什么方法步骤?依 据是什么?
请问 3x+7=32-2x 是方程吗?为什么? 是一元一次方程吗?为什么? 你能否直接通过合并同类项 求出它的解呢?
——合并同类项与移项
1.什么是移项? 把等式一边的某项变号后移到 另一 边,叫做移项。 2.移项要注意什么? 移项要变号
小结: 什么是移项? 移项要注意什么?
移项的目的是什么? 解 ax b cx d 型方程的步骤是什么? 用方程来解决实际问题的步骤是什么?
作业:课本第93页第3,6,7题 (应用题不用抄题) 完成同步辅导与训练相关内容
3.移项的目的是什么?
通过移项,可以化简方程,使含 未知数的项与常数项分别列于方程左 右两边,使方程更接近x=a的形式。
例1
3 x 3 x 1 2
例2 把一些图书分给某班同学阅 读, 如果每人3本则剩余20本, 若每人4本,则还缺少25本,这个 班的学生有多少人?
例3 某制药厂制造一批药品,如 用旧工艺,则废水排量要比环保 限制的最大量还多200t;如用新 工艺,则废水排量比环保限制的 最大量少100t。新、旧工艺的废 水排量之比为2:5,两种工艺的废 水排量各是多少? 解:设新工艺废水排量 解:设新工艺废水排量2xx 吨 吨 则旧工艺废水排量 则旧工艺废水排量 5x 2.5x 吨 吨
人教版七年级数学上册第三章解一元一次方程——合并同类项与移项复习题(含答案) (39)
人教版七年级数学上册第三章解一元一次方程——合并同类项与移项复习题(含答案)先看例子,再解类似的题目.例:解方程:||14x -=.解法一:当0x 时,原方程化为14x -=.解方程,得5x =.当0x <时,原方程化为14x --=.解方程,得5x =-.所以原方程的解是5x =或5x =-.解法二:移项,得||41x =+.合并同类项,得||5x =.由绝对值的意义,得5x =或5x =-.所以原方程的解是5x =或5x =-.问题:用你发现的规律解方程:2||35x -=.【答案】4x =或4x =-【解析】【分析】解法一:讨论x ≥0与x <0时,两种情况即可求出解;解法二:方程变形后,利用绝对值的代数意义化简,即可求出解.【详解】解法一:当x ⩾0时,原方程化为2x −3=5,解得:x=4;当x<0时,原方程化为−2x −3=5,解得:x=-4;解法二:方程变形为2|x|=8,即|x|=4,解得:x=±4.则方程的解为4或−4.【点睛】本题考查解含绝对值符号的一元一次方程,熟练掌握计算法则是解题关键82.已知5x =是关于x 的方程820kx k -=+的解,求k 的值.【答案】7【解析】【分析】把5x =代入方程,可得5820k k -=+,解得方差即可得出k 的值【详解】将5x =代入820kx k -=+,得5820k k -=+4k=28k=7【点睛】本题考查解一元一次方程,熟练掌握计算法则是解题关键.83.解下列方程:(1)21x x -+=-;(2)5326x x -=+.【答案】(1)32x =(2)3x = 【解析】【分析】(1) 先移项,再合并同类项,把x 的系数化为1即可;(2) 先移项,再合并同类项,把x 的系数化为1即可;【详解】(1) 原式=-21x x -=--,-23x =-,32x =(2) 原式=5263x x -=+,3x=9,x=3【点睛】本题考查解一元一次方程-移项,熟练掌握计算法则是解题关键.84.下面是两位同学的作业.请你用曲线把出错误的步骤画出来,并把正确的写在右边.(1)解方程: 215x x -=-+.解:215x x -=+,6x =.(2)解方程:715y y =+. 解: 71y y =+,71y y -=,61y =,16y =. 【答案】(1)见解析;(2)见解析.【解析】【分析】根据解一元一次方程的步骤:移项,合并同类项,系数化为1,进行解方程即可求解.【详解】解:⑴215x x -=+ 改正:215x x +=+ 2x =(2) 71y y =+ 改正:755y y =+ 52y =【点睛】本题主要考查解一元一次方程的步骤,解决本题的关键是要熟练掌握解一元一次方程的步骤.85.已知12x =是关于x 的方程1382m x x +=+的解,求关于x 的方程223m x m x +=-的解.【答案】答案见解析【解析】【分析】 先将12x =代入1382m x x +=+得到m=-1。
专题3.2 解一元一次方程(一)——合并同类项与移项
1.解一元一次方程(1)一般步骤:去分母、去括号、移项、合并同类项、___________,这是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向___________形式转化.(2)在解类似于“ax+bx=c”的方程时,将方程左边,按合并同类项的方法并为一项即___________.使方程逐渐转化为ax=b的最简形式,体现化归思想.2.移项:把等式一边的某项___________后移到另一边,叫做移项.3.合并同类项:把方程中含有的同类项合并,使方程变得简单,更接近于“x=a”的形式,合并时要牢记合并同类项的法则:同类项的系数___________,字母及字母的指数___________.(1)合并同类项的实质是系数的合并,字母及其指数都不变.(2)含不同未知数的项不能合并.(3)系数是负数时,合并时注意不能丢了负号.4.实际问题列方程的基本步骤:(1)设未知数;(2)找相等关系;(3)列方程.K知识参考答案:1.(1)系数化为1,x=a(2)(a+b)x=c 2.变号3.相加,不变K—重点(1)解一元一次方程——系数化为1;(2)解一元一次方程——合并同类项;(3)解一元一次方程——移项;(4)列方程解决实际问题.K—难点列方程解决实际问题.K —易错移项时要变号.一、解一元一次方程——合并同类项与移项1.解一元一次方程——合并同类项解方程中的合并同类项与整式加减中的合并同类项一样,要牢记合并同类项法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母连同它的指数不变. 2.解一元一次方程——移项移项必须是由等号的一边移到另一边,而不是在等号的同一边交换位置.方程中的项包括它前面的符号,移项时,一般都习惯把含未知数的项移到等号左边,把常数项移到等号右边. 3.解一元一次方程——系数化为1 将形如ax =b (a ≠0)的方程化为x =a b 的形式,也就是求出方程的解x =ab的过程,叫做系数化为1. 系数化为1的依据是等式的性质2,方程左右两边同时乘未知数系数的倒数. 【例1】方程2x –3=5解是 A .x =4 B .x =5C .x =3D .x =6【答案】A【解析】方程移项合并得:2x =8,解得x =4,故选A . 【名师点睛】1.合并同类项的实质是系数的合并,字母及指数都不变;2.系数合并时要连同前面的“±”号,如–3x +2x =5应变成(–3+2)x =5,即–x =5; 3.系数合并的实质是有理数的加法运算;4.移项时,所移的项一定要变号,而且必须是从方程的一边移到方程的另一边.二、列一元一次方程解决实际问题1.列一元一次方程解决实际问题的一般步骤:审题→找相等关系→设未知数→列方程→解方程→检验→写出答案 2.常见的两种基本相等关系 (1)总量=各部分量的和;(2)表示同一个量的两个不同的式子相等.【例2】《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有女子善织,日自倍,五日织五尺.问日织几何?译文:一位善于织布的妇女,每天织的布都是前一天的2倍,她5天共织了5尺布,问在这5天里她每天各织布多少尺?设她笫一天织布为x 尺,以下列出的方程正确的是 A .x +2x =5B .x +2x +4x +6x +8x =5C .x +2x +4x +8x +16x =5D .x +2x +4x +16x +32x =5【答案】C【解析】设她笫一天织布为x 尺,可得x +2x +4x +8x +16x =5,故选C . 【名师点睛】1.列一元一次方程解决实际问题的关键是审题,寻找相等关系;2.求出方程的解后要检验(检验的过程在草稿纸上进行),既要检验所求出的解是不是方程的解,又要检验所求出的解是否符合实际意义.1.方程315x -=的解是 A .x =3B .x =4C .x =2D .x =62.方程x –3=–6的解是 A .x =2B .x =–2C .x =3D .x =–33.方程231x -=的解是 A .0x =1B 2x =.C 1x =.D 2x =.4.如果2005200.520.05x -=-,那么x 等于 A .1814.55 B .1824.55 C .1774.45D .1784.455.下列通过移项变形,错误的是 A .由x +2=2x –7,得x –2x =–7–2B .由x +3=2–4x ,得x +4x =2–3C .由2x –3+x =2x –4,得2x –x –2x =–4+3D .由1–2x =3,得2x =1–36.若关于x 的方程ax –4=a 的解是x =3,则a 的值是 A .–2B .2C .–1D .17.已知关于x 的方程2x –3m –12=0的解是x =3,则m 的值为 A .–2B .2C .–6D .68.若a +3=0,则a 的值是 A .–3B .13-C .13 D .39.若代数式5x –7与4x +9的值相同,则x 的值为 A .2B .16C .2916D 9.10.若代数式x –7与–2x +2的值互为相反数,则x 的值为A .3B .–3C .5D .–511.方程2x –2=4的解是A .x =2B .x =3C .x =4D .x =512.方程2x –1=3的解是A .x =1B .x =2C .x =4D .x =813.方程x –1=2018的解为A .x = 2017B .x = 2019C .x =–2017D .x =–201914.方程2–5x =9的解是A .x =–57B .x =115C .x =57D .x =–7515.方程2x +1=3的解是A .x =−1B .x =1C .x =2D .x =−216.如果□×(–3)=1,则“□”内应填的实数是A .13B .3C .–3D .13-17.下列变形属于移项的是A .由540x -=,得450x -+=B .由21x =-,得12x =- C .由430x +=,得403x =-D .由554x x -=,得154x = 18.方程3x =15–2x 的解是A .x =3B .x =4C .x =5D .x =619.方程22x x -=-的解是A .1x =B .1x =-C .x =2D .0x =20.若代数式x –3的值为2,则x 等于A .1B .–1C .5D .–521.方程226x -+=的解为__________. 22.方程250x -=的解为__________.23.如果x =2是关于x 的方程x –a =3的解,则a =__________. 24.方程35x =-的解是___________.25.若(a –1)x |a |+3=–6是关于x 的一元一次方程,则a =___________;x =___________. 26.若关于x 的方程3x +4=0与方程3x +4k =18是同解方程,则k =___________. 27.将x =–32y –1代入4x –9y =8,可得到一元一次方程_______. 28.解方程:(1)–2x =6;(2)x –11=7;(3)x +13=5x +37;(4)3x –x =–13+1.29.有人问小明的生日是几号,小明说:“在日历表上,我的生日连同上、下、左、右5个日期之和是21.”小明撒谎了吗?为什么?30.已知A =2x 2+3xy –2x –1,B =–x 2+xy –1.若3A +6B 的值与x 的值无关,求y 的值.31.代数式2a -与12a -的值相等,则a 等于A .0B .1C .2D .332.若方程213x +=和203a x--=的解相同,则a 的值为 A .7B .5C .3D .033.关于x 的方程253x a +=的解与方程220x +=的解相同,则a 的值是A .1B .4C .15D .1-34.方程122x -=的解是 A .14x =-B .4x =-C .14x =D .4x =35.马强在计算“41+x ”时,误将“+”看成“–”,结果得12,则41+x 的值应为A .29B .53C .67D .7036.方程|x –3|=6的解是A .9B .±9C .3D .9或–337.对任意四个有理数a ,b ,c ,d 定义新运算:a b ad bc c d =-,已知24181x x -=,则x = A .–1B .2C .3D .438.a ※b 是新规定的这样一种运算法则:a ※b =a +2b ,例如3※(–2)=3+2×(–2)=–1.若(–2)※x =2+x ,则x 的值是 A .1B .5C .4D .239.某中学七年级学生参加一次公益活动,其中10%的同学去做保护环境的宣传,55%的同学去植树,剩下的70名同学去清扫公园内的垃圾,七年级共有多少名同学参加这次公益活动? 40.若新规定这样一种运算法则:a *b =a 2+2ab ,例如3*(–2)=32+2×3×(–2)=–3.(1)试求(–1)*2的值; (2)若3*x =2,求x 的值;(3)(–2)*(1+x )=–x +6,求x 的值.41.(2018·恩施)一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店 A . 不盈不亏 B . 盈利20元C . 亏损10元D . 亏损30元42.(2018·武汉)将正整数1至2018按一定规律排列如下表:平移表中带阴影的方框,方框中三个数的和可能是 A . 2019B . 2018C . 2016D . 20133.【答案】D【解析】移项得:2x =3+1, 合并得:2x =4, 系数化为1得:x =2. 故选D . 4.【答案】B【解析】移项可得:20.05200.52005x -=-+-,合并同类项可得:1824.55x -=-, 系数化为1可得:1824.55x =. 故选B . 5.【答案】C6.【答案】B【解析】把x =3代入方程得:3a –4=a ,解得:a =2,故选B . 7.【答案】A【解析】把x =3代入2x –3m –12=0得6–3m –12=0,所以m =–2.故选A . 8.【答案】A【解析】a +3=0,移项得,a =–3.故选A . 9.【答案】B【解析】根据题意得:5x −7=4x +9,移项得:5x –4x =9+7, 合并同类项得:x =16,故选B . 10.【答案】D【解析】根据题意得:x –7−2x +2=0, 移项合并得:–x =5, 解得:x =−5, 故选D . 11.【答案】B【解析】方程移项得:2x =4+2, 合并得:2x =6, 解得:x =3, 故选B . 12.【答案】B【解析】移项得:2x=3+1,合并同类项得:2x=4,把x的系数化为1得:x=2.故选B.16.【答案】D【解析】设“□”内应填的实数是x,则–3x=1,解得,x=13 ,故选D.17.【答案】C【解析】选项A只是将方程左边的式子进行变形,并没有进行移项;选项B属于将方程的未知数系数化为1;选项C进行了移项;选项D为方程的左边进行合并同类项.故选C.18.【答案】A【解析】方程移项合并得:5x=15,解得:x =3. 故选A . 19.【答案】C【解析】移项得:x +x =2+2,合并同类项得:2x =4,解得:x =2.故选C .解得:1a =-, 故答案为:1-. 24.【答案】x =8【解析】移项可得:53x -=--, 合并同类项可得:8x -=-, 系数化为1可得:8x =. 故答案为: x =8.25.【答案】(1)–1;(2)92. 【解析】∵方程(a –1)x |a |+3=–6是关于x 的一元一次方程, 所以10 a -≠,1a =,解得1a =-, 所以原方程为:236x -+=-,解得:92x =. 故答案为:(1)–1;(2)92.26.【答案】11 227.【答案】5y+4=0【解析】将312x y=--代入498x y-=,得341982y y⎛⎫---=⎪⎝⎭,整理得:540y+=.故答案为:540y+=. 28.【解析】(1)–2x=6,x=–3;(2)x–11=7,x=7+11,x=18;(3)x+13=5x+37,x–5x=37–13,–4x=24,x=–6;(4)3x–x=–13+1,2x=23,x=13.29.【解析】小明撒谎了.理由如下.30.【解析】∵A =2x 2+3xy –2x –1,B =–x 2+xy –1,所以3A +6B =15xy –6x –9=(15y –6)x –9,要使3A +6B 的值与x 的值无关,则15y –6=0, 解得:y =25. 31.【答案】B【解析】根据题意得:a −2=1−2a ,移项合并得:3a =3,解得:a =1.故选B .32.【答案】A【解析】解第一个方程得:x =1,解第二个方程得:x =a −6,所以a −6=1,解得:a =7.故选A .33.【答案】A【解析】解方程220x +=,得1x =-,把1x =-代入253x a +=得253a -+=,解得 1.a =故选A .34.【答案】A 【解析】122x -=,14x =-.故选A . 35.【答案】D【解析】由题意可得:4112x -=,解得:29x =, 所以41412970x +=+=.故选D .36.【答案】D 【解析】∵36x -=,所以36x -=或36x -=-,解得:9x =或3x =-.故选D .37.【答案】C【解析】∵a b ad bc c d=-,所以2x +4x =18,即:x =3,故选C .40.【解析】(1)根据题中的新定义得:原式=1–4=–3;(2)已知等式利用题中的新定义化简得:9+6x =2, 解得:x =–76; (3)已知等式利用题中的新定义化简得:4–4–4x =–x +6, 移项合并得:3x =–6,解得:x =–2.41.【答案】C【解析】设两件衣服的进价分别为x 、y 元,根据题意得:120–x =20%x ,y –120=20%y ,解得:x =100,y =150,所以120+120–100–150=–10(元).故选:C .42.【答案】D。
七年级上册数学同步练习题库:解一元一次方程(一)——合并同类项与移项(简答题:一般)
解一元一次方程(一)——合并同类项与移项(简答题:一般)1、用“☆”定义一种新运算:对于任意有理数a和b,规定a☆b=ab2+2ab+a.如:1☆3=1×32+2×1×3+1=16.(1)求(﹣2)☆3的值;(2)若(☆3)☆(﹣)=8,求a的值;(3)若2☆x=m,(x)☆3=n(其中x为有理数),试比较m,n的大小.2、已知A=2x2+3xy-2x-1,B=-x2+xy-1.若3A+6B的值与x的值无关,求y的值.3、(2015秋•鞍山期末)已知|a﹣3|+(b+1)2=0,代数式的值比的值多1,求m的值.4、已知x=﹣1是关于x的方程8x3﹣4x2+kx+9=0的一个解,求3k2﹣15k﹣95的值.5、若关于的方程的解是,求的值.6、马小哈在解一元一次方程“☉x-3=2x+9”时,一不小心将墨水泼在作业本上了,其中有一个未知数x的系数看不清了,他便问邻桌,邻桌不愿意告诉他,并用手遮住解题过程,但邻桌的最后一步“所以原方程的解为x=-2”(邻桌的答案是正确的)露在手外被马小哈看到了,马小哈由此就知道了被墨水遮住的系数,请你帮马小哈算一算,被墨水遮住的系数是多少?7、如果方程5(x-3)=4x-10的解与方程4x-(3a+1)=6x+2a-1的解互为相反数,求a的值.(1);(2);(3);(4).9、解方程:(1);(2)+1=3-x.10、解方程或解比例.① 5+0.7x =103 ② X ∶= 2 ∶11、已知关于 x 的方程和有相同的解,求 a 的值.12、某中学七年级学生参加一次公益活动,其中10%的同学去做保护环境的宣传,55%的同学去植树,剩下的70名同学去清扫公园内的垃圾,七年级共有多少名同学参加这次公益活动?13、解下列方程:(1)0.25y-0.75y=8+3;(2);(3);(4).(1)7x+6x=39;(2)-2x-4x+5x=7;(3);(4).15、方程2﹣3(x+1)=0的解与关于x的方程的解互为倒数,求k的值.16、方程2-3(x+1)=0的解与关于x的方程-3k-2=2x的解互为倒数,求k的值.17、求未知数①-=10 ②:4 =0.25 ③3∶2.5=2∶18、求未知数①-=10 ②:4 =0.25 ③3∶2.5=2∶19、小明同学在计算60-a时,错把“-”看成是“+”,结果得到-20,那么60-a的正确结果应该是多少?20、求未知数①-=10 ②:4 =0.25 ③3∶2.5=2∶21、若新规定这样一种运算法则:a*b=a2+2ab,例如3*(-2)=32+2×3×(-2)=-3 (1)试求(-1)*2的值;(2)若3*x=2 , 求x的值;(3)(-2)*(1+x)=-x+6,求x的值.22、化简:(1)( x2-7x-2)-(-2x2+4x-1) (2)8x=4x+1(解方程)23、若新规定这样一种运算法则:a※b=a2+2ab,例如3※(﹣2)=32+2×3×(﹣2)=﹣3.(1)试求(﹣2)※3的值;(2)若(﹣5)※x=﹣2﹣x,求x的值.24、“*”是新规定的这样一种运算法则:a*b=a2+2ab.比如3*(﹣2)=32+2×3×(﹣2)=﹣3(1)试求2*(﹣1)的值;(2)若2*x=2,求x的值;(3)若(﹣2)*(1*x)=x+9,求x的值.25、如图,已知∠AOC:∠BOC=1:4,OD平分∠AOB,且∠COD=36°,求∠AOB的度数.26、解下列方程或方程组:(1)(2)(3)(4)27、求当m为何值时,关于x的方程的解比的解多2?28、关于x的方程:3x+m=2的解也是方程:x- (1-x) =1的解,求m的值.29、解方程:⑴(2)(3).(4)(5)30、解下方程(组)。
人教版七年级数学上册第三章解一元一次方程——合并同类项与移项复习题(含答案) (115)
人教版七年级数学上册第三章解一元一次方程——合并同类项与移项复习题(含答案) 阅读下面的解题过程:解方程:52x =.解:(1)当50x ≥时,原方程可化为一元一次方程52x =,解得25x =; (2)当50x <时,原方程可化为一元一次方程52x -=,解得25x =-. 请同学们仿照上面例题的解法,解方程:(1)21x -=(2)31210x --=.【答案】(1)x=1和x=3;(2)x=5和x=-3.【解析】试题分析:(1)分别根据x -2≥0和x -2<0两种情况将绝对值去掉,转化成一元一次方程,从而分别求出方程的解;(2)分别根据x -1≥0和x -1<0两种情况将绝对值去掉,转化成一元一次方程,从而分别求出方程的解.试题解析:(1)①当x -2≥0时,原方程可化为一元一次方程x -2=1 解得:x=3②当x -2<0时,原方程可化为一元一次方2-x=1解得:x=1综上所述,原方程的解为:x=1和x=3(2)①当x -1≥0时,原方程可化为3(x -1)-2=10解得:x=5②当x -1<0时,原方程可化为3(1-x )-2=10解得:x=-3综上所述,原方程的解为:x=5和x=-3考点:(1)解一元一次方程;(2)分类讨论思想42.解方程:(本题每小题5分,共20分)(1)15435+=-x x(2)()432x x -=-(3)32213+-=-x x (4)3714153x x --=- 【答案】(1)x=18;(2)x=1;(3)x=1;(4)x=19【解析】试题分析:(1)首先进行移项合并同类项,从而得出方程的解;(2)首先根据去括号的法则进行去括号,然后进行移项合并同类项,从而得出方程的解;(3)首先进行移项合并同类项,从而得出方程的解;(4)首先根据等式的性质进行去分母,然后根据去括号的法则进行去括号,进行移项合并同类项,从而得出方程的解.试题解析:(1)移项得:5x -4x=15+3 解得:x=18、去括号得:4-x=6-3x 移项得:-x+3x=6-4 合并同类项得:2x=2 解得:x=1、移项得:3x+2x =3+12 合并同类项得:72x=72解得:x=1 、去分母得:3(3-7x )=5(1-4x )-15 去括号得:9-21x=5-20x -15移项得:-21x+20x=5-15-9 合并同类项得:-x=-19 解得:x=19考点:解一元一次方程.43.解方程(1)285--=-x x(2))2(39)3(2+-=--x x(3)312121+=--x x (4)4.0123.01.02.0-=--x x 【答案】(1)1;(2)59;(3)11-;(4)111【解析】 试题分析:(1)移项合并同类项,然后系数化为1即可;(2)先去括号,然后移项合并同类项,然后系数化为1即可;(3)先去分母,再去括号,然后移项合并同类项,然后系数化为1即可;(4)先去分母,再去括号,然后移项合并同类项,然后系数化为1即可.试题解析:(1)285--=-x x ,5x+x=8-2,6x=6,x=1;(2))2(39)3(2+-=--x x ,2x-6-9=-3x-6,2x+3x=9+6-6,5x=9,x=59;(3)312121+=--x x ,3(x-1)-6=2(2x+1),3x-3-6=4x+2,3x-4x=2+3+6,-x=11,x=-11;(4)4.0123.01.02.0-=--x x ,0.4(0.2x-0.1)-2×0.12=0.3(x-1),0.08x-0.04-0.24=0.3x-0.3,0.08x-0.3x=0.04+0.24-0.3,-0.22x=-0.2,x=111.考点:解一元一次方程.44.解方程【答案】x=5试题分析:首先进行移项,然进行合并同类项计算,最后将x的系数化为1得出方程的解.试题解析:移项,得:3x+2x=31-6合并同类项,得:5x=25将系数化为1得:x=5考点:解一元一次方程45.(2015秋•高密市校级月考)当x取什么值时,代数式与的差等于5.【答案】x=﹣8.【解析】试题分析:根据题意列出关于x的方程,求出x的值即可.解:由题意得,﹣=5,去分母得,5(x+3)﹣2(x﹣7)=50,去括号得,5x+15﹣2x+14=5,移项得,5x﹣2x=5﹣15﹣14,合并同类项得,3x=﹣24,系数化为1得,x=﹣8.46.(2015秋•兴化市校级月考)解方程(1)6x﹣4=3x+2(2)=1+.【答案】(1)x=2;(2)x=1.试题分析:(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.解:(1)方程移项合并得:3x=6,解得:x=2;(2)去分母得:2x+4=6+3x﹣3,移项合并得:x=1.47.(2015秋•兴化市校级月考)当m为何值时,关于x的方程4x+2m=3x ﹣5的解和方程6x﹣8=10的解相同?【答案】m=﹣4【解析】试题分析:根据方程的解相同,可得关于m的方程,根据解方程,可得答案.解:解4x+2m=3x﹣5,得x=﹣5﹣2m.解6x﹣8=10,得x=3.关于x的方程4x+2m=3x﹣5的解和方程6x﹣8=10的解相同,得﹣5﹣2m=3.解得m=﹣4,当m=﹣4时,关于x的方程4x+2m=3x﹣5的解和方程6x﹣8=10的解相同.48.(2015秋•海安县期中)解方程:(1)4x ﹣3(20﹣x )+4=0(2)1﹣.【答案】(1)x=8;(2)x=13.【解析】试题分析:(1)方程去括号,移项合并,把x 系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解. 解:(1)去括号得:4x ﹣60+3x+4=0,移项合并得:7x=56,解得:x=8;(2)去分母得:12﹣4x+10=9﹣3x ,移项合并得:x=13.49.x ﹣4=2﹣5x【答案】x=1【解析】试题分析:首先进行移项合并同类项,然后将系数化为1,解出方程. 试题解析:移项合并得:6x=6, 解得:x=1;考点:解一元一次方程50.解方程:x ﹣12x =2233x 解:去分母,得6x ﹣3x+1=4﹣2x+4…①即﹣3x+1=﹣2x+8…②移项,得﹣3x+2x=8﹣1…③合并同类项,得﹣x=7…④∴x=﹣7…⑤上述解方程的过程中,是否有错误?答:;如果有错误,则错在步.如果上述解方程有错误,请你给出正确的解题过程.【答案】有;①;x=-35【解析】试题分析:首先在方程的左右两边同时乘以分母的最小公倍数,然后再进行去括号,去括号时括号里面的每一项都要乘,千万不能漏乘.试题解析:有,①;正确的解题过程如下:6x﹣3(x﹣1)=4﹣2(x+2)6x﹣3x+3=4﹣2x﹣45x=﹣3x=﹣35考点:解一元一次方程。
人教版数学七年级上册 3.2---3.3练习题含答案
3.2解一元一次方程合并同类项及移项一.选择题1.一元一次方程3x﹣(x﹣1)=1的解是()A.x=2B.x=1C.x=0D.x=﹣1 2.解方程:2x﹣3=3x﹣2,正确的答案是()A.x=1B.x=﹣1C.x=5D.x=﹣5 3.方程﹣+x=2x的解是()A.x=B.x=﹣C.x=2D.x=﹣2 4.在解方程﹣=1时,对该方程进行化简正确的是()A.=100B.C.D.05.方程﹣=1的解是()A.x=1B.x=3C.x=5D.x=7 6.把方程3x+=3﹣去分母正确的是()A.3x+2(2x﹣1)=3﹣3(x+1)B.3x+(2x﹣1)=3﹣(x+1)C.18x+(2x﹣1)=18﹣(x+1)D.18x+2(2x﹣1)=18﹣3(x+1)7.对于实数a、b,规定a⊕b=a﹣2b,若4⊕(x﹣3)=2,则x的值为()A.﹣2B.﹣C.D.4 8.已知方程x2k﹣1+k=0是关于x的一元一次方程,则方程的解是()A.﹣1B.C.D.1 9.把方程1﹣=﹣去分母后,正确的是()A.1﹣2x﹣3=3x+5B.1﹣2(x﹣3)=﹣3x+5C.4﹣2(x﹣3)=﹣3x+5D.4﹣2(x﹣3)=﹣(3x+5)10.下列方程的变形中,正确的是()A.方程3x﹣2=2x+1,移项,得3x﹣2x=﹣1+2B.方程3﹣x=2﹣5(x﹣1),去括号,得3﹣x=2﹣5x﹣1C.方程x=,未知数系数化为1,得x=1D.方程﹣=1 化成5(x﹣1)﹣2x=10二.填空题11.当x=时,4x﹣4与3x﹣10互为相反数.12.当x=时代数式的值是1.13.定义一种新运算“⊕”,其运算规则为:a⊕b=﹣2a+3b,如:1⊕5=(﹣2)×1+3×5=13,则方程x⊕2=0的解为.14.对于任意实数a、b、c、d规定了一种运算,则当时,x=.15.在图示的运算流程中,若输出的数y=5,则输入的数x=.三.解答题16.解方程:﹣=1.17.解方程:(1)2(x+1)﹣7x=﹣8;(2)﹣=1.18.在一次数学课上,王老师出示一道题:解方程3(x+2)﹣8=2+x.小马立即举手并在黑板上写出了解方程过程,具体如下:解:3(x+2)﹣8=2+x,去括号,得:3x+2﹣8=x+2…①移项,得:3x﹣x=2﹣2+8.…②合并同类项,得:2x=8…③系数化为1,得:x=…④(1)请你写出小马解方程过程中哪步错了,并简要说明错误原因;(2)请你正确解方程:1﹣=.19.在一次数学课上,王老师出示一道题:解方程3(x+2)﹣8=2+x,小马立即举手并在黑板上写出了解方程过程,具体如下:(1)请你写出小马解方程过程中哪步错了,并简要说明错误原因;(2)请你正确解方程:1﹣=.参考答案与试题解析一.选择题1.【解答】解:去括号得3x﹣x+1=1,移项得3x﹣x=1﹣1,合并得2x=0,系数化为1得x=0.故选:C.2.【解答】解:移项合并得:﹣x=1,解得:x=﹣1,故选:B.3.【解答】解:由原方程,得x﹣2x=,﹣x=,x=﹣.故选:B.4.【解答】解:方程化简得:﹣=1,故选:B.5.【解答】解:去分母得:2x﹣x+1=6,移项合并:x=5.6.【解答】解:把方程3x+=3﹣去分母得:18x+2(2x﹣1)=18﹣3(x+1),故选:D.7.【解答】解:4⊕(x﹣3)=2,4﹣2(x﹣3)=2,4﹣2x+6=2,解得:x=4;故选:D.8.【解答】解:∵方程x2k﹣1+k=0是关于x的一元一次方程,∴2k﹣1=1,解得:k=1,方程为x+1=0,解得:x=﹣1,故选:A.9.【解答】解:方程去分母得:4﹣2(x﹣3)=﹣(3x+5),故选:D.10.【解答】解:A、方程3x﹣2=2x+1,移项得:3x﹣2=1+2,不符合题意;B、方程3﹣x=2﹣5(x﹣1),去括号得:3﹣x=2﹣5x+5,不符合题意;C、方程x=,未知数系数化为1,得:x=,不符合题意;D、方程﹣=1化为5(x﹣1)﹣2x=10,符合题意,故选:D.二.填空题(共5小题)11.【解答】解:根据题意得:4x﹣4+3x﹣10=0,移项合并得:7x=14,解得:x=2,故答案为:212.【解答】解:根据题意得:=1,去分母得:4x﹣5=3,解得:x=2,故答案为:2.13.【解答】解:根据题意得:x⊕2=﹣2x+6=0,解得:x=3,故答案为:3.14.【解答】解:,即10+4(3﹣x)=25,解得:x=﹣.故答案为:﹣.15.【解答】解:①若x为奇数,则根据图表可得:=5,解得:x=11;②若x为偶数,则根据图表可得:=5,解得:x=10.故答案为:10或11.三.解答题(共4小题)16.【解答】解:﹣=1,去分母,得2x﹣(3x﹣1)=6,去括号,得2x﹣3x+1=6,移项,得2x﹣3x=6﹣1,合并同类项,得﹣x=5,系数化1,得x=﹣5.17.【解答】解:(1)2(x+1)﹣7x=﹣8,去括号,得2x+2﹣7x=﹣8,移项,得2x﹣7x=﹣8﹣2,合并同类项,得﹣5x=﹣10,系数化1,得x=2;(2)﹣=1,分母,得2(5x+1)﹣(2x﹣1)=6,去括号,得10x+2﹣2x+1=6,移项,得10x﹣2x=6﹣2﹣1,合并同类项,得8x=3,系数化1,得x=.18.【解答】解:(1)小马解方程过程中第①步错误,原因是去括号法则运用错误;(2)去分母得:12﹣2(7﹣5y)=3(3y﹣1),去括号得:12﹣14+10y=9y﹣3,移项合并得:y=﹣1.19.【解答】解:(1)小马解方程过程中第①步错误,去括号法则运用错误;(2)去分母得:12﹣2(7﹣5y)=3(3y﹣1),去括号得:12﹣14+10y=9y﹣3,移项合并得:y=﹣1.3.3解一元一次方程(二)——去括号与去分母1.解方程4(x-2)=2(x+3),去括号,得 .移项,得 .合并同类项,得 .系数化为1,得 .2.将方程2x-3(4-2x)=5去括号,正确的是( )A.2x-12-6x=5B.2x-12-2x=5C.2x-12+6x=5D.2x-3+6x=53.方程2(x-3)+5=9的解是( )A.x=4B.x=5C.x=6D.x=74.解下列方程:(1)2(x-1)+1=0; (2)2x+5=3(x-1).5.解方程:2(3-4x)=1-3(2x-1).解:去括号,得6-4x=1-6x-1.(第一步)移项,得-4x+6x=1-1-6.(第二步)合并同类项,得2x=-6.(第三步)系数化为1,得x=-3.(第四步)以上解方程正确吗?若不正确,请指出错误的步骤,并给出正确的解答过程.6.下列是四个同学解方程2(x-2)-3(4x-1)=9的去括号的过程,其中正确的是( )A.2x-4-12x+3=9B.2x-4-12x-3=9C.2x -4-12x +1=9D.2x -2-12x +1=9 7.若5m +4与-(m -2)的值互为相反数,则m 的值为( )A.-1B.1C.-12D.-328.对于非零的两个有理数a ,b ,规定a ⊗b =2b -3a ,若1⊗(x +1)=1,则x 的值为( ) A.-1 B.1 C.12 D.-129.解下列方程:(1)4(3x -2)-(2x +3)=-1;(2)4(y +4)=3-5(7-2y);(3)12x +2(54x +1)=8+x.10.若方程3(2x -2)=2-3x 的解与关于x 的方程6-2k =2(x +3)的解相同,求k 的值.第2课时利用去括号解一元一次方程的实际问题1.下面是两位同学的对话,根据对话内容,可求出这位同学的年龄是( )A.11岁B.12岁C.13岁D.14岁2.某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元.如果购买甲、乙两种奖品共花费了650元.问甲、乙两种奖品各购买了多少件?(1)若设甲种奖品购买了x件,请完成下面的表格;件数单价金额甲种奖品x件每件40元40x元乙种奖品件每件30元元(2)列出一元一次方程,解决问题.3.丽水市为打造“浙江绿谷”品牌,决定在省城举办农副产品展销活动.某外贸公司推出品牌产品“山山牌”香菇、“奇尔”惠明茶共10吨前往参展,用6辆汽车装运,每辆汽车规定满载,且只能装运一种产品.因包装限制,每辆汽车满载时能装香菇1.5吨或茶叶2吨.问装运香菇、茶叶的汽车各需多少辆?4.在红城中学举行的“我爱祖国”征文活动中,七年级和八年级共收到征文118篇,且七年级收到的征文篇数是八年级收到的征文篇数的一半还少2篇,求七年级收到的征文有多少篇?5.一架飞机在两城市之间飞行,风速为24 km/h,顺风飞行需要2 h 50 min,逆风飞行需要3 h.求无风时飞机的飞行速度和两城之间的航程.6.食品安全是关乎民生的问题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输.某饮料加工厂生产的A,B两种饮料均需加入同种添加剂,A饮料每瓶需加该添加剂2克,B饮料每瓶需加该添加剂3克.已知270克该添加剂恰好生产了A,B两种饮料共100瓶,问A,B两种饮料各生产了多少瓶?第3课时 利用去分母解一元一次方程1.在解方程x 3=1-x -15时,去分母后正确的是( ) A.5x =15-3(x -1) B.x =1-(3x -1)C.5x =1-3(x -1)D.5x =3-3(x -1)2.下列等式变形正确的是( )A.若-3x =5,则x =-35B.若x 3+x -12=1,则2x +3(x -1)=1 C.若5x -6=2x +8,则5x +2x =8+6D.若3(x +1)-2x =1,则3x +3-2x =13.要将方程2t -53+3-2t 5=3的分母去掉,在方程的两边最好是乘 . 4.依据下列解方程0.3x +0.50.2=2x -13的过程,请在前面的括号内填写变形步骤,在后面的括号内填写变形依据.解:原方程可变形为3x +52=2x -13.( ) 去分母,得3(3x +5)=2(2x -1).( )去括号,得9x +15=4x -2.( )( ),得9x -4x =-15-2.( )合并同类项,得5x =-17.( ),得x =-175.( ) 5.解下列方程:(1)x +12=3+x -64; (2)x -32-4x +15=1.6.某项工程甲单独做4天完成,乙单独做6天完成,已知甲先做1天,然后甲、乙合作完成此项工程.若设甲一共做了x 天,则所列方程为( )A.x 4+x +16=1B.x 4+x -16=1 C.x +14+x 6=1 D.x 4+14+x -16=1 7.整理一批图书,由一个人做要40小时完成.现计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?8.在解方程x 3=1-x -15时,去分母后正确的是( ) A.5x =1-3(x -1) B.x =1-(3x -1)C.5x =15-3(x -1)D.5x =3-3(x -1)9.某书上有一道解方程的题:1+□x 3+1=x ,□处在印刷时被油墨盖住了,查后面的答案知这个方程的解是x =-2,那么□处应该是数字( )A.7B.5C.2D.-210.某班组每天需生产50个零件才能在规定的时间内完成一批零件任务,实际上该班组每天比计划多生产了6个零件,结果比规定的时间提前3天并超额生产120个零件,若设该班组要完成的零件任务为x 个,则可列方程为( )A.x +12050-x 50+6=3B.x 50-x 50+6=3 C.x 50-x +12050+6=3 D.x +12050+6-x 50=3 11.若规定a*b =a +2b 2(其中a ,b 为有理数),则方程3*x =52的解是x = . 12.解下列方程:(1)x -13-x +26=4-x 2; (2)2x +13-5x -16=1;(3)2x +14-1=x -10x +112; (4)x 0.7-0.17-0.2x 0.03=1.13.某校组织长江夜游,在流速为2.5千米/时的航段,从A 地上船,沿江而下至B 地,然后溯江而上到C 地下船,共乘船4小时.已知A ,C 两地相距10千米(C 地在A 地上游),船在静水中的速度为7.5千米/时.求A ,B 两地间的距离.14.解关于x 的方程a -x +73=2(5-x),小刚去分母时忘记了将右边乘3,其他步骤都是正确的,巧合的是他求得的结果仍然是原方程的解,即小刚将求得的结果代入原方程后,左边与右边竟然也相等!你能求出使这种巧合成立的a 的值吗?参考答案:3.3 解一元一次方程(二)——去括号与去分母第1课时 利用去括号解一元一次方程1.解方程4(x -2)=2(x +3),去括号,得4x -8=2x +6.移项,得4x -2x =6+8.合并同类项,得2x =14.系数化为1,得x =7.2.C3.B4.(1)2(x -1)+1=0;解:去括号,得2x -2+1=0.移项、合并同类项,得2x =1.系数化为1,得x =12. (2)2x +5=3(x -1).解:2x +5=3x -3,2x -3x =-3-5,-x =-8,x =8.5.解:第一步错误.正确的解答过程如下:去括号,得6-8x =1-6x +3.移项,得-8x +6x =1+3-6.合并同类项,得-2x =-2.系数化为1,得x =1.6.A7.D8.B9.(1)4(3x -2)-(2x +3)=-1;解:去括号,得12x -8-2x -3=-1.移项,得12x -2x =8+3-1.合并同类项,得10x =10.系数化为1,得x =1.(2)4(y +4)=3-5(7-2y);解:去括号,得4y +16=3-35+10y.移项、合并同类项,得-6y =-48.系数化为1,得y =8.(3)12x +2(54x +1)=8+x. 解:去括号,得12x +52x +2=8+x. 移项、合并同类项,得2x =6.系数化为1,得x =3.10.解:由3(2x -2)=2-3x ,解得x =89. 把x =89代入方程6-2k =2(x +3),得 6-2k =2×(89+3).解得k =-89.第2课时 利用去括号解一元一次方程的实际问题1.C2.(2)解:根据题意,得40x +30(20-x)=650.解得x =5.则20-x =15.答:购买甲种奖品5件,乙种奖品15件.3.解:设装运香菇的汽车需x 辆.根据题意,得1.5x +2(6-x)=10.解得x =4.所以6-x =2.答:装运香菇、茶叶的汽车分别需要4辆和2辆.4.解:设七年级收到的征文有x 篇,则八年级收到的征文有(118-x)篇,依题意,得 (x +2)×2=118-x ,解得x =38.答:七年级收到的征文有38篇.5.解:设无风时飞机的飞行速度为x km/h ,则顺风时飞行的速度为(x +24) km/h ,逆风飞行的速度为(x -24) km/h.根据题意,得176(x +24)=3(x -24).解得x =840. 则3(x -24)=2 448.答:无风时飞机的飞行速度为840 km/h ,两城之间的航程为2 448 km.6.解:设A 饮料生产了x 瓶,则B 饮料生产了(100-x)瓶.根据题意,得2x +3(100-x)=270.解得x =30.则100-x =70.答:A 饮料生产了30瓶,B 饮料生产了70瓶.第3课时 利用去分母解一元一次方程1.A2.D3. 15.4.解:原方程可变形为3x +52=2x -13.(分数的基本性质) 去分母,得3(3x +5)=2(2x -1).(等式的性质2)去括号,得9x +15=4x -2.(去括号法则)(移项),得9x -4x =-15-2.(等式的性质1)合并同类项,得5x =-17.(系数化为1),得x =-175.(等式的性质2) 5.(1)x +12=3+x -64; 解:2(x +1)=12+(x -6).2x +2=12+x -6.2x +2=x +6.x =4.(2)x -32-4x +15=1. 解:去分母,得5x -15-8x -2=10,移项合并,得-3x =27,解得x =-9.6.B7.解:设应先安排x 人工作,根据题意,得4x 40+8(x +2)40=1. 化简可得:x 10+x +25=1, 即x +2(x +2)=10.解得x =2.答:应先安排2人工作.8.C9.B10.C11. 1.12.(1)x -13-x +26=4-x 2; 解:去分母,得2(x -1)-(x +2)=3(4-x).去括号,得2x -2-x -2=12-3x.移项,得2x -x +3x =2+2+12.合并同类项,得4x =16.系数化为1,得x =4.(2)2x +13-5x -16=1; 解:去分母,得2(2x +1)-(5x -1)=6.去括号,得4x +2-5x +1=6.移项、合并同类项,得-x =3.系数化为1,得x =-3.(3)2x +14-1=x -10x +112; 解:去分母,得6x +3-12=12x -10x -1,移项合并,得4x =8,解得x =2.(4)x 0.7-0.17-0.2x 0.03=1. 解:原方程可化为10x 7-17-20x 3=1. 去分母,得30x -7(17-20x)=21.去括号,得30x -119+140x =21.移项、合并同类项,得170x =140.系数化为1,得x =1417. 13.解:设A ,B 两地间的距离为x 千米,依题意,得x 7.5+2.5+x +107.5-2.5=4, 解得x =203. 答:A ,B 两地间的距离为203千米. 14.解:因为去分母时忘了将右边乘3,所以a -x +73=2(5-x)化为3a -x -7=10-2x ,解得x =17-3a. 因为将求得的结果代入原方程,左边与右边相等,所以把x =17-3a 代入a -x +73=2(5-x),得 a -17-3a +73=2[5-(17-3a)], 整理,得4a =16.解得a =4,故a 的值为4.。
解一元一次方程一——合并同类项与移项习题
3.2 解一元一次方程(一)——合并同类项与移项第1课时 合并同类项要点感知 将方程中的同类项进行 ,把以x 为未知数的一元一次方程变形为 (a ≠0,a 、b 为已知数)的形式,然后利用 ,方程两边同时 ,从而得到 .预习练习1-1 x -2x +4x = ,5y +3y -4y = ,4y -2.5y -3.5y = . 1-2 解方程-7x +2x =9-4的步骤是:①合并同类项得 ;②系数化为1得 .1-3 解方程:5x -2x =-9.知识点1 利用合并同类项解简单的一元一次方程1.对于方程8x +6x -10x =8,合并同类项正确的是( )A .3x =8B .4x =8C .-4x =8D .2x =82.方程x +2x =-6的解是( )A .x =0B .x =1C .x =2D .x =-23.下列是小明同学的四道解方程题,其中错误的是( )A .5x +4x =9→x =1B .-2x -3x =5→x =1C .3x -x =-1+3→x =1D .-4x +6x =-2-8→x =-54.方程12x +13x =10的解是 . 5.解下列方程:(1)6x -5x =3;(2)-x +3x =7-1;(3)x 2+5x 2=9; (4)6y +12y -9y =10+2+6.知识点2 列方程解决:总量=各部分量之和6.若三个连续偶数的和是24,则它们的积是( )A .48B .480C .240D .1207.已知x 的4倍比x 的23多5,则列出的方程是 . 8.一个两位数,个位上的数字是十位上数字的3倍,且它们的和为12,则这个两位数是 .9.有这样一列数,按一定规律排列成1,2,4,8,16,……,其中某三个相邻数的和是448,则这三个数是 .10.某工厂的产值连续增长,去年是前年的2倍,今年是去年的2.5倍,这三年的总产值为320万元,则去年的产量是 万元.11.三个连续奇数的和为27,则这三个数分别为 . 12.一鸣10岁那年,他父亲38岁,现在父亲的年龄是一鸣的2倍,求现在一鸣的年龄.13.某人把720 cm 长的铁丝分成2段,分别做两个正方形的数学模型,已知两个正方形的边长比是4∶5,则这两个正方形的边长分别是多少?14.如果x =m 是关于x 的方程12x -m =1的解,那么m 的值是( ) A .0 B .2 C .-2 D .-615.一个三角形三边长之比为3∶4∶5,最短边比最长边短6 cm ,这个三角形的周长 为 cm.16.小明在做作业时,不小心把方程中的一个常数污染了看不清楚,被污染的方程为:2y -12y =12-■,怎么办?小明想了想,便翻看了书后的答案,此方程的解为y =-53,于是,他很快知道了这个常数,你能补出这个常数是 .17.在一张普通的日历中,相邻三行里同一列的三个日期之和为30,这三个日期分别为 .18.解下列方程:(1)0.3x -0.4x =0.6; (2)5x -2.5x +3.5x =-10;(3)x -25x =3+6; (4)16x -3.5x -6.5x =7-(-5).19.足球的表面是由若干个黑色五边形和白色六边形皮块围成的,黑白皮块的数目比为3∶5,一个足球表面一共有32块皮,黑色皮块和白色皮块各有多少?20.(苏州中考)我国是一个淡水资源严重缺乏的国家,有关数据显示,中国人均淡水资源占有量仅为美国人均淡水资源占有量的15,中、美两国人均淡水资源占有量之和为13 800 m 3,问中、美两国人均淡水资源占有量各为多少(单位:m 3)?挑战自我21.有这样一列数,按一定规律排列成-1,2,-4,8,-16,……,其中某三个相邻数的和是768,则这三个数各是多少?参考答案要点感知 合并,ax =b ,等式的性质2,除以a ,x =b a预习练习1-1 3x ,4y ,-2y1-2 -5x =5;x =-11-3 x =-31.B 2.D 3.B 4.x =125.(1)合并同类项,得x =3.(2)合并同类项,得2x =6,系数化为1,得x =3.(3)合并同类项,得3x =9,系数化为1,得x =3.(4)合并同类项,得9y =18,系数化为1,得y =2.6.B 7.4x -23x =5 8.39 9.64,128,256 10.80 11.7、9、1112.设现在一鸣的年龄为x 岁,则其父亲为2x 岁.由题意得2x -x =38-10.解得x =28.答:一鸣现在的年龄为28岁.13.设每份长度为x cm ,则两个正方形的边长各为4x cm 、5x cm ,则4x ·4+5x·4=720,x =20.所以两个长方形的边长分别为4x =4×20=80(cm),5x =5×20=100(cm).答:这两个正方形的边长分别是80 cm ,100 cm.14.C 15.36 16.3 17.3,10,1718.(1)合并同类项,得-0.1x =0.6.系数化为1,得x =-6.(2)合并同类项,得6x =-10.系数化为1,得x =-53. (3)合并同类项,得35x =9.系数化为1,得x =15. (4)合并同类项,得6x =12.系数化为1,得x =2.19.设黑色皮有3x 块,白色皮有5x 块.根据“足球表面一共有32块皮”,可得 3x +5x =32.解得x =4.所以3x=3×4=12,5x=5×4=20.答:黑色皮有12块,白色皮有20块.20.设中国人均淡水资源占有量为x m3,则美国人均淡水资源占有量为5x m3.根据题意,得x+5x=13 800,解得x=2 300.则5x=11 500.答:中国人均淡水资源占有量为2 300 m3,美国人均淡水资源占有量为11 500 m3.挑战自我21.设所求三个数分别为-x,2x,-4x,由题意得-x+2x+(-4x)=768.合并同类项,得-3x=768.解得x=-256.所以-x=256,2x=2×(-256)=-512,-4x=-4×(-256)=1 024.答:这三个数分别是256,-512,1 024.人教版七年级上册期末测试卷一、选择题(每题3分,共30分)1.某天的最高气温是8℃,最低气温是-3℃,那么这天的温差是() A.-3℃B.8℃C.-8℃D.11℃2.下列立体图形中,从上面看能得到正方形的是()3.下列方程是一元一次方程的是()A.x-y=6 B.x-2=xC.x2+3x=1 D.1+x=34.今年某市约有108 000名应届初中毕业生参加中考,108 000用科学记数法表示为()A.0.108×106B.10.8×104C.1.08×106D.1.08×1055.下列计算正确的是()A.3x2-x2=3 B.3a2+2a3=5a5C.3+x=3x D.-0.25ab+14ba=06.已知ax=ay,下列各式中一定成立的是() A.x=y B.ax+1=ay-1C .ax =-ayD .3-ax =3-ay7.某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为( )A .100元B .105元C .110元D .120元8.如果一个角的余角是50°,那么这个角的补角的度数是( )A .130°B .40°C .90°D .140°9.如图,C ,D 是线段AB 上的两点,点E 是AC 的中点,点F 是BD 的中点,EF =m ,CD =n ,则AB 的长是( )A .m -nB .m +nC .2m -nD .2m +n10.下列结论:①若a +b +c =0,且abc ≠0,则a +c 2b =-12;②若a +b +c =0,且a ≠0,则x =1一定是方程ax +b +c =0的解;③若a +b +c =0,且abc ≠0,则abc >0;④若|a |>|b |,则a -b a +b >0. 其中正确的结论是( )A .①②③B .①②④C .②③④D .①②③④二、填空题(每题3分,共24分)11.-⎪⎪⎪⎪⎪⎪-23的相反数是________,-15的倒数的绝对值是________. 12.若-13xy 3与2x m -2y n +5是同类项,则n m =________.13.若关于x 的方程2x +a =1与方程3x -1=2x +2的解相同,则a 的值为________.14.一个角的余角为70°28′47″,那么这个角等于____________.15.下列说法:①两点确定一条直线;②两点之间,线段最短;③若∠AOC=1 2∠AOB,则射线OC是∠AOB的平分线;④连接两点之间的线段叫做这两点间的距离;⑤学校在小明家南偏东25°方向上,则小明家在学校北偏西25°方向上,其中正确的有________个.16.在某月的月历上,用一个正方形圈出2×2个数,若所圈4个数的和为44,则这4个日期中左上角的日期数值为________.17.规定一种新运算:a△b=a·b-2a-b+1,如3△4=3×4-2×3-4+1=3.请比较大小:(-3)△4________4△(-3)(填“>”“=”或“<”).18.如图是小明用火柴棒搭的1条“金鱼”、2条“金鱼”、3条“金鱼”……则搭n 条“金鱼”需要火柴棒__________根.三、解答题(19,20题每题8分,21~23题每题6分,26题12分,其余每题10分,共66分)19.计算:(1)-4+2×|-3|-(-5);(2)-3×(-4)+(-2)3÷(-2)2-(-1)2 018.20.解方程:(1)4-3(2-x)=5x;(2)x-22-1=x+13-x+86.21.先化简,再求值:2(x2y+xy)-3(x2y-xy)-4x2y,其中x=1,y=-1. 22.有理数b在数轴上对应点的位置如图所示,试化简|1-3b|+2|2+b|-|3b-2|.23.如图①是一些小正方体所搭立体图形从上面看得到的图形,方格中的数字表示该位置的小正方体的个数.请在如图②所示的方格纸中分别画出这个立体图形从正面看和从左面看得到的图形.24.已知点O是直线AB上的一点,∠COE=90°,OF是∠AOE的平分线.(1)当点C,E,F在直线AB的同侧时(如图①所示),试说明∠BOE=2∠COF.(2)当点C与点E,F在直线AB的两侧时(如图②所示),(1)中的结论是否仍然成立?请给出你的结论,并说明理由.25.为鼓励居民节约用电,某市电力公司规定了电费分段计算的方法:每月用电不超过100度,按每度电0.50元计算;每月用电超过100度,超出部分按每度电0.65元计算.设每月用电x度.(1)当0≤x≤100时,电费为________元;当x>100时,电费为____________元.(用含x的整式表示)(2)某用户为了解日用电量,记录了9月前几天的电表读数.日期9月1日9月2日9月3日9月4日9月5日9月6日9月7日电表读123130137145153159165 数/度该用户9月的电费约为多少元?(3)该用户采取了节电措施后,10月平均每度电费0.55元,那么该用户10月用电多少度?26.如图,O为数轴的原点,A,B为数轴上的两点,点A表示的数为-30,点B表示的数为100.(1)A,B两点间的距离是________.(2)若点C也是数轴上的点,点C到点B的距离是点C到原点O的距离的3倍,求点C表示的数.(3)若电子蚂蚁P从点B出发,以6个单位长度/s的速度向左运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向左运动,设两只电子蚂蚁同时运动到了数轴上的点D,那么点D表示的数是多少?(4)若电子蚂蚁P从点B出发,以8个单位长度/s的速度向右运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向右运动.设数轴上的点N到原点O的距离等于点P到原点O的距离的一半(点N在原点右侧),有下面两个结论:①ON+AQ的值不变;②ON-AQ的值不变,请判断哪个结论正确,并求出正确结论的值.(第26题)答案一、1.D 2.A 3.D 4.D 5.D 6.D7.A8.D9.C10.B二、11.23;512.-813.-514.19°31′13″15.316.717.>18.(6n+2)三、19.解:(1)原式=-4+2×3+5=-4+6+5=7;(2)原式=12+(-8)÷4-1=12-2-1=9.20.解:(1)去括号,得4-6+3x=5x.移项、合并同类项,得-2x=2.系数化为1,得x=-1.(2)去分母,得3(x-2)-6=2(x+1)-(x+8).去括号,得3x-6-6=2x+2-x-8.移项、合并同类项,得2x=6.系数化为1,得x=3.21.解:原式=2x2y+2xy-3x2y+3xy-4x2y=(2x2y-3x2y-4x2y)+(2xy+3xy)=-5x2y+5xy.当x=1,y=-1时,原式=-5x2y+5xy=-5×12×(-1)+5×1×(-1)=5-5=0.22.解:由题图可知-3<b<-2.所以1-3b>0,2+b<0,3b-2<0.所以原式=1-3b-2(2+b)+(3b-2)=1-3b-4-2b+3b-2=-2b-5.23.解:如图所示.24.解:(1)设∠COF=α,则∠EOF=90°-α.因为OF是∠AOE的平分线,所以∠AOE=2∠EOF=2(90°-α)=180°-2α.所以∠BOE=180°-∠AOE=180°-(180°-2α)=2α.所以∠BOE=2∠COF.(2)∠BOE=2∠COF仍成立.理由:设∠AOC=β,则∠AOE=90°-β,又因为OF是∠AOE的平分线,所以∠AOF=90°-β2.所以∠BOE=180°-∠AOE=180°-(90°-β)=90°+β,∠COF=∠AOF+∠AOC=90°-β2+β=12(90°+β).所以∠BOE=2∠COF.25.解:(1)0.5x;(0.65x-15)(2)(165-123)÷6×30=210(度),210×0.65-15=121.5(元).答:该用户9月的电费约为121.5元.(3)设10月的用电量为a度.根据题意,得0.65a-15=0.55a,解得a=150.答:该用户10月用电150度.26.解:(1)130(2)若点C在原点右边,则点C表示的数为100÷(3+1)=25;若点C在原点左边,则点C表示的数为-[100÷(3-1)]=-50.故点C表示的数为-50或25.(3)设从出发到同时运动到点D经过的时间为t s,则6t-4t=130,解得t=65.65×4=260,260+30=290,所以点D表示的数为-290.(4)ON-AQ的值不变.设运动时间为m s,则PO=100+8m,AQ=4m. 由题意知N为PO的中点,得ON=12PO=50+4m,所以ON+AQ=50+4m+4m=50+8m,ON-AQ=50+4m-4m=50.故ON-AQ的值不变,这个值为50.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《解一元一次方程(一)合并同类项与移项》提高练习1
1.把方程3x-4=5x-7移项,结果正确的是()
A.3x-5x=-7+4B.3x+5x=-7+4
C.3x-5x=-7-4D.3x+5x=-7-4
2.小明在假期里参加了连续四天一期的科技艺术节,这四天的日期之和是66,则科技艺术节第一天的日期是()
A.14日B.15日C.16日D.17日
3.若关于x的方程3x-1+k=0的解为x=-1,则k=()
A.4B.-4C.2D.-2
4.若代数式4x-7与代数式5
2
5
x
⎛⎫
+
⎪
⎝⎭
的值相等,则x的值是()
A.-9B.1C.-5D.3
5.解下列方程:
(1)5x+4=-1;
(2)3x+2=2x-4;
(3)4x+6=5x-7.
6.已知关于x的方程3x+2a=x+7,小刚在解这个方程时,把方程右端+7抄成了-7,解得的结果为x=2,求原方程的解.
7.牧羊人赶着一群羊找一个草长得茂盛的地方,一个过路人牵着一只羊从后面跟了上来,他对牧羊人说:“你赶的这群羊大概有100只吧!”牧羊人答道:“如果这群羊增加一倍,再加上原来这群羊的一半,又加上原来这群羊的一半的一半,把你这只羊也算进去,才刚好凑满100只.”牧羊人的这群羊共有多少只?
8.聪聪到希望书店帮同学买书,售货员主动告诉他,如果用20元钱办“希望书店会员卡”,将享受到8折优惠,请问:
(1)在这次买书中,聪聪在什么情况下,办会员卡与不办会员卡一样?
(2)当他想买标价总共为200元的书时,怎么做合算,能省下多少钱?。