学而思初二数学秋季班第13讲.几何综合.提高班.学生版
学而思初二数学秋季班第4讲.全等三角形的经典模型(二).提高班.教师版
1初二秋季·第4讲·提高班·教师版等等…腰漫画释义满分晋级阶梯4全等三角形的 经典模型(二)三角形11级特殊三角形之直角三角形 三角形10级 勾股定理与逆定理 三角形9级全等三角形的经典模型(二)2初二秋季·第4讲·提高班·教师版OFEC B A A F COBEDHABCDO EOGFE CBA“手拉手”数学模型:⑴ ⑵ ⑶【引例】 如图,等边三角形ABE 与等边三角形AFC 共点于A ,连接BF 、CE ,求证:BF =CE 并求出 EOB 的度数. 知识互联网思路导航例题精讲题型一:“手拉手”模型3初二秋季·第4讲·提高班·教师版NMCBABNC【解析】 ∵△ABE 、△AFC 是等边三角形∴AE =AB ,AC =AF ,60∠=∠=︒EAB FAC ∴∠+∠=∠+∠EAB BAC FAC BAC 即∠=∠EAC BAF ∴AEC ABF △≌△∴BF =EC ∠=∠AEC ABF 又∵AGE BGO ∠=∠ ∴60∠=∠=︒BOE EAB ∴60∠=︒EOB【例1】 如图,正方形BAFE 与正方形ACGD 共点于A ,连接BD 、CF ,求证:BD =CF 并求出∠DOH 的度数. 【解析】 同引例,先证明ABD AFC △≌△∴BD =FC ,∠=∠BDA FCA ∵∠=∠DHO CHA ∴90∠=∠=︒DOH CAD【例2】 如图,已知点C 为线段AB 上一点,ACM △、BCN △是等边三角形.⑴ 求证:AN BM =.⑵ 将ACM △绕点C 按逆时针方向旋转180°,使点A 落在CB 上,请你对照原题图在图中画出符合要求的图形;⑶ 在⑵得到的图形中,结论“AN BM =”是否还成立,若成立,请证明;若不成立,请说明理由;⑷ 在⑵所得的图形中,设MA 的延长线交BN 于D ,试判断ABD △的形状,并证明你的结论. 【分析】 这是一个固定后运动变化的探索题,且在一定的条件下,探究原结论的存在性(不变性); 需要画图分析、判断、猜想、推理论证.【解析】 ⑴ ∵ACM △、BCN △是等边三角形∴AC CM =,BC CN =60ACM BCN ∠=∠=°典题精练OHGDF ECBA4初二秋季·第4讲·提高班·教师版ABCMNDNM CBA∴∠=∠ACN MCB 在ACN △和MCB △中 =⎧⎪∠=∠⎨⎪=⎩AC MC ACN MCB CN CB ∴ACN MCB △≌△(SAS ) ∴AN BM =⑵ 将ACM △绕点C 旋转如图:⑶ 在⑵的情况,结论AN BM =仍然成立.证明:∵60BCM NCA ∠=∠=°,CA CM =,CN CB =. ∴CAN CMB △≌△(SAS ),∴AN MB =.⑷ 如图,延长MA 交BN 于D ,则ABD △为等边三角形. 证明:∵60CAM BAD ABD ∠=∠=∠=°. ∴ABD △是等边三角形.【例3】 在ABC △中,90∠=BAC °,⊥AD BC 于D ,BF 平分∠ABC 交AD 于E ,交AC 于F .求证:AE=AF .54321A BCDE F【解析】 90∠=BAC °,390∴∠+∠=DAC °90⊥∴∠=︒AD BC ADC 90∴∠+∠=︒C DAC 3∴∠=∠C43152∠=∠+∠∠=∠+∠C ,BF 是ABC ∠的角平分线 12∴∠=∠典题精练题型二:双垂+角平分线模型5初二秋季·第4讲·提高班·教师版EN MDCBA NMD CBA 45∴∠=∠∴=AE AF【例4】 如图,已知ABC △中,90ACB ∠=°,CD AB ⊥于D ,ABC ∠的角平分线BE 交CD 于G ,交AC 于E ,GF AB ∥交AC 于F . 求证:AF CG =. 【分析】 要证AF CG =,一般想到证明这两条线段所在的三角形全等,由图形可知,不存在直接全等三角形,因此要想到添加辅助线构造全等三角形.【解析】 作EH AB ⊥于H∵12∠=∠,90ACB ∠=° ∴EC EH =(角平分线定理) 又∵CD AB ⊥ ∴3A ∠=∠∵431∠=∠+∠,52A ∠=∠+∠ ∴45∠=∠ ∴CE CG = ∴CG EH =又∵GF AB ∥,90∠=∠=AHE FGC ° ∴A CFG ∠=∠∴CFG EAH △≌△(AAS ) ∴=CF EA ,∴-=-CF EF EA EF , ∴CE AF = ∴AF CG =【例5】 已知:正方形ABCD 中,45MAN ∠=︒,MAN ∠绕点A 顺时针旋转,它的两边分别交线段CB DC 、于点M N 、.求证BM DN MN +=.【解析】 延长ND 到E 使DE BM = 典题精练题型三:半角模型54321HG FEDC BA54321GFE DC BA6初二秋季·第4讲·提高班·教师版DHFECBA∵四边形ABCD 是正方形 ∴AD =AB在ADE △和ABM △ =⎧⎪∠=∠⎨⎪=⎩AD AB ADE B DE BM ∴ADE ABM △≌△∴AM =AE ∠=∠BAM DAE∵45MAN ∠=︒ ∴45∠+∠=︒BAM NAD ∴45∠=∠=︒MAN EAN在AMN △和AEN △中 =⎧⎪∠=∠⎨⎪=⎩MA EA MAN EAN AN AN ∴AMN AEN △≌△ ∴MN =EN∴DE +DN =BM +DN=MN【例6】 如图,在四边形ABCD 中,180∠+∠=︒=B D AB AD ,,E 、F 分别是线段BC 、CD 上的点,且BE +FD =EF . 求证:12∠=∠EAF BAD .ABCDEF【解析】 延长FD 到H ,使DH =BE ,易证ABE ADH △≌△, 再证AEF AHF △≌△1122∴∠=∠=∠=∠EAF FAH EAH BAD【例7】 在等边三角形ABC 的两边AB 、AC 所在直线上分别有两点M 、N ,D 为三角形ABC 外一点,且︒=∠60MDN ,︒=∠120BDC ,BD=DC . 探究:当M 、N 分别在直线AB 、AC 上移7初二秋季·第4讲·提高班·教师版动时,BM 、NC 、MN 之间的数量关系.AM N BCDDCBN M A图1 图2⑴如图1,当点M 、N 在边AB 、AC 上,且DM=DN 时,BM 、NC 、MN 之间的数量关系是 ; ⑵如图2,点M 、N 在边AB 、AC 上,且当DM ≠DN 时,猜想⑴问的结论还成立吗?写 出你的猜想并加以证明.【解析】 ⑴如图1, BM 、NC 、MN 之间的数量关系BM +NC=MN . ⑵猜想:结论仍然成立.证明:如图,延长AC 至E ,使CE=BM ,连接DE .BD=CD 且120BDC ∠=.∴ 30=∠=∠DCB DBC .又△ABC 是等边三角形,∴90MBD NCD ECD ∠=∠=∠=. 在MBD △与ECD △中:BM CEMBD ECD BD CD =⎧⎪∠=∠⎨⎪=⎩∴MBD △≌ECD △(SAS ) . ∴DM=DE , BDM CDE ∠=∠ ∴60EDN BDC MDN ∠=∠-∠=在△MDN 与△EDN 中:⎪⎩⎪⎨⎧=∠=∠=DN DN EDN MDN DE DM ENMDC BA8初二秋季·第4讲·提高班·教师版∴MDN EDN △≌△(SAS) ∴MN NE NC BM ==+第04讲精讲:典型的旋转全等构图:“手拉手”全等模型探究; 【探究一】“手拉手”模型基本构图;如图1,若ABC ∆与ADE ∆旋转全等,则必有ABD ∆与ACE ∆为两个顶角相等的等腰三角形(即相似的等腰三角形);反之,如图2,若有两个顶角相等的等腰三角形ABD ∆与ACE ∆共顶角顶点,则必有ABC ∆与ADE ∆旋转全等;而图2正是“手拉手”模型的基本构图;图1EDC BA图2EDC BA【探究二】将探究一中的普通等腰三角形换成特殊的图形,例如等边三角形、等腰直角三角形、正方形,然后再探究结论如何变化;图3DCB图4E D CB A FG 图5ED CB A如图3、图4、图5,当两个等边三角形、等腰直角三角形、正方形共顶点时,ABC ∆与ADE ∆仍然旋转全等,并且有两个共同的结论; 结论1:ABC ∆≌ADE ∆;DE BC =;结论2:BC 与DE 所夹锐角等于两个等腰三角形的顶角;(倒角方法如下图6、图7、图8的八字模型)9初二秋季·第4讲·提高班·教师版图6图7图8【探究三】将探究二中的特殊图形旋转后结论是否仍然成立; 如下图9、图10、图11易得探究二中的两个结论仍然成立;图9E图10图11【探究四】深化探究二中图3的结论; 如图12,可得结论1:ABC ∆≌ADE ∆;DE BC =;结论2:︒=∠=∠=∠=∠60CAE BAD COE BOD ; 结论3:如图12、图13、图14,可得三对三角形全等(ABC ∆≌ADE ∆;AHD ∆≌AGB ∆;AGC ∆≌AHE ∆)图12图13图14结论4:如图15,连接GH ,可得AGH ∆为等边三角形;(由结论3可得AH AG =)图15NM O 图16EDC BA10 初二秋季·第4讲·提高班·教师版结论5:BE GH ∥;(由结论4可得︒=∠=∠60BAD AGH ) 结论6:连接AO ,可得AO 平分BOE ∠;(如图16,分别作BC AM ⊥、DE AN ⊥,AM 与AN 分别是全等三角形ABC ∆与ADE ∆对应边BC 和DE 上的高,故相等)11初二秋季·第4讲·提高班·教师版SFEDCBA MPNMH GFEDCBANM DCBA题型一 手拉手模型 巩固练习【练习1】 如图,DA ⊥AB ,EA ⊥AC ,AD=AB ,AE=AC ,则下列正确 的是( )A. ABD ACE △≌△B. ADF AES △≌△C. BMF CMS △≌△D. ADC ABE △≌△【解析】 D【练习2】 如图,正五边形ABDEF 与正五边形ACMHG 共点于A ,连接BG 、CF ,则线段BG 、CF 具有什么样的数量关系并求出∠GNC 的度数. 【解析】 先证ABG AFC △≌△可得BG =CF ,∠=∠ACF AGB ∵∠=∠NPG APC∴108∠=∠=︒GNC GAC题型二 双垂+角平分线模型 巩固练习【练习3】 已知AD 平分∠BAC ,⊥DE AB ,垂足为E ,⊥DF AC , 垂足为F ,且DB =DC ,则EB 与FC 的关系( )A. 相等B. EB <FCC. EB >FCD.以上都不对 【解析】 A题型三 半角模型 巩固练习【练习4】 如图,△ABC 是边长为3的等边三角形,△BDC 是等腰三角形,且∠BDC =120°.以D 为顶点作一个60°角,使其两边分别交AB 于点M ,交AC 于点N ,连接MN ,则△AMN 的周长为 . 【解析】 6【练习5】 如图,在四边形ABCD 中,180∠+∠=︒B ADC ,AB AD =,E 、F 分别是边BC 、CD 延长线上的点,且复习巩固F E DCBAFEDC BA12 初二秋季·第4讲·提高班·教师版EHGDCBAFDEGCBA12EAF BAD =∠∠,求证:EF BE FD =-【解析】 证明:在BE 上截取BG ,使BG DF =,连接AG .∵180B ADC +=︒∠∠,180ADF ADC +=︒∠∠,∴B ADF =∠∠. ∵AB AD =,∴ABG ADF △≌△.∴BAG DAF =∠∠,AG AF =.∴12BAG EAD DAF EAD EAF BAD +=+==∠∠∠∠∠∠.∴GAE EAF =∠∠. ∵AE AE =, ∴AEG AEF △≌△. ∴EG EF =∵EG BE BG =-,∴EF BE FD =-.训练1. 如图,C 为线段AB 上一点,分别以AC 、CB 为边在AB 同侧作等边ACD △和等边BCE △,AE 交DC 于G 点,DB 交CE 于H 点,求证:GH AB ∥. 思维拓展训练(选讲)13初二秋季·第4讲·提高班·教师版A B C DH QNM【分析】 本题中,ACD △与BCE △是等边三角形,因此AC CD =,BC CE =,60ACD ECB ∠=∠=°,因为A 、C 、B 在同一条直线上,故60DCE ∠=°.这样可以得到ACE DCB △≌△,AEC DBC ∠=∠,故可以得到CEG CBH △≌△,则GC HC =,60CGH CHG ∠=∠=°,所以60ACG CGH ∠=∠=°,故GH AB ∥.【解析】 ∵ACD △和BCE △是等边三角形(已知)∴AC CD =,BC CE =(等边三角形的各边都相等)60ACD BCE ∠=∠=°(等边三角形的每个角都等于60°)∵180ACD DCE BCE ∠+∠+∠=° ∴60DCE ∠=°,120ACE DCB ∠=∠=°. 在ACE △和DCB △中,=⎧⎪∠=∠⎨⎪=⎩AC DCACE DCB CE CB∴ACE DCB △≌△(SAS )∴AEC DBC ∠=∠(全等三角形的对应角相等) 在BCH △和ECG △中,60∠=∠=⎧⎪=⎨⎪∠=∠⎩BCH ECG BC CE CBH CEG °∴BCH ECG △≌△(ASA )∴CH CG =(全等三角形的对应边相等) ∴CGH CHG ∠=∠(等边对等角)∵180GCH GHC CGH ∠+∠+∠=°(三角形内角和定理) ∴60GHC CGH ∠=∠=°.∴60ACG CGH ∠=∠=°(等量代换) ∴GH AB ∥(内错角相等,两直线平行)训练2. 条件:正方形ABCD ,M 在CB 延长线上,N 在DC 延长线上,45MAN ∠=︒.结论:⑴ MN DN BM =-;⑵ AH AB =.A B M C H ND14 初二秋季·第4讲·提高班·教师版【解析】 ⑴在CD 上取一点Q ,使DQ =BM先证AMB AQD △≌△ 可得AM =AQ再证AMN AQN △≌△∴MN =NQ∴DN DQ DN BM NQ MN -=-==⑵可证△ANH ≌△AND ,∴AH=AD=AB训练3. 如图,在Rt ABC △中,锐角ACB ∠的平分线交对边于E ,又交斜边的高AD 于O ,过O引OF BC ∥,交AB 于F ,请问AE 与BF 相等吗?理由是什么?OO 12ABCD E F FEDCBA21543G O54321G FE DC BA【解析】 相等.理由如下:如图,过E 作EG BC ⊥于G ∵EC 平分ACB ∠,∴12∠=∠ ∵90EAC ∠=°,AD BC ⊥ ∴1490∠+∠=°,2390∠+∠=° ∴34∠=∠ ∵35∠=∠, ∴45∠=∠∴AE AO =∵EC 平分ACB ∠,EA AC ⊥,EG BC ⊥ ∴EA EG =,∴AO EG =,∵FO BC ∥∴AFO B ∠=∠,90BDA FOA ∠=∠=° ∴BEG FAO ∠=∠∴AFO EBG △≌△(AAS ) ∴AF BE =∴AF EF BE EF -=- ∴AE BF =.N M DBA15初二秋季·第4讲·提高班·教师版ABCDO E训练4. 如图,△ABD 为等腰直角三角形,45∠=︒MAN ,求证:以BM 、MN 、DN 为边的三角形是直角三角形. 【解析】 过B 作BD 的垂线并取BQ =ND ,连接AQ 、QM先证∴=AQB AND AQ AN △≌△, 再证∴=AQM ANM MN QM △≌△∴以BM 、MN 、DN 为边的三角形是直角三角形.测试1. 如图,等腰直角△ADB 与等腰直角△AEC 共点于A ,连接BE 、CD ,则线段BE 、CD具有什么样的数量关系和位置关系 【解析】 先证明ABE ADC △≌△∴BE =CD ,再类似例1倒角即可得到BE ⊥CD测试2. 如图,△ABD 为等腰直角三角形,45∠=︒MAN ,求证:以BM 、MN 、DN 为边的三角形是直角三角形. 【解析】 过B 作BD 的垂线并取BQ =ND ,连接AQ 、QM先证∴=AQB AND AQ AN △≌△, 再证∴=AQM ANM MN QM △≌△∴以BM 、MN 、DN 为边的三角形是直角三角形.课后测N M DA初二秋季·第4讲·提高班·教师版第十五种品格:创新学会变通,变则通一天早上,一位贫困的牧师,为了转移哭闹不止的儿子的注意力,将一幅色彩缤纷的世界地图,撕成许多细小的碎片,丢在地上,许诺说:“小约翰,你如果能拼起这些碎片,我就给你二角五分钱。
学而思八年级数学培优讲义
学而思八年级数学培优讲义学而思八年级数学培优讲义旨在帮助学生巩固课堂所学知识,提高数学素养,为初中阶段的学习打下坚实基础。
以下是八年级数学培优讲义的部分内容:一、有理数及其运算1. 有理数的分类:整数、分数、正有理数、负有理数、零。
2. 有理数的加法:同号相加,异号相减;绝对值相加,符号决定和的大小。
3. 有理数的减法:减法转化为加法,被减数、减数与差的的关系。
4. 有理数的乘法:符号规律,绝对值相乘。
5. 有理数的除法:除法转化为乘法,商的变化规律。
6. 有理数的乘方:乘方的意义,乘方运算规则。
二、几何知识1.点、线、面的基本概念:点的坐标,线段的平行、垂直,平面的性质。
2.三角形的基本概念:三角形的分类,三角形的边角关系,三角形的判定。
3. 四边形的基本概念:四边形的分类,四边形的对边、对角线、内角和。
4.平行四边形的性质:对边平行且相等,对角线互相平分,平行四边形的判定。
5.矩形、菱形、正方形的性质:矩形的对角线相等,菱形的对角线垂直,正方形的性质。
三、函数与方程1.函数的基本概念:函数的定义,函数的图像,函数的性质。
2.一次函数:一次函数的解析式,一次函数的图像,一次函数与直线。
3.方程的基本概念:方程的定义,方程的解法,方程的应用。
4. 一元一次方程:一元一次方程的解法,一元一次方程的应用。
5. 一元二次方程:一元二次方程的解法,一元二次方程的应用。
四、三角形和四边形的几何证明1.三角形的证明:全等三角形的判定,相似三角形的判定。
2. 四边形的证明:平行四边形的判定,矩形、菱形、正方形的判定。
3.几何证明的方法:综合法、分析法、反证法。
五、统计与概率1.统计的基本概念:数据的收集、整理、分析。
2.频数与频率:频数分布表,频率分布表,概率的基本概念。
3.事件的概率:等可能事件的概率,条件概率,独立事件的概率。
4.统计的应用:平均数、中位数、众数,概率的应用。
通过学习八年级数学培优讲义,学生可以系统地回顾和巩固课堂所学知识,提高自己的数学能力,为初中阶段的学习打下坚实基础。
学而思初一数学秋季班第2讲.有理数综合运算.尖子班.学生版
11初一秋季·第2讲·尖子班·学生版如何计算?实数7级 实数初步实数6级 绝对值 实数5级 有理数综合运算 满分晋级阶梯漫画释义2有理数综合运算12 初一秋季·第2讲·尖子班·学生版知识点切片(4个) 7+2+1+1知识点目标有理数综合运算(7) 1、有理数加减法则;2、有理数加法的运算律;3、有理数减法法则;4、有理数乘法法则;5、有理数除法法则;6、有理数乘方;7、有理数混合运算的运算顺序 裂项技巧(2) 1、分数裂项;2、整数裂项 连锁约分(1) 1、连锁约分,简便运算 整体思想(1)1、整体思想,化繁为简题型切片(6个)对应题目题型目标 乘法分配律的应用 例1、练习1 连续自然数的加减交替 例2、练习1 有理数综合运算 例3、练习2裂项 例4、例5、练习3、练习4 连锁约分例6、练习5 整体思想例7、练习6有理数综合运算1.有理数加法法则:① 同号两数相加,取相同的符号,并把绝对值相加.② 绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.③ 一个数同0相加,仍得这个数.2.有理数加法的运算律:①两个加数相加,交换加数的位置,和不变.a b b a +=+(加法交换律) ②三个数相加,先把前两个数相加,或者先把后两个数相加,和不变. ()()a b c a b c ++=++(加法结合律).3.有理数减法法则:减去一个数,等于加上这个数的相反数,()a b a b -=+-.4. 有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘. 任何数同0相乘,都得0.5. 有理数除法法则:除以一个不等于0的数,等于乘以这个数的倒数.1a b a b÷=⋅,(0b ≠)两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数,都得0. 6. 有理数乘方 知识导航知识、题型切片13初一秋季·第2讲·尖子班·学生版概念:求n 个相同因数的积的运算,叫做乘方,乘方的结果叫做幂. 在n a 中,a 叫做底数,n 叫 做指数.含义:n a 中,a 为底数,n 为指数,它表示a 的个数,n a 表示有n 个a 连续相乘. 特别注意:负数及分数的乘方,应把底数加上括号.7. 有理数混合运算的运算顺序: ① 先乘方,再乘除,最后加减; ② 同级运算,从左到右进行;③ 如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.加减法为一级运算,乘除法为二级运算,乘方及开方(以后学)称为三级运算.同级运算,按从左到右的顺序进行;不同级运算,先算三级运算,然后二级,最后一级; 如果有括号,先算括号里的,有多重括号时,先算小括号里的,再算中括号里的,最后算大括号里的.④ 在进行有理数运算时,先确定符号,再计算绝对值,有括号的先算括号里的数.【例1】 计算:⑴735(1)(36)1246⎡⎤-+---⨯-⎢⎥⎣⎦⑵11171110()71110⨯⨯⨯++⑶111(0.25)(5)( 3.5)()2244-⨯-+⨯-+-⨯⑷371(8)32-⨯-乘法分配律的应用14 初一秋季·第2讲·尖子班·学生版⑸112571113623461236⎛⎫⎛⎫-÷+---+ ⎪ ⎪⎝⎭⎝⎭【例2】⑴填空:12344950-+-++-= ;123499100101-+-++-+= ; ⑵计算:()112341n n +-+-++-⨯.连续自然数加减交替问题15初一秋季·第2讲·尖子班·学生版【例3】 计算:⑴()216123113284 2.5242523412⎛⎫-÷-⨯+++--⨯ ⎪⎝⎭⑵()22213111112190.75242222⎡⎤⎛⎫⎛⎫÷÷-+÷--⨯--⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦⑶()()3220132231313 1.20.33⎛⎫--⨯-÷--⨯÷ ⎪⎝⎭⑷()()231814511722851755⎡⎤⎛⎫⎛⎫-⨯-+-⨯----⨯-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦有理数综合运算16 初一秋季·第2讲·尖子班·学生版⑸()2323510.3534124111159650.52-÷⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⨯-÷-⨯-⨯ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦÷1.分数裂项技巧:⑴()11111n n n n =-++; ⑵()1111n n k k n n k ⎛⎫=- ⎪++⎝⎭;⑶()()()()()1111122112n n n n n n n ⎡⎤=-⎢⎥+++++⎢⎥⎣⎦;⑷()()()()()1111222n n k n k k n n k n k n k ⎡⎤=-⎢⎥+++++⎢⎥⎣⎦.2.整数裂项技巧:⑴()()()()()()()()111121121133n n n n n n n n n n n n +=++--=++--+⎡⎤⎡⎤⎣⎦⎣⎦; ⑵()()()()()()()()()()()()1112123112311244n n n n n n n n n n n n n n n n ++=+++--=+++--++⎡⎤⎡⎤⎣⎦⎣⎦.3.连锁约分多个分数相乘通过约掉分子分母中的相同因数简便运算.思路导航分数裂项运算17初一秋季·第2讲·尖子班·学生版【例4】 计算:⑴11111161111161621212626313136+++++⨯⨯⨯⨯⨯⨯; ⑵2310011(12)(12)(123)(1299)(12100)----⨯++++++++++.【例5】 计算:⑴12233499100⨯+⨯+⨯++⨯;整数裂项运算18 初一秋季·第2讲·尖子班·学生版⑵1335579799⨯+⨯+⨯++⨯;⑶123234484950⨯⨯+⨯⨯++⨯⨯.【例6】 计算:⑴11111111111111241035911⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++---- ⎪⎪⎪⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭连锁约分运算19初一秋季·第2讲·尖子班·学生版⑵11111111111113243546979998100⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+⨯+⨯+⨯+⨯⨯+⨯+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⨯⨯⨯⨯⨯⨯⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭【例7】 ⑴已知1111111112581120411101640+++++++=,111111112581120411101640---+--++的值为 .⑵计算:11111111111111232006232005232006232005⎛⎫⎛⎫⎛⎫⎛⎫+++⨯++++-++++⨯+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭整体思想20 初一秋季·第2讲·尖子班·学生版学案1. 计算:1111111261220304256⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫--+-++--+--+ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦学案2. 计算:1111113243517191820+++++⨯⨯⨯⨯⨯学案3. 33221129234+==⨯⨯;33322112336344++==⨯⨯;33332211234100454+++==⨯⨯;…….⑴ 若n 为正整数,猜想3333123n ++++= ;⑵ 利用上题的结论来比较3333123100++++与()25000-的大小.学案4. 设三个互不相等的有理数,既可分别表示为1a b a +,,的形式,又可分别表示为0bba,,的形式,则20042001a b +=初一秋季·第2讲·尖子班·学生版乘法分配律的应用、连续自然数的加减交替【练习1】 ⑴ 计算:()()(){}()34|15|73-+---+-----⎡⎤⎣⎦;⑵ 计算:1111181232⎛⎫⎛⎫-÷-+- ⎪ ⎪⎝⎭⎝⎭;⑶ 计算: 135********++++-----.有理数综合运算【练习2】 计算:4343(27)(2)(2)3⎡⎤⎛⎫-÷---⨯-+- ⎪⎢⎥⎝⎭⎣⎦裂项【练习3】 计算:1111112612203042-----= .【练习4】 计算:2446688101012⨯+⨯+⨯+⨯+⨯.复习巩固连锁约分【练习5】计算:11111111 11111111 22334420132013⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+-+-+-+-⎪⎪⎪⎪⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭整体思想【练习6】计算:()()()() 222222222222 123492350123502349+++++++-+++++++.初一秋季·第2讲·尖子班·学生版1+1=2吗? 皮亚诺(Peano,Giuseppe ) 意大利数学家。
学而思各年级数学大纲
1.通过动手操作学习倒油取水问题,进行条件判断分析; 2.通过动手测量,判断物品的真假,培养学生的逻辑推理能力。 探索多种类型数学游戏中的乐趣,感受数学之美,拓展思维。 阶段学校效果检测,帮助学生查漏补缺,有利于后期学习方法的改进。 主要内容 学会通过观察数字和得数,利用倒推思想适当添加运算符号使算式成立,并通过“24点”益 智游戏提高学习兴趣,培养学生数感。 理解小数的意义,学会读写小数并会比较小数大小;会解决生活中简单小数问题。 面积认知进阶,通过观察掌握平行四边形及梯形特征;引导学生通过转化思想推导出平行四 边形及梯形面积公式;学会利用面积公式解决实际几何问题。 利用差不变思想解决常见年龄问题。 复习余数,倍数概念。掌握带余数除法的计算及各数之间关系。 学会读懂简单的条形统计图和折线统计图,并会分析统计图提出合理性建议;学会分析表格 中通的过数找据规,律结与合递逻推辑思推想理解、决列经方典程种等树方问法题解中决的一经些典应排用列性方问式题问。题及多线交点个数、分平面个 数方法。 掌握等差数列的概念及识别方法;熟练掌握等差数列的通项公式、项数公式、求和公式、中 项定理、连续奇数和公式等重要结论并会运用;学会利用等差数列解决应用题。 学习和解决各种以数字与数值为内容的文字数字谜问题,包括数字组成的多位数,数字在运 算下的变化,数的分解、分拆与排列。
★★★
★★★
计算
几何
应用
应用 应用
逻辑 应用
巧算加减法
几何计数问题进阶
有趣的周期问题
和差问题 移多补少应用题
推理综合 重叠问题
几何
计算 应用 方法
巧求周长
数阵图 猜猜他几岁 逆向思考
学而思初二数学秋季班第2讲.倍长中线与截长补短.提高班.教师版
1初二秋季·第2讲·提高班·教师版三角形9级 全等三角形的经典模型(二)三角形8级全等三角形的经典模型(一) 三角形7级倍长中线与截长补短倍长中线与截长补短满分晋级漫画释义2倍长中线 与截长补短2初二秋季·第2讲·提高班·教师版定 义示例剖析倍长中线:即延长三角形的中线,使得延长后的线段是原中线的两倍.其目的是构造一对对顶的全等三角形; 其本质是转移边和角.EDABC其中BD CD =,延长AD 使得DE AD =,则BDE CDA △≌△.【例1】 已知ABC △中,AD 平分BAC ∠,且BD CD =,求证:AB AC =. 【解析】 延长AD 到E ,使DE AD =,连接CE .则CDE BDA △≌△,∴CE AB =,CED BAD ∠=∠, ∵AD 平分BAC ∠,∴BAD CAD ∠=∠, ∴CED CAD ∠=∠,∴CE AC =, ∴AB AC =.思路导航例题精讲知识互联网题型一:倍长中线EABCDABCD3初二秋季·第2讲·提高班·教师版【教师备选】教师可借用例1对等腰三角形三线合一性质的逆命题进行简单归纳:已知角平分线+中线证等腰三角形,如例1; 已知角平分线+高证等腰三角形,如拓展1; 已知中线+高证等腰三角形,如拓展2.【拓展1】已知△ABC 中,AD 平分∠BAC ,且AD ⊥BC ,求证:AB =AC . 【解析】∵AD 平分∠BAC ,∴∠BAD =∠CAD∵AD ⊥BC ,∴∠ADB =∠ADC =90° ∴△ABD ≌△ACD (SAS) ∴AB =AC .【拓展2】已知△ABC 中,AD ⊥BC ,且BD CD =,求证:AB =AC . 【解析】∵AD ⊥BC ,且BD CD =∴AD 所在直线是线段BC 的垂直平分线 根据垂直平分线上的点到线段两端点距离相等 故AB =AC .【例2】 ⑴如图,已知ABC △中,AB AC =,CE 是AB 边上的中线,延长AB 到D ,使BD AB =.给出下列结论:①AD =2AC ;②CD =2CE ;③∠ACE =∠BCD ;④CB 平分∠DCE ,则以上结论正确的是 . 【解析】 ①正确.∵AB AC =,BD AB =,∴AD =2AC .②、④正确.延长CE 到F ,使EF CE =,连接BF . ∵CE 是AB 的中线,∴AE EB =. 在EBF △和EAC △中 AE BEAEC BEF CE FE =⎧⎪∠=∠⎨⎪=⎩典题精练ABDEDCBA4初二秋季·第2讲·提高班·教师版∴EBF EAC ≌△△∴BF AC AB BD ===,EBF EAC ∠=∠ ∴FBC FBE EBC A ACB DBC ∠=∠+∠=∠+∠=∠ 在FBC △和DBC △中 FB DB FBC DBC BC BC =⎧⎪∠=∠⎨⎪=⎩∴FBC DBC ≌△△∴2CD CF CE ==,∠FCB =∠DCB 即CD =2CE ,CB 平分∠DCE .③错误.∵∠FCB =∠DCB ,而CE 是AB 边上中线而不是∠ACB 的角平分线故∠ACE 和∠BCD 不一定相等.⑵如图,在△ABC 中,点D 、E 为边BC 的三等分点,给出下列结论:①BD =DE =EC ;②AB +AE >2AD ;③AD +AC >2AE ;④AB +AC >AD +AE ,则以上结论正确的是 .NM ED CBAEDCBA【解析】 点D 、E 为边BC 的三等分点,∴BD =DE =CE 延长AD 至点M ,AE 至点N ,使得DM =AD ,EN =AE ,连接EM 、CN ,则可证明△ABD ≌△MED ,进而可得AB +AE >2AD ,再证明△ADE ≌△NCE ,进而可得AD +AC >2AE ,将两式相加可得到AB +AE +AD +AC >2AD +2AE ,即AB +AC >AD +AE . ∴①②③④均正确.【例3】 如图,已知在ABC △中,AD 是BC 边上的中线,E 是AD 上一点,延长BE 交AC 于F ,AF EF =,求证:AC BE =.FCAEBD5初二秋季·第2讲·提高班·教师版【解析】 延长AD 到G ,使DG AD =,连接BG∵BD CD =,BDG CDA ∠=∠,AD GD = ∴ADC GDB △≌△, ∴AC GB =,G EAF ∠=∠ 又∵AF EF =,∴EAF AEF BED ∠=∠=∠ ∴G BED ∠=∠,∴BE BG =,∴AC BE =.【例4】 在正方形ABCD 中,PQ ⊥BD 于P ,M 为QD 的中点,试探究MP 与MC 的关系.NABCDMPQ Q PMDCBA【解析】 延长PM 至点N ,使PM =MN ,连结CP 、CN 、DN .易证△PMQ ≌△NMD , ∴PB =PQ =DN ,∠PQD =∠NDM ∴PQ ∥DN ,又∵∠BPQ =∠BDN= 90° ∴∠PBQ =∠BDC=∠NDC =45° 再证△BPC ≌△DNC (SAS) 易证△PCN 为等腰直角三角形, 又∵PM =MN ,∴PM ⊥MC ,且PM =CM .GFEDCBA FE D CBA6初二秋季·第2讲·提高班·教师版定 义示例剖析截长:即在一条较长的线段上截取一段较短的线段DCBA在线段AB 上截取AD AC =补短:即在较短的线段上补一段线段使其和较长的线段相等AB C D延长AC ,使得AD AB =【例5】 在ABC △中,A ∠的平分线交BC 于D ,AB AC CD =+,40B ∠=︒,求C ∠的大小.(希望杯培训题)D C B AED CB A【解析】 在AB 上截取AE AC =,连接DE .∵AE AC =,BAD CAD ∠=∠,AD AD =,∴ACD AED △≌△, ∴C AED ∠=∠,CD DE =,∵AB AC CD =+,AE AC =,∴CD BE DE == ∴40EBD EDB ∠=∠=︒,80C AED ∠=∠=︒例题精讲思路导航题型二:截长补短7初二秋季·第2讲·提高班·教师版D CB AEDCB AD CEBAE DCB A【例6】 如图,在ABC △中,2B C ∠=∠,BAC ∠的平分线AD 交BC 于点D .求证:AB BD AC +=. 【解析】方法一:(截长)在AC 上截取AB AE =,连接DE .在ABD △和AED △中AB AE =,BAD EAD ∠=∠,AD AD =∴ABD AED △≌△∴BD ED =,B AED ∠=∠又∵2AED EDC C B C ∠=∠+∠=∠=∠ ∴EDC C ∠=∠,∴ED EC =∴AB BD AC +=. 方法二:(补短)延长AB 到点E 使得AC AE =,连接DE . 在AED △和ACD △中,AE AC =,EAD CAD ∠=∠,AD AD = ∴AED ACD △≌△,∴C E ∠=∠ 又∵22ABC E BDE C BDE ∠=∠+∠=∠=∠ ∴E BDE ∠=∠∴BE BD =,∴AB BD AC +=.方法三:(补短)延长DB 到点E 使得AB BE =,连接AE 则有EAB E ∠=∠,2ABC E EAB E ∠=∠+∠=∠ 又∵2ABC C ∠=∠,∴C E ∠=∠ ∴AE AC = EAD EAB BAD E DAC ∠=∠+∠=∠+∠C DAC ADE =∠+∠=∠∴AE DE =,∴AB BD EB BD ED AE AC +=+=== ∴AB +BD=AC若题目条件或求证结论中含有“a b c =+”的条件,需要添加辅助线时多考虑“截长补短”.建议教师此题把3种解法都讲一下,方便学生更加深刻理解这种辅助线添加方法.【例7】 已知:在ABC △中,AB CD BD =-,AD BC ⊥,求证:2B C ∠=∠.【解析】 方法一:在DC 上取一点E ,使BD DE =,如图1,在ABD △和AED △中,AD BC ⊥,BD ED =,AD AD =.典题精练DC BA8初二秋季·第2讲·提高班·教师版∴ABD AED △≌△. ∴AB AE =,B AED ∠=∠.又∵AE AB CD BD CD DE EC ==-=-= ∴C EAC ∠=∠,∴2C EAC AED C ∠+∠=∠=∠ ∴2B C ∠=∠.图1E AB CD图2EAB CD方法二:延长DB 到点E ,使BE AB =,如图2, ∴E EAB ∠=∠.∵AB CD BD =-,∴ED CD =.在AED △和ACD △中,AD BC ⊥,ED CD =,AD AD =. ∴AED ACD △≌△. ∴E C ∠=∠. ∵2ABD E ∠=∠ ∴2B C ∠=∠.【探究对象】截长补短法是几何证明题中十分重要的方法,通常来证明几条线段的数量关系,常见做辅助线方法有: 截长法:⑴过某一点作长边的垂线;⑵在长边上截取一条与某一短边相同的线段,再证剩下的线段与另一短边相等。
2019-2020人教版八年级数学上册第十三章轴对称复习课件85张
数学
八年级 上册
新课标(RJ)
第十三章 轴对称
章末复习
第十三章 轴对称
章末复习
知识框架 归纳整合 素养提升 中考链接
章末复习
知识框架
轴对称
等腰三角形
用坐标表 示轴对称
轴对称
章末复习
有关概念 轴 对 线段的垂 称 直平分线
有关性质
轴对称
轴对称图形 定义:经过线段中点并且垂直于这条线段的直线 性质:线段垂直平分线上的点与这 条线段两个端点的距离相等 判定:与一条线段两个端点距离相等 的点, 在这条线段的垂直平分线上 对应线段相等,对应角相等
相关题 5-3 如图13-Z-14, 已知:△ABC是等腰直角三角形, ∠A=90°, BD平分∠ABC交AC于点D, CE⊥BD, 交BD的延长 线于点E.求证:BD=2CE.
章末复习
证明:如图,延长 BA 和 CE 交于点 M. ∵CE⊥BD, ∴∠BEC=∠BEM=90°. ∵BD 平分∠ABC,∴∠MBE=∠CBE.
章末复习
专题四 等边三角形与全等三角形的综合应用
【要点指导】等边三角形的性质与判定和全等三角形等知识综合, 为证明线段相等、角相等、线段的倍分问题提供了很好的思路和 理论依据, 此类题难度不大, 但是步骤烦琐, 属于中档题.
章末复习
例4 如图13-Z-7, △DAC, △EBC均是等边三角形, 点A, C, B在同一条 直线上, 且AE, BD分别与DC, EC交于点M, N, 连接MN. 求证:(1)AE=DB; (2)△CMN为等边三角形.
解 如图13-Z-3所示.
章末复习
相关题2 [绥化中考] 如图13-Z-4,在8×8的正方形网格中,每个 小正方形的边长都是1. 已知△ABC的三个顶点都在格点上, 画 出△ABC关于直线l对称的△A1B1C1.
学而思初二数学上册培优辅导讲义(人教版)
第1讲与相交有关概念及平行线的判定考点·方法·破译1.了解在平面内,两条直线的两种位置关系:相交与平行.2.掌握对顶角、邻补角、垂直、平行、内错角、中旁内角的定义,并能用图形或几何符号表示它们.3.掌握直线平行的条件,并能根据直线平行的条件说明两条直线的位置关系.经典·考题·赏析【例1】如图,三条直线AB 、CD 、EF 相交于点O ,一共构成哪几对对顶角?一共构成哪几对邻补角?【解法指导】⑴对顶角和邻补角是两条直线所形成的图角.⑵对顶角:有一个公共顶点,并且一个角的两边是另一个角的两边的反向延长线.⑶邻补角:两个角有一条公共边,另一边互为反向延长线.有6对对顶角. 12对邻补角. 【变式题组】01.如右图所示,直线AB 、CD 、EF 相交于P 、Q 、R ,则:⑴∠ARC 的对顶角是. 邻补角是.⑵中有几对对顶角,几对邻补角?02.当两条直线相交于一点时,共有2对对顶角;当三条直线相交于一点时,共有6对对顶角;当四条直线相交于一点时,共有12对对顶角.问:当有100条直线相交于一点时共有对顶角.【例2】如图所示,点O 是直线AB 上一点,OE 、OF 分别平分∠BOC 、∠AOC .⑴求∠EOF 的度数;⑵写出∠BOE 的余角及补角.【解法指导】解这类求角大小的问题,要根据所涉及的角的定义,以及各角的数量关系,把它们转化为代数式从而求解;【解】⑴∵OE 、OF 平分∠BOC 、∠AOC∴∠EOC =21∠BOC ,∠FOC =21∠AOC∴∠EOF =∠EOC +∠FOC =21∠BOC +21∠AOC =AOCBOC21又∵∠BOC +∠AOC =180°∴∠EOF =21×180°=90°⑵∠BOE 的余角是:∠COF 、∠AOF ;∠BOE 的补角是:∠AOE. 【变式题组】01.如图,已知直线AB 、CD 相交于点O ,OA 平分∠EOC ,且∠EOC =100°,则∠BOD 的度数是()A .20°B .40°C .50°D .80°02.(杭州)已知∠1=∠2=∠3=62°,则∠4=. 【例3】如图,直线l1、l2相交于点O ,A 、B 分别是l1、l2上的点,试用三角尺完成下列作图:⑴经过点A 画直线l2的垂线. ⑵画出表示点B 到直线l1的垂线段.【解法指导】垂线是一条直线,垂线段是一条线段.【变式题组】01.P 为直线l 外一点,A 、B 、C是直线l 上三点,且PA =4cm ,PB =5cm ,PC =6cm ,则点P到直线l 的距离为()A .4cmB .5cmC .不大于4cmD .不小于6cm02 如图,一辆汽车在直线形的公路AB 上由A 向B 行驶,M 、N 为位于公路两侧的村庄;⑴设汽车行驶到路AB 上点P 的位置时距离村庄M 最近.行ABCDEFAB CDEFPQRABCEFOEAACDO(第1题图) 143 2(第2题图)ABOl 2l 1驶到AB 上点Q 的位置时,距离村庄N 最近,请在图中的公路上分别画出点P 、Q 的位置.⑵当汽车从A 出发向B 行驶的过程中,在的路上距离M 村越来越近..在的路上距离村庄N 越来越近,而距离村庄M越来越远.【例4】如图,直线AB 、CD 相交于点O ,OE ⊥CD ,OF ⊥AB ,∠DOF =65°,求∠BOE 和∠AOC 的度数.【解法指导】图形的定义现可以作为判定图形的依据,也可以作为该图形具备的性质,由图可得:∠AOF =90°,OF ⊥AB .【变式题组】01.如图,若EO ⊥AB 于O ,直线CD 过点O ,∠EOD ︰∠EOB =1︰3,求∠AOC 、∠AOE 的度数.02.如图,O 为直线AB 上一点,∠BOC =3∠AOC ,OC 平分∠AOD .⑴求∠AOC 的度数;⑵试说明OD 与AB 的位置关系.03.如图,已知AB ⊥BC 于B ,DB ⊥EB 于B ,并且∠CBE ︰∠ABD =1︰2,请作出∠CBE 的对顶角,并求其度数. 【例5】如图,指出下列各组角是哪两条直线被哪一条直线所截而得到的,并说出它们的名称:∠1和∠2:∠1和∠3:∠1和∠6:∠2和∠6:∠2和∠4:∠3和∠5:∠3和∠4:【解法指导】正确辩认同位角、内错角、同旁内角的思路是:首先弄清所判断的是哪两个角,其次是找到这两个角公共边所在的直线即截线,其余两条边所在的直线就是被截的两条直线,最后确定它们的名称.【变式题组】FBAOCDECDB AEOCDABAEDCFEBAD14 2 365AB GE01.如图,平行直线AB 、CD 与相交直线EF ,GH 相交,图中的同旁内角共有()A .4对B . 8对C .12对D .16对02.如图,找出图中标出的各角的同位角、内错角和同旁内角.03.如图,按各组角的位置判断错误的是()A .∠1和∠2是同旁内角B .∠3和∠4是内错角C .∠5和∠6是同旁内角D .∠5和∠7是同旁内角【例6】如图,根据下列条件,可推得哪两条直线平行?并说明理由?⑴∠CBD =∠ADB ;⑵∠BCD +∠ADC =180°⑶∠ACD =∠BAC 【解法指导】图中有即即有同旁内角,有“”即有内错角.【解法指导】⑴由∠CBD =∠ADB ,可推得AD ∥BC ;根据内错角相等,两直线平行.⑵由∠BCD +∠ADC =180°,可推得AD ∥BC ;根据同旁内角互补,两直线平行.⑶由∠ACD =∠BAC 可推得AB ∥DC ;根据内错角相等,两直线平行.【变式题组】01.如图,推理填空.⑴∵∠A =∠(已知)∴AC ∥ED ()⑵∵∠C =∠(已知)∴AC ∥ED ()⑶∵∠A =∠(已知)∴AB ∥DF ()02.如图,AD 平分∠BAC ,EF 平分∠DEC ,且∠1=∠2,试说明DE 与AB 的位置关系.解:∵AD 是∠BAC 的平分线(已知)∴∠BAC =2∠1(角平分线定义)又∵EF 平分∠DEC (已知)∴()又∵∠1=∠2(已知)∴()∴AB∥DE()03.如图,已知AE 平分∠CAB ,CE 平分∠ACD .∠CAE +∠ACE=90°,求证:AB ∥CD .04.如图,已知∠ABC =∠ACB ,BE 平分∠ABC ,CD 平分∠ACB ,∠EBF =∠EFB ,求证:CD ∥EF.7 1 5 6 8 4 1 2乙丙3 23 4 5 6123 4甲1 A BC 2 3 456 7 ABCDOABDEFCABC DEA BCDE F12ADE【例7】如图⑴,平面内有六条两两不平行的直线,试证:在所有的交角中,至少有一个角小于31°.【解法指导】如图⑵,我们可以将所有的直线移动后,使它们相交于同一点,此时的图形为图⑵.证明:假设图⑵中的12个角中的每一个角都不小于31°则12×31°=372°>360°这与一周角等于360°矛盾所以这12个角中至少有一个角小于31°【变式题组】01.平面内有18条两两不平行的直线,试证:在所有的交角中至少有一个角小于11°.02.在同一平面内有2010条直线a1,a2,…,a2010,如果a1⊥a2,a2∥a3,a3⊥a4,a4∥a5……那么a1与a2010的位置关系是.03.已知n(n>2)个点P1,P2,P3…Pn.在同一平面内没有任何三点在同一直线上,设Sn表示过这几个点中的任意两个点所作的所有直线的条数,显然:S2=1,S3=3,S4=6,∴S5=10…则Sn=.演练巩固·反馈提高01.如图,∠EAC=∠ADB=90°.下列说法正确的是()A.α的余角只有∠ B B.α的邻补角是∠DACC.∠ACF是α的余角D.α与∠ACF互补02.如图,已知直线AB、CD被直线EF所截,则∠EMB的同位角为()A.∠AMF B.∠BMF C.∠ENC D.∠END03.下列语句中正确的是()A.在同一平面内,一条直线只有一条垂线B.过直线上一点的直线只有一条C.过直线上一点且垂直于这条直线的直线有且只有一条D.垂线段就是点到直线的距离04.如图,∠BAC=90°,AD⊥BC于D,则下列结论中,正确的个数有()①AB⊥AC ②AD与AC互相垂直③点C到AB的垂线段是线段AB ④线段AB 的长度是点B到AC的距离⑤垂线段BA是点B到AC的距离⑥AD>BDA.0 B. 2 C.4 D.605.点A、B、C是直线l上的三点,点P是直线l外一点,且PA=4cm,PB=5cm,PC=6cm,则点P到直线l的距离是()A.4cm B.5cm C.小于4cm D.不大于4cm06.将一副直角三角板按图所示的方法旋转(直角顶点重合),则∠AOB+∠DOC =.l1l2l3l4l5l6图⑴l1l2l3l4l5l6图⑵AEB C FDABC DFEMNα第1题图第2题图AB D C第4题图07.如图,矩形ABCD沿EF对折,且∠DEF=72°,则∠AEG=. 08.在同一平面内,若直线a1∥a2,a2⊥a3,a3∥a4,…则a1 a10.(a1与a10不重合)09.如图所示,直线a、b被直线c所截,现给出下列四个条件:①∠1=∠5,②∠1=∠7,③∠2+∠3=180°,④∠4=∠7,其中能判断a∥b的条件的序号是.10.在同一平面内两条直线的位置关系有.11.如图,已知BE平分∠ABD,DE平分∠CDB,且∠E=∠ABE+∠EDC.试说明AB∥CD?12.如图,已知BE平分∠ABC,CF平分∠BCD,∠1=∠2,那么直线AB与CD的位置关系如何?13.如图,推理填空:⑴∵∠A=(已知)∴AC∥ED()⑵∵∠2=(已知)∴AC∥ED()⑶∵∠A+=180°(已知)∴AB∥FD.14.如图,请你填上一个适当的条件使AD∥BC.培优升级·奥赛检测01.平面图上互不重合的三条直线的交点的个数是()A.1,3 B.0,1,3 C.0,2, 3D.0,1,2,302.平面上有10条直线,其中4条是互相平行的,那么这10ABCDOAB CDEFGHabc第6题图第7题图第9题图123 4567 81AC DEBA BC DEF12AB CDEF第14题图ADEA D条直线最多能把平面分成()部分.A.60 B.55 C.50 D.4503.平面上有六个点,每两点都连成一条直线,问除了原来的6个点之外,这些直线最多还有()个交点.A.35 B.40 C.45 D.5504.如图,图上有6个点,作两两连线时,圆内最多有__________________交点.05.如图是某施工队一张破损的图纸,已知a、b是一个角的两边,现在要在图纸上画一条与这个角的平分线平行的直线,请你帮助这个施工队画出这条平行线,并证明你的正确性.06.平面上三条直线相互间的交点的个数是()A.3 B.1或3 C.1或2或3 D.不一定是1,2,3 07.请你在平面上画出6条直线(没有三条共点)使得它们中的每条直线都恰好与另三条直线相交,并简单说明画法?08.平面上有10条直线,无任何三条交于一点,要使它们出现31个交点,怎么安排才能办到?09.如图,在一个正方体的2个面上画了两条对角线AB、AC,那么两条对角线的夹角等于()A.60°B.75°C.90°D.135°10.在同一平面内有9条直线如何安排才能满足下面的两个条件?⑴任意两条直线都有交点;⑵总共有29个交点.第13讲平行线的性质及其应用考点·方法·破译1.掌握平行线的性质,正确理解平行线的判定与性质定理之间的区别和联系;2.初步了解命题,命题的构成,真假命题、定理;3.灵活运用平行线的判定和性质解决角的计算与证明,确定两直线的位置关系,感受转化思想在解决数学问题中的灵活应用.经典·考题·赏析【例1】如图,四边形ABCD中,AB∥CD,BC∥AD,∠A=38°,求∠C的度数.【解法指导】两条直线平行,同位角相等;两条直线平行,内错角相等;两条直线平行,同旁内角互补.平行线的性质是推导角关系的重要依据之一,必须正确识别图形的特征,看清截线,识别角的关系式关键.【解】:∵AB∥CD BC∥AD∴∠A+∠B=180°∠B+∠C=180°(两条直线平行,同旁内角互补)∴∠A=∠C ∵∠A=38°∴∠C=38°【变式题组】01.如图,已知AD∥BC,点E在BD的延长线上,若∠ADE=155°,则∠DBC 的度数为()A.155°B.50°C.45°D.25°a bAC02.(安徽)如图,直线l1 ∥l2,∠1=55°,∠2=65°,则∠3为()A .50°B .55°C .60°D .65°03.如图,已知FC ∥AB ∥DE ,∠α:∠D :∠B =2: 3: 4, 试求∠α、∠D 、∠B的度数.【例2】如图,已知AB ∥CD ∥EF ,GC ⊥CF ,∠B =60°,∠EFC =45°,求∠BCG 的度数.【解法指导】平行线的性质与对顶角、邻补角、垂直和角平分线相结合,可求各种位置的角的度数,但注意看清角的位置. 【解】∵AB ∥CD ∥EF ∴∠B =∠BCD∠F =∠FCD(两条直线平行,内错角相等)又∵∠B =60°∠EFC =45°∴∠BCD =60°∠FCD =45°又∵GC ⊥CF ∴∠GCF =90°(垂直定理)∴∠GCD =90°-45°=45°∴∠BCG =60°-45°=15°【变式题组】01.如图,已知AF ∥BC, 且AF 平分∠EAB ,∠B =48°,则∠C 的的度数=_______________02.如图,已知∠ABC +∠ACB =120°,BO 、CO 分别∠ABC 、∠ACB ,DE 过点O 与BC 平行,则∠BOC =___________03.如图,已知AB ∥MP ∥CD, MN 平分∠AMD ,∠A =40°,∠D =50°,求∠NMP 的度数.【例3】如图,已知∠1=∠2,∠C =∠D .求证:∠A =∠F.【解法指导】因果转化,综合运用.逆向思维:要证明∠A =∠F ,即要证明DF ∥AC .要证明DF ∥AC, 即要证明∠D +∠DBC =180°,即:∠C +∠DBC =180°;要证明∠C +∠DBC=180°即要证明DB ∥EC .要证明DB ∥EC 即要证明∠1=∠3.证明:∵∠1=∠2,∠2=∠3(对顶角相等)所以∠1=∠3 ∴DB ∥EC (同位角相等?两直线平行)∴∠DBC +∠C =180°(两直线平行,同旁内角互补)∵∠C =∠D ∴∠DBC +∠D =180°∴DF ∥AC (同旁内角,互补两直线平行)∴∠A =∠F (两直线平行,内错角相等)【变式题组】01.如图,已知AC ∥FG ,∠1=∠2,求证:DE ∥FG ABC DOE FAEBC (第1题图)(第2题图)EABDα12 C F(第3题图)321l 1l 2(第2题图)(第1题图) EDCBAEAFG D CB BAMCDN P (第3题图)DAE F1 32B CA 1DFDA 21BFE ACD02.如图,已知∠1+∠2=180°,∠3=∠B .求证:∠AED =∠ACB03.如图,两平面镜α、β的夹角θ,入射光线AO 平行于β入射到α上,经两次反射后的出射光线O ′B平行于α,则角θ等于_________.【例4】如图,已知EG ⊥BC ,AD ⊥BC ,∠1=∠3.求证:AD 平分∠BAC .【解法指导】抓住题中给出的条件的目的,仔细分析条件给我们带来的结论,对于不能直接直接得出结论的条件,要准确把握住这些条件的意图.(题目中的:∠1=∠3)证明:∵EG ⊥BC ,AD ⊥BC∴∠EGC =∠ADC =90°(垂直定义)∴EG ∥AD (同位角相等,两条直线平行)∵∠1=∠3 ∴∠3=∠BAD (两条直线平行,内错角相等)∴AD 平分∠BAC (角平分线定义)【变式题组】01.如图,若AE ⊥BC 于E ,∠1=∠2,求证:DC⊥BC .02.如图,在△ABC 中,CE ⊥AB 于E,DF ⊥AB 于F, AC ∥ED ,CE 平分∠ACB .求证:∠EDF =∠BDF.3.已知如图,AB ∥CD ,∠B =40°,CN 是∠BCE 的平分线. CM ⊥CN ,求:∠BCM 的度数.【例5】已知,如图,AB ∥EF ,求证:∠ABC +∠BCF +∠CFE =360°【解法指导】从考虑360°这个特殊角入手展开联想,分析类比,A DMCNEBA2CF 3 ED1B(第2题图)O/αO θβB31ABG DCEA BαβP BC D A∠P =α+β 3 21γ 4ψDαβEBC AFHF γD αβE BCA FDEB CABCAA ′lB ′C ′DBCA联想周角.构造两个“平角”或构造两组“互补”的角.过点C 作CD ∥AB 即把已知条件AB ∥EF 联系起来,这是关键.【证明】:过点C 作CD ∥AB ∵CD ∥AB ∴∠1+∠ABC =180°(两直线平行,同旁内角互补) 又∵AB ∥EF ,∴CD ∥EF (平行于同一条直线的两直线平行)∴∠2+∠CFE =180°(两直线平行,同旁内角互补) ∴∠ABC +∠1+∠2+∠CFE =180°+180°=360°即∠ABC +∠BCF +∠CFE =360°【变式题组】01.如图,已知,AB ∥CD ,分别探究下面四个图形中∠APC 和∠PAB 、∠PCD的关系,请你从所得四个关系中选出任意一个,说明你探究的结论的正确性. 结论:⑴____________________________⑵____________________________ ⑶____________________________⑷____________________________【例6】如图,已知,AB ∥CD ,则∠α、∠β、∠γ、∠ψ之间的关系是∠α+∠γ+∠ψ-∠β=180°【解法指导】基本图形善于从复杂的图形中找到基本图形,运用基本图形的规律打开思路.【解】过点E 作EH ∥AB .过点F 作FG∥AB .∵AB ∥EH ∴∠α=∠1(两直线平行,内错角相等)又∵FG ∥AB ∴EH ∥FG (平行于同一条直线的两直线平行)∴∠2=∠3 又∵AB ∥CD∴FG ∥CD (平行于同一条直线的两直线平行)∴∠ψ+∠4=180°(两直线平行,同旁内角互补)∴∠α+∠γ+∠ψ-∠β=∠1+∠3+∠4-ψ-∠1-∠2=∠4+ψ=180°【变式题组】01.如图,AB ∥EF ,∠C =90°,则∠α、∠β、∠γ的关系是()A .∠β=∠α+∠γB .∠β+∠α+∠γ=180°C .∠α+∠β-∠γ=90°D .∠β+∠γ-∠α=90°02.如图,已知,AB ∥CD ,∠ABE 和∠CDE 的平分线相交于点F ,∠E =140°,求∠BFD 的度数.【例7】如图,平移三角形ABC ,设点A 移动到点A/,画出平移后的三角形A/B/C/.【解法指导】抓住平移作图的“四部曲”——定,找,移,连.⑴定:确定平移的方向和距离.⑵找:找出图形的关键点.⑶移:过关键点作平行且相等的线段,得到关键点的对应点.⑷连: 按原图形顺次连接对应点.【解】①连接AA/②过点B 作AA/的平行线l ③在l 截取BB/=AA/,则点B/就是的B 对应点,用同样的方法作出点C 的对应点C/.连接A/B/,B/C/,C/A/就得到平移后的三角形A/B/C/.【变式题组】01.如图,把四边形ABCD 按箭头所指的方向平移21cm ,作出平移后的图形.BAPCACCDAAPCBDPBPD BD ⑴⑵⑶⑷西B 30°A北东南02.如图,已知三角形ABC 中,∠C =90°, BC =4,AC =4,现将△ABC 沿CB 方向平移到△A/B/C/的位置,若平移距离为3, 求△ABC 与△A/B/C/的重叠部分的面积.03.原来是重叠的两个直角三角形,将其中一个三角形沿着BC 方向平移BE 的距离,就得到此图形,求阴影部分的面积.(单位:厘米)演练巩固反馈提高01.如图,由A 测B 得方向是()A .南偏东30°B .南偏东60°C .北偏西30°D .北偏西60°02.命题:①对顶角相等;②相等的角是对顶角;③垂直于同一条直线的两直线平行;④平行于同一条直线的两直线垂直.其中的真命题的有()A .1个B .2个C .3个D .4个03.一个学员在广场上练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,两次拐弯的角度可能是()A .第一次向左拐30°,第二次向右拐30°B .第一次向右拐50°,第二次向左拐130°C .第一次向左拐50°,第二次向右拐130°D .第一次向左拐60°,第二次向左拐120°04.下列命题中,正确的是()A .对顶角相等B .同位角相等C .内错角相等D .同旁内角互补05.学习了平行线后,小敏想出过直线外一点画这条直线的平行线的新方法,是通过折一张半透明的纸得到的[如图⑴—⑷]从图中可知,小敏画平行线的依据有()①两直线平行,同位角相等;②两直线平行,内错角相等;③同位角相等,两直线平行;④内错角相等,两直线平行.A .①②B .②③C .③④D .①④06.在A 、B 两座工厂之间要修建一条笔直的公路,从A 地测得B 地的走向是南偏东52°.现A 、B 两地要同时开工,若干天后,公路准确对接,则B 地所修公路的走向应该是()A .北偏东52°B .南偏东52°C .西偏北52°D .北偏西38°07.下列几种运动中属于平移的有()①水平运输带上的砖的运动;②笔直的高诉公路上行驶的汽车的运动(忽略车轮的转动);③升降机上下做机械运动;④足球场上足球的运动.A .1种B .2种C .3种D .4种08.如图,网格中的房子图案正好处于网格右下角的位置.平移这个图案,使它正好位于左上角的位置(不能出格)P.P.P.P .⑴⑵⑶⑷D538AFCB E B B/AA/CC/150°120°DBCE 湖21ABEF09.观察图,哪个图是由图⑴平移而得到的()10.如图,AD∥BC,AB∥CD,AE⊥BC,现将△ABE进行平移. 平移方向为射线AD的方向. 平移距离为线段BC的长,则平移得到的三角形是图中()图的阴影部分.11.判断下列命题是真命题还是假命题,如果是假命题,举出一个反例.⑴对顶角是相等的角;⑵相等的角是对顶角;⑶两个锐角的和是钝角;⑷同旁内角互补,两直线平行.12.把下列命题改写成“如果……那么……”的形式,并指出命题的真假.⑴互补的角是邻补角;⑵两个锐角的和是锐角;⑶直角都相等.13.如图,在湖边修一条公路.如果第一个拐弯处∠A=120°,第二个拐弯处∠B =150°,第三个拐弯处∠C,这时道路CE恰好和道路AD平行,问∠C是多少度?并说明理由.14.如图,一条河流两岸是平行的,当小船行驶到河中E点时,与两岸码头B、D成64°角. 当小船行驶到河中F点时,看B点和D点的视线FB、FD恰好有∠1=∠2,∠3=∠4的关系. 你能说出此时点F与码头B、D所形成的角∠BFD的度数吗?DEAB CE DB CE D AB CEDAB CEDA B C4P231 ABEFCD 15.如图,AB ∥CD ,∠1=∠2,试说明∠E 和∠F 的关系.培优升级·奥赛检测01.如图,等边△ABC 各边都被分成五等分,这样在△ABC 内能与△DEF 完成重合的小三角形共有25个,那么在△ABC 内由△DEF 平移得到的三角形共有()个02.如图,一足球运动员在球场上点A 处看到足球从B 点沿着BO 方向匀速滚来,运动员立即从A 处以匀速直线奔跑前去拦截足球.若足球滚动的速度与该运动员奔跑的速度相同,请标出运动员的平移方向及最快能截住足球的位置.(运动员奔跑于足球滚动视为点的平移)03.如图,长方体的长AB =4cm ,宽BC =3cm ,高AA1=2cm. 将AC 平移到A1C1的位置上时,平移的距离是___________,平移的方向是___________.04.如图是图形的操作过程(五个矩形水平方向的边长均为a ,竖直方向的边长为b );将线段A1A2向右平移1个单位得到B1B2,得到封闭图形A1A2B2B1 [即阴影部分如图⑴];将折现A1A2 A3向右平移1个单位得到B1B2B3,得到封闭图形A1A2 A3B3B2B1 [即阴影部分如图⑵];⑴在图⑶中,请你类似地画出一条有两个折点的直线,同样的向右平移1个单位,从而得到1个封闭图形,并画出阴影.⑵请你分别写出上述三个阴影部分的面积S1=________, S2=________, S3=________. ⑶联想与探究:如图⑷,在一矩形草地上,有一条弯曲的柏油小路(小路在任何地方的水平宽度都是1个单位),请你猜想空白部分草地面积是多少?05.一位模型赛车手遥控一辆赛车,先前进一半,然后原地逆时针旋转α°(0°<α°<180°),被称为一次操作,若5次后发现赛车回到出发点,则α°角为()A .720°B .108°或144°C .144°D .720°或144°06.两条直线a 、b 互相平行,直线a 上顺次有10个点A1、A2、…、A10,直线b 上顺次有10个点B1、B2、…、B9,将a 上每一点与b 上A 2B 2A 3B 3B 4A 4A 1B 1草地草地A 1B 2⑵B 1A 2B 2A 1B 1A 3B 3A 2⑴⑶⑷⑸CB 1A A 1C 1D 1BD.B .O .A FADE CBBDCFAE FEBA CGD每一点相连可得线段.若没有三条线段相交于同一点,则这些选段的交点个数是()A .90B .1620C .6480D .200607.如图,已知AB ∥CD ,∠B =100°,EF 平分∠BEC ,EG ⊥EF. 求∠BEG 和∠DEG.08.如图,AB ∥CD ,∠BAE =30°,∠DCE =60°,EF 、EG 三等分∠AEC .问:EF 与EG 中有没有与AB 平行的直线?为什么?09.如图,已知直线CB ∥OA ,∠C =∠OAB =100°,E 、F 在CB 上,且满足∠FOB =∠AOB ,OE 平分∠COF.⑴求∠EOB 的度数;⑵若平行移动AB ,那么∠OBC :∠OFC 的值是否随之发生变化?若变化,找出变化规律;若不变,求出这个比值.⑶在平行移动AB 的过程中,是否存在某种情况,使∠OEC =∠OBA ?若存在,求出其度数;若不存在,说明理由.10.平面上有5条直线,其中任意两条都不平行,那么在这5条直线两两相交所成的角中,至少有一个角不超过36°,请说明理由.11.如图,正方形ABCD 的边长为5,把它的对角线AC 分成n 段,以每一小段为对角线作小正方形,这n 个小正方形的周长之和为多少?12.如图将面积为a2的小正方形和面积为b2的大正方形放在一起,用添补法如何求出阴影部分面积?第06讲实数考点·方法·破译1.平方根与立方根:若2x =a(a ≥0)则x 叫做a 的平方根,记为:a 的平FEBACGD100°FEBCABCD方根为x=±a,其中a的平方根为x=a叫做a的算术平方根.若x3=a,则x叫做a的立方根.记为:a的立方根为x=3a.2.无限不循环小数叫做无理数,有理数和无理数统称实数.实数与数轴上的点一一对应.任何有理数都可以表示为分数pq(p、q是两个互质的整数,且q≠0)的形式.3非负数:实数的绝对值,实数的偶次幂,非负数的算术平方根(或偶次方根)都是非负数.即a>0,2na≥0(n为正整数),a≥0(a≥0) .经典·考题·赏析【例1】若2m-4与3m-1是同一个数的平方根,求m的值.【解法指导】一个正数的平方根有两个,并且这两个数互为相反数.∵2m -4与3m-l是同一个数的平方根,∴2m-4 +3m-l=0,5m=5,m=l.【变式题组】01.一个数的立方根与它的算术平方根相等,则这个数是____.02.已知m是小于152的最大整数,则m的平方根是____.03.9的立方根是____.04.如图,有一个数值转化器,当输入的x为64时,输出的y是____.【例2】(全国竞赛)已知非零实数a、b满足2242342a b a b a,则a+b等于( )A.-1 B.0 C.1 D.2【解法指导】若23a b有意义,∵a、b为非零实数,∴b2>0∴a-3≥0 a ≥3∵2242342a b a b a∴2242342a b a b a,∴2230b a b.∴22030ba b,∴32ab,故选C.【变式题组】0l.在实数范围内,等式223a a b=0成立,则ab=____.02.若2930a b,则ab的平方根是____.03.(天津)若x、y为实数,且220x y,则2009xy的值为()A.1 B.-1 C.2 D.-204.已知x是实数,则1xx x的值是( )A.11B.11C.11D.无法确定输入x取算术平方根输出y是无理数是有理数【例3】若a、b都为有理效,且满足123a b b.求a+b的平方根.【解法指导】任何两个有理数的和、差、积、商(除数不为0)还是有理数,但两个无理数的和、差、积、商(除数不为0)不一定是无理数.∵123a b b,∴123a bb即112a bb,∴1312ab,a +b=12 +13=25.∴a+b的平方根为:255a b.【变式题组】01.(西安市竞赛题)已知m、n是有理数,且(5+2)m+(3-25)n+7=0求m、n.02.(希望杯试题)设x、y都是有理数,且满足方程(123)x+(132)y-4-=0,则x-y=____.【例4】若a为17-2的整数部分,b-1是9的平方根,且a b b a,求a+b的值.【解法指导】一个实数由小数部分与整数部分组成,17-2=整数部分+小数部分.整数部分估算可得2,则小数部分=17-2 -2=17-4.∵a=2,b-1=±3 ,∴b=-2或4∵a b b a.∴a<b ,∴a=2,b=4,即a+b=6.【变式题组】01.若3+5的小数部分是a,3-5的小数部分是b,则a+b的值为____.02.5的整数部分为a,小数部分为b,则(5+a)·b=____.演练巩固反馈提高0l.下列说法正确的是( )A.-2是(-2)2的算术平方根B.3是-9的算术平方根C.16的平方根是± 4 D.27的立方根是± 302.设3a,b=-2,52c,则a、b、c的大小关系是( )A.a<b<c B.a<c<b C.b<a<c D.c<a<b03.下列各组数中,互为相反数的是( )A.-9与81的平方根B.4与364C.4与364D.3与904.在实数 1.414,2,0.1?5?,5-16,,3.1?4?,83125中无理数有( )A.2个B.3个C.4个D.5个05.实数a、b在数轴上表示的位置如图所示,则( )A.b>a B.a bC.-a<b D.-b>a06.现有四个无理数5,6,7,8,其中在2+1与3+1之间的有( ) A.1个B.2个C.3个 D .4个07.设m是9的平方根,n=23.则m,n的关系是( )A. m=±nB.m=n C .m=-n D.m n08.(烟台)如图,数轴上A、B两点表示的数分别为-1和3,点B关于点A 的对称点C,则点C所表示的数为( )A.-23B.-13C.-2 +3D.l +309.点A在数轴上和原点相距5个单位,点B在数轴上和原点相距3个单位,且点B在点A左边,则A、B之间的距离为____.10.用计算器探索:已知按一定规律排列的一组数:1,12,13…,119,120.如果从中选出若干个数,使它的和大于3,那么至少要选____个数.11.对于任意不相等的两个数a、b,定义一种运算※如下:a※b=a ba b,如3※2=3232=5.那么12.※4=____.12.(长沙中考题)已知a、b为两个连续整数,且a<7<b,则a+b=____.13.对实数a、b,定义运算“*”,如下a*b=22a b a bab a b≥<,已知3*m =36,则实数m=____.14.设a是大于1的实数.若a,23a,213a在数轴上对应的点分别是A、B、C,则三点在数轴上从左自右的顺序是____.15.如图,直径为1的圆与数轴有唯一的公共点P.点P表示的实数为-1.如果该圆沿数轴正方向滚动一周后与数轴的公共点为P′,那么点P′所表示的数是____.16.已知整数x、y满足x+2y=50,求x、y.17.已知2a-1的平方根是±3,3a+b-1的算术平方根是4,求a+b+1的立方根.18.小颖同学在电脑上做扇形滚动的游戏,如图有一圆心角为60°,半径为1个单位长的扇形放置在数轴上,当扇形在数轴上做无滑动的滚动时,当B点恰好落在数轴上时,(1)求此时B点所对的数;(2)求圆心O移动的路程.19.若b=315a+153a+3l,且a+11的算术平方根为m,4b+1的立方根为n,求(mn-2)(3mn +4)的平方根与立方根.20.若x、y为实数,且(x-y+1)2与533x y互为相反数,求22x y的值.培优升级奥赛检测01.(荆州市八年级数学联赛试题)一个正数x的两个平方根分别是a+1与a-3,则a值为( ) A. 2 B.-1 C. 1 D.002.(黄冈竞赛)代数式x+1x+2x的最小值是( )A.0 B.1+2C.1 D. 203.代数式53x-2的最小值为____.04.设a、b为有理数,且a、b满足等式a2+3b+b3=21-53,则a+b=____.05.若a b=1,且3a=4b,则在数轴上表示a、b两数对应点的距离为____.06.已知实数a满足20092010a a a,则a- 20092=_______.m满足关系式3523199199x y m x y m x y x y,试确定m的值.08.(全国联赛)若a、b满足35a b=7,S=23a b,求S的取值范围.09.(北京市初二年级竞赛试题)已知0<a<1,并且123303030aaa2830a2930a18,求[10a]的值[其中[x]表示不超过x 的最大整数] .10.(北京竞赛试题)已知实数a 、b 、x 、y 满足y +231x a,231x y b ,求22x ya b的值.第14讲平面直角坐标系(一)考点.方法.破译1.认识有序数对,认识平面直角坐标系.2.了解点与坐标的对应关系.3.会根据点的坐标特点,求图形的面积.经典.考题.赏析【例1】在坐标平面内描出下列各点的位置.A(2,1),B(1,2),C(-1,2),D(-2,-1),E(0,3),F(-3,0)【解法指导】从点的坐标的意义去思考,在描点时要注意点的坐标的有序性.【变式题组】01.第三象限的点P(x,y),满足|x|=5,2x+|y|=1,则点P得坐标是_____________.02.在平面直角坐标系中,如果m.n>0,那么(m, |n|)一定在____________象限.03.指出下列各点所在的象限或坐标轴.A(-3,0),B(-2,-13),C(2,12),D(0,3),E(π-3.14,3.14-π)【例2】若点P(a,b)在第四象限,则点Q(―a,b―1)在()A.第一象限B.第二象限C.第三象限D.第四象限【解法指导】∵P(a,b)在第四象限,∴a>0,b<0,∴-a<0, b-1<0,故选C.【变式题组】01.若点G(a,2-a)是第二象限的点,则a的取值范围是()A.a<0 B.a<2 C.0<a<2 B.a<0或a>2 02.如果点P(3x-2,2-x)在第四象限,则x的取值范围是____________.03.若点P(x,y)满足xy>0,则点P在第______________象限.04.已知点P(2a-8,2-a)是第三象限的整点,则该点的坐标为___________.【例3】已知A点与点B(-3,4)关于x轴对称,求点A关于y轴对称的点的坐标.【解法指导】关于x轴对称的点的坐标的特点:横坐标(x)相等,纵坐标(y)互为相反数,关于y轴对称的点的坐标特点:横坐标互为相反数,纵坐标(y)相等.【变式题组】01.P(-1,3)关于x轴对称的点的坐标为____________.02.P(3,-2)关于y轴对称的点的坐标为____________.03.P(a,b)关于原点对称的点的坐标为____________.04.点A(-3,2m-1) 关于原点对称的点在第四象限,则m的取值范围是____________.05.如果点M(a+b,ab)在第二象限内,那么点N(a,b) 关于y轴对称的点在第______象限.【例4】P(3,-4),则点P到x轴的距离是____________.【解法指导】P(x,y)到x轴的距离是| y|,到y轴的距离是|x|.则P到轴的距离是|-4|=4【变式题组】01.已知点P(3,5),Q(6,-5),则点P、Q到x 轴的距离分别是_________,__________.P到y轴的距离是点Q到y轴的距离的________倍.02.若x轴上的点P到y轴的距离是3,则P点的坐标是__________.03.如果点B(m+1,3m-5) 到x轴的距离与它到y轴的距离相等,求m的值.04.若点(5-a,a-3)在一、三象限的角平分线上,求a的值.05.已知两点A(-3,m),B(n,4),AB∥x轴,求m的值,并确定n的取值范围.【例5】如图,平面直角坐标系中有A、B两点.(1)它们的坐标分别是___________,___________;(2)以A、B为相邻两个顶点的正方形的边长为_________;(3)求正方形的其他两个顶点C、D的坐标.【解法指导】平行x轴的直线上两点之间的距离是:两个点的横坐标的差得绝对值,平行y轴的直线上两点之间的距离是:两个点的纵坐标的差得绝对值.即:A(x1,y1),B(x2,y2),若AB∥x轴,则|AB|=|x1-x2|;若AB∥y,则|AB|=|y1。
学而思初中数学课程规划
学而思初中数学课程规划初中数学的学习不同于小学小学是课内知识过于简单,课外的奥数较难,而且整个社会没有统一的教材,基本上都是各自研发,比如学而思的十二级体系。
而初中最终目标是中考,有明确的方向性,同时有统一规划的课本,知识体系非常完整。
因此整个初中的学习更适合在一个合理而科学的体系下学习,唯一不同就在于不同的孩子可以选择不同的进度和难度。
初中班型设置介绍初一年级:基础班,提高班,尖子班,竞赛班,联赛班初二年级:基础班,提高班,尖子班,竞赛班,联赛班初三年级:基础班,提高班,尖子班,目标班联赛班走联赛体系,一年半学完初中数学知识;竞赛班走竞赛体系,两年学完初中数学知识;基础班,提高班,尖子班走领先中考培优体系,两年半学完初中数学知识。
到初三不再设竞赛班和联赛班,统一回归到目标班,冲击中考。
下面就各个班型的定位和适合什么样的学生做一个对比说明:2015年学而思初中教学体系体系联赛体系竞赛体系领先中考培优体系班型定位数学超常发展冲击竞赛一等奖中考满分兼顾竞赛同步提高冲击中考满分学制设计一年半学完初中内容两年学完初中内容两年半学完初中内容课程容量每节课的课程容量与难度比竞赛班大1.2-1.5倍每节课的容量与难度比尖子班大1.5-1.8倍每节课的容量是校内课程的3-5倍难度比校内课程高1.5-2倍适合学生课内知识掌握非常扎实,发展方向为冲击初中数学联赛,希望在数学方面有独特发展,例如未来参加IMO或CMO比赛,高中数学联赛冲击一等奖。
课内知识学习轻松,在保证中考路径的同时兼顾拔高与竞赛。
未来目标为冲击中考满分,同时参加一些数学竞赛,激发兴趣,锻炼思维。
从课内知识上夯实基础、同步提高,同时拓宽视野,系统化学习,目标冲击中考满分入学体系10次课学完初一----预备班选拔考试----联赛竞赛预备班----参加入学选拔考试----通过后选择联赛体系---开始学习10次课学完初一----预备班选拔考试----联赛竞赛预备班----参加入学选拔考试----通过后选择竞赛体系---开始学习10次课学完初一----入学测试题----领先中考培优体系---开始学习班次安排联赛1班、联赛2班竞赛班基础班、提高班、尖子班,初三加开目标班学而思的初中数学有一套非常成熟的教学体系,既能满足我们的终极目标——中考,同时还能兼顾一些希望走竞赛路线的孩子。
学而思2010年秋季二年级1-13讲 知识点总结 洪然
学而思2010年秋季二年级1-13讲知识点总结第一讲我会数图形1.规则图形计数(可以直接用公式计算的图形)(1)数线段()条线段(2)数角()个角(3)数三角形()个三角形(4)数长方形()个长方形方法总结:基本图形法(基本图形:在图中最小的图形,不能再被分割)1.先数基本图形有几个。
2.若基本图形有n个,则图中有n+(n-1)+(n-2)+(n-3)+ …+ 2+1个图形。
2.非规则图形计数(1)分层数当图形不是我们前面学过的基本图形,但通过观察可以发现里面包含有基本图形,并且是可以通过分层的方法来得到基本图形时,我们就用分层数的方法。
例:分层数:可以分为三层:1上层,2 下层,3上层+下层,每一层都是规则的图形每层各数:每层基本长方形有3个,所以3+2+1=6 (个)长方形总个数=每层个数×层数,所以6×3=18(个)练习数一数,图中有多少个三角形?(2)分类数当图形比较复杂的时候,我们应该观察能否将图形按某种规律进行分类来数。
例:数一数,下面图形中有多少个正方形?通过观察我们发现,正方形的大小不同,所以我们可以按照正方形的大小来进行分类可以分为:小正方形:一共有9个中正方形:一共有4个大正方形:一共有1个所以,图中有:9+4+1=14(个)正方形。
练习:1.数一数下列各图中有多少个正方形2.数一数下图中有多少个长方形第二讲一笔画游戏1. 什么是一笔画(1)笔不离纸(2)不重复(3)走遍所有路线2. 奇点和偶点(1) 从一个点引出的线是奇数条,这个点叫奇点有5条线和他相连,5是奇数,所以这个点是奇点。
(2) 从一个点引出的线是偶数条,这个点叫偶点有6条线和他相连,6是偶数,所以这个点是偶点。
3. 判断一笔画判定:有0或2个奇点的连通图可以一笔画。
0个奇点:可以任意从一个点进,还会从这点出。
2个奇点:必须从一个奇点进,从另一个奇点出。
练习1.下面图形可以一笔画出吗?2.下图是一个公园的平面图,要使游客走遍每条路而不重复,出入口应分别设在()点与()点。
第13讲.定义新运算进阶.超常体系.学而思数学课本五年级
B
B
B
A 图1
答案:如图
A 图2
A
图3
例3
ab
ab
将 4 个数 a、b、c、d 排成 2 行、 2 列,两边各加一条竖直线记成
,定义
=ad bc ,上述
cd
cd
x 1
记号就叫做 2 阶行列式,若 5 1
4 (学案对应:超常 2)
x 2,则 x ________
7
x 1 【分析】 5
1 4
x 7x 7 x 23x 28 2 , x 12
总之,方程(19☉x)☉19=5 有四个解, x=12,26,33,45.
例7
规定:A ○B 表示 A 、B 中较大的数, A △ B 表示 A 、B 中较小的数.若( A ○5 B △ 3 ) ( B ○5 A
△ 3) 96 ,且 A 、 B 均为大于 0 的自然数, A B 的所有取值为
由 19☉5=4,得(19☉5)☉5=4☉5=1. (2)我们不知道 11 和 x 哪个大(注意,x≠ 11),即哪个作除数,哪个作被除数,这样就要分两种情况
讨论. 1) x<11,这时 x 除 11 余 2, x 整除 11-2=9.又 x≥3(因为 x 应大于余数 2),所以 x=3 或 9. 2) x>11,这时 11 除 x 余 2,这说明 x 是 11 的倍数加 2,但 x<20,所以 x=11+2=13. 因此(2)的解
教学目标
1、 熟练掌握分数类型的定义新运算; 2、 掌握反解未知数类型的定义新运算; 3、 掌握和因倍结合的定义新运算; 4、 掌握找规律类型的定义新运算.
经典精讲
定义新运算是指用一个符号和已知运算表达式表示一种新的运算.新定义的运算符号,如△ 、 ◎、※等等,这些特殊的运算符号,表示特定的意义,是人为设定的.解答这类题目的关键是理解 新定义,严格按照新定义的式子代入数值(本质就是“照猫画虎”去模仿),把定义的新运算转化成我 们所熟悉的四则运算,并计算准确.
学而思_小升初第13讲_计数的方法与原理(学生版)
【部分小升初试题】1(1)将1至4填入表1(2)将1至6填入表22、小明有83、用5个1×2的小长方形去覆盖2×5的方格网,一共有__种不同的覆盖方法。
(迎春杯试题)[总结]:若用1×2的小长方形去覆盖2×N的方格网,则设方法数为An,那么A1=1,A2=2,N≥3时。
后面的方法数都是前面的两种数目和。
这样A3=1+2=3,A4=2+3=5,A5=3+5=8种。
4、某小学有一支乒乓球队,有男、女小队员各8名,在进行男女混合双打时,这16名小队员可组成__对不同的阵容. (03年三帆中学入学测试题)5、某校高二年级共有六个班级,现从外地转进4名学生,要安排到该年级的两个班级且每班安排2名,则不同的安排方案种数为多少___________。
(04年人大附中分班测试题)6、有甲、乙、丙三种商品,买甲3件,乙7件,丙1件,共需32元,买甲4件,乙10件,丙1件,共需43元,则甲、乙、丙各买1件需________元钱? (05年首师大附中测试题)7、用1~9可以组成______个不含重复数字的三位数:如果再要求这三个数字中任何两个的差不能是1,那么可以组成______个满足要求的三位数.(05年人大附中入学测试题)【经典例题】【例1】.(★★★)一个长方形把平面分成两部分,那么3个长方形最多把平面分成多少部分?[思路]:要使增加的部分最多,则增加的长方形的每条边跟原来的每条边的交点要越多越好。
[总结]:相关的总结:N个图形最多可把平面分成部分数直线: 1+n×(n+1) ÷2圆: 2+1×n×(n-1)三角形: 2+3×n×(n-1)长方形: 2+4×n×(n-1)注意区分,直线是分封闭的图形,其他的都是封闭图形;圆只有一个圆角,三角形有三个圆角,长方形有四个圆角,注意总结中的系数变化。
学而思初二数学(上册)培优辅导讲义(人版)
第1讲 与相交有关概念及平行线的判定 考点·方法·破译1.了解在平面内,两条直线的两种位置关系:相交与平行.2.掌握对顶角、邻补角、垂直、平行、内错角、中旁内角的定义,并能用图形或几何符号表示它们.3.掌握直线平行的条件,并能根据直线平行的条件说明两条直线的位置关系. 经典·考题·赏析【例1】如图,三条直线AB 、CD 、EF 相交于点O ,一共构成哪几对对顶角?一共构成哪几对邻补角? 【解法指导】⑴对顶角和邻补角是两条直线所形成的图角.⑵对顶角:有一个公共顶点,并且一个角的两边是另一个角的两边的反向延长线.⑶邻补角:两个角有一条公共边,另一边互为反向延长线.有6对对顶角. 12对邻补角. 【变式题组】01.如右图所示,直线AB 、CD 、EF 相交于P 、Q 、R ,则:⑴∠ARC 的对顶角是 . 邻补角是 .⑵中有几对对顶角,几对邻补角?02.当两条直线相交于一点时,共有2对对顶角; 当三条直线相交于一点时,共有6对对顶角; 当四条直线相交于一点时,共有12对对顶角. 问:当有100条直线相交于一点时共有 对顶角.【例2】如图所示,点O 是直线AB 上一点,OE 、OF 分别平分∠BOC 、 ∠AOC .⑴求∠EOF 的度数;⑵写出∠BOE 的余角及补角.【解法指导】解这类求角大小的问题,要根据所涉及的角的定义,以及各角的数量关系,把它们转化为代数式从而求解;【解】⑴∵OE 、OF 平分∠BOC 、∠AOC ∴∠EOC =21∠BOC ,∠FOC =21∠AOC ∴∠EOF =∠EOC +∠FOC =21∠BOC +21∠AOC =()AOC BOC ∠+∠21又∵∠BOC +∠AOC =180° ∴∠EOF =21×180°=90° ⑵∠BOE 的余角是:∠COF 、∠AOF ;∠BOE 的补角是:∠AOE.【变式题组】 01.如图,已知直线AB 、CD 相交于点O ,OA 平分∠EOC ,且∠EOC =100°,则∠BOD 的度数是( )A .20°B . 40°C .50°D .80°02.(杭州)已知∠1=∠2=∠3=62°,则∠4= .【例3】如图,直线l1、l2相交于点O ,A 、B 分别是l1、l2上的点,试用三角尺完成下列作图: ⑴经过点A 画直线l2的垂线.⑵画出表示点B 到直线l1的垂线段. 【解法指导】垂线是一条直线,垂线段是一条线段.【变式题组】01.P 为直线l 外一点,A 、B 、C 是直线l 上三点,且PA =4cm ,A B C D E F A B C DEF PQ R AB CE F OE A ACD O (第1题图) 1 4 3 2 (第2题图)l 2PB =5cm ,PC =6cm ,则点P 到直线l 的距离为( ) A .4cm B . 5cm C .不大于4cm D .不小于6cm02 如图,一辆汽车在直线形的公路AB 上由A 向B 行驶,M 、N 为位于公路两侧的村庄;⑴设汽车行驶到路AB 上点P 的位置时距离村庄M 最近.行驶到AB 上点Q 的位置时,距离村庄N 最近,请在图中的公路上分别画出点P 、Q 的位置.⑵当汽车从A 出发向B 行驶的过程中,在 的路上距离M 村越来越近..在的路上距离村庄N 越来越近,而距离村庄M越来越远.【例4】如图,直线AB 、CD 相交于点O ,OE ⊥CD ,OF ⊥AB ,∠DOF =65°,求∠BOE 和∠AOC 的度数.【解法指导】图形的定义现可以作为判定图形的依据,也可以作为该图形具备的性质,由图可得:∠AOF =90°,OF ⊥AB .【变式题组】01.如图,若EO ⊥AB 于O ,直线CD 过点O ,∠EOD ︰∠EOB =1︰3,求∠AOC 、∠AOE 的度数.02.如图,O 为直线AB 上一点,∠BOC =3∠AOC ,OC 平分∠AOD . ⑴求∠AOC 的度数;⑵试说明OD 与AB 的位置关系.03.如图,已知AB ⊥BC 于B ,DB ⊥EB 于B ,并且∠CBE ︰∠ABD =1︰2,请作出∠CBE 的对顶角,并求其度数.【例5】如图,指出下列各组角是哪两条直线被哪一条直线所截而得到的,并说出它们的名称: ∠1和∠2:∠1和∠3:∠1和∠6:∠2和∠6:∠2和∠4:∠3和∠5: ∠3和∠4:【解法指导】正确辩认同位角、内错角、同旁内角的思路是:首先F B AO CD EC DA EOB ACDO A BA E DCF EBAD 1 4 2 3 6 5弄清所判断的是哪两个角,其次是找到这两个角公共边所在的直线即截线,其余两条边所在的直线就是被截的两条直线,最后确定它们的名称.【变式题组】 01.如图,平行直线AB 、CD 与相交直线EF ,GH 相交,图中的同旁内角共有( ) A .4对 B . 8对 C .12对 D .16对 02.如图,找出图中标出的各角的同位角、内错角和同旁内角. 03.如图,按各组角的位置判断错误的是( ) A .∠1和∠2是同旁内角 B .∠3和∠4是内错角 C .∠5和∠6是同旁内角 D .∠5和∠7是同旁内角 【例6】如图,根据下列条件,可推得哪两条直线平行?并说明理由• ⑴∠CBD =∠ADB ; ⑵∠BCD +∠ADC =180° ⑶∠ACD =∠BAC 【解法指导】图中有即即有同旁内 角,有“ ”即有内错角. 【解法指导】⑴由∠CBD =∠ADB ,可推得AD ∥BC ;根据内错角相等,两直线平行. ⑵由∠BCD +∠ADC =180°,可推得AD ∥BC ;根据同旁内角互补,两直线平行.⑶由∠ACD =∠BAC 可推得AB ∥DC ;根据内错角相等,两直线平行.【变式题组】01.如图,推理填空.⑴∵∠A =∠ (已知) ∴AC ∥ED ( ) ⑵∵∠C =∠ (已知)∴AC ∥ED ( )⑶∵∠A =∠ (已知) ∴AB ∥DF ( )02.如图,AD 平分∠BAC ,EF 平分∠DEC ,且∠1=∠2,试说明DE 与AB 的位置关系. 解:∵AD 是∠BAC 的平分线(已知)∴∠BAC =2∠1(角平分线定义)又∵EF 平分∠DEC (已知) ∴ ( )又∵∠1=∠2(已知)∴ ( )∴AB ∥DE ( ) 03.如图,已知AE 平分∠CAB ,CE 平分∠ACD .∠CAE +∠ACE =90°,求证:AB ∥CD .A BDC HG E F 7 1 5 6 8 4 1 2 乙丙 3 23 4 56 1 2 3 4甲 1 AB C 2 3 4 5 6 7 A B C D O A B D E F CABE A B CD EF1 204.如图,已知∠ABC =∠ACB ,BE 平分∠ABC ,CD 平分∠ACB ,∠EBF =∠EFB ,求证:CD ∥EF.【例7】如图⑴,平面内有六条两两不平行的直线,试证:在所有的交角中,至少有一个角小于31°.【解法指导】如图⑵,我们可以将所有的直线移动后,使它们相交于同一点,此时的图形为图⑵.证明:假设图⑵中的12个角中的每一个角都不小于31°则12×31°=372°>360°这与一周角等于360°矛盾所以这12个角中至少有一个角小于31°【变式题组】01.平面内有18条两两不平行的直线,试证:在所有的交角中至少有一个角小于11°.02.在同一平面内有2010条直线a1,a2,…,a2010,如果a1⊥a2,a2∥a3,a3⊥a4,a4∥a5……那么a1与a2010的位置关系是 . 03.已知n (n >2)个点P1,P2,P3…Pn.在同一平面内没有任何三点在同一直线上,设Sn 表示过这几个点中的任意两个点所作的所有直线的条数,显然:S2=1,S3=3,S4=6,∴S5=10…则Sn = . 演练巩固·反馈提高 01.如图,∠EAC =∠ADB =90°.下列说法正确的是( )A .α的余角只有∠B B .α的邻补角是∠DAC C .∠ACF 是α的余角D .α与∠ACF 互补02.如图,已知直线AB 、CD 被直线EF 所截,则∠EMB 的同位角为( )A .∠AMFB .∠BMFC .∠ENCD .∠END03.下列语句中正确的是( )A .在同一平面内,一条直线只有一条垂线B .过直线上一点的直线只有一条C .过直线上一点且垂直于这条直线的直线有且只有一条D .垂线段就是点到直线的距离04.如图,∠BAC =90°,AD ⊥BC 于D ,则下列结论中,正确的个数有( )①AB ⊥AC ②AD 与AC 互相垂直 ③点C 到AB 的垂线段是线段AB ④线段AB 的长度A B C D E Fl 1l 2 l 3 l 4 l 5 l 6图⑴ l 1 l 2 l 3l 4 l 5 l 6 图⑵ A EB C F D A B C DFEMN α 第1题图 第2题图AB D C第4题图是点B到AC的距离⑤垂线段BA是点B到AC的距离⑥AD>BDA.0 B. 2 C.4 D.605.点A、B、C是直线l上的三点,点P是直线l外一点,且PA=4cm,PB=5cm,PC=6cm,则点P到直线l的距离是()A.4cm B.5cm C.小于4cm D.不大于4cm06.将一副直角三角板按图所示的方法旋转(直角顶点重合),则∠AOB+∠DOC = .07.如图,矩形ABCD沿EF对折,且∠DEF=72°,则∠AEG= . 08.在同一平面内,若直线a1∥a2,a2⊥a3,a3∥a4,…则a1 a10.(a1与a10不重合)09.如图所示,直线a、b被直线c所截,现给出下列四个条件:①∠1=∠5,②∠1=∠7,③∠2+∠3=180°,④∠4=∠7,其中能判断a∥b的条件的序号是 .10.在同一平面内两条直线的位置关系有 .11.如图,已知BE平分∠ABD,DE平分∠CDB,且∠E=∠ABE+∠EDC.试说明AB ∥CD?12.如图,已知BE平分∠ABC,CF平分∠BCD,∠1=∠2,那么直线AB与CD的位置关系如何?13.如图,推理填空:⑴∵∠A=(已知)∴AC∥ED()⑵∵∠2=(已知)∴AC∥ED()⑶∵∠A+=180°(已知)∴AB∥FD.14.如图,请你填上一个适当的条件使AD∥BC.ABCDOAB CDEFGHabc第6题图第7题图第9题图123 4567 81AC DEBAC DE12AB CDEF第14题图培优升级·奥赛检测 01.平面图上互不重合的三条直线的交点的个数是( ) A .1,3 B .0,1,3 C .0,2,3 D .0,1,2,3 02.平面上有10条直线,其中4条是互相平行的,那么这10条直线最多能把平面分成( )部分. A .60 B . 55 C .50 D .45 03.平面上有六个点,每两点都连成一条直线,问除了原来的6个点之外,这些直线最多还有( )个交点. A .35 B . 40 C .45 D .55 04.如图,图上有6个点,作两两连线时,圆内最多有__________________交点. 05.如图是某施工队一张破损的图纸,已知a 、b 是一个角的两边,现在要在图纸上画一条与这个角的平分线平行的直线,请你帮助这个施工队画出这条平行线,并证明你的正确性. 06.平面上三条直线相互间的交点的个数是( ) A .3 B .1或3 C .1或2或3 D .不一定是1,2,3 07.请你在平面上画出6条直线(没有三条共点)使得它们中的每条直线都恰好与另三条直线相交,并简单说明画法? 08.平面上有10条直线,无任何三条交于一点,要使它们出现31个交点,怎么安排才能办到? 09.如图,在一个正方体的2个面上画了两条对角线AB 、AC ,那么两条对角线的夹角等于( ) A .60° B . 75° C .90° D .135° 10.在同一平面内有9条直线如何安排才能满足下面的两个条件? ⑴任意两条直线都有交点;⑵总共有29个交点. 第13讲 平行线的性质及其应用 考点·方法·破译 1.掌握平行线的性质,正确理解平行线的判定与性质定理之间的区别和联系; 2.初步了解命题,命题的构成,真假命题、定理; 3.灵活运用平行线的判定和性质解决角的计算与证明,确定两直线的位置关系,感受转化思想在解决数学问题中的灵活应用.经典·考题·赏析 【例1】如图,四边形ABCD 中,AB ∥CD , BC ∥AD ,∠A C 的度数. 【解法指导】 两条直线平行,同位角相等; 两条直线平行,内错角相等; 两条直线平行,同旁内角互补. 平行线的性质是推导角关系的重要依据之一,必须正确识别图形的特征,看清截a b AB C线,识别角的关系式关键.【解】:∵AB∥CD BC∥AD∴∠A+∠B=180° ∠B+∠C=180°(两条直线平行,同旁内角互补)∴∠A=∠C ∵∠A=38°∴∠C=38°【变式题组】01.如图,已知AD∥BC,点E在BD的延长线上,若∠ADE=155°,则∠DBC的度数为()A.155°B.50°C.45°D.25°02.(安徽)如图,直线l1 ∥ l2,∠1=55°,∠2=65°,则∠3为()A. 50° B. 55° C. 60° D.65°03.如图,已知FC∥AB∥DE,∠α:∠D:∠B=2: 3: 4, 试求∠α、∠D、∠B的度数.【例2】如图,已知AB∥CD∥EF,GC⊥CF,∠B=60°,∠EFC=45°,求∠BCG的度数.【解法指导】平行线的性质与对顶角、邻补角、垂直和角平分线相结合,可求各种位置的角的度数,但注意看清角的位置.【解】∵AB∥CD∥EF ∴∠B=∠BCD ∠F=∠FCD(两条直线平行,内错角相等)又∵∠B=60° ∠EFC=45° ∴∠BCD=60° ∠FCD=45° 又∵GC⊥CF∴∠GCF=90°(垂直定理)∴∠GCD=90°-45°=45° ∴∠BCG=60°-45°=15°【变式题组】01.如图,已知AF∥BC, 且AF平分∠EAB,∠B=48°,则∠C的的度数=_______________02.如图,已知∠ABC+∠ACB=120°,BO、CO分别∠ABC、∠ACB,DE过点O与BC平行,则∠BOC=___________03.如图,已知AB∥ MP∥CD, MN平分∠AMD,∠A=40°,∠D=50°,求∠NMP的度数.【例3】如图,已知∠1=∠2,∠C=∠D.求证:∠A=∠F.【解法指导】因果转化,综合运用.逆向思维:要证明∠A=∠F,即要证明DF∥AC.要证明DF∥AC, 即要证明∠D+∠DBC=180°,即:∠C+∠DBC=180°;要证明∠C+∠DBC=180°即要证明DB∥EC.要证明DB∥EC即要证明∠1=∠3.AB CD O EFAEB C(第1题图)(第2题图)AGBBAMCDNP(第3题图)D A 2 E1 B C B F EA C D 证明:∵∠1=∠2,∠2=∠3(对顶角相等)所以∠1=∠3 ∴DB ∥EC (同位角相等•两直线平行)∴∠DBC +∠C =180°(两直线平行,同旁内角互补)∵∠C =∠D ∴∠DBC +∠D =180° ∴DF ∥AC (同旁内角,互补两直线平行)∴∠A =∠F (两直线平行,内错角相等) 【变式题组】 01.如图,已知AC ∥FG ,∠1=∠2,求证:DE ∥FG02.如图,已知∠1+∠2=180°,∠3=∠B . 求证:∠AED =∠ACB03.如图,两平面镜α、β的夹角θ,入射光线AO 平行 于β入射到α上,经两次反射后的出射光线O′B 平行 于α,则角θ等于_________.【例4】如图,已知EG ⊥BC ,AD ⊥BC ,∠1=∠3. 求证:AD 平分∠BAC .【解法指导】抓住题中给出的条件的目的,仔细分析 条件给我们带来的结论,对于不能直接直接得出结论 的条件,要准确把握住这些条件的意图.(题目中的:∠1=∠3) 证明:∵EG ⊥BC ,AD ⊥BC ∴∠EGC =∠ADC =90° (垂直定义)∴EG ∥AD (同位角相等,两条直线平行) ∵∠1=∠3 ∴∠3=∠BAD (两条直线平行,内错角相等) ∴AD 平分∠BAC (角平分线定义) 【变式题组】 01.如图,若AE ⊥BC 于E ,∠1=∠2,求证:DC ⊥BC .02.如图,在△ABC 中,CE ⊥AB 于E,DF ⊥AB 于F, AC ∥ED ,CE 平分∠ACB . 求证:∠EDF =∠BDF. AB ∥CD ,∠B =40°,CN 是∠BCE 的平分线. CM ⊥CN ,求:∠BCMA D M CN E B C DA B E F1 32 GB 3C A 1D 2EF (第1题图) A2 CF 3 E D1 B(第2题图) 31AEα β P B C D A∠P =α+β3 21 γ 4ψ D α βE B C AFH F γ Dα β E B C AF D E BC A AA ′l B ′C ′【例5】已知,如图,AB ∥EF ,求证:∠ABC +∠BCF +∠CFE =360° 【解法指导】从考虑360°这个特殊角入手展开联想,分析类比, 联想周角.构造两个“平角”或构造两组“互补”的角. 过点C 作CD ∥AB 即把已知条件AB ∥EF 联系起来,这是关键. 【证明】:过点C 作CD ∥AB ∵CD ∥AB ∴∠1+∠ABC =180° (两直线平行,同旁内角互补) 又∵AB ∥EF ,∴CD ∥EF (平行 于同一条直线的两直线平行) ∴∠2+∠CFE =180°(两直线平行, 同旁内角互补) ∴∠ABC +∠1+∠2+∠CFE =180°+180°=360° 即∠ABC +∠BCF +∠CFE =360° 【变式题组】 01.如图,已知,AB ∥CD ,分别探究下面四个图形中∠APC 和∠PAB 、∠PCD 的关系,请你从所得四个关系中选出任意一个,说明你探究的结论的正确性. 结论:⑴____________________________ ⑵____________________________ ⑶____________________________ ⑷____________________________【例6】如图,已知,AB ∥CD ,则∠α、∠β、∠γ、∠ψ之间的关系是 ∠α+∠γ+∠ψ-∠β=180° 【解法指导】基本图形善于从复杂的图形中找到基本图形,运用基本图形的规律打开思路. 【解】过点E 作EH ∥AB . 过点F 作FG ∥AB . ∵AB ∥EH ∴∠α=∠1(两直线平行,内错角相等)又∵FG ∥AB ∴EH ∥FG (平行于同一条直线的两直线平行)∴∠2=∠3 又∵AB ∥CD ∴FG ∥CD (平行于同一条直线的两直线平行)∴∠ψ+∠4=180°(两直线平行,同旁内角互补)∴∠α+∠γ+∠ψ-∠β=∠1+∠3+∠4-ψ-∠1-∠2=∠4+ψ=180° 【变式题组】01.如图, AB ∥EF ,∠C =90°,则∠α、∠β、∠γ的关系是( )A . ∠β=∠α+∠γB .∠β+∠α+∠γ=180°C . ∠α+∠β-∠γ=90°D .∠β+∠γ-∠α=90° 02.如图,已知,AB ∥CD ,∠ABE 和∠CDE 的平分线相交于点F ,∠E =140°,求∠BFD 的度数.【例7】如图,平移三角形ABC ,设点A 移动到点A/,画出平移后的三角形A/B/C/. 【解法指导】抓住平移作图的“四部曲”——定,找,移,连. ⑴定:确定平移的方向和距离. ⑵找:找出图形的关键点. ⑶移:过关键点作平行且相等的线段,得到关键点的对应点. ⑷连: 按原图形顺次连接对应点.BAP C A C C DA A P CB D PB PD B D ⑴ ⑵ ⑶ ⑷ FE D 2 1AB CA北【解】①连接AA/ ②过点B 作AA/的平行线l ③在l 截取BB/=AA/,则点B/就是的B 对应点,用同样的方法作出点C 的对应点C/.连接A/B/,B/C/,C/A/就得到平移后的三角形A/B/C/. 【变式题组】01.如图,把四边形ABCD 按箭头所指的方向平移21cm ,作出平移后的图形.02.如图,角形ABC 中,∠C =90°, BC=4,AC =4,现将△ABC 沿CB 方向平移到△A/B/C/的位置,若平移距离为3, 求△ABC 与△A/B/C/的重叠部分的面积.03.原来是重叠的两个直角三角形,将其中一个三角形沿着BC 方向平移BE 的距离,就得到此图形,求阴影部分的面积.(单位:厘米) 演练巩固 反馈提高01.如图,由A 测B 得方向是( )A .南偏东30°B .南偏东60°C .北偏西30°D .北偏西60°02.命题:①对顶角相等;②相等的角是对顶角;③垂直于同一条直线的两直线平行;④平行于同一条直线的两直线垂直.其中的真命题的有( ) A .1个 B .2个 C .3个 D .4个03.一个学员在广场上练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,两次拐弯的角度可能是( )A .第一次向左拐30°,第二次向右拐30°B .第一次向右拐50°,第二次向左拐130°C .第一次向左拐50°,第二次向右拐130°D .第一次向左拐60°,第二次向左拐120°04.下列命题中,正确的是( )A .对顶角相等B . 同位角相等C .内错角相等D .同旁内角互补05.学习了平行线后,小敏想出过直线外一点画这条直线的平行线的新方法,是通过折一张半透明的纸得到的[如图⑴—⑷]从图中可知,小敏画平行线的依据有( )①两直线平行,同位角相等;②两直线平行,内错角相等;③同位角相等,两直线平行;④内错角相等,两直线平行.A .①②B .②③C .③④D .①④06.在A 、B 两座工厂之间要修建一条笔直的公路,从A 地测得B 地的走向是南偏B B /AA /CC /东52°.现A、B两地要同时开工,若干天后,公路准确对接,则B地所修公路的走向应该是()A.北偏东52° B.南偏东52° C.西偏北52°D.北偏西38°07.下列几种运动中属于平移的有()①水平运输带上的砖的运动;②笔直的高诉公路上行驶的汽车的运动(忽略车轮的转动);③升降机上下做机械运动;④足球场上足球的运动.A.1种B.2种C.3种D.4种08.如图,网格中的房子图案正好处于网格右下角的位置.平移这个图案,使它正好位于左上角的位置(不能出格)09.观察图,哪个图是由图⑴平移而得到的()10.如图,AD∥BC,AB∥CD,AE⊥BC,现将△ABE进行平移. 平移方向为射线AD 的方向. 平移距离为线段BC的长,则平移得到的三角形是图中()图的阴影部分. 11.判断下列命题是真命题还是假命题,如果是假命题,举出一个反例.⑴对顶角是相等的角;⑵相等的角是对顶角;⑶两个锐角的和是钝角;⑷同旁内角互补,两直线平行.12.把下列命题改写成“如果……那么……”的形式,并指出命题的真假.⑴互补的角是邻补角;⑵两个锐角的和是锐角;⑶直角都相等.13.如图,在湖边修一条公路.如果第一个拐弯处∠A=120°,第二个拐弯处∠B=150°,第三个拐弯处∠C,这时道路CE恰好和道路AD平行,问∠C是多少度?并说明理由.DAB CEDB CED AB CED AB CEA B C15.如图,AB∥CD,∠1=∠2,试说明∠E和∠F的关系.培优升级·奥赛检测01.如图,等边△ABC各边都被分成五等分,这样在从而得到1个封闭图形,并画出阴影.⑵请你分别写出上述三个阴影部分的面积S1=________, S2=________, S3=________.1个单位),请你猜想空白部分草地面积是F EB A 多少? 05.一位模型赛车手遥控一辆赛车,先前进一半,然后原地逆时针旋转α°(0°<α°<180°),被称为一次操作,若5次后发现赛车回到出发点,则α°角为( ) A .720° B .108°或144°C .144°D .720°或144° 06.两条直线a 、b 互相平行,直线a 上顺次有10个点A1、A2、…、A10,直线b 上顺次有10个点B1、B2、…、B9,将a 上每一点与b 上每一点相连可得线段.若没有三条线段相交于同一点,则这些选段的交点个数是( ) A .90 B .1620 C .6480 D .2006 07.如图,已知AB ∥CD ,∠B =100°,EF 平分∠BEC ,EG ⊥EF. 求∠BEG 和∠DEG. 08.如图,AB ∥CD ,∠BAE =30°,∠DCE =60°,EF 、EG 三等分∠AEC . 问:EF 与EG 中有没有与AB 09.如图,已知直线CB ∥OA ,∠C =∠OAB =100°,E 、F 在CB 上,且满足∠FOB =∠AOB ,OE 平分∠COF. ⑴求∠EOB 的度数; ⑵若平行移动AB ,那么∠OBC :∠OFC 的值是否随之发生变化?若变化,找出变化规律;若不变,求出这个比值. ⑶在平行移动AB 的过程中,是否存在某种情况,使∠OEC =∠OBA ?若存在,求出其度数;若不存在,说明理由.10.平面上有5条直线,其中任意两条都不平行,那么在这5条直线两两相交所成的角中,至少有一个角不超过36°,请说明理由.11.如图,正方形ABCD 的边长为5,把它的对角线AC 分成n 段,以每一小段为对角线作小正方形,这n 个小正方形的周长之和为多少?FE B AC GD 100°F E BAC O A12.如图将面积为a2的小正方形和面积为b2的大正方形放在一起,用添补法如何求出阴影部分面积?第06讲 实 数 考点·方法·破译 1.平方根与立方根:若2x =a(a ≥0)则x 叫做a 的平方根,记为:a的平方根为x a 的平方根为x叫做a 的算术平方根.若x3=a ,则x 叫做a 的立方根.记为:a 的立方根为x2.无限不循环小数叫做无理数,有理数和无理数统称实数.实数与数轴上的点一一对应.任何有理数都可以表示为分数pq (p 、q 是两个互质的整数,且q ≠0)的形式. 3非负数: 实数的绝对值,实数的偶次幂,非负数的算术平方根(或偶次方根)都是非负数.即a>0,2na ≥0(n 为正整数)0(a ≥0) .经典·考题·赏析【例1】若2m -4与3m -1是同一个数的平方根,求m 的值.【解法指导】一个正数的平方根有两个,并且这两个数互为相反数.∵2m −4与3m −l 是同一个数的平方根,∴2m −4 +3m −l =0,5m =5,m =l. 【变式题组】01.一个数的立方根与它的算术平方根相等,则这个数是____. 02.已知m的最大整数,则m 的平方根是____. 03____.04.如图,有一个数值转化器,当输入的x 为64时,输出的y 是____.【例2】(全国竞赛)已知非零实数a 、b 满足24242a b a -+++=,则a +b 等于( ) A .-1 B . 0 C .1 D .2 有意义,∵a 、b 为非零实数,∴b2>0∴a -3≥0 a≥3 ∵24242a b a -+++=∴24242a b a -++=,∴20b ++=.∴()22030b a b +=⎧⎪⎨-=⎪⎩,∴32a b =⎧⎨=-⎩,故选C .【变式题组】0l3b+=0成立,则ab=____.02()230b-=,则ab的平方根是____.03.(天津)若x、y为实数,且20x+=,则2009xy⎛⎫⎪⎝⎭的值为()A.1 B.-1 C.2 D.-204.已知x1xπ-的值是( )A.11π-B.11π+C.11π-D.无法确定【例3】若a、b都为有理效,且满足1a b-+=+a+b的平方根.【解法指导】任何两个有理数的和、差、积、商(除数不为0)还是有理数,但两个无理数的和、差、积、商(除数不为0)不一定是无理数.∵1 a b-+=+∴1a b-=⎧⎪=1a b-=⎧⎪=,∴1312ab=⎧⎨=⎩,a +b=12 +13=25.∴a+b的平方根为:5==±.【变式题组】01.(西安市竞赛题)已知m、n2)m+(3-+7=0求m、n.02.(希望杯试题)设x、y都是有理数,且满足方程(123π+)x+(132π+)y−4−π=0,则x−y=____.【例4】若a2的整数部分,b−1是9的平方根,且a b b a-=-,求a+b的值.−2=整数部分+小数部分.整数部分估算可得2,−2 −2−4.∵a=2,b−1=±3 ,∴b=-2或4∵a b b a-=-.∴a<b ,∴a=2, b=4,即a+b=6.【变式题组】01.若3a,3−b,则a+b的值为____.02a,小数部分为ba)·b=____.演练巩固反馈提高0l.下列说法正确的是( )A .-2是(-2)2的算术平方根B .3是-9的算术平方根C . 16的平方根是±4D .27的立方根是±302.设3a =-,b = -2,52c =-,则a 、b 、c 的大小关系是( )A .a<b<cB .a<c<bC . b<a<cD .c<a<b 03.下列各组数中,互为相反数的是( )A .-9与81的平方根B .4与 364- C .4与364 D .3与904.在实数1.414,2-,0.1•5•,5−16,π,3.1•4•,83125中无理数有( )A .2个B .3个C .4个D . 5个05.实数a 、b 在数轴上表示的位置如图所示,则( ) A .b>a B .a b>C . -a <bD .-b>a06.现有四个无理数5,6,7,8,其中在2+1与3+1之间的有( ) A . 1个 B .2个 C . 3个 D .4个 07.设m 是9的平方根,n =()23.则m ,n 的关系是( )A. m =±nB.m =n C .m =-n D.m n≠08.(烟台)如图,数轴上 A 、B 两点表示的数分别为-1和3,点B 关于点A的对称点C ,则点C 所表示的数为( )A .-23-B .-13-C .-2 +3D .l +309.点A 在数轴上和原点相距5个单位,点B 在数轴上和原点相距3个单位,且点B 在点A 左边,则A 、B 之间的距离为____.10.用计算器探索:已知按一定规律排列的一组数:1,12,13…,119,120.如果从中选出若干个数,使它的和大于3,那么至少要选____个数. 11.对于任意不相等的两个数a 、b ,定义一种运算※如下:a ※b =a ba b +-,如3※2=3232+-=5.那么12.※4=____.12.(长沙中考题)已知a 、b 为两个连续整数,且a<7 <b ,则a +b =____.13.对实数a 、b ,定义运算“*”,如下a*b =()()22a b a b ab a b ⎧⎪⎨⎪⎩≥<,已知3*m =36,则实数m =____.14.设a 是大于1的实数.若a ,23a +,213a +在数轴上对应的点分别是A 、B 、C,则三点在数轴上从左自右的顺序是____.15.如图,直径为1的圆与数轴有唯一的公共点P.点P表示的实数为-1.如果该圆沿数轴正方向滚动一周后与数轴的公共点为P′,那么点P′所表示的数是____.16.已知整数x、y满足x+2y=50,求x、y.17.已知2a−1的平方根是±3,3a+b−1的算术平方根是4,求a+b+1的立方根.18.小颖同学在电脑上做扇形滚动的游戏,如图有一圆心角为60°,半径为1个单位长的扇形放置在数轴上,当扇形在数轴上做无滑动的滚动时,当B点恰好落在数轴上时,(1)求此时B点所对的数;(2)求圆心O移动的路程.19.若b=315a-+153a-+3l,且a+11的算术平方根为m,4b+1的立方根为n,求(mn−2)(3mn +4)的平方根与立方根.20.若x、y为实数,且(x−y+1)2与533x y--互为相反数,求22x y+的值.培优升级奥赛检测01.(荆州市八年级数学联赛试题)一个正数x的两个平方根分别是a+1与a−3,则a值为( )A. 2 B.-1 C. 1 D. 002.(黄冈竞赛)代数式x+1x-+2x-的最小值是( )A.0 B. 1+2 C.1 D. 203.代数式53x+−2的最小值为____.04.设a、b为有理数,且a、b满足等式a2+3b+b3=21−53,则a+b=____. 05.若a b-=1,且3a=4b,则在数轴上表示a 、b 两数对应点的距离为____.06.已知实数a满足2009a a-=,则a − 20092=_______.m 满足关系式199y x =--,试确定m的值.08.(全国联赛)若a 、b 满足5b=7,S =3b,求S 的取值范围.09.(北京市初二年级竞赛试题)已知0<a<1,并且123303030a a a ⎡⎤⎡⎤⎡⎤+++++⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦2830a ⎡⎤+++⎢⎥⎣⎦2930a ⎡⎤++⎢⎥⎣⎦18=,求[10a]的值[其中[x]表示不超过x 的最大整数] .10.(北京竞赛试题)已知实数a 、b 、x 、y 满足y +21a =-,231x y b -=--,求22x ya b +++的值.第14讲平面直角坐标系(一)考点.方法.破译1.认识有序数对,认识平面直角坐标系.2.了解点与坐标的对应关系.3.会根据点的坐标特点,求图形的面积.经典.考题.赏析【例1】在坐标平面内描出下列各点的位置.A(2,1),B(1,2),C(-1,2),D(-2,-1),E(0,3),F(-3,0) 【解法指导】从点的坐标的意义去思考,在描点时要注意点的坐标的有序性.【变式题组】01.第三象限的点P(x,y),满足|x|=5,2x+|y|=1,则点P得坐标是-_____________.02.在平面直角坐标系中,如果m.n>0,那么(m, |n|)一定在____________象限.03.指出下列各点所在的象限或坐标轴.A(-3,0),B(-2,-13),C(2,12),D(0,3),E(π-3.14,3.14-π)【例2】若点P(a,b)在第四象限,则点Q(―a,b―1)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限【解法指导】∵P(a,b)在第四象限,∴a>0,b<0,∴-a<0, b-1<0,故选C.【变式题组】01.若点G(a,2-a)是第二象限的点,则a的取值范围是()A.a<0 B.a<2 C.0<a<2 B.a<0或a>2 02.如果点P(3x-2,2-x)在第四象限,则x的取值范围是____________.03.若点P(x,y)满足xy>0,则点P在第______________象限.04.已知点P(2a-8,2-a)是第三象限的整点,则该点的坐标为___________.【例3】已知A点与点B(-3,4)关于x轴对称,求点A关于y轴对称的点的坐标.【解法指导】关于x轴对称的点的坐标的特点:横坐标(x)相等,纵坐标(y)互为相反数,关于y轴对称的点的坐标特点:横坐标互为相反数,纵坐标(y)相等.【变式题组】01.P(-1,3)关于x轴对称的点的坐标为____________.02.P(3,-2)关于y轴对称的点的坐标为____________.03.P(a,b)关于原点对称的点的坐标为____________.04.点A(-3,2m-1) 关于原点对称的点在第四象限,则m的取值范围是____________.05.如果点M(a+b,ab)在第二象限内,那么点N(a,b) 关于y轴对称的点在第______象限.【例4】P(3,-4),则点P到x轴的距离是____________.【解法指导】P(x,y)到x轴的距离是| y|,到y轴的距离是|x|.则P到轴的距离是|-4|=4【变式题组】01.已知点P(3,5),Q(6,-5),则点P、Q到x 轴的距离分别是_________,__________.P到y轴的距离是点Q到y轴的距离的________倍.02.若x轴上的点P到y轴的距离是3,则P点的坐标是__________.03.如果点B(m+1,3m-5) 到x轴的距离与它到y轴的距离相等,求m的值.04.若点(5-a,a-3)在一、三象限的角平分线上,求a的值.05.已知两点A(-3,m),B(n,4),AB∥x轴,求m的值,并确定n的取值范围.【例5】如图,平面直角坐标系中有A、B两点.(1)它们的坐标分别是___________,___________;(2)以A、B为相邻两个顶点的正方形的边长为_________;(3)求正方形的其他两个顶点C、D的坐标.【解法指导】平行x轴的直线上两点之间的距离是:两个点的横坐标的差得绝对值,平行y轴的直线上两点之间的距离是:两个点的纵坐标的差得绝对值.即:A(x1,y1),B(x2,y2),若AB∥x轴,则|AB|=|x1-x2|;若AB∥y,则|AB|=|y1-y2|,则(1)A(2,2),B(2,-1);(2)3;(3)C(5,2),D(5,-1)或C(-1,2),D(-1,-1).【变式题组】01.如图,四边形ACBD是平行四边形,且AD∥x轴,说明,A、D两点的___________坐标相等,请你依据图形写出A、B、C、D四点的坐标分别是_________、_________、____________、____________.02.已知:A(0,4),B(-3,0),C(3,0)要画出平行四边形ABCD,请根据A、B、C三点的坐标,写出第四个顶点D的坐标,你的答案是唯一的吗?03.已知:A(0,4),B(0,-1),在坐标平面内求作一点,使△ABC的面积为5,请写出点C的坐标规律.【例6】平面直角坐标系,已知点A(-3,-2),B(0,3),C(-3,2),求△ABC 的面积.【解法指导】(1)三角形的面积=12×底×高.(2)通过三角形的顶点做平行于坐标轴的平行线将不规则的图形割补成规则图形,然后计算其面积.则S△ABC=S△ABD=S△BCD=12·3·5-12·3·1=6.【变式题组】01.在平面直角坐标系中,已知△ABC三个顶点的坐标分别为A(―3,―1),B(1,3),C(2,-3),△ABC的面积.02.如图,已知A(-4,0),B(-2,2),C,0,-1),D(1,0),求四边形ABDC 的面积.03.已知:A(-3,0),B(3,0),C(-2,2),若D点在y轴上,且点A、B、C、D四点所组成的四边形的面积为15,求D点的坐标.【例7】如图所示,在平面直角坐标系中,横、纵坐标都为整数的点称为整点.请你观察图中正方形A1B1C1D1、A2B2C2D2……每个正方形四条边上的整点的个数,推算出正方形A10B10C10D10四条边上的整点共有__________个.【解法指导】寻找规律,每个正方形四条边上的整点个数为S=8n,所以S10=8×10=80个.【变式题组】01.如图所示,在平面直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变成△OA3B3.已知:A(1,2), A1(2,2),A2(4,2),A3(8,2),B(2,0),B1(4,0),B2(8,0),B3(16,0).(1)观察每次变换前后的三角形有何变化?找出规律,按此规律再将三角形△OA3B3变换成△OA4B4,则A4的坐标是____________,B4的坐标是_____________;(2)若按(1)题找到的规律将△OAB进行n次变换,得到三角形△OAnBn,推测An的坐标是_____________,Bn的坐标是_____________.【解法指导】由AA1A2A3、BB1B2B3的坐标可知,每变换一次,顶点A的横坐标乘以2,纵坐标不变,顶点B的横坐标乘以2,纵坐标不变.如图,已知A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1)…则点A2010的坐标为_______________.演练巩固反馈提高01.若点A(-2,n)在x轴上,则点B(n-1,n+1)在( )A.第一象限B.第二象限C.第三象限 D.第四象限02.若点M(a+2,3-2a)在y轴上,则点M的坐标是( )A.(-2,7) B.(0,3) C.(0,7) D.(7,0)03.如果点A(a,b),则点B(-a+1,3b-5)关于原点的对称点是( ) A.第一象限B.第二象限C.第三象限 D.第四象限04.下列数据不能确定物体位置的是( )A.六楼6号 B.北偏西400 C.文昌大道10号 D.北纬260,东经135005.在坐标平面内有一点P(a,b),若ab=0,则P点的位置是( )A.原点 B.x轴上 C.y轴上 D.坐标轴上06.已知点P(a,b)到x轴的距离为2,到y轴的距离为5,且|a-b |=b-a,则点P的坐标是_______________.。
学而思八年级数学上1-10讲
第一节勾股定理专题第二讲二次根式乘除法第三讲二次根式专题第四讲二次根式专题 2第五讲二次根式测试题第六讲非负数的性质第七讲二元一次方程组第八讲二元一次方程组复习题第九讲二元一次方程组解应用题专项1 第十讲二元一次方程组应用题2【知识要点:】1.勾股定理:直角三角形中两直角边的平方和等于斜边的平方, (即: 222c b a =+)。
2.勾股定理逆定理:如果三角形的三边长a 、b 、c 满足222a b c += 那么这个三角形是直角三角形。
3.利用勾股定理的逆定理判别直角三角形的一般步骤: ①.先找出最大边(如:c ) ②.计算2c 与22a b +,并验证是否相等。
若2c =22a b +,则△ABC 是直角三角形。
若2c ≠22a b +,则△ABC 不是直角三角形。
4.勾股数:(1)满足222c b a =+的三个正整数,称为勾股数.(2)勾股数中各数的相同的正整数倍,仍是勾股数,如3、4、5是勾股数,6、8、10也是勾股数.(3)常见的勾股数有:①.3、4、5 ②.5、12、13; ③.8、15、17;④.7、24、25; ⑤.10、24、26; ⑥.9、40、41.5.直角三角形相关性质:(1)直角三角形中,如果两条直角边分别为a 、b,斜边为 c ,斜边上的高为h ,那么它们存在的关系:面积:ch ab s 2121==(即:c abh =.)周长:c b a l ++=(2)直角三角形中,如果一个锐角等于30°,那么它所对的 直角边等于斜边的一半;(反之,如果在直角三角形中有一条直角边等于斜边的一半,那么这条直角边所对的角等于30°)(即:2:3:1::=AB AC BC )(3)在等腰直角三角形中,斜边是等于直角边的2倍(等腰直角三角形斜边上的高正好是斜边的一半。
)(即:2:1:1::=AB BC AC )【课堂练习题:】a bch ab=3a30°c=2aC ABCABBA不正确的是()(A)222cba=+(B)222bac=-(C)22bca-=(D)222cba=-2.一直角三角形的一直角边长为6,斜边长比另一直角边长大2,则斜边的长为()(A) 4 (B) 8 (C) 10 (D) 123.如图所示,直角三边形三边上的半圆面积从小到大依次记为1S、2S、3S,则1S、2S、3S的关系是()(A)321SSS=+(B)232221SSS=+(C)321SSS>+(D)321SSS<+4.若等边△ABC的边长为2cm,那么△ABC的面积为().(A)3cm2(B)32cm2(C)33cm2(D)4cm25.点A和点B分别是棱长为20cm的正方体盒子上相邻面的两个中心,一只蚂蚁在盒子表面由A处向B处爬行,所走最短路程是()(A)40 cm (B)220 cm (C)20 cm (D)210 cm6.在下列以线段a、b、c的长为三边的三角形中,不能构成直角三角形的是()(A)a=9 、b=41 、c=40 (B)a=11 、b=12 、c=15(C)a∶b∶c=3∶4∶5 (D) a=b=5 、c=257.在△ABC中,AB=12cm, BC=16cm, AC=20cm,则△ABC的面积是( )(A)96cm2 (B) 120cm2 (C) 160cm2 (D) 200cm28.锐角三角形的三边长分别是2、3、x,则x的取值范围是()(A)5<x<13(B)13<x<5 (C)1<x<13(D)1<x<59.已知如图,水厂A和工厂B、C正好构成等边△ABC,现由水厂A和B、C两厂供水,要在A、B、C间铺设输水管道,有如下四种设计方案,(图中实线为铺设管道路线),•其中最合理的方案是()10.如图,数轴上的点A所表示的数为x,则x2-10的立方根为()(A)2-10 (B) -2-10 (C) 8 (D) -12二>填空题:●●AB(第5题图)架设了一条缆车线路到另一山峰C 处,若在A 处测得∠EAC=30°, 两山峰的底部BD 相距900米,则缆车线路AC 的长为____米.14.命题“全等三角形的面积相等”的逆命题是: ,它是 (填入“真”或“假”)命题。
4-1-5图形的分割与拼接.题库学生版
本讲主要学习三大图形处理方法: 1.理解掌握图形的分割; 2.理解掌握图形的拼合; 3.理解图形的剪拼.本讲中很多类型的题目还要求同学们去动手尝试.通过本讲知识的学习,让同学们了解不同图形的分割、拼合、剪拼的方法,锻炼同学们的平面想象能力以及增强学生的动手操作能力.把一个几何图形按某种要求分成几个图形,就叫做图形的分割.反过来,按一定的要求也可以把几个图形拼成一个完美的图形,就叫做图形的拼合. 将一个或者多个图形先分割开,再拼成一种指定的图形,则叫做图形的剪拼. 我们在图形的分割、拼合和剪拼的过程中,都要结合所提供的图形特点来思考.如果把一个图形分割成若干个大小、形状相等的部分,那么就要想办法找图形的对称点,把图形先分少,再分多.图形中,如果有数量方面的要求,可以先从数量入手,找出平分后每块上所含数量的多少,再结合数量来分割图形.如果是要把几个图形拼合成一个大图形,要特别注意每条边的长度,把相等的边长拼合在一起,先拼少的,再拼多的.例题精讲图形的分割与拼接如果是剪拼图形,要抓住“剪、拼前后图形的面积相等”这个关键,根据已知条件和图形的特点,通过分析推理和必要的计算,确定剪拼的方法.板块一图形的分割【例1】用一条线段把一个长方形平均分割成两块,一共有多少种不同的分割法?AO【巩固】画一条直线,将六边形分成大小相等、形状相同的两部分,这样的直线有条.【例2】把任意一个三角形分成面积相等的4个小三角形,有许多种分法.请你画出4种不同的分法.【巩固】把任意一个三角形分成面积相等的2个小三角形,有许多种分法.请你画出3种不同的分法.【例3】怎样把一个等边三角形分别分成8块和9块形状、大小都一样的三角形.【例4】下图是一个直角梯形,请你画一条线段,把它分成两个形状相同并且面积相等的四边形.321DCBA【例 5】 在一块长方形的地里有一正方形的水池(如下图).试画一条直线把除开水池外的这块地平分成两块.【例 6】 把下图四等分,要求剪成的每个小图形形状、大小都一样.除了剪正方形外,你还有别的方法吗?20604020【例 7】 下图是一个34⨯的方格纸,请用四种不同的方法将它分割成完全相同的两部分,但要保持每个小方格的完整.【巩固】右图是一个44⨯的方格纸,请用六种不同的方法将它分割成完全相同的两部分,但要保持每个小方格的完整.【例 8】 下图是一个被挖去了为总面积四分之一小正方形的大正方形,请你将它分成大小形状完全一样的四部分.【巩固】下图是一个被挖去了为总面积四分之一小正方形的大正方形,请你将它分成大小形状完全一样的两部分.如果分三部分呢?【巩固】图中是由三个正三角形组成的梯形.你能把它分割成4个形状相同、面积相等的梯形吗?【例9】下图是由五个正方形组成的图形.把它分成形状、大小都相同的四个图形,应怎样分?【例10】已知左下图是由同样大小的5个正方形组成的.试将图形分割成4块形状、大小都一样的图形.【巩固】把右图剪成形状、大小相等的8个小图形,怎么剪?作出分出的小图形.【例11】下图是由18个小正方形组成的图形,请你把它分成6个完全相同的图形.【例 12】 一个正三角形形状的土地上有四棵大树(如下图所示),现要把这块正三角形的土地分成和它形状相同的四小块,并且要求每块地中都要有一棵大树.应怎样分?【例 13】 将下图分割成大小、形状相同的三块,使每一小块中都含有一个○.【例 14】 请把下面这个长方形沿方格线剪成形状、大小都相同的4块,使每一块内都含有“奥数读本”这四个字中的一个,该怎么剪?本读数奥【例 15】 (2008年第八届“春蕾杯”小学数学邀请赛初赛)请把下面的图形分成形状、大小都相同的4块,使每一块里面都有“春蕾杯赛”4个字.春春蕾杯赛春春蕾蕾蕾杯杯杯赛赛赛第13题【例 16】 学习与思考对小学生的发展是很重要的,学习改变命运,思考成就未来,请你将下图分成形状和大小都相同的四个图形,并且使其中每个图形都含有“学习思考”这四个字.应怎样分?学习思考学习思考学习思考考思习学【例 17】 如下图所示,请将这个正方形分切成两块,使得两块的形状、大小都相同,并且每一块都含有学而思奥数五个字.学而思奥数数奥思而学【巩固】如下图所示的正方形是由36个小正方格组成的.如图那样放着4颗黑子,4颗白子,现在要把它切割成形状、大小都相同的四块,并使每一块中都有一颗黑子和一颗白子.试问如何切割?【例 18】 如图,甲、乙是两个大小一样的正方形.要求把每一个正方形分成四块,两个正方形共分为八块,使每块的大小和形状都相同,而且都带一个○.甲 乙【例 19】 正三角形ABC 的面积是1平方米,将三条边分别向两端各延长一倍,连结六个端点得到一个六边形(如右图),求六边形的面积.CBA【巩固】正方形ABCD 的面积是1平方米,将四条边分别向两端各延长一倍,连结八个端点得到一个正方形(如图),求大正方形的面积.DCB A【巩固】正六边形ABCDEF 的面积是1平方米,将六条边分别向两端各延长一倍,交于六个点,组成如下图的图形,求这个图形的面积.【例 20】 (第九届“中环杯”小学生思维能力训练活动初赛)如图,它是由15个边长为1厘米的小正方形组成的.⑴ 请在原图中沿正方形的边线,把它划分为5个大小形状完全相同的图形,分割线用笔描粗. ⑵ 分割后每个小图形的周长是 厘米.⑶ 分割后5个小图形的周长总和与原来大图形的周长相差 厘米.第3题【例 21】 如何把下图中的三个图形分割成两个相同的部分(除了沿正方形的边进行分割外,还可沿正方形的对角线进行分割).【例 22】 (2003年《小学生数学报》数学邀请赛)如图,将一个等边三角形分割成互相不重叠的23个较小的等边三角形(这些较小的等边三角形的大小不一定都相同),请在图中画出分割的结果.【例23】(2005年《小学生数学报》数学邀请赛)如图,将一个正方形分割成互相不重叠的21个小正方形,这些小正方形的大小不一定相同,请画图表示.板块二图形的拼合【例24】用两块大小一样的等腰直角三角形能拼成几种常见的图形?【巩固】用3个等腰直角三角形拼图,要求边与边完全重合,能拼出几种图形?【巩固】用同样大小的四块等腰直角三角板,能否拼出一个三角形、一个正方形、一个长方形、一个梯形、一个平行四边形五种图形?若能,画出示意图.【例25】下面哪些图形自身用4次就能拼成一个正方形?【例26】用下面的3个图形,拼成右边的大正方形.【巩固】用“四连块”拼成一个正方形,按编号画入右边图中.④③②①【例 27】 有6个完全相同的,你能将它们拼成下面的形状吗?【例 28】 (保良局亚洲区城市小学数学邀请赛)三种塑料板的型号如图:(A ) (B ) (C )已有A 型板30块,要购买B 、C 两种型号板若干,拼成55 正方形10个,B 型板每块价格5元,C 型板每块价格为4元.请你考虑要各买多少块,使所花的总钱数尽可能少,那么购买B 、C 两种板要花多少元?【例 29】 试用图a 中的8个相等的直角三角形,拼成图b 中的空心正八边形和图c 中的空心正八角星.板块三图形的剪拼【例30】试将一个正方形分成相同的四块,然后用这四块分别拼成三角形、平行四边形和梯形.【例31】把两个小正方形剪开以后拼成一个大正方形.【例32】将下图分成4个形状、大小都相同的图形,然后拼成一个正方形.【例33】试将一个49的长方形分割成两个大小相等、形状相同的图形,然后拼成一个正方形.【巩固】长方形的长和宽各是9厘米和4厘米,要把它剪成大小、形状都相同的两块,并使它们拼成一个正方形.【例34】将下图分成两块,然后拼成一个正方形.【例35】将图1分成4个形状、大小都相同的图形,然后拼成一个正方形.图1图2图3【例36】小龙的妈妈在街上卖边角布料的地摊上,买回了一块形状是等腰直角三角形的绸布,想用它来做长方形的窗帘,为了不把布剪的太碎,裁剪的块数就要尽可能的少,请问小龙的妈妈应该怎样剪拼呢?【例37】试将任意一个三角形分成三块,然后拼成一个长方形.【巩固】试将任意一个矩形分成两块,然后拼成一个三角形.【巩固】试将任意一个矩形分成三块,然后拼成一个三角形.【例38】把一个正方形分成8块,再把它们拼成一个正方形和一个长方形,使这个正方形和长方形的面积相等.【例39】有一块长8米、宽3米的长方形地毯,现在要把它移到长6米、宽4米的新房间里.请找出一种剪裁方法,使剪后的各块拼合后正好能铺满房间的地面,为了使剪后的地毯尽量完整,就要使剪裁的块数尽可能地少,应怎样剪拼?【例40】如何把一个长20厘米、宽12厘米的长方形切成两块,拼成一个长16厘米、宽15厘米的新长方形.【例41】长方形长24厘米,宽15厘米.把它剪成两块,使它们拼成一个长20厘米,宽18厘米的长方形.【例42】如下图长方形的长、宽分别为120厘米、90厘米,正中央开有小长方形孔,长为80厘米,宽为10厘米,要拼成面积为100平方厘米的正方形.问如何切分,能使划分的块数最少.【例43】把下图中两个图形中的某一个分成三块,最后都拼在一起,使它们成为一个正方形.。
学而思几何秘籍和专项突破初二
学而思几何秘籍和专项突破初二
学而思几何秘籍和专项突破初二是一套专门针对初二学生几何学习的教辅材料。
这套教材包含几何学的基本概念、定理、证明方法等内容,以及相关的例题和习题。
通过学习这套教材,学生可以系统地掌握几何学知识,并培养解题思维和证明能力。
这套教材的特点有以下几个方面:
1. 知识点全面:教材涵盖了初中阶段几何学的全部知识点,包括角的概念、相交线与平行线、三角形与四边形、圆的性质等等。
讲解内容丰富,帮助学生全面了解几何学的各个方面。
2. 形式多样:教材设计了多种形式的题型,如选择题、填空题、解答题等,帮助学生灵活运用知识进行解题。
同时,教材还提供了大量的例题和习题,供学生练习巩固所学知识。
3. 突破重点难点:教材针对初二学生学习几何的难点和疑惑,提供了详细的解题思路和方法,帮助学生克服难题,突破学习瓶颈。
4. 重点复习:教材还提供了专项复习材料,帮助学生有针对性地进行复习,强化知识点,提高应试能力。
总的来说,学而思几何秘籍和专项突破初二是一套全面、实用的几何学教辅材料,通过学习这套教材,学生可以系统地学习几何学知识,提高解题能力,取得更好的学习成绩。
学而思初二数学暑假班第1讲.全等三角形的认识.尖子班.学生版
买玻璃漫画释义满分晋级1全等三角形的认识三角形4级 全等三角形的认识三角形5级 全等中的 基本模型 三角形6级 特殊三角形之 等腰三角形暑期班 第一讲暑期班 第二讲暑期班 第四讲一、概念全等三角形:能够完全重合的两个三角形叫全等三角形. 对应顶点:完全重合时,互相重合的顶点为对应顶点. 对应角:完全重合时,互相重合的角为对应角. 对应边:完全重合时,互相重合的边为对应边.如图,若ABC △与A B C '''△全等,记作“ABC A B C '''△≌△”,其中顶点A 、B 、C 分别与顶点A '、B '、C '对应.注意:寻找全等三角形的对应角,对应边的一般规律是:⑴把其中一个图形通过平移、翻折或旋转,能与另一个图形完全重合,则重合的边就是对应边,重合的角就是对应角,表示两个三角形全等时,要把对应字母写在对应位置上. ⑵有公共边时,则公共边为对应边;有公共角时,则公共角为对应角(对顶角为对应角);最大边与最大边(最小边与最小边)为对应边;最大角与最大角(最小角与最小角)为对应角.模块一 全等三角形的概念和性质知识导航知识互联网CB A B'A'二、全等三角形的性质⑴全等三角形的对应边相等; ⑵全等三角形的对应角相等;⑶全等三角形的周长相等,面积相等.【例1】 ⑴ 如果ABC DEF △≌△,则AB 的对应边是_______,AC 的对应边是_______ ,C∠的对应角是_______ ,DEF ∠的对应角是__________.两个三角形的周长ABC C △______DEF C △,两个三角形的面积ABC S △_____DEF S △(填“>”、“=”、“<”).⑵ 如图,若ABC AEF △≌△,AB AE =,B E ∠=∠,则对应结论①AC AF =;②FAB EAB ∠=∠;③EF BC =; ④EAB FAC ∠=∠中 正确结论共有( )A .1个B .2个C .3个D .4个⑶如图所示,若△ABE ≌△ACF ,且AB =5,AE =3,则EC 的长为( )A .2B .3C .4D .2.5【例2】 如图,已知ABC ADE △≌△,且10CAD ∠=︒,25B ∠=︒,120EAB ∠=︒,求DFB ∠的度数.模块二 全等三角形的判断夯实基础能力提升F E CBA F G EDCBAF E CBA全等三角形的判定方法:⑴如果两个三角形的三条边分别对应相等,那么这两个三角形全等,简记为SSS .⑵如果两个三角形的两边及这两边的夹角对应相等,那么这两个三角形全等,简记为SAS . ⑶如果两个三角形的两个角及这两个角的夹边对应相等,那么这两个三角形全等,简记为ASA .⑷如果两个三角形的两个角及其中的一个角所对的边对应相等,那么这两个三角形全等,简记为AAS .⑸如果两个直角三角形的斜边及一条直角边分别对应相等,那么这两个直角三角形全等,简记为HL .两个三角形中对应相等的边或角 是否全等全等:√ 不全等:×公理或推论(简写)三条边 √ SSS 两边一角 两边夹角√ SAS 两边与其中一边对角 × 两角一边 两角和夹边 √ ASA 两角与其中一角对边√ AAS 三角×特殊:直角三角形中,除以上几种方法外还可选用斜边直角边“HL ”.1. 全等三角形的判定(一)——SSS尺规作图:已知ABC △,画一个A B C '''△,使A'B'AB A'C'AC B'C'BC ===,,. 并判断A B C '''△和ABC △C BA【引例】已知:如图,AB DE AC DF BE CF ===,,.求证:AC DF ∥.分析:要证AC DF ∥,需证ACB DFE ∠=∠,只要证__________≌___________.知识导航夯实基础知识导航证明:∵BE CF =( )∴BE EC CF EC +=+( ) 即BC =_____. 在ABC △和DEF △中,()()()__________________AB BC AC =⎧⎪=⎨⎪=⎩∴__________≌___________( )∴ACB DFE ∠=∠( )∴AC DF ∥( )【解析】 分析:只要证ABC DEF △≌△.证明:∵BE CF =(已知)∴BE EC CF EC +=+(等量加等量和相等) 即BC EF =.在ABC △和DEF △中, AB DEBC EFAC DF =⎧⎪=⎨⎪=⎩(已知)(已证)(已知) ∴ABC DEF △≌△(SSS ).∴ACB DFE ∠=∠(全等三角形的对应角相等).∴AC DF ∥(同位角相等,两直线平行)【例3】 已知:如图,A 、F 、C 、D 四点在同一直线上,AB =DE ,BF =EC ,AC =DF .⑴求证:AB ∥DE ;⑵又知∠D =30°,∠DEC =15°,求∠CFB 的度数.2. 全等三角形的判定(二)——SAS尺规作图:已知ABC △,画一个A B C '''△,使A'B'AB A'C'AC A'A ==∠=∠,,. 并判断A B C '''△和ABC △是否全等.知识导航能力提升FDBA A D FC B EC BA【例4】 如图,在△ABC 中,AB=CB ,∠ABC=90º,D 为AB 延长线上一点,点E 在BC 边上,且BE=BD ,连结AE 、DE 、DC . ⑴求证:△ABE ≌△CBD ;⑵若∠CAE=30º,求∠BCD 的度数.3. 全等三角形的判定(三)——ASA &AAS尺规作图:已知ABC △,画一个A B C '''△,使B'C'BC B'B C'C =∠=∠∠=∠,,. 并判断A B C '''△和ABC △是否全等.知识导航能力提升ECDB AC BA思考:若将C'C ∠=∠改成A'A ∠=∠呢?画出的A'B'C'△和ABC △全等吗?【例5】 已知,如图,点D 在边BC 上,点E 在△ABC 外部,DE 交AC 于F ,若AD =AB ,∠1=∠2=∠3.求证:BC=DE .4. 全等三角形的判定(四)——HL尺规作图:已知Rt ABC △,画一个Rt A B C '''△,使B'C'BC A'B'AB ==,.并判断A B C '''△和ABC △是否全等.C BA知识导航能力提升321F ED CB A【例6】 已知:如图,AC 平分∠BAD ,CE ⊥AB 于E ,CF ⊥AD 于F ,且BC =DC ,求证:BE =DF .【例7】 如图所示为我国边境线上某界河,其中A 点在境外,我国地质勘探人员在不跨越国界的情况下要测量河两岸相对的两点A 、B 间的距离,请你给出解决方案并加以证明.能力提升能力提升模块三 全等三角形判定的应用F EDCBAA【例8】如图所示,AD是∠BAC的角平分线,DE⊥AB,DF⊥AC,⑴你能找出图中的全等三角形吗?如果再加上AB AC=呢?⑵在⑴的基础上,连接EF交AD于M,你能找出图中的全等三角形吗?⑶在⑵的基础上,当∠BAC=90︒时,你能找出图中的全等三角形吗?探索创新FED CBA训练1. 已知:如图,AC 与BD 交于O 点,AB DC ∥,AB DC =.⑴ 求证:AC 与BD 互相平分; ⑵ 若过O 点作直线l ,分别交AB DC 、于E F 、两点, 求证:OE OF =.训练2. 如右图所示,AB CD ∥,AC DB ∥,AB CD =,AD 与BC 交于O ,AE BC ⊥于E ,DF BC ⊥于F ,那么图中全等的三角形有哪几对?并简单说明理由.训练3. 请分别按给出的条件画ABC △(不写画法),并说明所作的三角形是否唯一;如果有不唯一的,想一想,为什么?⑴ 1202cm 4cm B AB AC ∠=︒==,,;⑵ 902cm 3cm B AB AC ∠=︒==,,; ⑶ 302cm 3cm B AB AC ∠=︒==,,; ⑷ 302cm 2cm B AB AC ∠=︒==,,; ⑸ 302cm 1cm B AB AC ∠=︒==,,; ⑹ 302cm 1.5cm B AB AC ∠=︒==,,;训练4. 我们知道,两边及其中一边的对角分别对应相等的两个三角形不一定全等.那么在什么情况下,它们会全等?⑴ 请你画图举例说明两边及其中一边的对角分别对应相等的两个三角形不全等;思维拓展训练(选讲)AF E O D C Bl OF E DCB A⑵ 阅读与证明:对于两个三角形均为锐角三角形,两边及其中一边的对角分别对应相等的两个三角形它们全等. 可证明如下:已知:ABC △、111A B C △均为锐角三角形,11AB A B =,11BC B C =,1C C ∠=∠.求证:111ABC A B C △≌△.(先把文字语言转化成符号语言) 证明:分别过点B ,1B 作BD AC ⊥于D ,1111B D AC ⊥于1D ,则11190BDC B D C ∠=∠=︒,(如果需要添加辅助线,先说明辅助线做法)DCBAD 1C 1B 1A 1∵在BCD △和111B C D △中,11111190BDC B D C C C BC B C∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴111()BCD B C D AAS △≌△ ∴11BD B D =∵在ADB △和111A D B △中,111111190BD B D AB A B ADB A D B =⎧⎪=⎨⎪∠=∠=︒⎩∴ 111()ADB A D B HL △≌△,∴ 1A A ∠=∠, ∵在ABC △和111A B C △中,1111A A C C BC B C∠=∠⎧⎪∠=∠⎨⎪=⎩∴ 111()ABC A B C AAS △≌△.对于这两个三角形均为直角三角形,显然它们全等.对于这两个三角形均为钝角三角形,可证它们全等你们来试试吧! ⑶归纳与叙述:由⑴、⑵可得到一个正确结论,请你写出这个结论.实战演练题型一 全等三角形的概念和性质 巩固练习【练习1】 ① 判定两个三角形全等的方法是:⑴ ;⑵ ;⑶ ;⑷ ;⑸ ;⑹ .全等三角形的性质是对应边、对应角、周长、面积都分别 . ② 两个三角形具备下列( )条件,则它们一定全等. A .两边和其中一边的对角对应相等 B .三个角对应相等C .两角和一组对应边相等D .两边及第三边上的高对应相等 ③ 下列命题错误的是( )A .全等三角形对应边上的高相等B .全等三角形对应边上的中线相等C .全等三角形对应角的角平分线相等D .有两边和一个角对应相等的两个三角形全等【练习2】 如图,在ABC △中,D E 、分别是边AC BC 、上的点,若ADB EDB EDC △≌△≌△,则C ∠的度数为______________.题型二 全等三角形的判定 巩固练习【练习3】 已知:如图,C 为BE 上一点,点A D ,分别在BE 两侧.AB ED ∥,AB CE =,BC ED =.求证:AC CD =.【练习4】 如图所示,已知AC BC ⊥,AD BD ⊥,AD BC =,CE AB ⊥,DF AB ⊥,垂足分别为E 、F ,试证明CE DF =.FE DCBA ACEDBDC BA题型三 全等三角形判定的应用 巩固练习【练习5】 ⑴如图,AB CD =,AD 、BC 相交于点O ,要使ABO DCO △≌△,应添加的条件为 .(添加一个条件即可)⑵在ABC △和A B C '''△中,AB A B ''=,B B '∠=∠,补充条件后仍不一 定能保证ABC A B C '''△≌△,则补充的这个条件是( )A .BCBC ''= B .A A '∠=∠ C .AC A C ''=D .C C '∠=∠O DCBA第十五种品格:创新想象力比知识更重要,因为知识是有限的,而想象力概括着世界的一切,推动着进步,并且是知识进化的源泉.严格地说,想象力是科学研究的实在因素.所以创新是时代的必须,也是所有人快速进步的必要手段.【创新的三个层次】一、处处是创造之处,人人是创造之人;二、敢想敢做,有付出定会有收获;三、坚持敢于创新的理念,持之以恒,追求奋斗,终会辉煌.钓鱼钓出食品冷冻法1940年,美国皮革商巴察在出售了自己的食品冷冻法专利后得到了3000万美元.这笔财富的获得完全得益于他的钓鱼爱好.巴察经常去纽芬兰海岸,在结了冰的海上凿洞钓鱼.从海水中钓起的鱼放在冰上立即被冻得硬梆梆的.当几天后食用这些冻鱼时,巴察发现只要鱼身上的冰不溶化,鱼味就不变.根据这一发现,巴察着手试验将肉和蔬菜冰冻起来.他高兴地发现,只要把肉和蔬菜冻得像那些鱼一样,就能保持新鲜.经过反复试验,他进一步发现:冰冻的速度和方法不同,会影响食品冰冻后的味道和保鲜程度.经过几个月废寝忘食的摸索,巴察为他发明的食物冰冻法申请了专利.由于这是一种具有极大潜力和应用范围的新技术,所以找上门来的人很多.巴察待价而沽,最终,通用食品公司以3000万美元的巨款把这项专利拿到了手.处处留心自己身边的机会,锲而不舍地加以探究,便会开发出新的财富.。
学而思讲义
枚举组数1.用6、7、8、9四个数可以组成许多个没有重复数字的4位数,把它们从小到大排列起来,9768排在第()个。
2.用数字1、2、3、4组成各位数字都不相同的两位数,并按从小到大的顺序排列,第10个数比第7个数大()3.智慧爷爷今年已经有一百多岁了,如果把他的年龄的各位数字相加,和是9,如果把各位数字相乘,积等于16,那么今年智慧爷爷()岁。
有一个四位数,它的各位数字和为9,积为24,那么组成这个数的四个数字中,奇数是()。
横式数字谜4.“小朋友真厉害”这六个汉字分别表示1、2、3、4、6、7这6个数字,根据下面的算式,可以得到小=(),朋=(),友=(),真=(),厉=(),害=()小+友+真=9小+朋=8友—真=4厉—害=小5.“万事如意”这四个汉字分别表示一个10以内不同的双数,根据下面的算式可以得到万=(),事=(),如=(),意=()万—事如+意=9万—事如—意=1意—(万—事)如=3日历中的数学6.牛牛暑假跟着爸妈去海南旅游,他们一起连续玩了4天,这4天的日期数相加的和是70(不含月份),那么他们是从()日玩到()日的。
7.2015年1月和2月是寒假,乐乐寒假在奶奶家连续住了5天,这5天的日期数相加的和是67(不含月份),那么乐乐从()月()日开始住在奶奶家。
8.牛牛同学在某月的日历上圈出2 2个数(如图),正方形方框内的4个数的和是28,那么A=(),B=(),C=(),D=()。
9.西西同学在日历上圈出5个数,呈十字框型(如图),他们的和是65,则正中间的C=()10.某月有5个星期日,这5个星期日的日期之和为80(不含月份),则这个月中第一个星期日的日期数是()。
11.某年的6月有4个星期一和5个星期日,那么这月的第一天是星期()12.某年的10月有4个星期日和5个星期一,那么这个月的第一天是星期()和差倍问题1.小林在课桌上摆了一排棋子,数一数,黑、白棋子共有56颗,其中白棋子的颗数正好是黑棋子的6倍,黑白棋子各有多少颗?2.果园里一共种有34棵桃树和杏树,其中桃树的颗数比杏树的3倍多6棵,两种树各种了多少棵?3.两筐水果共重50千克,其中第一筐比第二筐的2倍少13千克,请问两筐水果各重多少千克?4.甲、乙两桶共有油168千克,从甲桶倒出27千克后,甲桶剩下的油是乙桶的两倍,求甲乙两桶原来各有油多少千克?5.一个长方形,周长是30厘米,长是宽的2倍,求这个长方形的长和宽各是多少厘米?6.一个数除以另一个数,商是10,这两个数的和再加上商,和是87,被除数是(),除数是()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
43初二秋季·第13讲·提高班·学生版全等三角形是初中几何学习中的重要内容之一,是今后学习其他知识的基础。
判断三角形全等的公理有SAS 、ASA 、AAS 、SSS 和HL (直角三角形),如果所给条件充足,则可直接根据相应的公理证明,但是如果给出的条件不全,就需要根据已知的条件结合相应的公理进行分析,先推导出所缺的条件,引出相应的辅助线然后再证明。
一、常见辅助线的作法有以下几种:1. 遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对称”;2. 若遇到三角形的中线,可倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”;3. 遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对称”,所考知识点常常是角平分线的性质定理或逆定理;思路导航13名校期末试题点拨——几何部分题型一:全等三角形与轴对称44 初二秋季·第13讲·提高班·学生版4. 过图形上某一点作特定的平行线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”;5. 截长法与补短法,具体作法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明。
这种作法,适合于证明线段的和、差、倍、分等类的题目。
二、常见模型1.最值问题:“将军饮马”模型;2. 全等三角形经典模型:三垂直模型、手拉手模型、半角模型以及双垂模型等。
三、尺规作图部分地区会考察尺规作图,难点在于构造轴对称图形解决几何问题。
【例1】 ⑴如下左图,把△ABC 沿EF 对折,叠合后的图形如图所示.若∠A =60°,∠1=95°,则∠2的度数为( )A .24°B .25°C .30°D .35°⑵长为20,宽为a 的矩形纸片(10<a <20),如上右图那样折一下,剪下一个边长等于矩形宽度的正方形(称为第一次操作);再把剩下的矩形如图那样折一下,剪下一个边长等于此时矩形宽度的正方形(称为第二次操作);如此反复操作下去,若在第n 次操作后,剩下的矩形为正方形,则操作停止.当n =3时,a 的值为 . 典题精练21C'B'FE CBA 第二次操作第一次操作45初二秋季·第13讲·提高班·学生版【例2】 ⑴如图所示,在长方形ABCD 称轴l 上找点P ,使得△P AB 、△PBC 均为等腰三角形,则满足条件的点P 有( ).A .1个B .3个C .5个D .6个⑵已知,横线和竖线相交的点叫做格点,P 、A 、B 为格点上的点,A 、B 的位置如图所示,若此三点能够构成等腰三角形,P 点有 种不同的位置?【例3】 ⑴ 如图1,在等边三角形ABC 中,AB =2,点E 是AB 的中点,AD 是高,在AD 上找一点P ,使BP +PE 的值最小;⑵ 如图2,正方形ABCD 的边长为2,E 为AB 的中点,在AC 上找一点P ,使PB +PE 的值最小;⑶ 如图3,⊙O 的半径为2,点A 、B 、C 在⊙O 上,OA ⊥OB ,∠AOC =60°,P 是OB 上一动点,求P A +PC 的最小值;⑷ 如图4,在四边形ABCD 的对角线AC 上找一点P ,使∠APB =∠APD .保留作图痕迹,不必写出作法.图4图3图2图1P DCB AOP C BAP E D CB AP E D CBA【例4】 如图1,在ABC △中,2ACB B ∠=∠,BAC ∠的平分线AO交BC 于点D ,点H 为AO 上一动点,过点H 作直线l AO ⊥于H ,分别交直线AB AC BC 、、于点N E M 、、. ⑴当直线l 经过点C 时(如图2),证明:BN CD =; ⑵当M 是BC 的中点时,写出CE 和CD 之间的等量关 系,并加以证明; lD CBA46 初二秋季·第13讲·提高班·学生版⑶请直接写出BN CE CD 、、之间的等量关系.一、直角三角形的性质 1. 直角三角形的两个锐角互余;2. 直角三角形斜边上的中线等于斜边的一半;3. 直角三角形的两直角边的乘积等于斜边与斜边上高的乘积,即ab =c h ;4. 勾股定理:直角三角形两直角边的平方和等于斜边的平方,即222c b a =+;5. 在直角三角形中,30°角所对的直角边等于斜边的一半(或含30°的直角三角形三边之比为1:3:2);6. 含45°角的直角三角形三边之比为1:1:2. 思路导航题型二:直角三角形与勾股定理47初二秋季·第13讲·提高班·学生版二、直角三角形的判定1. 有一个角为90°的三角形是直角三角形;2. 两个锐角互余的三角形是直角三角形;3. 勾股定理的逆定理:在以a 、b 、c 为边的三角形中,若222c b a =+,则这个三角形是以c 为斜边的直角三角形;4. 一个三角形,如果一边上的中线等于这条边的一半,那么这个三角形是以这条边为斜边的直角三角形.【例5】 在给定的图形内作一条折线AB 1C 1D 1E ,使AB 1⊥AB ,B 1C 1⊥BC ,C 1D 1⊥CD ,D 1E ⊥DE ,且A ,B ,C ,D ,E ,B 1,C 1,D 1都是格点.EDCBA【例6】 如图,AC =AB ,DC =DB ,∠CAB =60°,∠CDB =120°,E 是AC 上一点,F 是AB 延长线上一点,且CE =BF .图1C AEG BFD图2DA BCE思考验证:⑴求证:DE =DF ;典题精练48 初二秋季·第13讲·提高班·学生版⑵在图1中,若G 在AB 上且∠EDG =60°,试猜想CE 、EG 、BG 之间的数量关系并证明; 探究应用:⑶运用⑴⑵解答中所积累的经验和知识,完成下题:如图2,∠ABC =90°,∠CAB =∠CAD =30°,E 在AB 上,DE ⊥AB ,且∠DCE =60°,若AE =3,求BE 的长.【例7 已知等腰三角形ABC 中,∠ACB =90°,点E 在AC 边的延长线上,且∠DEC =45°,点M 、N 分别是DE 、AE 的中点,连接MN 交直线BE 于点F .当点D 在CB 边的延长线上时,如图1所示易证:MF +FN =12BE .⑴当点D 在CB 边上时,如图2所示,上述结论是否成立?若成立,请给与证明;若不成立,请写出你的猜想,并说明理由.⑵当点D 在BC 边的延长线上时,如图3所示,请写出你的结论,并说明理由.49初二秋季·第13讲·提高班·学生版M 图3图2图1NEDEMBFC AF N D CBAEF NMDBC A50 初二秋季·第13讲·提高班·学生版NMDC BA训练1. ⑴如图所示,EFGH 是一个台球桌面,有黑白两球分别置于A B 、两点的位置上,试问怎样撞击黑球A ,经桌面HE EF 、连续反弹后,准确击中白球B ?(写出作法并画图)HGF EAB⑵如图,在锐角△ABC 中,4245AB BAC =∠=,°,BAC ∠的平分线交BC于点D ,M 、N 分别是AD 和AB 上的动点,则BM +MN 的最小值是___________.训练2. 如图,在△ABC 中,AC =BC ,∠ACB =90°. 将△ABC 绕点C 逆时针旋转α角,得到△A 1B 1C ,连结BB 1,设B 1C 交AB 于D ,A 1B 1分别交AB 、AC 于E 、F .⑴ 当090︒<α<︒时,如图1,请在不添加任何线段的情况下,找出一对全等三角形,并加以证明(△ABC ≌△A 1B 1C 除外);⑵ 在⑴的条件下,当△BB 1D 是等腰三角形时,求α; ⑶ 当90180︒<α<︒时,如图2,求证:△A 1CF ≌△BCD .图2图1ABCA 1B 1E F DDFEB 1A 1CBA训练3. 已知如图,AB=AC ,PB=PC ,PD ⊥AB ,PE ⊥AC ,垂足分别为D 、思维拓展训练(选讲)PEDC B A51初二秋季·第13讲·提高班·学生版E .⑴ 求证:PD=PE ;⑵ 若BP AB =,o 45=∠DBP ,2=AP ,求四边形ADPE 的面积.训练4. ⑴如图,等腰直角三角形ABC 分别沿着某条直线对称得到图形b 、c 、d .若上述对称关系保持不变.平移ABC ∆,使得四个图形能够拼成一个重叠且无缝隙的正方形,此时点C 的坐标和正方形的边长为( )A .11222⎛⎫- ⎪⎝⎭,, B .(11)2-,,C .(11)2-,,D .11222⎛⎫- ⎪⎝⎭,,⑵如图,△ABC 中,AB =BC ,∠B =120°,AB 的垂直平分线交AC 于D . 试猜想AD 与DC 间的数量关系,并证明.DECAB 图 311-1-1OABC d c ba y x52 初二秋季·第13讲·提高班·学生版【练习1】 ⑴如图,正方形纸片ABCD 的边长为1,M ,N 分别是AD 、BC 边上的点,将纸片的一角沿过点B 的直线折叠,使点A 落在MN 上,落点记为A ',折痕交AD 于点E .若M 、N 分别是AD 、BC 边的中点, 则A N '=_________;若M 、N 分别是AD 、BC 边上距DC 最近的n 等 分点(2n ≥,且n 为整数),则A N '=_________(用含有n 的式子表示)⑵如图,D 为ABC △内一点,CD 平分ACB ∠, BD CD ⊥,A ABD ∠=∠, 若5AC =,3BC =,则BD 的长为( ) A .1 B .1.5 C .2 D .2.5【练习2】 如图,ABC △是等腰三角形,AB AC =,AD 是角平分线,以AC 为边向外作等边三角形ACE ,BE 分别与AD 、AC 交于点F 、点G ,连接CF .⑴ 求证:FBD FCD ∠=∠;⑵ 若1FD =,求线段BF 的长.复习巩固DCB AGFEDCBA第十五种品格:创新创新的力量20世纪40年代,美国有许多制糖公司向南美洲出口方糖,因方糖在海运中会有受潮现象,这给公司带来巨大损失。