【精选】北师大版数学七年级上册 有理数单元测试卷附答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、初一数学有理数解答题压轴题精选(难)
1.认真阅读下面的材料,完成有关问题:
材料:在学习绝对值时,我们已了解绝对值的几何意义,如|5-3|表示5、3在数轴上对应的两点之间的距离;又如|5+3|=|5-(-3)|,所以|5+3|表示5、-3在数轴上对应的两点之间的距离。

因此,一般地,点A,B在数轴上分别表示有理数a,b,那么A,B之间的距离(也就是线段AB的长度)可表示为|a-b|。

因此我们可以用绝对值的几何意义按如下方法求的最小值;
即数轴上x与1对应的点之间的距离,即数轴上x与2对应的点之间的距离,把这两个距离在同一个数轴上表示出来,然后把距离相加即可得原式的值.
设A、B、P三点对应的数分别是1、2、x.
当1≤x≤2时,即P点在线段AB上,此时;
当x>2时,即P点在B点右侧,此时= PA+PB=AB+2PB>AB;
当x <1时,即P点在A点左侧,此时=PA+PB=AB+2PA>AB;
综上可知,当1≤x≤2时(P点在线段AB上),取得最小值为1.
请你用上面的思考方法结合数轴完成以下问题:
(1)满足的x的取值范围是________。

(2)求的最小值为________,最大值为________。

备用图:
【答案】(1)当x<-3或x>4
(2)-3;3
【解析】【解答】解:(1)由,在数轴上表示-3和4两点,
当x<-3时, >7;
当-3≤x≤4时, .
当x>4时, .
故当x<-3或x>4时 .
( 2 )
当x<-1,
当-1≤x≤2,,此时当x=2时,取得最大值3,当x=-1时,取得最小值-3;
当x>2时, .
故的最小值为-3,最大值为3.
【分析】(1)此题实质就是求表示x的点与-3的对应点的距离及表示x的点与4的对应点的距离和大于7时,x的取值范围,从而分当x<-3时、当-3≤x≤4时、当x>4时三种情况根据绝对值的意义分别去绝对值符号后一一判断即可得出答案;
(2)此题实质就是求表示x的点与-1的对应点的距离及表示x的点与2的对应点的距离差最小值与最大值,从而分当x<-1、当-1≤x≤2、当x>2时三种情况根据绝对值的意义分别去绝对值符号考虑即可得出答案.
2.【新知理解】
如图①,点C在线段AB上,若BC=πAC,则称点C是线段AB的圆周率点,线段AC、BC 称作互为圆周率伴侣线段.
(1)若AC=3,则AB=________;
(2)若点D也是图①中线段AB的圆周率点(不同于点C),则AC________BD;(填“=”或“≠”)
(3)【解决问题】
如图②,现有一个直径为1个单位长度的圆片,将圆片上的某点与数轴上表示1的点重合,并把圆片沿数轴向右无滑动地滚动1周,该点到达点C的位置.
若点M、N是线段OC的圆周率点,求MN的长;
(4)图②中,若点D在射线OC上,且线段CD与以O、C、D中某两个点为端点的线段互为圆周率伴侣线段,请直接写出点D所表示的数.
【答案】(1)3+3
(2)=
(3)解:∵d=1,
∴c=d=,
∴C点表示的数为:+1,
∵M、N都是线段OC的圆周率点,
设点M离O点近,且OM=x,则CM=x,∵OC=OM+ MC,
∴+1=x+x,
解得:x=1,
∴OM=CN=1,
∴MN=OC-OM-CN=+1-1-1=-1.
(4)解:设点D表示的数为x,则OD=x,①若CD=OD,如图1,
∵OC=OD+CD,
∴+1=x+x,
解得:x=1,
∴点D表示的数为1;
②若OD=CD,如图2,
∵OC=OD+CD,
∴+1=x+,
解得:x=,
∴点D表示的数为;
③若OC=CD,如图3,
∵CD=OD-OC=x--1,
∴+1=(x--1),
解得:x=++1,
∴点D表示的数为++1;
④若CD=OC,如图4,
∵CD=OD-OC=x--1,
∴x--1=(+1),
解得:x=2+2+1,
∴点D表示的数为2+2+1;
综上所述:点D表示的数为:1、、++1、2+2+1.
【解析】【解答】解:(1)∵AC=3,BC=AC,
∴BC=3
∴AB=AC+CB=3+3.
故答案为:3+3.
(2)∵点D、C都是线段AB的圆周率点且不重合,
∴BC=AC,AD=BD,
设AC=x,BD=y,则BC=x,AD=y,
∵AB=AC+CB=AD+DB,
∴x+x=y+y,
∴x=y,
∴AC=BD.
故答案为:=.
【分析】(1)由已知条件求得BC长,再由AB=AC+CB即可求得答案.
(2)根据题意可得BC=AC,AD=BD,由此设AC=x,BD=y,则BC=x,AD=y,
由AB=AC+CB=AD+DB即可得AC=BD.
(3)根据题意可得C点表示的数为+1,根据M、N都是线段OC的圆周率点,设点M 离O点近,且OM=x,则CM=x,由OC=OM+ MC列出方程+1=x+x,解之可得OM=CN=1,由MN=OC-OM-CN即可求得.
(4)设点D表示的数为x,则OD=x,根据题意分情况讨论:①若CD=OD,②若OD=CD,③若OC=CD,④若CD=OC,根据题中定义分别列出方程,解之即可得出答案.
3.已知,数轴上点A和点B所对应的数分别为,点P为数轴上一动点,其对应的数为.
(1)填空: ________ , ________ .
(2)若点 P到点 A、点 B 的距离相等,求点 P 对应的数.
(3)现在点 A、点 B分别以 2 个单位长度/秒和 0.5 个单位长度/秒的速度同时向右运动,点 P以 3 个单位长度/秒的速度同时从原点向左运动.当点 A与点 B之间的距离为2个单位长度时,求点 P所对应的数是多少?
【答案】(1)-1;3
(2)解:依题可得:
PA=|x+1|,PB=|3-x|,
∵点P到点A、点B的距离相等,
∴PA=PB,
即|x+1|=|3-x|,
解得:x=1,
∴点P对应的数为1.
(3)解:∵点A、点B 速度分别以 2 个单位长度/秒、 0.5 个单位长度/秒的速度同时向右运动,
∴A点对应的数为2t-1,
点B对应的数为3+0.5t,
①当点A在点B左边时,
∵AB=2,
∴(3+0.5t)-(2t-1)=2,
解得:t=,
∵点P以 3 个单位长度/秒的速度同时从原点向左运动,
∴×3=4,
∴P点对应的数为:-4.
②当点A在点B右边时,
∵AB=2,
∴(2t-1)-(3+0.5t)=2,
解得:t=4,
∵点P以 3 个单位长度/秒的速度同时从原点向左运动,
∴4×3=12,
∴P点对应的数为:-12.
【解析】【解答】解:(1)∵(a+1)2+|b-3|=0,
∴,
解得:.
故答案为:-2;3.
【分析】(1)根据平方和绝对值的非负性列出方程,解之即可得出答案.
(2)根据题意可得PA=|x+1|,PB=|3-x|,再由PA=PB得|x+1|=|3-x|,解之即可得出点P对应的数.
(3)根据题意可得A点对应的数为2t-1,点B对应的数为3+0.5t,分情况讨论:①当点A 在点B左边时,②当点A在点B右边时,由AB=2分别列出方程,解之得出t值,再由P
点的速度得出点P对应的数.
4.阅读下面的材料:
如图1,在数轴上A点表示的数为a,B点表示的数为b,则点A到点B的距离记为AB.线段AB的长可以用右边的数减去左边的数表示,即AB=b-a.请用上面的知识解答下面的问题:
如图2,一个点从数轴上的原点开始,先向左移动3cm到达A点,再向左移动1cm到达B 点,然后向右移动6cm到达C点,用1个单位长度表示1cm.
(1)请你在数轴上表示出A、B、C三点的位置:
(2)点C到点A的距离CA=________cm;若数轴上有一点D,且AD=4,则点D表示数________;
(3)若将点A向右移动xcm,则移动后的点表示的数为________;(用代数式表示);(4)若点B以每秒3cm的速度向左移动,同时A、C点分别以每秒1cm、5cm的速度向右移动.设移动时间为t秒,试探索:CA-AB的值是否会与t的值有关?请说明理由.
【答案】(1)解:点A表示-3,点B表示-4,点C表示2,如图所示,
(2)5;1或-7
(3)-3+x
(4)解:CA-AB的值与t的值无关.理由如下:由题意得,点A所表示的数为-3+t,点B表示的数是-4-3t,点C表示的数是2+5t,
∵点C的速度比点A的速度快,
∴点C在点A的右侧,∴CA=(2+5t)-(-3+t)=5+4t,
∵点B向左移动,点A向右移动,
∴点A在点B的右侧,
∴AB=(-3+t)-(-4-3t)=1+4t,
∴CA-AB=(5+4t)-(1+4t)=4.
【解析】【解答】(2)CA=2-(-3)=2+3=5;
当点D在点A右侧时,点D表示的数是:4+(-3)=1;
当点D在点A左侧时,点D表示的数是:-3-4=-7;
故答案为5;1或-7.
( 3 )点A表示的数为-3,则向右移动xcm,移动到(-3+x)处.
【分析】(1)在数轴上进行演示可分别得出点A,点B,点C所表示的数;
(2)由题中材料可知CA的距离可用右边的数减去左边的数,即CA=2-(-3);
由AD=4,且点A,点D的位置不明确,则需分类讨论:当点D在点A右侧时,和当点D 在点A左侧时,两种情况;
(3)向右移动x,在原数的基础上加“x”;
(4)由字母t分别表示出点A,点B,点C的数,由它们的移动方向不难得出点C在点A 的右侧,点A在点B的右侧,依此计算出CA,AB的长度,计算CA-AB的值即可.
5.[背景知识]数轴是初中数学的一个重要工具,利用数轴可以将数与形完美的结合.研究数轴我们发现了许多重要的规律:数轴上A点、B点表示的数为a、b,则A,B两点之间的距离AB=|a﹣b|,若a>b,则可简化为AB=a﹣b;线段AB的中点M表示的数为

[问题情境]
已知数轴上有A、B两点,分别表示的数为﹣10,8,点A以每秒3个单位的速度沿数轴向右匀速运动,点B以每秒2个单位向左匀速运动.设运动时间为t秒(t>0).
[综合运用]
(1)运动开始前,A、B两点的距离为________;线段AB的中点M所表示的数________.
(2)点A运动t秒后所在位置的点表示的数为________;点B运动t秒后所在位置的点表示的数为________;(用含t的代数式表示)
(3)它们按上述方式运动,A、B两点经过多少秒会相遇,相遇点所表示的数是什么?(4)若A,B按上述方式继续运动下去,线段AB的中点M能否与原点重合?若能,求出运动时间,并直接写出中点M的运动方向和运动速度;若不能,请说明理由.(当A,B 两点重合,则中点M也与A,B两点重合)
【答案】(1)18;-1
(2)﹣10+3t;8﹣2t
(3)解:设它们按上述方式运动,A、B两点经过x秒会相遇,根据题意得﹣10+3x=8﹣2x,
解得x= ,
﹣10+3x= .
答:A、B两点经过秒会相遇,相遇点所表示的数是;
(4)解:由题意得, =0,
解得t=2,
答:经过2秒A,B两点的中点M会与原点重合.M点的运动方向向右,运动速度为每秒
个单位长度.
故答案为18,﹣1;﹣10+3t,8﹣2t.
【解析】【解答】解:(1)运动开始前,A、B两点的距离为8﹣(﹣10)=18;线段AB
的中点M所表示的数为 =﹣1;(2)点A运动t秒后所在位置的点表示的数为﹣10+3t;点B运动t秒后所在位置的点表示的数为8﹣2t;
【分析】(1)根据A,B两点之间的距离AB=|a﹣b|,若a>b,则可简化为AB=a﹣b及线
段AB的中点M表示的数为即可求解;(2)点A运动t秒后所在位置的点表示的数=运动开始前A点表示的数+点A运动的路程,点B运动t秒后所在位置的点表示的数=运动开始前B点表示的数﹣点B运动的路程;(3)设它们按上述方式运动,A、B两点经过x秒会相遇,等量关系为:点A运动的路程+点B运动的路程=18,依此列出方程,解方程即可;(4)设A,B按上述方式继续运动t秒线段AB的中点M能否与原点重合,根据线段AB的中点表示的数为0列出方程,解方程即可.
6.已知数轴上顺次有A、B、C三点分别表示数a、b、c,并且满足(a+12)2+|b+5|=0,b与c互为相反数。

一只电子小蜗牛从A点向正方向移动,速度为2个单位/秒。

(1)请求出A、B、C三点分别表示的数;
(2)运动多少秒时,小蜗牛到点B的距离为1个单位长度;
(3)设点P在数轴上点A的右边,且点P分别到点A、点B、点C的距离之和是20,那么点P所表示的数是________。

【答案】(1)解:由题意得:a+12=0, b+5=0,
则a=-12, b=-5,
c=-b=5,
∴A、B、C分别表示的数为-12,-5和5.
(2)解:设小蜗牛到点B的距离为1个单位长度时表示的数为x,
则 ,
解得:x=-4或-6,
∴小蜗牛运动的距离为:-4-(-12)=8, 或-6-(-12)=6.
∴小蜗牛运动6秒或8秒时,小蜗牛到点B的距离为1个单位长度.
(3)8或2
【解析】【解答】解:(3)设P点表示的数为x, 则
1)当P在AB之间时,即-12≤x<-5时,
PA+PB+PC=x-(-12)+(-5)-x+5-x=20,
解得x=-8.
2)当P在BC之间时,即-5≤x<5时,
PA+PB+PC=x-(-12)+x-(-5)+5-x=20,
解得x=-2.
3)当P在C的右边时,即x≥5时,
PA+PB+PC=x-(-12)+x-(-5)+x-5=20,
解得x=(舍去).
【分析】(1)根据非负数之和等于0,列式求得a、b值,再根据互为相反数的定义求得c;
(2)设小蜗牛到点B的距离为1个单位长度时表示的数为x, 根据数轴上两点间距离公式列式去绝对值求得x即可;
(3)设P点表示的数为x, 分三种情况,1)当P在AB之间时,即-12≤x<-5时; 2)当P在BC 之间时,即-5≤x<5时; 3)当P在C的右边时,即x≥5时,根据数轴上两点间距离公式分别列式求出x, 再检验即可.
7.先阅读下面的材料,再解答后面的各题:
现代社会对保密要求越来越高,密码正在成为人们生活的一部分.有一种密码的明文(真实文)按计算机键盘字母排列分解,其中Q,W,E,……,N,M这26个字母依次对应1,2,3,……,25,26这26个自然数(见下表).
Q W E R T Y U I O P A S D
12345678910111213
F G H J K L Z X C V B N M
14151617181920212223242526
将明文转成密文,如:,即R变为L;,即A 变为S.
将密文转换成明文,如:,即X变为P;13 3×(13-8)-1=14,即D变为F.
(1)按上述方法将明文NE T译为密文.
(2)若按上方法将明文译成的密文为DWN,请找出它的明文.
【答案】(1)解:
即NET密文为MQP.
(2)解:
即密文DWN的明文为FYC .
【解析】【分析】(1)由图表找出N、E、T对应的自然数,再根据变换公式变成密文即可;(2)由图表找出D、W、N对应的自然数,再根据变换公式变成明文即可.
8.如图,点A、B、C在数轴上表示的数分别是-3、1、5。

动点P、Q同时出发,动点P从点A出发,以每秒4个单位的速度沿A→B→A匀速运动回到点A停止运动.动点Q从点C 出发,以每秒1个单位的速度沿C→B向终点B匀速运动.设点P的运动时间为t(s)。

(1)当点P到达点B时,点Q表示的数为________。

(2)当t=1时,求点P、Q之间的距离。

(3)当点P在A→B上运动时,用含t的代数式表示点P、Q之间的距离。

(4)当点P、Q到点C的距离相等时,直接写出t的值。

【答案】(1)3
(2)解:当t=1时,AP=4,CQ=1,PQ=1
所以点P、Q之间的距离是1
(3)解:点P在A→B上运动,且相遇时,4t=4+t,t= ,
当0≤1≤ 时,PQ=4-3t
当<1≤2时,PQ=3t-4
(4)解:t= ,t= ,t= ,t=4
【解析】【分析】先表示出运动t(s)点P经过的路程为4t,点Q经过的路程为t;P到达点B和终点A所用的时间分别为2(s)、4(s),点Q到达点B所用的时间为4(s)。

(1)P到达点B用2(s),此时CQ=2,故可求;
(2)当t=1时,求出线段AP、CQ,故可求PQ;
(3)先由AP=AC+CQ求出点P、Q相遇时的时间,然后分0≤t≤和≤t≤2两种情况求解即可;
(4)利用PC=PQ列出方程求解即可。

9.观察下列两个等式:2﹣=2× +1,5﹣=5× +1,给出定义如下:我们称使等式a ﹣b=ab+1的成立的一对有理数a,b为“共生有理数对”,记为(a,b),如:数对(2,
),(5,),都是“共生有理数对”.
(1)数对(﹣2,1),(3,)中是“共生有理数对”的是________;
(2)若(m,n)是“共生有理数对”,则(﹣n,﹣m)________“共生有理数对”(填“是”或“不是”);
(3)请再写出一对符合条件的“共生有理数对”为________;(注意:不能与题目中已有的“共生有理数对”重复)
(4)若(a,3)是“共生有理数对”,求a的值.
【答案】(1)
(2)是
(3)(0.-1)等
(4)解:∵(a,3)是“共生有理数对”,
∴a-3=3a+1
解之:a=-2.
【解析】【解答】(1)数对(﹣2,1)
∴-2×1+1=-1,-2-1=-3
-1≠-3
∴数对(﹣2,1)不是“共生有理数对”;
数对(3,)
∴,
∴数对(3,)是“共生有理数对”;
故答案为:(3,);
(2)∵(m,n)是“共生有理数对”
∴m-n=mn+1
∴-n-(-m)=m-n
-n(-m)+1=mn+1
∴-n-(-m)=-n(-m)+1,
∴(﹣n,﹣m)是“共生有理数对”
故答案为:是.
(3)∵0×(-1)+1=1
0-(-1)=1
∴(0,-1)是“共生有理数对”.
【分析】(1)利用“共生有理数对”的定义:若(a,b)是“共生有理数对”,可得到a-b=ab+1,通过计算可作出判断。

(2)若(a,b)是“共生有理数对”,可得到a-b=ab+1,通过计算可作出判断。

(3)利用“共生有理数对”的定义,写出符合题意的“共生有理数对”即可。

(4)根据(a,3)是“共生有理数对”,建立关于a的方程,解方程求出a的值。

10.阅读理解:
若A,B,C为数轴上的三点,且点C到点A的距离是点C到点B的距离的2倍,我们就称点C是【A,B】的好点。

例如,如图1,点A表示的数为-1,点B表示的数为2,表示1的点C到点A的距离是2,到点B的距离是1,那么点C是【A,B】的好点,又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是【A,B】的好点,但点D是【B,A】的好点。

知识运用:
(1)如图2,M,N为数轴上的两点,点M所表示的数为-2,点N所表示的数为4.
①在点M和点N中间,数________所表示的点是【M,N】的好点;
②在数轴上,数________和数________所表示的点都是【N,M】的好点。

(2)如图3,A,B为数轴上的两点,点A所表示的数为-20,点B所表示的数为40.现有一只电子蚂蚁P从点B出发,以每秒4个单位长度的速度向左运动,到达点A时停止,则经过几秒后,P,A和B中恰有一个点为其余两点的好点?
【答案】(1)2;0;-8
(2)解:由题意设PB=4t,AB=40+20=60,则PA=60-4t,
点P走完所用的时间为60÷4=15(秒)
分四种情况:
①当PA=2PB时,即2×4t=60-4t,t=5,P是【A,B】的好点;
②当PB=2PA时,即4t=2(60-4t),t=10,P是【B,A】的好点;
③当AB=2PB时,即60=2×4t,t=7.5,B是【A,P】的好点;
④当AB=2AP时,即60=2(60-4t),t=7.5,A是【B,P】的好点,
即当经过5秒或7.5秒或10秒时,点P,A和B中恰有一个点为其余两点的好点。

【解析】【解答】解:(1)①设设所求的数为x,由题意得:
x-(-2)=2(4-x)
解之:x=2;
②在数轴上,数0和数-8所表示的点都是【N,M】的好点。

故答案为:2,0,-8
【分析】(1)①设所求的数为x,再根据好点定义,列出关于x的方程,解方程求出x 的值;②根据好点的定义可以得到结论。

(2)由已知条件用含t的代数式表示出PB,AB,PA的长,再求出点P走完所用的时间,然后分情况讨论:①当PA=2PB时;②当PB=2PA时;③当AB=2PB时;④当AB=2AP 时,由此分别建立关于t的方程,解方程求出t的值即可。

11.在数轴上,点A,B分别表示数a,b,则线段AB的长表示为|a-b|,例如:在数轴上,点A表示5.点B表示2,则线段AB的长表示为|5-2|=3:回答下列问题:
(1)数轴上表示1和-3的两点之间的距离是________:
(2)若AB=8,|b|=3|a|,求a,b的值.
(3)若数轴上的任意一点P表示的数是x,且|x−a|+|x−b|的最小值为4,若a=3,求b的值
【答案】(1)4
(2)解:∵|b|=3|a|
∴b=±3a
∵AB=8
∴|a-b|=8
当b=3a时,|a-b|=|-2a|=8
∴a=4,b=12或a=-4,b=-12
当b=-3a时,|a-b|=|4a|=8
∴a=2,b=-6或a=-2,b=6
综上所述:a=4,b=12或a=-4,b=-12或a=2,b=-6或a=-2,b=6.
(3)解:由线段上的点到线段两端点的距离的和最小,
①当点b在a的右侧时,
得P在3点与b点的线段上,|x−3|+|x−b|的值最小为4,
|x−3|+|x−b|最小=x−3+b−x=4,
解得:b=7;
②当点b在a的左侧时,
得P在3点与b点的线段上,|x−3|+|x−b|的值最小为4,
|x−3|+|x−b|最小=3−x+x−b=4,
解得:b=−1;
故答案为:7或−1.
【解析】【解答】解:(1)1和-3两点之间的距离为|1-(-3)|=4
【分析】(1)根据数轴上两点间的距离公式即可求解;(2)根据|b|=3|a|,分类讨论b=3a和b=-3a时的情况,分别求解a、b即可;(3)根据|x−a|+|x−b|的最小值为4可知,a、b对应点在数轴上距离为4,再根据a的取值可解得b.
12.已知式子M=(a+5)x3+7x2-2x+5是关于x的二次多项式,且二次项系数为b,数轴上A,B两点所对应的数分别是a和b.
(1)a=________,b=________.A,B两点之间的距离=________;
(2)有一动点P从点A出发第一次向左运动1个单位长度,然后在新的位置第二次运动,向右运动2个单位长度,在此位置第三次运动,向左运动3个单位长度……按照如此规律不断地左右运动,当运动到第2019次时,求点P所对应的有理数;
(3)在(2)的条件下,点P会不会在某次运动时恰好到达某一位置,使点P到点B的距离是点P到点A的距离的3倍?若可能请求出此时点P的位置,若不可能请说明理由.
【答案】(1)-5;7;12
(2)依题意得:−5−1+2−3+4−5+6−7+…+2014−2015+2016-2017+2018-2019,
=−5+1009−2019,
=−1015.
答:点P所对应的有理数的值为−1013;
(3)解:设点P对应的有理数的值为p,
①当点P在点A的左侧时:PA=−5−p,PB=7−p,
依题意得:
7−p=3(−5−p),
解得:p=−11;
②当点P在点A和点B之间时:PA=p−(−5)=p+5,PB=7−p,
依题意得:7−p=3(p+5),
解得:p=−2;
③当点P在点B的右侧时:PA=p−(−5)=p+5,PB=p−7,
依题意得:p−7=3(p+5),
解得:x=−11,这与点P在点B的右侧(即x>7)矛盾,故舍去.
综上所述,点P所对应的有理数分别是−11和−2.
【解析】【解析】解:(1)∵式子M=(a+5)x3+7x2−2x+5是关于x的二次多项式,且二次项系数为b,
∴a+5=0,b=7,
则a=−5,
∴A、B两点之间的距离=|−5-7|=12.
故答案是:−5;7;12.
【分析】(1)根据多项式的项及次数的定义得到a+5=0,由此求得a、b的值,然后根据数轴上任意两点间的距离,等于这两点所表示的数的差的绝对值即可求线段AB的值;(2)根据题意得到点P每一次运动后所在的位置,然后由有理数的加法进行计算即可;(3)设点P对应的有理数的值为p,分情况进行解答:点P在点A的左侧,点P在点A、B之间、点P在点B的右侧三种情况,根据根据数轴上任意两点间的距离,等于这两点所表示的数的差的绝对值表示出PA,PB的长度,进而根据点P到点B的距离是点P到点A的距离的3倍分别列出方程,求解即可.。

相关文档
最新文档