浙江省2019年中考数学复习第七章图形变换第二节图形的平移与旋转课件

合集下载

九年级数学中考复习专题-图形的旋转-PPT名师公开课获奖课件百校联赛一等奖课件

九年级数学中考复习专题-图形的旋转-PPT名师公开课获奖课件百校联赛一等奖课件

B4 B3 B2
B1
例8. 如图,把两张边长为10cm旳正 方形纸片放在桌面上,使一张纸片旳 顶点放在另一张正方形纸片旳中心位 置O处.试问,桌面被两张正方形纸片 所覆盖旳那部分面积是多少?
O
O
O
延伸: (1)如图,O是边长为a旳正方形 ABCD旳中心,将一块半径足够长、
圆心角为直角旳扇形纸板旳圆心放在 O点处,并将纸板绕O点旋转.求证: 正方形ABCD旳边被纸板覆盖旳总长 度为定值a(圆心O是在正方形内).
样经过平移、旋转、轴对称将△ABC
运动到△A1B1C1旳位置上,使得两者
重叠.
C1
B1 A1
C
A
B
C B
C B
A
C2
A2
图1
A1
A A2
B2 C
C1 B
C2 B1
B2
图2
C1
A1
B1
A
A2
C2
B2
图3
例4 .如图,菱形ABCD绕点O旋转后,
顶点A旳相应点是点E,试拟定顶点B、 C、D旳位置,以及旋转后旳四边形 EFGH.
A´ C
C´ O
旋转方向是 ________顺__时___针__________ 旋转角是∠__A_O__A_´_、___∠__B_O__B_´_、__∠__C__O__C_´_。
演示3

A
O A´
B
C

旋转方向是 ____顺__时___针______________ 旋转角是_∠_A__O_A__´、___∠__B_O__B_´_、___∠__C_O__C__´ 。
以AB边上旳高
OA1为边,按逆 时针方向作等边

人教版中考数学第一轮复习第七章图形与变换

人教版中考数学第一轮复习第七章图形与变换

第七章图形与变换第二十四讲平移、旋转与对称【基础知识回顾】一、轴对称与轴对称图形:1、轴对称:把一个图形沿着某一条直线翻折过去,如果它能够与另一个图形那么就说这两个图形成轴对称,这条直线叫2、轴对称图形:如果把一个图形沿着某条直线对折,直线两旁的部分能够互相那么这个图形叫做轴对称图形3、轴对称性质:⑴关于某条直线对称的两个图形⑵对应点连接被对称轴【名师提醒:1、轴对称是指个图形的位置关系,而轴对称图形是指个具有特殊形状的图形;2、对称轴是而不是线段,轴对称图形的对称轴不一定只有一条】二、图形的平移与旋转:1、平移:⑴定义:在平面内,把某个图形沿着某个移动一定的这样的图形运动称为平移⑵性质:Ⅰ、平移不改变图形的与,即平移前后的图形Ⅱ、平移前后的图形对应点所连的线段平行且【名师提醒:平移作图的关键是确定平移的和】2、旋转:⑴定义:在平面内,将一个图形绕一个定点沿某个方向旋转一个,这样的图形运动称为旋转,这个点称为转动的称为旋转角⑵旋转的性质:Ⅰ、旋转前后的图形Ⅱ、旋转前后的两个圆形中,对应点到旋转中心的距离都,每对对应点与旋转中心的连线所成的角度都是旋转角都【名师提醒:1、旋转作用的关键是确定、和,2、一个图形旋转一定角度后如果能与自身重合,那么这个图形就是旋转对称图形】三、中心对称与中心对称图形:1、中心对称:在平面内,一个图形绕某一点旋转1800能与另一个图形就说这两个图形关于这个点成中心对称,这个点叫做2、中心对称图形:一个图形绕着某点旋转后能与自身重合,这种图形叫中心对称图形,这个点叫做3、性质:在中心对称的两个图形中,对称点的连线都经过且被平分【名师提醒:1、中心对称是指个图形的位置关系,而中心对称图形是指个具有特殊形状的图形2、常见的轴对称图形有、、、、、等,常见的中心对称图形有、、、、、等3、所有的正n边形都是对称图形,且有条对称轴,边数为偶数的正多边形,又是对称图形,4、注意圆形的各种变换在平面直角坐标系中的运用】【典型例题解析】1.已知点P(3,-1)关于y轴的对称点Q的坐标是(a+b,1-b),则a b的值为.2.点P(2,-1)关于x轴对称的点P′的坐标是.3.在图示的方格纸中(1)作出△ABC关于MN对称的图形△A1B1C1;(2)说明△A2B2C2是由△A1B1C1经过怎样的平移得到的?4.已知点P(3,2),则点P关于y轴的对称点P1的坐标是,点P关于原点O的对称点P2的坐标是5.下列图形中既是中心对称图形又是轴对称图形的是()A.B.C.D.6.点(3,2)关于x轴的对称点为()A.(3,-2)B.(-3,2)C.(-3,-2)D.(2,-3)7.在平面直角坐标系中,将点A(-2,3)向右平移3个单位长度后,那么平移后对应的点A′的坐标是()A.(-2,-3)B.(-2,6)C.(1,3)D.(-2,1)8.如图,将Rt△ABC(其中∠B=35°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于()A.55°B.70°C.125°D.145°9.P是∠AOB内一点,分别作点P关于直线OA、OB的对称点P1、P2,连接OP1、OP2,则下列结论正确的是()A.OP1⊥OP B.OP1=OP2C.OP1⊥OP2且OP1=OP2D.OP1≠OP2 10.已知点M(3,-2),将它先向左平移4个单位,再向上平移3个单位后得到点N,则点N的坐标是.11.夏季荷花盛开,为了便于游客领略“人从桥上过,如在河中行”的美好意境,某景点拟在如图所示的矩形荷塘上架设小桥.若荷塘周长为280m,且桥宽忽略不计,则小桥总长为m.12.如图,在直角△OAB中,∠AOB=30°,将△OAB绕点O逆时针旋转100°得到△OA1B1,则∠A1OB= °.13.如图,正方形ABCD的边长为4,点P在DC边上且DP=1,点Q是AC上一动点,则DQ+PQ的最小值为.14.如图,在矩形纸片ABCD中,AB=12,BC=5,点E在AB上,将△DAE沿DE折叠,使点A落在对角线BD上的点A′处,则AE的长为.15.如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,4),请解答下列问题:(1)画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标.(2)画出△A1B1C1绕原点O旋转180°后得到的△A2B2C2,并写出点A2的坐标.第二十五讲相似图形(一):【知识梳理】1.比例基本性质及运用(1)线段比的含义:如果选用同一长度单位得两条线段a、b的长度分别为m、n,那么就说这两条线段的比是a:b=m:n,或写成a m=b n,和数的一样,两条线段的比a、b中,a叫做比的前项 b叫做比的后项.注意:①针对两条线段;②两条线段的长度单位相同,但与所采用的单位无关;③其比值为一个不带单位的正数.(2)线段成比例及有关概念的意义:在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段,已知四条线段a、b、c、d,如果a c=b d或a:b=c:d,那么a、b、c、d叫做成比例的项,线段a、d叫做比例外项,线段b、d叫做比例内项,线段d叫做a、b、c的第四比例项,当比例内项相同时,即a bb c=或a:b=b:c,那么线段b叫做线段a和c的比例中项.(3)比例的性质,①基本性质:如果a:b=c:d,那么ad=bc;反之亦成立。

中考数学第七章 图形的变化 第一节 尺规作图

中考数学第七章 图形的变化 第一节 尺规作图

(4)“三三”型
考点 3 几何体的展开与折叠
3.立体图形的折叠 一个几何体能展开成一个平面图形,这个平面图形就可以折叠成相应的
几何体,展开和折叠是一个互逆的过程.
《安徽·中考》数学
安徽中考考点过关
第七章 图形的变化
第三节 图形的对称、平移、 旋转与位似
目录(安徽·中考)
考点
• 考点 1 轴对称与轴对称图形 • 考点 2 图形的中心对称 • 考点 3 图形的平移与旋转变换 • 考点 4 位似图形
图示:
方法
命题角度1 图形的对称
例 [2021重庆A卷]如图,在▱ABCD中,AB>AD. (1)用尺规完成以下基本作图:在AB上截取AE,使AE=AD; 作∠BCD的平分线交AB于点F.(保留作图痕迹,不写作法 ) (2)在(1)所作的图形中,连接DE交CF于点P,猜想△CDP 按角分类的类型,并证明你的结论. 【思路分析】 (1)根据“等线”“角平分线”的尺规作图方法作图 即可;(2)根据平行四边形的性质、等腰三角形的性质、角平分线的 性质求得∠CPD为直角,从而可得△CDP为直角三角形.
考点 1 轴对称与轴对称图形
3.常见的轴对称图形及其对称轴
图形 对称轴数量
对称轴

㉕ 1 条 角平分线所在的直线
等腰三角形 ㉖ 1 条 顶角平分线所在的直线(或底边上的高所在的直线或底边上的中线所 在的直线)
等边三角形 ㉗ 3 条 三个内角平分线所在的直线(或任一条边上的高或中线所在的直线)
矩形
㉘ 2 条 相邻两边的垂直平分线
中心投影
由一点(点光源)发出的光线所形成的投影.如:物体在灯泡发出的光的 照射下形成的影子.
考点 2 三视图

人教版中考数学一轮复习--平移、旋转与位似(精品课件)

人教版中考数学一轮复习--平移、旋转与位似(精品课件)
(1)求∠BDF的大小;
解:∵线段AD由线段AB绕点A按逆时针方向旋转90°得到, ∴∠DAB=90°,AD=AB=10,∴∠ABD=45°. ∵△EFG由△ABC沿CB方向平移得到, ∴AB∥EF,∴∠BDF=∠ABD=45°.
(2)求CG的长. 解:由平移的性质,得AE∥CG,AB∥EF,
∴∠DEA=∠DFC=∠ABC,∠ADE+∠DAB=180°.
A.3 B.4 C.6 D.9
4.一个正方形AOBC各顶点的坐标分别为A(0,3),O(0,0),
B(3,0),C(3,3).若以原点O为位似中心,将这个正方 形的边长缩小为原来的 1 ,则新正方形的中心的坐标为
2 _34_,__34__或__- ___34_,__-__34_ _.
5.【2021福州质检8分】如图,等边三角形ABC中,D为 AB边上一点(点D不与点A、B重合),连接CD,将CD平 移到BE(其中点B和点C对应),连接AE.将△BCD绕着点 B逆时针旋转至△BAF,连接DF.
∴△ADE≌△CFD(AAS), ∴AE=CD,∴CD=BF.
考点2 图形的旋转 要点知识 性质:(1)对应点到旋转中心的距离相等; (2)每对对应点与旋转中心所连线段的夹角都等于旋转角; (3)旋转前后的图形全等.
福建6年中考聚焦[6年2考]
1.【2017福建4分】如图,网格纸上正方形小格的边长为1, 图中线段AB和点P绕着同一个点做相同的旋转,分别 得到线段A′B′和点P′,则证明:如图,连接AE, ∵线段EF是由线段AB平移得到的, ∴EF∥AB,EF=AB,∴四边形ABFE是平行四边形, ∴AE∥BC,AE=BF,∴∠DAE=∠BCA=90°, ∴∠DAE=∠FCD=90°. ∵△EFD是等腰直角三角形,∴DE=DF.

人教版九年级上册数学《图形的旋转》旋转说课研讨教学复习课件

人教版九年级上册数学《图形的旋转》旋转说课研讨教学复习课件
AC= , ∠B=60 °,则CD的长为( D )
A. 0.5
B. 1.5
C.
D. 1
E
A
C
B
D
课堂检测
4. △A ′ OB ′是△AOB绕点O按逆时针方向旋转得到
的.已知∠AOB=20 °, ∠ A ′ OB =24°,
AB=3,OA=5,则A ′ B ′ = 3 ,OA ′ = 5 ,
A.2
B.3
C.4
D.5பைடு நூலகம்
课堂检测
2. 下列说法正确的是( B )
A.旋转改变图形的形状和大小
B.平移改变图形的位置
C. 图形可以向某方向旋转一定距离
D.由平移得到的图形也一定可由旋转得到
课堂检测
3.如图,将Rt△ABC绕点A按顺时针方向旋转一定角
度得Rt △ADE,点B的对应点D恰好落在BC边上.若
将△ABE绕点B顺时针旋转90°到△CBE′的位置,若AE=1,
135
BE=2,CE=3则∠BE′C=________度.
解析:连接EE′,
由旋转性质知BE=BE′,∠EBE′=90°,
∴∠BE'E=45°,EE′=
在△EE′C中,E′C=1,EC=3,EE′=
由勾股定理逆定理可知∠EE′C=90°,
解:(1)由题意可知:CD=CE,∠DCE=90°,
∵∠ACB=90°,
∴∠ACD=∠ACB﹣∠DCB,
∠BCE=∠DCE﹣∠DCB,
∴∠ACD=∠BCE,
AC=BC
在△ACD与△BCE中, ∠ACD=∠BCE
CD=CE
∴△ACD≌△BCE(SAS).
链接中考
(2)当AD=BF时,求∠BEF的度数.

中考复习图形的对称平移和旋转

中考复习图形的对称平移和旋转
2.特征: (2)对应线段、对应点所连的线段平行(或 在同一直线上)且相等。
3.平移两要点: 平移的①方向 ②距离
演练1、将以下图案(1)通过平移可以得到图案( C )
演练2、如图:ΔDEF可以看作ΔABC平移得到
1)AB∥ DE ; AC ∥ DF .
AD
2)若BC=5cm, CE =3cm,则平移的
个图形叫做中心对称图形,这个点就是它的
对称点。
常见的轴对称图形: 常见中心对称图形:
角 线段
等腰三角形 等边三角形
正方形 矩形 菱形
等腰梯形

线段
平行四边形
矩形 菱形 正方形
圆Байду номын сангаас
2.如图所示图形中,中心对称图形有( ) ❖A.1个 B.2个 C.3个 D.4个
此课件下载可自行编辑修改,供参考! 感谢您的支持,我们努力做得更好!
A
B
2.在如图所示的四个汽车标志图案中,能用平 移变换来分析其形成过程的图案是 ( D )
3.如图把图①中的△ABC经过一定的变换得 到图②中的△A′B′C′,如果图①中△ABC上点 P的坐标为(a,b),那么这个点在图②中的对应 点P′的坐标为( ) C
A.(a-2,b-3) B.(a-3,b-2) C.(a+3,b+2) D.(a+2,b+3)
点, △ABD绕点A旋转到△ACE的位置, 恰与△ACD组成
正方形ADCE, 则△ABD所经过的旋转是( D )
A. 顺时针旋转225° B. 逆时针旋转45°
C. 顺时针旋转315° D. 逆时针旋转90°
A
E
B
D
C
四边形ABCD是正方形,△DCE顺时针旋转后与

九年级数学中考知识点归纳复习 第24讲 平移、对称、旋转与位似 视图和投影

九年级数学中考知识点归纳复习 第24讲  平移、对称、旋转与位似 视图和投影
图形关于原点成位似变换
在平面直角坐标系内,如果两个图形的位似中心为原点,相似比为k,那么这两个位似图形对应点的坐标的比等于k或-k.
视图与投影
二、知识清单梳理
知识点一:三视图内容
关键点拨
1.三视图
主视图:从正面看到的图形.
俯视图:从上面看到的图形.
左视图:从左面看到的图形.
例:长方体的主视图与俯视图如图所示,则这个长方体的体积是36 .
4.图形的中心对称
(1)把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么这两个图形关于这个点对称或中心对称,该点叫做对称中心.
(2)①关于中心对称的两个图形是全等形;②关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分;③关于中心对称的两个图形,对应线段平行(或者在同一直线上)且相等.
2.三视图的对应关系
(1)长对正:主视图与俯视图的长相等,且相互对正;
(2)高平齐:主视图与左视图的高相等,且相互平齐;
(3)宽相等:俯视图与左视图的宽相等,且相互平行.
3.常见几何体的三视图常见几何体的三视图
正方体:正方体的三视图都是正方形.
圆柱:圆柱的三视图有两个是矩形,另一个是圆.
圆锥:圆锥的三视图中有两个是三角形,另一个是圆.
第七单元图形与变换
第24讲平移、对称、旋转与位似视图和投影
一、知识清单梳理
知ห้องสมุดไป่ตู้点一:图形变换
关键点拨与对应举例
1.图形的轴对称
(1)定义:①轴对称:把一个图形沿某一条直线翻折过去,如果它能够与另一个图形重合,那么就称这两个图形关于这条直线对称.
②轴对称图形:如果一个平面图形沿着一条直线折叠,直线两旁的部分能够重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴.

中考数学总复习专项课件图形的对称平移与旋转

中考数学总复习专项课件图形的对称平移与旋转
13.如图,将△ABC沿BC方向平移6个单位长度得到△DEF.若△ABC的周长为28,则四边形ABFD的周长为 40 .
40
14.(2023·吉林)如图,在Rt△ABC中,∠C=90°,BC<AC.点D,E分别在边AB,BC上,连接DE,将△BDE沿DE折叠,点B的对应点为点B'.若点B'刚好落在边AC上,∠CB'E=30°,CE=3,则BC的长为 9 .
9
15.如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(2,-1),B(1,-2),C(3,-3).
(1)将△ABC向上平移4个单位长度,再向右平移1个单位长度,得到△A1B1C1,请画出△A1B1C1;
(2)请画出△ABC关于y轴对称的△A2B2C2.
16.如图,在正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,将△ADF绕点A顺时针旋转90°得到△ABG.
A
B
C
D
A
4.(2023·贵阳模拟)某小区的圆形花园中间有两条互相垂直的小路,园丁在花园中栽种了8棵桂花,如图所示.若A,B两处桂花的位置关于小路对称,在分别以两条小路为x轴、y轴的平面直角坐标系内,若点A的坐标为(-6,2),则点B的坐标为( A )
A.(6,2)
B.(-6,-2)
C.(2,6)
11.如图,AO为∠BAC的平分线,且∠BAC=50°,将四边形ABOC绕点A逆时针旋转后,得到四边形AB'O'C',且∠OAC'=100°,则四边形ABOC旋转的度数是 75° .
12.在平面直角坐标系中,点(4,5)绕原点O逆时针旋转90°,得到的点的坐标是 (-5,4) .
75°

中考数学考点系统复习 第七章 作图与图形变换 第三节 图形的平移、旋转、对称与位似

中考数学考点系统复习 第七章 作图与图形变换 第三节 图形的平移、旋转、对称与位似

图④
图⑤
图⑥
(4)如图⑤,若将△ABD 绕点 A 逆时针旋转至 AB 与 AC 重合,点 D 的对应 点为 E,点 P 为 AC 的中点,连接 PE,则 PE 的最小值为 3 . (5)如图⑥,当点 D 是 BC 边上的中点时,将线段 AD 绕点 A 旋转 60°得到 AD′,连接 CD′,则 CD′=22 7或或2 2.
解:(1)如图所示,△GMH 即为所求. (2)如图所示,△MNH 即为所求. (3)45.
重难点 1:与图形的对称有关的计算
如图,在正方形纸片 ABCD 中,E 是 CD 的中点,将正方形纸片折叠,
点 B 落在线段 AE 上的点 G 处,折痕为 AF,若 AD=4 cm,则 CF 的长为 6-6-2 2 5 cm.
(2)如图③,点 D 为 BC 的中点,将△ACD 绕点 D 逆时针旋转一定角度 α(0<α<90°)得到△ECD.若 CE∥BD,则旋转角度 α=6060°°;
(3)如图④,连接 AD,将△ABD 绕点 A 逆时针旋转至△ACE 的位置,连接 DE,则旋转角度为 6060°°; ①若∠CAD=45°,则∠CAE 的度数为 1 15°5°; ②若 CD=3,则 CE 的长度为 1 1;
(3)如图③,作出△ABC 绕点 O 顺时针旋转 90°的图形△A3B3C3; 解:△A3B3C3 如图所示.
(4)如图④,以点 A 为位似中心,将△ABC 放大为原来的 2 倍,得到△A4B4C4; 解:△A4B4C4 如图所示.
(5)如图⑤,作出以 AB 为对角线的正方形 AEBF,点 E,F 也为格点,正方 形 AEBF 的面积为 10;
解:(1)线段 A1B1如图所示. (2)线段 A2B1 如图所示. (3)20.

中考数学复习专项知识总结—图形的变换(中考必备)

中考数学复习专项知识总结—图形的变换(中考必备)

中考数学复习专项知识总结—图形的变换(中考必备)1、平移(1)定义:把一个图形沿着某一直线方向移动,这种图形的平行移动,简称为平移。

(2)平移的性质:平移后的图形与原图形全等;对应角相等;对应点所连的线段平行(或在同一条直线上)且相等。

(3)坐标的平移:点(x,y)向右平移a个单位长度后的坐标变为(x+a,y);点(x,y)向左平移a个单位长度后的坐标变为(x-a,y);点(x,y)向上平移a个单位长度后的坐标变为(x,y+a);点(x,y)向下平移a个单位长度后的坐标变为(x,y-a)。

2、轴对称(1)轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线成轴对称。

这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点。

(2)轴对称图形:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形。

这条直线叫做它的对称轴。

(3)轴对称的性质:关于某条直线对称的图形是全等形。

经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。

如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。

轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

(4)线段垂直平分线的性质线段垂直平分线上的点到这条线段两个端点的距离相等;与一条线段两个端点距离相等的点,在线段的垂直平分线上。

(5)坐标与轴对称:点(x,y)关于x轴对称的点的坐标是(x,-y);点(x,y)关于y轴对称的点的坐标是(-x,y);3、旋转(1)旋转定义:把一个平面图形绕着平面内某一点O转动一个角度,叫做图形的旋转。

点O叫做旋转中心,转动的角叫做旋转角。

如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点。

旋转的性质:①对应点到旋转中心的距离相等;①对应点与旋转中心所连线段的夹角等于旋转角;①旋转前后的图形全等。

(2)中心对称定义:把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称。

《中考专题复习——图形变换(2)》教学设计

《中考专题复习——图形变换(2)》教学设计

《中考专题复习——图形变换(2)》教学设计一、教材分析1.教材内容:初三数学(人教版)中考专题复习——图形变换中旋转变换的复习. 2.教材的地位、特点与作用运动与变化是数学研究中一种基本方法.平移、轴对称、旋转是图形变换的常见三种形式.平移与轴对称都是关于直线运动的,而旋转是关于点运动的.因此,旋转是对图形运动的完善与补充.从变换的角度来研究诸如等腰直角三角形、等边三角形、正方形等图形的结构有助于对这些几何图形有更本质的认识.通过对旋转内容的复习,既培养了学生动手操作的能力,又培养了他们用数学的方法解决有关问题的能力.通过对数与形的有关问题的解决,使得学生数学思维又提升一个层次.二、学情分析在学习本节课前,学生已经学了平移、旋转和轴对称的相关知识,对于图形的变换已经有所认识.初三的学生逻辑思维从经验型逐步向理论型发展,观察能力、记忆能力和想象能力也随之迅速发展.经过调查分析,学生对旋转(中心对称)概念和性质的理解以及作旋转(中心对称)的图象掌握较好,但由于相比较平移和轴对称,旋转变换的图形关系打破了图形的均衡与匀称的关系,识别图形之间的关系相对困难,在本节课复习中,仍需教师的引导和梳理.三、课程目标(一)教学目标1.知识目标:会识别旋转图形,并能运用旋转变换解决一些有关图形变换的问题;灵活运用旋转解决有关综合题.2.过程性目标:使学生经历对旋转图形的分析、画图等过程,多角度地感受旋转图形的变换,让学生通过问题串的探究,培养学生探究、分析解决问题的能力.3.情感目标:通过合作学习,建立学生学习数学的自信,在问题研究过程,培养学生合作交流意识和探究新知的创新能力.(二)教学重点与难点教学重点:从变换角度观察图形,利用旋转性质分析问题,解决有关的综合题.教学难点:旋转性质的灵活运用,基本几何图形的旋转及识图、作图能力.四、教法学法分析教法:《中考专题复习——图形变换》我设计了 3 个课时,这节课是第二课时,主要采用“发展教学模式”,教学程式为:梳理基本知识——观察、分析迁移——解决“最近发展区”——编构发展的网络——归纳领悟,形成能力.教学各环节中,适时采用多媒体设备展示学生的成果,提高课堂的效率;借助几何画板演示动态的旋转图形,直观、形象地呈现图形的旋转过程,使信息技术与教学内容有机整合,真正为教学服务.学法:采用“世界咖啡”对话学习模式.“世界咖啡”模式的主要精神就是一组人,针对某个主题,发表各自的见解,互相意见碰撞,激发出意想不到的思维成果,是一种深度汇谈,有效的集体对话方式.每个活动要求做到:(一)请先独立完成活动;(二)组员交流活动情况,组员尝试解决有疑问的题目,可讨论、交流、请教;(三)桌长将问题汇总,归纳,选出代表谈谈小组的学习成果.五、课前准备学生:每位学生准备一个等腰直角三角形、一个等边三角形、一个正方形纸片教师:导学案、多媒体课件、几何画板动态演示图教学环节教学内容师生行为设计意图(二)观察分析迁移解决“最近发展区”活动二:【第一杯咖啡】:感受旋转变换.如图,已知∆AOB、∆COD 均是等腰直角三角形,∠AOB =∠COD = 90︒,连结 AC 和BD,(1)在图 1 中,点 A、O、D 在同一直线上,请判断 AC 与 BD 的关系?并说明理由;图 1(2)若∆COD 转到图 2 的位置,请判断 AC 与 BD 的关系?并说明理由;图 2学生独立尝试解决(1)、(2)组员交流做法.教师巡视,参与小组的交流.学生代表分享小组的学习成果.教师引导学生比较图 1 和图2 的区别与联系.学生可能出现的误区:学生往往会没有考虑 AC 与BD 的位置关系,教师应特别强调.通过【第一杯咖啡】的设计,让学生感受旋转变换的图形之间的关系,让学生尝试从运动的观点观察图形,并尝试运用旋转的性质解决问题,同时为解决【第二杯咖啡】打下基础.通过“世界咖啡”模式,让学生初步经历“独立思考、合作交流、及时反思”的过程.(三)编构活动三:【第二杯咖啡】:进行旋转变换变式一:在第(2)题的基础上改变∆COD 的位置,变成一道新的题目.请同学们画出图形,并判断 AC与 BD 的关系?(不需说明理由)学生先利用等腰直角三角形做实验,独立思考,然后尝试解决问题;同组学生交流新图形,并判断AC 与BD 的关系;小组代表展示小组交流的变式一的设计让学生尝试根据题目需要,有目的对原图形的进行变换,并让学生判断此时 AC与BD 的关系.让学生教学环节教学内容师生行为设计意图(四)归纳领悟,形成能力活动五:课堂小结学生自己总结,并在班上交流:本节课我学会了……使我感触最深的……我感到最困难的是……结合学生所述,教师给予指导.增强学生学习过程中的反思意识,这些及时的反思,能帮助学生举一反三、触类旁通、领悟方法.(五)作业布置1、把各小组的成果进行整理,完成在《导学案》中.2、完成题目:已知:正方形ABCD 中,∠MAN = 45 ,∠MAN 绕点A 顺时针旋转,它的两边分别交CB,DC (或它们的延长线)于点M,N .当∠MAN绕点A旋转到BM=DN时(如图 1),易证BM +DN =MN .(1)当∠MAN绕点A旋转到BM≠DN时(如图 2),线段BM,DN 和MN 之间有怎样的数量关系?写出猜想,并加以证明.(2)当∠MAN 绕点A 旋转到如图 3 的位置时,线段BM,DN 和MN 之间又有怎样的数量关系?请直接写出你的猜想.教师布置作业学生课后完成首先要求总结课堂上各小组的成果,再一次梳理知识.然后通过题目 2(旋转变换的经典题型),进一步拓宽学生对旋转变换的认识,促进学生数学思考,从而激活学生的数学思维.七、板书设计八、教后反思:这是一节中考专题复习课,布鲁纳说过:“思维永远是从问题开始的.”如果教师依然采用程式化的复习方式,那么就很难调动学生的积极性,同时也很难唤醒学生求知的欲望.基于此,本课例的设计采用了“世界咖啡”模式,学生在小组内发表各自的见解,互相意见碰撞,激发出意想不到的思维成果,同时也增强语言表达能力.还让学生用相关的几何图形纸片做实验,亲身经历画图-观察-猜想-验证-归纳,得出旋转变换的特点.教学中,适时采用实物投影仪展示学生的成果,提高课堂的效率;借助几何画板演示动态的旋转图形,直观、形象地呈现图形的旋转过程,使信息技术与教学内容有机整合,真正为教学服务.通过课堂小结,增强学生学习过程中的反思意识,培养他们良好的学习习惯.近几年,中考数学试题的压轴题中常出现动态问题.这类问题,涉及的知识面广,综合性强,解答时有一定的难度,需要学生有一定的数学方式的理性思维,能进行数学思考.本节课中,“两杯咖啡”的设计充分体现学生“动手操作、独立思考、合作交流、及时反思”的过程.动手操作,能让学生学会数学思考;独立思考,能让学生体会数学思考;合作交流,能让学生完成数学思考;及时反思,能让学生发展数学思考.。

2019-2020学年中考数学总复习第三部分图形与几何第7单元平行四边形与几何变换第32课时平移与旋转新人教版

2019-2020学年中考数学总复习第三部分图形与几何第7单元平行四边形与几何变换第32课时平移与旋转新人教版
B
Q
P
C
A
点悟:掌握旋转变换的性质是解题的关键,作出图形更形象直观.
【考点 3】中心对称与中心对称图形
在平面内,把一个图形绕着某一点旋转 180o ,
中心 对称
如果它能够与另一个图形重合,那么就说这两
个图形关于这个点对称或中心对称.这个点叫
做对称 中心 ,这两个图形在旋转后能重合
中心 对称 图形
如果直接平移△ABC,使点 A 移到点 N, 所得到的三角形和前面得到的三角形 位置相同.
M
E
N
D G
F
2.[2017 东营中考]如图,把△ABC 沿着 BC 的方向平移到△DEF
的位置,它们重叠部分的面积是△ABC 面积的一半,若 BC 3 , 则△ABC 移动的距离是( D )
A.
3 2
B.
第 32 课时 平移与旋转
【考点 1】平移
定 把一个图形整体沿着某一直线方向移动,会得
义 到一个新的图形,图形的这种移动,叫做平移.
①平移后的图形与原图形的形状和大小
完全相同

性 ②平移后的图形与原图形的对应线段 相等

且 平行
(或在同一条直线上);
③平移后的图形与原图形的对应点连线 相等
且 平行 (或在同一条直线上).
①对应点到旋转中心的距离 相等 ;
性 ②对应点与旋转中心所连线段的夹角等于

旋转角

③旋转前、后的图形 全等
.
5.[教材原题]如图,△ABC 中, C 90 .
(1)将△ABC 绕点 B 逆时针旋转 90 ,画出旋转后的三角形;
(2)若 BC 3,AC 4 ,点 A 旋转后的对应点为 A′,求 AA 的长.

中考数学轴对称平移与旋转

中考数学轴对称平移与旋转

(2)图形的平移 ①通过具体实例认识平移,探 索它的基本性质,理解对应点连 线平行且相等的性质。 ②能按要求作出简单平面图形 平移后的图形。 ③利用平移进行图案设计,认 识和欣赏平移在现实生活中的应 用。
(3)图形的旋转
①通过具体实例认识旋转 , 探索它的基本 性质 , 理解对应点到旋转中心的距离相等、 对应点与旋转中心连线所成的角彼此相等的 性质。 ②了解平行四边形、圆是中心对称图形。 ④欣赏旋转在现实生活中的应用。 ⑤探索图形之间的变换关系 ( 轴对称、平 移、旋转及其组合)。[参见例2和例3] ⑥灵活运用轴对称、平移和旋转的组合进 行图案设计。
•1.轴对称图形: •如果一个图形沿一条直线折叠后,直线两 旁的部分能够互相重合,那么这个图形叫做 轴对称图形,这条直线叫做对称轴. •2. 性质: •①两个图形全等. •②对称轴垂直平分两个对应点所连的线段. •③两个对应点所连的线段平行(或相交).
一、对称
•4.常见轴对称图形填表:
图形 角 对称轴

⑤通过典型实例观察和认识现实生活 中物体的相似,利用图形的相似解决一 些实际问题 ( 如利用相似测量旗杆的高 度) 。 ⑥通过实例认识锐角三角函数 (sinA , cosA , tanA) ,知道 300 , 450 , 600 角的 三角函数值;会使用计算器由已知锐角 求它的三角函数值,由已知三角函数值 求它对应的锐角。 ⑦运用三角函数解决与直角三角形有 关的简单实际问题。
角平分线所在的直线
相关性质
角平分线上的点到这个角的两边的距 离相等
线段
等腰三角形 等边三角形
线段所在的直线和线 段的垂直平分线
线段垂直平分线上的点到这条线段两 个端点的距离相等
正方形 矩形 菱形

第7章第26讲平移和旋转-中考数学一轮考点复习课件

第7章第26讲平移和旋转-中考数学一轮考点复习课件

(2)由已知,点A落在正方形ABCD的边上,且旋转角0°<m°<180°,故点A可落在 AB边上或BC边上.
①当点A落在AB边上点M处时,由旋转的性质知EA =EM, ∵∠DAE=15°,∴∠EAM=75°, ∴∠EMA=75°, 由三角形内角和定理可得m°=∠AEM=30°; ②当点A落在BC边上时,∵△AEF是等边三角形, ∴由等边三角形性质可知,点A旋转后与点F重合, ∴m°=∠FEA=60°. 综上,m=30或m=60.
(3)如图②,延长DM到N1,使得N1M =DM,连接EN1,DB,DC,N1C ,BN1. ∵BM=EM,DM=N1M, ∴四边形DEN1B是平行四边形, ∴BN1∥DE,BN1=DE, ∵△ABC和△ADE是等腰直角三角形,
∠ACB=∠ADE=90°,∴AD=DE,AC=BC. ∴AD=BN1,延长N1B,DA相交于点Q,N1B延长线交AC于点K,∴N1Q∥DE, ∴∠Q=90°. 又∵∠AKQ=∠BKC, ∴∠QAK=∠CBK,∴∠DAC=∠N1BC. ∴以点C为旋转中心将△CAD 顺时针旋转90°就得到△CBN1. ∴△CAD≌△CBN1, ∴CN1=CD,CN1⊥CD,即△CDN1是等腰直角三角形. ∵M是DN1的中点,∴CM = DM,CM⊥DM.
70°,则下列结论正确的是 ①②③⑤
.(填序号)
①AC=DF;②AC∥DF;③∠ABC=∠DEF;
④∠1=70°;⑤BF=4.
2.旋转
如图,点E为正方形ABCD外一点,△AE′D由△AEB旋转而成,则旋转中心

A,旋转的最小角度是 Nhomakorabea90°
,此时直线EB与直线E′D的位置关系

EB⊥E′ D
,△AEB≌ △AE′D

2019中考数学高频考点解读《图形的平移、对称与旋转》专题(共19张PPT)

2019中考数学高频考点解读《图形的平移、对称与旋转》专题(共19张PPT)

轴对称图 形的性质
轴对称图形的对称轴,是任何一对对应点所连线 段的⑤ 垂直平分线 .
考点 旋转 6年5考
旋转的概念 在平面内,把一个图形绕一个① 定点 沿某个② 方向 转动 某个③ 角度 ,这样的图形运动称为旋转
旋转的性质 (1)旋转前、后的图形④ 全等 ; (2)对应点到旋转中心的距离⑤ 相等 ;
(3)对应点与旋转中心所连线段的夹角等于⑥ 旋转角 .
中心对称 把一个图形绕着某一点旋转⑦ 180°,如果它能与另一个 的概念 图形重合,那么就说这两个图形关于这一点成⑧中心对称.
中心对称 的性质
(1)中心对称的两个图形是⑨ 全等形 ; (2)中心对称的两个图形,对称点所连线段都经过 ⑩对称中心,并且被对称中心所平分; (3)关于中心对称的两个图形,对应线段⑪ 平行 (或在同 一直线上)且⑫相等 .
中心对称图 把一个图形绕着某一点旋转⑬180°,如果它能与原图形 形的概念 重合,那么就说这个图形是中心对称图形
中心对称图 中心对称图形上每一对对称点所连成的线段都被对称中心 形的性质 ⑭平分 .
1.以选择题的命题方式考查轴对称与中心对称,通过图 形的折叠、求线段和的最小值考查轴对称的性质,以解 答题的命题方式考查旋转的性质. 2.结合点的坐标变换考查轴对称或旋转的性质.
A.35
B.40° C.50°
D.65°
类型一 图形的平移 1.如图,在△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射 线BC的方向平移2个单位后,得到△A′B′C′,连接A′C,则△A′B′C的 周长为 12 .
第1题图
规律: 1.关键是确定图形平移的方向和距离; 2.从一个点或一条线段的平移前后的变化,归纳出平移 的规律,进而得出图形其他部分的平移变化.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【分析】根据同位角相等两直线平行,求出旋转后∠2的同
位角的度数,然后用∠1减去∠2同位角的度数即可得到木条
a旋转的度数.
【自主解答】如图.
∵∠AOC=∠2=50°时,OA∥b,
∴要使木条 a 与 b 平行,木条 a旋转的度数至少是 70°- 50°
=20°.故选B.
5.(2018·辽宁大连中考)如图,将△ABC绕点B逆时针旋转
△DEF,则四边形ABFD的周长是(
)
A.8
B.10
C.12
D.16
【分析】根据平移的基本性质,得出四边形ABFD的周长=AD
+AB+BF+DF=1+AB+BC+1+AC即可得出答案. 【自主解答】根据题意,将周长为8个单位的△ABC沿边BC向 右平移1个单位得到△DEF, ∴AD=1,BF=BC+CF=BC+1,DF=AC. 又∵AB+BC+AC=8, ∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC =10.故选B.
α ,得到△EBD,若点A恰好在ED的延长线上,则∠CAD的度
数为(
C )
A.90°-α
B .α
C.180°-α
D .2α
6.(2018·浙江金华中考)如图,将△ABC绕点C顺时针旋转
90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,
则∠ADC的度数是(
C
)
A.55°
B.60°
C.65°
A.7 cm
B.11 cm
C.13 cm
D.16 cm
4.如图,△ABC经过平移后得到△DEF,下列结论:①AB∥ DE;②AD=BE;③BC=EF;④∠ACB=∠DFE,其中正确的有 ( D )
A.1个
B.2个
C.3个
D.4个
考点三 旋转变换中角度的计算 例3 (2018·吉林中考)如图,将木条a,b与c钉在一起, ∠1=70°,∠2=50°,要使木条a与b平行,木条a旋转 的度数至少是( A.10° C.50° ) B.20° D.70°
管连结的粗细均匀细管组成的“U”形装置中注入一定量的
水,水面高度为6 cm,现将右边细管绕A处顺时针方向旋转
60°到AB位置,则AB中水柱的长度约为( C )
A.4 cm
C.8 cm
B.6 3 cm
D.12 cm
易错易混点一 平移的性质掌握不牢 例1 下面生活中的物体的运动情况可以看成平移的是( )
正解
是平移;(4)改变了方向,不是平移;(5)改变了方向,不是平
移;(6)是平移.故选D
本题考查了图形的平移,图形的平移是图形上所有点都沿同一 错因 个方向移动,平移只改变图形的位置,而不改变图形的形状和 大小,学生易混淆图形的平移与旋转或翻转而误选 警示 根据平移的定义去解题
易错易混点二 难以把握图形扫过的面积 例2 如图,正方形网格中每个小正方形的边 长都是1,每个小正方形的顶点叫做格点. △ABO三个顶点A,B,O都在格点上. (1)画出△ABO绕点O逆时针旋转90°后得到的三角形. (2)求△ABO在上述旋转过程中所扫过的面积.
(1)摆动的钟摆;(2)在笔直的公路上行驶的汽车;(3)随风 摆动的旗帜;(4)摇动的大绳;(5)汽车玻璃上雨刷的运动; (6)从楼顶自由落下的球(球不旋转). A.(1)(2) B.(1)(3)(4) C.(3)(4)(5) D.(2)(6)
错解
A或B或C (1)改变了方向,不是平移;(2)是平移;(3)改变了方向,不
警示
积,注意考虑问题的完整性
考点一 图形的平移变换 例1(2018·浙江温州中考)如图,已知一个直角三角板的直 角顶点与原点重合,另两个顶点A,B的坐标分别为(-1,0), (0, 3 ).现将该三角板向右平移使点A与点O重合,得到 △OCB′,则点B的对应点B′的坐标是( )
【分析】根据平移的性质得出平移后坐标的特点,进而解
A.(-1,6)
C.(-1,2)
B.(-9,6)
D.(-9,2)
2.(2018·湖南长沙中考)在平面直角坐标系中,将点
A(-2,3)向右平移3个单位长度,再向下平移2个单位 (1,1) . 长度,那么平移后对应的点A′的坐标是_______
考点二 平移变换性质的应用
例2 如图,将周长为8的△ABC沿BC方向平移1个单位得到
而利用勾股定理解答即可.
【自主解答】∵将△ABC绕点A逆时针旋转60°得到△AB1C1,
∴AC=AC1,∠CAC1=60°.
∵AB=8,AC=6,∠BAC=30°,
∴∠BAC1=90°,AC1=6,
∴在Rt△BAC1中,BC1的长= 82 62 =10.故选C.
7.(2018·湖南娄底中考)如图,往竖直放置的在A处由短软
旋转变换的易错点 在旋转过程中,旋转角、对应边、对应角都是相等的,容易 触雷的地方有两处:(1)找不准对应角、对应边; (2)分不清哪一个是旋转角.
3.如图,△ABC中,AB=AC,BC=12 cm,点D在AC上,DC= 4 cm,将线段DC沿CB方向平移7 cm得到线段EF,点E,F分别 落在边AB,BC上,则△EBF的周长是( C )
D.70°
考点四 旋转变换中长度的计算
例4(2018·海南中考)如图,在△ABC中,AB=8,AC=6,
∠BAC=30°,将△ABC绕点A逆时针旋转60°得到△AB1C1,
连结BC1,则BC1的长为( )
A.6
C.10
B .8D.12来自 【分析】根据旋转的性质得出AC=AC1,∠BAC1=90°,进
答即可.
【自主解答】因为点A与点O对应,点A(-1,0),点O(0,0),
所以图形向右平移1个单位长度,
所以点B的对应点B′的坐标为(0+1, 3 ),即(1, 3 ).
故选C.
1.(2018·湖北黄石中考)如图,将“笑脸”图标向右平移
4个单位,再向下平移2个单位,点P的对应点P′的坐标是
( C )
错解
画图如下,面积4π 或4. (1)画图(如图),△EDO为所求.
正解
(2)△ABO所扫过的面积S=S扇形DOB+S△AOB=π ×42· 1 +4
=4π +4
4
错因
对旋转的三要素即旋转中心、方向、旋转角度知识不够熟
悉,计算面积时忽略了部分图形的面积
注意旋转三要素在画图中的应用,特别理解什么叫扫过的面
相关文档
最新文档