浙教版2019年七年级数学下册第2章2.4第2课时应用二元一次方程组解决较复杂的实际问题练习(含答案)

合集下载

浙教版数学七年级下册2.4《二元一次方程组的应用》同步练习(含答案)

浙教版数学七年级下册2.4《二元一次方程组的应用》同步练习(含答案)

浙教版数学七年级下册2.4《二元一次方程组的应用》同步练习一、选择题1.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知3匹小马能拉1片瓦,1匹大马能拉3片瓦,求小马,大马各有多少匹,若设小马有x匹,大马有y匹,则下列方程组中正确的是( )A. B. C. D.2.我校举行春季运动会系列赛中,九年级(1)班.(2)班的竞技实力相当,关于比赛结果,甲同学说:(1)班与(2)班的得分为6:5;乙同学说:(1)班的得分比(2)班的得分的2倍少40分;若设(1)班的得分为x分,(2)班的得分为y分,根据题意所列方程组应为( )A. B. C. D.3.《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺,问木长多少尺.设木长为x尺,绳子长为y尺,则下列符合题意的方程组是( )A. B. C. D.4.我国元朝数学家朱世杰的数学著作《四元玉鉴》中有一个“二果问价”问题,原题如下:“九百九十九文钱,甜果.苦果买一千,甜果九个十一文,苦果七个四文钱,试问甜苦果几个?”其大意为:用999文钱,可以买甜果和苦果共1000个,买9个甜果需要11文钱,买7个苦果需要4文钱,问买甜果和苦果的数量各多少个?设买甜果.苦果的数量分别为x个.y个,则可列方程组为( )A. B. C. D.5.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金.银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金.白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意得( )A. B.C. D.6.已知长江比黄河长836千米,黄河长度的6倍比长江长度的5倍多1284千米.设长江.黄河的长分别是x千米,y千米,则下列方程组中正确的是 ( )A. B. C. D.7.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是( )A. B. C. D.8.我市在落实国家“精准扶贫”政策的过程中,为某村修建一条长为400米的公路,由甲.乙两个工程队负责施工.甲工程队独立施工2天后,乙工程队加入两工程队联合施工3天后,还剩50米的工程.已知甲工程队每天比乙工程队多施工2米,求甲.乙工程队每天各施工多少米?设甲工程队每天施工x米,乙工程队每天施工y米,根据题意,所列方程组正确的是( )A. B.C. D.9.某校七年级(2)班40名同学为“希望工程”捐款,共捐款100元。

浙教版初中数学七年级下册2.4.3 用二元一次方程组解图表信息、几何问题课件

浙教版初中数学七年级下册2.4.3  用二元一次方程组解图表信息、几何问题课件

点拨:
设小长方形的长为x m,宽为y m,则由题意可

两式相加可得x+y=8.
故小长方形的周长为2(x+y)=2×8=16(m).
4.(中考·十堰)如图,分别用火柴棍连续搭建正三角 形和正六边形,公共边只用一根火柴棍,如果搭 建正三角形和正六边形共用了2 016根火柴棍,并 且正三角形的个数比正六边形的个数多6个,那么 能连续搭建正三角形的个数是( D ) A.222 B.280 C.286 D.292
5.小强用8 个边长不全相等的正三角形拼成如图所示 的图案,其中阴影部分是边长为1 cm 的正三角形.试求出图中正三角形A、 正三角形B的边长分别是多少厘米.
解:设正三角形A的边长为x cm,正三角形B的边长为
y cm,根据题意,得
解得 答:正三角形A的边长为3 cm,正三角形B的边长
为6 cm.
点拨: 本题渗透数形结合思想,易知正三角形A,H,G
的边长相等,且正三角形B的边长=正三角形A的边长 ×2;正三角形F,E的边长相等,正三角形D,C的边 长也相等,且正三角形F的边长=正三角形G的边长 +1 cm,正三角形D的边长=正三角形E的边长+1 cm ,正三角形B的边长=正三角形C的边长+1 cm,从而 可得正三角形B的边长=正三角形A的边长+3 cm.分 别设出正三角形A,B的边长,依此可列二元一次方程 组,求出方程组的解即可得出答案.
2.(中考·吉林)根据图中的信息,求梅花鹿和长颈鹿 现在的高度.
解:设梅花鹿高x m, 长颈鹿高y m,
由题意得
解得 答:梅花鹿和长颈鹿现在的高度分别为1.5 m,
5.5 m.
考查角度 2 从几何图形中获取信息列方程组
3. (中考·漳州)水仙花是漳州市花,如图,在长为14 m, 宽为 10 m 的长方形展厅,划出三个形状、大小完 全一样的小长方形摆放水仙花,则每个小长方形的 周长为______1_6_m.

七下数学课件: 用二元一次方程解决实际问题(第2课时)(课件)

七下数学课件: 用二元一次方程解决实际问题(第2课时)(课件)

用二元一次方程组解决实际问题的步骤:
审:理解并找出实际问题中的等量关系;
设:用代数式表示实际问题中的基础数据;
列:找到所列代数式中的等量关系,以此为依据列出方程;
解:求解;
验:考虑求出的解是否具有实际意义;
答:实际问题的答案.
情景引入
如图,长青化工厂与A,B两地有公路、铁路相连.这家工厂从A地购买一批
50 + 80 = 1120
= 16
,解得
=4
30 + 50 = 680
所以跳绳的单价为16元,毽子的单价为4元;
(2)设商品按原价的z折销售,根据题意得

(16 + 4) × 100 ×
= 1700
10
解得 = 8.5
所以商品按原价的八五折销售.
课后回顾
课后回顾
01
02
03
谢谢
解:设购买原料 x 吨,制成成品 y 吨。
1.5(10x + 20y )= 15000

1.2(120x+110y )= 97200

探索与思考
如图,长青化工厂与A,B两地有公路、铁路相连.这家工厂从A地购买一批
每吨1000元的原料运回工厂,制成每吨8 000元的产品运到B地. 公路运价为1. 5元
置,按图②方式放置,测量的数据如图,则桌子的高度是( )
A.73cm
B.74cm
C.75cm
D.76cm
【详解】
设桌子的高度为hcm,第一个长方体的长为xcm,第二个长方体的宽为ycm,
由第一个图形可知桌子的高度为:h-y+x=79,
由第二个图形可知桌子的高度为:h-x+y=73,

2.4二元一次方程组的应用 课件7(数学浙教版七年级下册)

2.4二元一次方程组的应用 课件7(数学浙教版七年级下册)

做一做
1. 106 完成课内练习2
p p
2. 107完成作业题4
思考与练习
1.小强和小明做算术题, 小强将第一个加数的后 面多写一个零, 所得和是2342; 小明将第一个加 数的后面少写一个零, 所得和是65.求原来的两个 加数分别是多少?
2.A、B两地相距36千米,甲从A地步行到B地, 乙从B地步行到A地,两人同时相向出发,4小时 后两人相遇,6小时后,甲剩余的路程是乙剩余 路程的2倍,求二人的速度?
Zx。xk
1 解:设第一个加数为x,第二个加数为y.
10x y 2342 x 230 根据题意得: 0.1x y 65 y 42
2 解:设甲、乙速度分别为x千米/小时, y千米/小时,根据题意得:
4( x y) 36 x 4 36 6 x 2(36 6 y) y 5
例:通过对一份中学生营养快餐的检测,得到以下信息:
1.快餐总质量为300克
2.快餐的成分:蛋白质,碳水化合物,脂肪,矿物质
3.蛋白质和脂肪含量占50%,矿物质含量是脂肪含量的 2 倍;蛋白质和碳水化合物含量占85%, 根据上述数据回答下面的问题: (1)分别求出营养快餐中蛋白质,碳水化合物,脂肪, 矿物质的质量和所占百分比; (2)根据计算结果制作扇形统计图表表示快餐的 成分的信息.
回顾与反思
实际 问题
分析
抽象
方程 (组)
求解 检验
问题 解决
1:列二元一次方程组解应用题的关键是:
2:列二元一次方程组解应用题
的一般步骤分为:
审、设、列、解、检、答
例1:一根金属棒在0℃时的长度是q米,温度每升高 1 ℃ ,它就伸长p米,当温度为t ℃ 时,金属棒的

2.4二元一次方程组的应用 课件1(数学浙教版七年级下册)

2.4二元一次方程组的应用 课件1(数学浙教版七年级下册)

一根金属棒在0℃时的长度是qFra bibliotek(m),温度每 升高1 ℃,它就伸长p (m).当温度为t (℃) 时,金属棒的长度l可用公式l=pt+q计算.已 测得当t=100 ℃时, l=2.002m;当 t=500 ℃时,l=2.01m. (1)求p,q的值; (2)若这根金属棒加热后长度伸长到2.016m, 问这时金属棒的温度是多少?
课堂检测

下表是小红在2012年下旬制作的一份记录表,其中空 格处的字迹已模糊不清,但小红还记得7:50~8:00 时段内的摩托车辆数与8:00~8:10时段内的货车辆 数之比是5:4.根据这些数据,你能把这份记录表填完 整吗?
2012年6月23日东胜路7:50~8:10经过车辆记录表
单位:辆
摩托车 公交车 货车 7:50~8:00 8:00~8:10 合计 30 7 7 20
小结:
谈谈你对列方程组解应用题的认识?
七年级 下 册 义务教育课程标准实验教科书
应用二元一次方程组解决实际问题的基本步骤: 理解问题
制定计划
执行计划
回顾反思
2.有0.5元和1元的硬币共20枚,总币值为13元。 问0.5元和1元的硬币各多少枚? 设0.5元和1元的硬币分别为x枚和y枚, 则可列出方程组为 ,解得
zxxkw
3. 某校教师举行茶话会。若每桌坐12人,则空出一张 桌子;若每桌坐10人,还有10人不能就坐。问该校有 多少名教师?共准备了多少张桌子?
解之:
x=1 y=6
答:小明在12:00时看到的数字是16
课堂检测
2.声音在空气中传播的速度随温度的变化而变化, 科学家已测得一定温度下声音传播的速度如下表. 如果用 v 表示声音在空气中的传播速度,t表示温度, 则v,t满足公式:v=at+b(a,b为已知数).求a,b的值, 并求当t=15℃时,v的值.

浙教版2022-2023学年数学七年级下册第2章二元一次方程组2

浙教版2022-2023学年数学七年级下册第2章二元一次方程组2

浙教版2022-2023学年数学七年级下册第2章 二元一次方程组2.4二元一次方程组的应用(2)【知识重点】1.当问题中所求的未知数有两个时,用两个字母来表示未知数往往比较容易列出方程.2.一般地,应用二元一次方程组解决实际问题的基本步骤为:(1)理解问题(审题,搞清已知和未知,分析数量关系);(2)制定计划(考虑如何根据等量关系设元,列出方程组);(3)执行计划(列出方程组并求解,得到答案);(4)回顾(检查和反思解题过程,检验答案的正确性以及是否符合题意).【经典例题】【例1】一个两位数,十位上的数字比个位上的数字大2;交换十位上的数字与个位上的数字后得到的两位数比原数小18.设十位上的数字为x ,个位上的数字为y ,列方程组为( )A .{x −y =210x +y −(10y +x)=18B .{x −y =210y +x −(10x +y)=18C .{y −x =210y +x −(10x +y)=18D .{y −x =210x +y −(10y +x)=18【例2】某旅游景点今年“五一”小长假共接待游客39200人,和去年同时期相比,游客总数增加了12%,其中省外游客增加了17%,省内游客增加了10%,求该景点去年“五一”小长假接待的省外游客和省内游客各是多少人?【基础训练】1.举办“书香文化节”的活动中,将x 本图书分给了y 名学生,若每人分6本,则剩余40本;若每人分8本,则还缺50本,下列方程组正确的是( ) A .{6y −40=x 8y +50=x B .{6y +40=x 8y −50=x C .{6x +40=y 8x −50=y D .{6y −40=x 8y −50=x2.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:含有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?设鸡有x 只,兔有y 只,下列方程组正确的是( )A .{x +y =352x +4y =94B .{x +y =354x +2y =94C .{x +y =354x +4y =94D .{x +y =35x +4y =943.我校运动员分组训练,若每组7人,余3人;若每组8人,则缺5人,设运动员人数为x 人,组数为y 组,则列方程组为( )A .{7y =x −38y +5=xB .{7y =x +38y +5=xC .{7y =x −38y =x +5D .{7y =x +38y =x +54.在一个3×3的方格中填写9个数字,使得每行每列每条对角线上的三个数之和相等,得到的3×3的方格称为一个三阶幻方.如图所示的方格中填写了一些数和字母,为使该方格构成一个三阶幻方,则C .19D .215.某班级为了奖励在期中考试中取得好成绩的同学,花了900元钱购买甲、乙两种奖品共50件,其中甲种奖品每件15元,乙种奖品每件20元,若设购买甲种奖品x 件,乙种奖品y 元,则所列方程组正确的是( )A .{x +y =5015x +20y =900B .{x +y =5020x +15y =900C .{15x +20y =50x +y =900D .{20x +15y =50x +y =9006.有一个两位数,它的个位数字与十位数字的和为6,且这个两位数是个位数字的6倍,则这个两位数是 .7.“种粮补贴”惠农政策的出台,大大激发了农民的种粮积极性,某粮食生产专业户去年计划生产小麦和玉米共18吨,实际生产了20吨,其中小麦超产12%,玉米超产10%,该专业户去年实际生产小麦、玉米各多少吨?8场计划购进甲、乙两种手机各多少部?9.某工厂去年的利润(总产值-总支出)为200万元,今年总产值比去年增加了20%,总支出比去年减少了10%,今年的利润比去年的利润增加了580万元.问今年的总产值、总支出各是多少万元? 10.小明的妈妈今天在菜市场买回2斤萝卜、1斤排骨共花了43.8元,而两个月前买同重量的这两样菜只要37元,与两个月前相比,这次萝卜的单价下降了10%,但排骨单价却上涨了20%,求:两个月前买的萝卜和排骨的单价分别为多少元?【培优训练】11.小明带15元去学习用品商店购买A ,B ,C 三种学习用品,其中A ,B ,C 三种学习用品的单价分别为5元、3元、1元,要求每种学习用品至少买一件且A 种学习用品最多买两件,若15元刚好用完,则小明的购买方案共有( )A .3种B .4种C .5种D .6种12.在《九章算术》中,一次方程组是由算筹布置而成的.如图1所示的算筹图,表示的方程组就是{2x +y =11,4x +3y =27,类似地,图2所示的算筹图表示的方程组为( )A .{3x +2y =−14,x +4y =23B .{3x +2y =−9,x +4y =23C .{3x +2y =19,x +4y =3D .{3x +2y =19,x +4y =2313.用如图 ① 中的长方形和正方形纸板作侧面和底面,做成如图 ② 的竖式和横式的两种无盖纸盒.现有 m 张正方形纸板和 n 张长方形纸板,如果做两种纸盒若干个,恰好将纸板用完,则 m +n 的值可能是( )A .2019B .2020C .2021D .2022 14.若关于x 、y 的方程组 {x +y =2ax +2y =8的解为整数,则满足条件的所有a 的值的和为( ) A .6 B .9 C .12 D .1615.利用两块完全一样的长方体木块测量一张桌子的高度,首先按图①所示的方式放置,再交换两木块的位置,按图②所示的方式放置.量的数据如图,则桌子的高度等于( )A .80cmB .75cmC .70cmD .65cm16.一个两位数,十位上的数字与个位上的数字之和为7,若把十位上的数字和个位上的数字交换位置,所得的数比原数大27,则原来的两位数是 .17.工作人员从仓库领取如图①中的长方形和正方形纸板作侧面和底面,做成如图②的竖式和横式的两种无盖纸盒若干个,恰好使领取的纸板用完.仓库管理员在核查时,发现一次记录有误.则记录有误的是第次.18.甲、乙两块试验田去年春季共产小麦若干千克.改用良种后,去年秋季甲、乙的产量分别比去年春季增产了25%,20%,总产量比去年春季增产了22%;今年春季甲、乙的产量分别比去年春季增产了24%,22%,则今年春季总产量比去年春季总产量增加的百分率是.19.甲、乙两种商品原来的单价和为100元.因市场变化,甲商品提价40%,乙商品降价10%,两种商品的单价和比原来提高了20%.问甲、乙两种商品原来的单价各是多少元?20.某商场在今年“双十一”期间购进甲、乙两种商品共50件销售,已知甲种商品每件进价为35元,利润率为20%,乙种商品每件进价为20元,利润率为15%,共获利278元,问甲、乙两种商品各购进多少件?21.小亮想开一家服装专卖店,开店前他到其他专卖店调查价格.他看中了一套新款春装,成本共500元,专卖店店员告诉他在上市时通常将此套服装的上衣按50%的利润定价,裤子按40%的利润定价,由于新年将至,节日优惠,在实际出售时,为吸引顾客,两件衣服均按9折出售,这样此套服装共获利157元,小亮觉得上衣款式好,销路会好些,想问问上衣每件的成本,但店员有事走开了,你能帮助他吗?22.列方程组解应用题:全自动红外体温检测仪是一种非接触式人体测温系统,通过人体温度补偿、温度自动校正等技术实现准确、快速的测温工作,具备人体非接触测温、高温报警等功能.为了提高体温检测效率,某医院引进了一批全自动红外体温检测仪.通过一段时间使用发现,全自动红外体温检测仪的平均测温用时比人工测温快2秒,全自动红外体温检测仪检测60个人的体温的时间比人工检测40个人的体温的时间还少50秒,请计算全自动红外体温检测仪和人工测量测温的平均时间分别是多少秒?【直击中考】23.《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长,绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x 尺,绳子长为y 尺,则所列方程组正确的是( )A .{y −x =4.52x −y =1B .{x −y =4.52x −y =1C .{x −y =4.5y 2−x =1D .{y −x =4.5x −y 2=1 24.国家“双减”政策实施后,某校开展了丰富多彩的社团活动.某班同学报名参加书法和围棋两个社团,班长为参加社团的同学去商场购买毛笔和围棋(两种都购买)共花费360元.其中毛笔每支15元,围棋每副20元,共有多少种购买方案?( )A .5B .6C .7D .825.《九章算术》是人类科学史上应用数学的“算经之首”,其书中卷八方程[七]中记载:“今有牛五、羊二,直金十两.牛二、羊五,直金八两.牛、羊各直金几何?”题目大意是:“5头牛、2只羊共值金10两.2头牛、5只羊共值金8两,每头牛、每只羊各值金多少两?”根据题意,可求得1头牛和1只羊共值金 两.。

2.4二元一次方程组的简单应用-浙教版七年级数学下册教案

2.4二元一次方程组的简单应用-浙教版七年级数学下册教案

2.4 二元一次方程组的简单应用-浙教版七年级数学下册教案知识点概述本节课主要是介绍二元一次方程组的简单应用。

通过实际问题来学习如何列出方程组,并通过解方程组的方法来求解问题。

学习目标1.掌握二元一次方程组的列法;2.掌握利用二元一次方程组解决实际问题的方法;3.掌握求解二元一次方程组的方法。

学习内容与方法一、方程组的概念1.引入概念:什么是方程组?2.方程组的意义二、二元一次方程组1.引入概念:什么是二元一次方程组?2.列方程组的方法三、实际问题的应用1.引导学生运用所学知识,将实际问题转化为方程组;2.解答问题。

四、求解二元一次方程组1.列方程组;2.消元;3.求解;4.核对。

学习重点1.掌握二元一次方程组的列法;2.掌握通过列方程组解决实际问题的方法;学习难点1.掌握利用求解二元一次方程组的方法;2.理解方程组的概念和意义。

学习方法通过实际问题的应用和解答问题来加深学生的理解,通过练习来掌握求解二元一次方程组的方法。

教学过程与课时安排第一课时一、预习检测(5分钟)老师让学生回答预习问题:1.方程组是什么?2.二元一次方程组的意义是什么?二、引入新课(10分钟)1.让学生回忆一下一元一次方程的解法,引入二元一次方程组的概念;2.老师介绍什么是二元一次方程组,以及它的解法。

三、知识点讲解(15分钟)1.列方程组的方法;2.实例讲解。

四、例题练习(10分钟)板书相关例题,让学生自行列出对应的方程组,并解答问题。

五、课堂小结(5分钟)让学生回答以下问题:1.什么是二元一次方程组?2.如何列方程组?第二课时一、预习检测(5分钟)老师让学生回答预习问题:1.方程组是什么?2.二元一次方程组的意义是什么?二、知识点讲解(15分钟)1.求解二元一次方程组的方法;2.解题思路。

三、例题练习(20分钟)板书相关例题,让学生自行求解方程组,并核对结果。

四、复习与互动(10分钟)提问学生一些相关问题进行帮助巩固所学知识。

二元一次方程课件(浙教版)

二元一次方程课件(浙教版)
个解。但在实际问题中经常会遇到求
方程的正整数解。
2. 已知
x=2 y=1
是方程2x+3y=a的一个解,
求a的值.
a=7
3.已知 5x3m7 2y2n1 4 是二元一次 方程,求mn的值
mn=-2
变式一:
若方程 3x2m 1 yn 1 9 是一个二元一
次方程,则m= 1 ,n= 0 .
变式二:
X=4

是二元一次方程 3x ay 9
y=-3
的解,则a= 1
4.若 mxy 9x 3yn1 7 是关于x,y的二
元一次方程,则m+n=
对于二元一次方程2x+y=8,若x=2时
y= —4——,则
x=2 是方程2x+y=8的 y=4
一个正整数解. 请你写出二元一次方程2x+y=8的其它
x=1 x=3
正整数解——y=—6——y—=2— 。
注意:一般地,二元一次方程有无数
使二元一次方程两边的值相等的一对未 知数的值,叫做二元一次方程的一个解
引例: 解方程:3×2+2y=10
例 已知方程 3x 2 y 10

(1)用关于x的代数式表示y; 。
(2)求当x= -2,0,3时,对应的y的值 并写出3x+2y=10的三个解 分析:要用x的代数式表示y,只要把方程
3x 2y 10 看做未知数y的一元一次方程。
义务教育教科书(浙教)七年级数学下册
第2章 二元一次方程组
今有鸡兔同笼 上有三十五头
下有九十四足 你能用二元一次方程的 问鸡兔各几何 知识解决这个问题吗?
《孙子算经》
1.找出下面式子中的一元一次方程:

浙教版七年级下册数学第二章 二元一次方程组含答案

浙教版七年级下册数学第二章 二元一次方程组含答案

浙教版七年级下册数学第二章二元一次方程组含答案一、单选题(共15题,共计45分)1、在学校组织的游艺晚会上,掷飞标游艺区游戏区规则如下,如图掷到A区和B区的得分不同,A区为小圆内部分,B区为大圆内小圆外部分(掷中一次记一个点)现统计小华、小明和小芳掷中与得分情况,如图所示,依此方法计算小芳的得分为()A.76B.74C.72D.702、如表,在3×3的方阵图中,填写了一些数和代数式(其中每个代数式都表示一个数),使得每行的3个数、每列的3个数、斜对角的3个数之和均相等.则每一行的和是()3 4 x﹣2 y a2y﹣x c bC.5D.43、已知∠1与∠2互补,并且∠1比∠2的3倍还大20°,若设∠1=x°,∠2=y°,则x、y满足的方程组为()A. B. C. D.4、若关于x,y的二元一次方程组的解也是二元一次方程2x+3y=6的解,则k的值为()A. B. C.﹣ D.﹣5、甲仓库乙仓库共存粮450吨,现从甲仓库运出存粮的60%,从乙仓库运出存粮的40%.结果乙仓库所余的粮食比甲仓库所余的粮食多30吨.若设甲仓库原来存粮x吨,乙仓库原来存粮y吨,则有()A. B. C.D.6、如图,在长为15,宽为12的矩形中,有形状、大小完全相同的5个小矩形,则图中阴影部分的面积为()A.35B.45C.55D.657、方程组的解是( )A. B. C. D.8、若方程组中x与y的值相等,则k等于()A.1或-1B.1C.5D.-59、我国古代数学名著《孙子算经》中记载了一道数学趣题:一百马,一百瓦,大马一个拖三个,小马三个拖一个.大意是:100匹马恰好拉了100片瓦,已知一匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为()A. B. C. D.10、下列方程中是二元一次方程的是()A. B. C. D.11、某校春季运动会比赛中,七年级六班和七班的实力相当,关于比赛结果,甲同学说:六班与七班的得分比为4:3,乙同学说:六班比七班的得分2倍少40分,若设六班得x分,七班得y分,则根据题意可列方程组()A. B. C. D.12、有3堆硬币,每枚硬币的面值相同.小李从第1堆取出和第2堆一样多的硬币放入第2堆;又从第2堆中取出和第3堆一样多的硬币放人第3堆;最后从第3堆中取出和现存的第1堆一样多的硬币放人第1堆,这样每堆有16枚硬币,则原来第1堆有硬币多少枚()A.22B.16C.14D.1213、一只笼子装有鸡和兔共有10个头,34只脚,每只鸡有两只脚,每只兔有四只脚.设鸡有x只,兔有y只,则可列二元一次方程组()A. B. C. D.14、有下列说法:①在同一平面内,过直线外一点有且只有一条直线与已知直线平行;②无论k取任何实数,多项式x2﹣ky2总能分解成两个一次因式积的形式;③若(t﹣3)3﹣2t=1,则t可以取的值有3个;④关于x,y的方程组为,将此方程组的两个方程左右两边分别对应相加,得到一个新的方程,当a每取一个值时,就有一个确定的方程,而这些方程总有一个公共解,则这个公共解是.其中正确的说法是()A.①④B.①③④C.②③D.①②15、扬州某中学七年级一班40名同学第二次为四川灾区捐款,共捐款2000元,捐款情况如下表:捐款(元) 20 40 50 100人数 10 8表格中捐款40元和50元的人数不小心被墨水污染已看不清楚、若设捐款40元的有x名同学,捐款50元的有y名同学,根据题意,可得方程组()A. B. C.D.二、填空题(共10题,共计30分)16、如果,则=________.17、已知已知是方程组的解,则(m﹣n)2=________.18、已知关于x,y的方程组的解满足x+y>0,则a的取值范围是________19、二元一次方程组的解为________。

2.4.2 运用二元一次方程组解决较复杂的实际问题 浙教版七年级数学下册同步练习(含解析)

2.4.2 运用二元一次方程组解决较复杂的实际问题 浙教版七年级数学下册同步练习(含解析)

2.4二元一次方程组的应用第2课时运用二元一次方程组解决较复杂的实际问题基础过关全练知识点1十进制问题1.一个两位数,十位上的数字比个位上的数字的2倍大1,若这个两位数减去36恰好等于个位上的数字与十位上的数字对调后所得的两位数,则这个两位数是()A.86B.68C.97D.732.(2022浙江杭州余杭期中)一个两位数,十位上的数字与个位上的数字之和为7,若把十位上的数字和个位上的数字交换位置,所得的数比原数大9,则原来的两位数是.3.有一个三位数,若将最左边的数字移到最右边,则得到的数比原来的数小45;又知百位上的数字的9倍比由十位上的数字和个位上的数字组成的两位数小3,求原三位数.知识点2求公式中字母的值4.【跨学科·物理】声音在空气中传播的速度随着温度的变化而变化,如果用v表示声音在空气中的传播速度,t表示温度,则v,t满足公式v=at+b,当t=10时,v=336;当t=-10时,v=324,则a,b的值分别为() A.-0.6,330 B.0.6,330C.6,33D.-6,335.【跨学科·物理】(2022浙江杭州上城期中)在弹性限度内,弹簧总长y(cm)与所挂物体质量x(kg)满足公式:y=kx+b(k,b为常数).当挂1 kg物体时,弹簧总长为6.3 cm;当挂4 kg物体时,弹簧总长为7.2 cm,则公式中b的值为.6.【教材变式·P47例2变式】实验表明,某种气体的体积V(L)随着温度t(℃)的变化而变化,它的体积可用公式V=pt+q计算.已测得当t=0时,体积V=100;当t=10时,V=103.5.求:(1)p,q的值;(2)当温度为30 ℃时该气体的体积.知识点3百分比问题7.某校现有学生2 300人,与去年相比,男生人数增加了25%,女生人数减少了25%,学生总数增加了15%.学校现有男生、女生各多少人?8.(2022安徽中考)某地区2020年进出口总额为520亿元,2021年进出口总额比2020年有所增加,其中进口额增加了25%,出口额增加了30%.注:进出口总额=进口额+出口额.(1)设2020年进口额为x亿元,出口额为y亿元,请用含x,y的代数式填表:(2)已知2021年进出口总额比2020年增加了140亿元,求2021年进口额和出口额分别是多少亿元.能力提升全练9.(2022浙江宁波模拟,8,)《九章算术》是中国古代数学著作之一,书中有这样一个问题:今有黄金九枚,白银一十一枚,称之重,适等.交易其一,金轻十三两.问金、银一枚各重几何.其大意:甲袋中装有质量相同的黄金9枚,乙袋中装有质量相同的白银11枚,且两袋的质量相等,两袋互换一枚后,甲袋比乙袋轻13两.问:每枚黄金、白银的质量各为多少两.设一枚黄金的质量为x 两,一枚白银的质量为y 两,则可列方程组为 ( ) A.{9x =11y 9x −y =11y −x +13 B.{9x =11y 9x −y =11y −x −13 C.{9x =11y 8x +y =10y +x +13 D.{9x =11y 8x +y =10y +x −1310.【主题教育·中华优秀传统文化】(2021湖北仙桃、潜江、天门、江汉油田中考,12,)我国明代数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托.如果1托为5尺,那么索长为 尺.(其大意为现有一根竿和一条绳索,如果用绳索去量竿,绳索比竿长5尺;如果将绳索对折后再去量竿,就比竿短5尺,则绳索长几尺)11.一天,小民问爷爷的年龄,爷爷说:“我若是你现在这么大,你还要40年才出生呢;你若是我现在这么大,我已经是125岁了,哈哈!”则爷爷现在是 岁.素养探究全练12.【模型观念】某次考试结束后,老师找小强进行了谈话.老师:小强同学,你这次考试的语文、数学、英语三科的总成绩为348分,在下次考试中,要使这三科的总成绩达到382分,你有什么计划吗? 小强:老师,我争取在下次考试中,语文成绩保持124分,英语成绩再多16分,数学成绩增加15%,这样刚好达到382分.请问:小强这次考试的英语、数学成绩各是多少分.13.【模型观念】某出租车公司有出租车100辆,平均每天每辆车消耗的汽油费为80元.为了减少环境污染,市场推出一种将烧汽油改为烧天然气的装置.每辆车的改装价格为4 000元.公司第一次改装了部分车辆后核算:已改装的车辆每天的燃料费是未改装车辆每天燃料费用.公司第二次改装同样多的车辆后,此时已改装的车辆每天的燃料的320.费是未改装车辆每天燃料费用的25(1)公司第一次改装了多少辆出租车?改装后的出租车平均每辆每天的燃料费比改装前下降了百分之几?(2)若公司一次性将全部出租车改装,则多少天后就可以从节省的燃料费中收回改装成本?答案全解全析基础过关全练1.D 设这个两位数的十位上的数字为x,个位上的数字为y. 根据题意得{x =2y +1,(10x +y)−36=10y +x,解得{x =7,y =3,则这个两位数是73.2.答案 34解析 设原来的两位数的十位上的数字为x,个位上的数字为y,依题意得{x +y =7,10y +x −(10x +y)=9,解得{x =3,y =4, ∴原来的两位数为34.3.解析 设原三位数的百位上的数字为x,十位上的数字和个位上的数字组成的两位数为y,由题意,得{9x =y −3,10y +x =100x +y −45,解得{x =4,y =39,则4×100+39=439.故原三位数为439.4.B ∵v,t 满足公式v=at+b,当t=10时,v=336;当t=-10时,v=324, ∴{10a +b =336,−10a +b =324,解得{a =0.6,b =330.5.答案 6解析 依题意得{k +b =6.3,4k +b =7.2, 解得{k =0.3,b =6,∴公式中b 的值为6.6.解析 (1)由题意得{q =100,10p +q =103.5,解得{p =0.35,q =100.(2)由(1)可知V=0.35t+100.当t=30时,V=110.5.故当温度为30 ℃时,该气体的体积为110.5 L.7.解析 设学校现有男生x 人,女生y 人,则{x +y =2 300,x 1+25%+y 1−25%= 2 3001+15%,解得{x =2 000,y =300. 答:学校现有男生2 000人,女生300人.8.解析 (1)题表中空格填1.25x+1.3y(表格略).(2)由题表可得,{x +y =520,1.25x +1.3y =520+140,解得{x =320,y =200,∴1.25x=400,1.3y=260. 答:2021年进口额是400亿元,出口额是260亿元.能力提升全练9.D 根据9枚黄金与11枚白银的质量相等可知,9x=11y,根据两袋互相交换1枚后,甲袋比乙袋轻13两可知,8x+y=10y+x-13,故可列方程组为{9x =11y,8x +y =10y +x −13.故选D.10.答案 20解析 设绳索长为x 尺,竿长为y 尺,依题意得{x −y =5,y −12x =5,解得{x =20,y =15,∴绳索长为20尺. 11.答案 70解析 设爷爷现在是x 岁,小民现在是y 岁,依题意得{x −y =y +40,x +(x −y)=125,解得{x =70,y =15. 故爷爷现在是70岁.素养探究全练12.解析 设小强这次考试的英语成绩为x 分,数学成绩为y 分,由题意得{124+x +y =348,124+x +16+(1+15%)y =382,解得{x =104,y =120.答:小强这次考试的英语成绩为104分,数学成绩为120分.13.解析 (1)设公司第一次改装了x 辆车,改装后的出租车平均每辆每天的燃料费比改装前下降了y%.根据题意,得{x(1−y%)×80=320×(100−x)×80,2x(1−y%)×80=25×(100−2x)×80, 解得{x =20,y =40.答:公司第一次改装了20辆车,改装后的出租车平均每辆每天的燃料费比改装前下降了40%.(2)设公司一次性将全部出租车改装,a 天后可以收回改装成本,则100×80×40%a=4 000×100,解得a=125.答:125天后就可以从节省的燃料费中收回改装成本.。

七年级数学下册第2章二元一次方程组2

七年级数学下册第2章二元一次方程组2
(2)当接收方收到一组密码2,8,11时,则发送方发 出的密码是多少? 发送方发出的密码是3,4,7.
12 某服装厂专门安排210名工人进行手工衬衣的缝制,每 件衬衣由2个衣袖、1个衣身、1个衣领组成,如果每人 每天能够缝制衣袖10个,或衣身15个,或衣领12个, 那么应该安排多少名工人缝制衣袖,多少名工人缝制 衣身,多少名工人缝制衣领,才能使每天缝制出的衣 袖、衣身、衣领正好配套?
所以三元一次方程组的解为yx==3530,, z=-12.
所以三个“○”里的数之和为 71,三个“○”里应填入的
数按先上后下,先左后右的顺序依次为 50,33,-12.
14 阅读理解:已知实数 x,y 满足32xx-+y3=y=5①7②,,求 x-4y 和 7x+5y 的值.仔细观察两个方程未知数的系数之间的 关系,本题可以通过适当变形整体求得代数式的值,如 由①-②可得 x-4y=-2,由①+②×2 可得 7x+5y=19. 这样的解题思想就是通常所说的“整体思想”.利用“整体 思想”,解决下列问题:
x=-152, 所以原方程组的解为y=-2,
z=153.
【点拨】 解三元一次方程组时,通常需在某些方程两边
同乘某常数,以便于消去同一未知数;在变形过 程中,易漏乘常数项而出现方程①变形为4x+2y+ 6z=1的错误.
9 已知x-2y+z=2x-y+z=3,且x,y,z的值中仅有一
个为0,解这个方程组. 解:原式化为x2-x-2yy++zz==33,,①② ②-①,得 x+y=0. ∵x,y,z 的值中仅有一个为 0,∴z=0. 由xx+-y2=y=0,3,解得xy==-1,1.∴原方程组的解为xyz===0-1.,1,
2x+y+3z=1,① 8 解方程组3x-2y+2z=2,②

浙教版数学七年级下册课件2.3解二元一次方程组(2)

浙教版数学七年级下册课件2.3解二元一次方程组(2)

7.解下列方程组: x+2y=8,
(1)3x-2y=4. 解:x3+ x-2y2=y=8, 4.②① ①+②,得 4x=12,解得 x=3. 把 x=3 代入①,得 3+2y=8,解得 y=52.
x=3, ∴原方程组的解为y=52.
3x+12y=8, (2)2x-12y=2. 解:3x+12y=8,①
5.方程组x3- x+y=y=17,的解为__xy_==__12_,___.
【解析】
x-y=1,① 3x+y=7.②
①+②,得 4x=8,解得 x=2.
把 x=2 代入①,得 y=1.
∴原方程组的解为xy==12.,
6.已知 x,y 满足方程组x2+x+3yy==3-,1,则 x+y 的值为_____1____. 【解析】 解方程组x2+x+3yy==3-.②1,① ①×2-②,得 5y=-5,解得 y=-1. 把 y=-1 代入①,得 x+3×(-1)=-1,解得 x=2. ∴x+y=2-1=1.
11.解下列方程组: 3(x-1)=y+5,
(1)5(y-1)=3(x+5).
解:原方程组可化为35xy--3y=x=8,20.①② ①+②,得 4y=28,解得 y=7. 把 y=7 代入①,得 3x-7=8,解得 x=5. ∴原方程组的解为xy==75.,
23u+34v=12, (2)45u+56v=175.
∴原方程组的解为xy==21,,
2.用加减消元法解二元一次方程组x2+x-3yy==41,②①时,下列方法中,无法消元 的是( D ) A.①×2-② B.②×(-3)-① C.①×(-2)+② D.①-②×3
3.已知二元一次方程组23xx+ -57yy= =1-3, 7,①②用加减消元法解方程组,正确的是 (C )

二元一次方程(课件)七年级数学下册(浙教版)

二元一次方程(课件)七年级数学下册(浙教版)
(2)方程的左右两边都是整式.
讲授新课
典例精析
讲授新课
练一练
【详解】解:由题意知:|k|=1,k-1=0, 解得k=-1. 故选:A.
讲授新课
2.若关于x、y的方程(m-3)x|m|-2-2ym+2n=5是二元一次方程,则mn_____.
讲授新课 知识点二 二元一次方程的解
探究 仅考虑上题中篮球问题的方程 x y 10 ,且符合问题的实
二元一次方程及二元一次方程组的定义 二元一次方程及二元一次方程组的解
个3分球.
2x+3(10-x)=24.
这是一个一元一次方程
讲授新课
问题 能不能根据题意直接设两个未知数,使列方程变的容易呢?
分析
投2分球次数+投3分球次数=总出手数 2分球分数+3分球次数=总分数 设篮球队头2分球次数为x次,3分球次数为y次
2分 3分 合计 出手 x y 10 得分 2x 3y 24
注: 1、一般地,二元一次方程的解有无数组,且每一个解都是成对出现,而不是单独 的一个未知数的值; 2、二元一次方程的一组解是指使方程左右两边相等的一对未知数的值,反过来, 如果一组数值能使二元一次方程左右两边相等,那么这一组数值就是方程的解;
讲授新课
典例精析
讲授新课
练一练
讲授新课
2.文化娱乐公司准备组织员工去观看电影《阿凡达2:水之道》, 由于购买团体票可以打折,电影院根据座位排数的差异确定票价, 共有60元,90元,120元三种票价的电影票,公司经理用840元共购 买了10张电影票,则票价为60元的电影票的数量比票价为120元的电 影票的数量多_______张.
思考:如果未知数有两个呢?是什么方程呢?
导入新课

新浙教版七年级数学下册各章知识点汇总

新浙教版七年级数学下册各章知识点汇总

新浙教版七年级下册数学各章知识点第一章:平行线与相交线一、知识结构⎧⎧⎧⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎧⎪⎪⎪⎪⎨⎨⎨⎪⎪⎩⎪⎪⎪⎪⎧⎪⎪⎨⎪⎪⎩⎪⎪⎪⎩⎪⎩同位角相等,两直线平行直线平行的判定内错角相等,两直线平行同旁内角相等,两直线平行两直线平行,同位角相等平行线直线平行的性质两直线平行,内错角相等平行线与相交线两直线平行,同旁内角互补作一条线段等于已知线段尺规作图作一个角等于已知角相交线:补角、余角、对顶角二、要点诠释1.两条直线的位置关系(1)在同一平面内,两条直线的位置关系只有两种:相交与平行。

(2)平行线:在同一平面内,不相交的两条直线交平行线。

2.几种特殊关系的角(1)余角和补角:①定义:如果两个角的和是直角,称这两个角互为余角;如果两个角的和是平角,称这两个角互为补角。

②性质:同角或等角的余角相等,同角或等角的补角相等。

(2)对顶角:①定义:两条直线相交所得有公共顶点、没有公共边的两个角②性质:对顶角相等。

(3)同位角、内错角、同旁内角两条直线分别与第三条直线相交,构成八个角。

①在两条直线同一侧并且在第三条直线的旁边的两个角叫同位角。

②在两条直线之间并且在第三条直线的两旁的两个角叫做内错角。

③在两条直线之间并且在第三条直线的同旁的两个角叫做同旁内角。

三、主要内容(1)平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角相等,两直线平行;平行于同一直线的两条直线平行;垂直于同一条直线的两直线平行。

(2)平行线的性质两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;经过直线外一点有且只有一条直线与已知直线平行。

第二章:二元一次方程组2.1二元一次方程含有两个未知数,且含有未知数的项的次数都是一次的方程叫做二元一次方程。

使二元一次方程两边的值相等的一对未知数的值,叫做二元一次方程的一个解。

2.2二元一次方程组由两个二元一次方程组成,并且含有两个未知数的方程组,叫做二元一次方程组。

浙教版七年级数学下册第二章《二元一次方程组》常考题(解析版)

浙教版七年级数学下册第二章《二元一次方程组》常考题(解析版)

浙江七年级数学下册第二章《二元一次方程组》常考题(考试时间:90分钟 试卷满分:100分)一、选择题(本题有10个小题,每小题3分,共30分)1.(本题3分)(2021·浙江·浦江县教育研究和教师培训中心七年级期末)已知二元一次方程473x y -=.用x 的代数式表示y ,正确的是( ) A .374y- B .374y+ C .437x - D .437x + 【答案】C 【解析】 【分析】将x 看作已知数,y 看作未知数,求出y 即可. 【详解】 ∵4x -7y =3, ∵7y =4x -3, ∵437x y -=. 故选:C . 【点睛】本题考查解二元一次方程,解题的关键是将x 看作已知数,y 看作未知数,解方程即可.2.(本题3分)(2021·浙江·七年级专题练习)若一个方程组的一个解为21x y =⎧⎨=⎩,则这个方程组不可能是( )A .31x y x y +=⎧⎨-=⎩B .2231y xx y =⎧⎨-=⎩C .2420x y x y +=⎧⎨-=⎩D .45133424x y x y +=⎧⎨-+=⎩【答案】C 【解析】 【分析】把解代入各个方程组,根据二元一次方程解的定义判断即可 【详解】解:A 、x =2,y =1适合方程组31x y x y +=⎧⎨-=⎩中的每一个方程,故本选项不符合题意;B 、x =2,y =1适合方程组2231y xx y =⎧⎨-=⎩中的每一个方程,故本选项不符合题意;C 、x =2,y =1不是方程20x y -=的解,故该选项符合题意.D 、x =2,y =1适合方程组45133424x y x y +=⎧⎨-+=⎩中的每一个方程,故本选项不符合题意;故选C . 【点睛】本题考查了方程组的解.解决本题可根据方程组解的定义代入验证,也可以通过解方程组确定.3.(本题3分)(2021·浙江诸暨·七年级期末)若方程组327213x y x y -=⎧⎨+=⎩的解也是方程218kx y +=的解,则k 的值为( )A .1B .2C .3D .4【答案】B 【解析】 【分析】先求出方程组的解,然后代入方程218kx y +=,即可解答. 【详解】解:327213①②-=⎧⎨+=⎩x y x y ∵+∵,得:420x = ,解得:5x = ,把5x =代入∵,得:5213y +=,解得: 4y = ,所以方程组的解为54x y =⎧⎨=⎩ , 把x ,y 代入方程218kx y +=,得:52418k +⨯= ,解得:2k = .故选:B 【点睛】本题主要考查了解二元一次方程组和二元一次方程的解,解题的关键是熟练掌握解二元一次方程组的步骤,以及方程的解就是把这个数代入方程使方程成立的值. 4.(本题3分)(2021·浙江萧山·七年级期中)某地响应国家号召,实施退耕还林政策.退耕还林之前,该地的林地面积和耕地面积共有180km 2.退耕还林之后,该地的耕地面积是林地面积的30%.设退耕还林之后该地的耕地面积为x km2,林地面积为y km2,则可列方程组()A.18030%x yy x+=⎧⎨=⎩B.18030%x yx y+=⎧⎨=⎩C.18030%x yx y+=⎧⎨-=⎩D.18030%x yy x+=⎧⎨-=⎩【答案】B【解析】【分析】设耕地面积x平方千米,林地面积为y平方千米,根据该地的林地面积和耕地面积共有180km2,退耕还林之后,该地的耕地面积是林地面积的30%列出方程即可.【详解】解:设耕地面积x平方千米,林地面积为y平方千米,根据题意列方程组18030%x yx y+=⎧⎨=⎩.故选B.【点睛】本题主要考查了根据实际问题列二元一次方程组,解题的关键在于能够准确根据题意找到等量关系.5.(本题3分)(2021·浙江杭州·七年级期末)方程组2,3x yx y⎧+=⎪⎨+=⎪⎩的解为2,.xy=⎧⎪⎨=⎪⎩则被遮盖的两个数分别为()A.2,1B.5,1C.2,3D.2,4【答案】B【解析】【分析】把x=2代入方程组第二个方程求出y的值,再将x与y的值代入第一个方程左边求出所求即可.【详解】解:把x=2代入x+y=3得:y=1,把x=2,y=1代入得:2x+y=4+1=5,则被遮盖的两个数分别为5,1,此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.6.(本题3分)(2021·浙江·杭州市公益中学七年级开学考试)已知(2x ﹣3y +1)2与|4x ﹣3y ﹣1|互为相反数,则x ,y 的值为( ) A .x =﹣1,y =1 B .x =1,y =﹣1 C .x =﹣1,y =﹣1 D .x =1,y =1【答案】D 【解析】 【分析】根据非负数的性质,建立二元一次方程组,加减法解二元一次方程组即可求得x ,y 的值为 【详解】(2x ﹣3y +1)2与|4x ﹣3y ﹣1|互为相反数,∴(2x ﹣3y +1)2+|4x ﹣3y ﹣1|=023104310x y x y -+=⎧∴⎨--=⎩ 解得11x y =⎧⎨=⎩ 故选D 【点睛】本题考查了相反数的应用,非负数的性质,解二元一次方程组,建立二元一次方程组是解题的关键.7.(本题3分)(2020·浙江·群星外国语学校七年级阶段练习)设1a ,2a ,…,2016a 是从1,0,-1这三个数中取值的一列数,若12202069a a a ++⋯+=,()()()2221220201114007a a a ++++⋅⋅⋅++=,则1a ,2a ,…,2020a 中有( )个0.A .163 B .164 C .170 D .171【答案】D 【解析】 【分析】由(a 1+1)2+(a 2+1)2+…+(a 2020+1)2=4007得a 12+a 22+…+a 20202=1849,设数列中1有x 个、0有y 个,-1有z 个,根据题意得出1•x +0•y +(-1)•z =69,12•x +02•y +(-1)2•z =1853,解:(a 1+1)2+(a 2+1)2+…+(a 2020+1)2=4007, a 12+2a 1+1+a 22+2a 2+1+…+a 20202+2a 2020+1=4007, (a 12+a 22+…+a 20202)+2(a 1+a 2+…+a 2020)+2020=4007, ∵a 1+a 2+…+a 2020=69, ∵a 12+a 22+…+a 20202=1849,设a 1,a 2,…,a 2020中1有x 个、0有y 个,-1有z 个,根据题意可得:1•x +0•y +(-1)•z =69,12•x +02•y +(-1)2•z =1849,即691849x z x z -=⎧⎨+=⎩,解得:959890x z =⎧⎨=⎩, 则y =2020-959-890=171,即0有171个, 故选:D . 【点睛】本题主要考查三元一次方程组的应用和完全平方公式,根据题意列出关于x 、y 、z 的方程组是解题的关键.8.(本题3分)(2021·浙江·杭州市采荷中学七年级期中)若关于x ,y 的二元一次方程组89mx ny mx ny -=⎧⎨+=⎩的解是79x y =⎧⎨=⎩,则关于a ,b 的二元一次方程组()()538539m a b nb m a b nb ⎧--=⎪⎨-+=⎪⎩的解是( )A .23a b =⎧⎨=⎩B .32a b =⎧⎨=⎩C .42a b =⎧⎨=⎩D .53a b =⎧⎨=⎩【答案】A 【解析】 【分析】先求出m ,n 的值,再代入新的二元一次方程组即可得出答案. 【详解】解:关于x ,y 的二元一次方程组89mx ny mx ny -=⎧⎨+=⎩的解是79x y =⎧⎨=⎩, 2717m ∴⨯=,1714m ∴=, 291n ∴⨯=,118n ∴=, 关于a ,b 的二元一次方程组是(5)38(5)39m a b nb m a b nb --=⎧⎨-+=⎩, 61nb ∴=,∴113b =,3b ∴=,172(5)1714a b ∴⨯⨯-=, 57a b ∴-=,2a ∴=,∴关于a ,b 的二元一次方程组(5)38(5)39m a b nb m a b nb --=⎧⎨-+=⎩的解为:23a b =⎧⎨=⎩.故选:A . 【点睛】本题考查了解二元一次方程组,本题的解题关键是先求出m ,n 的值,再代入新的二元一次方程组即可得出答案.9.(本题3分)(2021·浙江浙江·七年级期末)已知关于x ,y 的方程组35225x y ax y a -=⎧⎨-=-⎩,则下列结论中正确的有( )个 ∵当5a =时,方程组的解是1020x y =⎧⎨=⎩;∵当x ,y 的值互为相反数时,20a = ∵不存在一个实数a 使得x y =; ∵若23722a y -=,则2a =.A .1 B .2C .3D .4【答案】B 【解析】 【分析】∵把a =5代入方程组求出解,即可作出判断;∵由题意得x +y =0,变形后代入方程组求出a 的值,即可作出判断; ∵若x =y ,代入方程组,变形得关于a 的方程,即可作出判断;∵根据题中等式得2a ﹣3y =7,代入方程组求出a 的值,即可作出判断. 【详解】解:∵把a =5代入方程组得:3510(1)20(2)x y x y -=⎧⎨-=⎩, 由(2)得x =2y ,将x =2y 代入(1)得:y =10, 将y =10代入x =2y 得:x =20,解得:2010x y =⎧⎨=⎩,故∵错误; ∵当x ,y 的值互为相反数时,x +y =0, 即:y =﹣x代入方程组得:35225x x ax x a +=⎧⎨+=-⎩, 整理,得82(3)35(4)x a x a =⎧⎨=-⎩, 由(3)得:14x a =,将14x a =代入(4),得:354a a =-,解得:a =20,故∵正确;∵若x =y ,则有225x ax a -=⎧⎨-=-⎩,可得:a =a ﹣5,矛盾,∵不存在一个实数a 使得x =y ,故∵正确;∵352(5)25(6)x y a x y a -=⎧⎨-=-⎩, (5)-(6)×3,得:15y a =-, 将15y a =-代入(6),得:25x a =-,∵原方程组的解为2515x ay a=-⎧⎨=-⎩,∵23722a y -=, ∵2a ﹣3y =7, 把y =15﹣a 代入得: 2a ﹣45+3a =7,解得:a =525,故∵错误; ∵正确的选项有∵∵两个. 故选:B . 【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.本题属于基础题型,难度不大.10.(本题3分)(2021·浙江·杭州市公益中学七年级期中)用如图∵中的长方形和正方形纸板作侧面和底面,做成如图∵的竖式和横式的两种无盖纸盒.现有m 张正方形纸板和n 张长方形纸板,如果做两种纸盒若干个,恰好将纸板用完,则m+n 的值可能是( )A .200B .201C .202D .203【答案】A 【解析】 【分析】分别设做了竖式无盖纸盒x 个,横式无盖纸盒y 个,列二元一次方程组43{2x y n x y m+=+=,把两个方程的两边分别相加得5()m n x y +=+,易知m n +的值一定是5的倍数,本题即解答. 【详解】解:设做成竖式无盖纸盒x 个,横式无盖纸盒y 个,根据题意列方程组得: 43{2x y n x y m+=+=, 则两式相加得 5()m n x y +=+,∵x 、y 都是正整数 ∵m n +一定是5的倍数;∵200、201、202、203四个数中,只有200是5的倍数, ∵m n +的值可能是200. 故选A. 【点睛】本题主要考查二元一次方程组的实际应用;巧妙处理所列方程组,使两方程相加得出5()m n x y +=+,是解答本题的关键.二、填空题(本题有7个小题,每小题3分,共21分)11.(本题3分)(2021·浙江浙江·七年级期末)若x ay b =⎧⎨=⎩是方程21x y -=的解,则362a b -+=________.【答案】5 【解析】 【分析】把x 与y 的值代入方程求出a 与b 的关系,代入原式计算即可得到结果. 【详解】解:把x ay b =⎧⎨=⎩代入方程x -2y =1,可得:a -2b =1,所以3a -6b +2=3(a -2b )+2=5. 故答案为:5. 【点睛】此题考查了二元一次方程的解,方程的解即为能使方程中两边相等的未知数的值. 12.(本题3分)(2021·浙江慈溪·七年级期末)已知235x y -=,若用含x 的代数式表示y ,则y =______.【答案】253x - 【解析】 【分析】把方程化为:325,y x =-再两边都除以3, 即可得到答案. 【详解】解: 235x y -=, 325,y x ∴=-25.3x y -∴=故答案为:25.3x - 【点睛】本题考查的是二元一次方程的变形,掌握利用含一个未知数的代数式表示另外一个未知数是解题的关键.13.(本题3分)(2020·浙江泰顺·七年级开学考试)每年五月的第二个礼拜日是母亲节,母亲节那天,很多同学给妈妈准备了鲜花和礼盒.从信息中可知,若设鲜花x 元/束,礼盒y 元/盒,则可列方程组为__________.【答案】2552390x y x y +=⎧⎨+=⎩ 【解析】 【分析】设鲜花x 元/束,礼盒y 元/盒,根据“一束花+二盒花=55元,二束花+三盒花=90元”,列出二元一次方程组,即可. 【详解】设鲜花x 元/束,礼盒y 元/盒,由题意得:2552390x y x y +=⎧⎨+=⎩.故答案是:2552390x y x y +=⎧⎨+=⎩.【点睛】本题主要考查二元一次方程组的实际应用,找出等量关系,列出方程组,是解题的关键. 14.(本题3分)(2021·浙江浙江·七年级期中)已知关于x y 、的方程组342321x y mx y m +=⎧⎨+=-⎩的解满2x y +=,则m =________. 【答案】-1 【解析】 【分析】两式相减得,即可利用m 表示出x +y 的值,从而得到一个关于m 的方程,解方程从而求得m 的值. 【详解】解:两式相减得:x +y =1-m , ∵x +y =2.即1-m =2,解得:m =-1. 故答案是:-1.【点睛】本题考查了二元一次方程组的解,理解两个方程的系数之间的特点是关键.15.(本题3分)(2021·浙江浙江·七年级期末)把某个式子看成一个整体,用一个量代替它,从而使问题得到简化,这叫整体代换成换元思想,请根据上面的思想解决下面问题:若关于,m n 的方程组111222a m b n c a m b n c +=⎧⎨+=⎩的解是106m n =⎧⎨=⎩,则关于,x y 的方程组111222()()()()a x y b x y c a x y b x y c ++-=⎧⎨++-=⎩的解是_______. 【答案】82x y =⎧⎨=⎩ 【解析】【分析】仿照已知方程组的解法求出所求方程组的解即可.【详解】解:∵关于m ,n 的方程组111222a m b n c a m b n c +=⎧⎨+=⎩的解是106m n =⎧⎨=⎩, ∵方程组111222()()()()a x y b x y c a x y b x y c ++-=⎧⎨++-=⎩的解为106x y x y +=⎧⎨-=⎩, 解得:82x y =⎧⎨=⎩, 故答案为:82x y =⎧⎨=⎩. 【点睛】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.16.(本题3分)(2021·浙江临海·七年级期中)在矩形ABCD 中,放入六个形状、大小相同的长方形,尺寸如图所示,则阴影部分的面积是___cm 2.【答案】44【解析】【分析】设这六个形状、大小相同的长方形的长为x cm,宽为y cm,然后根据图形可得26314y x y x y +=+⎧⎨+=⎩,然后求出x 、y 的值,进而问题可求解. 【详解】解:设这六个形状、大小相同的长方形的长为x cm,宽为y cm,由图形得:26314y x y x y +=+⎧⎨+=⎩,解得:82x y =⎧⎨=⎩, ∵AB =10cm,∵阴影部分的面积为14×10-8×2×6=44cm 2;故答案为44.【点睛】本题主要考查二元一次方程组与几何的应用,熟练掌握二元一次方程组的解法由图形得到基本关系量是解题的关键.17.(本题3分)(2021·浙江浙江·七年级期中)已知关于x ,y 的二元一次方程()()12120m x my m +++=﹣﹣,无论实数m 取何值,此二元一次方程都有一个相同的解,则这个相同的解是______.【答案】11x y =-⎧⎨=⎩ 【解析】【分析】将方程整理成关于m 的一元一次方程,若无论实数m 取何值,此二元一次方程都有一个相同的解,则与m 无关,从而令m 的系数为0,从而得关于x 和y 的二元一次方程组,求解即可.【详解】将(m+1)x+(2m-1)y+2-m=0整理得:mx+x+2my-y+2-m=0,即m (x+2y-1)+x-y+2=0,因为无论实数m 取何值,此二元一次方程都有一个相同的解,所以21020x y x y +-=⎧⎨-+=⎩,解得:11x y =-⎧⎨=⎩.故答案为:11x y =-⎧⎨=⎩.【点睛】考查了含参数的二元一次方程有相同解问题,解题关键是利用转化思想.三、解答题(请写出必要的解题过程,本题共6个小题,共49分)18.(本题6分)(2019·浙江东阳·七年级期末)解下列方程(组)(1)3263x y x y +=⎧⎨-=⎩(2)1122x xx x +=+--【答案】(1)12535x y ⎧=⎪⎪⎨⎪=-⎪⎩ ;(2)3x =-,经检验,3x =-是原方程的根.【解析】【分析】(1)根据加减消元法即可求解;(2)先将分母进行变形,再去分母即可求解.【详解】(1)3263x y x y +=⎧⎨-=⎩①②令∵+2∵得5x=12,解得x=125把x=125代入∵得y=35∵原方程组的解为12535x y ⎧=⎪⎪⎨⎪=-⎪⎩(2)1122x x x x+=+-- 1122x x x x +=-+-- x+1=-x+x-2解得x=-3,把x=-3代入原方程,符合题意,故x=-3是原方程的解.【点睛】此题主要考查方程的求解,解题的关键是熟知加减消元法及分式方程的求解.19.(本题8分)(2019·浙江·绍兴市柯桥区杨汛桥镇中学七年级期中)已知方程组44(1)214(2)ax y x by -=⎧⎨+=⎩,,由于甲看错了方程∵中的a 得到方程组的解为26x y ,,=-⎧⎨=⎩ 乙看错了方程∵中的b 得到方程组的解为44.x y =-⎧⎨=-⎩, 若按正确的a 、b 计算,求原方程组的解. 【答案】42x y =⎧⎨=⎩【解析】【分析】将甲得到的方程组的解代入第二个方程求出b 的值,将乙得到方程组的解代入第一个方程求出a 的值,确定出正确的方程组,求出方程组的解得到正确的x 与y 的值.【详解】解:将x=-2,y=6代入方程组中的第二个方程得:-4+6b=14,解得:b=3,将x=-4,y=-4代入方程组中的第一个方程得:-4a+16=4,解得:a=3,则方程组为()()344123142x y x y ⎧-=⎪⎨+=⎪⎩,,, (2)×3-(1)×2得:17y=34,解得:y=2,把y=2代入(1)得:x=4,即方程组的正确解为42 xy=⎧⎨=⎩.【点睛】此题考查的是对二元一次方程组的解的计算,通过代入正确的a,b的值即可得出答案.20.(本题8分)(2021·浙江浙江·七年级期末)为了保护环境,某市公交公司决定购买一批共10台全新的混合动力公交车,现有A B、两种型号,其中每台的价格,年省油量如下表:经调查,购买一台A型车比购买一台B型车多20万元,购买2台A型车比购买3台B型车少60万元.(1)请求出a和b;(2)若购买这批混合动力公交车每年能节省22.4万升汽油,求购买这批混合动力公交车需要多少万元?【答案】(1)a=120,b=100;(2)1120万元【解析】【分析】(1)根据“购买一台A型车比购买一台B型车多20万元,购买2台A型车比购买3台B型车少60万元.”即可列出关于a、b的二元一次方程组,解之即可得出结论;(2)设A型车购买x台,则B型车购买(10-x)台,根据总节油量=2.4×A型车购买的数量+2×B型车购买的数量即可得出关于x的一元一次方程,解之即可得出x值,再根据总费用=120×A型车购买的数量+100×B型车购买的数量即可算出购买这批混合动力公交车的总费用.【详解】解:(1)根据题意得:20 3260a bb a-=⎧⎨-=⎩,解得:120100ab=⎧⎨=⎩.(2)设A型车购买x台,则B型车购买(10-x)台,根据题意得:2.4x +2(10-x )=22.4,解得:x =6,∵10-x =4,∵120×6+100×4=1120(万元).答:购买这批混合动力公交车需要1120万元.【点睛】本题考查了二元一次方程组的应用以及一元一次方程的应用,解题的关键是:(1)根据A 、B 型车价格间的关系列出关于a 、b 的二元一次方程组;(2)根据总节油量=2.4×A型车购买的数量+2×B 型车购买的数量列出关于x 的一元一次方程.21.(本题8分)(2021·浙江·杭州市公益中学七年级期中)已知关于x ,y 的方程组212398x y a x y a -=+⎧⎨+=-⎩,其中a 是实数. (1)若x y =,求a 的值;(2)若方程组的解也是方程53x y -=的一个解,求()20194a -的值;(3)求k 为何值时,代数式229x kxy y -+的值与a 的取值无关,始终是一个定值,求出这个定值.【答案】(1)12-;(2)-1;(3)k =6;定值为25. 【解析】【分析】(1)把a 看做已知数,利用加减消元法求出解即可;(2)把方程组的解代入方程计算求出a 的值,代入原式计算即可求出值;(3)将代数式x 2-kxy +9y 2的配方=(x -3y )2+6xy -kxy =25+(6-k )xy ,即可求解.【详解】解:(1)方程组212398x y a x y a -=+⎧⎨+=-⎩①②, ∵3⨯+∵得:5155x a =-,解得:31x a =-,把31x a =-代入∵得:2y a =-,则方程组的解为312x a y a =-⎧⎨=-⎩, 令312a a -=-,解得12a =-; (2)把方程组312x a y a =-⎧⎨=-⎩代入方程得:315103a a --+=, 解得:3a =,则20192019(4)(1)1a -=-=-;(3) 312x a y a =-⎧⎨=-⎩()3165,x y ∴-=---=229x kxy y -+2(3)6x y xy kxy =-+-25(6)k xy =+-,且代数式229x kxy y -+的值与a 的取值无关,∴当6k =时,代数式229x kxy y -+的值与a 的取值无关,定值为25.【点睛】此题考查了二元一次方程组的解,二元一次方程的解,以及解二元一次方程,熟练掌握运算法则是解本题的关键.22.(本题9分)(2019·浙江长兴·七年级期末)阅读材料:小丁同学在解方程组435235x y x y x y x y +-⎧+=⎪⎪⎨+-⎪-=-⎪⎩时,他发现:如果直接用代入消元法或加减消元法求解运算量比较大,也容易出错.如果把方程组中的(x+y)看作一个整体,把(x-y)看作一个整体,通过换元,可以解决问题.以下是他的解题过程:设m=x+y,n=x-y,这时原方程组化为435235m n m n ⎧+=⎪⎪⎨⎪-=-⎪⎩ 解得315m n =⎧⎨=⎩,即315x y x y +=⎧⎨-=⎩,解得96x y =⎧⎨=-⎩ 请你参考小丁同学的做法,解方程组:23237432323832x y x y x y x y +-⎧+=⎪⎪⎨+-⎪+=⎪⎩ 【答案】914x y =⎧⎨=⎩【解析】【分析】设m=2x+3y,n=2x-3y,根据所给整体代换思路,按照所给方法求出方程的解即可.【详解】设m=2x+3y,n=2x-3y, 原方程可组化为743832m n m n ⎧+=⎪⎪⎨⎪+=⎪⎩, 解得:6024m n =⎧⎨=-⎩. ∵23602324x y x y +=⎧⎨-=-⎩, 解得:914x y =⎧⎨=⎩. 【点睛】本题考查解二元一次方程组,认真理解整体代换思路是解题关键.23.(本题10分)(2021·浙江浙江·七年级期末)用如图1的长方形和正方形铁片(长方形的宽与正方形的边长相等)作侧面和底面、做成如图2的竖式和横式的两种无盖的长方体容器,(1)现有长方形铁片2014张,正方形铁片1176张,如果将两种铁片刚好全部用完,那么可加工成竖式和横式长方体容器各有几个?(2)现有长方形铁片a 张,正方形铁片b 张,如果加工这两种容器若干个,恰好将两种铁片刚好全部用完.则a b +的值可能是( )A .2019B .2020C .2021D .2022(3)给长方体容器加盖可以加工成铁盒.先工厂仓库有35张铁皮可以裁剪成长方形和正方形铁片,用来加工铁盒,已知1张铁皮可裁剪出3张长方形铁片或4张正方形铁片,也可以裁剪出1张长方形铁片和2张正方形铁片.请问怎样充分利用这35张铁皮,最多可以加工成多少个铁盒【答案】(1)竖式长方体铁容器100个,横式长方体铁容器538个;(2)B;(3)19个【解析】【分析】(1)设可以加工竖式长方体铁容器x个,横式长方体铁容器y个,根据加工的两种长方体铁容器共用了长方形铁片2014张、正方形铁片1176张,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设竖式纸盒c个,横式纸盒d个,由题意列出方程组可求解.(3)设做长方形铁片的铁板为m块,做正方形铁片的铁板为n块,由铁板的总数量及所需长方形铁片的数量为正方形铁皮的2倍,即可得出关于m,n的二元一次方程组,解之即可得出m,n的值,取其整数部分再将剩余铁板按一张铁板裁出1个长方形铁片和2个正方形铁片处理,即可得出结论.【详解】解:(1)设可以加工竖式长方体铁容器x个,横式长方体铁容器y个,依题意,得:43201421176 x yx y+=⎧⎨+=⎩,解得:100538 xy=⎧⎨=⎩,答:可以加工竖式长方体铁容器100个,横式长方体铁容器538个.(2)设竖式纸盒c个,横式纸盒d个,根据题意得:432c d a c d b+=⎧⎨+=⎩,∵5c+5d=5(c+d)=a+b,∵a+b是5的倍数,可能是2020,故选B;(3)设做长方形铁片的铁板为m块,做正方形铁片的铁板为n块,依题意,得:35 324 m nm n+=⎧⎨=⨯⎩,解得:525116911mn⎧=⎪⎪⎨⎪=⎪⎩,∵在这35块铁板中,25块做长方形铁片可做25×3=75(张),9块做正方形铁片可做9×4=36(张),剩下1块可裁出1张长方形铁片和2张正方形铁片,∵共做长方形铁片75+1=76(张),正方形铁片36+2=38(张),∵可做铁盒76÷4=19(个).答:最多可以加工成19个铁盒.【点睛】本题考查了二元一次方程组的应用以及二元一次方程的应用,解题的关键是:找准等量关系,正确列出二元一次方程(组).。

[K12学习]2019年春七年级数学下册第2章二元一次方程2.3第2课时加减消元法练习新版浙教版

[K12学习]2019年春七年级数学下册第2章二元一次方程2.3第2课时加减消元法练习新版浙教版

2.3 解二元一次方程组第2课时 加减消元法知识点 加减消元法解二元一次方程组对于二元一次方程组,当两个方程的同一个未知数的系数是互为相反数或相同时,可以通过把两个方程的两边相加或相减来消元,转化为一元一次方程求解.这种解二元一次方程组的方法叫做加减消元法,简称加减法.用加减法解二元一次方程组的一般步骤:(1)将其中一个未知数的系数化成相同(或互为相反数);(2)通过相减(或相加)消去这个未知数,得到一个一元一次方程(注意:一般在消去一个字母时,考虑用另一个字母系数大的式子减系数小的式子);(3)解这个一元一次方程,得到一个未知数的值;(4)将求得的未知数的值代入原方程组中的任一个方程,求得另一个未知数的值. (5)写出方程组的解.解方程组:⎩⎪⎨⎪⎧3x +2y =21,3x -4y =3.一 加减消元法解二元一次方程组教材例2变式题用加减法解方程组:⎩⎪⎨⎪⎧2x +3y =12,3x +4y =17.[归纳总结] 运用加减消元法解方程组时,首先要观察两个方程中同一个未知数的系数,若系数相等,则将这两个方程相减;若系数互为相反数,则将这两个方程相加,就可以消去该未知数.若系数既不相等也不互为相反数,我们应该设法使用等式的性质,将同一个未知数的系数化为相等或互为相反数.注意:(1)把某个方程乘一个数时,方程两边的每一项都要和这个数相乘;(2)把两个方程相加减时,一定要把两个方程两边分别相加减.二 灵活选择适当的方法解二元一次方程组教材补充题用适当的方法解下列方程组:(1)⎩⎪⎨⎪⎧6s +3t =13,3s -t =5;(2)⎩⎪⎨⎪⎧5x -6y =17,4x +3y =28.[归纳总结] 二元一次方程组解法的选取主要取决于未知数的系数,当方程组中某未知数的系数较简单,如系数为1或-1时,常选用代入消元法;当方程组中某未知数的系数相等或互为相反数或成倍数关系时,常选用加减消元法.[反思] 请观察下面解方程组⎩⎪⎨⎪⎧4x +3y =6,2x -y =4的过程,并判断该过程是否正确,若不正确,请写出正确的解法.解:⎩⎪⎨⎪⎧4x +3y =6,①2x -y =4,②②×2,得4x -2y =8.③ ①-③,得y =-2.把y =-2代入②,得2x -(-2)=4,x =1.∴原方程组的解是⎩⎪⎨⎪⎧x =1,y =-2.一、选择题1.将方程-12x +y =1中含x 的项的系数化为3,则以下结果中,正确的是( )A .3x +y =1B .3x +6y =1C .3x -6y =1D .3x -6y =-62.方程组⎩⎪⎨⎪⎧x +y =5,①2x +y =10,②由②-①得到的正确的方程是( )A .3x =10B .x =5C .3x =-5D .x =-53.用加减法解方程组⎩⎪⎨⎪⎧2x +3y =3,3x -2y =11时,有下列四种变形,其中正确的是( )A .⎩⎪⎨⎪⎧4x +6y =3,9x -6y =11 B .⎩⎪⎨⎪⎧6x +3y =9,6x -2y =22C .⎩⎪⎨⎪⎧4x +6y =6,9x -6y =33D .⎩⎪⎨⎪⎧6x +9y =3,6x -4y =11 4.方程组⎩⎪⎨⎪⎧8x -3y =9,8x +4y =-5消去x 后,得到的方程是( )A .y =4B .-7y =14C .7y =14D .y =145.2015·河北利用消元法解方程组⎩⎪⎨⎪⎧2x +5y =-10,①5x -3y =6,②下列做法正确的是( )A .要消去y ,可以将①×5+②×2B .要消去x ,可以将①×3+②×(-5)C .要消去y ,可以将①×5+②×3D .要消去x ,可以将①×(-5)+②×26.方程组⎩⎪⎨⎪⎧x +y =1,2x -y =5的解为( )A .⎩⎪⎨⎪⎧x =-1,y =2B .⎩⎪⎨⎪⎧x =-2,y =3 C .⎩⎪⎨⎪⎧x =2,y =1 D .⎩⎪⎨⎪⎧x =2,y =-17.已知方程组⎩⎪⎨⎪⎧2x +y =4,x +2y =5,则x +y 的值为( )A .-1B .0C .2D .38.若关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧x +y =5k ,x -y =9k 的解也是二元一次方程2x +3y =6的解,则k 的值为( )A .-34 B .34 C .43D .-43二、填空题9.用加减法解二元一次方程组⎩⎪⎨⎪⎧11x -3y =4,①13x -6y =-5,②将方程①两边乘________,再把得到的方程与方程②相__________,可以消去未知数________.10.2016·温州方程组⎩⎪⎨⎪⎧x +2y =5,3x -2y =7的解是________.11.已知二元一次方程组⎩⎪⎨⎪⎧3x +4y =28,①4x +3y =7,②不解方程组,直接求x +y 与x -y 的值,则x+y =________,x -y =________.12.2015·咸宁如果实数x ,y 满足方程组⎩⎪⎨⎪⎧x -y =-12,2x +2y =5,那么x 2-y 2的值为________. 13.已知方程3x2m +5n +9+4y4m -2n -7=2是关于x ,y 的二元一次方程,则m =________,n=________.三、解答题14.用加减法解方程组:(1)⎩⎪⎨⎪⎧3x -y =2,3x +2y =11;(2)⎩⎪⎨⎪⎧x 2-y +13=1,3x +2y =10.15.用适当的方法解下列方程组:(1)⎩⎪⎨⎪⎧x +2y =1,3x -2y =11; (2)⎩⎪⎨⎪⎧5x +3y =6,5x -2y =-4;(3)⎩⎪⎨⎪⎧4x -3y =39,7x +4y =-15; (4)⎩⎪⎨⎪⎧2(2x +5y )=3.6,5(3x +2y )=8.16.如果二元一次方程组⎩⎪⎨⎪⎧x +y =a ,x -y =5a 的解是二元一次方程3x -5y -38=0的一个解,请你求出a 的值.17.已知关于x ,y 的方程组⎩⎪⎨⎪⎧2x +5y =-6,3x -5y =16和方程组⎩⎪⎨⎪⎧ax -by =-4,bx +ay =-8的解相同,求代数式3a +7b 的值.1.[技巧性题目] 在解关于x ,y 的方程组⎩⎪⎨⎪⎧ax +by =2,cx -7y =8时,一位同学把c 看错而得到⎩⎪⎨⎪⎧x =-2,y =2,正确的解应是⎩⎪⎨⎪⎧x =3,y =-2,求a ,b ,c 的值.2.[技巧性题目] 如果关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧3x -ay =16,2x +by =15的解是⎩⎪⎨⎪⎧x =7,y =1,那么关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧3(x +y )-a (x -y )=16,2(x +y )+b (x -y )=15的解是什么?详解详析【预习效果检测】[解析] 解方程组⎩⎪⎨⎪⎧3x +2y =21,①3x -4y =3,②两个方程中x 的系数相等,因此,可直接由①-②消去未知数x .解:⎩⎪⎨⎪⎧3x +2y =21,①3x -4y =3,②①-②,得6y =18,解得y =3. 把y =3代入方程②,得 3x -4×3=3,解得x =5.所以原方程组的解是⎩⎪⎨⎪⎧x =5,y =3.【重难互动探究】例1 [解析] 方程组中两个方程的同一未知数的系数均不成倍数关系,则需选定一个系数相对简单的未知数,将两个方程通过变形使其绝对值相等,再进行消元.解:⎩⎪⎨⎪⎧2x +3y =12,①3x +4y =17,②①×3,得6x +9y =36,③ ②×2,得6x +8y =34,④③-④,得y =2,把y =2代入①,得x =3.所以原方程组的解是⎩⎪⎨⎪⎧x =3,y =2.例2 [解析] 用适当的方法解方程组要求同学们能认真观察方程组中各项系数的特征,根据代入消元法和加减消元法的解题思路选择简捷的方法求解.故(1)可选择代入法求解,(2)可选择加减法求解.解:(1)⎩⎪⎨⎪⎧6s +3t =13,①3s -t =5,②由②,得t =3s -5,③把③代入①,得6s +3(3s -5)=13, 解得s =2815.把s =2815代入③,得t =35.所以原方程组的解为⎩⎪⎨⎪⎧s =2815,t =35.(2)⎩⎪⎨⎪⎧5x -6y =17,①4x +3y =28,② ②×2,得8x +6y =56,③ ①+③,得13x =73,所以x =7313.把x =7313代入②,得4×7313+3y =28,所以y =2413. 所以原方程组的解为⎩⎪⎨⎪⎧x =7313,y =2413.【课堂总结反思】[反思] 该过程不正确.正确的解法如下:⎩⎪⎨⎪⎧4x +3y =6,①2x -y =4,②②×2,得4x -2y =8.③ ①-③,得5y =-2,y =-25.把y =-25代入②,得2x -⎝ ⎛⎭⎪⎫-25=4,x =95. ∴原方程组的解是⎩⎪⎨⎪⎧x =95,y =-25.【作业高效训练】[课堂达标] 1.D 2.B3.[解析] C 根据等式的基本性质进行检验,发现正确答案为C . 4.B 5.D 6.D7.[解析] D 两式相加,可得3x +3y =9,故x +y =3.8.[解析] B 解方程组⎩⎪⎨⎪⎧x +y =5k ,x -y =9k ,得⎩⎪⎨⎪⎧x =7k ,y =-2k. 把x ,y 的值代入二元一次方程2x +3y =6,得2×7k +3×(-2k)=6,解得k =34.9.[答案] 2 减 y[解析] ①×2,得22x -6y =8,③ ③-②可消去y.10.[答案] ⎩⎪⎨⎪⎧x =3,y =111.[答案] 5 -21[解析] ①+②,得7x +7y =35,即x +y =5.②-①,得x -y =-21. 12.[答案] -5413.[答案] 1 -2[解析] 根据二元一次方程的定义可知,x ,y 的次数都是1,所以得方程组:⎩⎪⎨⎪⎧2m +5n +9=1,4m -2n -7=1, 解方程组,得⎩⎪⎨⎪⎧m =1,n =-2.14.[解析] 方程组(2)较复杂,可先通过化简,将其变形为二元一次方程组的一般形式后再消元.解:(1)⎩⎪⎨⎪⎧3x -y =2,①3x +2y =11,②②-①,得3y =9,解得y =3.把y =3代入①,得3x -3=2,解得x =53.所以原方程组的解是⎩⎪⎨⎪⎧x =53,y =3.(2)原方程组可化简为⎩⎪⎨⎪⎧3x -2y =8,①3x +2y =10,②①+②,得6x =18,解得x =3.将x =3代入①,得 9-2y =8,解得y =12.所以原方程组的解是⎩⎪⎨⎪⎧x =3,y =12.15.[解析] 认真观察每个方程组,发现方程组(1)用加减法求解比较简便;(2)未知数x的系数相同,可通过相减消去“x”,用加减法比较简便;(3)是一个较复杂的方程组,用加减法求解较合适;(4)需先将此方程组化简,再确定求解方法.解:(1)⎩⎪⎨⎪⎧x +2y =1,①3x -2y =11,②①+②,得4x =12,解得x =3.把x =3代入①,得3+2y =1, 解得y =-1.所以原方程组的解是⎩⎪⎨⎪⎧x =3,y =-1.(2)⎩⎪⎨⎪⎧5x +3y =6,①5x -2y =-4,② ①-②,得5y =10,解得y =2. 把y =2代入①,得5x +3×2=6, 解得x =0.所以原方程组的解是⎩⎪⎨⎪⎧x =0,y =2.(3)⎩⎪⎨⎪⎧4x -3y =39,①7x +4y =-15,② ①×4,得16x -12y =156,③ ②×3,得21x +12y =-45,④ ③+④,得37x =111, 解得x =3.把x =3代入①,得4×3-3y =39, 解得y =-9.所以原方程组的解是⎩⎪⎨⎪⎧x =3,y =-9.(4)将原方程组化简为⎩⎪⎨⎪⎧4x +10y =3.6,①15x +10y =8,②②-①,得11x =4.4,解得x =0.4.把x =0.4代入①,得1.6+10y =3.6, 解得y =0.2.所以原方程组的解为⎩⎪⎨⎪⎧x =0.4,y =0.2.16.[解析] 用方程组中的a 分别表示x ,y ,再把x ,y 的值代入3x -5y -38=0,即可求得a 的值.解:解方程组⎩⎪⎨⎪⎧x +y =a ,x -y =5a ,得⎩⎪⎨⎪⎧x =3a ,y =-2a. 把⎩⎪⎨⎪⎧x =3a ,y =-2a代入方程3x -5y -38=0, 得3×3a-5×(-2a)-38=0, 解得a =2.17.解:⎩⎪⎨⎪⎧2x +5y =-6,①3x -5y =16,②①+②,得5x =10,x =2.把x =2代入①,得2×2+5y =-6,y =-2.将⎩⎪⎨⎪⎧x =2,y =-2代入方程组⎩⎪⎨⎪⎧ax -by =-4,bx +ay =-8,得 ⎩⎪⎨⎪⎧2a +2b =-4,2b -2a =-8, 解这个方程组,得⎩⎪⎨⎪⎧a =1,b =-3,所以3a +7b =3×1+7×(-3)=-18.[数学活动]小初高学习+K12小初高学习+K12 1.[解析] 根据题意,把⎩⎪⎨⎪⎧x =-2,y =2代入方程ax +by =2,得关于a ,b 的一个方程,再把⎩⎪⎨⎪⎧x =3,y =-2代入方程ax +by =2,得关于a ,b 的另一个方程,组成方程组,求得a ,b 的值.把⎩⎪⎨⎪⎧x =3,y =-2代入方程cx -7y =8,即可求得c 的值. 解:把⎩⎪⎨⎪⎧x =-2,y =2,⎩⎪⎨⎪⎧x =3,y =-2分别代入方程ax +by =2, 得⎩⎪⎨⎪⎧-2a +2b =2,3a -2b =2, 解得⎩⎪⎨⎪⎧a =4,b =5. 把⎩⎪⎨⎪⎧x =3,y =-2代入方程cx -7y =8, 得3c +14=8,解得c =-2.即a =4,b =5,c =-2.2.解:设x +y =m ,x -y =n ,所求方程组可变形为⎩⎪⎨⎪⎧3m -an =16,2m +bn =15.由题意,可得该方程组的解为⎩⎪⎨⎪⎧m =7,n =1,由此可得到关于x ,y 的方程组⎩⎪⎨⎪⎧x +y =7,x -y =1,解得⎩⎪⎨⎪⎧x =4,y =3.故所求方程组的解是⎩⎪⎨⎪⎧x =4,y =3.。

浙教版数学课本七年级下册

浙教版数学课本七年级下册

浙教版数学课本七年级下册
第1章平行线
1.1平行线
1.2同位角、内错角、同旁内角
1.3平行线的判定
1.4平行线的性质
1.5图形的平移
第2章二元一次方程
2.1 二元一次方程
2.2 二元一次方程组
2.3 解二元一次方程组
2.4 二元一次方程组的应用
2.5 三元一次方程组及其解法(选学)
第3章整式的乘除
3.1 同底数幂的乘法
3.2 单项式的乘法
3.3 多项式的乘法
3.4 乘法公式
3.5 整式的化简
3.6 同底数幂的除法
3.7 整式的除法
第4章因式分解
4.1 因式分解
4.2 提取公因式
4.3 用乘法公式分解因式
第5章分式
5.1 分式
5.2分式的基本性质
5.3 分式的乘除
5.4 分式的加减
5.5 分式方程
第6章数据与统计图表
6.1数据的收集与整理
6.2条形统计图和折线统计图
6.3扇形统计图
6.4频数与频率
6.5频数直方图。

2019年春七年级数学下册 第2章 二元一次方程 2.4 第1课时 应用二元一次方程组解决简单的实际问题练习 (新

2019年春七年级数学下册 第2章 二元一次方程 2.4 第1课时 应用二元一次方程组解决简单的实际问题练习 (新

2.4 二元一次方程组的应用第1课时 应用二元一次方程组解决简单的实际问题知识点 应用二元一次方程组解决实际问题当问题中所求的未知数有两个时,用两个字母来表示未知数往往比较容易列出方程.要注意的是必须寻找两个等量关系,列出两个不同的方程,组成二元一次方程组.[归纳] 应用二元一次方程组解决实际问题的一般步骤: (1)理解问题:审题,搞清已知和未知,分析数量关系. (2)制订计划:考虑如何根据等量关系设元,列出方程组. (3)执行计划:列出方程组并求解,得到答案.(4)回顾:检查和反思解题过程,检验答案的正确性以及是否符合题意. [注意] (1)题目中给出的量的单位不统一时,解题时应将单位统一. (2)解二元一次方程组的过程可以省略.某单位组织34人分别到井冈山和瑞金进行革命传统教育,到井冈山的人数是到瑞金的人数的2倍多1人,求到两地的人数各是多少.设到井冈山的人数为x ,到瑞金的人数为y ,下面所列的方程组正确的是( )A .⎩⎪⎨⎪⎧x +y =34,x +1=2y B .⎩⎪⎨⎪⎧x +y =34,x =2y +1C .⎩⎪⎨⎪⎧x +y =34,2x =y +1D .⎩⎪⎨⎪⎧x +2y =34,x =2y +1用二元一次方程组解决较简单的实际问题教材补充题甲、乙二人在一环形场地上从点A 同时同向匀速跑步,甲的速度是乙的2.5倍,4分钟后两人首次相遇,此时乙还需要跑300米才跑完第一圈,求甲、乙二人的速度及环形场地的周长.[归纳总结] 对环形跑道中相遇问题的理解是解决本题的关键.在环形跑道中同时、同向而行首次相遇时两者的路程差正好是环形跑道的周长.[反思] 一张方桌由一个桌面和四条桌腿组成,已知1立方米木料可做50个桌面或300条桌腿,现在有5立方米木料,恰好能做几张桌子?解:设在这5立方米木料中,用x 立方米做桌面,用y 立方米做桌腿.根据题意得⎩⎪⎨⎪⎧x +y =5,50x =300y ,解得⎩⎪⎨⎪⎧x =307,y =57.因为307×50≈214,所以能做214张桌子.上述解法是否正确?如果不正确,请改正.一、选择题 1.小锦和小丽购买了价格分别相同的中性笔和笔芯.小锦买了20支中性笔和2盒笔芯,用了56元;小丽买了2支中性笔和3盒笔芯,仅用了28元.设每支中性笔x 元,每盒笔芯y 元,根据题意,下面所列方程组正确的是( )A .⎩⎪⎨⎪⎧2x +20y =56,2x +3y =28B .⎩⎪⎨⎪⎧20x +2y =56,2x +3y =28C .⎩⎪⎨⎪⎧20x +2y =28,2x +3y =56D .⎩⎪⎨⎪⎧2x +2y =28,20x +3y =562.2015·内江植树节这天有20名同学共种了52棵树,其中男生每人种树3棵,女生每人种树2棵,设男生有x 人,女生有y 人,则下列方程组正确的是( )A .⎩⎪⎨⎪⎧x +y =52,3x +2y =20B .⎩⎪⎨⎪⎧x +y =52,2x +3y =20C .⎩⎪⎨⎪⎧x +y =20,2x +3y =52D .⎩⎪⎨⎪⎧x +y =20,3x +2y =52 3.已知长江比黄河长836米,黄河长度的6倍比长江长度的5倍多1284米,设长江的长度为x 米,黄河的长度为y 米,则下列方程组正确的是( )A .⎩⎪⎨⎪⎧x -y =836,5x -6y =1284 B .⎩⎪⎨⎪⎧x -y =836,6y -5x =1284C .⎩⎪⎨⎪⎧y -x =836,6y -5x =1284D .⎩⎪⎨⎪⎧y -x =836,5x -6y =1284 4.甲、乙两个仓库共存粮450吨,现从甲仓库运出存粮的60%,从乙仓库运出存粮的40%,结果乙仓库所余的粮食比甲仓库所余的粮食多30吨.若设甲仓库原来存粮x 吨,乙仓库原来存粮y 吨,则有( )A .⎩⎪⎨⎪⎧x +y =450,(1-60%)x -(1-40%)y =30B .⎩⎪⎨⎪⎧x +y =450,60%x -40%y =30 C .⎩⎪⎨⎪⎧x +y =450,(1-40%)y -(1-60%)x =30 D .⎩⎪⎨⎪⎧x +y =450,40%y -60%x =305.某学校举行运动会,七年级(1)班、(5)班的竞技实力相当,关于比赛结果,甲同学说:“(1)班与(5)班的得分之比为6∶5.”乙同学说:“(1)班得分比(5)班得分的2倍少40分.”若设(1)班得x 分,(5)班得y 分,根据题意所列的方程组应为( )A .⎩⎪⎨⎪⎧6x =5y ,x =2y -40B .⎩⎪⎨⎪⎧6x =5y ,x =2y +40C .⎩⎪⎨⎪⎧5x =6y ,x =2y +40D .⎩⎪⎨⎪⎧5x =6y ,x =2y -40 6.成渝路内江至成都全长170千米,一辆小汽车和一辆客车同时从内江、成都两地相向开出,经过1小时10分钟相遇.相遇时,小汽车比客车多行驶20千米.设小汽车和客车的平均速度分别为x 千米/时和y 千米/时,则下列方程组正确的是( )A .⎩⎪⎨⎪⎧x +y =20,76x +76y =170 B .⎩⎪⎨⎪⎧x -y =20,76x +76y =170 C .⎩⎪⎨⎪⎧x +y =20,76x -76y =170 D .⎩⎪⎨⎪⎧76x +76y =170,76x -76y =20二、填空题7.某年级学生共有246人,男生人数比女生人数的2倍少3人,问男、女生各多少人?若设女生人数为x ,男生人数为y ,则可列方程组为______________.8.某次足球比赛的记分规则如下:胜一场得3分,平一场得1分,负一场得0分.某队踢了14场,其中负5场,共得19分,若设胜了x 场,平了y 场,则可列方程组为______________.9.我国古代数学名著《孙子算经》中有这样一题:今有鸡兔同笼,上有35头,下有94足,问鸡兔各几何?此题的答案是鸡有23只,兔有12只.小敏将此题改编如下:今有鸡兔同笼,上有33头,下有88足,问鸡兔各几何?则此时的答案是鸡有________只,兔有________只.10.如图2-4-1,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的13,另一根露出水面的长度是它的15.两根铁棒长度之和为55 cm ,此时木桶中水的深度是________cm .图2-4-1三、解答题11.2015·福州有48支队520名运动员参加篮球、排球比赛,其中每支篮球队10人,每支排球队12人,每名运动员只能参加一项比赛,篮球、排球队各有多少支参赛?12.2015·常德某物流公司承接A,B两种货物的运输业务,已知5月份A货物运费单价为50元/吨,B货物运费单价为30元/吨,共收运费9500元;6月份由于油价上涨,运费单价上涨为:A货物70元/吨,B货物40元/吨.该物流公司6月份承接的A种货物和B种货物数量与5月份相同,6月份共收取运费13000元.该物流公司5月份运输两种货物各多少吨?为鼓励居民节约用电,某省实行阶梯电价收费制,具体执行方案如下:).某户居民五、六月份共用电500度,缴电费290.5元.已知该用户六月份用电量大于五月份,且五、六月份的用电量均小于400度.问该户居民五、六月份各用电多少度?详解详析【预习效果检测】[解析] B 这里有两个等量关系:到井冈山的人数+到瑞金的人数=34,到井冈山的人数=到瑞金的人数×2+1,所以所列方程组为⎩⎪⎨⎪⎧x +y =34,x =2y +1.【重难互动探究】例 [解析] 设乙的速度为x 米/分,则甲的速度为2.5x 米/分,环形场地的周长为y 米,根据题中的数量关系,同时、同地、同向而行首次相遇快者走的路程-慢者走的路程=环形场地的周长,建立方程组求出其解即可.解:设乙的速度为x 米/分,环形场地的周长为y 米,则甲的速度为2.5x 米/分.由题意,得⎩⎪⎨⎪⎧2.5x×4-4x =y ,4x +300=y ,即⎩⎪⎨⎪⎧6x -y =0,4x -y =-300, 解得⎩⎪⎨⎪⎧x =150,y =900.∴甲的速度为2.5×150=375(米/分).答:甲的速度为375米/分,乙的速度为150米/分,环形场地的周长为900米.【课堂总结反思】[反思] 上述解法不正确.改正如下:设在这5立方米木料中,用x 立方米做桌面,用y 立方米做桌腿.根据题意,得⎩⎪⎨⎪⎧x +y =5,4×50x =300y ,解得⎩⎪⎨⎪⎧x =3,y =2. 因为3×50=150,所以恰好能做150张桌子.【作业高效训练】 [课堂达标]1.[解析] B 这里有两个等量关系:20支中性笔的价格+2盒笔芯的价格=56元;2支中性笔的价格+3盒笔芯的价格=28元,所以所列方程组为⎩⎪⎨⎪⎧20x +2y =56,2x +3y =28.2.D 3.B4.[解析] C 要求甲、乙仓库原来分别存粮多少,就要先设出未知数,找出题中的等量关系列方程组求解.题中的等量关系:从甲仓库运出存粮的60%,从乙仓库运出存粮的40%,结果乙仓库所余的粮食比甲仓库所余的粮食多30吨;甲、乙仓库共存粮450吨.设甲仓库原来存粮x 吨,乙仓库原来存粮y 吨.根据题意,得⎩⎪⎨⎪⎧x +y =450,(1-40%)y -(1-60%)x =30.故选C .5.[解析] D 根据(1)班与(5)班的得分之比为6∶5,有x∶y=6∶5,得5x =6y ;根据(1)班得分比(5)班得分的2倍少40分,得x =2y -40.可列方程组为⎩⎪⎨⎪⎧5x =6y ,x =2y -40.故选D .6.D7.[答案] ⎩⎪⎨⎪⎧x +y =246,y =2x -38.[答案] ⎩⎪⎨⎪⎧x +y =14-5,3x +y =19[解析] 本题的等量关系:①共踢了14场;②共得19分.9.[答案] 22 11[解析] 设鸡有x 只,兔有y 只,由题意,得⎩⎪⎨⎪⎧x +y =33,2x +4y =88, 解得⎩⎪⎨⎪⎧x =22,y =11.∴鸡有22只,兔有11只. 10.[答案] 20[解析] 解法一:设一根铁棒长为x cm ,另一根长为y cm .根据题意,得⎩⎪⎨⎪⎧x +y =55,23x =45y ,解得⎩⎪⎨⎪⎧x =30,y =25,30×23=20(cm ).解法二:设一根铁棒长为x cm ,另一根长为(55-x)cm . 根据题意,得23x =45(55-x),解得x =30,30×23=20(cm ).11.解:设有x 支篮球队和y 支排球队参赛. 由题意得⎩⎪⎨⎪⎧x +y =48,10x +12y =520, 解得⎩⎪⎨⎪⎧x =28,y =20.答:篮球、排球队各有28支与20支参赛.12.解:设该物流公司5月份运输A ,B 两种货物各x 吨,y 吨.依题意得⎩⎪⎨⎪⎧50x +30y =9500,70x +40y =13000, 解得⎩⎪⎨⎪⎧x =100,y =150.答:该物流公司5月份运输A 种货物100吨,运输B 种货物150吨. [数学活动]解:因为两个月的用电量为500度,所以每个月用电量不可能都在第一档,假设该用户五、六月份每月用电量均超过200度,此时的电费共计:500×0.6=300(元),而300>290.5,不符合题意.又因为六月份用电量大于五月份,所以五月份用电量在第一档,六月份用电量在第二档.设五月份用电x 度,六月份用电y 度.根据题意,得⎩⎪⎨⎪⎧0.55x +0.6y =290.5,x +y =500, 解得⎩⎪⎨⎪⎧x =190,y =310.答:该户居民五、六月份各用电190度、310度.。

浙教版七年级下册数学第2章 和差倍分、行程、劳动力调配、几何图形等问题

浙教版七年级下册数学第2章 和差倍分、行程、劳动力调配、几何图形等问题
x+4.5=y, x-1=12y
7 某建筑工地派48人去挖土和运土,平均每人每天挖 土4m3或运土2m3,设分配挖土的为x人,运土的
为y人,正好能把挖出的土及时运走,则可列方程
组为______________.
x+y=48, 4x=2y
2 “网约出行”改变了人们的出行方式.某网约平台的 6 打车出行计价规则为:打车总费用=里程费+耗时
面,多少张纸做侧面,才能正好配成整套模型?
解:设用 x 张纸做底面,y 张纸做侧面.根据题意,得 x1+6y=y=12×15403,x,解得xy==8664., 答:用 64 张纸做底面,86 张纸做侧面,才能正好配成
整套模型.
10 “鸡兔同笼”是我国古代著名的数学趣题之一.大约 在1500年前成书的《孙子算经》中,就有关于“鸡兔 同笼”的记载:“今有雉兔同笼,上有三十五头,下 有九十四足,问雉兔各几何?”这四句话的意思是: 有若干只鸡兔关在一个笼子里,从上面数,有35个头; 从下面数,有94条腿,问笼中鸡和兔各有几只?请你 解答这个问题.
解:设每个小长方形的长为 x cm,宽为 y cm.由题意, 得32xy-=x5=y,2,解得xy==61.0, 答:每个小长方形的长为 10 cm,宽为 6 cm.
12 小明家离学校2km,其中有一段为上坡路,另一段为 下坡路.他从家跑步去学校共用了16min,已知小明 在上坡路上的平均速度是4.8km/h,在下坡路上的平均 速度是12km/h.求小明上坡,下坡各用了多少分钟? (列二元一次方程组求解)
解:设加工的竖式铁容器有 x 个,横式铁容器有 y 个. 依题意,得4xx++23y=y=12107187,,解得xy==513090., 答:加工的竖式铁容器有 100 个,横式铁容器有 539 个.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.4 二元一次方程组的应用第2课时应用二元一次方程组解决较复杂的实际问题知识点利用二元一次方程组求公式中的未知系数求公式中的未知系数的方法也称待定系数法,主要分两步走:(1)把已知量代入含有未知量的公式中,构造出关于未知量的二元一次方程组;(2)解方程组.据研究,地面上空h(m)处的气温t(℃)与地面气温T(℃)有如下关系:t=T-kh.现用气象气球测得某时离地面150 m处的气温为8.8 ℃,离地面400 m处的气温为6.8 ℃,求T,k的值.综合运用二元一次方程组及其他方面知识解应用题教材补充题体育文化用品商店购进篮球和排球共20个,球的进价和售价如下表,全部销售完后共获利260元.篮球排球进价(元/个) 80 50售价(元/个) 95 60(1)购进篮球和排球各多少个?(2)销售6个排球的利润与销售几个篮球的利润相等?[归纳总结] 解决本题的关键是读懂题意,在图表中获取有用信息,再根据题干找出合适的等量关系.我们获取信息的渠道是多样化的,如图形、表格、情境对话等,所以我们要提升从多方面获取信息的能力.[反思] 通过本节的学习,请你谈谈如何处理复杂的实际问题.一、选择题1.某校七年级(2)班40位同学为“希望工程”捐款,共捐款100元,捐款情况如下表:则捐2元和3元的人数各是多少?若设捐2元的有x人,捐3元的有y人,根据题意,可得方程组( )A .⎩⎪⎨⎪⎧x +y =27,2x +3y =66B .⎩⎪⎨⎪⎧x +y =27,2x +3y =100C .⎩⎪⎨⎪⎧x +y =27,3x +2y =66D .⎩⎪⎨⎪⎧x +y =27,3x +2y =100 2.公式s =s 0+vt 表示的是路程s 与时间t 之间的关系(其中s 0,v 都是不等于零的常数),且当t =5时,s =260;当t =7时,s =340,则s 0,v 的值分别是( )A .s 0=60,v =40B .s 0=-60,v =40C .s 0=60,v =-40D .s 0=-60,v =-403.甲、乙两根绳共长17米,如果甲绳减去它的15,乙绳增加1米,那么两根绳长相等.若设甲绳长x 米,乙绳长y 米,则下列方程组正确的是( )A .⎩⎪⎨⎪⎧x +y =17,x -15x =y +1B .⎩⎪⎨⎪⎧x +y =17,x +15=y -1C .⎩⎪⎨⎪⎧x +y =17,x -15=y +1D .⎩⎪⎨⎪⎧x +y =17,x -15x =y -1二、填空题4.用彩色和单色两种地砖铺地,彩色地砖的单价为14元/块,单色地砖的单价为12元/块,购买单色地砖的数量比彩色地砖的数量的2倍少15块,买两种地砖共用了1340元.若设购买彩色地砖x 块,单色地砖y 块,则根据题意可列方程组为______________.5.甲、乙两种商品原来的单价之和为100元,因市场变化,甲商品降价10%,乙商品提价40%,调价后两种商品的单价之和比原来的单价之和提高了20%.若设甲、乙两种商品原来的单价分别为x 元、y 元,根据题意可列方程组为________________________________________________________________________.三、解答题6.为响应国家节能减排的号召,鼓励居民节约用电,各省先后出台了居民用电阶梯价格制度,下表是某小区的电价标准.例如:方女士家5月份用电500度,电费=180×0.6+220×二档电价+100×三档电价=352元;李先生家5月份用电460度,交电费316元,请问表中二档电价、三档电价各是多少?阶梯,电量,电价一档,0~180度,0.6元/度 二档,181~400度,二档电价 三档,401度及以上,三档电价 7.2015·广东某电器商场销售A ,B 两种型号计算器,两种计算器每台的进货价格分别为30元、40元. 商场销售5台A 型号和1台B 型号计算器,可获利润76元;销售6台A 型号和3台B 型号计算器,可获利润120元.求商场A ,B 两种型号计算器每台的销售价格分别是多少元.(利润=销售价格-进货价格)某校七年级(1)(2)两班计划去该景点游玩,其中(1)班人数小于50,(2)班人数大于50且小于100.如果两班都以班为单位单独购票,则一共支付1118元;如果两班联合起来作为一个团体购票,则只需花费816元.(1)两个班各有多少名学生?(2)团体购票与单独购票相比较,两个班各节约了多少元?9.2016·株洲某市对七年级学生的综合素质测评中的审美与艺术进行考核,规定如下:考核综合评价得分由测试成绩(满分100分)和平时成绩(满分100分)两部分组成,其中测试成绩占80%,平时成绩占20%,并且当综合评价得分大于或等于80分时,该学生综合评价为A 等.(1)孔明同学的测试成绩和平时成绩两项得分之和为185分,而综合评价得分为91分,则孔明同学的测试成绩和平时成绩各是多少分?(2)某同学的测试成绩为70分,他的综合评价得分有可能达到A 等吗?为什么? (3)如果一个同学综合评价要达到A 等,他的测试成绩至少为多少分?10.某工厂用如图2-4-2甲所示的长方形和正方形纸板做成如图乙所示的A ,B 两种长方体形状的无盖纸盒.现有正方形纸板140张,长方形纸板360张,刚好全部用完,问能做成多少个A 型盒子?多少个B 型盒子?(1)根据题意,甲和乙两位同学分别列出的方程组如下:甲:⎩⎪⎨⎪⎧x +2y =140,4x +3y =360;乙:⎩⎪⎨⎪⎧x +y =140,4x +32y =360. 根据两位同学所列的方程组,请你分别指出未知数x ,y 表示的意义: 甲:x 表示________,y 表示________; 乙:x 表示________,y 表示________.(2)求出做成的A 型盒子和B 型盒子分别有多少个(写出完整的解答过程).图2-4-2根据图2-4-3中给出的信息,解答下列问题:(1)放入一个小球水面升高________cm,放入一个大球水面升高________cm;(2)如果要使水面上升到50 cm,那么应放入大球、小球各多少个?图2-4-3详解详析【预习效果检测】[解析] 分别将h 与t 的值代入关系式:t =T -kh ,即可得到关于T ,k 的二元一次方程组,解所得方程组即可得T ,k 的值.解:根据题意,得当h =150时,t =8.8, 即8.8=T -150k ;当h =400时,t =6.8,即6.8=T -400k ;联立方程可得方程组⎩⎪⎨⎪⎧8.8=T -150k ,6.8=T -400k ,解得⎩⎪⎨⎪⎧T =10,k =1125.∴T =10,k =1125.【重难互动探究】例 [解析] (1)设购进篮球x 个,购进排球y 个,根据等量关系:①篮球和排球共20个;②全部销售完后共获利润260元可得方程组,解方程组即可.(2)设销售6个排球的利润与销售a 个篮球的利润相等,根据题意可得等量关系:每个排球的利润×6=每个篮球的利润×a ,列出方程,即可得答案.解:(1)设购进篮球x 个,购进排球y 个.由题意,得⎩⎪⎨⎪⎧x +y =20,(95-80)x +(60-50)y =260, 解得⎩⎪⎨⎪⎧x =12,y =8.答:购进篮球12个,购进排球8个.(2)设销售6个排球的利润与销售a 个篮球的利润相等.由题意,得 6×(60-50)=(95-80)·a ,解得a =4.答:销售6个排球的利润与销售4个篮球的利润相等. 【课堂总结反思】 [反思] 略【作业高效训练】 [课堂达标] 1.A 2.A 3.A4.[答案] ⎩⎪⎨⎪⎧y =2x -15,14x +12y =13405.[答案]⎩⎪⎨⎪⎧x +y =100,(1-10%)x +(1+40%)y =100×(1+20%)6.解:设二档电价是x 元/度,三档电价是y 元/度. 根据题意,得⎩⎪⎨⎪⎧180×0.6+220x +100y =352,180×0.6+220x +60y =316,解得⎩⎪⎨⎪⎧x =0.7,y =0.9. 答:二档电价是0.7元/度,三档电价是0.9元/度.7.解:设A ,B 型号计算器每台的销售价格分别是x 元、y 元.根据题意,得⎩⎪⎨⎪⎧5(x -30)+(y -40)=76,6(x -30)+3(y -40)=120,解得⎩⎪⎨⎪⎧x =42,y =56.答:A ,B 两种型号计算器每台的销售价格分别是42元、56元.8.解:(1)设(1)班有x 名学生,(2)班有y 名学生.根据题意,得⎩⎪⎨⎪⎧12x +10y =1118,8x +8y =816,解得⎩⎪⎨⎪⎧x =49,y =53.答:(1)班有49名学生,(2)班有53名学生.(2)49×(12-8)=196(元), 53×(10-8)=106(元).答:(1)班节约了196元,(2)班节约了106元.9.解:(1)设孔明同学的测试成绩为x 分,平时成绩为y 分.依题意,得⎩⎪⎨⎪⎧x +y =185,80%x +20%y =91,解得⎩⎪⎨⎪⎧x =90,y =95. 答:孔明同学的测试成绩和平时成绩分别是90分、95分. (2)80-70×80%=24(分),24÷20%=120(分)>100分. 答:他的综合评价得分不可能达到A 等.(3)设平时成绩为满分,即100分,100×20%=20(分),所以综合成绩还差80-20=60(分), 故测试成绩至少为60÷80%=75(分).10.解:(1)仔细观察发现A 型盒子有4个长方形,1个正方形;B 型盒子有3个长方形,2个正方形. 故甲:x 表示A 型盒子的个数,y 表示B 型盒子的个数;乙:x 表示A 型盒子中正方形纸板的个数,y 表示B 型盒子中正方形纸板的个数.(2)设做成的A 型盒子有x 个,B 型盒子有y 个.根据题意,得⎩⎪⎨⎪⎧x +2y =140,4x +3y =360,解得⎩⎪⎨⎪⎧x =60,y =40.答:做成的A 型盒子有60个,B 型盒子有40个.[数学活动]解:(1)放入3个体积相同的小球水面升高32-26=6(cm ),则放入1个小球水面升高2 cm .放入2个体积相同的大球水面升高32-26=6(cm ),则放入1个大球水面升高3 cm .(2)设应放入x 个大球,y 个小球.由题意,得⎩⎪⎨⎪⎧3x +2y =50-26,x +y =10,解这个方程组,得⎩⎪⎨⎪⎧x =4,y =6.答:应放入4个大球,6个小球.。

相关文档
最新文档