山东省德州市2018年中考数学试题(含答案)(真题)
最新-山东省德州市2018年中考数学真题试卷(解析版) 精品
2018年山东省德州市中考数学试卷—解析版一、选择题:本大题共8小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1、(2018•德州)下列计算正确的是()A、(﹣8)﹣8=0B、(﹣错误!未找到引用源。
)×(﹣2)=1C、﹣(﹣1)0=1D、|﹣2|=﹣2考点:零指数幂;绝对值;有理数的减法;有理数的乘法。
专题:计算题。
分析:利用有理数的减法、有理数的乘法法则和a0=1(a≠0)、负数的绝对值等于它的相反数计算即可.解答:解:A、(﹣8)﹣8=﹣16,此选项错误;B、(﹣错误!未找到引用源。
)×(﹣2)=1,此选项正确;C、﹣(﹣1)0=﹣1,此选项错误;D、|﹣2|=2,此选项错误.故选B.点评:本题考查了有理数的减法、有理数的乘法法则、零指数幂、绝对值的计算.解题的关键是熟练掌握各种运算法则.2、(2018•德州)一个几何体的主视图、左视图、俯视图完全相同,它一定是()A、圆柱B、圆锥C、球体D、长方体考点:简单几何体的三视图。
专题:应用题。
分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答:解:A、圆柱的主视图、左视图都是长方形,俯视图是圆形;故本选项错误;B、圆锥的主视图、左视图都是三角形,俯视图是圆形;故本选项错误;C、球体的主视图、左视图、俯视图都是圆形;故本选项正确;D、长方体的主视图为长方形、左视图为长方形或正方形、俯视图为长方形或正方形;故本选项错误;故选C.点评:本题考查了简单几何体的三视图,锻炼了学生的空间想象能力.3、(2018•德州)温家宝总理强调,“十二五”期间,将新建保障性住房36 000 000套,用于解决中低收入和新参加工作的大学生住房的需求.把36 000 000用科学记数法表示应是()A、3.6×118B、3.6×118C、36×118D、0.36×118考点:科学记数法—表示较大的数。
2018年山东省德州市中考数学试卷(含答案解析版)
2018年山东德州中考数学试卷一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得4分,选错、不选或选出的答案超过一个均记零分。
1.(4分)(2018•德州)3的相反数是()A.3 B. C.﹣3 D.﹣2.(4分)(2018•德州)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C. D.3.(4分)(2018•德州)一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间的平均距离,即1.496亿km,用科学记数法表示1.496亿是()A.1.496×107B.14.96×108C.0.1496×108D.1.496×1084.(4分)(2018•德州)下列运算正确的是()A.a3•a2=a6B.(﹣a2)3=a6C.a7÷a5=a2D.﹣2mn ﹣mn=﹣mn5.(4分)(2018•德州)已知一组数据:6,2,8,x,7,它们的平均数是6,则这组数据的中位数是()A.7 B.6 C.5 D.46.(4分)(2018•德州)如图,将一副三角尺按不同的位置摆放,下列方式中∠α与∠β互余的是()A.图①B.图②C.图③D.图④7.(4分)(2018•德州)如图,函数y=ax2﹣2x+1和y=ax ﹣a(a是常数,且a≠0)在同一平面直角坐标系的图象可能是()A.B.C.D.8.(4分)(2018•德州)分式方程﹣1=的解为()A.x=1 B.x=2 C.x=﹣1 D.无解9.(4分)(2018•德州)如图,从一块直径为2m的圆形铁皮上剪出一个圆心角为90°的扇形,则此扇形的面积为()A.2B.C.πm2 D.2πm210.(4分)(2018•德州)给出下列函数:①y=﹣3x+2;②y=;③y=2x2;④y=3x,上述函数中符合条作“当x>1时,函数值y随自变量x增大而增大“的是()A.①③B.③④C.②④D.②③11.(4分)(2018•德州)我国南宋数学家杨辉所著的《详解九章算术》一书中,用如图的三角形解释二项式(a+b)n的展开式的各项系数,此三角形称为“杨辉三角”根据”杨辉三角”请计算(a+b)8的展开式中从左起第四项的系数为()A.84 B.56 C.35 D.2812.(4分)(2018•德州)如图,等边三角形ABC的边长为4,点O是△ABC的中心,∠FOG=120°,绕点O旋转∠FOG,分别交线段AB、BC于D、E两点,连接DE,给出下列四个结论:①OD=OE;②S△ODE=S ;③四边形ODBE的面积始终等于;④△BDE △BDE周长的最小值为6.上述结论中正确的个数是()A.1 B.2 C.3 D.4二、填空题:本大题共6小题,共24分,只要求填写最后结果,每小题填对得4分。
(完整)2018年山东省德州市中考数学试卷(含答案解析版),推荐文档
2018年山东德州中考数学试卷一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得4分,选错、不选或选出的答案超过一个均记零分。
1.(4分)(2018•德州)3的相反数是()A.3 B.13C.﹣3 D.﹣132.(4分)(2018•德州)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(4分)(2018•德州)一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间的平均距离,即1.496亿km,用科学记数法表示1.496亿是()A.1.496×107B.14.96×108C.0.1496×108 D.1.496×1084.(4分)(2018•德州)下列运算正确的是()A.a3•a2=a6 B.(﹣a2)3=a6C.a7÷a5=a2D.﹣2mn﹣mn=﹣mn5.(4分)(2018•德州)已知一组数据:6,2,8,x,7,它们的平均数是6,则这组数据的中位数是()A.7 B.6 C.5 D.46.(4分)(2018•德州)如图,将一副三角尺按不同的位置摆放,下列方式中∠α与∠β互余的是()A.图①B.图②C.图③D.图④7.(4分)(2018•德州)如图,函数y=ax2﹣2x+1和y=ax﹣a(a是常数,且a≠0)在同一平面直角坐标系的图象可能是( )A .B .C .D .8.(4分)(2018•德州)分式方程x x−1﹣1=3(x−1)(x+2)的解为( ) A .x=1 B .x=2 C .x=﹣1 D .无解9.(4分)(2018•德州)如图,从一块直径为2m 的圆形铁皮上剪出一个圆心角为90°的扇形,则此扇形的面积为( )A .π2m 2B .√32πm 2 C .πm 2 D .2πm 2 10.(4分)(2018•德州)给出下列函数:①y=﹣3x +2;②y=3x;③y=2x 2;④y=3x ,上述函数中符合条作“当x >1时,函数值y 随自变量x 增大而增大“的是( )A .①③B .③④C .②④D .②③ 11.(4分)(2018•德州)我国南宋数学家杨辉所著的《详解九章算术》一书中,用如图的三角形解释二项式(a +b )n 的展开式的各项系数,此三角形称为“杨辉三角”根据”杨辉三角”请计算(a +b )8的展开式中从左起第四项的系数为( )A .84B .56C .35D .2812.(4分)(2018•德州)如图,等边三角形ABC 的边长为4,点O 是△ABC 的中心,∠FOG=120°,绕点O 旋转∠FOG ,分别交线段AB 、BC 于D 、E 两点,连接DE ,给出下列四个结论:①OD=OE ;②S △ODE =S △BDE ;③四边形ODBE 的面积始终等于43√3;④△BDE 周长的最小值为6.上述结论中正确的个数是( )A .1B .2C .3D .4二、填空题:本大题共6小题,共24分,只要求填写最后结果,每小题填对得4分。
2018年山东省德州市中考数学试卷-答案
2018年山东省德州市初中学业水平考试数学答案解析第Ⅰ卷一、选择题 1.【答案】C【解析】3的相反数是3-. 【考点】相反数. 2.【答案】B【解析】A 项,是中心对称图形.B 项,既是轴对称图形又是中心对称图形.C 项,是轴对称图形.D 项,既不是轴对称图形也不是中心对称图形. 【考点】轴对称图形和中心对称图形的定义. 3.【答案】D【解析】1.496亿8=149600000=1.49610.⨯ 【考点】科学记数法. 4.【答案】C【解析】A 项,325.a a a =B 项,()326.a a -=-C 项,正确.D 项,23.mn mn mn --=-【考点】考查了整式的运算. 5.【答案】A【解析】由平均数是6,得6+2+8++7=65x ⨯,解得7x =.将这组数据按从小到大的顺序排列,为2,6,7,7,8,所以中位数是7.【考点】平均数,中位数. 6.【答案】A【解析】图①,+=1809090αβ∠∠︒-︒=︒,即α∠与β∠互余.图②,由同角的余角相等,得=αβ∠∠.图③,==18045135.αβ∠∠︒-︒=︒图④,由平角的定义,得+=180αβ∠∠︒.【考点】两角互余的性质及判定. 7.【答案】B【解析】A 项,由抛物线开口向上,知0a >;由直线经过第一、二、四象限,知0a <,不符合题意.B 项,由抛物线开口向上,知0a >,对称轴为10x a=>,在y 轴的右侧;由直线经过第一、三、四象限,知0a >,符合题意.C 项,由抛物线开口向上,知0a >,对称轴为10x a=>,应在y 轴的右侧,不符合题意.D 项,由抛物线开口向下,知0a <;由直线经过第一、三、四象限,知0a >,不符合题意. 【考点】二次函数和一次函数的图象与性质. 8.【答案】D【解析】方程两边同时乘最简公分母()()12x x -+,得()()()2123x x x x +--+=,解得 1.x =检验:当1x =时,()()12=0x x -+,所以1x =是原方程的增根,故原方程无解. 【考点】了解分式方程. 9.【答案】A【解析】如图,连接.90,AC ABC AC ∠=︒∴是O 的直径,2m.,45,AC BA BC BAC ==∴∠=︒)sin 2sin 45m .BC AC BAC ∴=∠=⨯︒=()2290m 3602ABC S ππ⨯⨯∴==扇形(第9题)【考点】圆周角的性质、解直角三角形、扇形的面积公式. 10.【答案】B【解析】①32,30,y x k =-+=-<∴当1x >时,y 随x 的增大而减小.②3,30,y k x==>∴当1x >时,y 随x 的增大而减小.③22,20,y x a ==>函数图象开口向上,对称轴为y 轴,∴当1x >时,y 随x 的增大而增大.④3,30,y x k ==>∴当1x >时,y 随x 的增大而增大. 【考点】一次函数、反比例函数、二次函数的图象的增减性. 11.【答案】B【解析】用“杨辉三角”的规律展开()8a b +,从左起各项系数分别为1,8,28,56,70,56,28,8,1,()8a b ∴+的展开式中从左起第四项的系数为56. 【考点】找规律. 12.【答案】C【解析】①如图1,连接,.OB OC 点O 是等边三角形ABC 的中心,,30,120,OB OC DBO OBC ECO BOC ∴=∠=∠=∠=︒∴∠=︒120.120,BOE EOC FOG ∴∠+∠=︒∠=︒()120,.,.BOE DOB DOB EOC DOB EOC ASA OD OE ∴∠+∠=︒∴∠=∠∴≅∴=△△故①正确.(第12题)②如图2,当FOG ∠绕点O 旋转到使,OF AB OG BC ⊥⊥时,2,60,BD BE B BDE ==∠=︒∴△是等边三角形.,OD OE ODE =∴△是等腰三角形.易得22,.ODE BDE S S ==△△223,CDE BDE OD S S <∴≠△△.故②错误.(第12题)③如图3,连接,OB OC ,过点O 做OH BC ⊥,垂足为点H .,DOB BOE EOC BOE DOB EOC S S S S H ≅∴+=+△△△四边形△△,1., 2.2BOC ODBE S S OH BC HC BC ∆∴=⊥∴==四边形132330,tan 22OCH ACB OH CH OCH ∠=∠=︒∴=∠=⨯=11422BOC S BC OH ∴==⨯=△故③正确.(第12题)④如图1,,,DOB EOC BD CE BDE ≅∴=∴△△△的周长为4.BD BE DE CE BE DE BC DE DE ++=++=+=+要使BDE △的周长最小,则DE 的长最小.当FOG ∠绕点O 旋转到使,OF AB OG BC ⊥⊥时,垂足分别为点,D E ,如图2,则由垂线段最短可得,OD OE 的长最小,DE ∴的长最小,这时 2.BD BE DE BDE ===∴∆周长的最小值为4+42 6.DE =+=故④正确.【考点】等边三角形的性质与判定、全等三角形的性质与判定、等边三角形中心的性质、解直角三角形、三角形的面积及求最小值.第Ⅱ卷二.填空题 13.【答案】1【解析】231 1.-+== 【考点】整式的运算及绝对值. 14.【答案】3- 【解析】12,x x 是一元二次方程220x x +-=的两个实数根,12121,2,x x x x ∴+=-=-()121212 3.x x x x ∴++=-+-=-【考点】一元二次方程的根与系数的关系. 15.【答案】3【解析】,5,4,CM OB OC OM ⊥==∴由勾股定理,得 3.CM =根据角平分线上的点到角两边的距离相等,得点C 到射线OA 的距离为3. 【考点】勾股定理、角平分线的性质.16. 【解析】由勾股定理,得2223425AB =+=,2222222420,125AC BC =+==+=,2225,,AB BC AC BC AB ∴==+=ABC ∴∆是直角三角形,90,sin BC ACB BAC AB ∠=︒∴∠== 【考点】直角三角形的判定、解直角三角形. 17.【答案】60【解析】解方程组48,229,x y x y -=⎧⎨+=⎩得5,12.x y =⎧⎨=⎩560.,12y x x y x y <∴==⨯=◆【考点】了解二元一次方程组及对新定义的阅读理解. 18.【答案】()4,3--或()2,3-【解析】解3,2,y x y x ⎧=⎪⎨⎪=-⎩得12121,3,3, 1.x x y y =-=⎧⎧⎨⎨=-=⎩⎩()1,3.A ∴--()3,0, 3.B OB -∴=如图1,当OB 是平行四边形的一边时,则3,,AP OB AP OB ==∴∥点P 到y 轴的距离是1+3=4或312,-=∴点P 的坐标为()4,3--或()2,3-.点P 在y 轴左侧,()4,3.P ∴--(第18题)如图2,当OB 是平行四边形的对角线时,过点A 作AC OB ⊥,过点P 作PD OB ⊥,垂足分别为点C ,D .()1,3A --,()1, 3.3,0, 3.OC AC B OB ∴==-∴=四边形O A B 是平行四边形,,.,.PB AO OP BA BO OB PBO AOB ∴===∴∆≅∆由全等三角形对应高相等,得 3.,PD AC PB AO ===,1,312Rt PBD Rt AOC BD OC OD OB BD ∴≅∴==∴=-=-=△△,()2,3.P ∴-(第18题)【考点】求图象交点的坐标,平行四边形的性质及全等三角形的判定与性质. 三、解答题19.【答案】解:原式()()()21311=113111=111.1x x x x x x x x x x x x x +--⎛⎫-+ ⎪-+---⎝⎭+---=- 解不等式组:()533113192.2x x x x ⎧->+⎪⎨-<-⎪⎩①,② 解不等式①,得3x >. 解不等式②,得5x <.∴不等式组的解集是35x <<. x 是整数,∴=4.x 原式11==4-13. 【解析】解:原式()()()21311=113111=111.1x x x x x x x x x x x x x +--⎛⎫-+ ⎪-+---⎝⎭+---=- 解不等式组:()533113192.2x x x x ⎧->+⎪⎨-<-⎪⎩①,② 解不等式①,得3x >. 解不等式②,得5x <.∴不等式组的解集是35x <<. x 是整数,∴=4.x原式11==4-13. 20.【答案】(1)从喜欢动画节目人数可得1530%=50÷(人). 答:这次被调查的学生共有50人. (2)5041518310----=(人) 补全条形统计图如图所示.(第20题)(3)181500=54050⨯(人). 答:估计全校学生中喜欢娱乐节目的有540人.(4)列表如下:(画树状图法略)由列表可知,共有12种结果,且每种结果出现的可能性相同,其中恰好选中甲、乙两名学生的结果有2种,P∴(恰好选中甲、乙两名学生)21 ==. 126【解析】(1)从喜欢动画节目人数可得1530%=50÷(人). 答:这次被调查的学生共有50人.(2)5041518310----=(人)补全条形统计图如图所示.(第20题)(3)181500=54050⨯(人).答:估计全校学生中喜欢娱乐节目的有540人. (4)列表如下:(画树状图法略)由列表可知,共有12种结果,且每种结果出现的可能性相同,其中恰好选中甲、乙两名学生的结果有2种,P ∴(恰好选中甲、乙两名学生)21==.12621.【答案】解:如图,过点D 作DE AB ⊥交AB 于点E ,则=60m.DE BC =4=53tan53,3α︒︒,在Rt ABC ∆中,tan ,AB BC α=4,3AB BC ∴=即4,603AB =解得80m.AB =又337,tan37,4ADE β∠==︒︒≈在Rt ADE ∆中,3tan ,,4AE AE ADE DE DE ∠=∴=即3,604AE =解得45m AE =,80453B EA B A E B E =-∴=-=(),C D B E =35mCD ∴= 答:建筑物AB 的高度为80m ,建筑物CD 的高度为35m . 【解析】如图,过点D 作DE AB ⊥交AB 于点E ,则=60m.DE BC =4=53tan53,3α︒︒,在Rt ABC ∆中,tan ,AB BC α=4,3AB BC ∴=即4,603AB =解得80m.AB =又337,tan37,4ADE β∠==︒︒≈在Rt ADE ∆中,3tan ,,4AE AE ADE DE DE ∠=∴=即3,604AE =解得45m AE =,80453B EA B A E B E =-∴=-=(),C D B E =35mCD ∴= 答:建筑物AB 的高度为80m ,建筑物CD 的高度为35m . 22.【答案】(1)证明:如图,连接.OC(第22题)∵直线CD 是O 的切线 ∴OC CD ⊥. ∴=90OCE ∠. ∵点C 是BF 的中点. ∴CAD CAB ∠=∠ ∵OA OC =, ∴CAB ACO ∠=∠ ∴CAD ACO ∠=∠ ∴AD CO ∥∴==90ADC OCE ∠∠, ∴AD CD ⊥(2)解:∵=30CAD ∠, ∴=30CAB ACO ∠-∠ ∴+60COE CAB ACO ∠=∠∠= ∵直线CD 是O 的切线 ∴OC CD ⊥ ∴=90OCE ∠∴180906030E ∠-︒︒=-=∵3OC =∴2=6OE OC -∴=3BE OE OB =-在Rt OCE △中,由勾股定理,得:CE .BC 的长603.180l ππ⨯⨯==∴蚁蚂爬过的路程为11.3.π≈【解析】(1)证明:如图,连接.OC(第22题)∵直线CD 是O 的切线∴OC CD ⊥.∴=90OCE ∠.∵点C 是BF 的中点.∴CAD CAB ∠=∠∵OA OC =,∴CAB ACO ∠=∠∴CAD ACO ∠=∠∴AD CO ∥∴==90ADC OCE ∠∠,∴AD CD ⊥(2)解:∵=30CAD ∠,∴=30CAB ACO ∠-∠∴+60COE CAB ACO ∠=∠∠=∵直线CD 是O 的切线∴OC CD ⊥∴=90OCE ∠∴180906030E ∠-︒︒=-=∵3OC =∴2=6OE OC -∴=3BE OE OB =-在Rt OCE △中,由勾股定理,得:CE .BC 的长603.180l ππ⨯⨯==∴蚁蚂爬过的路程为11.3.π≈23.【答案】(1)∵此设备的年销售量y (单位:台)和销售单价x (单位:万元)成一次函数关系, ∴可设()0y kx b k =+≠.根据题意,得40600,45550,k b k b +-⎧⎨+=⎩解得:10,1000,k b =-⎧⎨=⎩ ∴年销售量y 与销售单价x 的函数关系式是101000.y x =-+(2)∵此设备的销售单价是x 万元,成本价是30方元,∴该设备的单件利润为()30x -万元.由题意,得()()3010100010000x x --+=解得:12=80,=50.x x∵销售单价不得高于70万元,即70x ≤,∴180x =不符合题意,舍去.∴50.x =答:该公可若想获得10 000万元的年利润,则该设备的销售单价应是50万元.【解析】(1)∵此设备的年销售量y (单位:台)和销售单价x (单位:万元)成一次函数关系, ∴可设()0y kx b k =+≠.根据题意,得40600,45550,k b k b +-⎧⎨+=⎩解得:10,1000,k b =-⎧⎨=⎩∴年销售量y 与销售单价x 的函数关系式是101000.y x =-+(2)∵此设备的销售单价是x 万元,成本价是30方元,∴该设备的单件利润为()30x -万元.由题意,得()()3010100010000x x --+=解得:12=80,=50.x x∵销售单价不得高于70万元,即70x ≤,∴180x =不符合题意,舍去.∴50.x =答:该公可若想获得10 000万元的年利润,则该设备的销售单价应是50万元.24.【答案】(1(2)四边形BADQ 是菱形.理由如下:∵四边形ACBF 是矩形,∴BQ AD ∥∴=BQA QAD ∠∠由折叠的性质,得=,BAQ QAD AB AD ∠∠=,∴,BQA BAQ ∠=∠∴.BQ AB =∴,BQ AD = ∴,BQ AD ∥∴四边形BADQ 是平行四边形.又∵AB AD =,∴BADQ 是菱形.(3)图4中的黄金矩形有矩形BCDE 、矩形MNDE .以黄金矩形BCDE 为例,理由如下:∵1,AD AB AN AC ====∴1CD AD AC =-==,又∵2BC =.∴12CD BC -. ∴矩形BCDE 是黄金矩形.(4)如图,在矩形BCDE 上添加线段GH ,使四边形 G CDH 为正方形,此时四边形BGHE 为所要作的黄金矩形,长1GH =,宽3HE =(第24题))1,213DH GH CD HE DE DH ∴==∴=-=-=HE GH ∴==∴矩形BGHE是黄金矩形.【解析】(1)由题意,得12,1,90,2BM MN AF BF BM AFB AB =====∠=︒∴ (2)四边形BADQ 是菱形.理由如下:∵四边形ACBF 是矩形,∴BQ AD ∥∴=BQA QAD ∠∠由折叠的性质,得=,BAQ QAD AB AD ∠∠=,∴,BQA BAQ ∠=∠∴.BQ AB =∴,BQ AD = ∴,BQ AD ∥∴四边形BADQ 是平行四边形.又∵AB AD =,∴BADQ 是菱形.(3)图4中的黄金矩形有矩形BCDE 、矩形MNDE .以黄金矩形BCDE 为例,理由如下:∵1,AD AB AN AC ====∴1CD AD AC =-==,又∵2BC =.∴CD BC -∴矩形BCDE 是黄金矩形.(4)如图,在矩形BCDE 上添加线段GH ,使四边形 G CDH 为正方形,此时四边形BGHE 为所要作的黄金矩形,长1GH =,宽3HE =(第24题) 51CD =-,四边形GCDH 是正方形,DH G∴=)1,213DH GH CD HE DE DH ∴==∴=-=-=HE GH ∴==∴矩形BGHE 是黄金矩形.25.【答案】(1)把点,0A m ()、4,B n ()代入1y x =-得1, 3.m n == ∴()()1,0,4,3.A B ∵抛物线2y x bx c =-++过点A 、B ,∴10,1643,b c b c -++=⎧⎨-++=⎩解得:6,5,b c =⎧⎨=-⎩∴该抛物线的解释式为26 5.y x x =-+-(2)如图1,∵APM △和DPN △为等直角三角形,∴=45,APM DPN ∠∠=∴90,MPN ∠= ∴MPN △为直角三角形.令2650x x -+-=,解得:121, 5.x x ==∴()5,0, 4.D AD =设AP k =,则4,DP k =-,2PM =)4.2PN k =-∴)11422MPN S PM PN k ∆==⨯- =214k k -+ =()21214k --+ ∴当2k =,即2AP =时,MPN S ∆最大,此时3OP =,∴()3,0.P(3)存在,点Q 坐标为23(,-)或7833⎛⎫ ⎪⎝⎭,-. 【解析】(1)把点,0A m ()、4,B n ()代入1y x =-得1, 3.m n == ∴()()1,0,4,3.A B ∵抛物线2y x bx c =-++过点A 、B ,∴10,1643,b c b c -++=⎧⎨-++=⎩解得:6,5,b c =⎧⎨=-⎩∴该抛物线的解释式为26 5.y x x =-+-(2)如图1,∵APM △和DPN △为等直角三角形,∴=45,APM DPN ∠∠= ∴90,MPN ∠=∴MPN △为直角三角形. 令2650x x -+-=,解得:121, 5.x x == ∴()5,0, 4.D AD =设AP k =,则4,DP k =-,PM )4.PN k =-∴)11422MPN S PM PN k ∆==⨯- =214k k -+ =()21214k --+ ∴当2k =,即2AP =时,MPN S ∆最大,此时3OP =,∴()3,0.P(3)存在,点Q 坐标为23(,-)或7833⎛⎫ ⎪⎝⎭,-.。
2018年山东省德州市中考数学试卷(含答案解析版)
2018年山东德州中考数学试卷一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得4分,选错、不选或选出的答案超过一个均记零分。
1.(4分)(2018•德州)3的相反数是()A.3 B.13C.﹣3 D.﹣132.(4分)(2018•德州)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(4分)(2018•德州)一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间的平均距离,即1.496亿km,用科学记数法表示1.496亿是()A.1.496×107B.14.96×108C.0.1496×108 D.1.496×1084.(4分)(2018•德州)下列运算正确的是()A.a3•a2=a6 B.(﹣a2)3=a6C.a7÷a5=a2D.﹣2mn﹣mn=﹣mn5.(4分)(2018•德州)已知一组数据:6,2,8,x,7,它们的平均数是6,则这组数据的中位数是()A.7 B.6 C.5 D.46.(4分)(2018•德州)如图,将一副三角尺按不同的位置摆放,下列方式中∠α与∠β互余的是()A.图①B.图②C.图③D.图④7.(4分)(2018•德州)如图,函数y=ax2﹣2x+1和y=ax﹣a(a是常数,且a≠0)在同一平面直角坐标系的图象可能是( )A .B .C .D .8.(4分)(2018•德州)分式方程x x−1﹣1=3(x−1)(x+2)的解为( ) A .x=1 B .x=2 C .x=﹣1 D .无解9.(4分)(2018•德州)如图,从一块直径为2m 的圆形铁皮上剪出一个圆心角为90°的扇形,则此扇形的面积为( )A .π2m 2B .√32πm 2 C .πm 2 D .2πm 2 10.(4分)(2018•德州)给出下列函数:①y=﹣3x +2;②y=3x;③y=2x 2;④y=3x ,上述函数中符合条作“当x >1时,函数值y 随自变量x 增大而增大“的是( )A .①③B .③④C .②④D .②③ 11.(4分)(2018•德州)我国南宋数学家杨辉所著的《详解九章算术》一书中,用如图的三角形解释二项式(a +b )n 的展开式的各项系数,此三角形称为“杨辉三角”根据”杨辉三角”请计算(a+b)8的展开式中从左起第四项的系数为()A.84 B.56 C.35 D.2812.(4分)(2018•德州)如图,等边三角形ABC的边长为4,点O是△ABC的中心,∠FOG=120°,绕点O旋转∠FOG,分别交线段AB、BC于D、E两点,连接DE,给出下列四个结论:①OD=OE;②S△ODE =S△BDE;③四边形ODBE的面积始终等于43√3;④△BDE周长的最小值为6.上述结论中正确的个数是()A.1 B.2 C.3 D.4二、填空题:本大题共6小题,共24分,只要求填写最后结果,每小题填对得4分。
2018年山东省德州市中考数学试卷及解析
2018年山东省德州市中考数学试卷一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得4分,选错、不选或选出的答案超过一个均记零分.1.(4分)3的相反数是()A.3 B.C.﹣3 D.﹣2.(4分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(4分)一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间的平均距离,即1.496亿km,用科学记数法表示1.496亿是()A.1.496×107B.14.96×108C.0.1496×108 D.1.496×1084.(4分)下列运算正确的是()A.a3•a2=a6 B.(﹣a2)3=a6C.a7÷a5=a2D.﹣2mn﹣mn=﹣mn5.(4分)已知一组数据:5,2,8,x,7,它们的平均数是6,则这组数据的中位数是() A.7 B.6 C.5 D.46.(4分)如图,将一副三角尺按不同的位置摆放,下列方式中∠α与∠β互余的是()A.图①B.图②C.图③D.图④7.(4分)如图,函数y=ax2﹣2x+1和y=ax﹣a(a是常数,且a≠0)在同一平面直角坐标系的图象可能是()A.B. C.D.8.(4分)分式方程﹣1=的解为()A.x=1 B.x=2 C.x=﹣1 D.无解9.(4分)如图,从一块直径为2m的圆形铁皮上剪出一个同心角为90°的扇形,则此扇形的面积为()A.2B.C.πm2 D.2πm210.(4分)给出下列函数:①y=﹣3x+2;②y=;③y=2x2;④y=3x,上述函数中符合条作“当x>1时,函数值y随自变量x增大而增大“的是()A.①③B.③④C.②④D.②③11.(4分)我国南宋数学家杨辉所著的《详解九章算术》一书中,用如图的三角形解释二项式(a+b)n的展开式的各项系数,此三角形称为“杨辉三角”根据”杨辉三角”请计算(a+b)8的展开式中从左起第四项的系数为()A.84 B.56 C.35 D.2812.(4分)如图,等边三角形ABC的边长为4,点O是△ABC的中心,∠FOG=120°,绕点O旋转∠FOG,分别交线段AB、BC于D、E两点,连接DE,给出下列四个结论:①OD=OE;②S△ODE=S△BDE;③四边形ODBE的面积始终等于;④△BDE周长的最小值为6.上述结论中正确的个数是()A.1 B.2 C.3 D.4二、填空题:本大题共6小题,共24分,只要求填写最后结果,每小题填对得4分. 13.(4分)计算:|﹣2+3|=.14.(4分)若x1,x2是一元二次方程x2+x﹣2=0的两个实数根,则x1+x2+x1x2=.15.(4分)如图,OC为∠AOB的平分线,CM⊥OB,OC=5,OM=4,则点C到射线OA的距离为.16.(4分)如图,在4×4的正方形方格图形中,小正方形的顶点称为格点,△ABC的顶点都在格点上,则∠BAC的正弦值是.17.(4分)对于实数a,b,定义运算“◆”:a◆b=,例如4◆3,因为4>3.所以4◆3==5.若x,y满足方程组,则x◆y=.18.(4分)如图,反比例函数y=与一次函数y=x﹣2在第三象限交于点A,点B的坐标为(﹣3,0),点P是y轴左侧的一点,若以A,O,B,P为顶点的四边形为平行四边形,则点P的坐标为.三、解答题:本大题共7小题,共78分.解答要写出必要的文字说明、证明过程或演算步骤.19.(8分)先化简,再求值÷﹣(+1),其中x是不等式组的整数解.20.(10分)某学校为了解全校学生对电视节目的喜爱情况(新闻,体育,动画,娱乐,戏曲),从全校学生中随机抽取部分学生进行问卷调查,并把调查结果绘制成两幅不完整的统计图.请根据以上信息,解答下列问题:(1)这次被调查的学生共有多少人?(2)请将条形计图补充完整;(3)若该校约有1500名学生,估计全校学生中喜欢娱乐节目的有多少人?(4)该校广播站需要广播员,现决定从喜欢新闻节目的甲、乙、丙、丁四名同学中选取2名,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答).21.(10分)如图,两座建筑物的水平距离BC为60m,从C点测得A点的仰角α为53°,从A点测得D点的俯角β为37°,求两座建筑物的高度(参考数据:sin37°≈,cos37°≈,tan37°≈,sin53°≈,cos53°≈,tan53°≈).22.(12分)如图,AB是⊙O的直径,直线CD与⊙O相切于点C,且与AB的延长线交于点E,点C是的中点.(1)求证:AD⊥CD;(2)若∠CAD=30°,⊙O的半径为3,一只蚂蚁从点B出发,沿着BE﹣EC﹣爬回至点B,求蚂蚁爬过的路程(π≈3.14,≈1.73,结果保留一位小数).23.(12分)为积极响应新旧动能转换,提高公司经济效益,某科技公司近期研发出一种新型高科技设备,每台设备成本价为30万元,经过市场调研发现,每台售价为40万元时,年销售量为600台;每台售价为45万元时,年销售量为550台.假定该设备的年销售量y(单位:台)和销售单价x(单位:万元)成一次函数关系.(1)求年销售量y与销售单价x的函数关系式;(2)根据相关规定,此设备的销售单价不得高于70万元,如果该公司想获得10000万元的年利润,则该设备的销售单价应是多少万元?24.(12分)再读教材:。
2018年山东省德州市中考数学试卷(WORD精校版带标准答案及解析)
2018年山东德州中考数学试卷一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得4分,选错、不选或选出的答案超过一个均记零分。
1.(4分)(2018•德州)3的相反数是()A.3 B.13C.-3 D.-132.(4分)(2018•德州)下列图形中,既是轴对称图形又是中心对称图形的是()3.(4分)(2018•德州)一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间的平均距离,即1.496亿km,用科学记数法表示1.496亿是()A.1.496×107B.14.96×108C.0.1496×108D.1.496×1084.(4分)(2018•德州)下列运算正确的是()A.a3•a2=a6B.(﹣a2)3=a6C.a7÷a5=a2D.﹣2mn﹣mn=﹣mn5.(4分)(2018•德州)已知一组数据:6,2,8,x,7,它们的平均数是6,则这组数据的中位数是()A.7 B.6 C.5 D.46.(4分)(2018•德州)如图,将一副三角尺按不同的位置摆放,下列方式中∠α与∠β互余的是()A.图①B.图②C.图③D.图④7.(4分)(2018•德州)如图,函数y=ax2﹣2x+1和y=ax﹣a(a是常数,且a≠0)在同一平面直角坐标系的图象可能是()8.(4分)(2018•德州)分式方程xx-1-1=3(x-1)(x+2)的解为()A.x=1 B.x=2 C.x=﹣1 D.无解9.(4分)(2018•德州)如图,从一块直径为2m的圆形铁皮上剪出一个圆心角为90°的扇形,则此扇形的面积为()A.π2m2 B.32πm2 C.πm2D.2πm210.(4分)(2018•德州)给出下列函数:①y=-3x+2;②y=3x;③y=2x2;④y=3x,上述函数中符合条作“当x>1时,函数值y随自变量x增大而增大”的是()A.①③B.③④C.②④D.②③11.(4分)(2018•德州)我国南宋数学家杨辉所著的《详解九章算术》一书中,用如图的三角形解释二项式(a+b)n的展开式的各项系数,此三角形称为“杨辉三角”根据”杨辉三角”请计算(a+b)8的展开式中从左起第四项的系数为()A.84 B.56 C.35 D.2812.(4分)(2018•德州)如图,等边三角形ABC 的边长为4,点O 是△ABC 的中心,∠FOG =120°,绕点O 旋转∠FOG ,分别交线段AB 、BC 于D 、E 两点,连接DE ,给出下列四个结论:①OD =OE ;②S △ODE =S △BDE ;③四边形ODBE 的面积始终等于43 3 ;④△BDE 周长的最小值为6.上述结论中正确的个数是( )A .1B .2C .3D .4二、填空题:本大题共6小题,共24分,只要求填写最后结果,每小题填对得4分。
(完整word版)2018年山东省德州市中考数学试卷(含答案解析版),推荐文档
2018年山东德州中考数学试卷一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得4分,选错、不选或选出的答案超过一个均记零分。
1.(4分)(2018•德州)3的相反数是()A.3 B.13C.﹣3 D.﹣132.(4分)(2018•德州)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(4分)(2018•德州)一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间的平均距离,即1.496亿km,用科学记数法表示1.496亿是()A.1.496×107B.14.96×108C.0.1496×108 D.1.496×1084.(4分)(2018•德州)下列运算正确的是()A.a3•a2=a6 B.(﹣a2)3=a6C.a7÷a5=a2D.﹣2mn﹣mn=﹣mn5.(4分)(2018•德州)已知一组数据:6,2,8,x,7,它们的平均数是6,则这组数据的中位数是()A.7 B.6 C.5 D.46.(4分)(2018•德州)如图,将一副三角尺按不同的位置摆放,下列方式中∠α与∠β互余的是()A.图①B.图②C.图③D.图④7.(4分)(2018•德州)如图,函数y=ax2﹣2x+1和y=ax﹣a(a是常数,且a≠0)在同一平面直角坐标系的图象可能是( )A .B .C .D .8.(4分)(2018•德州)分式方程x x−1﹣1=3(x−1)(x+2)的解为( ) A .x=1 B .x=2 C .x=﹣1 D .无解9.(4分)(2018•德州)如图,从一块直径为2m 的圆形铁皮上剪出一个圆心角为90°的扇形,则此扇形的面积为( )A .π2m 2B .√32πm 2 C .πm 2 D .2πm 2 10.(4分)(2018•德州)给出下列函数:①y=﹣3x +2;②y=3x;③y=2x 2;④y=3x ,上述函数中符合条作“当x >1时,函数值y 随自变量x 增大而增大“的是( )A .①③B .③④C .②④D .②③ 11.(4分)(2018•德州)我国南宋数学家杨辉所著的《详解九章算术》一书中,用如图的三角形解释二项式(a +b )n 的展开式的各项系数,此三角形称为“杨辉三角”根据”杨辉三角”请计算(a +b )8的展开式中从左起第四项的系数为( )A .84B .56C .35D .2812.(4分)(2018•德州)如图,等边三角形ABC 的边长为4,点O 是△ABC 的中心,∠FOG=120°,绕点O 旋转∠FOG ,分别交线段AB 、BC 于D 、E 两点,连接DE ,给出下列四个结论:①OD=OE ;②S △ODE =S △BDE ;③四边形ODBE 的面积始终等于43√3;④△BDE 周长的最小值为6.上述结论中正确的个数是( )A .1B .2C .3D .4二、填空题:本大题共6小题,共24分,只要求填写最后结果,每小题填对得4分。
中考真题2018年山东省德州市中考数学试题(含答案)
可能是
8.分式方程 x 1
3
的解为(
)
x1
x1x 2
A. x 1
B. x 2
C. x 1
9.如图 ,从一块直径为 2m 的圆形铁皮上剪出一个圆心角为
()
D.无解 90°的扇形 .则此扇形的面积为
2
A. m 2
B. 3 m2 2
C. m2
D. 2 m2
10.给出下列函数 :① y 3x 2 ;② y 2x2 ;③ y 2x2 ;④ y 3x .上述函数中符合条件 “当
德州市二 ○一八年初中学业水平考试 数学学试题
第Ⅰ卷(共 60 分)
一、选择题: 本大题共 10 个小题 ,每小题 3 分,共 30 分.在每小题给出的四个选项 中,只有一项是符合题目要求的 .
1.3 的相反数是(
)
A.3
1
B.
3
C. -3
1 D. -
3
2.下列图形中,既是轴对称又是中心对称图形的是(
(1)求证 : AD CD
(2)若 CAD 30 . O 的半径为 3,一只蚂蚁从点 B 出发,沿着 BE EC CB 爬回至点 B ,
求蚂蚁爬过的路程
3.14, 3 1.73 结果保留一位小数 .
23.为积极响应新旧动能转换 .提高公司经济效益 .某科技公司近期研发出一种新型高科技设 备,每台设备成本价为 30 万元 ,经过市场调研发现 ,每台售价为 40 万元时 ,年销售量为 600 台;
每台售价为 45 万元时 ,年销售量为 550 台 .假定该设备的年销售量 y(单位 :台 )和销售单价 x (单
位: 万元 )成一次函数关系 .
.
15.如图 , OC 为 AOB 的平分线 . CM
精品解析:山东省德州市2018年中考数学试题(解析版)
德州市二○一八年初中学业水平考试数学学试题一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 3的相反数是()A. 3B.C. -3D.【答案】C【解析】分析:根据相反数的定义,即可解答.详解:3的相反数是﹣3.故选C.点睛:本题考查了相反数,解决本题的关键是熟记相反数的定义.2. 下列图形中,既是轴对称又是中心对称图形的是()A. B. C. D.【答案】B【解析】分析:观察四个选项中的图形,找出既是轴对称图形又是中心对称图形的那个即可得出结论.详解:A是中心对称图形;B既是轴对称图形又是中心对称图形;C是轴对称图形;D既不是轴对称图形又不是中心对称图形.故选B.点睛:本题考查了中心对称图形以及轴对称图形,牢记轴对称及中心对称图形的特点是解题的关键.3. 一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间的平均距离,即1.496亿.用科学记数法表示1.496亿是()A. B. C. D.【答案】D【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是正数;当原数的绝对值<1时,n是负数.详解:数据1.496亿用科学记数法表示为1.496×108.故选D.点睛:本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4. 下列运算正确的是()A. B. C. D.【答案】C【解析】分析:根据同底数幂的乘法法则、幂的乘方法则、同底数幂的除法法则、合并同类项的法则分别进行计算即可.详解:A.a3•a2=a5,故原题计算错误;B.(﹣a2)3=﹣a6,故原题计算错误;C.a7÷a5=a2,故原题计算正确;D.﹣2mn﹣mn=﹣3mn,故原题计算错误.故选C.点睛:本题主要考查了同底数幂的乘除法、合并同类项、积的乘方,关键是掌握各计算法则.5. 已知一组数据:6,2,8,,7,它们的平均数是6.则这组数据的中位数是()A. 7B. 6C. 5D. 4【答案】A【解析】分析:首先根据平均数为6求出x的值,然后根据中位数的概念求解.详解:由题意得:6+2+8+x+7=6×5,解得:x=7,这组数据按照从小到大的顺序排列为:2,6,7,7,8,则中位数为7.故选A.点睛:本题考查了中位数和平均数的知识,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数;平均数是指在一组数据中所有数据之和再除以数据的个数.6. 如图,将一副三角尺按不同的位置摆放,下列摆放方式中与互余的是()A. 图①B. 图②C. 图③D. 图④【答案】A【解析】分析:根据平角的定义,同角的余角相等,等角的补角相等和邻补角的定义对各小题分析判断即可得解.详解:图①,∠α+∠β=180°﹣90°,互余;图②,根据同角的余角相等,∠α=∠β;图③,根据等角的补角相等∠α=∠β;图④,∠α+∠β=180°,互补.故选A.点睛:本题考查了余角和补角,是基础题,熟记概念与性质是解题的关键.7. 如图,函数和(是常数,且)在同一平面直角坐标系的图象可能是()A. B. C. D.【答案】B【解析】分析:可先根据一次函数的图象判断a的符号,再判断二次函数图象与实际是否相符,判断正误即可.详解:A.由一次函数y=ax﹣a的图象可得:a<0,此时二次函数y=ax2﹣2x+1的图象应该开口向下.故选项错误;B.由一次函数y=ax﹣a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口向上,对称轴x=﹣>0.故选项正确;C.由一次函数y=ax﹣a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口向上,对称轴x=﹣>0,和x轴的正半轴相交.故选项错误;D.由一次函数y=ax﹣a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口向上.故选项错误.故选B.点睛:本题考查了二次函数以及一次函数的图象,解题的关键是熟记一次函数y=ax﹣a在不同情况下所在的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等.8. 分式方程的解为()A. B. C. D. 无解【答案】D【解析】分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.详解:去分母得:x2+2x﹣x2﹣x+2=3,解得:x=1,经检验x=1是增根,分式方程无解.故选D.点睛:本题考查了分式方程的解,始终注意分母不为0这个条件.9. 如图,从一块直径为的圆形铁皮上剪出一个圆心角为90°的扇形.则此扇形的面积为()A. B. C. D.【答案】A【解析】分析:连接AC,根据圆周角定理得出AC为圆的直径,解直角三角形求出AB,根据扇形面积公式求出即可.详解:连接AC.∵从一块直径为2m的圆形铁皮上剪出一个同心角为90°的扇形,即∠ABC=90°,∴AC为直径,即AC=2m,AB=BC.∵AB2+BC2=22,∴AB=BC=m,∴阴影部分的面积是=(m2).故选A.点睛:本题考查了圆周角定理和扇形的面积计算,能熟记扇形的面积公式是解答此题的关键.10. 给出下列函数:①y=﹣3x+2;②y=;③y=2x2;④y=3x,上述函数中符合条作“当x>1时,函数值y随自变量x增大而增大“的是()A. ①③B. ③④C. ②④D. ②③【答案】B【解析】分析:分别利用一次函数、正比例函数、反比例函数、二次函数的增减性分析得出答案.详解:①y=﹣3x+2,当x>1时,函数值y随自变量x增大而减小,故此选项错误;②y=,当x>1时,函数值y随自变量x增大而减小,故此选项错误;③y=2x2,当x>1时,函数值y随自变量x增大而减小,故此选项正确;④y=3x,当x>1时,函数值y随自变量x增大而减小,故此选项正确.故选B.点睛:本题主要考查了一次函数、正比例函数、反比例函数、二次函数的性质,正确把握相关性质是解题的关键.11. 我国南宋数学家杨辉所著的《详解九章算术》一书中,用下图的三角形解释二项式的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算的展开式中从左起第四项的系数为()A. 84B. 56C. 35D. 28【答案】B【解析】分析:根据图形中的规律即可求出(a+b)8的展开式中从左起第四项的系数.详解:找规律发现(a+b)4的第四项系数为4=3+1;(a+b)5的第四项系数为10=6+4;(a+b)6的第四项系数为20=10+10;(a+b)7的第四项系数为35=15+20;∴(a+b)8第四项系数为21+35=56.故选B.学。
18年山东省德州市中考数学试卷及详细答案
2018年山东省德州市中考数学试卷及详细答案2018年山东省德州市中考数学试卷一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得4分,选错、不选或选出的答案超过一个均记零分。
1.3的相反数是A.3 B.C.﹣3 D.﹣2.下列图形中,既是轴对称图形又是中心对称图形的是A.B.C.D.3.一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间的平均距离,即亿km,用科学记数法表示亿是A.×107 B.×108 C.×108 D.×108 4.下列运算正确的是A.a3?a2=a6 B.3=a6 C.a7÷a5=a2 D.﹣2mn﹣mn=﹣mn 5.已知一组数据:6,2,8,x,7,它们的平均数是6,则这组数据的中位数是A.7 B.6 C.5 D.4 6.如图,将一副三角尺按不同的位置摆放,下列方式中∠α与∠β互余的是A.图①B.图②C.图③D.图④7.如图,函数y=ax2﹣2x+1和y=ax﹣a 在同一平面直角坐标系的图象可能是第1页A.B.C.D.8.分式方程﹣1=D.无解的解为A.x=1 B.x=2 C.x=﹣1 9.如图,从一块直径为2m的圆形铁皮上剪出一个圆心角为90°的扇形,则此扇形的面积为A.2 B.C.πm2 D.2πm2 10.给出下列函数:①y=﹣3x+2;②y=;③y=2x2;④y=3x,上述函数中符合条作“当x>1时,函数值y随自变量x增大而增大“的是A.①③B.③④C.②④D.②③11.我国南宋数学家杨辉所著的《详解九章算术》一书中,用如图的三角形解释二项式n 的展开式的各项系数,此三角形称为“杨辉三角” 根据”杨辉三角”请计算8的展开式中从左起第四项的系数为第2页A.84 B.56 C.35 D.28 12.如图,等边三角形ABC 的边长为4,点O是△ABC的中心,∠FOG=120°,绕点O旋转∠FOG,分别交线段AB、BC于D、E两点,连接DE,给出下列四个结论:①OD=OE;②S△ODE=S△BDE;③四边形ODBE的面积始终等于周长的最小值为6.上述结论中正确的个数是;④△BDE A.1 B.2 C.3 D.4 二、填空题:本大题共6小题,共24分,只要求填写最后结果,每小题填对得4分。
2018年德州市中考数学试卷(含答案解析版)
2018年山东德州中考数学试卷一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得4分,选错、不选或选出的答案超过一个均记零分。
1.(4分)(2018•德州)3的相反数是()A.3B.13C.﹣3D.﹣132.(4分)(2018•德州)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(4分)(2018•德州)一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间的平均距离,即1.496亿km,用科学记数法表示1.496亿是()A.1.496×107B.14.96×108C.0.1496×108D.1.496×1084.(4分)(2018•德州)下列运算正确的是()A.a3•a2=a6B.(﹣a2)3=a6C.a7÷a5=a2D.﹣2mn﹣mn=﹣mn5.(4分)(2018•德州)已知一组数据:6,2,8,x,7,它们的平均数是6,则这组数据的中位数是()A.7B.6C.5D.46.(4分)(2018•德州)如图,将一副三角尺按不同的位置摆放,下列方式中∠α与∠β互余的是()A .图①B .图②C .图③D .图④7.(4分)(2018•德州)如图,函数y=ax 2﹣2x +1和y=ax ﹣a (a 是常数,且a ≠0)在同一平面直角坐标系的图象可能是( )A .B .C .D .8.(4分)(2018•德州)分式方程x x−1﹣1=3(x−1)(x+2)的解为( ) A .x=1 B .x=2 C .x=﹣1 D .无解 9.(4分)(2018•德州)如图,从一块直径为2m 的圆形铁皮上剪出一个圆心角为90°的扇形,则此扇形的面积为( )A .π2m 2B .√32πm 2 C .πm 2 D .2πm 2 10.(4分)(2018•德州)给出下列函数:①y=﹣3x +2;②y=3x;③y=2x 2;④y=3x ,上述函数中符合条作“当x >1时,函数值y 随自变量x 增大而增大“的是( )A .①③B .③④C .②④D .②③11.(4分)(2018•德州)我国南宋数学家杨辉所著的《详解九章算术》一书中,用如图的三角形解释二项式(a +b )n 的展开式的各项系数,此三角形称为“杨辉三角”根据”杨辉三角”请计算(a +b )8的展开式中从左起第四项的系数为( )A .84B .56C .35D .2812.(4分)(2018•德州)如图,等边三角形ABC 的边长为4,点O 是△ABC 的中心,∠FOG=120°,绕点O 旋转∠FOG ,分别交线段AB 、BC 于D 、E 两点,连接DE ,给出下列四个结论:①OD=OE ;②S △ODE =S △BDE ;③四边形ODBE 的面积始终等于43√3;④△BDE 周长的最小值为6.上述结论中正确的个数是( )A .1B .2C .3D .4二、填空题:本大题共6小题,共24分,只要求填写最后结果,每小题填对得4分。
2018年山东省德州市中考数学试卷(含答案解析版)
2018年山东德州中考数学试卷一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得4分,选错、不选或选出的答案超过一个均记零分.1.(4分)(2018•德州)3的相反数是()A.3B.13C.﹣3D.﹣132.(4分)(2018•德州)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(4分)(2018•德州)一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间的平均距离,即1.496亿km,用科学记数法表示1.496亿是()A.1。
496×107B.14.96×108C.0.1496×108D.1.496×1084.(4分)(2018•德州)下列运算正确的是()A.a3•a2=a6B.(﹣a2)3=a6C.a7÷a5=a2D.﹣2mn﹣mn=﹣mn5.(4分)(2018•德州)已知一组数据:6,2,8,x,7,它们的平均数是6,则这组数据的中位数是()A.7B.6C.5D.46.(4分)(2018•德州)如图,将一副三角尺按不同的位置摆放,下列方式中∠α与∠β互余的是()第1页(共41页)第2页(共41页)A .图①B .图②C .图③D .图④7.(4分)(2018•德州)如图,函数y=ax 2﹣2x +1和y=ax ﹣a (a 是常数,且a ≠0)在同一平面直角坐标系的图象可能是( )A .B .C .D .8.(4分)(2018•德州)分式方程x x−1﹣1=3(x−1)(x+2)的解为( ) A .x=1 B .x=2 C .x=﹣1 D .无解 9.(4分)(2018•德州)如图,从一块直径为2m 的圆形铁皮上剪出一个圆心角为90°的扇形,则此扇形的面积为( )A .π2m 2B .√32πm 2 C .πm 2 D .2πm 2 10.(4分)(2018•德州)给出下列函数:①y=﹣3x +2;②y=3x;③y=2x 2;④y=3x,第3页(共41页)上述函数中符合条作“当x >1时,函数值y 随自变量x 增大而增大“的是( )A .①③B .③④C .②④D .②③11.(4分)(2018•德州)我国南宋数学家杨辉所著的《详解九章算术》一书中,用如图的三角形解释二项式(a +b )n 的展开式的各项系数,此三角形称为“杨辉三角”根据"杨辉三角”请计算(a +b)8的展开式中从左起第四项的系数为( )A .84B .56C .35D .2812.(4分)(2018•德州)如图,等边三角形ABC 的边长为4,点O 是△ABC 的中心,∠FOG=120°,绕点O 旋转∠FOG ,分别交线段AB 、BC 于D 、E 两点,连接DE,给出下列四个结论:①OD=OE ;②S △ODE =S △BDE ;③四边形ODBE 的面积始终等于43√3;④△BDE 周长的最小值为6.上述结论中正确的个数是( )A .1B .2C .3D .4第4页(共41页)二、填空题:本大题共6小题,共24分,只要求填写最后结果,每小题填对得4分。
2018年山东省德州市中考数学试卷及答案
2018年山东省德州市中考数学试卷一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得4分,选错、不选或选出的答案超过一个均记零分。
1.(4分)3的相反数是()A.3 B.C.﹣3 D.﹣2.(4分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(4分)一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间的平均距离,即1.496亿km,用科学记数法表示1.496亿是()A.1.496×107B.14.96×108C.0.1496×108 D.1.496×1084.(4分)下列运算正确的是()A.a3•a2=a6 B.(﹣a2)3=a6C.a7÷a5=a2D.﹣2mn﹣mn=﹣mn5.(4分)已知一组数据:5,2,8,x,7,它们的平均数是6,则这组数据的中位数是()A.7 B.6 C.5 D.46.(4分)如图,将一副三角尺按不同的位置摆放,下列方式中∠α与∠β互余的是()A.图①B.图②C.图③D.图④7.(4分)如图,函数y=ax2﹣2x+1和y=ax﹣a(a是常数,且a≠0)在同一平面直角坐标系的图象可能是()A.B. C.D.8.(4分)分式方程﹣1=的解为()A.x=1 B.x=2 C.x=﹣1 D.无解9.(4分)如图,从一块直径为2m的圆形铁皮上剪出一个同心角为90°的扇形,则此扇形的面积为()A.2B.C.πm2 D.2πm210.(4分)给出下列函数:①y=﹣3x+2;②y=;③y=2x2;④y=3x,上述函数中符合条作“当x >1时,函数值y随自变量x增大而增大“的是()A.①③B.③④C.②④D.②③11.(4分)我国南宋数学家杨辉所著的《详解九章算术》一书中,用如图的三角形解释二项式(a+b)n的展开式的各项系数,此三角形称为“杨辉三角”根据”杨辉三角”请计算(a+b)8的展开式中从左起第四项的系数为()A.84 B.56 C.35 D.2812.(4分)如图,等边三角形ABC的边长为4,点O是△ABC的中心,∠FOG=120°,绕点O旋=S 转∠FOG,分别交线段AB、BC于D、E两点,连接DE,给出下列四个结论:①OD=OE;②S△ODE;③四边形ODBE的面积始终等于;④△BDE周长的最小值为6.上述结论中正确的个△BDE数是()A.1 B.2 C.3 D.4二、填空题:本大题共6小题,共24分,只要求填写最后结果,每小题填对得4分。
山东省德州市2018年中考数学试题(含答案)(精品)
德州市二○一八年初中学业水平考试数学学试题 第Ⅰ卷(共60分)一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.3的相反数是( ) A .3 B .13 C .-3 D .1-32.下列图形中,既是轴对称又是中心对称图形的是( )3.一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间的平均距离,即1,496亿km .用科学记数法表示1,496亿是A .71.49610⨯ B .714.9610⨯ C .80.149610⨯ D .81.49610⨯ 4.下列运算正确的是A .326a a a = B .()326a a -= C.752a a a ÷=D .-2mn mn mn -=-5.已知一组数据;6,2,8.x ,7,它们的平均数是6.则这组数据的中位数是( ) A .7 B .6 C.5 D .46.如图,将一副三角尺按不同的位置摆放,下列摆放方式中a ∠与β∠互余的是( )A.图①B.图②C.图③D.图④7.如图,函数221y ax x =-+和y ax a =-(a 是常数,且0a ≠)在同一平面直角坐标系的象可能是8.分式方程()()31112x x x x -=--+的解为( ) A .1x = B .2x = C.1x =- D .无解9.如图,从一块直径为2m 的圆形铁皮上剪出一个圆心角为90°的扇形.则此扇形的面积为( )A .22m π B2m C.2m π D .22m π 10.给出下列函数:①32y x =-+;②22y x =;③22y x =;④3y x =.上述函数中符合条件“当1x >时,函数值y 随自变量x 增大而增大”的是( ) A .①③ B .③④ C.②④ D .②③11.我国南宋数学家杨辉所著的《详解九章算术》一书中,用下图的三角形解释二项式 ()na b +的展开式的各项系数,此三角形称为“杨辉三角”。
山东省德州市2018年中考数学试题(含答案)-精品
德州市二○一八年初中学业水平考试数学学试题 第Ⅰ卷(共60分)一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.3的相反数是( ) A .3 B .13 C .-3 D .1-32.下列图形中,既是轴对称又是中心对称图形的是( )3.一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间的平均距离,即1,496亿km .用科学记数法表示1,496亿是A .71.49610⨯B .714.9610⨯C .80.149610⨯D .81.49610⨯ 4.下列运算正确的是A .326a a a = B .()326a a -= C.752a a a ÷=D .-2mn mn mn -=-5.已知一组数据;6,2,8.x ,7,它们的平均数是6.则这组数据的中位数是( ) A .7 B .6 C.5 D .46.如图,将一副三角尺按不同的位置摆放,下列摆放方式中a ∠与β∠互余的是( )A.图①B.图②C.图③D.图④7.如图,函数221y ax x =-+和y ax a =-(a 是常数,且0a ≠)在同一平面直角坐标系的象可能是8.分式方程()()31112x x x x -=--+的解为( ) A .1x = B .2x = C.1x =- D .无解9.如图,从一块直径为2m 的圆形铁皮上剪出一个圆心角为90°的扇形.则此扇形的面积为( )A .22m πB.22m C.2m π D .22m π 10.给出下列函数:①32y x =-+;②22y x =;③22y x =;④3y x =.上述函数中符合条件“当1x >时,函数值y 随自变量x 增大而增大”的是( ) A .①③ B .③④ C.②④ D .②③11.我国南宋数学家杨辉所著的《详解九章算术》一书中,用下图的三角形解释二项式 ()na b +的展开式的各项系数,此三角形称为“杨辉三角”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
德州市二○一八年初中学业水平考试数学学试题 第Ⅰ卷(共60分)一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.3的相反数是( ) A .3 B .13 C .-3 D .1-32.下列图形中,既是轴对称又是中心对称图形的是( )3.一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间的平均距离,即1,496亿km .用科学记数法表示1,496亿是A .71.49610⨯ B .714.9610⨯ C .80.149610⨯ D .81.49610⨯ 4.下列运算正确的是A .326a a a =gB .()326a a -= C.752a a a ÷=D .-2mn mn mn -=-5.已知一组数据;6,2,8.x ,7,它们的平均数是6.则这组数据的中位数是( ) A .7 B .6 C.5 D .46.如图,将一副三角尺按不同的位置摆放,下列摆放方式中a ∠与β∠互余的是( )A.图①B.图②C.图③D.图④7.如图,函数221y ax x =-+和y ax a =-(a 是常数,且0a ≠)在同一平面直角坐标系的象可能是8.分式方程()()31112x x x x -=--+的解为( ) A .1x = B .2x = C.1x =- D .无解9.如图,从一块直径为2m 的圆形铁皮上剪出一个圆心角为90°的扇形.则此扇形的面积为( )A .22m πB .232m C.2m π D .22m π 10.给出下列函数:①32y x =-+;②22y x =;③22y x =;④3y x =.上述函数中符合条件“当1x >时,函数值y 随自变量x 增大而增大”的是( ) A .①③ B .③④ C.②④ D .②③11.我国南宋数学家杨辉所著的《详解九章算术》一书中,用下图的三角形解释二项式 ()na b +的展开式的各项系数,此三角形称为“杨辉三角”。
()()()()()() .... .... .... 1? .... ....?...11 .... ....121 .... (1331).... 01123446451..15101051a b a b a b a b a b a b ++++++根据“杨辉三角”请计算()na b +的展开式中从左起第四项的系数为 A .84 B .56 C.35 D .2812.如图,等边三角形ABC 的边长为4,点O 是△ABC 的中心,120FOG ∠=o.绕点o 旋转FOG ∠,分别交线段AB BC 、于D E 、两点,连接DE ,给出下列四个结论:①OD OE =;②ODE BDE S S ∆∆=;③四边形ODBE的面积始终等于433;④△BDE 周长的最小值为6,上述结论中正确的个数是( )A .1B .2 C. 3 D .4第Ⅱ卷(共90分)二、填空题(每题4分,满分24分,将答案填在答题纸上)13.计算:23-+= .14.若12x x +是一元二次方程220x x +-=的两个实数根,则1212x x x x ++= .15.如图,OC 为AOB ∠的平分线.CM OB ⊥,5OC =.4OM =.则点C 到射线OA 的距离为 .16.如图。
在44⨯的正方形方格图形中,小正方形的顶点称为格点.ABC ∆的顶点都在格点上,则BAC ∠的正弦值是 .17.对于实数a ,b .定义运算“◆":22,,a b a ba b ab a b+≥=<⎪⎩◆例如4◆3,因为43>.所以4◆3=22435+=.若,x y 满足方程组48229x y x y -=⎧⎨+=⎩,则x y ◆=_____________.18.如图,反比例函数3y x=与一次函数2y x =-在第三象限交于点A .点B 的坐标为(一3,0),点P 是y 轴左侧的一点.若以A O B P 、、、为顶点的四边形为平行四边形.则点P 的坐标为_____________.三、解答题 (本大题共7小题,共78分.解答应写出文字说明、证明过程或演算步骤.)19.先化简,再求值:2233111211x x x x x x --⎛⎫÷-+ ⎪-++-⎝⎭,其中x 是不等式组()5331131922x x x x ⎧->+⎪⎨-<-⎪⎩的整数解.20.某学校为了解全校学生对电视节目的喜爱情况(新闻、体育、动画、娱乐、戏曲),从全校学生中随机抽取部分学生进行问卷调查,并把调查结果绘制成两幅不完整的统计图.请根据以上信息,解答下列问题: (1)这次被调查的学生共有多少人? (2)请将条形统计图补充完整;(3)若该校约有1500名学生,估计全校学生中喜欢娱乐节目的有多少人?(4)该校广播站需要广播员,现决定从喜欢新闻节目的甲、乙、丙、丁四名同学中选取2名,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)21.如图,两座建筑物的水平距离BC 为60m .从C 点测得A 点的仰角α为53° ,从A 点测得D 点的俯角β为37° ,求两座建筑物的高度(参考数据:3433437,37 37, 534 53?35)55453sin cos tan sin cos tan ≈≈≈≈≈≈oo o o o o ,,,22.如图,AB 是O e 的直径,直线CD 与O e 相切于点C ,且与AB 的延长线交于点E .点C 是»BF的中点.(1)求证:AD CD ⊥(2)若30CAD ∠=o.O e 的半径为3,一只蚂蚁从点B 出发,沿着»BE CEC B --爬回至点B ,求蚂蚁爬过的路程()3.143 1.73π≈≈,结果保留一位小数.23.为积极响应新旧动能转换.提高公司经济效益.某科技公司近期研发出一种新型高科技设备,每台设备成本价为30万元,经过市场调研发现,每台售价为40万元时,年销售量为600台;每台售价为45万元时,年销售量为550台.假定该设备的年销售量y(单位:台)和销售单价x (单位:万元)成一次函数关系.(1)求年销售量y 与销售单价x 的函数关系式;(2)根据相关规定,此设备的销售单价不得高于70万元,如果该公司想获得10000万元的年利润.则该设备的销售单价应是多少万元? 24.再读教材: 宽与长的比是512(约为0.618)的矩形叫做黄金矩形,黄金矩形给我们以协调,匀称的美感.世界各国许多著名的建筑.为取得最佳的视觉效果,都采用了黄金矩形的设计,下面我们用宽为2的矩形纸片折叠黄金矩形.(提示;2MN =)第一步,在矩形纸片一端.利用图①的方法折出一个正方形,然后把纸片展平. 第二步,如图②.把这个正方形折成两个相等的矩形,再把纸片展平.第三步,折出内侧矩形的对角线AB ,并把AB 折到图③中所示的AD 处,第四步,展平纸片,按照所得的点D 折出DE ,使DE ND ⊥,则图④中就会出现黄金矩形, 问题解决:(1)图③中AB =__________(保留根号);(2)如图③,判断四边形BADQ 的形状,并说明理由;(3)请写出图④中所有的黄金矩形,并选择其中一个说明理由. 实际操作:(4)结合图④.请在矩形BCDE 中添加一条线段,设计一个新的黄金矩形,用字母表示出来,并写出它的长和宽.25.如图1,在平面直角坐标系中,直线1y x =-与抛物线2y x bx c =-++交于A B 、两点,其中(),0A m ,()4,B n .该抛物线与y 轴交于点C ,与x 轴交于另一点D .、的值及该抛物线的解析式;(1)求m n、重合).分别以AP、DP为斜边,在直(2)如图2.若点P为线段AD上的一动点(不与A D线AD的同侧作等腰直角△APM和等腰直角△DPN,连接MN,试确定△MPN面积最大时P点的坐标.、、为顶点的三角形(3)如图3.连接BD、CD,在线段CD上是否存在点Q,使得以A D Q与△ABD相似,若存在,请直接写出点Q的坐标;若不存在,请说明理由.德州市二○一八年初中学业水平考试数学学试题答案一、选择题1-5:CBDCA 6-10: ABDAB 11、12:BC二、填空题13.1 14. -3 15. 3 16.517.60 18.(-4,-3),(-2,3) 三、解答题19.解:原式()()()213111111311111x x x x x x x x x x x x x ---+⎛⎫--+--= ⎪-+---⎝⎭g . 解不等式组:()5331131922x x x x ⎧->+⎪⎨-<-⎪⎩①②. 解不等式①得:3x >. 解不等式②得:5x <.∴不等式组的解集是:35x <<.x 是整数∴4x - 将4x -代入得: 原式11==4-13. 20.解:(1)从喜欢动画节目人数可得.1530%=50÷(人), 答;这次被调查的学生有50人 (2)50-4-15-18-3=10(人). 补全条形统计图如图所示.(3)181500=54050⨯(人). 答:全校喜欢娱乐节目的学生约有540人. (4)列表如下:甲 乙 丙 丁 甲 甲乙 甲丙 甲丁 乙 乙甲 乙丙 乙丁 丙 丙甲 丙乙 丙丁 丁丁甲丁乙丁丙由上表可知共有12种结果,恰好选中甲、乙两人的有2种情况,所以P (选中甲、乙两人)=21=126. 答:恰好选中甲、乙两人的概率为16. 21.解:过点D 作DE AB ⊥交AB 于点E ,则60DE BC m ==.∵453,tan 533a =≈oo. 在Rt ABC ∆中,tan ABBCα-. ∴43AB BC =,即4603AB =. 解得:=80AB m .又∵337,tan 374ADE β∠==≈oo. 在Rt ADE ∆中,tan ADADE DE∠=.∴34AD DE =,即4603AE =. 解得:45AE m =.∵BE AB AE ==.∴80BE m = 4535m m =. ∵BE CD =. ∴35CD m =.答:建筑物AB 的高度为80m .建筑物CD 的高度为35m . 22.(1)证明;连接OC∵直线CD 是O e 的切线 ∴OC CD ⊥. ∴=90OCE ∠o.∵点C 是»BF 的中点.∴CAD CAB ∠=∠ ∵OA OC = ∴CAB ACO ∠=∠ ∴CAD ADO ∠=∠ ∴//AD CO∴==90ADC OCE ∠∠o∴AD CD ⊥(2)解:∵=30CAD ∠o ∴=30CAB ACO ∠-∠o∴+60COE CAB ACO ∠-∠∠=o∵直线CD 是O e 的切线∴OC CD ⊥∴=90OCE ∠o∴180906030E ∠-︒︒o o =-=∵3OC =∴2=6OE OC -∴=3BE OE OB ==在Rt OCE V 中,由勾股定理得:CE ==»BC 的长603180l ππ⨯==∴蚁蚂爬过的路程11.3π≈23.解:(1)∵此设备的年销售量y (单位:台)和销售单价x (单位:万元)成一次函数关系.∴可设()0y kx b k =+≠,将数据代入可得:4060045550k b k b +-⎧⎨+=⎩ 解得:101000k b =-⎧⎨=⎩ ∴一次函数关系式是101000y x =--(2)此设备的销售单价是x 万元,成本价是30方元∴该设备的单件利润为()30x -万元由题意得:()()3010100010000x x --+=解得:12=80,=50x x∵销售单价不得高于70万元,即70x ≤∴180x =不合题意,故舍去.∴50x =答:该公可若想获得10000万元的年利润,此设备的销售单价应是50万元24.解:(1(2)四边形BADQ 是菱形.理由如下:四边形ACBF 是矩形∴//BQ AD∴=BQA QAD ∠∠由折叠得:=BAQ QD AB AD ∠∠=,∴BQA BAQ ∠=∠∴BQ AB =∴BQ AD =∴//BQ AD∴四边形BADQ 是平行四边形∵AB AD =∴四边形BADQ 是菱形.(3)图④中的黄金矩形有矩形BCDE 、矩形MNDE以黄金矩形BCDE 为例,理由如下: ∵5,1AD AN AC === ∴51CD AD AC ====,又∵2BC =. ∴51CD BC -故矩形BCIE 是黄金矩形.实际操作:(1)如图,在矩形BCDE 上添加线段GH ,使四边形 G CDH 为正方形,此时四边形BGHE 为所要作的黄金矩形长51GH =-,宽35HE ==25.解:(1)把点,0A m ()、点4,B n ()代入1y x -=得2,3m n ==所以()()1,04,3A B因为2y x bx c =-++,过点A 、点B ,所以101643b c b c -++=⎧⎨-++=⎩解得:65b c =⎧⎨=-⎩所以265y x x =-+=(2)如图2,∵△APM 和△DPN 为等直角三角形∴=45APM DPN ∠∠o=∴90MPN ∠=o∴△MPN 为直角三角形令2650x x -+-=,解得:121,5x x == ∴()5,0,4D AD = 设AP m =,则4DP m =-2,2PM m = )242PN m =- ∴()112242222MPN S PM PN m m ∆==⨯-g g =21-4m m - =()21-214m -+∴当2m =,即2AP =时,MPN S ∆最大,此时3OP =,所以()3,0P(3)存在点Q 坐标为2-3(,)或78-33⎛⎫ ⎪⎝⎭,.。