2019-2020年高考数学一轮复习第九章平面解析几何9.9圆锥曲线的综合问题理
【2019-2020最新】高三数学一轮复习第九章平面解析几何第九节圆锥曲线的综合问题课件文
方法技巧 1.定点问题的常见解法 (1)根据题意选择参数,建立一个含参数的直线系或曲线系方程,经过分 析、整理,对方程进行等价变形,以找出适合方程且与参数无关的坐标 (该坐标对应的点即为所求定点). (2)从特殊位置入手,找出定点,再证明该点符合题意. 2.求定值问题常见的方法 (1)从特殊情况入手,求出定值,再证明这个值与变量无关. (2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.
由题意知Δ=16(4k2-3)>0,
解得k2> 3 .x1,2=8k 4
2.
4k
4k 2 2 1
3
从而|PQ|= k|x21-x12|=
. 4 k2 1 4k2 3
4k 2 1
又点O到直线PQ的距离d= 2,
k2 1
所以S△OPQ= 1 d·|PQ|=4 4k.2 3
考点二 圆锥曲线中的定点、定值问题
典例2 (2016北京,19,14分)已知椭圆C: ax22 + by22 =1过A(2,0),B(0,1)两点.
(1)求椭圆C的方程及离心率;
(2)设P为第三象限内一点且在椭圆C上,直线PA与y轴交于点M,直线PB
与x轴交于点N.求证:四边形ABNM的面积为定值.
x0 y0
1
1
2 y0 x0 2
= x02 4 y02 4x0 y0 4x0 8 y0 4 2(x0 y0 x0 2 y0 2)
= 2x0 y0 2x0 4 y0 4 =2. x0 y0 x0 2 y0 2
令x=0,得yM=- 2 y0 , x0 2
高考数学一轮复习 第九章 平面解析几何 第9讲 圆锥曲线的综合问题 第2课时 定点、定值、探索性问题
第2课时 定点、定值、探索性问题圆锥曲线中的定点问题(师生共研)(2020·某某模拟)过抛物线C :y 2=4x 的焦点F 且斜率为k 的直线l 交抛物线C于A ,B 两点,且|AB |=8.(1)求直线l 的方程;(2)若A 关于x 轴的对称点为D ,求证:直线BD 过定点,并求出该点的坐标. 【解】 (1)由y 2=4x 知焦点F 的坐标为(1,0),则直线l 的方程为y =k (x -1), 代入抛物线方程y 2=4x ,得k 2x 2-(2k 2+4)x +k 2=0, 由题意知k ≠0,且Δ=[-(2k 2+4)]2-4k 2·k 2=16(k 2+1)>0. 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2k 2+4k2,x 1x 2=1.由抛物线的弦长公式知|AB |=x 1+x 2+2=8,则2k 2+4k2=6,即k 2=1,解得k =±1.所以直线l 的方程为y =±(x -1).(2)由(1)及抛物线的对称性知,D 点的坐标为(x 1,-y 1), 直线BD 的斜率k BD =y 2+y 1x 2-x 1=y 2+y 1y 224-y 214=4y 2-y 1, 所以直线BD 的方程为y +y 1=4y 2-y 1(x -x 1), 即(y 2-y 1)y +y 2y 1-y 21=4x -4x 1.因为y 21=4x 1,y 22=4x 2,x 1x 2=1,所以(y 1y 2)2=16x 1x 2=16, 即y 1y 2=-4(y 1,y 2异号).所以直线BD 的方程为4(x +1)+(y 1-y 2)y =0, 对任意y 1,y 2∈R ,有⎩⎪⎨⎪⎧x +1=0,y =0,解得⎩⎪⎨⎪⎧x =-1,y =0,即直线BD 恒过定点(-1,0).求解圆锥曲线中定点问题的两种方法(1)特殊推理法:先从特殊情况入手,求出定点,再证明定点与变量无关.(2)直接推理法:①选择一个参数建立方程,一般将题目中给出的曲线方程(包含直线方程)中的常数k 当成变量,将变量x ,y 当成常数,将原方程转化为kf (x ,y )+g (x ,y )=0的形式;②根据曲线(包含直线)过定点时与参数没有关系(即方程对参数的任意值都成立),得到方程组⎩⎪⎨⎪⎧f (x ,y )=0g (x ,y )=0;③以②中方程组的解为坐标的点就是曲线所过的定点,若定点具备一定的限制条件,可以特殊解决.(2020·某某模拟)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)上动点P 到两焦点F 1,F 2的距离之和为4,当点P 运动到椭圆C 的一个顶点时,直线PF 1恰与以原点O 为圆心,以椭圆C 的离心率e 为半径的圆相切.(1)求椭圆C 的方程;(2)设椭圆C 的左、右顶点分别为A ,B ,若直线PA ,PB 分别交直线x =6于不同的两点M ,N ,则以线段MN 为直径的圆是否过定点?若是,请求出该定点的坐标;若不是,请说明理由.解:(1)由椭圆的定义可知2a =4,解得a =2.若点P 运动到椭圆的左、右顶点时,直线PF 1与圆一定相交,则点P 只能在椭圆的上、下顶点,不妨设点P 运动到椭圆的上顶点(0,b ),F 1为左焦点(-c ,0),则直线PF 1:bx -cy +bc =0.由题意得原点O 到直线PF 1的距离等于椭圆C 的离心率e , 所以bc b 2+c 2=ca, 又a 2=b 2+c 2,故b 2=1.故椭圆C 的方程为x 24+y 2=1.(2)由题意知,直线PA ,PB 的斜率存在且都不为0, 设直线PA 的斜率为k ,点P (x 0,y 0),x 0≠±2, 又A (-2,0),B (2,0),所以k PA ·k PB =k ·k PB =y 0x 0+2·y 0x 0-2=y 20x 20-4=1-x 204x 20-4=-14,则k PB =-14k.所以直线PA 的方程为y =k (x +2), 令x =6,得y =8k ,则M (6,8k ); 直线PB 的方程为y =-14k (x -2),令x =6,得y =-1k,则N ⎝ ⎛⎭⎪⎫6,-1k .因为8k ·⎝ ⎛⎭⎪⎫-1k =-8<0,所以以线段MN 为直径的圆与x 轴交于两点,设点G ,H ,并设MN 与x 轴的交点为K , 在以线段MN 为直径的圆中应用相交弦定理,得|GK |·|HK |=|MK |·|NK |=|8k |·⎪⎪⎪⎪⎪⎪-1k =8,因为|GK |=|HK |,所以|GK |=|HK |=22,所以以线段MN 为直径的圆恒过点(6-22,0),点(6+22,0).圆锥曲线中的定值问题(多维探究) 角度一 定线段的长已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (1,0),且经过点P ⎝ ⎛⎭⎪⎫12,354.(1)求椭圆C 的方程;(2)若直线l 与椭圆C 相切,过点F 作FQ ⊥l ,垂足为Q ,求证:|OQ |为定值(其中O 为坐标原点).【解】 (1)由题意可知椭圆C 的左焦点为F ′(-1,0),则半焦距c =1. 由椭圆定义可知 2a =|PF |+|PF ′|=⎝ ⎛⎭⎪⎫1-122+⎝ ⎛⎭⎪⎫0-3542+⎝ ⎛⎭⎪⎫-1-122+⎝ ⎛⎭⎪⎫0-3542=4, 所以a =2,b 2=a 2-c 2=3,所以椭圆C 的方程为x 24+y 23=1. (2)证明:①当直线l 的斜率不存在时,l 的方程为x =±2,点Q 的坐标为(-2,0)或(2,0),此时|OQ |=2;②当直线l 的斜率为0时,l 的方程为y =±3,点Q 的坐标为(1,-3)或(1,3), 此时|OQ |=2;③当直线l 的斜率存在且不为0时,设直线l 的方程为y =kx +m (k ≠0). 因为FQ ⊥l ,所以直线FQ 的方程为y =-1k(x -1).由⎩⎪⎨⎪⎧y =kx +m ,x 24+y 23=1消去y ,可得(3+4k 2)x 2+8kmx +4m 2-12=0.因为直线l 与椭圆C 相切,所以Δ=(8km )2-4×(3+4k 2)×(4m 2-12)=0, 整理得m 2=4k 2+3.(*)由⎩⎪⎨⎪⎧y =kx +m ,y =-1k (x -1)得Q ⎝ ⎛⎭⎪⎫1-km k 2+1,k +m k 2+1, 所以|OQ |=⎝ ⎛⎭⎪⎫1-km k 2+12+⎝ ⎛⎭⎪⎫k +m k 2+12=1+k 2m 2+k 2+m2(k 2+1)2, 将(*)式代入上式,得|OQ |=4(k 4+2k 2+1)(k 2+1)2=2. 综上所述,|OQ |为定值,且定值为2.直接探求,变量代换探求圆锥曲线中的定线段的长的问题,一般用直接求解法,即先利用弦长公式把要探求的线段表示出来,然后利用题中的条件(如直线与曲线相切等)得到弦长表达式中的相关量之间的关系式,把这个关系式代入弦长表达式中,化简可得弦长为定值.角度二 定几何图形的面积(2020·某某模拟)如图,设点A ,B 的坐标分别为(-3,0),(3,0),直线AP ,BP 相交于点P ,且它们的斜率之积为-23.(1)求点P 的轨迹方程;(2)设点P 的轨迹为C ,点M ,N 是轨迹C 上不同于A 、B 的两点,且满足AP ∥OM ,BP ∥ON ,求证:△MON 的面积为定值.【解】 (1)设点P 的坐标为(x ,y ),由题意得,k AP ·k BP =y x +3·y x -3=-23(x ≠±3),化简得,点P 的轨迹方程为x 23+y 22=1(x ≠±3). (2)证明:由题意可知,M ,N 是轨迹C 上不同于A 、B 的两点,且AP ∥OM ,BP ∥ON , 则直线OM ,ON 的斜率必存在且不为0,k OM ·k ON =k AP ·k BP =-23.①当直线MN 的斜率为0时,设M (x 0,y 0),N (-x 0,y 0),则⎩⎪⎨⎪⎧y 20x 20=23,x 203+y202=1,得⎩⎪⎨⎪⎧|x 0|=62,|y 0|=1, 所以S △MON =12|y 0||2x 0|=62.②当直线MN 的斜率不为0时,设直线MN 的方程为x =my +t ,代入x 23+y 22=1,得(3+2m 2)y 2+4mty +2t 2-6=0,(*)设M (x 1,y 1),N (x 2,y 2),则y 1,y 2是方程(*)的两根, 所以y 1+y 2=-4mt 3+2m 2,y 1y 2=2t 2-63+2m2.又k OM ·k ON =y 1y 2x 1x 2=y 1y 2m 2y 1y 2+mt (y 1+y 2)+t 2=2t 2-63t 2-6m 2,所以2t 2-63t 2-6m 2=-23,即2t 2=2m 2+3,满足Δ>0.又S △MON =12|t ||y 1-y 2|=|t |-24t 2+48m 2+722(3+2m 2), 所以S △MON =26t 24t 2=62. 综上,△MON 的面积为定值,且定值为62.探求圆锥曲线中几何图形的面积的定值问题,一般用直接求解法,即可先利用三角形面积公式(如果是其他凸多边形,可分割成若干个三角形分别求解)把要探求的几何图形的面积表示出来,然后利用题中的条件得到几何图形的面积表达式中的相关量之间的关系式,把这个关系式代入几何图形的面积表达式中,化简即可.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的焦点为F 1,F 2,离心率为12,点P 为其上一动点,且三角形PF 1F 2面积的最大值为3,O 为坐标原点.(1)求椭圆C 的方程;(2)若点M ,N 为C 上的两个动点,求常数m ,使OM →·ON →=m 时,点O 到直线MN 的距离为定值,求这个定值.解:(1)依题意知⎩⎪⎨⎪⎧c 2=a 2-b 2,bc =3,c a =12,解得⎩⎨⎧a =2,b =3,所以椭圆C 的方程为x 24+y 23=1.(2)设M (x 1,y 1),N (x 2,y 2),则x 1x 2+y 1y 2=m ,当直线MN 的斜率存在时,设其方程为y =kx +n ,则点O 到直线MN 的距离d =|n |k 2+1=n 2k 2+1,联立,得⎩⎪⎨⎪⎧3x 2+4y 2=12,y =kx +n ,消去y ,得(4k 2+3)x 2+8knx +4n 2-12=0,由Δ>0得4k 2-n2+3>0,则x 1+x 2=-8kn 4k 2+3,x 1x 2=4n 2-124k 2+3,所以x 1x 2+(kx 1+n )(kx 2+n )=(k 2+1)x 1x 2+kn (x 1+x 2)+n 2=m ,整理得7n2k 2+1=12+m (4k 2+3)k 2+1.因为d =n 2k 2+1为常数,则m =0,d =127=2217,此时7n 2k 2+1=12满足Δ>0. 当MN ⊥x 轴时,由m =0得k OM =±1,联立,得⎩⎪⎨⎪⎧3x 2+4y 2=12,y =±x ,消去y ,得x 2=127,点O 到直线MN 的距离d =|x |=2217亦成立.综上,当m =0时,点O 到直线MN 的距离为定值,这个定值是2217.圆锥曲线中的探索性问题(师生共研)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的两个焦点分别为F 1,F 2,短轴的一个端点为P ,△PF 1F 2内切圆的半径为b3,设过点F 2的直线l 被椭圆C 截得的线段为RS ,当l ⊥x 轴时,|RS |=3.(1)求椭圆C 的标准方程;(2)在x 轴上是否存在一点T ,使得当l 变化时,总有TS 与TR 所在直线关于x 轴对称?若存在,请求出点T 的坐标;若不存在,请说明理由.【解】 (1)由内切圆的性质,得12×2c ×b =12×(2a +2c )×b 3,得c a =12.将x =c 代入x 2a 2+y 2b 2=1,得y =±b 2a ,所以2b2a=3.又a 2=b 2+c 2,所以a =2,b =3, 故椭圆C 的标准方程为x 24+y 23=1.(2)当直线l 垂直于x 轴时,显然x 轴上任意一点T 都满足TS 与TR 所在直线关于x 轴对称.当直线l 不垂直于x 轴时,假设存在T (t ,0)满足条件,设l 的方程为y =k (x -1),R (x 1,y 1),S (x 2,y 2).联立方程,得⎩⎪⎨⎪⎧y =k (x -1),3x 2+4y 2-12=0,得(3+4k 2)x 2-8k 2x +4k 2-12=0, 由根与系数的关系得⎩⎪⎨⎪⎧x 1+x 2=8k23+4k2,x 1x 2=4k 2-123+4k2①,其中Δ>0恒成立, 由TS 与TR 所在直线关于x 轴对称,得k TS +k TR =0(显然TS ,TR 的斜率存在), 即y 1x 1-t +y 2x 2-t=0 ②.因为R ,S 两点在直线y =k (x -1)上, 所以y 1=k (x 1-1),y 2=k (x 2-1),代入②得k (x 1-1)(x 2-t )+k (x 2-1)(x 1-t )(x 1-t )(x 2-t )=k [2x 1x 2-(t +1)(x 1+x 2)+2t ](x 1-t )(x 2-t )=0,即2x 1x 2-(t +1)(x 1+x 2)+2t =0 ③,将①代入③得8k 2-24-(t +1)8k 2+2t (3+4k 2)3+4k 2=6t -243+4k 2=0 ④,则t =4,综上所述,存在T (4,0),使得当l 变化时,总有TS 与TR 所在直线关于x 轴对称.存在性问题的求解策略解决存在性问题,先假设存在,推证满足条件的结论,若结论正确则存在,若结论不正确则不存在.(1)当条件和结论不唯一时要分类讨论.(2)当给出结论而要推导出存在的条件时,先假设成立,再推出条件. (3)当要讨论的量能够确定时,可先确定,再证明结论符合题意.已知圆O :x 2+y 2=4,点F (1,0),P 为平面内一动点,以线段FP 为直径的圆内切于圆O ,设动点P 的轨迹为曲线C .(1)求曲线C 的方程;(2)M ,N 是曲线C 上的动点,且直线MN 经过定点⎝ ⎛⎭⎪⎫0,12,问在y 轴上是否存在定点Q ,使得∠MQO =∠NQO ,若存在,请求出定点Q ,若不存在,请说明理由.解:(1)设PF 的中点为S ,切点为T ,连接OS ,ST ,则|OS |+|SF |=|OT |=2,取F 关于y 轴的对称点F ′,连接F ′P ,所以|PF ′|=2|OS |,故|F ′P |+|FP |=2(|OS |+|SF |)=4,所以点P 的轨迹是以F ′,F 分别为左、右焦点,且长轴长为4的椭圆, 则曲线C 的方程为x 24+y 23=1.(2)假设存在满足题意的定点Q ,设Q (0,m ),当直线MN 的斜率存在时,设直线MN 的方程为y =kx +12,M (x 1,y 1),N (x 2,y 2).联立,得⎩⎪⎨⎪⎧x 24+y 23=1,y =kx +12,消去y ,得(3+4k 2)x 2+4kx -11=0,则Δ>0,x 1+x 2=-4k3+4k 2,x 1x 2=-113+4k2, 由∠MQO =∠NQO ,得直线MQ 与NQ 的斜率之和为零,易知x 1或x 2等于0时,不满足题意,故y 1-m x 1+y 2-mx 2=kx 1+12-m x 1+kx 2+12-m x 2=2kx 1x 2+⎝ ⎛⎭⎪⎫12-m (x 1+x 2)x 1x 2=0,即2kx 1x 2+⎝ ⎛⎭⎪⎫12-m (x 1+x 2)=2k ·-113+4k 2+⎝ ⎛⎭⎪⎫12-m ·-4k 3+4k 2=4k (m -6)3+4k 2=0,当k ≠0时,m =6,所以存在定点(0,6),使得∠MQO =∠NQO ;当k =0时,定点(0,6)也符合题意.易知当直线MN 的斜率不存在时,定点(0,6)也符合题意. 综上,存在定点(0,6),使得∠MQO =∠NQO .解析几何减少运算量的常见技巧技巧一 巧用平面几何性质已知O 为坐标原点,F 是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )A.13 B .12 C.23D .34【解析】 设OE 的中点为N ,如图,因为MF ∥OE ,所以有ON MF =a a +c ,MF OE =a -ca.又因为OE =2ON ,所以有12=aa +c ·a -c a ,解得e =c a =13,故选A.【答案】 A此题也可以用解析法解决,但有一定的计算量,巧用三角形的相似比可简化计算. 技巧二 设而不求,整体代换对于直线与圆锥曲线相交所产生的中点弦问题,涉及求中点弦所在直线的方程,或弦的中点的轨迹方程的问题时,常常可以用“点差法”求解.已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B两点.若AB 的中点坐标为M (1,-1),则E 的标准方程为( )A.x 245+y 236=1 B .x 236+y 227=1 C.x 227+y 218=1 D .x 218+y 29=1 【解析】 通解:设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=2,y 1+y 2=-2,⎩⎪⎨⎪⎧x 21a 2+y 21b2=1,①x 22a 2+y22b 2=1,②①-②得(x 1+x 2)(x 1-x 2)a 2+(y 1+y 2)(y 1-y 2)b2=0, 所以k AB =y 1-y 2x 1-x 2=-b 2(x 1+x 2)a 2(y 1+y 2)=b 2a 2.又k AB =0+13-1=12,所以b 2a 2=12.又9=c 2=a 2-b 2,解得b 2=9,a 2=18, 所以椭圆E 的标准方程为x 218+y 29=1.优解:由k AB ·k OM =-b 2a 2得,-1-01-3×-11=-b 2a2得,a 2=2b 2,又a 2-b 2=9,所以a 2=18,b 2=9,所以椭圆E 的标准方程为x 218+y 29=1.【答案】 D本题设出A ,B 两点的坐标,却不求出A ,B 两点的坐标,巧妙地表达出直线AB 的斜率,通过将直线AB 的斜率“算两次”建立几何量之间的关系,从而快速解决问题.技巧三 巧用“根与系数的关系”,化繁为简某些涉及线段长度关系的问题可以通过解方程、求坐标,用距离公式计算长度的方法来解;但也可以利用一元二次方程,使相关的点的同名坐标为方程的根,由根与系数的关系求出两根间的关系或有关线段长度间的关系.后者往往计算量小,解题过程简捷.已知椭圆x 24+y 2=1的左顶点为A ,过A 作两条互相垂直的弦AM ,AN 交椭圆M ,N两点.(1)当直线AM 的斜率为1时,求点M 的坐标;(2)当直线AM 的斜率变化时,直线MN 是否过x 轴上的一定点?若过定点,请给出证明,并求出该定点;若不过定点,请说明理由.【解】 (1)直线AM 的斜率为1时,直线AM 的方程为y =x +2,代入椭圆方程并化简得5x 2+16x +12=0.解得x 1=-2,x 2=-65,所以M ⎝ ⎛⎭⎪⎫-65,45.(2)设直线AM 的斜率为k ,直线AM 的方程为y =k (x +2),联立方程⎩⎪⎨⎪⎧y =k (x +2),x 24+y 2=1, 化简得(1+4k 2)x 2+16k 2x +16k 2-4=0. 则x A +x M =-16k21+4k 2,又x A =-2,则x M =-x A -16k 21+4k 2=2-16k 21+4k 2=2-8k21+4k 2.同理,可得x N =2k 2-8k 2+4.由(1)知若存在定点,则此点必为P ⎝ ⎛⎭⎪⎫-65,0. 证明如下:因为k MP =y Mx M +65=k ⎝ ⎛⎭⎪⎫2-8k 21+4k 2+22-8k 21+4k 2+65=5k4-4k 2, 同理可计算得k PN =5k4-4k2. 所以直线MN 过x 轴上的一定点P ⎝ ⎛⎭⎪⎫-65,0.本例在第(2)问中可应用根与系数的关系求出x M =2-8k21+4k 2,这体现了整体思想.这是解决解析几何问题时常用的方法,简单易懂,通过设而不求,大大降低了运算量.技巧四 巧妙“换元”减少运算量变量换元的关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而将非标准型问题转化为标准型问题,将复杂问题简单化.变量换元法常用于求解复合函数的值域、三角函数的化简或求值等问题.如图,已知椭圆C 的离心率为32,点A ,B ,F 分别为椭圆的右顶点、上顶点和右焦点,且S △ABF =1-32.(1)求椭圆C 的方程;(2)已知直线l :y =kx +m 与圆O :x 2+y 2=1相切,若直线l 与椭圆C 交于M ,N 两点,求△OMN 面积的最大值.【解】 (1)由已知椭圆的焦点在x 轴上,设其方程为x 2a 2+y 2b 2=1(a >b >0),则A (a ,0),B (0,b ),F (c ,0)(c =a 2-b 2).由已知可得e 2=a 2-b 2a 2=34,所以a 2=4b 2,即a =2b ,可得c =3b ①.S △AFB =12×|AF |×|OB |=12(a -c )b =1-32②.将①代入②,得12(2b -3b )b =1-32,解得b =1,故a =2,c = 3.所以椭圆C 的方程为x 24+y 2=1.(2)圆O 的圆心为坐标原点,半径r =1,由直线l :y =kx +m 与圆O :x 2+y 2=1相切,得|m |1+k2=1,故有m 2=1+k 2③. 由⎩⎪⎨⎪⎧x 24+y 2=1,y =kx +m ,消去y ,得⎝ ⎛⎭⎪⎫14+k 2x 2+2kmx +m 2-1=0.由题可知k ≠0,即(1+4k 2)x 2+8kmx +4(m 2-1)=0, 所以Δ=16(4k 2-m 2+1)=48k 2>0.设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1.所以|x 1-x 2|2=(x 1+x 2)2-4x 1x 2=⎝ ⎛⎭⎪⎫-8km 4k 2+12-4×4m 2-44k 2+1=16(4k 2-m 2+1)(4k 2+1)2④. 将③代入④中,得|x 1-x 2|2=48k2(4k 2+1)2,故|x 1-x 2|=43|k |4k 2+1.所以|MN |=1+k 2|x 1-x 2|=1+k 2×43|k |4k 2+1=43k 2(k 2+1)4k 2+1. 故△OMN 的面积S =12|MN |×1=12×43k 2(k 2+1)4k 2+1×1=23k 2(k 2+1)4k 2+1. 令t =4k 2+1,则t ≥1,k 2=t -14,代入上式,得S =23×t -14⎝ ⎛⎭⎪⎫t -14+1t2=32(t -1)(t +3)t2=32t 2+2t -3t 2=32-3t 2+2t+1=32-1t 2+23t +13=32-⎝ ⎛⎭⎪⎫1t -132+49, 所以当t =3,即4k 2+1=3,解得k =±22时,S 取得最大值,且最大值为32×49=1.破解此类题的关键:一是利用已知条件,建立关于参数的方程,解方程,求出参数的值,二是通过变量换元法将所给函数转化为值域容易确定的另一函数,求得其值域,从而求得原函数的值域,形如y =ax +b ±cx +d (a ,b ,c ,d 均为常数,且ac ≠0)的函数常用此法求解,但在换元时一定要注意新元的取值X 围,以保证等价转化,这样目标函数的值域才不会发生变化.[基础题组练]1.已知直线l 与双曲线x 24-y 2=1相切于点P ,l 与双曲线的两条渐近线交于M ,N 两点,则OM →·ON →的值为( )A .3B .4C .5D .与P 的位置有关解析:选A.依题意,设点P (x 0,y 0),M (x 1,y 1),N (x 2,y 2),其中x 20-4y 20=4,则直线l 的方程是x 0x 4-y 0y =1,题中双曲线的两条渐近线方程为y =±12x .①当y 0=0时,直线l 的方程是x =2或x =-2.由⎩⎪⎨⎪⎧x =2x 24-y 2=0,得⎩⎪⎨⎪⎧x =2y =±1,此时OM →·ON →=(2,-1)·(2,1)=4-1=3,同理可得当直线l 的方程是x =-2时,OM →·ON →=3.②当y 0≠0时,直线l 的方程是y =14y 0(x 0x -4).由⎩⎪⎨⎪⎧y =14y 0(x 0x -4)x24-y 2=0,得(4y 2-x 20)x2+8x 0x -16=0(*),又x 20-4y 20=4,因此(*)即是-4x 2+8x 0x -16=0,x 2-2x 0x +4=0,x 1x 2=4,OM →·ON →=x 1x 2+y 1y 2=x 1x 2-14x 1x 2=34x 1x 2=3.综上所述,OM →·ON →=3,故选A.2.已知抛物线y 2=2px (p >0)的焦点为F ,△ABC 的顶点都在抛物线上,且满足FA →+FB →+FC →=0,则1k AB +1k AC +1k BC=________.解析:设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),F ⎝ ⎛⎭⎪⎫p 2,0,由FA →+FB →=-FC →,得y 1+y 2+y 3=0.因为k AB =y 2-y 1x 2-x 1=2p y 1+y 2,所以k AC =2p y 1+y 3,k BC =2p y 2+y 3,所以1k AB +1k AC +1k BC =y 1+y 22p +y 3+y 12p+y 2+y 32p=0. 答案:03.(2020·某某模拟)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2.点M在椭圆C 上滑动,若△MF 1F 2的面积取得最大值4时,有且仅有2个不同的点M 使得△MF 1F 2为直角三角形.(1)求椭圆C 的方程;(2)过点P (0,1)的直线l 与椭圆C 分别相交于A ,B 两点,与x 轴交于点Q .设QA →=λPA →,QB →=μPB →,求证:λ+μ为定值,并求该定值.解:(1)由对称性知,点M 在短轴端点时,△MF 1F 2为直角三角形且∠F 1MF 2=90°,且S △MF 1F 2=4,所以b =c 且S =12·2c ·b =bc=4,解得b =c =2,a 2=b 2+c 2=8, 所以椭圆C 的方程为x 28+y 24=1.(2)证明:显然直线l 的斜率不为0,设直线l :x =t (y -1),联立⎩⎪⎨⎪⎧x 28+y 24=1,x =t (y -1),消去x ,得(t 2+2)y 2-2t 2y +t 2-8=0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=2t 2t 2+2,y 1y 2=t 2-8t 2+2.令y =0,则x =-t ,所以Q (-t ,0), 因为QA →=λPA →,所以y 1=λ(y 1-1), 所以λ=y 1y 1-1.因为QB →=μPB →,所以y 2=μ(y 2-1),所以μ=y 2y 2-1.所以λ+μ=y 1y 1-1+y 2y 2-1=2y 1y 2-(y 1+y 2)y 1y 2-(y 1+y 2)+1=83. 4.(2020·某某某某联考)设椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,下顶点为A ,O 为坐标原点,点O 到直线AF 2的距离为22,△AF 1F 2为等腰直角三角形. (1)求椭圆C 的标准方程;(2)直线l 与椭圆C 分别相交于M ,N 两点,若直线AM 与直线AN 的斜率之和为2,证明:直线l 恒过定点,并求出该定点的坐标.解:(1)由题意可知,直线AF 2的方程为x c +y-b=1, 即-bx +cy +bc =0,则bc b 2+c 2=bc a=22.因为△AF 1F 2为等腰直角三角形,所以b =c , 又a 2=b 2+c 2,可得a =2,b =1,c =1, 所以椭圆C 的标准方程为x 22+y 2=1.(2)证明:由(1)知A (0,-1).当直线l 的斜率存在时,设直线l 的方程为y =kx +t (t ≠±1), 代入x 22+y 2=1,得(1+2k 2)x 2+4ktx +2t 2-2=0,所以Δ=16k 2t 2-4(1+2k 2)(2t 2-2)>0,即t 2-2k 2<1. 设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=-4kt1+2k 2,x 1x 2=2t 2-21+2k2.因为直线AM 与直线AN 的斜率之和为2, 所以k AM +k AN =y 1+1x 1+y 2+1x 2=kx 1+t +1x 1+kx 2+t +1x 2=2k +(t +1)(x 1+x 2)x 1x 2=2k -(t +1)·4kt2t 2-2=2, 整理得t =1-k .所以直线l 的方程为y =kx +t =kx +1-k =k (x -1)+1,显然直线y =k (x -1)+1经过定点(1,1).当直线l 的斜率不存在时,设直线l 的方程为x =m .因为直线AM 与直线AN 的斜率之和为2,设M (m ,n ),则N (m ,-n ), 所以k AM +k AN =n +1m +-n +1m =2m=2,解得m =1, 此时直线l 的方程为x =1,显然直线x =1也经过该定点(1,1). 综上,直线l 恒过点(1,1).[综合题组练]1.(2020·某某五市十校联考)已知动圆C 过定点F (1,0),且与定直线x =-1相切. (1)求动圆圆心C 的轨迹E 的方程;(2)过点M (-2,0)的任一条直线l 与轨迹E 分别相交于不同的两点P ,Q ,试探究在x 轴上是否存在定点N (异于点M ),使得∠QNM +∠PNM =π?若存在,求点N 的坐标;若不存在,说明理由.解:(1)法一:由题意知,动圆圆心C 到定点F (1,0)的距离与其到定直线x =-1的距离相等,又由抛物线的定义,可得动圆圆心C 的轨迹是以F (1,0)为焦点,x =-1为准线的抛物线,其中p =2.所以动圆圆心C 的轨迹E 的方程为y 2=4x .法二:设动圆圆心C (x ,y ),由题意知(x -1)2+y 2=|x +1|, 化简得y 2=4x ,即动圆圆心C 的轨迹E 的方程为y 2=4x . (2)假设存在点N (x 0,0),满足题设条件.由∠QNM +∠PNM =π可知,直线PN 与QN 的斜率互为相反数,即k PN +k QN =0.① 由题意知直线PQ 的斜率必存在且不为0,设直线PQ 的方程为x =my -2.联立⎩⎪⎨⎪⎧y 2=4x ,x =my -2,得y 2-4my +8=0.由Δ=(-4m )2-4×8>0,得m >2或m <- 2. 设P (x 1,y 1),Q (x 2,y 2),则y 1+y 2=4m ,y 1y 2=8. 由①式得k PN +k QN =y 1x 1-x 0+y 2x 2-x 0=y 1(x 2-x 0)+y 2(x 1-x 0)(x 1-x 0)(x 2-x 0)=0,所以y 1(x 2-x 0)+y 2(x 1-x 0)=0, 即y 1x 2+y 2x 1-x 0(y 1+y 2)=0.消去x 1,x 2,得14y 1y 22+14y 2y 21-x 0(y 1+y 2)=0,14y 1y 2(y 1+y 2)-x 0(y 1+y 2)=0, 因为y 1+y 2≠0,所以x 0=14y 1y 2=2,所以存在点N (2,0).使得∠QNM +∠PNM =π.2.(2020·某某某某教学质量监测)已知抛物线C :x 2=2py (p >0)的焦点为F ,过点F 的直线分别交抛物线于A ,B 两点.(1)若以AB 为直径的圆的方程为(x -2)2+(y -3)2=16,求抛物线C 的标准方程; (2)过点A ,B 分别作抛物线的切线l 1,l 2,证明:l 1,l 2的交点在定直线上. 解:(1)设AB 中点为M ,A 到准线的距离为d 1,B 到准线的距离为d 2,M 到准线的距离为d ,则d =y M +p2.由抛物线的定义可知,d 1=|AF |,d 2=|BF |,所以d 1+d 2=|AB |=8, 由梯形中位线可得d =d 1+d 22=4,所以y M +p2=4.又y M =3,所以3+p2=4,可得p =2,所以抛物线C 的标准方程为x 2=4y .(2)证明:设A (x 1,y 1),B (x 2,y 2),由x 2=2py ,得y =x 22p ,则y ′=xp,所以直线l 1的方程为y -y 1=x 1p (x -x 1),直线l 2的方程为y -y 2=x 2p(x -x 2),联立得x =x 1+x 22,y =x 1x 22p, 即直线l 1,l 2的交点坐标为⎝⎛⎭⎪⎫x 1+x 22,x 1x 22p .因为AB 过焦点F ⎝ ⎛⎭⎪⎫0,p 2,由题可知直线AB 的斜率存在,故可设直线AB 方程为y -p2=kx ,代入抛物线x 2=2py 中,得x 2-2pkx -p 2=0,所以x 1x 2=-p 2,y =x 1x 22p =-p 22p =-p2,p 2上.所以l1,l2的交点在定直线y=-。
高考数学一轮复习第九章平面解析几何第九节圆锥曲线的综合问题课件文
栏目索引
解析 (1)由题意得,a=2,b=1.
所以椭圆C的方程为 x2 +y2=1.
4
又c= a2 b2 = 3 ,
所以离心率e= c = 3 . a2
栏目索引
因为λ=S1S2= 12(3-x1)|y1|· 12 (3-x2)|y2| = 14 (2-my1)(2-my2)|y1y2|
= 14 [4-2m(y1+y2)+m2y1y2]|y1y2|
=
2m2
6 2m2 2(m2 3)
m2
· m22
3
=
3m2 6 (m2 3)2
= 12 ×x0
1
1 x0 1
= 12 | x0 ≥1|1(| x<01x01<| 且x0≠21),
2
当且仅当|x0-1|= 1,即x0=0时等号成立,
| x0 1|
综上,当x0=0时,S取得最小值1.
考点突破
栏目索引
考点突破
方法技巧 圆锥曲线中的最值(范围)问题类型较多,解法灵活多变,但总体上主要有 两种方法:一是几何法,即通过利用曲线的定义、几何性质以及平面几 何中的定理、性质等进行求解;二是代数法,即把要求最值(范围)的几何 量或代数表达式表示为某个(些)变量的函数,然后利用函数方法、基本 不等式方法等进行求解.
栏目索引
考点突破
1-1 (2017北京朝阳一模)过点A(1,0)的直线l与椭圆C: x2 +y2=1相交于E,
3
F两点,自E,F分别向直线x=3作垂线,垂足分别为E1,F1. (1)当直线l的斜率为1时,求线段EF的中点坐标; (2)记△AEE1,△AFF1的面积分别为S1,S2.设λ=S1S2,求λ的取值范围.
[精品]2019高考数学一轮复习第九章平面解析几何9.8圆锥曲线的综合问题练习理
(1) 求直线 FM的斜率 ;
(2) 求椭圆的方程 ;
(3) 设动点 P 在椭圆上 , 若直线 FP 的斜率大于 , 求直线 OP(O为原点 ) 的斜率的取值范围 .
2 22
2
22
2
解析 (1) 由已知有 =, 又由 a =b +c , 可得 a =3c ,b =2c .
设直线 FM的斜率为 k(k>0), 则直线 FM的方程为 y=k(x+c). 由已知 , 有 +=, 解得 k=. (2) 由 (1) 得椭圆方程为 +=1, 直线 FM的方程为 y=(x+c), 两个方程联立 , 消去 y, 整理得 3x2 +2cx-5c 2=0, 解得 x=-c 或 x=c.
A.2 B.3 C. D.
答案 B 5.(2015 江苏 ,12,5 分) 在平面直角坐标系 xOy中 ,P 为双曲线 x2-y 2=1 右支上的一个动点 . 若点 P到直线 x-y+1=0 的距
离大于 c 恒成立 , 则实数 c 的最大值为
.
答案 6.(2016 山东 ,21,14 分) 平面直角坐标系 xOy 中 , 椭圆 C:+=1(a>b>0) 的离心率是 , 抛物线 E:x 2=2y 的焦点 F 是 C 的一
设 A(x 1,y 1),B(x 2,y 2),D(x 0,y 0).
联立
2
2
3
4
得 (4m +1)x -4m x+m-1=0.
由 Δ >0, 得 0<m<(或 0<m2<2+),(*)
且 x1+x2=, 因此 x 0=.
推荐下载
高考数学一轮复习 第九章 平面解析几何9
高考数学一轮复习 第九章 平面解析几何9.13 圆锥曲线压轴小题突破题型一 圆锥曲线与向量、圆等知识的交汇问题例1 (1)(2022·蓉城名校联考)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别是F 1(-c ,0),F 2(c ,0),点P 是椭圆C 上一点,满足|PF 1—→+PF 2—→|=|PF 1—→-PF 2—→|,若以点P 为圆心,r 为半径的圆与圆F 1:(x +c )2+y 2=4a 2,圆F 2:(x -c )2+y 2=a 2都内切,其中0<r <a ,则椭圆C 的离心率为( ) A.12 B.34 C.104D.154答案 C解析 由|PF 1—→+PF 2—→|=|PF 1—→-PF 2—→|两边平方, 可得PF 1—→·PF 2—→=0,则PF 1—→⊥PF 2—→,由已知得⎩⎪⎨⎪⎧|PF 1|=2a -r ,|PF 2|=a -r ,即|PF 1|-|PF 2|=a ,由|PF 1|+|PF 2|=2a ,得⎩⎨⎧|PF 1|=3a2,|PF 2|=a2,在△PF 1F 2中,由|PF 1|2+|PF 2|2=|F 1F 2|2 得9a 24+a 24=4c 2,即e 2=c 2a 2=58,所以e =104. (2)已知O 为坐标原点,双曲线C :x 2-y 23=1的右焦点为F ,直线l 过点F 且与C 的右支交于M ,N 两点,若OM →+ON →=2OA →,OA →·OF →=8,则直线l 的斜率k 为( ) A .±2 B .±6 C .±2 2 D .±3答案 B解析 设M (x 1,y 1),N (x 2,y 2),A (x 0,y 0), 由题意可知F (2,0),A 是线段MN 的中点, OA →·OF →=2x 0=8, ∴x 0=4,∵M ,N 分别是双曲线右支上的点,∴⎩⎨⎧x 21-y 213=1,x 22-y223=1,两式相减并整理得 (x 1+x 2)(x 1-x 2)-y 1+y 2y 1-y 23=0,∴2x 0-2y 0·k3=0,即4-y 0·k 3=0,又k =k AF =y 0x 0-2=y 02,∴y 0=±26,∴k =±6. 经检验,符合题意.思维升华 高考对圆锥曲线的考查,经常出现一些与其他知识交汇的题目,如与平面向量交汇、与三角函数交汇、与不等式交汇、与导数交汇等等,这些问题的实质是圆锥曲线问题. 跟踪训练1 (1)(2022·深圳模拟)F 1,F 2分别为双曲线C :x 2-y 22=1的左、右焦点,过F 1的直线l 与C 的左、右两支曲线分别交于A ,B 两点,若l ⊥F 2B ,则F 2A —→·F 2B —→等于( )A .4-2 3B .4+ 3C .6-2 5D .6+2 5答案 C解析 在双曲线C 中,a =1,b =2,c =3, 则F 1(-3,0),F 2(3,0),因为直线l 过点F 1,由图知,直线l 的斜率存在且不为零,因为l ⊥F 2B ,则△F 1BF 2为直角三角形, 可得|BF 1|2+|BF 2|2 =|F 1F 2|2=12,由双曲线的定义可得|BF 1|-|BF 2|=2, 所以4=(|BF 1|-|BF 2|)2 =|BF 1|2+|BF 2|2-2|BF 1|·|BF 2| =12-2|BF 1|·|BF 2|, 可得|BF 1|·|BF 2|=4,联立⎩⎪⎨⎪⎧|BF 1|-|BF 2|=2,|BF 1|·|BF 2|=4,解得|BF 2|=5-1,因此F 2A —→·F 2B —→=(F 2B —→+BA →)·F 2B —→ =F 2B —→2+BA →·F 2B —→ =(5-1)2=6-2 5.(2)设抛物线y 2=2px (p >0)的焦点为F ,倾斜角为θ⎝⎛⎭⎫0<θ<π2的直线l 经过抛物线的焦点F ,且与抛物线相交于M ,N 两点.若FM →·FN →=-2FN →2,则sin 2θ等于( ) A.223B.13C.24D.429答案 D解析 如图所示,过点M ,N 分别作准线的垂线,垂足分别为D ,C ,直线l 与准线交于点E ,由题意可得 |FM →|=2|FN →|,设|FN |=x ,则|FM |=2x ,由抛物线的定义可知,|CN |=x ,|MD |=2x , |CN ||MD |=|EN ||EM |=12, 所以|EN |=3x ,在△ENC 中,cos ∠ENC =|CN ||EN |=13=cos θ,所以sin θ=223,则sin 2θ=2sin θcos θ=429.题型二 圆锥曲线与三角形“四心”问题例2 (1)在平面直角坐标系xOy 中,F 1(-c,0),F 2(c,0)分别是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,位于第一象限上的点P (x 0,y 0)是双曲线C 上的一点,△PF 1F 2的外心M 的坐标为⎝⎛⎭⎫0,33c ,△PF 1F 2的面积为23a 2,则双曲线C 的渐近线方程为( ) A .y =±x B .y =±22xC .y =±12xD .y =±2x答案 D解析 由△PF 1F 2的外心M ⎝⎛⎭⎫0,33c , 知tan ∠MF 1F 2=tan ∠MF 2F 1=|OM ||OF 1|=33,∴在△MF 1F 2中,∠MF 1F 2=∠MF 2F 1=π6,即∠F 1MF 2=2π3,故∠F 1PF 2=π3,在△F 1PF 2中,|F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1||PF 2|cos ∠F 1PF 2, 而|PF 1|-|PF 2|=2a ,∴|PF 1|2+|PF 2|2=4a 2+2|PF 1||PF 2|, 即4c 2=4a 2+2|PF 1||PF 2|(1-cos ∠F 1PF 2), ∴|PF 1||PF 2|=2c 2-a 21-cos ∠F 1PF 2=2b 21-cos ∠F 1PF 2,而12PF F S △=12|PF 1||PF 2|sin ∠F 1PF 2=b 2sin ∠F 1PF 21-cos ∠F 1PF 2 =3b 2,∴由题意知b 2=2a 2,故双曲线的渐近线方程为y =±2x .(2)已知抛物线C :y 2=2px (p >0)的焦点为F (2,0),过点F 的直线交C 于A ,B 两点,△OAB的重心为点G ,则点G 到直线3x -3y +1=0的距离的最小值为( ) A .2 B. 2 C.22D .2 2答案 C解析 由题意,抛物线方程为y 2=8x , 设直线AB 为x =my +2,A (x 1,y 1),B (x 2,y 2),∴联立直线与抛物线方程得y 2-8my -16=0且Δ=64(m 2+1)>0, 则y 1+y 2=8m ,∴x 1+x 2=m (y 1+y 2)+4=8m 2+4, 又△OAB 的重心为点G , 即G ⎝⎛⎭⎫x 1+x 23,y 1+y 23,∴G⎝⎛⎭⎫8m 2+43,8m 3,则G 到直线3x -3y +1=0的距离d =|8m 2-8m +5|32=⎪⎪⎪⎪8⎝⎛⎭⎫m -122+332,∴当m =12时,d min =|3|32=22.思维升华 圆锥曲线中面积、弦长、最值等几乎成为研究的常规问题.但“四心”问题进入圆锥曲线后,让我们更是耳目一新.在高考数学复习中,通过研究三角形的“四心”与圆锥曲线的结合问题,快速提高数学解题能力.跟踪训练2 (1)已知F 1(-1,0),F 2(1,0),M 是第一象限内的点,且满足|MF 1|+|MF 2|=4,若I 是△MF 1F 2的内心,G 是△MF 1F 2的重心,记△IF 1F 2与△GF 1M 的面积分别为S 1,S 2,则( ) A .S 1>S 2 B .S 1=S 2C .S 1<S 2D .S 1与S 2大小不确定答案 B解析 因为|MF 1|+|MF 2|=4>|F 1F 2|=2,所以M 的轨迹是椭圆x 24+y 23=1在第一象限内的部分,如图所示.因为I 是△MF 1F 2的内心,设内切圆的半径为r , 所以|MF 1|+|MF 2|+|F 1F 2|·r2=|F 1F 2|·y M2, 所以r =y M3,所以S 1=|F 1F 2|·r 2=y M3,又因为G 是△MF 1F 2的重心, 所以OG ∶GM =1∶2, 所以12121323MOF F MF S S S=△△ =13·|F 1F 2|·y M 2=y M3, 所以S 1=S 2.(2)在平面直角坐标系xOy 中,双曲线C 1:x 2a 2-y 2b 2=1(a >0,b >0)的渐近线与抛物线C 2:x 2=2py (p >0)交于点O ,A ,B ,若△OAB 的垂心为C 2的焦点,则C 1的离心率为________. 答案 32解析 设OA 所在的直线方程为y =ba x ,则OB 所在的直线方程为y =-bax ,解方程组⎩⎪⎨⎪⎧y =b a x ,x 2=2py ,得⎩⎨⎧x =2pb a,y =2pb2a 2,所以点A 的坐标为⎝⎛⎭⎫2pb a ,2pb 2a 2 , 抛物线的焦点F 的坐标为⎝⎛⎭⎫0,p2. 因为F 是△OAB 的垂心,所以k OB ·k AF =-1 , 所以-b a ·⎝ ⎛⎭⎪⎫2pb 2a 2-p22pb a=-1⇒b 2a 2=54.所以e 2=c 2a 2=1+b 2a 2=94,解得e =32.题型三 圆锥曲线在生活中的应用例3 (1)(2022·铜仁质检)根据圆锥曲线的光学性质:从双曲线的一个焦点发出的光线,经双曲线反射后,反射光线的反向延长线过双曲线的另一个焦点.由此可得,过双曲线上任意一点的切线,平分该点与两焦点连线的夹角.请解决下面问题:已知F 1,F 2分别是双曲线C :x 2-y 22=1的左、右焦点,若从点F 2发出的光线经双曲线右支上的点A (x 0,2)反射后,反射光线为射线AM ,则∠F 2AM 的角平分线所在的直线的斜率为( ) A .- 3 B .-33C.33D. 3答案 B解析 由已知可得A (x 0,2)在第一象限, 将点A 的坐标代入双曲线方程可得x 20-42=1, 解得x 0=3,所以A (3,2), 又由双曲线的方程可得a =1,b =2,所以c =3,则F 2(3,0),所以|AF 2|=2,且点A ,F 2都在直线x =3上, 又|OF 1|=|OF 2|=3,所以tan ∠F 1AF 2=|F 1F 2||AF 2|=232=3,所以∠F 1AF 2=60°,设∠F 2AM 的角平分线为AN , 则∠F 2AN =(180°-60°)×12=60°,所以∠F 2AM 的角平分成所在的直线AN 的倾斜角为150°, 所以直线的斜率为tan 150°=-33. (2)第24届冬奥会,是中国历史上第一次举办的冬季奥运会,国家体育场(鸟巢)成为北京冬奥会开、闭幕式的场馆.国家体育场“鸟巢”的钢结构鸟瞰图如图1,内外两圈的钢骨架是离心率相同的椭圆,若由外层椭圆长轴一端点A 和短轴一端点B 分别向内层椭圆引切线AC ,BD (如图2),且两切线斜率之积等于-916,则椭圆的离心率为( )图1 图2 A.34 B.74 C.916 D.32 答案 B解析 若内层椭圆方程为x 2a 2+y 2b 2=1(a >b >0),由离心率相同,可设外层椭圆方程为x 2ma2+y 2mb2=1(m >1),∴A (-ma ,0),B (0,mb ), 设切线AC 为y =k 1(x +ma ),切线BD 为y =k 2x +mb , ∴⎩⎪⎨⎪⎧y =k 1x +ma ,x 2a 2+y 2b 2=1,整理得(a 2k 21+b 2)x 2+2ma 3k 21x +m 2a 4k 21-a 2b 2=0, 由Δ=0知(2ma 3k 21)2-4(a 2k 21+b 2)(m 2a 4k 21-a 2b 2)=0,整理得k 21=b 2a 2·1m 2-1,同理⎩⎪⎨⎪⎧y =k 2x +mb ,x 2a 2+y 2b 2=1,可得k 22=b 2a 2·(m 2-1),∴(k 1k 2)2=b 4a 4=⎝⎛⎭⎫-9162,即b 2a 2=916, 故e =ca=a 2-b 2a 2=74. 思维升华 圆锥曲线的光学性质、新定义问题、圆锥曲线的应用等内容在高考占一席之地.研究圆锥曲线的光学性质、新定义问题、圆锥曲线的应用等相关问题,体现出数学的应用性. 跟踪训练3 (1)如图所示,椭圆有这样的光学性质:从椭圆的一个焦点出发的光线,经椭圆反射后,反射光线经过椭圆的另一个焦点.根据椭圆的光学性质解决下题:已知曲线C 的方程为x 2+4y 2=4,其左、右焦点分别是F 1,F 2,直线l 与椭圆C 切于点P ,且|PF 1|=1,过点P 且与直线l 垂直的直线l ′与椭圆长轴交于点M ,则|F 1M |∶|F 2M |等于( )A.2∶ 3 B .1∶ 2 C .1∶3 D .1∶ 3答案 C解析 由椭圆的光学性质得直线l ′平分∠F 1PF 2,因为1212||||PMF PMF S F M M S F△△=12|PF 1||PM |sin ∠F 1PM 12|PF 2||PM |sin ∠F 2PM =|PF 1||PF 2|, 由|PF 1|=1,|PF 1|+|PF 2|=4得|PF 2|=3, 故|F 1M |∶|F 2M |=1∶3.(2)一个工业凹槽的轴截面是双曲线的一部分,它的方程是y 2-x 2=1,y ∈[1,10],在凹槽内放入一个清洁钢球(规则的球体),要求清洁钢球能擦净凹槽的最底部,则清洁钢球的最大半径为( )A .1B .2C .3D .2.5 答案 A解析 清洁钢球能擦净凹槽的最底部时,轴截面如图所示,圆心在双曲线的对称轴上,且圆与双曲线的顶点相切,设半径为r ,圆心为(0,r +1), 圆的方程为x 2+(y -r -1)2=r 2, 代入双曲线方程y 2-x 2=1,得y 2-(r +1)y +r =0,∴y =1或y =r , 要使清洁钢球到达底部,即r ≤1.课时精练1.(2022·遵义模拟)双曲线x 29-y 227=1上一点P 到右焦点F 2的距离为6,F 1为左焦点,则∠F 1PF 2的角平分线与x 轴交点坐标为( ) A .(-1,0) B .(0,0) C .(1,0) D .(2,0)答案 D解析 设交点为D (x ,0),用面积法12121||21||2PDF PDF F D hF h S D S ⋅=⋅△△,化简可得角平分线定理|DF 1||PF 1|=|DF 2||PF 2|,由双曲线定义知|PF 1|=2a +|PF 2|=6+6=12,所以交点到左焦点距离是其到右焦点距离的2倍,因为左焦点(-6,0),右焦点(6,0),所以x +6=2(6-x ),解得x =2.2.天文学家开普勒的行星运动定律可表述为:绕同一中心天体的所有行星的椭圆轨道的长半轴a 的三次方跟它的公转周期T 的二次方的比值都相等,即a 3T 2=k ,k =GM4π2,其中M 为中心天体质量,G 为引力常量,已知地球绕以太阳为中心天体的椭圆轨道的长半轴长约为1.5亿千米,地球的公转周期为1年,距离太阳最远的冥王星绕以太阳为中心天体的椭圆轨道的长半轴长约为60亿千米,取10≈3.1,则冥王星的公转周期约为( ) A .157年 B .220年 C .248年 D .256年答案 C解析 设地球椭圆轨道的长半轴为a 1,公转周期为T 1.冥王星椭圆轨道的长半轴为a 2,公转周期为T 2.则⎩⎨⎧a 31T 21=GM 4π2,a 32T 22=GM 4π2,两式相除并化简得T 22=a 32a 31×T 21=⎝⎛⎭⎫601.53×1=6 400×10, 所以T 2=8010≈80×3.1=248(年).3.(2022·东三省四市联考)已知直线x +y =a 与圆x 2+y 2=4交于A ,B 两点,O 为坐标原点,|OA →+OB →|=3·|OA →-OB →|,则实数a 的值为( ) A .±2 B .±2 C .±3 D .±6答案 D解析 由|OA →+OB →|=3|OA →-OB →|得, (OA →+OB →)2=3(OA →-OB →)2, 又O 为圆x 2+y 2=4的圆心, 则|OA →|=|OB →|=2, 所以OA →·OB →=2,所以|OA →||OB →|cos ∠AOB =2, 即cos ∠AOB =12,所以∠AOB =π3,所以△AOB 为等边三角形,则O 到直线x +y =a 的距离为d =3, 即d =|-a |12+12=3,解得a =±6. 4.(2022·郑州模拟)已知A ,B 是椭圆x 2a 2+y 2b 2=1(a >b >0)长轴的两个端点,P ,Q 是椭圆上关于x 轴对称的两点,直线AP ,BQ 的斜率分别为k 1,k 2(k 1k 2≠0).若椭圆的离心率为22,则|k 1|+|k 2|的最小值为( )A .1 B. 2 C.32D. 3 答案 B解析 设点P (x 0,y 0),则由椭圆的对称性知Q (x 0,-y 0), 不妨令y 0>0,A (-a ,0),B (a ,0), 则k 1=y 0x 0+a ,k 2=-y 0x 0-a ,显然有-a <x 0<a , 则|k 1|+|k 2|=y 0a +x 0+y 0a -x 0=2ay 0a 2-x 20, 因为椭圆的离心率为22, 即e 2=c 2a 2=a 2-b 2a 2=1-b 2a 2=12,即a =2b , x 202b 2+y 20b 2=1⇒x 20=2b 2-2y 20, 则|k 1|+|k 2|=2ay 02b 2-2b 2-2y 20=ay 0, 因为0<y 0≤b ,所以|k 1|+|k 2|=a y 0≥ab =2,当且仅当y 0=b 时取“=”, 即|k 1|+|k 2|的最小值为 2.5.已知在平面直角坐标系xOy 中,点F 1,F 2分别为双曲线C :x 2a 2-y 2=1(a >0)的左、右焦点,点M 在双曲线C 的左支上,MF 2与双曲线C 的一条渐近线交于点D ,且D 为MF 2的中点,点I 为△OMF 2的外心,若O ,I ,D 三点共线,则双曲线C 的离心率为( ) A. 2 B .3 C. 5 D .5 答案 C解析 不妨设点M 在第二象限,设M (m ,n ),F 2(c ,0),由D 为MF 2的中点,O ,I ,D 三点共线知直线OD 垂直平分MF 2,则OD :y =1a x ,故有n m -c =-a ,且12·n =1a ·m +c 2,解得m =a 2-1c ,n =2ac,将M⎝⎛⎭⎫a 2-1c ,2a c ,即M ⎝⎛⎭⎫2a 2-c 2c ,2a c , 代入双曲线的方程可得2a 2-c 22a 2c 2-4a 2c2=1,化简可得c 2=5a 2,即e =5,点M 在第三象限时,同理可得e = 5.6.(2022·白山联考)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,以OF 1为直径的圆与双曲线的一条渐近线交于点M (异于坐标原点O ),若线段MF 1交双曲线于点P ,且MF 2∥OP ,则该双曲线的离心率为( ) A. 2 B. 3 C.52D. 6 答案 A解析 不妨设渐近线的方程为y =-ba x ,因为MF 2∥OP ,O 为F 1F 2的中点, 所以P 为MF 1的中点,将直线OM ,MF 1的方程联立⎩⎨⎧y =-b ax ,y =abx +c ,可得M ⎝⎛⎭⎫-a 2c ,ab c , 又F 1(-c ,0),所以P ⎝⎛⎭⎪⎫-c +⎝⎛⎭⎫-a 2c 2,ab 2c即P ⎝⎛⎭⎫-a 2+c 22c ,ab 2c ,又P 点在双曲线上, 所以a 2+c 224a 2c 2-a 24c 2=1,解得ca=2, 所以该双曲线的离心率为 2.7.已知抛物线C :y 2=8x 的焦点为F ,P 1(x 1,y 1),P 2(x 2,y 2),P 3(x 3,y 3)为抛物线C 上的三个动点,其中x 1<x 2<x 3且y 2<0,若F 为△P 1P 2P 3的重心,记△P 1P 2P 3三边P 1P 2,P 1P 3,P 2P 3的中点到抛物线C 的准线的距离分别为d 1,d 2,d 3,且满足d 1+d 3=2d 2,则P 1P 3所在直线的斜率为( )A .1 B.32 C .2 D .3答案 C解析 由题意知d 1=x 1+x 22+2;d 2=x 1+x 32+2;d 3=x 3+x 22+2,代入d 1+d 3=2d 2中, 得到x 1+2x 2+x 3=2(x 1+x 3), 即2x 2=x 1+x 3.又F 为△P 1P 2P 3的重心,则有x 1+x 2+x 33=2,y 1+y 2+y 33=0,即2x 2=6-x 2,得x 2=2,y 2=-4, 因此有y 1+y 3=4, 所以P 1P 3所在直线的斜率为k =y 1-y 3x 1-x 3=8y 1+y 3=2. 8.(2022·沧州模拟)设F 1,F 2同时为椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)与双曲线C 2:x 2a 21-y 2b 21=1(a 1>0,b 1>0)的左、右焦点,设椭圆C 1与双曲线C 2在第一象限内交于点M ,椭圆C 1与双曲线C 2的离心率分别为e 1,e 2,O 为坐标原点,若( ) A .|F 1F 2|=2|MO |,则1e 21+1e 22= 2B .|F 1F 2|=2|MO |,则1e 21+1e 22=2C .|F 1F 2|=4|MF 2|,则e 1e 2的取值范围是⎝⎛⎭⎫23,32 D .|F 1F 2|=4|MF 2|,则e 1e 2的取值范围是⎝⎛⎭⎫23,1 答案 B解析 如图,设|MF 1|=m ,|MF 2|=n ,焦距为2c ,由椭圆定义可得m +n =2a ,由双曲线定义可得 m -n =2a 1,解得m =a +a 1,n =a -a 1,当|F 1F 2|=2|MO |时,则∠F 1MF 2=90°,所以m 2+n 2=4c 2,即a 2+a 21=2c 2,由离心率的公式可得1e 21+1e 22=2,故B 正确;当|F 1F 2|=4|MF 2|时,可得n =12c ,即a -a 1=12c ,可得1e 1-1e 2=12,由0<e 1<1,可得1e 1>1,可得1e 2>12,即1<e 2<2,则e 1e 2=2e 222+e 2,可设2+e 2=t (3<t <4), 则2e 222+e 2=2t -22t=2⎝⎛⎭⎫t +4t -4, 由f (t )=t +4t -4在(3,4)上单调递增,可得f (t )∈⎝⎛⎭⎫13,1,则e 1e 2∈⎝⎛⎭⎫23,2,故C ,D 不正确.9.(2022·郑州模拟)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右顶点、右焦点分别为A ,F ,过点A 的直线l 与C 的一条渐近线交于点Q ,直线QF 与C 的一个交点为B ,AQ →·AB →=AQ →·FB →,且BQ →=4FQ →,则双曲线的离心率e 为________. 答案3+104解析 在双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)中,A (a ,0),渐近线为y =±ba x ,设右焦点为F (c ,0),由AQ →·AB →=AQ →·FB →⇔AQ →·(AB →+BF →)=0, 即AQ →·AF →=0,即AQ →⊥AF →,直线l :x =a , 由双曲线对称性知,不妨令Q (a ,b ),设B (x 0,y 0),则BQ →=(a -x 0,b -y 0),FQ →=(a -c ,b ), 因为BQ →=4FQ →,则(a -x 0,b -y 0)=4(a -c ,b ), 解得x 0=4c -3a ,y 0=-3b ,即B (4c -3a ,-3b ),又点B 在双曲线C 上, 则有4c -3a 2a 2--3b 2b 2=1,即(4e -3)2=10,解得e =3±104,因为e >1,则e =3+104.10.早在一千多年之前,我国已经把溢流孔技术用于造桥,以减轻桥身重量和水流对桥身的冲击,现设桥拱上有如图所示的4个溢流孔,桥拱和溢流孔轮廓线均为抛物线的一部分,且四个溢流孔轮廓线相同,建立如图所示的平面直角坐标系xOy ,根据图上尺寸,溢流孔ABC 所在抛物线的方程为______,溢流孔与桥拱交点A 的横坐标为________.答案 (x -14)2=-365y 14013解析 设桥拱所在抛物线方程为x 2=-2py , 由图可知,曲线经过(20,-5),代入方程得202=-2p ×(-5),解得p =40, 所以桥拱所在抛物线方程为x 2=-80y . 四个溢流孔轮廓线相同,所以从右往左看, 设第一个抛物线C 1:(x -14)2=-2p ′y , 由图知抛物线C 1经过点A (20,-5), 则(20-14)2=-2p ′×(-5), 解得p ′=185,所以C 1:(x -14)2=-365y .点A 即桥拱所在抛物线x 2=-80y 与 C 1:(x -14)2=-365y 的交点坐标,设A (x ,y ),7<x <14,由⎩⎪⎨⎪⎧x 2=-80y ,x -142=-365y ,7<x <14,解得x =14013.所以点A 的横坐标为14013.11.(2022·江苏七市调研)“康威圆定理”是英国数学家约翰·康威引以为豪的研究成果之一.定理的内容是这样的:如图,△ABC 的三条边长分别为BC =a ,AC =b ,AB =c .延长线段CA 至点A 1,使得AA 1=a ,以此类推得到点A 2,B 1,B 2,C 1和C 2,那么这六个点共圆,这个圆称为康威圆.已知a =4,b =3,c =5,则由△ABC 生成的康威圆的半径为________.答案37解析 设M 是圆心,因为|A 1C 2|=|A 2B 1|=|B 2C 1|,因此点M 到直线AB ,BC ,CA 的距离相等,从而M 是Rt △ABC 的内心,作MN ⊥AC 于N ,连接MC 2,则|MN |=|CN |=3+4-52=1, |NC 2|=1+5=6,所以|MC 2|=12+62=37.12.(2022·苏州模拟)如图,一个酒杯的内壁的轴截面是抛物线的一部分,杯口宽4 2 cm ,杯深8 cm ,称为抛物线酒杯.①在杯口放一个表面积为36π cm 2的玻璃球,则球面上的点到杯底的最小距离为________ cm ;②在杯内放入一个小的玻璃球,要使球触及酒杯底部,则玻璃球的半径的取值范围为________(单位:cm).答案 6 ⎝⎛⎦⎤0,12 解析 因为杯口放一个表面积为36π cm 2的玻璃球,所以球的半径为3 cm ,又因为杯口宽4 2 cm , 所以如图1所示,|AB |=42,|C 1A |=|C 1B |=3,C 1D ⊥AB ,所以|AD |=|BD |=22,所以|C 1D |=|C 1B |2-|DB |2=9-8=1,所以|DE |=2,又因为杯深8 cm ,即|OD |=8,故最小距离为|OD |-|DE |=6,如图1所示,建立直角坐标系,易知B (22,8),设抛物线的方程为y =mx 2,所以将B (22,8)代入,得m =1,故抛物线方程为y =x 2,图1 图2 当杯内放入一个小的玻璃球,要使球触及酒杯底部,如图2,设玻璃球轴截面所在圆的方程为x 2+(y -r )2=r 2, 依题意,需满足抛物线上的点到圆心的距离大于等于半径恒成立,即x 2+x 2-r 2≥r ,则有x 2(x 2+1-2r )≥0恒成立,解得1-2r ≥0,可得0<r ≤12. 所以玻璃球的半径的取值范围为⎝⎛⎦⎤0,12.。
高三数学一轮复习第九章平面解析几何第九节圆锥曲线的
x2
= 3kt
1 3k
2
,
y0=kx0+t= 1 t3k 2 ,
所以H
3kt 1 3k
2
,t 1 3k
2
,
由于| DP
|=| DQ
|,
所以DH⊥PQ,则kDH=- 1k ,
即
t
1 3k 2 3kt
1 3k
2 2 0
=- 1 ,
k
化简得t=1+3k2, ② 所以t>1,将②代入①得,t2<4t,故1<t<4. 所以t的范围是(1,4). 综上可得t∈(-2,4).
文数
课标版
第九节 圆锥曲线的综合问题
考点突破
考点一 圆锥曲线中的范围、最值问题
典例1 已知点A(0,-2),椭圆E: ax22 + by22 =1(a>b>0)的离心率为 23 ,F是椭圆 E的右焦点,直线AF的斜率为 2 3 ,O为坐标原点.
3
(1)求E的方程; (2)设过点A的动直线l与E相交于P,Q两点.当△OPQ的面积最大时,求l的 方程.
2-1 已知椭圆C: ax22 +y2=1(a>1)的上顶点为A,右焦点为F,直线AF与圆M:
(x-3)2+(y-1)2=3相切.
(1)求椭圆C的标准方程;
(2)若不过点A的动直线l与椭圆C交于P,Q两点,且 AP
· AQ
=0,求证:直线l
考点二 圆锥曲线中的定点、定值问题
典例2 (2016北京,19,14分)已知椭圆C: ax22 + by22 =1过A(2,0),B(0,1)两点.
(1)求椭圆C的方程及离心率;
2019-2020年高考数学一轮复习第九章平面解析几何第九节圆锥曲线的综合问题夯基提能作业本文
2019-2020年高考数学一轮复习第九章平面解析几何第九节圆锥曲线的综合问题夯基提能作业本文1.如图,抛物线W:y2=4x与圆C:(x-1)2+y2=25交于A,B两点,点P为劣弧AB上不同于A,B的一个动点,与x轴平行的直线PQ交抛物线W于点Q,则△PQC的周长的取值范围是( )A.(10,14)B.(12,14)C.(10,12)D.(9,11)2.(xx湖南湘中名校联考)已知抛物线y2=2px(p>0)的焦点为F,△ABC的顶点都在抛物线上,且满足++=0,则++= .3.已知椭圆+=1(a>0,b>0)过点(0,1),其长轴长、焦距和短轴长的平方依次成等差数列.直线l与x轴正半轴和y轴分别交于点Q、P,与椭圆分别交于点M、N,各点均不重合且满足=λ1,=λ2.(1)求椭圆的标准方程;(2)若λ1+λ2=-3,试证明:直线l过定点,并求此定点.4.已知椭圆+=1(a>b>0)的左、右焦点分别是F1、F2,其离心率e=,点P为椭圆上的一个动点,△PF1F2面积的最大值为 4.(1)求椭圆的方程;(2)若A,B,C,D是椭圆上不重合的四个点,AC与BD相交于点F1,·=0,求||+||的取值范围.B组提升题组1.(xx湖南长沙模拟)如图,P是直线x=4上一动点,以P为圆心的圆Γ过定点B(1,0),直线l是圆Γ在点B处的切线,过A(-1,0)作圆Γ的两条切线分别与l交于E,F两点.(1)求证:|EA|+|EB|为定值;(2)设直线l交直线x=4于点Q,证明:|EB|·|FQ|=|FB|·|EQ|.2.(xx山东,21,14分)在平面直角坐标系xOy中,已知椭圆C:+=1(a>b>0)的离心率为,椭圆C截直线y=1所得线段的长度为 2.(1)求椭圆C的方程;(2)动直线l:y=kx+m(m≠0)交椭圆C于A,B两点,交y轴于点M.点N是M关于O的对称点,☉N的半径为|NO|.设D为AB的中点,DE,DF与☉N分别相切于点E,F,求∠EDF的最小值.答案精解精析A组基础题组1.C 作出抛物线的准线:x=-1.过点Q向准线引垂线,垂足为H.故|QC|=|QH|.∵PC为圆的半径,∴|PC|=5.∴△PCQ的周长=|PQ|+|QC|+|PC|=|PQ|+|QH|+5.又∵PQ与x轴平行,∴△PCQ的周长=|PH|+5.∵点P为劣弧AB上不同于A,B的动点,A(4,4),B(4,-4),∴5<|PH|<7,∴10<|PH|+5<12.∴△PCQ的周长的取值范围为(10,12).2.答案0解析设A(x1,y1),B(x2,y2),C(x3,y3),F,由++=0,得y1+y2+y3=0.易得k AB==,同理k AC=,k BC=,所以++=++=0.3.解析(1)设椭圆的焦距为2c,由题意知b=1,且(2a)2+(2b)2=2(2c)2,又a2=b2+c2,所以a2=3.所以椭圆的标准方程为+y2=1.(2)证明:由题意设P(0,m),Q(x0,0),M(x1,y1),N(x2,y2),直线l的方程为x=t(y-m),由=λ1知(x1,y1-m)=λ1(x0-x1,-y1),∴y1-m=-y1λ1,由题意得y1≠0,∴λ1=-1.同理由=λ2知λ2=-1.∵λ1+λ2=-3,∴y1y2+m(y1+y2)=0,①由得(t2+3)y2-2mt2y+t2m2-3=0,由题意知Δ=4m2t4-4(t2+3)(t2m2-3)>0,②且有y1+y2=③,y1y2=,④将③④代入①,得t2m2-3+2m2t2=0,∴(mt)2=1,由题意得mt<0,∴mt=-1,满足②,∴直线l的方程为x=ty+1,则直线l过定点(1,0).4.解析(1)由题意得,当点P是椭圆的上、下顶点时,△PF1F2的面积取得最大值, 此时=|F1F2|·|OP|=bc,∴b c=4,因为e=,所以b=2,a=4,所以椭圆的方程为+=1.(2)由(1)得,F1的坐标为(-2,0),因为·=0,所以AC⊥BD,①当直线AC与BD中有一条直线的斜率不存在时,易得||+||=6+8=14.②当直线AC的斜率k存在且k≠0时,设其方程为y=k(x+2),A(x1,y1),C(x2,y2),由得(3+4k2)x2+16k2x+16k2-48=0,x1+x2=,x1x2=,||=|x1-x2|=,此时直线BD的方程为y=-(x+2).同理由可得||=,||+||=+=,令t=k2+1,则||+||=(t>1),因为t>1,0<≤,所以|+||=∈,综上,||+||的取值范围是.B组提升题组1.证明(1)设AE切圆Γ于点M,直线x=4与x轴的交点为N,故|EM|=|EB|.从而|EA|+|EB|=|AM|======4.所以|EA|+|EB|为定值 4.(2)由(1)同理可知|FA|+|FB|=4,故E,F均在椭圆+=1上.设直线EF的方程为x=my+1(m≠0).令x=4,求得y=,即Q点的纵坐标y Q=.由得(3m2+4)y2+6my-9=0.设E(x1,y1),F(x2,y2),则有y1+y2=-,y1y2=-.因为E,B,F,Q在同一条直线上,所以|EB|·|FQ|=|FB|·|EQ|等价于(y B-y1)(y Q-y2)=(y2-y B)(y Q-y1), 即-y1·+y1y2=y2·-y1y2,即2y1y2=(y1+y2)·.将y1+y2=-,y1y2=-代入,知上式成立.所以|EB|·|FQ|=|FB|·|EQ|.2.解析(1)由椭圆的离心率为,得a2=2(a2-b2),又当y=1时,x2=a2-,得a2-=2,所以a2=4,b2=2.因此椭圆方程为+=1.(2)设A(x1,y1),B(x2,y2),联立方程得(2k2+1)x2+4kmx+2m2-4=0,由Δ>0得m2<4k2+2,(*)且x1+x2=-,因此y1+y2=,所以D,又N(0,-m),所以|ND|2=+,整理得|ND|2=,因为|NF|=|m|,所以==1+.令t=8k2+3,t≥3,故2k2+1=,所以=1+=1+.令y=t+,所以y'=1-.当t≥3时,y'>0,从而y=t+在[3,+∞)上单调递增,因此t+≥,当且仅当t=3时等号成立,此时k=0,所以≤1+3=4,由(*)得-<m<且m≠0.故≥.设∠EDF=2θ,则sin θ=≥.所以θ的最小值为,从而∠EDF的最小值为,此时直线l的斜率是0.综上所述:当k=0,m∈(-,0)∪(0,)时,∠EDF取到最小值.。
2020版高考数学大一轮复习第九章平面解析几何第9讲圆锥曲线的综合问题第1课时直线与圆锥曲线课件理新人教版
第1课时 直线与圆锥曲线
考点一 直线与圆锥曲线的位置关系 【例 1】 在平面直角坐标系 xOy 中,已知椭圆 C1:ax22+by22=
1(a>b>0)的左焦点为 F1(-1,0),且点 P(0,1)在 C1 上. (1)求椭圆 C1 的方程; (2)设直线 l 同时与椭圆 C1 和抛物线 C2:y2=4x 相切,求 直线 l 的方程.
y=kx+m 得(1+2k2)x2+4kmx+2m2-2=0.因为直线 l 与椭圆 C1 相切, 所以 Δ1=16k2m2-4(1+2k2)(2m2-2)=0. 整理得 2k2-m2+1=0.①
由yy2==k4xx+,m消去 y,得 k2x2+(2km-4)x+m2=0. 因为直线 l 与抛物线 C2 相切, 所以 Δ2=(2km-4)2-4k2m2=0,整理得 km=1.②
b2=a2-c2,
∴椭圆的方程为x42+y32=1.
(2)由(1)知,以 F1F2 为直径的圆的方程为 x2+y2=1,
∴圆心到直线 l 的距离 d=2|m5|,由 d<1,得|m|< 25.(*)
∴|CD|=2 1-d2=2
1-45m2=
2 5
5-4m2.
设 A(x1,y1),B(x2,y2), 由yx4= 2+-y3212=x+1,m,得 x2-mx+m2-3=0,
解 (1)椭圆 C1 的左焦点为 F1(-1,0),∴c=1, 又点 P(0,1)在曲线 C1 上,∴a02+b12=1,得 b=1,则 a2=b2+c2=2,所以椭圆 C1 的方程为x22+y2=1. (2)由题意可知,直线 l 的斜率显然存在且不等于 0, 设直线 l 的方程为 y=kx+m,由x22+y2=1,消去 y,
(全国通用)2019届高考数学大一轮复习第九章平面解析几何9.9圆锥曲线的综合问题第2课时课件
x y 跟踪训练 (2017· 长沙联考)已知椭圆 2+ 2=1(a>0, b>0)过点(0,1), 其长轴、 a b 焦距和短轴的长的平方依次成等差数列.直线 l 与 x 轴正半轴和 y 轴分别交 → → 于点 Q,P,与椭圆分别交于点 M,N,各点均不重合且满足PM=λ1MQ, → → PN=λ2NQ.
3 解 因为椭圆 C 的离心率为 2 ,且过点 A(2,1), 4 1 3 c 所以a2+b2=1,a= 2 ,
又 a2=b2+c2,所以 a2=8,b2=2, x2 y2 所以椭圆 C 的方程为 8 + 2 =1.
解答
(2)若P,Q是椭圆C上的两个动点,且使∠PAQ的角平分线总垂直于x轴,试 判断直线PQ的斜率是否为定值?若是,求出该值;若不是,请说明理由.
几何画板展示
解答
题型三
探索性问题
师生共研
x2 典例 在平面直角坐标系 xOy 中,曲线 C:y= 与直线 l:y=kx+a(a>0) 4 交于 M,N 两点,
(1)当k=0时,分别求C在点M和N处的切线方程;
解答
(2)y轴上是否存在点P,使得当k变动时,总有∠OPM=∠OPN?说明理由.
解答
思维升华 解决探索性问题的注意事项 探索性问题,先假设存在,推证满足条件的结论,若结论正确则存在, 若结论不正确则不存在. (1)当条件和结论不唯一时要分类讨论; (2) 当给出结论而要推导出存在的条件时,先假设成立,再推出条件; (3)当条件和结论都不知,按常规方法解题很难时,要开放思维,采 取另外合适的方法.
(1)求C的方程;
解答
(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜 率的和为-1,证明:定点问题的两种解法 (1)引进参数法:引进动点的坐标或动线中系数为参数表示变化量,再 研究变化的量与参数何时没有关系,找到定点. (2)特殊到一般法:根据动点或动线的特殊情况探索出定点,再证明该 定点与变量无关.
高考数学大一轮复习第九章平面解析几何9-9圆锥曲线的综合问题第1课时圆锥曲线的综合问题教师用书
【2019最新】精选高考数学大一轮复习第九章平面解析几何9-9圆锥曲线的综合问题第1课时圆锥曲线的综合问题教师用书1.直线与圆锥曲线的位置关系的判断将直线方程与圆锥曲线方程联立,消去一个变量得到关于x(或y)的一元方程:ax2+bx+c=0(或ay2+by+c=0).(1)若a≠0,可考虑一元二次方程的判别式Δ,有①Δ>0⇔直线与圆锥曲线相交;②Δ=0⇔直线与圆锥曲线相切;③Δ<0⇔直线与圆锥曲线相离.(2)若a=0,b≠0,即得到一个一元一次方程,则直线l与圆锥曲线E相交,且只有一个交点,①若E为双曲线,则直线l与双曲线的渐近线的位置关系是平行;②若E为抛物线,则直线l与抛物线的对称轴的位置关系是平行或重合.2.圆锥曲线的弦长设斜率为k(k≠0)的直线l与圆锥曲线C相交于A(x1,y1),B(x2,y2)两点,则|AB|=|x2-x1|=|y2-y1|.【知识拓展】过一点的直线与圆锥曲线的位置关系(1)过椭圆外一点总有两条直线与椭圆相切;过椭圆上一点有且只有一条直线与椭圆相切;过椭圆内一点的直线与椭圆相交.(2)过抛物线外一点总有三条直线和抛物线有且只有一个公共点:两条切线和一条与对称轴平行或重合的直线;过抛物线上一点总有两条直线与抛物线有且只有一个公共点:一条切线和一条与对称轴平行或重合的直线;过抛物线内一点只有一条直线与抛物线有且只有一个公共点:一条与对称轴平行或重合的直线.(3)过双曲线外不在渐近线上的一点总有四条直线与双曲线有且只有一个交点:两条切线和两条与渐近线平行的直线;过双曲线上一点总有三条直线与双曲线有且只有一个交点:一条切线和两条与渐近线平行的直线;过双曲线内一点总有两条直线与双曲线有且只有一个交点:两条与渐近线平行的直线.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)直线l与抛物线y2=2px只有一个公共点,则l与抛物线相切.( ×)(2)直线y=kx(k≠0)与双曲线x2-y2=1一定相交.( ×)(3)与双曲线的渐近线平行的直线与双曲线有且只有一个交点.( √)(4)直线与椭圆只有一个交点⇔直线与椭圆相切.( √ )(5)过点(2,4)的直线与椭圆+y2=1只有一条切线.( × )(6)满足“直线y =ax +2与双曲线x2-y2=4只有一个公共点”的a 的值有4个.( √ )1.(2017·杭州高级中学月考)在同一平面直角坐标系中,方程a2x2+b2y2=1与ax +by2=0(a>b>0)表示的曲线大致是( )答案 D解析 将方程a2x2+b2y2=1变形为+=1,∵a>b>0,∴<,∴椭圆焦点在y 轴上.将方程ax +by2=0变形为y2=-x ,∵a>b>0,∴-<0,∴抛物线焦点在x 轴负半轴上,开口向左.2.(2016·青岛模拟)直线y =kx -k +1与椭圆+=1的位置关系为( )A .相交B .相切C .相离D .不确定 答案 A解析 直线y =kx -k +1=k(x -1)+1恒过定点(1,1),又点(1,1)在椭圆内部,故直线与椭圆相交.3.若直线y =kx 与双曲线-=1相交,则k 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,23B.⎝ ⎛⎭⎪⎫-23,0 C.⎝ ⎛⎭⎪⎫-23,23 D.∪⎝ ⎛⎭⎪⎫23,+∞ 答案 C解析 双曲线-=1的渐近线方程为y =±x,若直线与双曲线相交,数形结合,得k∈.4.(教材改编)已知与向量v =(1,0)平行的直线l 与双曲线-y2=1相交于A ,B 两点,则|AB|的最小值为________.答案 4解析 由题意可设直线l 的方程为y =m ,代入-y2=1得x2=4(1+m2),所以x1==2,x2=-2,所以|AB|=|x1-x2|=4,所以|AB|=4≥4,即当m =0时,|AB|有最小值4.第1课时 直线与圆锥曲线题型一 直线与圆锥曲线的位置关系例1 (2016·烟台模拟)已知直线l :y =2x +m ,椭圆C :+=1.试问当m 取何值时,直线l 与椭圆C :(1)有两个不重合的公共点;(2)有且只有一个公共点;(3)没有公共点.解 将直线l 的方程与椭圆C 的方程联立,得方程组⎩⎪⎨⎪⎧ y =2x +m ,①x24+y22=1,②将①代入②,整理得9x2+8mx +2m2-4=0.③方程③根的判别式Δ=(8m)2-4×9×(2m2-4)=-8m2+144.(1)当Δ>0,即-3<m<3时,方程③有两个不同的实数根,可知原方程组有两组不同的实数解.这时直线l 与椭圆C 有两个不重合的公共点.(2)当Δ=0,即m =±3时,方程③有两个相同的实数根,可知原方程组有两组相同的实数解.这时直线l 与椭圆C 有两个互相重合的公共点,即直线l 与椭圆C 有且只有一个公共点.(3)当Δ<0,即m<-3或m>3时,方程③没有实数根,可知原方程组没有实数解.这时直线l 与椭圆C 没有公共点.思维升华 (1)判断直线与圆锥曲线的交点个数时,可直接求解相应方程组得到交点坐标,也可利用消元后的一元二次方程根的判别式来确定,需注意利用判别式的前提是二次项系数不为0.(2)依据直线与圆锥曲线的交点个数求参数时,联立方程并消元,得到一元方程,此时注意观察方程的二次项系数是否为0,若为0,则方程为一次方程;若不为0,则将方程解的个数转化为判别式与0的大小关系求解.(2016·全国乙卷)在直角坐标系xOy中,直线l:y=t(t≠0)交y轴于点M,交抛物线C:y2=2px(p>0)于点P,M关于点P的对称点为N,连接ON并延长交C于点H.(1)求;(2)除H以外,直线MH与C是否有其它公共点?说明理由.解(1)由已知得M(0,t),P,又N为M关于点P的对称点,故N,ON的方程为y=x,代入y2=2px 整理得px2-2t2x=0,解得x1=0,x2=,因此H.所以N为OH的中点,即=2.(2)直线MH与C除H以外没有其它公共点,理由如下:直线MH的方程为y-t=x,即x=(y-t).代入y2=2px得y2-4ty+4t2=0,解得y1=y2=2t,即直线MH与C只有一个公共点,所以除H以外直线MH与C没有其它公共点.题型二弦长问题例2 (2016·全国甲卷)已知A是椭圆E:+=1的左顶点,斜率为k(k>0)的直线交E于A,M两点,点N在E上,MA⊥NA.(1)当|AM|=|AN|时,求△AMN的面积.(2)当2|AM|=|AN|时,证明:<k<2.(1)解设M(x1,y1),则由题意知y1>0,由|AM|=|AN|及椭圆的对称性知,直线AM的倾斜角为.又A(-2,0),因此直线AM的方程为y=x+2.将x=y-2代入+=1得7y2-12y=0,解得y=0或y=,所以y1=.因此△AMN的面积S△AMN=2×××=.(2)证明将直线AM的方程y=k(x+2)(k>0)代入+=1得(3+4k2)x2+16k2x+16k2-12=0,由x1·(-2)=得x1=,故|AM|=|x1+2|=.由题设,直线AN的方程为y=-(x+2),故同理可得|AN|=.由2|AM|=|AN|,得=,即4k3-6k2+3k-8=0,设f(t)=4t3-6t2+3t-8,则k是f(t)的零点,f′(t)=12t2-12t +3=3(2t-1)2≥0,所以f(t)在(0,+∞)上单调递增,又f()=15-26<0,f(2)=6>0,因此f(t)在(0,+∞)有唯一的零点,且零点k 在(,2)内,所以<k<2.思维升华有关圆锥曲线弦长问题的求解方法涉及弦长的问题中,应熟练的利用根与系数的关系、设而不求法计算弦长;涉及垂直关系时也往往利用根与系数的关系、设而不求法简化运算;涉及过焦点的弦的问题,可考虑用圆锥曲线的定义求解.设F1,F2分别是椭圆E:+=1(a>b>0)的左,右焦点,过F1且斜率为1的直线l与E相交于A,B两点,且|AF2|,|AB|,|BF2|成等差数列.(1)求E的离心率;(2)设点P(0,-1)满足|PA|=|PB|,求E的方程.解(1)由椭圆定义知|AF2|+|BF2|+|AB|=4a,又2|AB|=|AF2|+|BF2|,得|AB|=a,l的方程为y=x+c,其中c=.设A(x1,y1),B(x2,y2),则A,B两点的坐标满足方程组消去y,化简得(a2+b2)x2+2a2cx+a2(c2-b2)=0,则x1+x2=,x1x2=.因为直线AB的斜率为1,所以|AB|=|x2-x1|=,即a=,故a2=2b2,所以E的离心率e===.(2)设AB的中点为N(x0,y0),由(1)知x0===-,y0=x0+c=.由|PA|=|PB|,得kPN=-1,即=-1,得c=3,从而a=3,b=3.故椭圆E的方程为+=1.题型三中点弦问题命题点1 利用中点弦确定直线或曲线方程例3 (1)已知椭圆E:+=1(a>b>0)的右焦点为F(3,0),过点F的直线交E于A,B两点.若AB的中点坐标为(1,-1),则E的方程为( )A.+=1B.+=1C.+=1D.+=1(2)已知(4,2)是直线l被椭圆+=1所截得的线段的中点,则l的方程是________________.答案(1)D (2)x+2y-8=0解析 (1)因为直线AB 过点F(3,0)和点(1,-1),所以直线AB 的方程为y =(x -3),代入椭圆方程+=1消去y ,得x2-a2x +a2-a2b2=0,所以AB 的中点的横坐标为=1,即a2=2b2,又a2=b2+c2,所以b =c =3,a =3,选D.(2)设直线l 与椭圆相交于A(x1,y1),B(x2,y2),则+=1,且+=1,两式相减得=-.又x1+x2=8,y1+y2=4,所以=-,故直线l 的方程为y -2=-(x -4),即x +2y -8=0.命题点2 由中点弦解决对称问题例4 (2015·浙江)已知椭圆+y2=1上两个不同的点A ,B 关于直线y =mx +对称.(1)求实数m 的取值范围;(2)求△AOB 面积的最大值(O 为坐标原点).解 (1)由题意知m≠0,可设直线AB 的方程为y =-x +b.由⎩⎪⎨⎪⎧ x22+y2=1,y =-1m x +b ,消去y ,得x2-x +b2-1=0.因为直线y =-x +b 与椭圆+y2=1有两个不同的交点,所以Δ=-2b2+2+>0,①将AB中点M代入直线方程y=mx+,解得b=-②由①②得m<-或m>.(2)令t=∈∪,则|AB|=·.且O到直线AB的距离为d=.设△AOB的面积为S(t),所以S(t)=|AB|·d=≤.当且仅当t2=时,等号成立.故△AOB面积的最大值为.思维升华处理中点弦问题常用的求解方法(1)点差法:即设出弦的两端点坐标后,代入圆锥曲线方程,并将两式相减,式中含有x1+x2,y1+y2,三个未知量,这样就直接联系了中点和直线的斜率,借用中点公式即可求得斜率.(2)根与系数的关系:即联立直线与圆锥曲线的方程得到方程组,化为一元二次方程后,由根与系数的关系求解.(3)解决对称问题除掌握解决中点弦问题的方法外,还要注意:如果点A,B关于直线l对称,则l垂直直线AB且A,B的中点在直线l 上的应用.已知双曲线x2-=1上存在两点M,N关于直线y=x+m对称,且MN的中点在抛物线y2=18x上,则实数m的值为________.答案0或-8解析设M(x1,y1),N(x2,y2),MN的中点P(x0,y0),则⎩⎪⎨⎪⎧x21-y213=1,①x22-y223=1,②x1+x2=2x0, ③y1+y2=2y0, ④由②-①得(x2-x1)(x2+x1)=(y2-y1)(y2+y1),显然x1≠x2.∴·=3,即kMN·=3, ∵M,N 关于直线y =x +m 对称, ∴kMN=-1, ∴y0=-3x0.又∵y0=x0+m ,∴P,代入抛物线方程得m2=18·, 解得m =0或-8,经检验都符合.1.(2016·泰安模拟)斜率为的直线与双曲线-=1恒有两个公共点,则双曲线离心率的取值范围是( ) A .[2,+∞) B .(2,+∞) C .(1,) D .(,+∞)答案 B解析 要使直线与双曲线恒有两个公共点, 则渐近线的斜率的绝对值应大于, 所以||>,∴e= >2, 即e∈(2,+∞),故选B.2.(2016·青岛模拟)已知抛物线y2=2px(p>0)与直线ax +y -4=0相交于A,B两点,其中A点的坐标是(1,2).如果抛物线的焦点为F,那么|FA|+|FB|等于( )A.5 B.6 C.3 D.7答案D解析把点A的坐标(1,2)分别代入抛物线y2=2px与直线方程ax+y-4=0,得p=2,a=2,由消去y,得x2-5x+4=0,则xA+xB=5.由抛物线定义得|FA|+|FB|=xA+xB+p=7,故选D.3.(2016·丽水一模)斜率为1的直线l与椭圆+y2=1相交于A,B 两点,则|AB|的最大值为( )A.2 B. C. D.8105答案C解析设A,B两点的坐标分别为(x1,y1),(x2,y2),直线l的方程为y=x+t,由消去y,得5x2+8tx+4(t2-1)=0,则x1+x2=-t,x1x2=.∴|AB|=|x1-x2|=·+-4x1x2=·-85-4×-5=·,当t=0时,|AB|max=.4.(2016·天津模拟)直线y=x+3与双曲线-=1的交点个数是( )A.1 B.2 C.1或2 D.0答案A解析因为直线y=x+3与双曲线的渐近线y=x平行,所以它与双曲线只有1个交点,故选A.5.设双曲线-=1(a>0,b>0)的一条渐近线与抛物线y=x2+1只有一个公共点,则双曲线的离心率为( )A. B.5 C. D. 5答案D解析双曲线-=1的一条渐近线为y=x,由方程组消去y,得x2-x+1=0有唯一解,所以Δ=()2-4=0,=2,e==== .6.过抛物线y2=4x的焦点作一条直线与抛物线相交于A,B两点,它们到直线x=-2的距离之和等于5,则这样的直线( )A.有且仅有一条B.有且仅有两条C.有无穷多条D.不存在答案D解析抛物线y2=4x的焦点坐标为(1,0),准线方程为x=-1,设A,B的坐标分别为(x1,y1),(x2,y2),则A,B到直线x=-1的距离之和为x1+x2+2.设直线方程为x=my+1,代入抛物线y2=4x,则y2=4(my+1),即y2-4my-4=0,∴x1+x2=m(y1+y2)+2=4m2+2.∴x1+x2+2=4m2+4≥4.∴A,B到直线x=-2的距离之和为x1+x2+2+2≥6>5.∴满足题意的直线不存在.7.已知抛物线y2=4x的弦AB的中点的横坐标为2,则|AB|的最大值为________.答案6解析设A(x1,y1),B(x2,y2),则x1+x2=4,那么|AF|+|BF|=x1+x2+2,又|AF|+|BF|≥|AB|⇒|AB|≤6,当AB过焦点F时取得最大值6. 8.过椭圆+=1内一点P(3,1),且被这点平分的弦所在直线的方程是____________.答案3x+4y-13=0解析设直线与椭圆交于A(x1,y1),B(x2,y2)两点,由于A,B两点均在椭圆上,故+=1,+=1,两式相减得+-+=0.16又∵P是A,B的中点,∴x1+x2=6,y1+y2=2,∴kAB==-.∴直线AB 的方程为y -1=-(x -3). 即3x +4y -13=0.9.已知F1,F2分别是椭圆C :+=1(a>b>0)的左,右焦点,A 是其上顶点,且△AF1F2是等腰直角三角形,延长AF2与椭圆C 交于另一点B ,若△AF1B 的面积为6,则椭圆C 的方程为________. 答案 +=1解析 因为△AF1F2为等腰直角三角形, 所以b =c ,a =c ,设|BF2|=x ,则由椭圆的定义可知|BF1|=2c -x ,在△BF1F2中,由余弦定理可知(2c -x)2=x2+4c2-2x·2c·cos, 解得x =,所以=+=×2c×c+×2c×c×sin=6,1AF BS 12AF F S12BF F S解得c2=,所以b2=,a2=9, 则椭圆的方程为+=1.10.已知双曲线C :x2-=1,直线y =-2x +m 与双曲线C 的右支交于A ,B 两点(A 在B 的上方),且与y 轴交于点M ,则的取值范围为________. 答案 (1,7+4)解析 由可得x2-4mx +m2+3=0,由题意得方程在[1,+∞)上有两个不相等的实根, 设f(x)=x2-4mx +m2+3,则得m>1,设A(x1,y1),B(x2,y2)(x1<x2), 得x1=2m -,x2=2m +, 所以==2m +-2m --=-1+,由m>1得,的取值范围为(1,7+4).11.(2016·郑州模拟)已知椭圆的中心在原点,焦点在x 轴上,离心率为,且椭圆经过圆C :x2+y2-4x +2y =0的圆心. (1)求椭圆的方程;(2)设直线l 过椭圆的焦点且与圆C 相切,求直线l 的方程. 解 (1)圆C 方程化为(x -2)2+(y +)2=6, 圆心C(2,-),半径r =. 设椭圆的方程为+=1(a>b>0),则⇒⎩⎪⎨⎪⎧a2=8,b2=4.∴所求的椭圆方程是+=1.(2)由(1)得到椭圆的左,右焦点分别是F1(-2,0),F2(2,0),|F2C|==<.∴F2在C 内,故过F2没有圆C 的切线,设l 的方程为y =k(x +2),即kx -y +2k =0.点C(2,-)到直线l 的距离d =, 由d =,得=. 解得k =或k =-,故l的方程为x-5y+2=0或x+y+2=0.12.(2015·课标全国Ⅱ)已知椭圆C:+=1(a>b>0)的离心率为,点(2,)在C上.(1)求C的方程;(2)直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M,证明:直线OM的斜率与直线l的斜率的乘积为定值.(1)解由题意得=,+=1,解得a2=8,b2=4.所以C的方程为+=1.(2)证明设直线l:y=kx+b(k≠0,b≠0),A(x1,y1),B(x2,y2),M(xM,yM).将y=kx+b代入+=1,得(2k2+1)x2+4kbx+2b2-8=0.故xM==,yM=k·xM+b=.于是直线OM的斜率kOM==-,即kOM·k=-.所以直线OM的斜率与直线l的斜率的乘积为定值.*13.(2016·广州联考)已知点P是圆O:x2+y2=1上任意一点,过点P作PQ⊥y轴于点Q,延长QP到点M,使=.(1)求点M的轨迹E的方程;(2)过点C(m,0)作圆O的切线l,交(1)中曲线E于A,B两点,求△AOB 面积的最大值.解 (1)设点M(x ,y),∵=,∴P 为QM 的中点,又PQ⊥y 轴,∴P(,y). ∵点P 是圆O :x2+y2=1上的点, ∴()2+y2=1,即点M 的轨迹E 的方程为+y2=1. (2)由题意可知直线l 不与y 轴垂直, 故可设l :x =ty +m ,t∈R,A(x1,y1),B(x2,y2).∵l 与圆O :x2+y2=1相切, ∴=1,即m2=t2+1. ①联立消去x ,得(t2+4)y2+2mty +m2-4=0. 其中Δ=(2mt)2-4(t2+4)(m2-4) =16(t2-m2)+64=48>0. ∴y1+y2=-,y1y2=. ②∴|AB|=-+-=-+-=.将①②代入上式得 |AB|=4m2t2+--t2+4=,|m|≥1, ∴S△AOB=|AB|·1=×43|m|m2+3=≤=1,当且仅当|m|=,即m=±时,等号成立.∴(S△AOB)max=1.。
2019-2020年高考数学一轮复习第九章平面解析几何第九节圆锥曲线的综合问题夯基提能作业本文(I)
2019-2020年高考数学一轮复习第九章平面解析几何第九节圆锥曲线的综合问题夯基提能作业本文(I)1.(xx北京,19,14分)已知椭圆C:x2+2y2=4.(1)求椭圆C的离心率;(2)设O为原点.若点A在直线y=2上,点B在椭圆C上,且OA⊥OB,求线段AB长度的最小值.2.(xx北京东城一模)已知椭圆W:+=1(a>b>0)的左右焦点分别为F1,F2,且|F1F2|=2,椭圆上一动点P满足|PF1|+|PF2|=2.(1)求椭圆W的标准方程及离心率;(2)如图,过点F1作直线l1与椭圆W交于点A,C,过点F2作直线l2⊥l1,且l2与椭圆W交于点B,D,l1与l2交于点E,试求四边形ABCD的面积的最大值.3.(xx北京西城期末)已知椭圆C:+=1(a>b>0)的离心率为,点A在椭圆C上,O为坐标原点.(1)求椭圆C的方程;(2)设动直线l与椭圆C有且仅有一个公共点,且l与圆x2+y2=5相交于不在坐标轴上的两点P1,P2,记直线OP1,OP2的斜率分别为k1,k2,求证:k1·k2为定值.4.(xx北京朝阳一模)已知椭圆C:+=1的焦点分别为F1,F2.(1)求以线段F1F2为直径的圆的方程;(2)过点P(4,0)任作一条直线l与椭圆C交于不同的两点M,N.在x轴上是否存在点Q,使得∠PQM+∠PQN=180°?若存在,求出点Q的坐标;若不存在,请说明理由.B组提升题组5.(xx北京海淀二模)已知F1(-1,0)、F2(1,0)分别是椭圆C:+=1(a>0)的左、右焦点.(1)求椭圆C的方程;(2)若A,B分别在直线x=-2和x=2上,且AF1⊥BF1.(i)当△ABF1为等腰三角形时,求△ABF1的面积;(ii)求点F1,F2到直线AB距离之和的最小值.6.(xx北京海淀二模)已知曲线C:+=1(y≥0),直线l:y=kx+1与曲线C交于A,D两点,A,D两点在x轴上的射影分别为点B,C.(1)当点B坐标为(-1,0)时,求k的值;(2)记△OAD的面积为S1,四边形ABCD的面积为S2.(i)若S1=,求|AD|的值;(ii)求证:≥.答案精解精析A组基础题组1.解析(1)由题意,知椭圆C的标准方程为+=1.所以a2=4,b2=2,从而c2=a2-b2=2.因此a=2,c=.故椭圆C的离心率e==.(2)设点A,B的坐标分别为(t,2),(x0,y0),其中x0≠0.因为OA⊥OB,所以·=0,即tx0+2y0=0,解得t=-.又+2=4,所以|AB|2=(x0-t)2+(y0-2)2=+(y0-2)2=+++4=+++4=++4(0<≤4).因为+≥4(0<≤4),当且仅当=4时等号成立,所以|AB|2≥8.故线段AB长度的最小值为2.2.解析(1)由已知,得解得所以椭圆W的标准方程为+=1,离心率e==.(2)连接EO.由题意知EF1⊥EF2,所以|EO|=|F1F2|=1.所以点E的轨迹是以原点为圆心,1为半径的圆.显然点E在椭圆W的内部.S四边形ABCD=S△ABC+S△ADC=|AC|·|BE|+|AC|·|DE|=|AC|·|BD|.①当直线l1,l2中的一条直线与x轴垂直时,不妨令l2⊥x轴,此时AC为长轴,BD⊥x轴,把x=1代入椭圆方程,可求得y=±,则|BD|=,此时S四边形ABCD=|AC|·|BD|=4.②当直线l1,l2的斜率都存在时,设直线l1:x=my-1(m≠0),A(x1,y1),B(x2,y2).联立消去x,得(2m2+3)y2-4my-4=0.所以y1+y2=,y1y2=,则|AC|==.同理,|BD|=.S四边形ABCD=|AC|·|BD|=××====4<4.综上,四边形ABCD的面积的最大值为4.3.解析(1)由题意,得=,a2=b2+c2,又因为点A在椭圆C上,所以+=1,解得a=2,b=1,c=,所以椭圆C的方程为+y2=1.(2)证明:当直线l的斜率不存在时,由题意知l的方程为x=±2,易得直线OP1,OP2的斜率之积k1·k2=-.当直线l的斜率存在时,设l的方程为y=kx+m(k≠0).由得(4k2+1)x2+8kmx+4m2-4=0,因为直线l与椭圆C有且只有一个公共点,所以Δ=(8km)2-4(4k2+1)(4m2-4)=0,即m2=4k2+1.由得(k2+1)x2+2kmx+m2-5=0,设P1(x1,y1),P2(x2,y2),则x1+x2=,x1x2=,所以k1·k2=====,将m2=4k2+1代入上式,得k1·k2==-.综上,k1·k2为定值-.4.解析(1)因为a2=4,b2=2,所以c2=2.所以以线段F1F2为直径的圆的方程为x2+y2=2.(2)假设存在点Q(m,0),使得∠PQM+∠PQN=180°,则直线QM和QN的斜率存在,分别设为k1,k2.则k1+k2=0.依题意,知直线l的斜率存在,故设直线l的方程为y=k(x-4).由得(2k2+1)x2-16k2x+32k2-4=0.因为直线l与椭圆C有两个交点,所以Δ>0.即(-16k2)2-4(2k2+1)(32k2-4)>0,解得k2<.设M(x1,y1),N(x2,y2),则x1+x2=,x1x2=,y1=k(x1-4),y2=k(x2-4). k1+k2=+=0,即(x1-m)y2+(x2-m)y1=0,即(x1-m)k(x2-4)+(x2-m)k(x1-4)=0,当k≠0时,2x1x2-(m+4)(x1+x2)+8m=0,所以2·-(m+4)·+8m=0,化简得=0,所以m=1.当k=0时,也成立.所以存在点Q(1,0),使得∠PQM+∠PQN=180°.B组提升题组5.解析(1)由题意可得a2-3=1,所以a2=4,所以椭圆C的方程为+=1.(2)由题意可设A(-2,m),B(2,n),因为AF1⊥BF1,所以·=0,所以(1,-m)·(-3,-n)=0,所以mn=3①.(i)因为AF1⊥BF1,所以当△ABF1为等腰三角形时,只能是|AF1|=|BF1|,即=,化简得m2-n2=8②.由①②可得或所以=|AF1||BF1|=×()2=5.(ii)直线AB:y=(x+2)+m,化简得(n-m)x-4y+2(m+n)=0,设点F1,F2到直线AB的距离分别为d1,d2,则d1+d2=+.因为点F1,F2在直线AB的同一侧,所以d1+d2==4.因为mn=3,所以m2+n2≥2mn=6(当且仅当m=n时取等号),d1+d2=4=4,所以d1+d2=4≥2.当m=n=或m=n=-时,点F1,F2到直线AB的距离之和取得最小值2.6.解析(1)因为B(-1,0),所以设A(-1,y0),代入+=1(y≥0),解得y0=,将A代入直线y=kx+1,得k=-.(2)(i)解法一:设点E(0,1),A(x1,y1),D(x2,y2).由得(3+4k2)x2+8kx-8=0,所以因为S1=|OE|(|x1|+|x2|)=×1·|x1-x2|=|x1-x2|,而|x1-x2|=,所以S1=·=,所以=,所以=,解得k=0,所以|AD|==.解法二:设点E(0,1),A(x1,y1),D(x2,y2). 由得(3+4k2)x2+8kx-8=0,所以点O到直线AD的距离d=,|AD|=|x1-x2|=·.所以S1=|AD|·d=·==.所以=,解得k=0.所以|AD|==.(ii)证明:因为S2=(y1+y2)|x1-x2|,所以==,而y1+y2=kx1+1+kx2+1=k(x1+x2)+2,所以==≥=.。
2019-2020最新高三数学一轮总复习第九章平面解析几何第八节圆锥曲线的综合问题第一课时直线与圆锥曲线的位
答案:2
2.椭圆ax2+by2=1与直线y=1-x交于A,B两点,过原点与线段AB中点的直线的斜率为,则=________.
解析:设A(x1,y1),B(x2,y2),AB的中点M(x0,y0),结合题意,由点差法得,=-·=-·=-·=-1,∴=.
解析:由题可设斜率存在的切线的方程为y-=k(x-1)(k为切线的斜率),即2kx-2y-2k+1=0,
由=1,解得k=-,
所以圆x2+y2=1的一条切线的方程为3x+4y-5=0,
可求得切点的坐标为,
易知另一切点的坐标为(1,0),
则直线AB的方程为y=-2x+2,
令y=0得右焦点为(1,0),
令x=0得上顶点为(0,2),
解析:∵y2=4x,∴F(1,0),准线l:x=-1,过焦点F且斜率为的直线l1:y=(x-1),与y2=4x联立,解得A(3,2),∴AK=4,∴S△AKF=×4×2=4.
答案:4
5.中心为原点,一个焦点为F(0,5)的椭圆,截直线y=3x-2所得弦中点的横坐标为,则该椭圆方程为________.
∴·=-+==4(定值).
10.(20xx·无锡一中检测)已知椭圆E:+=1(a>b>0)的离心率为,右焦点为F(1,0).
(1)求椭圆E的标准方程;
(2)设点O为坐标原点,过点F作直线l与椭圆E交于M,N两点,若OM⊥ON,求直线l的方程.
解:(1)依题意可得解得a=,b=1,
所以椭圆E的标准方程为+y2=1.
解析:由已知得c=5,
设椭圆的方程为+=1,联立得
消去y得(10a2-450)x2-12(a2-50)x+4(a2-50)-a2(a2-50)=0,
北京专用2019版高考数学一轮复习第九章平面解析几何第九节圆锥曲线的综合问题课件文20180524334
圆锥曲线的综合问题
总纲目录 考点突破
考点一 考点二 考点三 圆锥曲线中的范围、最值问题 圆锥曲线中的定点、定值问题 圆锥曲线中的探索性问题
考点突破
考点一
典例1
圆锥曲线中的范围、最值问题
x 2 y 2 (2018北京东城期末)已知椭圆C: + =1(a>b>0)的右焦点F(1, a 2 b 2
y 02 x 0 = 所以S= x0 1
1 = × x0 1 2
x 02 1 2 x = × 0 x0 1
1 2
x 02 2 x 0 2 x0 1
1 x0 1
| x0 1|ቤተ መጻሕፍቲ ባይዱ
2
1 ≥1( < 1 = x 0< 且x0≠ 2 1), | x 1| 0
0)与短轴两个端点的连线互相垂直. (1)求椭圆C的标准方程; (2)设点Q为椭圆C上一点,过原点O且垂直于QF的直线与直线y=2交于 点P,求△OPQ的面积S的最小值.
b 1, 2 , 解析 (1)由题意,得 c 1解得 a= . a2 b2 c2, x 2 所以椭圆C的方程为 +y2=1. 2 2 x 2 0 (2)设Q(x0,y0),P(m,2),则 +y =1. 0 2 ①当m=0时,点P(0,2),Q点坐标为(- 2,0)或( ,0), 2
从而四边形ABNM的面积为定值.
方法技巧 1.定点问题的常见解法 (1)根据题意选择参数,建立一个含参数的直线系或曲线系方程,经过分
析、整理,对方程进行等价变形,以找出适合方程且与参数无关的坐标
1-1 (2017北京朝阳一模)过点A(1,0)的直线l与椭圆C: +y2=1相交于E,
核按钮(新课标)高考数学一轮复习 第九章 平面解析几何 9.9 直线与圆锥曲线的位置关系习题 理-人
§9.9 直线与圆锥曲线的位置关系1.直线与圆锥曲线的位置关系直线与圆锥曲线的位置关系,从几何角度来看有三种:相离时,直线与圆锥曲线______公共点;相切时,直线与圆锥曲线有______公共点;相交时,直线与椭圆有______公共点,直线与双曲线、抛物线有一个或两个公共点.一般通过它们的方程来研究:设直线l :Ax +By +C =0与二次曲线C :f (x ,y )=0, 由⎩⎪⎨⎪⎧Ax +By +C =0,f (x ,y )=0消元,如果消去y 后得:ax 2+bx +c =0, (1)当a ≠0时,①Δ>0,则方程有两个不同的解,直线与圆锥曲线有两个公共点,直线与圆锥曲线________; ②Δ=0,则方程有两个相同的解,直线与圆锥曲线有一个公共点,直线与圆锥曲线________; ③Δ<0,则方程无解,直线与圆锥曲线没有公共点,直线与圆锥曲线________. (2)注意消元后非二次的情况,即当a =0时,对应圆锥曲线只可能是双曲线或抛物线.当圆锥曲线是双曲线时,直线l 与双曲线的渐近线的位置关系是________;当圆锥曲线是抛物线时,直线l 与抛物线的对称轴的位置关系是________.(3)直线方程涉及斜率k 要考虑其不存在的情形. 2.直线与圆锥曲线相交的弦长问题(1)直线l :y =kx +m 与二次曲线C :f (x ,y )=0交于A ,B 两点,设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =kx +m ,f (x ,y )=0得ax 2+bx +c =0(a ≠0),则x 1+x 2=________,x 1x 2=________,||AB =_________.(2)若弦过焦点,可得焦点弦,可用焦半径公式来表示弦长,以简化运算. 3.直线与圆锥曲线相交弦的中点问题中点弦问题常用“根与系数的关系”或“点差法”求解.(1)利用根与系数的关系:将直线方程代入圆锥曲线的方程,消元后得到一个一元二次方程,利用根与系数的关系和中点坐标公式建立等式求解.(2)点差法:若直线l 与圆锥曲线C 有两个交点A ,B ,一般地,首先设出A (x 1,y 1),B (x 2,y 2),代入曲线方程,通过作差,构造出x 1+x 2,y 1+y 2,x 1-x 2,y 1-y 2,从而建立中点坐标和斜率的关系.无论哪种方法都不能忽视对判别式的讨论.自查自纠1.无 一个 两个 (1)①相交 ②相切 ③相离 (2)平行或重合 平行或重合2.(1)-b a ca1+k 2||x 1-x 2=1+k 2b 2-4ac||a若过点(0,1)作直线,使它与抛物线y 2=4x 仅有一个公共点,则这样的直线有( ) A .1条 B .2条 C .3条 D .4条解:结合图形分析可知,满足题意的直线共有3条,直线x =0,过点(0,1)且平行于x 轴的直线以及过点(0,1)且与抛物线相切的直线(非直线x =0).故选C .(2015·兰州检测)若直线mx +ny =4和圆O :x 2+y 2=4没有交点,则过点(m ,n )的直线与椭圆x 29+y 24=1的交点个数为( )A .至多1个B .2 C.1D .0解:∵直线mx +ny =4和圆O :x 2+y 2=4没有交点,∴4m 2+n 2>2,∴m 2+n 2<4.∴m 29+n 24<m 29+4-m 24=1-536m 2<1,∴点(m ,n )在椭圆x 29+y 24=1的内部,∴过点(m ,n )的直线与椭圆x 29+y 24=1的交点有2个.故选B .若直线y =kx +2与双曲线x 2-y 2=6的右支交于不同的两点,则k 的取值范围是( ) A.⎝ ⎛⎭⎪⎫-153,153 B.⎝ ⎛⎭⎪⎫0,153C.⎝⎛⎭⎪⎫-153,0 D.⎝ ⎛⎭⎪⎫-153,-1 解:由⎩⎪⎨⎪⎧y =kx +2,x 2-y 2=6得(1-k 2)x 2-4kx -10=0.设直线与双曲线右支交于不同的两点A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧1-k 2≠0,Δ=16k 2-4(1-k 2)×(-10)>0,x 1+x 2=4k 1-k2>0,x 1x 2=-101-k 2>0,解得-153<k <-1.故选D . 直线x -ty -3=0(t ∈R )与椭圆x 225+y 216=1的交点个数为________.解:易知直线x -ty -3=0(t ∈R )过定点P (3,0),而3225+016<1,所以点P 在椭圆x 225+y 216=1内,直线与椭圆的交点个数为2.故填2.已知倾斜角为60°的直线l 通过抛物线x 2=4y 的焦点,且与抛物线相交于A ,B 两点,则弦AB 的长为__________.解:直线l 的方程为y =3x +1,联立⎩⎨⎧y =3x +1,x 2=4y 得y 2-14y +1=0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=14, ∴|AB |=y 1+y 2+p =14+2=16.故填16.类型一 弦的中点问题(1)已知一直线与椭圆4x 2+9y 2=36相交于A ,B 两点,弦AB 的中点坐标为M (1,1),则直线AB的方程为____________.解法一:根据题意,易知直线AB 的斜率存在,设通过点M (1,1)的直线AB 的方程为y =k (x -1)+1,代入椭圆方程,整理得(9k 2+4)x 2+18k (1-k )x +9(1-k )2-36=0.设A ,B 的横坐标分别为x 1,x 2, 则x 1+x 22=-9k (1-k )9k 2+4=1,解之得k =-49. 故直线AB 的方程为y =-49(x -1)+1,即4x +9y -13=0.解法二:设A (x 1,y 1).∵AB 中点为M (1,1),∴B 点坐标是(2-x 1,2-y 1). 将A ,B 点的坐标代入方程4x 2+9y 2=36,得 4x 21+9y 21-36=0,①及4(2-x 1)2+9(2-y 1)2=36, 化简为4x 21+9y 21-16x 1-36y 1+16=0.②①-②,得16x 1+36y 1-52=0,化简为4x 1+9y 1-13=0. 同理可推出4(2-x 1)+9(2-y 1)-13=0.∵A (x 1,y 1)与B (2-x 1,2-y 1)都满足方程4x +9y -13=0, ∴4x +9y -13=0即为所求.解法三:设A (x 1,y 1),B (x 2,y 2)是弦的两个端点,代入椭圆方程,得⎩⎪⎨⎪⎧4x 21+9y 21=36, ①4x 22+9y 22=36, ② ①-②,得4(x 1+x 2)(x 1-x 2)+9(y 1+y 2)(y 1-y 2)=0. ∵M (1,1)为弦的中点,∴x 1+x 2=2,y 1+y 2=2.∴4(x 1-x 2)+9(y 1-y 2)=0.∴k AB =y 1-y 2x 1-x 2=-49.故AB 方程为y -1=-49(x -1),即4x +9y -13=0.故填4x +9y -13=0.(2)(2013·浙江)设F 为抛物线C :y 2=4x 的焦点,过点P (-1,0)的直线l 交抛物线C 于A ,B 两点,点Q为线段AB 的中点.若||FQ =2,则直线l 的斜率等于________.解:由题意知直线l 的斜率存在,设A (x 1,y 1),B (x 2,y 2),直线l 的方程为y =k (x +1),联立⎩⎪⎨⎪⎧y =k (x +1),y 2=4x ,得k 2x 2+(2k 2-4)x +k 2=0,x 1+x 2=-2k 2-4k 2=-2+4k 2,y 1+y 2=k (x 1+x 2)+2k =4k ,设Q (x 0,y 0),则x 0=x 1+x 22=-1+2k 2,y 0=y 1+y 22=2k ,即Q ⎝⎛⎭⎪⎫-1+2k 2,2k ,又F (1,0),∴||FQ =⎝ ⎛⎭⎪⎫-1+2k 2-12+⎝ ⎛⎭⎪⎫2k 2=2,解得k =±1.故填±1.【点拨】(1)本题的三种解法很经典,各有特色,解法一思路直接,但计算量大,解法三计算简捷,所列式子“整齐、美观,对称性强”,但消去x 1,x 2,y 1,y 2时,要求灵活性高,整体意识强.(2)本题解答看似正确,但细想会发现:缺少对“直线与抛物线相交于A ,B 两点”这一几何条件的检验(这是易出错的地方,切记),即⎩⎪⎨⎪⎧k ≠0,Δ=(2k 2-4)2-4k 4>0,解得k ∈(-1,0)∪(0,1),而当k =±1时,直线l 恰好与抛物线相切,似与题意不符.本节课时作业第8题对本题已知条件数据作了修改,使满足题意的直线l 是存在的,进而可求得直线l 的斜率.(1)(2014·江西)过点M (1,1)作斜率为-12的直线与椭圆C :x 2a 2+y2b2=1(a >b >0)相交于A ,B 两点,若M 是线段AB 的中点,则椭圆C 的离心率等于____________.解:设A (x 1,y 1),B (x 2,y 2),则x 21a 2+y 21b 2=1,x 22a 2+y 22b2=1,两式相减得(x 1-x 2)(x 1+x 2)a 2+(y 1-y 2)(y 1+y 2)b 2=0,变形得-b 2(x 1+x 2)a 2(y 1+y 2)=y 1-y 2x 1-x 2,即-2b 22a 2=-12,a 2=2b 2,e =ca=1-⎝ ⎛⎭⎪⎫b a 2=22.故填22.(2)已知双曲线x 2-y 23=1上存在两点M ,N 关于直线y =x +m 对称,且MN 的中点在抛物线y 2=18x 上,则实数m 的值为____________.解:设M (x 1,y 1),N (x 2,y 2),MN 的中点P (x 0,y 0),则⎩⎪⎨⎪⎧x 21-y 213=1,①x 22-y223=1,②x 1+x 2=2x 0,③y 1+y 2=2y 0,④由②-①得(x 2-x 1)(x 2+x 1)=13(y 2-y 1)(y 2+y 1),显然x 1≠x 2. ∴y 2-y 1x 2-x 1·y 2+y 1x 2+x 1=3,即k MN ·y 0x 0=3. ∵M ,N 关于直线y =x +m 对称, ∴k MN =-1,∴y 0=-3x 0.又∵y 0=x 0+m ,∴P ⎝ ⎛⎭⎪⎫-m 4,3m 4, 代入抛物线方程得916m 2=18·⎝ ⎛⎭⎪⎫-m 4, 解得m =0或-8,经检验都符合.故填0或-8.类型二 定点问题(2013·陕西)已知动圆过定点A (4,0),且在y 轴上截得弦MN 的长为8. (1)求动圆圆心的轨迹C 的方程;(2)已知点B (-1,0),设不垂直于x 轴的直线l 与轨迹C 交于不同的两点P ,Q ,若x 轴是∠PBQ 的角平分线,证明直线l 过定点.解:(1)如图,设动圆圆心O 1(x ,y ),由题意,||O 1A =||O 1M ,当O 1不在y 轴上时,过O 1作O 1H ⊥MN 交MN于点H ,则H 是MN 的中点,||MH =12||MN =4,∴||O 1M =x 2+42.又||O 1A =(x -4)2+y 2,∴(x -4)2+y 2=x 2+42,化简得y 2=8x (x ≠0);当O 1在y 轴上时,O 1与O 重合,点O 1的坐标(0,0)也满足方程y 2=8x ,∴动圆圆心的轨迹C 的方程为y 2=8x .(2)证明:如图,设直线l 的方程为y =kx +b (k ≠0),P (x 1,y 1),Q (x 2,y 2),将y =kx +b 代入y 2=8x 中,得k 2x 2+(2kb -8)x +b 2=0,其中Δ=(2kb -8)2-4k 2b 2=64-32kb >0,得kb <2.由根与系数的关系知x 1+x 2=8-2kbk2,① x 1x 2=b 2k2,②∵x 轴是∠PBQ 的角平分线,∴-y 1x 1+1=y 2x 2+1, 即y 1(x 2+1)+y 2(x 1+1)=0,(kx 1+b )(x 2+1)+(kx 2+b )(x 1+1)=0,2kx 1x 2+(b +k )(x 1+x 2)+2b =0,③ 将①②代入③得2kb 2+(k +b )(8-2bk )+2k 2b =0, 化简得k =-b ,此时Δ>0,∴直线l 的方程为y =k (x -1),且过定点(1,0).【点拨】第(1)问设动圆圆心坐标,利用圆的半径、弦的一半和弦心距组成的直角三角形求解,第(2)问设直线方程为y =kx +b ,并与轨迹方程联立,再设两个交点坐标,由题意知直线BP 和BQ 的斜率互为相反数,导出k 和b 的关系,最后应用方程特点证明直线过定点.解析几何解答题的一般命题模式是先根据已知的关系确定一个曲线的方程,然后再结合直线方程与所求曲线方程把问题引向深入,其中的热点问题有:参数范围、最值、定点、定值等问题.在直线与圆锥曲线交于不同两点的相关问题中,一般是设出点的坐标,然后确定点的坐标之间的关系(特别是直线是动直线时这个方法是必需的),再进行整体处理(通常是利用韦达定理处理这类问题).如图所示,等边三角形OAB 的边长为83,且其三个顶点均在抛物线E :x 2=2py (p >0)上.(1)求抛物线E 的方程;(2)设动直线l 与抛物线E 相切于点P ,与直线y =-1相交于点Q ,求证:以PQ 为直径的圆恒过y 轴上某定点.解:(1)依题意,得|OB |=83,∠BOy =30°.设B (x ,y ),则x =|OB |sin30°=43,y =|OB |cos30°=12. ∵点B (43,12)在x 2=2py (p >0)上, ∴(43)2=2p ×12,解得p =2.∴抛物线E 的方程为x 2=4y .(2)证法一:由(1)知y =14x 2,y ′=12x .设P (x 0,y 0),则x 0≠0,且l 的方程为y -y 0=12x 0(x -x 0),即y =12x 0x -14x 20.由⎩⎪⎨⎪⎧y =12x 0x -14x 20,y =-1,得⎩⎪⎨⎪⎧x =x 20-42x 0,y =-1,∴Q ⎝ ⎛⎭⎪⎫x 20-42x 0,-1. 设M (0,y 1),令MP →·MQ →=0对满足y 0=14x 20(x 0≠0)的点(x 0,y 0)恒成立.由于MP →=(x 0,y 0-y 1),MQ →=⎝ ⎛⎭⎪⎫x 20-42x 0,-1-y 1, 由MP →·MQ →=0,得x 20-42-y 0-y 0y 1+y 1+y 21=0,即(y 21+y 1-2)+(1-y 1)y 0=0.(*)由于(*)式对满足y 0=14x 20(x 0≠0)的y 0恒成立,∴⎩⎪⎨⎪⎧1-y 1=0,y 21+y 1-2=0,解得y 1=1. 故以PQ 为直径的圆恒过y 轴上的定点M (0,1).证法二:由(1)知y =14x 2,y ′=12x .设P (x 0,y 0),则x 0≠0, 且l 的方程为y -y 0=12x 0(x -x 0),即y =12x 0x -14x 20.由⎩⎪⎨⎪⎧y =12x 0x -14x 20,y =-1,得⎩⎪⎨⎪⎧x =x 20-42x 0,y =-1,∴Q ⎝ ⎛⎭⎪⎫x 20-42x 0,-1.取x 0=2,此时P (2,1),Q (0,-1),以PQ 为直径的圆为(x -1)2+y 2=2,交y 轴于点M 1(0,1),M 2(0,-1);取x 0=1,此时P ⎝ ⎛⎭⎪⎫1,14,Q ⎝ ⎛⎭⎪⎫-32,-1,以PQ 为直径的圆为⎝ ⎛⎭⎪⎫x +142+⎝ ⎛⎭⎪⎫y +382=12564,交y 轴于M 3(0,1),M 4⎝ ⎛⎭⎪⎫0,-74. 故若满足条件的点M 存在,只能是M (0,1).以下证明点M (0,1)就是所要求的点.∵MP →=(x 0,y 0-1),MQ →=⎝ ⎛⎭⎪⎫x 20-42x 0,-2,MP →·MQ →=x 20-42-2y 0+2=2y 0-2-2y 0+2=0,∴以PQ 为直径的圆恒过y 轴上的定点M (0,1).类型三 定值问题(2014·江西)如图,已知抛物线C :x 2=4y ,过点M (0,2)任作一直线与C 相交于A ,B 两点,过点B 作y 轴的平行线与直线AO 相交于点D (O 为坐标原点).(1)证明:动点D 在定直线上;(2)作C 的任意一条切线l (不含x 轴),与直线y =2相交于点N 1,与(1)中的定直线相交于点N 2.证明:|MN 2|2-|MN 1|2为定值,并求此定值.证明:(1)依题意可设AB 方程为y =kx +2,代入x 2=4y ,得x 2=4(kx +2),即x 2-4kx -8=0. 设A (x 1,y 1),B (x 2,y 2),则有x 1x 2=-8, 直线AO 的方程为y =y 1x 1x ,BD 的方程为x =x 2,解得交点D 的坐标为⎩⎪⎨⎪⎧x =x 2,y =y 1x 2x 1.注意到x 1x 2=-8及x 21=4y 1,则有y =y 1x 1x 2x 21=-8y 14y 1=-2.因此D 点在定直线y =-2(x ≠0)上. (2)依题设,切线l 的斜率存在且不等于0,设切线l 的方程为y =ax +b (a ≠0),代入x 2=4y 得x 2=4(ax +b ),即x 2-4ax -4b =0,由Δ=0得16a 2+16b =0,化简整理得b =-a 2.故切线l 的方程可写为y =ax -a 2. 分别令y =2,y =-2得N 1,N 2的坐标为N 1⎝ ⎛⎭⎪⎫2a +a ,2,N 2⎝ ⎛⎭⎪⎫-2a +a ,-2,则|MN 2|2-|MN 1|2=⎝ ⎛⎭⎪⎫-2a +a 2+42-⎝ ⎛⎭⎪⎫2a +a 2=8,即|MN 2|2-|MN 1|2为定值8.【点拨】求解此类问题的方法一般有两种:(1)从特殊入手,求出定点、定值、定线,再证明定点、定值、定线与变量无关;(2)直接计算、推理,并在计算、推理的过程中消去变量,从而得到定点、定值、定线.应注意到繁难的代数运算是此类问题的特点,设而不求方法、整体思想和消元的思想的运用可有效地简化运算.已知椭圆x 2a 2+y 2b2=1(a >0,b >0)的左焦点F 为圆x 2+y 2+2x =0的圆心,且椭圆上的点到点F 的距离的最小值为2-1.(1)求椭圆方程;(2)已知经过点F 的动直线l 与椭圆交于不同的两点A ,B ,点M ⎝ ⎛⎭⎪⎫-54,0,证明:MA →·MB →为定值.解:(1)圆的标准方程为(x +1)2+y 2=1,则圆心为(-1,0),半径r =1,∴椭圆的半焦距c =1.又椭圆上的点到点F 的距离的最小值为2-1,∴a -c =2-1,即a =2,则b 2=a 2-c 2=1. 故所求椭圆的方程为x 22+y 2=1.(2)证明:①当直线l 与x 轴垂直时,l 的方程为x =-1.可求得A ⎝⎛⎭⎪⎫-1,22,B ⎝ ⎛⎭⎪⎫-1,-22.此时MA →·MB →=⎝ ⎛⎭⎪⎫14,22·⎝ ⎛⎭⎪⎫14,-22=-716.②当直线l 与x 轴不垂直时,设直线l 的方程为y =k (x +1),由⎩⎪⎨⎪⎧y =k (x +1),x 22+y 2=1得(1+2k 2)x 2+4k 2x +2k 2-2=0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-4k 21+2k 2,x 1x 2=2k 2-21+2k 2.∵MA →·MB →=⎝ ⎛⎭⎪⎫x 1+54,y 1·⎝ ⎛⎭⎪⎫x 2+54,y 2=⎝⎛⎭⎪⎫x 1+54⎝ ⎛⎭⎪⎫x 2+54+y 1y 2 =x 1x 2+54(x 1+x 2)+⎝ ⎛⎭⎪⎫542+k (x 1+1)·k (x 2+1)=(1+k 2)x 1x 2+⎝⎛⎭⎪⎫k 2+54(x 1+x 2)+k 2+2516=(1+k 2)·2k 2-21+2k 2+⎝ ⎛⎭⎪⎫k 2+54⎝ ⎛⎭⎪⎫-4k 21+2k 2+k 2+2516=-4k 2-21+2k 2+2516=-2+2516=-716. 综上得MA →·MB →为定值,且定值为-716.类型四 与弦有关的范围与最值问题(2015·浙江)已知椭圆x 22+y 2=1上两个不同的点A ,B 关于直线y =mx +12对称.(1)求实数m 的取值范围;(2)求△AOB 面积的最大值(O 为坐标原点). 解:(1)由题意知m ≠0,可设直线AB 的方程为y =-1mx +b .由⎩⎪⎨⎪⎧x 22+y 2=1,y =-1m x +b ,消去y ,得⎝ ⎛⎭⎪⎫12+1m 2x 2-2b m x +b 2-1=0.∵直线y =-1m x +b 与椭圆x 22+y 2=1有两个不同的交点,∴Δ=-2b 2+2+4m 2>0.①将AB 的中点M ⎝ ⎛⎭⎪⎫2mb m 2+2,m 2b m 2+2的坐标代入直线方程 y =mx +12,解得b =-m 2+22m 2.②由①②得3m 4+4m 2-42m4>0, 即3m 4+4m 2-4>0也即(3m 2-2)(m 2+2)>0,解得m <-63或m >63. (2)令t =1m ∈⎝ ⎛⎭⎪⎫-62,0∪⎝ ⎛⎭⎪⎫0,62,则|AB |=t 2+1·-2t 4+2t 2+32t 2+12,且O 到直线AB 的距离d =t 2+12t 2+1.设△AOB 的面积为S (t ),则S (t )=12|AB |·d =12 -2⎝⎛⎭⎪⎫t 2-122+2≤22, 当且仅当t 2=12时,等号成立.故△AOB 面积的最大值为22. 【点拨】(1)圆锥曲线中的最值问题解决方法一般分两种:一是代数法,从代数的角度考虑,通过建立函数、不等式等模型,利用二次函数法和基本不等式法、换元法、导数法等方法求最值;二是几何法,从圆锥曲线的几何性质的角度考虑,根据圆锥曲线几何意义求最值.(2)解决圆锥曲线中的取值范围问题常从五方面考虑:①利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围;②利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个参数之间的等量关系;③利用隐含的不等关系建立不等式,从而求出参数的取值范围;④利用已知的不等关系构造不等式,从而求出参数的取值范围;⑤利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.设点P (x ,y )到直线x =2的距离与它到定点(1,0)的距离之比为2,并记点P 的轨迹为曲线C .(1)求曲线C 的方程;(2)设M (-2,0),过点M 的直线l 与曲线C 相交于E ,F 两点,当线段EF 的中点落在由四点C 1(-1,0),C 2(1,0),B 1(0,-1),B 2(0,1)构成的四边形内(包括边界)时,求直线l 斜率的取值范围.解:(1)由题意得|x -2|(x -1)2+y2=2, 整理得x 22+y 2=1,即曲线C 的方程为x 22+y 2=1.(2)易知点M 在曲线C 外.显然直线l 的斜率存在,可设直线l 的方程为y =k (x +2).设点E ,F 的坐标分别为(x 1,y 1),(x 2,y 2),线段EF 的中点为G (x 0,y 0), 由⎩⎪⎨⎪⎧y =k (x +2),x 22+y 2=1消去y ,得(1+2k 2)x 2+8k 2x +8k 2-2=0.由Δ=(8k 2)2-4(1+2k 2)(8k 2-2)>0, 解得-22<k <22.①由根与系数的关系得x 1+x 2=-8k21+2k2,于是x 0=x 1+x 22=-4k 21+2k 2,y 0=k (x 0+2)=2k 1+2k2,∵x 0=-4k21+2k 2≤0,∴点G 不可能在y 轴的右边.又直线C 1B 2和C 1B 1的方程分别为y =x +1,y =-x -1, ∴点G 在正方形内(包括边界)的充要条件为⎩⎪⎨⎪⎧y 0≤x 0+1,y 0≥-x 0-1,即⎩⎪⎨⎪⎧2k 1+2k 2≤-4k21+2k 2+1,2k 1+2k 2≥4k 21+2k2-1, 亦即⎩⎪⎨⎪⎧2k 2+2k -1≤0,2k 2-2k -1≤0,解得-3-12≤k ≤3-12,②由①②知,直线l 斜率的取值范围是⎣⎢⎡⎦⎥⎤-3-12,3-12. 类型五 对称问题已知抛物线y =ax 2-1(a ≠0)上总有关于直线x +y =0对称的相异两点,则a 的取值范围是____________.解:设A (x 1,y 1)和B (x 2,y 2)为抛物线y =ax 2-1上的关于直线x +y =0对称的两相异点,则y 1=ax 21-1,y 2=ax 22-1.两式相减,得y 1-y 2=a (x 1-x 2)(x 1+x 2).再由x 1≠x 2,得y 1-y 2x 1-x 2=a (x 1+x 2)=1.设线段AB 的中点为M (x 0,y 0),则x 0=x 1+x 22=12a .由M 点在直线x +y =0上,得y 0=-12a.∴直线AB 的方程为y +12a =x -12a .联立直线AB 与抛物线的方程并消去y ,得ax 2-x +1a-1=0.依题意,上面的方程有两个相异实根,∴Δ=1-4a ⎝ ⎛⎭⎪⎫1a -1>0,解得a >34. ∴a 的取值范围是⎝ ⎛⎭⎪⎫34,+∞.故填⎝ ⎛⎭⎪⎫34,+∞. 【点拨】应用判别式法解决此类对称问题,要抓住三点:(1)中点在对称轴上;(2)两个对称点的连线与对称轴垂直;(3)两点连线与曲线有两个交点,故Δ>0.一般通过“设而不求”“点差法”得到对称点连线的方程,再与曲线方程联立,由判别式不等式求出参数范围.已知椭圆x 22+y 2=1的左焦点为F ,O 为坐标原点.设过点F 且不与坐标轴垂直的直线交椭圆于A ,B 两点,点A 和点B 关于直线l 对称,l 与x 轴交于点G ,则点G 横坐标的取值范围是____________.解:设直线AB 的方程为y =k (x +1)(k ≠0), 代入x 22+y 2=1,整理得(1+2k 2)x 2+4k 2x +2k 2-2=0.∵直线AB 过椭圆的左焦点F 且不垂直于x 轴, ∴方程有两个不等实根.设A (x 1,y 1),B (x 2,y 2),AB 的中点N (x 0,y 0),则x 1+x 2=-4k22k 2+1,x 0=12(x 1+x 2)=-2k22k 2+1,y 0=k (x 0+1)=k2k 2+1,∵点A 和点B 关于直线l 对称, ∴直线l 为AB 的垂直平分线,其方程为y -y 0=-1k(x -x 0).令y =0,得x G =x 0+ky 0=-2k 22k 2+1+k22k 2+1=-k 22k 2+1=-12+14k 2+2,∵k ≠0,∴-12<x G <0,即点G 横坐标的取值范围为⎝ ⎛⎭⎪⎫-12,0. 故填⎝ ⎛⎭⎪⎫-12,0.1.对于圆锥曲线的综合问题,①要注意将曲线的定义性质化,找出定义赋予的条件;②要重视利用图形的几何性质解题(本书多处强调);③要灵活运用韦达定理、弦长公式、斜率公式、中点公式、判别式等解题,巧妙运用“设而不求”“整体代入”“点差法”“对称转换”等方法.2.在给定的圆锥曲线f (x ,y )=0中,求中点为(m ,n )的弦AB 所在直线方程或动弦中点M (x ,y )轨迹时,一般可设A (x 1,y 1),B (x 2,y 2),利用A ,B 两点在曲线上,得f (x 1,y 1)=0,f (x 2,y 2)=0及x 1+x 2=2m (或2x ),y 1+y 2=2n (或2y ),从而求出斜率k AB =y 1-y 2x 1-x 2,最后由点斜式写出直线AB 的方程,或者得到动弦所在直线斜率与中点坐标x ,y 之间的关系,整体消去x 1,x 2,y 1,y 2,得到点M (x ,y )的轨迹方程.3.对满足一定条件的直线或者曲线过定点问题,可先设出该直线或曲线上两点的坐标,利用坐标在直线或曲线上以及切线、点共线、点共圆、对称等条件,建立点的坐标满足的方程或方程组.为简化运算,应多考虑曲线的几何性质,求出相应的含参数的直线或曲线,再利用直线或曲线过定点的知识加以解决.以“求直线l :y =kx +2k +1(k 为参数)是否过定点”为例,有以下常用方法:①待定系数法:假设直线l 过点(c 1,c 2),则y -c 2=k (x -c 1),即y =kx -c 1k +c 2,通过与已知直线方程比较得c 1=-2,c 2=1.所以直线l 过定点(-2,1).②赋值法:令k =0,得l 1:y =1;令k =1,得l 2:y =x +3,求出l 1与l 2的交点(-2,1),将交点坐标代入直线系得1=-2k +2k +1恒成立,所以直线l 过定点(-2,1).赋值法由两步构成,第一步:通过给参数赋值,求出可能的定点坐标;第二步:验证其是否恒满足直线方程.③参数集项法:对直线l 的方程中的参数集项得y -1=k (x +2),由直线的点斜式方程,易知直线l 过定点(-2,1).若方程中含有双参数,应考虑两个参数之间的关系.4.给出曲线上的点到直线的最短(长)距离或求动点到直线的最短(长)距离时,可归纳为求函数的最值问题,也可借助于图形的性质(如三角形的公理、对称性等)求解.5.圆锥曲线上的点关于某一直线对称的问题,通常利用圆锥曲线上的两点所在直线与已知直线l (或者是直线系)垂直,圆锥曲线上两点连成线段的中点一定在对称轴直线l 上,再利用判别式或中点与曲线的位置关系求解.1.已知椭圆x 2+y 22=a 2(a >0)与以A (2,1),B (4,3)为端点的线段没有公共点,则a 的取值范围是( )A.⎝⎛⎭⎪⎫0,322B.⎝ ⎛⎭⎪⎫0,322∪⎝ ⎛⎭⎪⎫822,+∞C.⎝⎛⎭⎪⎫822,+∞ D.⎝ ⎛⎭⎪⎫322,822解:根据题意,将A ,B 两点代入椭圆方程,有⎝ ⎛⎭⎪⎫22+122-a 2⎝ ⎛⎭⎪⎫42+322-a 2>0,解得0<a <322或a >822.故选B .2.已知直线x =1过椭圆x 24+y 2b2=1的焦点,则直线y =kx +2与椭圆至多有一个交点的充要条件是( )A .k ∈⎣⎢⎡⎦⎥⎤-12,12 B .k ∈⎝ ⎛⎦⎥⎤-∞,-12∪⎣⎢⎡⎭⎪⎫12,+∞ C .k ∈⎣⎢⎡⎦⎥⎤-22,22 D .k ∈⎝ ⎛⎦⎥⎤-∞,-22∪⎣⎢⎡⎭⎪⎫22,+∞解:易知椭圆中c 2=a 2-b 2=4-b 2=1,即b 2=3,∴椭圆方程是x 24+y 23=1.联立y =kx +2可得(3+4k 2)x2+16kx +4=0.由Δ≤0可解得k ∈⎣⎢⎡⎦⎥⎤-12,12.故选A . 3.(2014·湖北)设a ,b 是关于t 的方程t 2cos θ+t sin θ=0的两个不等实根,则过A (a ,a 2),B (b ,b 2)两点的直线与双曲线x 2cos 2θ-y 2sin 2θ=1的公共点的个数为( ) A .0B .1C .2D .3解: 显然可知方程两根分别为0,-tan θ(tan θ≠0),则直线AB 的方程为y =(-tan θ)·x ,又该双曲线的渐近线为y =±tan θ·x ,∴直线AB 与双曲线无公共点.故选A .4.(2014·辽宁)已知点A (-2,3)在抛物线C :y 2=2px 的准线上,过点A 的直线与C 在第一象限相切于点B ,记C 的焦点为F ,则直线BF 的斜率为( )A.12B.23C.34D.43解:∵点A (-2,3)在抛物线C :y 2=2px 的准线x =-p 2上,∴-p2=-2,p =4,抛物线C :y 2=8x .设直线AB 的方程为x =k (y -3)-2 ①, 将①与y 2=8x 联立,得y 2-8ky +24k +16=0 ②,Δ=(-8k )2-4(24k +16)=0,解得k =2或k =-12.当k =-12时,切点在第四象限,与题意不符,舍去.将k =2代入①②,得⎩⎪⎨⎪⎧x =8,y =8,即B (8,8).又F (2,0),∴k BF =43.故选D .5.(2015·河南调研)设抛物线y 2=2px (p >0)的焦点为F ,点A ,B 为抛物线上的两个动点,且满足∠AFB=90°.过弦AB 的中点M 作抛物线准线的垂线MN ,垂足为N ,则|MN →||AB →|的最大值为( )A.22B.32C .1 D. 3解:设准线为l ,过A 作AQ ⊥l ,BP ⊥l ,设|AF |=a ,|BF |=b ,由抛物线定义,得|AF |=|AQ |,|BF |=|BP |.在梯形ABPQ 中,2|MN |=|AQ |+|BP |=a +b ,由勾股定理,得|AB |2=a 2+b 2=(a +b )2-2ab .又ab ≤⎝ ⎛⎭⎪⎫a +b 22,∴(a +b )2-2ab ≥(a +b )2-(a +b )22,得|AB |≥22(a +b )=2|MN |,∴|MN →||AB →|≤22,即|MN →||AB →|的最大值为22.故选A .6.椭圆C :x 24+y 23=1的左、右顶点分别为A 1,A 2,点P 在C 上且直线PA 2斜率的取值范围是[-2,-1],那么直线PA 1斜率的取值范围是( )A.⎣⎢⎡⎦⎥⎤12,34B.⎣⎢⎡⎦⎥⎤38,34C.⎣⎢⎡⎦⎥⎤12,1D.⎣⎢⎡⎦⎥⎤34,1 解:由题意知点P 在第一象限,设P 点横坐标为x ,则其纵坐标y =32·4-x 2,由PA 2的斜率知-2≤32·4-x 2x -2≤-1,∵2-x >0,2+x >0,∴上式可化为1≤32·2+x 2-x ≤2,即23≤2+x 2-x ≤43.∴PA 1的斜率k =32·4-x 2x +2=32·2-x 2+x ∈⎣⎢⎡⎦⎥⎤38,34.故选B . 7.已知P (4,2)是直线l 被椭圆x 236+y 29=1截得线段的中点,则直线l 的方程为________.解:线段两端点为A (x 1,y 1),B (x 2,y 2),则x 1+x 2=8,y 1+y 2=4.∵A ,B 在椭圆上,∴⎩⎪⎨⎪⎧x 2136+y 219=1,x 2236+y 229=1,两式相减得(x 1-x 2)(x 1+x 2)36=-(y 1-y 2)(y 1+y 2)9.∵x 1≠x 2,∴k AB =y 1-y 2x 1-x 2=-x 1+x 24(y 1+y 2)=-12.∴直线l 的方程为x +2y -8=0. 故填x +2y -8=0.8.设F 为抛物线C :y 2=4x 的焦点,过点P (-1,0)的直线l 交抛物线C 于A ,B 两点,点Q 为线段AB 的中点.若||FQ =23,则直线l 的斜率等于________.解:设A (x 1,y 1),B (x 2,y 2),直线l 的方程为y =k (x +1),联立⎩⎪⎨⎪⎧y =k (x +1),y 2=4x ,得k 2x 2+(2k 2-4)x +k2=0,由⎩⎪⎨⎪⎧k ≠0,Δ=(2k 2-4)2-4k 4>0,解得k ∈(-1,0)∪(0,1),x 1+x 2=-2k 2-4k 2=-2+4k 2,y 1+y 2=k (x 1+x 2)+2k =4k ,设Q (x 0,y 0),则x 0=x 1+x 22=-1+2k 2,y 0=y 1+y 22=2k ,即Q ⎝⎛⎭⎪⎫-1+2k 2,2k ,又F (1,0),∴||FQ =⎝ ⎛⎭⎪⎫-1+2k 2-12+⎝ ⎛⎭⎪⎫2k 2=23,解得k =±22.故填±22. 9.(2015·河北省唐山市高三年级统考)已知抛物线E :x 2=2py (p >0),直线y =kx +2与E 交于A ,B 两点,且OA →·OB →=2,其中O 为原点.(1)求抛物线E 的方程;(2)点C 坐标为(0,-2),记直线CA ,CB 的斜率分别为k 1,k 2,证明:k 21+k 22-2k 2为定值. 解:(1)将y =kx +2代入x 2=2py ,得x 2-2pkx -4p =0, 其中Δ=4p 2k 2+16p >0. 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2pk ,x 1x 2=-4p ,OA →·OB →=x 1x 2+y 1y 2=x 1x 2+x 212p ·x 222p =-4p +4=2,得p =12,∴抛物线E 的方程为x 2=y .(2)证明:由(1)知,x 1+x 2=k ,x 1x 2=-2.k 1=y 1+2x 1=x 21+2x 1=x 21-x 1x 2x 1=x 1-x 2,同理k 2=x 2-x 1,∴k 21+k 22-2k 2=2(x 1-x 2)2-2(x 1+x 2)2=-8x 1x 2=16,即k 21+k 22-2k 2为定值.10.(2015·西安模拟)设F 1,F 2分别是椭圆x 24+y 2=1的左、右焦点.(1)若P 是该椭圆上的一个动点,求PF 1→·PF 2→的最大值和最小值;(2)设过定点M (0,2)的直线l 与椭圆交于不同的两点A ,B ,且∠AOB 为锐角(其中O 为坐标原点),求直线l 的斜率的取值范围.解:(1)由已知得,F 1(-3,0),F 2(3,0),设点P (x ,y ),则x 24+y 2=1,且-2≤x ≤2.∴PF 1→·PF 2→=(-3-x ,-y )·(3-x ,-y )=x 2-3+y 2=x 2-3+1-x 24=34x 2-2,当x =0,即P (0,±1)时,(PF 1→·PF 2→)min =-2;当x =±2,即P (±2,0)时,(PF 1→·PF 2→)max =1. (2)由题意可知,过点M (0,2)的直线l 的斜率存在. 设l 的方程为y =kx +2, 由⎩⎪⎨⎪⎧y =kx +2,x 24+y 2=1消去y ,化简整理得(1+4k 2)x 2+16kx +12=0,Δ=(16k )2-48(1+4k 2)>0,解得k 2>34.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-16k 1+4k 2,x 1x 2=121+4k2,又∠AOB 为锐角,∴OA →·OB →>0, 即x 1x 2+y 1y 2>0, 有x 1x 2+(kx 1+2)(kx 2+2)=(1+k 2)x 1x 2+2k (x 1+x 2)+4=(1+k 2)·121+4k 2+2k ·-16k 1+4k2+4>0,解得k 2<4,∴34<k 2<4,即k ∈⎝ ⎛⎭⎪⎫-2,-32∪⎝ ⎛⎭⎪⎫32,2. 11.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F (1,0),右顶点为A ,且|AF |=1.(1)求椭圆C 的标准方程;(2)若动直线l :y =kx +m 与椭圆C 有且只有一个交点P ,且与直线x =4交于点Q ,问:是否存在一个定点M (t ,0),使得MP →·MQ →=0?若存在,求出点M 的坐标;若不存在,请说明理由.解:(1)由c =1,a -c =1,得a =2, ∴b = 3.故椭圆C 的标准方程为x 24+y 23=1.(2)由⎩⎪⎨⎪⎧y =kx +m ,3x 2+4y 2=12得 (3+4k 2)x 2+8kmx +4m 2-12=0,Δ=64k 2m 2-4(3+4k 2)(4m 2-12)=0,得m 2=3+4k 2.设P (x P ,y P ),则x P =-4km 3+4k 2=-4k m ,y P =kx P +m =-4k 2m +m =3m ,即P ⎝ ⎛⎭⎪⎫-4k m ,3m .∵M (t ,0),Q (4,4k +m ), ∴MP →=⎝⎛⎭⎪⎫-4km-t ,3m ,MQ →=(4-t ,4k +m ).∴MP →·MQ →=⎝ ⎛⎭⎪⎫-4k m -t ·(4-t )+3m ·(4k +m )=t 2-4t +3+4k m (t -1)=0恒成立,∴⎩⎪⎨⎪⎧t =1,t 2-4t +3=0,得t=1.∴存在点M (1,0)符合题意.(2014·湖北)在平面直角坐标系xOy 中,点M 到点F (1,0)的距离比它到y 轴的距离多1,记点M的轨迹为C .(1)求轨迹C 的方程;(2)设斜率为k 的直线l 过定点P (-2,1).求直线l 与轨迹C 恰好有一个公共点、两个公共点、三个公共点时k 的相应取值范围.解: (1)设点M (x ,y ),依题意得|MF |=|x |+1,即(x -1)2+y 2=|x |+1,化简整理得y 2=2(|x |+x ). 故点M 的轨迹C 的方程为y 2=⎩⎪⎨⎪⎧4x ,x ≥0,0,x <0.(2)在点M 的轨迹C 中,记C 1:y 2=4x ,C 2:y =0(x <0).依题意,可设直线l 的方程为y -1=k (x +2).由方程组⎩⎪⎨⎪⎧y -1=k (x +2),y 2=4x ,可得ky 2-4y +4(2k +1)=0.①当k =0时,此时y =1.把y =1代入轨迹C 的方程,得x =14.故此时直线l :y =1与轨迹C 恰好有一个公共点⎝ ⎛⎭⎪⎫14,1. 当k ≠0时,方程①的判别式为Δ=-16(2k 2+k -1).②设直线l 与x 轴的交点为(x 0,0),则由y -1=k (x +2),令y =0,得x 0=-2k +1k.③(i)若⎩⎪⎨⎪⎧Δ<0,x 0<0,由②③解得k <-1,或k >12.即当k ∈(-∞,-1)∪⎝ ⎛⎭⎪⎫12,+∞时,直线l 与C 1没有公共点,与C 2有一个公共点,故此时直线l 与轨迹C 恰好有一个公共点.(ii) 若⎩⎪⎨⎪⎧Δ=0,x 0<0,或⎩⎪⎨⎪⎧Δ>0,x 0≥0,由②③解得k ∈⎩⎨⎧⎭⎬⎫-1,12,或-12≤k <0. 即当k ∈⎩⎨⎧⎭⎬⎫-1,12时,直线l 与C 1只有一个公共点,与C 2有一个公共点.当k ∈⎣⎢⎡⎭⎪⎫-12,0时,直线l 与C 1有两个公共点,与C 2没有公共点.故当k ∈⎣⎢⎡⎭⎪⎫-12,0∪⎩⎨⎧⎭⎬⎫-1,12时,直线l 与轨迹C 恰好有两个公共点.(iii)若⎩⎪⎨⎪⎧Δ>0,x 0<0,由②③解得-1<k <-12,或0<k <12,即当k ∈⎝⎛⎭⎪⎫-1,-12∪⎝ ⎛⎭⎪⎫0,12时,直线l 与C 1有两个公共点,与C 2有一个公共点,故此时直线l 与轨迹C 恰好有三个公共点.综上知,当k ∈(-∞,-1)∪⎝ ⎛⎭⎪⎫12,+∞∪{0}时,直线l 与轨迹C 恰好有一个公共点;当k ∈⎣⎢⎡⎭⎪⎫-12,0∪⎩⎨⎧⎭⎬⎫-1,12时,直线l 与轨迹C 恰好有两个公共点;当k ∈⎝ ⎛⎭⎪⎫-1,-12∪⎝ ⎛⎭⎪⎫0,12时,直线l 与轨迹C 恰好有三个公共点.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.过点(1,1),且与直线y =-x -1平行的直线方程为( ) A .x +y =0B .x -y =0C .x +y -2=0D .x +y +2=0解:所求直线斜率为-1,由点斜式得y -1=-(x -1),即x +y -2=0.故选C .2.(2015·广元模拟)若直线l 1:x -2y +m =0(m >0)与直线l 2:x +ny -3=0之间的距离是5,则m +n =( )A .0B .1C .-1D .2 解:根据题意,直线l 1和l 2平行,∴⎩⎪⎨⎪⎧n =-2,|m +3|5=5,得⎩⎪⎨⎪⎧m =2(舍去负值),n =-2.∴m +n =0.故选A .3.(2015·山东质检)“m =-1”是“直线mx +(2m -1)y +2=0与直线3x +my +3=0垂直”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件解:若两直线垂直,则3m +m (2m -1)=0,得m =0或-1,故选A .4.(2013·安徽)直线x +2y -5+5=0被圆x 2+y 2-2x -4y =0截得的弦长为( ) A .1B .2C .4D .4 6解:易知圆的标准方程为(x -1)2+(y -2)2=5,圆心为(1,2),半径r =5,则圆心(1,2)到直线x +2y -5+5=0的距离d =||1+4-5+55=1,弦长l =2r 2-d 2=4.故选C .5.若圆心在x 轴上,半径长为5的圆C 位于y 轴左侧,且与直线x +2y =0相切,则圆C 的方程是( ) A .(x +5)2+y 2=5 B .(x -5)2+y 2=5 C .(x +5)2+y 2=5D .(x -5)2+y 2=5解:设圆的方程为(x -a )2+y 2=5(a ≤-5),依题意圆心(a ,0)到直线x +2y =0的距离等于5,即||a 5=5,得a =-5(舍去正值),∴圆的方程为(x +5)2+y 2=5.故选A .6.(2015·山东)一条光线从点(-2,-3)射出,经y 轴反射后与圆(x +3)2+(y -2)2=1相切,则反射光线所在直线的斜率为( )A .-53或-35B .-32或-23C .-54或-45D .-43或-34解:点A (-2,-3)关于y 轴的对称点为A ′(2,-3),由题意知反射光线的斜率存在, 因此可设反射光线所在直线的方程为y +3=k (x -2), 化为kx -y -2k -3=0.∵反射光线与圆(x +3)2+(y -2)2=1相切,∴圆心(-3,2)到直线的距离d =|-3k -2-2k -3|k 2+1=1,即12k 2+25k +12=0,解得k =-43或-34.故选D .7.(2015·皖南八校联考)已知直线l :y =k (x -2)(k >0)与抛物线C :y 2=8x 交于A ,B 两点,F 为抛物线C 的焦点,若|AF |=2|BF |,则k 的值是( )A.13B.223 C .2 2 D.24解:直线y =k (x -2)恰好经过抛物线y 2=8x 的焦点F (2,0),由⎩⎪⎨⎪⎧y 2=8x ,y =k (x -2)可得ky 2-8y -16k =0,∵|FA |=2|FB |,∴y A =-2y B ,∴y A +y B =-2y B +y B =8k ,y B =-8k,y A ·y B =-2y 2B =-16,∴-2·⎝ ⎛⎭⎪⎫-8k 2=-16,得k =22(舍去负值).故选C .8.(2014·全国卷Ⅱ)设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,则|AB |=( )A.303B .6C .12D .7 3解:易知抛物线中p =32,焦点F ⎝ ⎛⎭⎪⎫34,0,直线AB 的斜率k =33,故直线AB 的方程为y =33⎝ ⎛⎭⎪⎫x -34,代入抛物线方程y 2=3x ,整理得x 2-212x +916=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=212,由抛物线的定义可得弦长|AB |=x 1+x 2+p =212+32=12.故选C .9.(2013·北京模拟)设双曲线x 2a 2-y 2b2=1(a >0,b >0)两焦点为F 1,F 2,点Q 为双曲线上除顶点外的任一点,过焦点F 1作∠F 1QF 2的平分线的垂线,垂足为P ,则P 点的轨迹是( )A .椭圆的一部分B .双曲线的一部分C .抛物线的一部分D .圆的一部分解:设点Q 在双曲线的右支上(如图),延长QF 2,交F 1P 的延长线于点M ,连接OP ,则有||QM =||QF 1,P为F 1M 的中点,∴||PO =12||F 2M =12(||QM -||QF 2)=12(||QF 1-||QF 2)=a ,且P 点不能落在x 轴上,故P 点的轨迹是圆的一部分.故选D .10.(2015·银川一模)已知双曲线x 22-y 2b2=1(b >0)的左、右焦点分别是F 1,F 2,其一条渐近线方程为y =x ,点P (3,y 0)在双曲线上,则PF 1→·PF 2→=( )A .-12B .-2C .0D .4解:由渐近线方程为y =x 知,b2=1,∴b =2,∴双曲线方程为x 22-y 22=1.∵点P (3,y 0)在双曲线上,∴y 0=±1,当y 0=1时,P (3,1),F 1(-2,0),F 2(2,0), PF 1→·PF 2→=0;当y 0=-1时,P (3,-1),PF 1→·PF 2→=0. 故选C .11.(2013·全国课标Ⅰ)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交椭圆E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( )A.x 245+y 236=1 B.x 236+y 227=1 C.x 227+y 218=1D.x 218+y 29=1 解:设A ()x 1,y 1,B ()x 2,y 2,则有⎩⎪⎨⎪⎧x 21a 2+y 21b2=1,x 22a 2+y22b 2=1,两式相减得x 21-x 22a 2+y 21-y22b 2=0,依题意知x 1+x 2=2,y1+y 2=-2,代入上式得y 1-y 2x 1-x 2=b 2a 2,由此可得直线AB 的方程为y =b 2a 2(x -3),将点()1,-1代入得b 2a 2=12,又由椭圆的性质知a 2-b 2=c 2=9,解得a 2=18,b 2=9,∴椭圆E 的方程为x 218+y 29=1.故选D .12.(2015·兰州模拟)已知双曲线x 2a2-y 2b2=1(a >0,b >0)与抛物线y 2=2px (p >0)有一个共同的焦点F ,点M 是双曲线与抛物线的一个交点,若|MF |=54p ,则此双曲线的离心率等于( )A .2B .3C. 2D. 3解:∵抛物线y 2=2px (p >0)的焦点F ⎝ ⎛⎭⎪⎫p2,0,∴c =p2>a ,①∴双曲线方程为x 2a 2-y 2p 24-a2=1.∵点M 是双曲线与抛物线的一个交点,且|MF |=54p ,∴x M +p 2=54p ,x M =5p 4-p 2=3p 4,代入抛物线y 2=2px 得M ⎝ ⎛⎭⎪⎫3p 4,±6p 2,代入双曲线方程得9p 4-148p 2a 2+64a 4=0,解得p =4a 或p =23a ,∵p >2a ,∴p =4a .②联立①②两式得c =2a ,即e =2.故选A .二、填空题:本大题共4小题,每小题5分,共20分.13.(2015·秦皇岛检测)已知直线l 过点P (3,4)且与点A (-2,2),B (4,-2)等距离,则直线l 的方程为____________.解:显然当直线l 斜率不存在时,不满足题意;设所求直线方程为y -4=k (x -3),即kx -y +4-3k =0,由已知,得|-2k -2+4-3k |1+k 2=|4k +2+4-3k |1+k 2, ∴k =2或k =-23.∴所求直线l 的方程为2x -y -2=0或2x +3y -18=0. 故填2x +3y -18=0或2x -y -2=0.14.(2015·重庆)若点P (1,2)在以坐标原点为圆心的圆上,则该圆在点P 处的切线方程为____________.解:由题意,得k OP =2-01-0=2,则该圆在点P 处的切线的斜率为-12,所求切线方程为y -2=-12(x -1),即x +2y -5=0.故填x +2y -5=0.15.(2014·湖南)平面上一机器人在行进中始终保持与点F (1,0)的距离和到直线x =-1的距离相等,若机器人接触不到过点P (-1,0)且斜率为k 的直线,则k 的取值范围是____________.解:由抛物线的定义可知,机器人行进的轨迹方程为y 2=4x ,过点P (-1,0)且斜率为k 的直线方程为y =k (x +1),代入y 2=4x ,得k 2x 2+(2k 2-4)x +k 2=0,∵机器人接触不到过点P (-1,0)且斜率为k 的直线, ∴Δ=(2k 2-4)2-4k 4<0,解得k <-1或k >1. 故填(-∞,-1)∪(1,+∞).16.(2015·全国)已知椭圆E 的中心在坐标原点,离心率为12,E 的右焦点与抛物线C :y 2=8x 的焦点重合,A ,B 是C 的准线与E 的两个交点,则|AB |=____________.解:∵抛物线C :y 2=8x 的焦点为(2,0),准线方程为x =-2,∴椭圆E 的右焦点为(2,0),∴椭圆E 的焦点在x 轴上.设椭圆E 的方程为x 2a 2+y 2b 2=1(a >b >0),则c =2,∵e =c a =2a =12,∴a =4,∴b 2=a 2-c 2=42-22=12,∴椭圆E 的方程为x 216+y 212=1,将x =-2代入椭圆E 的方程,解得A (-2,3),B (-2,-3),∴|AB |=6.故填6.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(10分)过点P (3,0)作一条直线,使它夹在两直线l 1:2x -y -2=0和l 2:x +y +3=0间的线段AB 恰好被P 平分,求此直线的方程.解:若直线AB 无斜率,则其方程为x =3,它与两直线的交点分别为(3,4),(3,-6),这两点的中点为(3,-1),不是点P ,不合题意. ∴直线AB 必有斜率,设为k (k ≠2且k ≠-1), 则直线AB 的方程为y =k (x -3). 由⎩⎪⎨⎪⎧y =k (x -3),2x -y -2=0解得y 1=4k k -2,由⎩⎪⎨⎪⎧y =k (x -3),x +y +3=0解得y 2=-6k k +1.据题意y 1+y 22=0,即4k k -2+-6k k +1=0,解得k =0或8.当k =0时,它与两直线的交点分别为(1,0),(-3,0),这两点的中点并不是点P ,不符合题意,舍去.当k =8时,它与两直线的交点分别为⎝ ⎛⎭⎪⎫113,163,⎝ ⎛⎭⎪⎫73,-163,这两点的中点恰好是点P ,符合题意.∴直线AB 的方程为y =8(x -3),即8x -y -24=0.18.(12分) 已知圆C :x 2+(y -1)2=5,直线l :mx -y +1-m =0. (1)求证:对m ∈R ,直线l 与圆C 总有两个不同的交点;(2)设直线l 与圆C 交于A ,B 两点,若|AB |=17,求直线l 的倾斜角. 解:(1)证明:将已知直线l 化为y -1=m (x -1), 直线l 恒过定点P (1,1). ∵12+(1-1)2=1<5, ∴点P (1,1)在已知圆C 内,从而直线l 与圆C 总有两个不同的交点. (2)圆半径r =5,圆心C 到直线l 的距离为d =r 2-⎝ ⎛⎭⎪⎫|AB |22=32, 由点到直线的距离公式得|-m |m 2+(-1)2=32, 解得m =±3,∴直线的斜率为±3,从而直线l 的倾斜角为π3或2π3.19.(12分)(2015·全国Ⅰ)在直角坐标系xOy 中,曲线C :y =x 24与直线l :y =kx +a (a >0)交于M ,N 两点.(1)当k =0时,分别求C 在点M 和N 处的切线方程;(2)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由. 解:(1)由题设可得M (2a ,a ),N (-2a ,a ),或M (-2a ,a ),N (2a ,a ).∵y ′=12x ,∴y =x 24在x =2a 处的导数值为a ,曲线C 在点(2a ,a )处的切线方程为y -a =a (x -2a ),即ax -y -a =0;y =x 24在x =-2a 处的导数值为-a ,曲线C 在点(-2a ,a )处的切线方程为y -a =-a (x +2a ),即ax +y +a =0.故所求切线方程为ax -y -a =0和ax +y +a =0. (2)存在符合题意的点,证明如下:设P (0,b )为符合题意的点,M (x 1,y 1),N (x 2,y 2),直线PM ,PN 的斜率分别为k 1,k 2. 将y =kx +a 代入C 的方程整理得x 2-4kx -4a =0. ∴x 1+x 2=4k ,x 1x 2=-4a . ∴k 1+k 2=y 1-b x 1+y 2-bx 2=2kx 1x 2+(a -b )(x 1+x 2)x 1x 2=k (a +b )a.当b =-a 时,有k 1+k 2=0,则直线PM 的倾斜角与直线PN 的倾斜角互补,故∠OPM =∠OPN ,点P (0,-a )符合题意.20.(12分)(2014·北京)已知椭圆C :x 2+2y 2=4. (1)求椭圆C 的离心率;(2)设O 为原点,若点A 在椭圆C 上,点B 在直线y =2上,且OA ⊥OB ,试判断直线AB 与圆x 2+y 2=2的位置关系,并证明你的结论.。
2019版高考数学(理科A版)一轮复习第九章 平面解析几何9.8 圆锥曲线的综合问题
(2)几何法:若问题的条件和结论能明显地体现曲线的几何特征,则利用
图形的性质和数形结合思想来解决最值或取值范围问题.
例1 若点O和点F分别为椭圆 x2 + y2 =1的中心和左焦点,点P为椭圆上
98
的任一点,则
OP
·FP
的最小值为
.
解题导引
解析 点P为椭圆 x2 + y2 =1上的任意一点,设P(x,y)(-3≤x≤3,-2 2 ≤y≤
为A,B,其中C1的离心率为 3 .
2
(1)求a,b的值;
(2)过点B的直线l与C1,C2分别交于点P,Q(均异于点A,B),是否存在直线l, 使得以PQ为直径的圆恰好过点A?若存在,求出直线l的方程;若不存在, 请说明理由.
解题导引
解析 (1)在C1,C2的方程中,令y=0,可得b=1,
且A(-1,0),B(1,0)是上半椭圆C1的左、右顶点.
x1x2
由题设k1+k2=-1,故(2k+1)x1x2+(m-1)(x1+x2)=0.
即(2k+1)·44mk 22
4 1
8km
+(m-1)·4k 2 1
=0.
解得k=- m .1
2
当且仅当m>-1时,Δ>0,于是l:y=- m x1+m,
2
即y+1=- m (1x-2),
2
所以l过定点(2,-1).
设点P的坐标为(xP,yP),
∵直线l过点B,∴x=1是方程(*)的一个根.
由求根公式,得xP=
k k
2 2
,
4 4
从而yP=
8,k
k2 4
∴点P的坐标为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020年高考数学一轮复习第九章平面解析几何9.9圆锥曲线的
综合问题理
1.直线与圆锥曲线的位置关系的判断
将直线方程与圆锥曲线方程联立,消去一个变量得到关于x(或y)的一元方程:ax2+bx+c =0 (或ay2+by+c=0).
(1)若a≠0,可考虑一元二次方程的判别式Δ,有
①Δ>0⇔直线与圆锥曲线相交;
②Δ=0⇔直线与圆锥曲线相切;
③Δ<0⇔直线与圆锥曲线相离.
(2)若a=0,b≠0,即得到一个一元一次方程,则直线l与圆锥曲线E相交,且只有一个交点,
①若E为双曲线,则直线l与双曲线的渐近线的位置关系是平行;
②若E为抛物线,则直线l与抛物线的对称轴的位置关系是平行或重合.
2.圆锥曲线的弦长
设斜率为k(k≠0)的直线l与圆锥曲线C相交于A(x1,y1),B(x2,y2)两点,则AB
-x1|=1+1
k2
|y2-y1|.
【知识拓展】
过一点的直线与圆锥曲线的位置关系
(1)过椭圆外一点总有两条直线与椭圆相切;
过椭圆上一点有且只有一条直线与椭圆相切;
过椭圆内一点的直线与椭圆相交.
(2)过抛物线外一点总有三条直线和抛物线有且只有一个公共点:两条切线和一条与对称轴平行或重合的直线;
过抛物线上一点总有两条直线与抛物线有且只有一个公共点:一条切线和一条与对称轴平行或重合的直线;
过抛物线内一点只有一条直线与抛物线有且只有一个公共点:一条与对称轴平行或重合的直线.
(3)过双曲线外不在渐近线上的一点总有四条直线与双曲线有且只有一个交点:两条切线和两条与渐近线平行的直线;
过双曲线上一点总有三条直线与双曲线有且只有一个交点:一条切线和两条与渐近线平行的直线;
过双曲线内一点总有两条直线与双曲线有且只有一个交点:两条与渐近线平行的直线.
【思考辨析】
判断下面结论是否正确(请在括号中打“√”或“×”)
(1)直线l 与抛物线y 2=2px 只有一个公共点,则l 与抛物线相切.( × )
(2)直线y =kx (k ≠0)与双曲线x 2-y 2=1一定相交.( × )
(3)与双曲线的渐近线平行的直线与双曲线有且只有一个交点.( √ )
(4)直线与椭圆只有一个交点⇔直线与椭圆相切.( √ )
(5)过点(2,4)的直线与椭圆x 24
+y 2
=1只有一条切线.( × ) (6)满足“直线y =ax +2与双曲线x 2-y 2=4只有一个公共点”的a 的值有4个.( √ )
1.直线y =kx -k +1与椭圆x 29+y 24
=1的位置关系为________. 答案 相交
解析 直线y =kx -k +1=k (x -1)+1恒过定点(1,1),又点(1,1)在椭圆内部,故直线与椭圆相交.
2.若直线y =kx 与双曲线x 29-y 24=1相交,则k 的取值范围是________________. 答案 ⎝ ⎛⎭
⎪⎫-23,23 解析 双曲线x 29-y 24=1的渐近线方程为y =±23x , 若直线与双曲线相交,数形结合,得k ∈⎝ ⎛⎭
⎪⎫-23,23. 3.过点(0,1)作直线,使它与抛物线y 2
=4x 仅有一个公共点,这样的直线有________条. 答案 3
解析 过(0,1)与抛物线y 2=4x 相切的直线有2条,过(0,1)与对称轴平行的直线有1条,这3条直线与抛物线都只有一个公共点.
4.已知倾斜角为60°的直线l 通过抛物线x 2=4y 的焦点,且与抛物线相交于A 、B 两点,则弦AB 的长为________.
答案 16
解析 直线l 的方程为y =3x +1,
由⎩⎨⎧ y =3x +1
x 2=4y 得y 2
-14y +1=0. 设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=14,
∴AB =y 1+y 2+p =14+2=16.
5.(2014·山东)已知双曲线x 2a 2-y 2
b 2=1(a >0,b >0)的焦距为2
c ,右顶点为A ,抛物线x 2=2py (p >0)的焦点为F .若双曲线截抛物线的准线所得线段长为2c ,且FA =c ,则双曲线的渐近线方程为________.
答案 y =±x
解析 抛物线的准线y =-p 2,焦点F ⎝ ⎛⎭⎪⎫
0,p 2,
∴a 2+⎝ ⎛⎭⎪⎫p 22=c 2.
① 设抛物线的准线y =-p 2交双曲线于M ⎝ ⎛⎭⎪⎫x 1,-p 2,N ⎝ ⎛⎭⎪⎫
x 2,-p 2两点,
∴⎩⎪⎨⎪⎧ y =-p 2,
x 2a 2-y
2b 2=1,
即x 2a 2-⎝ ⎛⎭⎪⎫-p 22
b 2=1,解得x =±a p 2
4b 2+1,
∴2a p 2
4b 2+1=2c .
② 又∵b 2=c 2-a 2, ③ ∴由①②③,得c 2
a 2=2.
∴b 2a 2=c 2
a 2-1=1,
解得b
a =1.
∴双曲线的渐近线方程为y =±x .。