PRL Magnetoelectric Spectroscopy of Electronic Transitions in Antiferromagnetic Cr2O3
物理专业英语词汇P
物理专业英语词汇(P) p i n diode p i n 极管p i n junction p i n 结p n i p transistor p n i p 晶体管p n junction p n 结p n p j unction p n p 结p n p n junction p n p n 结p n p n transistor p n p n 晶体管p p junction p p 结p type semiconductor p 型半导体p wave p 波pachymeter 测厚计packing 填塞packing effect 聚集效应packing fraction 聚集率packing loss 聚集效应padua model of the nucleon核子的帕多瓦模型pair 偶pair annihilation 偶湮没pair correlation function 对相关函数pair creation 偶产生pair interaction 偶相互酌pair potential 对势pair production 偶产生pairing energy 对能pairing interaction 偶相互酌pairing rotation 对转动pairing vibration 对振动palaeo astrobiology古天体生物学palaeomagnetism 古地磁学palaeovolcanology 古火山学paleobiogeochemistry古生物地球化学palladium 车钯panalyzor多能分析仪panofsky ratio 帕诺夫斯基比panoramic lens 全景镜头panoramic telescope 全景望远镜paper capacitor 纸电容器paper chromatography 纸色谱法para state 仲态para statistics 仲统计法parabola抛物线parabolic antenna 抛物面天线parabolic curve 抛物曲线parabolic orbit抛物线轨道parabolic potential 抛物线势parabolic reflector抛物面反射器parabolic type 抛物型paraboloid 抛物面paraboloid of revolution 回转抛物面paracrystal 仲晶paradox 佯谬parahelium 仲氦parahydrogen 仲氢parallactic angle 视差角parallactic ellipse 视差椭圆parallactic motion 视差动parallax 视差parallel circuit 并联电路parallel connection 并联parallel cut y 切割parallel displacement 平行位移parallel plate capacitor 平行板形电容器parallel plate condenser 平行板形电容器 parallelogram of forces 力平行四边形 paramagnet 顺磁体paramagnetic absorption 顺磁性吸收paramagnetic element 顺磁性元素paramagnetic material 顺磁物质paramagnetic relaxation 顺磁弛豫paramagnetic resonance 顺磁共振paramagnetic resonance absorption 顺磁共振吸收paramagnetic substance 顺磁物质paramagnetic susceptibility 顺磁磁化率paramagnetism 顺磁性paramagnon顺磁振子parameter 参量parameter of state 态变数parametric amplifier 参量放大器parametric excitation 参量激发parametron 参数器parasitic ferromagnetism 寄生铁磁性parasitic oscillation 寄生振荡parasitic resonance 寄生共振paraterm 仲项paraxial rays近轴光线parent element 母元素parent mass peak 原始峰parent peak 原始峰parhelium 仲氦parity宇称parity conservation law 宇称守恒律parity violation宇称不守恒parsec秒差距partial dislocation 分位错partial equilibrium 部分平衡partial polarization 部分偏振partial pressure 分压partial wave 分波partial wave analysis 分波分析partial wave expansion 分波展开partially conserved axial vector current 轴矢量分守恒partially polarized light 部分偏振光particle 粒子particle acceleration 粒子加速particle accelerator 粒子加速器particle antiparticle conjugation 正反粒子共轭particle aspect of matter 物质的粒子观点particle beam 粒子束particle booster 注入加速器particle collisions 粒子碰撞particle concentration 粒子浓度particle counter 粒子计数器particle hole interaction 粒子空穴相互酌particle hole theory粒子空穴理论particle hole transformation 粒子空穴变换particle particle correlation 粒子粒子相关particle separation 粒子分离particle separator 粒子分离器particle track detector粒子径迹探测器particle transfer reaction 粒子转移反应partition function 统计和parton model部分子模型pascal 帕pascal,s principle 帕斯卡原理paschen back effect帕邢巴克效应paschen runge mounting 帕邢朗格装置paschen series 帕邢系passive electric circuit 无源电路passive network 无源网络passive state 被动状态passivity被动状态path路径path difference 程差path integral路径积分path of vision 视线path tracking星艮踪飞行轨道pattern 图形pattern recognition 图样识另ljpatterson function 帕特森函数patterson method帕特森方法pauli approximation 泡利近似pauli exclusion principle 泡利不相容原理pauli matrix 泡利矩阵pauli paramagnetism 泡利顺磁性pauli principle泡利不相容原理pauli spinor泡利旋量pauli villars regularization 泡利维拉斯正规化pavo孔雀座peak 峰peak energy峰值能量峰peak power峰值功率peak voltage 峰压pearl necklace model珍珠颈挂式模型peculiar galaxy 特殊星系peculiar minor planet 特殊小行星pegasus飞马座peierls potential 佩尔斯势peierls transition 佩尔斯跃迁pellet compression 靶丸压缩pellet implosion 靶丸爆聚pellets 靶丸peltier effect珀耳帖效应pencil 束pencil beam survey 深巡天pencil of light 光束pendular oscillation 摆振动pendulum 摆pendulum clock 摆钟penetrability 贯穿性penetrating power 贯穿本领penetrating shower 贯穿簇射penetration depth 穿透深度penetration depth of london 伦敦穿透深度penetrometer 透度计penning discharge 彭宁放电penning effect 彭宁效应penning gage 彭宁真空计penning ion source 彭宁离子源penning ionization 彭宁电离penrose diagramm彭罗斯图形penrose lattice彭罗斯点阵penrose tile彭罗斯点阵pentagonal prism 五角棱镜pentane lamp 戊烷灯pentode五极管pentration 贵穿penumbra 半影percent百分率percolating network 渗透网络percolation 渗滤percussion 冲击perfect conductivity 理想导电性perfect conductor 理想导体perfect cosmological principle 完全宇宙原理perfect crystal 理想晶体perfect diamagnetism 理想抗磁性perfect elasto plastic body 完全弹塑性体perfect fluid 完全铃perfect gas理想气体perfect liquid 理想液体perfect polarization 全极化perfect solution 理想溶液perfectly black body 绝对黑体perfectly elastic body 完全弹性体perfectly elastic collision 完全弹性碰撞perfectly inelastic collision 完全非弹性碰撞 period 周期period luminosity relation 周期光度关系period of oscillation 振荡周期period of revolution 公转周期periodic comet 周期彗星periodic error 周期误差periodic law 周期律periodic motion 周期运动periodic orbit 周期轨道periodic potential 周期势periodic system 周期系periodic table 周期表periodic zone 周期带peripheral collision 边缘碰撞peripheral reaction 圆周反应peripheral vision 周边视觉periscope潜望镜permalloy坡莫合金permanent magnet 永磁铁permeability 磁导率permeameter 磁导计permeance 磁导permissible dose 容许剂量permissible error 容许误差permissible stress 容许应力permissible tolerance 容许剂量permitted line 容许谱线permittivity介电常数permutation 排列permutation group 置换群permutation operator 置换算符perovskite structure 钙钛矿型结构perpendicular band 正交带perpendicular susceptibility 垂直磁化率perpetual mobile 永恒机关perpetual motion 永恒运动perpetuum mobile 永动机perpetuum mobile of the first kind 第一类永动机perpetuum mobile of the second kind 第二类永动机perseus英仙座persistence of vision 视觉暂留persistent current 持久电流persistent line 暂留谱线personal computer 个人计算机personal error 人为误差personal monitor 个人剂量计personal monitoring 个人监测perturbation 微扰perturbation energy 微扰能perturbation method 摄动法perturbation theory 微扰理论perturbed motion 受摄运动perveance电子管导电系数peta拍它petra正负电子串列存储环型加速器petrapfund series 芬德系phantom人体模型phase相位phase advance capacitor 相位超前电容器phase angle 相位角phase average 相平均phase boundary 相界phase coherent state 相位相干态phase conjugate interferometry 相位共轭干涉法phase contrast 相衬phase contrast method 相衬法phase contrast microscope 相衬显微镜phase diagram 平衡图phase difference 相位差phase discriminator相位鉴别器鉴相器phase displacement 相移phase distortion 相位畸变phase equilibrium 相平衡phase grating相位衍射光栅phase hologram相位全息图phase locked loop 锁相环路phase locking 锁相phase locking technique 锁相法phase margin 相位容限phase matching 相位平衡phase meter 功率因数计phase mode 相位模phase modulation 掂phase orbit 相轨道phase oscillation 相位振动phase retrieval 相位复原phase rule 相律phase sensitive detection 相敏检波phase separation 相分离phase shift 相移phase shift oscillator 相移振荡器phase shifter 移相器phase space 相宇phase space average 相平均phase stability相位稳定性phase transformation 相变phase transition 相变phase transition of the first kind 第一类相变phase transition of the second kind 第二类相变 phase transition of vacuum 真空相变 phase velocity 相速度phase voltage 相电压 phase volume 相体积 phason起伏量子 phasotron稳相加速器 phenomenon 现象 phoenix凤凰座 phon 方phonometer 声响度计 phonon声子 phonon drag 声子曳弓I phonon echo 声子回波 phonon excitation 声子激发phosphor磷光体 phosphorescence 磷光 phot辐透photo acoustic spectroscopy 光声光谱学 photo magnetoelectric effect 光磁电效应 photoacoustics 光声学 photoactivation 光激活 photobiology光生物学photocathode光电阴极 photocell光电池 photoceram光敏玻璃陶瓷 photochemical reaction 光化反应photochemical system 光化学系统 photochemistry 光化学photochromic glass 光变色玻璃 photocolorimeter 光电比色计 photoconduction 光电导 photoconductive cell 光电导管 photoconductive effect 内光电效应photoconductivity 光电导性 photocurrent 光电流photodensitometer 光密度计 photodensitometry光密度分析法 photodetachment 光致脱离 photodetector 光探测器photodiode光电二极管 photoeffect光电效应photoelastic effect 光弹性效应 photoelastic holography 光弹性全息照相 photoelasticimeter光致弹性测量计 photoelasticity 光弹性photoelectret 光永电体photoelectric absorption 光电吸收 photoelectric cell 光电池 photoelectric current 光电流 photoelectric effect 光电效应 photoelectric emission 光电发射photoelectric microphotometer 光电测微光度计photoelectric photometer 光电光度计 photoelectric photometry 光电测光 photoelectric pyrometer 光电高温计 photoelectric threshold 光电阈 photoelectric tube 光电管 photoelectricity 光电 photoelectromagnetic effect 光电磁效应 photoelectron 光电子 photoelectron spectroscopy 光电子谱学 photoemission 光电发射photoexcitation 光激发 photofission光核裂变photogalvanic effect 光生伏打效应 photographicapparatus 照相机 photographic camera 照相机photographic density 照相密度 photographic emulsion 照相乳胶 photographic film 软片 photographic lens 照相物镜 photographic magnitude 照相星等 photographic material 照相材料 photographic photometry 照相测光学photographic plate 照相底板 photographic telescope 天体照相机 photography 照相术 photogun光电子枪photoionization 光致电离 photoirradiation 光致辐照photoluminescence 光致发光 photolysis 光解酌photomagnetic effect 光磁效应 photometer 光度计photometric cube 光度计立方体 photometric distance 测光距离 photometric elements 测光要素 photometric quantity 光度量 photometric standard 光度学标准photometric unit 光度单位 photometric wedge 测光楔photometrical paradox 奥伯斯佯谬 photometry 光度学photomicrograph显微镜照片 photomicroscopic 显微照相机 photomultiplier光电倍增管 photomultiplier tube 光电倍增管 photon光子photon counting method 光子计数法 photon coupled pair 光导发光元件 photon echo 光子回波photon gas 光子气体 photon packet 光子束photonegative effect 负光电效应 photoneutron 光中子photonuclear fission 光核裂变 photonuclear reaction 光核反应 photophoresis 光致迁动 photopic vision 亮视觉 photoplate照相底板 photoradiometer 光辐射计photorecorder自动记录照相机 photoresist光致抗蚀剂photosemiconductor 光半导体 photosensitive resin 光敏尸 photosensitivity 光灵敏度 photosensitization 光敏化 photosphere 光球photostatistics光子统计学 photosynthesis 光合酌phototelegraphy 传真photothermal displacement 光照位移 phototransistor光电晶体管 photovisual magnitude 仿视星等 photovoltaic effect光生伏打效应 physical chaos 物理混沌 physical chemistry 物理化学 physical constant 物理常数physical double star 物理双星 physical libration 物理天平动 physical mathematics 物理数学 physical oceanography 海洋物理学 physical optics 物理光学physical pendulum 复摆physical photometer 物理光度计physical photometry 物理光度学physical property 物理性质physical quantity 物理量physical roentgen equivalent 物理伦琴当量physical variable 物理变星physicist物理学家physico chemical物理化学的physics物理学physics of heat 热物理学physics of metals金属物理学physiological acoustics 生理声学pi bond 键pi electron 电子pi electron approximation 电子近似pi meson 介子pi orbital 轨道pick up reaction 拾取反应pico微微picofarad微微法picosecond 微微秒picosecond laser微微秒激光器picosecond light pulse 微微秒光脉冲picosecond spectroscopy 微微秒光谱学pictor绘架座pid action比例积分微分酌pierce type crystal oscillator 皮尔斯石英振荡器pierce type electron gun 皮尔斯电子枪piezo ceramic element 压电陶瓷元件piezo semiconductor transducer 压电半导体换能器piezoceramics 压电陶瓷piezochromism 受压变色piezoelectric 压电piezoelectric actuator 压电传动装置piezoelectric axis 压电轴piezoelectric constant 压电常数piezoelectric crystal 压电晶体piezoelectric effect 压电效应piezoelectric element 压电元件piezoelectric loudspeaker 压电扬声器piezoelectric modulus 压电模量piezoelectric oscillator 压电振荡器piezoelectric polaron 压电极化子piezoelectric transducer 压电转换器piezoelectric vibration 压电振动piezoelectricity 压电piezometer液体压力计piezoresistor压电电阻器piezotropy 压性pile反应堆pile oscillator 反应堆振荡器pile up effect脉冲堆积效应pilot lamp指示灯pinch effect箍缩效应pinching自压缩pinhole camera针孔照相机pinning 锁住pinning center 锁住中心pinning force 锁住力pinning potential 锁住势pion介子pion beam 介子束pion condensation 介子凝聚pionic atom 介原子pionization介子化过程pipe导管pipe line 导管pippard equation皮帕德方程pirani gage 皮拉尼压力计pisces双鱼座piscis austrinus 南鱼座pitot tube皮托管planar transistor 平面晶体管planck mass普朗克质量planck time普朗克时间planck's constant 普朗克常数planck's function 普朗克函数planck's fundamental length 普朗克基本长度planck's law of radiation 普朗克辐射定律plane concave lens 平凹透镜plane convex lens 平凸透镜plane fault 面缺陷plane grating平面光栅plane mirror 平面镜plane of incidence 入射面plane of polarization 偏光面plane of projection 射影平面plane of symmetry 对称面plane polarization 平面偏振plane polarized light 平面偏振光plane polarized wave 平面偏振波plane wave 平面波planet行星planetarium 天象仪planetary aberration 行星光行差planetary cosmogony 行星演化学planetary geology 行星地质学planetary nebula行星状星云planetary system 行星系planetesimal theory 星子论planetesimals 星子planetoid小行星planimeter 测面仪plano concave lens 平凹透镜plano convex lens 平凸透镜plano cylindrical lens 平圆柱透镜plano spherical lens平面球面透镜plasma等离子体plasma accelerator 等离子体加速器plasma balance等离子体平衡plasma cluster 等离子粒团plasma confinement等离子体禁闭plasma containment等离子体禁闭plasma diagnostics等离子体诊断学plasma dispersion function等离子体弥散函数plasma echo等离子体回波plasma engine等离子体发动机plasma focus等离子体聚焦点plasma frequency 等离子体频率plasma gun等离子体枪plasma heating等离子体加热plasma instability等离子体不稳定性plasma membrane 原生质膜plasma oscillation等离子体振荡plasma physics等离子体物理学plasma potential等离子体势plasma source等离子体源plasma wave等离子体波plasmapause等离子体层顶plasmasphere等离子层plasmoid等离子粒团plasmon等离振子plasmon excitation等离振子激发plastic anisotropy 塑性蛤异性plastic deformation 塑性变形plastic flow 塑性怜plastic material 塑胶plastic potential 塑性势plastic wave 塑性波plastic yield塑性屈服plasticity 塑性plastics 塑胶plate正极plate battery阳极电池组plate circuit板极电路plate current 板极电流plate detection 板极检波plate resistance 板极电阻plate tectonics 板块构造plate voltage板极电压plateau 坪platinum 铂platinum group elements 铂族元素platinum resistance thermometer 铂电阻温度计pleochroic halo 多向色晕pleochroism 多色性pleochromatism 多色性plk method plk 法plot标绘plotter标绘器plug插头plural scattering 多重散射plus 加plus sign 加口号pluto冥王星plutonium 钵plutonium reactor 钚堆plutonium regeneration 钵再生pluviometer 雨量器pneumatic laser气动激光器pockels cell波克尔斯盒pocket dosimeter袖珍剂量计pocket of air 气囊point at infinity 无穷远点point charge 点电荷point contact rectifier 点接触整流point contact transistor 点接触晶体管point defect 点缺陷point discharge 尖端放电point group 点群point lattice 点晶格point of action 酌点point of application 酌点point of contact 接触点point source of light 点光源poise 泊poiseuille flow 泊萧叶怜poiseuille,s law泊萧叶定律poisson bracket 泊松括号poisson equation 泊松方程poisson process 泊松过程poisson,s ratio 泊松比polar aurora 极光polar binding 极性键polar bond极性键polar cap 极冠polar cap absorption 极冠吸收polar crystal极性晶体polar gas极性气体polar light 极光polar liquid极性液体polar molecule 极性分子polar motion 极运动polar sequence 北极星序polar telescope 天极仪polar triangle 极三角形polar vector 极矢量polar wandering 极运动polar year 极年polarimeter 偏振计polarimetry测偏振术polaris北极星polarisation angle布儒斯特偏振角polariscope偏振光镜polariton电磁耦合振子polarity 极性polarizability 极化率polarizability ellipsoid 极化率椭球polarization 极化polarization charge 极化电荷polarization current 极化电流polarization curve 极化曲线polarization factor 极化因数polarization filter 偏振滤光镜polarization force 极化力polarization interferometer 偏振干涉仪polarization microscope 偏光显微镜polarization of neutron 中子的极化polarization orbital 极化轨道polarization potential 极化势polarization spectroscopy 偏振光光谱学polarized beam 极化束polarized ion source 极化离子源polarized light 偏振光polarized neutron diffraction technique 极化中子衍射法polarized nucleus 极化核polarized raman scattering 偏振喇曼散射polarized relay极化继电器polarized target 极化靶polarizer起偏器偏振器polarizing filter 偏振滤光镜polarizing microscope 偏光显微镜polarizing prism 偏振棱镜polarograph 极谱仪polarography 极谱学polaroid偏光片polaron极化子pole 极pole of ecliptic 黄极pole piece 极片pole shoe 极片pole strength磁极强度polestar北极星polhode心迹线polishing 抛光poloidal magnetic field 极向磁场polonium 车卜polyatomic molecule 多原子分子polycondensation 缩聚酌polycrystal 多晶polycrystalline material 多晶物质polydisperse system 多色散系polygon of forces 力多边形polygonization 多边形化polymer聚合物polymer complex聚合络合物polymer crystal 聚合晶体polymer effect 聚合效应polymerization 聚合polymerization of protein 蛋白质聚合polymolecularity 多分子性polymorphism 多形性polyphase 多相polyphase current 多相电流polytrope多变性polytropic change多方状态变化polytropic index 多方指标polytropic process 多变过程pomeranchuk effect坡密朗丘克效应pomeranchuk theorem坡密兰丘克定理pomeron坡密子pool type reactor 池式堆population 全域population inversion 粒子数反转pore小黑子porosity多孔性porous flow 多孔流position 位置position resolution 位置分辨率position sensitive detector对位置灵敏的探测器position vector 位置矢量positive 正片positive charge 正电菏positive column 阳极区positive crystal 正晶体positive electricity 正电positive electrode 阳极positive electron 正电子positive element 正元素positive eyepiece 正目镜positive feedback 正反馈positive hole 空子positive ion 阳离子positive lens 正透镜positive magnetostriction 正磁致伸缩positive meniscus 凹凸透镜positive meson 正介子positive rays 阳射线positon正电子positron正电子positron annihilation 正电子湮没positron beam 正电子束positron channeling 正电子沟道positron electron annihilation 偶湮没positron electron tandem ring accelerator 正负电子串列存储环型加速器petrapositron emission 正电子发射positron factory 正电子工厂positron spectroscopy 正电子谱学positronium电子偶素post newtonian approximation 后牛顿近似post nova燃后新星post post newtonian approximation 后后牛顿近似potassium 车甲potassium dihydrogenphosphate 磷酸二氢钾potential 势potential barrier 势垒potential difference 势差potential divider 分压器potential energy 势能potential energy curve 势能曲线potential field 势场potential flow 势流potential function 势函数potential instability 对粱稳定性potential motion 势运动potential scattering 势散射potential well 势阱potentiometer 电位计potts model波特模型pound 磅powder camera粉末照相机powder diffraction method 粉末法powder pattern粉末干涉象powder photography 粉末照相术power功率power amplification 功率放大power demonstration reactor 动力示范堆power density 功率密度power dissipation 耗散功率power factor 功率因数power factor meter 功率因数计power gain功率增益power of a lens透镜的焦强power reactor 动力堆power tube 功率管poynting robertson effect坡印廷罗伯逊效应poynting,s vector 坡印廷矢量practical system of units 实用单位制prandtl number 普朗特数praseodymium 错pre vacuum初真空pre vacuum pump 预备真空泵preacceleration 预加速preaccelerator 前加速器preamplifier前置放大器precession 旋进precession camera 旋进照相机precession of orbit 轨道旋进precessional constant 岁差常数precious metal 贵金属precipitation 沉淀precision精密度precision measurement 精密测量predict earthquake with catfish 用鲶鱼预报地震prediction 预报prediction of solar activity 太阳活动预告predissociation 预离解preferential recombination 优选复合preionization 预电离preliminary vacuum 初真空pressure 压力pressure broadening 压力增宽pressure coefficient 压力系数pressure dispersion 压力弥散pressure drag 压力阻pressure drop 压降pressure gage 压力表pressure head 压头pressure height equation 气压测高公式pressure of light 光压pressure of water vapor 水汽压pressure sensitive diode 压力敏感二极管pressure sensitive transistor 压力敏感晶体管pressure tensor 压强张量pressurized air 压缩空气pressurized water reactor 压水堆primakoff effect普里马科夫效应primary battery 原电池primary beam初级束流原射线束primary cell 原电池primary circuit 原电路primary colors 原色primary cosmic radiation 原宇宙辐射primary cosmic rays 原宇宙射线primary electron 原电子primary energy 一次能量primary ionization 一次电离primary rainbow 昼primary recrystallization 一次再结晶primary standard 原标准primary star 智primary target 初始靶primary thermometer 初始温度计primary voltage 初级电压prime meridian 零子午线prime vertical 卯酉圈primeval galaxy 原始星系primitive black hole 原始黑洞primitive lattice 初基点阵primordial solar nebula 太阳系星云principal axes of stress 应力轴principal axis 轴principal axis of inertia 惯性轴principal index for extraordinary ray 非常光线舟射率principal moment of inertia 矢口动惯量principal plane 纸面principal point 帚principal quantum number 挚子数principal ray 肘线principal refractive indices 舟射率principal series 诌系principal stress 枝力principle 原理principle of constancy of light velocity 光速不变原理principle of corresponding states 对应态原理principle of detailed balancing 细致平衡原理principle of entropy compensation 熵补偿原理principle of equal a priori probabilities 等验前概率原理principle of equipartition 均分原理principle of equivalence 等价原理principle of equivalence of mass and energy 质能当量原理principle of indeterminancy 测不准原理principle of least action 最小酌原理principle of least constraint 最小约束运动原理principle of microscopic reversibility 微观可逆性原理principle of minimum dissipation of energy 最小能量耗散原理principle of relativity 相对性原理principle of reversibility 可逆性原理principle of superposition 叠加原理principle of virtual displacement 虚位移原理principle of virtual work 虚功原理printed board印刷电路板printed circuit 印刷电路printer打印机prism棱镜prism angle 棱镜角prism spectrograph 棱镜摄谱仪prism spectroscope 棱镜分光镜prismatic transit instrument 折轴中星仪probability 概率probability current density 概率淋度probability density 概率密度probability distribution 概率分布probability distribution function 概率分布函数probability function 概率函数probability of collision 碰撞概率probable error 概率误差probe探头probe charge试探电荷probe method 探测法problem of three bodies 三体问题process control 过程控制product nucleus 生成核production 产生production of entropy 熵产生profile drag翼型阻力profile monitor剖面监测器prognosis 预报program 程序program library 程序库programme 程序programming language 程序设计语言progressive wave 前进波projecting lens 投影透镜projection 投影projection of crystal 晶体投影projection operator 投影算符projector投影器幻灯promethium 专钷prominence 日珥prominence spectroscope 日珥分光镜prompt neutron 瞬发中子propagation 传播propagation constant 传播常数propagation of sound 声传播propagation velocity 传播速度propagator传播函数proper channeling 本盏道proper field 固有场proper lorentz group 固有洛伦兹群proper motion 自行proper time 原时proper tone 固有音proper value 本盏proportion 比例proportional component 比例分量proportional counter 正比计数管proportional ionization chamber 正比电离室proportionality factor 比例系数protoatmosphere 原大气protocol 协议proton质子proton accelerator 质子加速器proton antiproton collision 质子反质子碰撞proton decay 质子衰变proton induced x ray analysis 质子激发 x 射线分析proton linear accelerator 质子直线加速器proton number 质子数proton spectrometer 质子谱仪proton synchrotron质子同步加速器protoplanet 原行星protostar原恒星protosun原太阳prototype 原型prototype meter 米原器proximity 附近proximity effect 邻近效应proximity switch 接近开关pseudo crossing 伪交叉pseudo crystal 伪晶体pseudo dipole interaction 伪偶极子相互酌pseudo energy gap 伪能隙pseudo equilibrium 伪平衡pseudo image 假象pseudo plastic flow 伪塑性流pseudo scalar 伪标量pseudo scalar coupling 伪标量耦合pseudo scalar meson 伪标介子pseudo tensor 伪张量pseudo vector 伪矢量pseudo vector coupling 伪矢量耦合pseudo wave 伪波pseudopotential 伪势pseudostate 伪态pseudosymmetry 伪对称pseudovariable 准变星pss method pss 法psychoacoustics 心理声学psychobiophysics心理生物物理学psychorheology 心理龄学psychrometer 干湿表ptolemaic system托勒玫体系pulsar脉冲星pulsating current 脉动电流pulsating star 脉动星pulsating universe 振动宇宙pulsating variable 脉动星pulsating voltage 脉动电压pulsation 脉动pulse脉冲pulse amplifier 脉冲放大器pulse code modulation 脉冲编码灯pulse coincidence 脉冲符合pulse decay脉冲衰减pulse discharge 脉冲放电pulse duration脉冲持续时间pulse generator脉冲发生器pulse height脉冲高度pulse height analyzer脉冲高度分析器pulse height discriminator 脉冲高度鉴别器pulse height selector脉冲高度选择器pulse interval 脉冲间隔pulse laser脉冲激光pulse length脉冲宽度pulse modulation 脉冲灯pulse motor脉冲电动机pulse neutron source脉冲式中子源pulse oscillator脉冲发生器pulse recurrence frequency 脉冲重复频率pulse repetition frequency 脉冲重复频率pulse shape脉冲波形pulse shape discriminator 脉冲波形鉴别器pulse shaper脉冲成形器pulse shaping脉冲成形pulse spacing脉冲间隔pulse transformer 脉冲变压器pulse width脉冲宽度pulse x rays脉冲x射线pulsed cyclotron脉冲回旋加速器pulsed ion source脉冲离子源pulsed neutron beam 脉冲中子束pulsimeter脉冲计数器pump 泵pumping 抽运pumping speed 抽速punctum remotum 远点pupil光瞳pupillary aperture 光瞳孔径puppis船尾座pure scattering 纯散射pure state 纯态pure tone 纯音purgemeter微量量计purity纯度purple light 柴光push button 按钮push pull推挽式push pull amplifier 推挽放大器pycnometer 比重瓶pyrex glass派热克斯玻璃pyrgeometer地面辐射表pyrheliometer直接日射强度计pyroelectricity 热电pyrogeology 火山学pyrology 热学pyromagnetism 高温磁学 pyrometer高温计 pyrometric cone 测温锥 pyrometry 高温测定法 pyxis罗盘座。
第十五章核磁共振要点资料讲解
The Nobel Prize in Physiology or Medicine 2003
2003年诺贝尔生理或医学奖授予美国的保罗·C·劳特伯(Paul C. Lauterbur) 和英国的皮特·曼斯菲尔德(Peter Mansfield),因为他们发明了磁共振成像 技术(Magnetic Resonance Imaging, MRI)。该项技术可以使 人们能够无损 伤地从微观到宏观系统地探测生物活体的结构和功能,为医疗诊断和科学 研究提供了非常便利的 手段。
Felix Bloch Stanford University Stanford, CA, USA
Edward Mills Purcell Harvard University Cambridge, MA, USA
The Noble Prize in Chemistry 1991 瑞士科学家恩斯特,发明了傅立叶变
P h I(I 1) 2π
PZ
m
h 2π
m I, I 1, I 2, , I
cos θ m I(I 1)
(2I 1) 个
E2hH0
E 1 2
1 h
2
2
H0
1 h
E 1 2
2
2
H0
z
Pz
h 2
m
E
zH 0
m
h 2
H0
1 H 在外磁场中只有
m1 2及m Nhomakorabea1 2
两种取向
m 1时 2
The Nobel Prize in Physiology or Medicine 2003
彼得·曼斯菲尔德
保罗·劳特布尔(美) 彼得·曼斯菲尔德(英)
在如何用核磁共振技术拍摄 不同结构的图像上获得了关键 性发现。这些发现导致了在临 床诊断和医学研究上获得突破 的核磁共振成像仪的出现。
核磁共振波谱课程教学探索
山东化工SHANDONGCHEMICALINDUSTRY-158-2020年第49卷核磁共振波谱课程教学探索李晓虹(苏州大学材料与化学化工学部,江苏苏州215123)摘要:核磁共振波谱作为鉴定化合物结构、组分含量、动力学参数等信息的重要手段,在化学、医药、材料等领域科研生产中起着关键作用。
其课程教学长期以来受到理论内容难、仪器开放难等因素困扰’结合苏州大学核磁共振波谱课程的双语教学实践提出了相应的对策与改进举措,探讨通过更新改进教学方法和内容,突破传统教学模式,使学生从理论联系实践,从“会用”到“用好”核磁技术’关键词:核磁共振波谱;远程虚拟终端%网络课堂中图分类号:G642O文献标识码:B文章编号:1008-021X(2020)23-0158-02Exploration of Teaching in Nuclear Magnetic Resonance Spectroscopy CourseLi Xiaohong(Colleae of Chemist—,Chemicai Enginee/ng and Materials Science of Soochow University,Suzhou215123,China) Abstract:Nuclear magnetic resonance spectroscopy(NMR),as an Onportant method of studying compound structures, component contents and kinetic parameters,plays a key rolo in the fields of chemist—,pharmaceutical indust—and materials science.For a long time,its course teaching has been troubled by the dOficulta of theo—tical content and the lack of instmmentai peacicce.Based on ihebcocnguaoieachcngpeacicceooNMR couesecn Soochow Unceeesciy,ihcspapeedcscu s eshow iobeeak iheough iheieadciconaoieachcngmodebycmpeoecngiheieachcngmeihodsand conienis,soihaisiudeniscan combcneiheoeywcih peacicceand makegood useooNMRiechnooogy.Key wordt:NMR%VNC%online coa s es核磁共振波谱作为鉴定化合物结构的重要手段,对样品无损,分辨率高,较灵敏,可获得准确的定性定量信息。
Vibrational spectroscopy振动光谱
0 incidence angle 90
Absorbance is proportional to
E2 and area of surface as 1/cos q I ~ E2/cos q
10
Instrumentation: MIR IR
11
IR finger print
12
Modes of vibration
13
IR spectra of CO on Pd(100)
-threefold:site : 1800~1900 cm-1 -bridge site: 1900~2000 cm-1 -on top site: 2000~2100 cm-1
(1-e2)(1/e3) )(1+ e3)sin2q] Reflectivity change of s-polarized light is negligibly small
Assuming e3 >> e2 and cosq > e3-1 DRp/Rp = (8pdsin2q/lcosq)Im(-1/e2)
the plane of incidence
x
Ep x Es
qi qr
qt
- qi must be large: grazing incidence for thin films on reflective surface
4
Phase shift , electric field, intensity of p-polarized light as a function of incidence angle from a metal surface
大学物理实验报告 英文版
大学物理实验报告Ferroelectric Control of Spin PolarizationABS TR AC TA current drawback of spintronics is the large power that is usually required for magnetic writing, in contrast with nanoelectronics, which relies on “zero-current,” gate-controlled operations. Efforts have been made to control the spin-relaxation rate, the Curie temperature, or the magnetic anisotropy with a gate voltage, but these effects are usually small and volatile. We used ferroelectric tunnel junctions with ferromagnetic electrodes to demonstrate local, large, and nonvolatile control of carrier spin polarization by electrically switching ferroelectric polarization. Our results represent a giant type of interfacial magnetoelectric coupling and suggest a low-power approach for spin-based information control.Controlling the spin degree of freedom by purely electrical means is currently an important challenge in spintronics (1, 2). Approaches based on spin-transfer torque (3) have proven very successful in controlling the direction of magnetization in a ferromagnetic layer, but they require the injection of high current densities. An ideal solution would rely on the application of an electric field across an insulator, as in existing nanoelectronics. Early experiments have demonstrated the volatile modulation of spin-based properties with a gate voltage applied through a dielectric. Notable examples include the gate control of the spin-orbit interaction in III-V quantum wells (4), the Curie temperature T C (5), or the magnetic anisotropy (6) in magnetic semiconductors with carrier-mediated exchange interactions; for example, (Ga,Mn)As or (In,Mn)As. Electric field–induced modifications of magnetic anisotropy at room temperature have also been reported recently in ultrathin Fe-based layers (7, 8).A nonvolatile extension of this approach involves replacing the gate dielectric by a ferroelectric and taking advantage of the hysteretic response of its order parameter (polarization) with an electric field. When combined with (Ga,Mn)As channels, for instance, a remanent control of T C over a few kelvin was achieved through polarization-driven charge depletion/accumulation (9, 10), and the magnetic anisotropy was modified by the coupling of piezoelectricity and magnetostriction (11, 12). Indications of an electrical control of magnetization have also been provided in magnetoelectric heterostructures at room temperature (13–17).Recently, several theoretical studies have predicted that large variations of magnetic properties may occur at interfaces between ferroelectrics and high-T C ferromagnets such as Fe (18–20), Co2MnSi (21), or Fe3O4 (22). Changing the direction of the ferroelectric polarization has been predicted to influence not only the interfacial anisotropy and magnetization, but also the spin polarization. Spin polarization [i.e., the normalized difference in the density of states (DOS) of majority and minority spin carriers at the Fermi level (E F)] is typically the key parameter controlling the response of spintronics systems, epitomized by magnetic tunnel junctions in which the tunnel magnetoresistance (TMR) is related to the electrode spin polarization by the Jullière formula (23). These predictions suggest that the nonvolatile character of ferroelectrics at the heart of ferroelectric random access memory technology (24) may be exploited in spintronics devices such as magnetic random access memories or spin field-effect transistors (2). However, the nonvolatile electrical control of spin polarization has not yet been demonstrated.We address thi s issue experimentally by probing the spin polarization of electrons tunneling from an Fe electrode through ultrathin ferroelectric BaTiO3 (BTO) tunnel barriers (Fig. 1A). The BTO polarizationcan be electrically switched to point toward or away from the Fe electrode. We used a half-metallicLa0.67Sr0.33MnO3(LSMO) (25) bottom electrode as a spin detector in these artificial multiferroic tunnel junctions (26, 27). Magnetotransport experiments provide evidence for a large and reversible dependence of the TMR on ferroelectric polarization direction.Fig. 1(A) Sketch of the nanojunction defined by electrically controlled nanoindentation. A thin resist isspin-coated on the BTO(1 nm)/LSMO(30 nm) bilayer. The nanoindentation is performed with a conductive-tip atomic force microscope, and the resulting nano-hole is filled by sputter-depositingAu/CoO/Co/Fe. (B) (Top) PFM phase image of a BTO(1 nm)/LSMO(30 nm) bilayer after poling the BTO along 1-by-4–μm stripes with either a negative or positive (tip-LSMO) voltage. (Bottom) CTAFM image of an unpoled area of a BTO(1 nm)/LSMO(30 nm) bilayer. Ω, ohms. (C) X-ray absorption spectra collected at room temperature close to the Fe L3,2 (top), Ba M5,4 (middle), and TiL3,2 (bottom) edges on an AlO x(1.5 nm)/Al(1.5 nm)/Fe(2 nm)/BTO(1 nm)/LSMO(30 nm)//NGO(001) heterostructure. (D) HRTEM and (E) HAADF images of the Fe/BTO interface in a Ta(5 nm)/Fe(18 nm)/BTO(50 nm)/LSMO(30 nm)//NGO(001) heterostructure. The white arrowheads in (D) indicate the lattice fringes of {011} planes in the iron layer. [110] and [001] indicate pseudotetragonal crystallographic axes of the BTO perovskite.The tunnel junctions that we used in this study are based on BTO(1 nm)/LSMO(30 nm) bilayers grown epitaxially onto (001)-oriented NdGaO3 (NGO) single-crystal substrates (28). The large (~180°) and stable piezoresponse force microscopy (PFM) phase contrast (28) between negatively and positively poled areas (Fig. 1B, top) indicates that the ultrathin BTO films are ferroelectric at room temperature (29). The persistence of ferroelectricity for such ultrathin films of BTO arises from the large latticemis match with the NGO substrate (–3.2%), which is expected to dramatically enhance ferroelectric properties in this highly strained BTO (30). The local topographical and transport properties of the BTO(1 nm)/LSMO(30 nm) bilayers were characterized by conductive-tip atomic force microscopy (CTA FM) (28). The surface is very smooth with terraces separated by one-unit-cell–high steps, visible in both the topography (29) and resistance mappings (Fig. 1B, bottom). No anomalies in the CTAFM data were observed over lateral distances on the micrometer scale.We defined tunnel junctions from these bilayers by a lithographic technique based on CTAFM (28, 31). Top electrical contacts of diameter ~10 to 30 nm can be patterned by this nanofabrication process. The subsequent sputter deposition of a 5-nm-thick Fe layer, capped by a Au(100 nm)/CoO(3.5 nm)/Co(11.5 nm) stack to increase coercivity, defined a set of nanojunctions (Fig. 1A). The same Au/CoO/Co/Fe stack was deposited on another BTO(1 nm)/LSMO(30 nm) sample for magnetic measurements. Additionally, a Ta(5 nm)/Fe(18 nm)/BTO(50 nm)/LSMO(30 nm) sample and a AlO x(1.5 nm)/Al(1.5 nm)/Fe(2 nm)/BTO(1 nm)/LSMO(30 nm) sample were realized for structural and spectroscopic characterizations.We used both a conventional high-resolution transmission electron microscope (HRTEM) and the NION UltraSTEM 100 scanning transmission electron microscope (STEM) to investigate the Fe/BTO interface properties of the Ta/Fe/BTO/LSMO sample. The epitaxial growth of the BTO/LSMO bilayer on the NGO substrate was confirmed by HRTEM and high-resolution STEM images. Thelow-resolution, high-angle annular dark field (HAADF) image of the entire heterostructure shows the sharpness of the LSMO/BTO interface over the studied area (Fig. 1E, top). Figure 1D reveals a smooth interface between the BTO and the Fe layers. Whereas the BTO film is epitaxially grown on top of LSMO, the Fe layer consists of textured nanocrystallites. From the in-plane (a) and out-of-plane (c) lattice parameters in the tetragonal BTO layer, we infer that c/a = 1.016 ± 0.008, in good agreement with the value of 1.013 found with the use of x-ray diffraction (29). The interplanar distances for selected crystallites in the Fe layer [i.e., ~2.03 Å (Fig. 1D, white arrowheads)] are consistent with the {011} planes of body-centered cubic (bcc) Fe.We investigated the BTO/Fe interface region more closely in the HAADF mode of the STEM (Fig. 1E, bottom). On the BTO side, the atomically resolved HAADF image allows the distinction of atomic columns where the perovskite A-site atoms (Ba) appear as brighter spots. Lattice fringes with the characteristic {100} interplanar distances of bcc Fe (~2.86 Å) can be distinguished on the opposite side. Subtle structural, chemical, and/or electronic modifications may be expected to occur at the interfacial boundary between the BTO perovskite-type structure and the Fe layer. These effects may lead to interdiffusion of Fe, Ba, and O atoms over less than 1 nm, or the local modification of the Fe DOS close to E F, consistent with ab initio calculations of the BTO/Fe interface (18–20).To characterize the oxidation state of Fe, we performed x-ray absorption spectroscopy (XAS) measurements on a AlO x(1.5 nm)/Al(1.5 nm)/Fe(2 nm)/BTO(1 nm)/LSMO(30 nm) sample (28). The probe depth was at least 7 nm, as indicated by the finite XAS intensity at the La M4,5 edge (28), so that the entire Fe thickness contributed substantially to the signal. As shown in Fig. 1C (top), the spectrum at the Fe L2,3 edge corresponds to that of metallic Fe (32). The XAS spectrum obtained at the BaM4,5 edge (Fig. 1C, middle) is similar to that reported for Ba2+ in (33). Despite the poor signal-to-noise ratio, the Ti L2,3 edge spectrum (Fig. C, bottom) shows the typical signature expected for a valence close to 4+ (34). From the XAS, HRTEM, and STEM analyses, we conclude that the Fe/BTO interface is smooth with no detectable oxidation of the Fe layer within a limit of less than 1 nm.After cooling in a magnetic field of 5 kOe aligned along the [110] easy axis of pseudocubic LSMO (which is parallel to the orthorhombic [100] axis of NGO), we characterized the transport properties of the junctions at low temperature (4.2 K). Figure 2A (middle) shows a typicalresistance–versus–magnetic field R(H) cycle recorded at a bias voltage of –2 mV (positive bias corresponds to electrons tunneling from Fe to LSMO). The bottom panel of Fig. 2A shows the magnetic hysteresis loop m(H) of a similar unpatterned sample measured with superconducting quantum interference device (SQUID) magnetometry. When we decreased the magnetic field from a large positive value, the resistance dropped in the –50 to –250 Oe range and then followed a plateau down to –800 Oe, after which it sharply returned to the high-resistance state. We observed a similar response when cycling the field back to large positive values. A comparison with the m(H) loop indicates that the switching fields in R(H) correspond to changes in the relative magnetic configuration of the LSMO and Fe electrodes from parallel (at high field) to antiparallel (at low field). The magnetically softer LSMO layer switched at lower fields (50 to 250 Oe) compared with the Fe layer,for which coupling to the exchange-biased Co/CoO induces larger and asymmetric coercive fields(–800 Oe, 300 Oe). The observed R(H) corresponds to a negative TMR = (R ap–R p)/R ap of –17%[R p and R ap are the resistance in the parallel (p) and antiparallel (ap) magnetic configurations, respectively; see the sketches in Fig. 2A]. W ithin the simple Jullière model of TMR (23) and considering the large positive spin polarization of half-metallic LSMO (25), thisnegative TMR corresponds to a negative spin polarization for bcc Fe at the interface with BTO, in agreement with ab initio calculations (18–20).Fig. 2(A) (Top) Device schematic with black arrows to indicate magnetizations. p, parallel; ap, antiparallel. (Middle) R(H) recorded at –2 mV and 4.2 K showing negative TMR. (Bottom) m(H) recorded at 30 K with a SQUID magnetometer. emu, electromagnetic units. (B) (Top) Device schematic with arrows to indicate ferroelectric polarization. (Bottom) I(V DC) curves recorded at 4.2 K after poling the ferroelectric down (orange curve) or up (brown curve). The bias dependence of the TER is shown in the inset.As predicted (35–38) and demonstrated (29) previously, the tunnel current across a ferroelectric barrier depends on the direction of the ferroelectric polarization. We also observed thi s effect in ourFe/BTO/LSMO junctions. As can be seen in Fig. 2B, after poling the BTO at 4.2 K to orient its polarization toward LSMO or Fe (with a poling voltage of VP–≈ –1 V or VP+≈ 1 V, respectively; see Fig. 2B sketches), current-versus-voltage I(V DC) curves collected at low bias voltages showed a finite difference corresponding to a tunnel electroresistance as large as TER = (I VP+–I VP–)/I VP–≈ 37% (Fig. 2B, inset). This TER can be interpreted within an electrostatic model (36–39), taking into account the asymmetric deformation of the barrier potential profile that is created by the incomplete screening of polarization charges by different Thomas-Fermi screening lengths at Fe/BTO and LSMO/BTO interfaces. Piezoelectric-related TER effects (35, 38) can be neglected as the piezoelectric coefficient estimated from PFM experiments is too small in our clamped films (29). TER measurements performed on a BTO(1 nm)/LSMO(30 nm) bilayer with the use of a CTAFM boron-doped diamond tip as the top electrode showed values of ~200% (29). Given the strong sensitivity of the TER on barrier parameters and barrier-electrode interfaces, these two values are not expected to match precisely. We anticipate that the TER variation between Fe/BTO/LSMO junctions and CTAFM-based measurements is primarily the result of different electrostatic boundary conditions.Switching the ferroelectric polarization of a tunnel barrier with voltage pulses is also expected to affect the spin-dependent DOS of electrodes at a ferromagnet/ferroelectric interface. Interfacial modifications of the spin-dependent DOS of the half-metallic LSMO by the ferroelectric BTO are not likely, as no states are present for the minority spins up to ~350 meV above E F (40, 41). For 3d ferromagnets such as Fe, large modifications of the spin-dependent DOS are expected, as charge transfer betweenspin-polarized empty and filled states is possible. For the Fe/BTO interface, large changes have beenpredicted through ab initio calculations of 3d electronic states of bcc Fe at the interface with BTO by several groups (18–20).To experimentally probe possible changes in the spin polarization of the Fe/BTO interface, we measured R(H) at a fixed bias voltage of –50 mV after aligning the ferroelectric polarization of BTO toward Fe or LSMO. R(H) cycles were collected for each direction of the ferroelectric polarization for two typical tunnel junctions of the same sample (Fig. 3, B and C, for junction #1; Fig. 3, D and E, for junction #2). In both junctions at the saturating magnetic field, high- and low-resistance states are observed when the ferroelectric polarization points toward LSMO or Fe, respectively, with a variation of ~ 25%. This result confirms the TER observations in Fig. 2B.Fig. 3(A) Sketch of the electrical control of spin polarization at the Fe/BTO interface. (B and C) R(H) curves for junction #1 (V DC = –50 mV, T = 4.2 K) after poling the ferroelectric barrier down or up, respectively.(D and E) R(H) curves for junction #2 (V DC = –50 mV, T= 4.2 K) after poling the ferroelectric barrier down or up, respectively.More interestingly, here, the TMR is dramatically modified by the reversal of BTO polarization. For junction #1, the TMR amplitude changes from –17 to –3% when the ferroelectric polarization is aligned toward Fe or LSMO, respectively (Fig. 3, B and C). Similarly for junction #2, the TMR changes from –45 to –19%. Similar results were obtained on Fe/BTO (1.2 nm)/LSMO junctions (28). Within theJullière model (23), these changes in TMR correspond to a large (or s mall) spin polarization at theFe/BTO interface when the ferroelectric polarization of BTO points toward (or away from) the Fe electrode. These experimental data support our interpretation regarding the electrical manipulation of the spin polarization of the Fe/BTO interface by switching the ferroelectric polarization of the tunnel barrier.To quantify the sensitivity of the TMR with the ferroelectric polarization, we define a term, the tunnel electromagnetoresistance, as TEMR = (TMR VP+–TMR VP–)/TMR VP–. Large values for the TEMR are found for junctions #1 (450%) and #2 (140%), respectively. This electrical control of the TMR with the ferroelectric polarization is repeatable, as shown in Fig. 4 for junction #1 where TMR curves are recorded after poling the ferroelectric up, down, up, and down, sequentially (28).Fig. 4TMR(H) curves recorded for junction #1 (V DC = –50 mV, T = 4.2 K) after poling the ferroelectric up (VP+), down (VP–), up (VP+), and down (VP–).For tunnel junctions with a ferroelectric barrier and dissimilar ferromagnetic electrodes, we havereported the influence of the electrically controlled ferroelectric barrier polarization on thetunnel-current spin polarization. This electrical influence over magnetic degrees of freedom representsa new and interfacial magnetoelectric effect that is large because spin-dependent tunneling is verysensitive to interfacial details. Ferroelectrics can provide a local, reversible, nonvolatile, and potentially low-power means of electrically addressing spintronics devices.Supporting Online Material/cgi/content/full/science.1184028/DC1Materials and MethodsFigs. S1 to S5References∙Received for publication 30 October 2009.∙Accepted for publication 4 January 2010.References and Notes1. C. Chappert, A. Fert, F. N. Van Dau, The emergence of spin electronics in datastorage. Nat. Mater. 6,813 (2007).2.I. Žutić, J. Fabian, S. Das Sarma, Spintronics: Fundamentals and applications. Rev.Mod. Phys. 76,323 (2004).3.J. C. Slonczewski, Current-driven excitation of magnetic multilayers. J. Magn. Magn.Mater. 159, L1(1996).4.J. Nitta, T. Akazaki, H. Takayanagi, T. Enoki, Gate control of spin-orbit interaction in an inverted In0.53Ga0.47As/In0.52Al0.48Asheterostructure. Phys. Rev. Lett. 78, 1335 (1997).5.H. Ohno et al., Electric-field control of ferromagnetism. Nature 408, 944 (2000).6. D. Chiba et al., Magnetization vector manipulation by electricfields. Nature 455, 515 (2008).7.M. Weisheit et al., Electric field–induced modification of magnetis m in thin-filmferromagnets. Science315, 349 (2007).8.T. Maruyama et al., Large voltage-induced magnetic anisotropy change in a fewatomic layers of iron.Nat. Nanotechnol. 4, 158 2009).9.S. W. E. Riester et al., Toward a low-voltage multiferroic transistor: Magnetic(Ga,Mn)As under ferroelectric control. Appl. Phys. Lett. 94, 063504 (2009).10.I. Stolichnov et al., Non-volatile ferroelectric control of ferromagnetism in(Ga,Mn)As. Nat. Mater. 7, 464(2008).11. C. Bihler et al., Ga1−x Mn x As/piezoelectric actuator hybrids: A model system formagnetoelastic magnetization manipulation. Phys. Rev. B 78, 045203 (2008).12.M. Overby, A. Chernyshov, L. P. Rokhinson, X. Liu, J. K. Furdyna, GaMnAs-based hybrid multiferroic memory device. Appl. Phys. Lett. 92, 192501 (2008). 13. C. Thiele, K. Dörr, O. Bilani, J. Rödel, L. Schultz, Influence of strain on themagnetization and magnetoelectric effect inLa0.7A0.3MnO3∕PMN-PT(001)(A=Sr,Ca). Phys.Rev.B 75, 054408 (2007).14.W. Eerenstein, M. Wiora, J. L. Prieto, J. F. Scott, N. D. Mathur, Giant sharp andpersistent converse magnetoelectric effects in multiferroic epitaxial heterostructures. Nat.Mater. 6, 348 (2007).15.T. Kanki, H. Tanaka, T. Kawai, Electric control of room temperature ferromagnetismin a Pb(Zr0.2Ti0.8)O3/La0.85Ba0.15MnO3 field-effect transistor. Appl. Phys. Lett. 89, 242506 (2006).16.Y.-H. Chu et al., Electric-field control of local ferromagnetis m using amagnetoelectric multiferroic. Nat. Mater. 7, 478 2008).17.S. Sahoo et al., Ferroelectric control of magnetis m in BaTiO3∕Fe heterostructures viainterface strain coupling. Phys. Rev. B 76, 092108 (2007).18. C.-G. Duan, S. S. Jaswal, E. Y. Tsymbal, Predicted magnetoelectric effect inFe/BaTiO3 multilayers: Ferroelectric control of magnetism. Phys. Rev. Lett. 97, 047201 (2006).19.M. Fechner et al., Magnetic phase transition in two-phase multiferroics predictedfrom first principles.Phys. Rev. B 78, 212406 (2008).20.J. Lee, N. Sai, T. Cai, Q. Niu, A. A. Demkov, preprint availableat /abs/0912.3492v1.21.K. Yamauchi, B. Sanyal, S. Picozzi, Interface effects at a half-metal/ferroelectricjunction. Appl. Phys. Lett. 91, 062506 (2007).22.M. K. Niranjan, J. P. Velev, C.-G. Duan, S. S. Jaswal, E. Y. Tsymbal, Magnetoelectric effect at the Fe3O4/BaTiO3 (001) interface: A first-principles study. Phys. Rev.B 78, 104405 (2008).23.M. Jullière, Tunneling between ferromagnetic films. Phys. Lett. A 54, 225 (1975).24.J. F. Scott, Applications of modern ferroelectrics. Science 315, 954 (2007).25.M. Bowen et al., Nearly total spin polarization in La2/3Sr1/3MnO3 from tunnelingexperiments. Appl. Phys. Lett. 82, 233 (2003).26.J. P. Velev et al., Magnetic tunnel junctions with ferroelectric barriers: Prediction offour resistance states from first principles. Nano Lett. 9, 427 (2009).27. F. Yang et al., Eight logic states of tunneling magnetoelectroresistance inmultiferroic tunnel junctions.J. Appl. Phys. 102, 044504 (2007).28.Materials and methods are available as supporting material on Science Online.29.V. Garcia et al., Giant tunnel electroresistance for non-destructive readout offerroelectric states. Nature460, 81 (2009).30.K. J. Choi et al., Enhancement of ferroelectricity in strained BaTiO3 thinfilms. Science 306, 1005(2004).31.K. Bouzehouane et al., Nanolithography based on real-time electrically controlledindentation with an atomic force microscope for nanocontact elaboration. NanoLett. 3, 1599 (2003).32.T. J. Regan et al., Chemical effects at metal/oxide interfaces studied byx-ray-absorption spectroscopy.Phys. Rev. B 64, 214422 (2001).33.N. Hollmann et al., Electronic and magnetic properties of the kagome systemsYBaCo4O7 and YBaCo3M O7 (M=A l, Fe). Phys. Rev. B 80, 085111 (2009).34.M. Abbate et al., Soft-x-ray-absorption studies of the location of extra chargesinduced by substitution in controlled-valence materials. Phys. Rev. B 44, 5419 (1991).35. E. Y. Tsymbal, H. Kohlstedt, Tunneling across aferroelectric. Science 313, 181 (2006).36.M. Ye. Zhuravlev, R. F. Sabirianov, S. S. Jaswal, E. Y. Tsymbal, Giantelectroresistance in ferroelectric tunnel junctions. Phys. Rev. Lett. 94, 246802 (2005).37.M. Ye. Zhuravlev, R. F. Sabirianov, S. S. Jaswal, E. Y. Tsymbal, Erratum: Giantelectroresistance in ferroelectric tunnel junctions. Phys. Rev. Lett. 102, 169901 2009).38.H. Kohlstedt, N. A. Pertsev, J. Rodriguez Contreras, R. Waser, Theoreticalcurrent-voltage characteristics of ferroelectric tunnel junctions. Phys. Rev.B 72, 125341 (2005).39.M. Gajek et al., Tunnel junctions with multiferroic barriers. Nat.Mater. 6, 296 (2007).40.M. Bowen et al., Spin-polarized tunneling spectroscopy in tunnel junctions withhalf-metallic electrodes.Phys. Rev. Lett. 95, 137203 (2005).41.J. D. Burton, E. Y. Tsymbal, Prediction of electrically induced magneticreconstruction at the manganite/ferroelectric interface. Phys. Rev. B 80, 174406 (2009).42.We thank R. Guillemet, C. Israel, M. E. Vickers, R. Mattana, J.-M. George, and P.Seneor for technical assistance, and C. Colliex for fruitful discussions on the microscopymeasurements. This study was partially supported by the France-U.K. Partenariat HubertCurien Alliance program, the French Réseau Thématique de Recherche Avancée Triangle de la Physique, the European Union (EU) Specific Targeted Research Project (STRep) Manipulating the Coupling in Multiferroic Films, EU STReP Controlling Mesoscopic Phase Separation, U.K.Engineering and Physical Sciences Research Council grant EP/E026206/I, French C-Nano Île de France, French Agence Nationale de la Recherche (A NR) Oxitronics, French ANR A licante, the European Enabling Science and Technology through European Elelctron Microscopyprogram, and the French Microscopie Electronique et Sonde Atomique network. X.M.acknowledges support from Comissionat per a Universitats i Recerca (Generalitat de Catalunya).。
电子顺磁共振波谱EPRESR概论
一、 电子顺磁共振的基本原理
1、概述
电子自旋的磁特性
Joseph John Thomson (英国)
The Nobel Prize in Physics 1906
• In 1891, the Irish physicist, George Stoney, believed that electricity should have a fundamental unit. He called this unit the electron.
• The electron was discovered by J.J. Thomson in 1897. • The electron was the first sub-atomic particle ever found. It
was also the first fundamental particle discovered. • The concept of electron spin was discovered by S.A.
电子的磁矩主要来自自旋磁矩(> 99%)的贡献。
若轨道中所有的电子都已成对,则它们 的自旋磁矩就完全抵消,导致分子无顺磁性;
若至少有一个电子未成对,其自旋就会产生 自旋磁矩。
因此,EPR研究的对象必须具有未偶电子。
H =0时,每个自旋磁矩的方向是随机的,并处于同一个平均能态。
H≠0时,自旋磁矩 就有规则 地排列起 来 (平行 外磁场 — 对 应能级的能量较低,或反平行于外磁场—对应能级 的能量较高)。
• 顺磁性 (B’>0,即B’与B0同向) • 铁磁性 (B’>0,即B’与B0同向, B’随B0增大而急
剧增加, 但当B0 消失而本身磁性并不消失) • 反磁性(B’<0,即B’与B0反向) (逆、抗)
NMR Spectroscopy 核磁共振分光检定法
Chapter 16
NMR Spectroscopy
• NMR spectroscopy allows us to learn things about atoms in molecules by bombarding their nuclei with radio waves. • This lets us learn about the chemical environment of those atoms. • This is the same technology used in Magnetic Resonance Imaging (MRI).
Effect of Electronegativity
• Electronegative atoms withdraw electron density through induction. • This deshields H atoms, decreasing Blocal, and increasing chemical shift.
B0
Deshielding by Electrons in Pi Bonds
• The ring current in aromatic rings produces an even larger Blocal in the same direction as B0, increasing Bnet. • Thus, H atoms on and near aromatic rings are deshielded.
Chemical (Shift) Equivalence
• How do we know how many peaks there are? • All H atoms with the same chemical shift will show up as a single peak. • The number of H atoms causing a peak can be determined by integrating the peak. • How do we know how types of H atom are in a molecule?
腺嘌呤与富马酸共晶体的太赫兹光谱分析
腺嘌呤与富马酸共晶体的太赫兹光谱分析方虹霞;张琪;张慧丽;杜勇;洪治【摘要】利用太赫兹时域光谱(THz-TDS)技术在室温下对腺嘌呤、富马酸及两者的共晶体进行测量,实验结果显示腺嘌呤与富马酸共晶体在0.92、1.24、1.52 THz处有明显的吸收峰,与腺嘌呤和富马酸不同,表明共晶体物相结构不同于原料.根据腺嘌呤分子氢键供体与受体的结构特点,使用密度泛函理论(DFT)对腺嘌呤与富马酸三种可能的共晶体结构进行模拟.结果显示其中一种可能的共晶体结构在0.89、1.16、1.41 THz处存在特征吸收峰,与实验结果较好吻合.由此判断腺嘌呤与富马酸共晶体氢键形成位置为腺嘌呤的氨基与富马酸其中一个羧酸的碳氧双键形成氢键,而此羧酸的羟基与腺嘌呤六元环上的邻位氮原子形成第二处氢键.本文还结合理论模拟的结果对腺嘌呤与富马酸共晶体的特征吸收峰对应的相关振动模式进行了归属.%The absorption spectra of adenine, fumaric acid, and their cocrystal were measured using terahertz time-domain spectroscopy (THz-TDS) at room temperature. Experimental results show that they al have distinct fingerprint spectra in the terahertz region. The absorption peaks observed in the terahertz spectra of the cocrystal were at 0.92, 1.24, and 1.52 THz. These are very different from the corresponding reagents. Based on the characteristic hydrogen donor and/or acceptor behavior of adenine, density functional theory (DFT) was used to simulate three possible theoretical cocrystal structures with a focus on hydrogen bond formation between adenine and fumaric acid. The theoretical result shows that one of three possible simulated cocrystal structures had absorption peaks at 0.89, 1.16, and 1.41 THz, which is in agreement with the terahertzexperimental result. Therefore, the structure of the cocrystal was confirmed wherein the first hydrogen bond is formed between the amino group of adenine and the hydroxyl group of fumaric acid. The second hydrogen bond is formed between the nitrogen atom of the nitrogen ring in adenine and the carbonyl group of fumaric acid. The characteristic absorption bands of the cocrystal between adenine and fumaric acid are also assigned based on the simulation results from the DFT calculation.【期刊名称】《物理化学学报》【年(卷),期】2015(000)002【总页数】6页(P221-226)【关键词】腺嘌呤;富马酸;共晶体;氢键;太赫兹时域光谱;密度泛函理论【作者】方虹霞;张琪;张慧丽;杜勇;洪治【作者单位】中国计量学院太赫兹技术与应用研究所,杭州310018;中国计量学院太赫兹技术与应用研究所,杭州310018;中国计量学院太赫兹技术与应用研究所,杭州310018;中国计量学院太赫兹技术与应用研究所,杭州310018;中国计量学院太赫兹技术与应用研究所,杭州310018【正文语种】中文【中图分类】O641;O657.3DNA与许多化合物或天然小分子相互作用形成氢键,一直是化学治疗的热门研究方向,1小分子通过插入沟槽或静电模式的方式与DNA结合已促进了多种新型抗癌2及抗菌3药物的发展.腺嘌呤作为DNA的一种碱基,它与其他小分子的相互作用也已被研究报道.Thompson等4使用X射线衍射技术检测了腺嘌呤与富马酸、马来酸及琥珀酸的共晶体;Byres等5使用X射线衍射技术发现腺嘌呤和质子化腺嘌呤能与2,6-二羟苯甲酸、3,5-二羟苯甲酸、已二酸等形成共晶体;Perumaila等6也检测了腺嘌呤与苯甲酸共晶体;此外,腺嘌呤还能与水杨酸、7,8草酸、9等形成共晶体.观察以上共晶体可发现参与共晶形成的腺嘌呤包括9H腺嘌呤和7H腺嘌呤(如图1所示,“↑”表示氢键供体位置,“↓”表示氢键受体位置);10此外,水、甲醇等作为溶剂会参与氢键网络的构成,从而形成了含水共晶体或含甲醇共晶体,如腺嘌呤与2,6-二羟苯甲酸含水共晶体、5腺嘌呤与已二酸含甲醇共晶体8及腺嘌呤与草酸含水共晶体9等.溶剂参与氢键网络的构成会打断腺嘌呤与共晶形成物(CCF)之间的直接氢键形成,不利于进一步研究腺嘌呤与CCF之间的相互作用.有关研究表明,9H腺嘌呤在气相中或水溶液中是腺嘌呤同分异构体中最稳定的结构,10-12而9H腺嘌呤与7H腺嘌呤之间的能量差在气相中为29.3-33.5 kJ·mol-1,而且在极性溶液中两者之间的能量差值会减少.13,14针对上述问题,本实验采用极性低于水与甲醇的无水乙醇作为溶剂制备溶液共晶体,降低溶剂引起腺嘌呤异构体之间转变的可能性,同时制备研磨共晶体,与溶液共晶体对比,观察溶剂是否参与氢键形成.选用富马酸作为CCF与腺嘌呤形成共晶体,是基于富马酸包含双羧基,有利于与腺嘌呤的氢键受体、供体形成双位氢键,更易于氢键网络的形成.太赫兹波段位于微波和红外辐射之间,其频段为0.1-10 THz(频率为1 THz的光子能量为4.1 meV),15与大部分有机分子及分子团的振动和转动能级之间跃迁的能量大致相当.相对于X射线衍射技术能量高,可能引起晶型转变的缺点,太赫兹时域光谱(THz-TDS)技术具有无损、快速检测的优点.近年来,太赫兹时域光谱技术已被用于共晶检测中.16-18本文制备了以乙醇为溶剂的腺嘌呤与富马酸溶液共晶体和研磨共晶体,采用太赫兹时域光谱技术对腺嘌呤、富马酸与两者的溶液共晶体及研磨共晶体进行表征.通过谱图对比,确认了共晶体的形成,并分析乙醇是否参与了共晶体的氢键形成.运用密度泛函理论对腺嘌呤与富马酸共晶体形成的三种可能结构进行模拟,结合理论模拟结果确认共晶体结构,并对共晶体的特征峰进行振动模式归属.2.1 样品制备腺嘌呤、富马酸均购于西格玛奥德里奇(上海)贸易有限公司,纯度均大于99%,使用前未进行进一步的纯化.2.1.1 溶液共晶体的制备使用精度为0.0001 g的电子天平(BSA-124S,北京赛多利斯科学仪器有限公司)分别称取摩尔比为1:1的腺嘌呤及富马酸,将其溶于温热的无水乙醇中,冷却至室温,自然蒸发即可得到溶液共晶体样品.2.1.2 研磨共晶体的制备分别将两种药品在研钵中研磨成细小颗粒,然后使用电子天平称取摩尔比为1:1的腺嘌呤与富马酸,并利用漩涡混合器(QL-901,海门市麒麟医用仪器厂)震荡15 min,以确保混合充分,然后将样品放入行星式球磨机(QM-3SP04,南京大学仪器厂)内,在频率25 Hz下研磨120 min获得研磨共晶体.2.2 样品表征THz-TDS采用(美国Zomega公司)Z2测量系统.激发光源为Spectra Physics公司的钛蓝宝石飞秒锁模脉冲激光器,激光重复频率80 MHz、脉宽100 fs、中心波长800 nm.使用FW-4型压片机(天津天光光学仪器有限公司)将样品在4 MPa的压力下压制成直径为13 mm、厚度为1.5-1.7 mm无裂缝且两端面平行的样片.样品测试在室温下进行,且使用氮气进行除湿,使样品腔相对湿度保持在0%.本文采用Gaussian 03软件19分别对腺嘌呤、富马酸及两者共晶体进行分子模拟,选取密度泛函理论B3LYP方法,20,21结合基组6-31G(d,p)进行理论计算.模拟计算中,首先进行结构优化,再进行频率计算.所有样品的计算结果没有出现虚频,说明所有优化都找到了分子最小能量结构.考虑到模拟中没有完全考虑电子相关作用和其对非简谐性效应的忽略,以及基组选择等因素,采用相应矫正因子0.96.22实验结果显示溶液与研磨共晶体的物相结构相同,由此判断乙醇并未参与氢键形成.根据上文分析及Thompson等4实验结果可确定参与共晶体氢键形成的是9H腺嘌呤.同时依据氢键合成元(羧酸-羧酸、羧酸-吡啶、羧酸-酰胺、醇-吡啶、醇-胺)23和9H腺嘌呤的氢键供体和受体的位置,理论认为9H腺嘌呤与富马酸共晶体的单分子结构如图2所示,图2A中9H腺嘌呤六元环的N1与富马酸羧基的―O1H形成第一处氢键,而这个羧基的C1=O2与N10―H形成第二处氢键,由此形成腺嘌呤与富马酸共晶体的双位氢键;图2B中富马酸的C1=O2与N10―H形成第一处氢键,且此羧基的O1H与腺嘌呤五元环上的N7形成第二处氢键;图2C中C1=O2与腺嘌呤五元环上的N9―H形成第一处氢键,而O1H与腺嘌呤六元环上的N3则形成第二处氢键.腺嘌呤与富马酸共晶体的太赫兹谱如图3所示.图3A为腺嘌呤与富马酸溶液共晶体和其研磨共晶体的光谱结果比较,从图中可看出腺嘌呤与富马酸溶液共晶体和其研磨共晶体在太赫兹谱图中特征峰出现的位置相同,表明两者物相结构一致,且说明了乙醇并未参与氢键的形成.图3B为腺嘌呤与富马酸共晶体及其原料的太赫兹吸收谱对比.由图3B可知,相对于原料,共晶体的太赫兹谱图在0.92、1.24、1.52 THz处都有明显的吸收峰,与原料不同.理论模拟与实验谱图对比如图4所示,共晶体理论晶型A相对于另外两种共晶体理论晶型(B和C)的光谱模拟结果与实验所得共晶体太赫兹吸收谱图更相符.共晶体理论晶型A的特征吸收峰位于0.89、1.16、1.41 THz处,对应共晶的实验吸收峰位于0.92、1.24、1.52 THz处,因此认为腺嘌呤与富马酸共晶体结构为理论模拟中的晶型A构型,其结构如图5所示.这一结果与Thompson等4使用X射线衍射检测所得结果一致.氢键的形成对于分子内键长、键角的影响如表1、2所示(实验数据见文献24,25),氢键N3―H4…O20和O21―H19…N6的形成使得N3―H4的键长由0.1007 nm伸长至0.1023 nm;C9N6的键长由0.1345 nm伸长至0.1358 nm;O21―H19的键长由0.0972 nm伸长至0.1028 nm;原子之间的键长变长使得原有振动模式的频率降低,即红移现象,这也是共晶体的太赫兹谱图(图3)中0.92、1.24 THz处两个新峰产生的原因.而C17―O21的键长则由0.1355 nm缩短至0.1319 nm.此外,参与氢键形成的化学键角都有所增大,从而也使得共晶体的振动光谱图区别于原料样品.模拟和实验结果之间键长的差别和特征吸收峰存在少许偏移,都是因为实验是在常温下进行的,而理论模拟是在绝对零度下进行的,没有考虑热效应;且实验结果是整个晶格的振动,而计算模拟仅仅针对单个共晶体分子.分子在太赫兹低频波段的振动主要源于多个原子参与的变形振动、扭动振动和弯曲振动26或氢键作用引起的相对振动,且不同峰位的振动模式不同.通过GaussianView的动态观察,可对腺嘌呤与富马酸共晶体的振动模式进行大致的归属,结果见表3.腺嘌呤与富马酸共晶体在0.92 THz处的吸收峰是由富马酸的碳链C23―C22=C16―C17集体面外摇摆振动和腺嘌呤的氨基H4―N3―H5面外摇摆振动共同引起的,如图6(a)所示;在1.24 THz处的吸收峰是由O25=C23―O26面内弯曲振带动共晶体的氢键O21―H19…N6振动,并以O21―H19…N6为连接轴引起腺嘌呤分子面内弯曲振动所共同作用引起的,如图6(b)所示;在1.52 THz 处的吸收峰则是由富马酸的两个羧基O25=C23―O26,O20=17C―O21扭曲振动,并以O21―H19…N6为轴使得腺嘌呤分子产生面外摇摆振动所引起的,而腺嘌呤的H4―N3―H5面外摇摆振动加深了这一作用,如图6(c)所示.此外,根据计算结果腺嘌呤与富马酸共晶体在3.05 THz处有一个以氢键O21―H19…N6为轴的两个分子共同作用的剪式振动所产生的吸收峰,但在实验中由于仪器光谱有效频段范围的限制未能在实验谱图中体现.根据实验及计算结果可知,氢键的形成使得腺嘌呤分子与富马酸分子内部结构有一些变化,且在各自的振动模式下受到对方的影响,这也使得腺嘌呤与富马酸共晶体在太赫兹波段呈现出和原料完全不同的特征吸收谱.使用THz-TDS技术在室温下对腺嘌呤、富马酸及两者的溶液和研磨共晶体进行表征和分析,发现腺嘌呤与富马酸的溶液共晶体与研磨共晶体在0.92、1.24及1.52 THz处都有明显且区别于原料样品的吸收峰;由于两种方法得到的物相结构一致,从而说明乙醇作为弱极性溶剂并未参与氢键的形成.采用密度泛函理论对腺嘌呤与富马酸由氢键作用而形成共晶体的三种可能结构进行结构优化与光谱模拟,并将计算结果与实验结果进行对比,发现其中共晶体理论晶型A的模拟结果与实验太赫兹谱图结果吻合度很高,据此推断共晶体的氢键形成位置为腺嘌呤的氨基与富马酸其中一个羧酸的碳氧双键形成一处氢键,而此羧酸的羟基与腺嘌呤六元环上的邻位氮原子形成第二处氢键.该结论与X射线衍射结果一致.为太赫兹光谱技术检测和分析共晶体结构及氢键作用提供了实验与理论参考.References(1)Verma,R.P.;Hansch,C.J.Pharm.Sci.2008,97(1),88.(2)Ohara,K.;Smeitana,M.;Restouin,A.;Mollard,S.;Borg,J.P.;Collette,Y.;Vasseur,J.J.J.Med.Chem.2007,50(26),6465. doi:10.1021/jm701207m(3)Song,Y.L.;Li,Y.L.;Wu,Z.Y.J.Inorg.Biochem.2008,102 (9),1691.doi:10.1016/j.jinorgbio.2008.04.005(4)Thompson,L.J.;Elias,N.;Male,L.;Tremayne,M.Cryst. GrowthDes.2013,13(4),1464.doi:10.1021/cg301561j(5)Byres,M.;Cox,P.J.;Kay,G.;Nixon,E.CrystEngComm 2009,11(1),135.doi:10.1039/b811243f(6)Perumalla,S.R.;Suresh,E.;Pedireddi,V.R.Angew.Chem.Int.Edit.2005,44(47),7752.(7)Du,L.C.;Zeng,W.L.;Liu,X.Y.;Jian,F.F.Acta Crystallogr.,Sect.E:Struct.Rep.Online 2009,65(Suppl.8),o1791.(8)Sridhar,B.;Ravikumar,K.;Varghese,B.Acta Crystallogr.,Sect. C:mun.2009,65(Suppl.5),o202.(9)McHugh,C.;Erxleben,A.Cryst.Growth Des.2011,11(11),5096.doi:10.1021/cg201007m(10)Hanus,M.;Kabelacek,M.;Rejnek,J.;Ryjacek,F.;Hobza,P. J.Phys.Chem.B 2004,108(6),2087.doi:10.1021/jp036090m(11)Lin,J.;Yu,C.;Peng,S.;Akiyama,I.;Li,K.;Lee,L.K.;LeBreton,P.R.J.Am.Chem.Soc.1980,102(14),4627.doi:10.1021/ja00534a010(12)Dreyfus,M.;Dodin,G.;Bensaude,O.;Dubois,J.E.J.Am. Chem.Soc.1975,97(9),2369.doi:10.1021/ja00842a011(13)Gu,J.D.;Leszczynski,J.J.Phys.Chem.A 1999,103(15),2744.doi:10.1021/jp982713y(14)Huang,Y.Q.;Kenttamaa,H.J.Phys.Chem.A 2004,108(20),4485.doi:10.1021/jp0312767(15)Xu,J.Z.;Zhang,X.C.Technology and Applications of Terahertz Wave;Peking University Press:Beijing,2007;pp 1-5.[许景周,张希成.太赫兹波科学技术与应用.北京:北京大学出版社,2007:1-5](16)Du,Y.;Xia,Y.;Zhang,H.L.;Hong,Z.Spectrochim.Acta A 2013,111,192.doi:10.1016/j.saa.2013.03.081(17)Nguyen,K.L.;Friscic,T.;Day,G.M.;Gladden,L.F.;Jones,W. Nat.Mater.2009,6(3),206(18)Yang,C.X.;Wang,J.;Zhang,Z.W.Spectrosc.Spec.Anal. 2011,31(9),2476.[杨彩霞,王静,张振伟.光谱学与光谱分析,2011,31(9),2476.](19)Frisch,M.J.;Trucks,G.W.;Schlegel,H.B.;et al.Gaussian 03,Revision E.01;Gaussian,Inc.:Wallingford,CT,2004.(20)Axel,D.B.J.Chem.Phys.1993,98,5648.(21)Scoot,P.;Radom,L.J.Chem.Phys.1996,100,16502.(22)Zhao,R.J.;He,J.L.;Li,J.;Guo,C.S.;Du,Y.;Hong,Z.Acta Phys.-Chim.Sin.2011,27(12),2743.[赵容娇,何金龙,李璟,郭昌盛,杜勇,洪治.物理化学学报,2011,27(12),2743.]doi:10.3866/PKU.WHXB20112743(23)Gao,Y.;Zhu,H.;Zhang,J.J.Prog.Chem.2010,22(5),829.[高缘,祖卉,张建军.化学进展,2010,22(5),829.](24)Brown,C.J.Acta Crystallogr.1966,21,1.(25)Yu,B.;Zeng,F.;Yang,Y.;Xing,Q.;Chechin,A.;Xin,X.;Zeylikovich,I.;Alfano,R.R.Biophys.J.2004,86,1649.(26)Perumalla,S.R.;Suresh,E;Pedireddi,V.R.Angew.Chem.Int. Edit.2005,44,7752.。
Nuclear Magnetic Resonance Spectroscopy ( NMR )
Nuclear Magnetic Resonance Spectroscopy ( NMR )核磁共振光譜儀之源起核磁共振(nuclear magnetic resonance),核是指原子核,磁是指磁場,主要是指有磁矩的原子核在靜磁場中,受電磁波的影響而產生的共振躍遷現象。
1945 年12 月,美國哈佛大學E.M. Purcell 等人,首先觀察到石蠟樣品中質子(即氫原子核)的核磁共振吸收信號々1946 年 1 月,美國史丹福大學 F. Bloch 研究小組在水樣品中也觀察到質子的核磁共振信號。
Bloch 和Purcell 兩人由於這項成就,獲得了1952 年諾貝爾物理獎。
(12)核磁共振被證實之後,無數科學家加入研究的行列,使得此項技術迅速成為在物理、化學、生物、地質、醫學等領域研究之利器,尤其是應用在醫學診斷上的核磁共振顯像(magnetic resonance imaging,MRI),也就是俗稱的核磁共振斷層掃描,更是自X光發現以來,醫學診斷技術的重大進展。
(1)基本原理1924年物理學家鮑利(Wolfgang Pauli)提出〆物質中的原子核,在某些狀況下,會以角動量運動,即自旋的方式,而變得有磁性(1)。
核磁共振光譜法是在探討物質與電磁波的作用時所分支出的一門學問。
將分子置入強大的外磁場中,核磁距與外加磁場相互作用,就會吸收(absorption)無線電波,這現象於1945年被F. Block與E. Purcell發現,並於1952年共同獲得諾貝爾獎(14)。
這種電磁波被吸收的現象主要來自於原子核能階的躍升,如Fig.1所示,即從低能階自旋翻轉(spin-flips)至較高能態,但處於高能階時較不穩定,會以光或能量的釋放回復至原來的狀態(即relaxation)(3)。
由於核磁共振的性質會隨核子種類、外加電場大小,或外圍電子雲及磁力線的總和而變化,因此針對同一種原子而言,其所吸收的無線電波頻率,便會隨原子本身在分子中所處環境的不同而變化,測量這種變化可加以推斷該原子於分子中所處的位置,及相鄰同種類原子間的距離,進而了解整個分子的結構。
核磁共振波谱法NuclearMagneticResonanceSpectroscopy
第四章 核磁共振波谱法(Nuclear Magnetic Resonance Spectroscopy, NMR)§4.1 简介1924年,泡利(Pauli)预见原子核具有自旋和核磁距;1946年,斯坦福大学布洛赫(Bloch )和 哈佛大学珀塞尔(Purcell )分别同时独立地观察到核磁共振现象;1952年,分享1952年诺贝尔物理奖;1953年,第一台商品化核磁共振波谱仪问世;1965年,恩斯特(Ernst)发展出傅里叶变换核磁共振和二维核磁共振; 1991年,被授予诺贝尔化学奖;2002年,NMR 领域再一次获诺贝尔化学奖; 核磁共振已成为最重要的仪器分析手段之一核磁共振成像技术(Nuclear Magnetic Resonance Imaging ,简称NMRI ),是获取样品平面(断面)上的分布信息,称作核磁共振计算机断层成象,也就是切片扫描方式。
核磁共振手段可测定生物组织中含水量分布的图像,这实际上就是质子密度分布的图像。
现已对生物组织的病变和其含水量分布的关系作过广泛的研究。
病变会使组织中的含水量发生变化,所以,通过水含量分布的情况就可以把病变部位找出来。
§4.2 核磁共振基本原理一、 原子核的自旋若原子核存在自旋,产生核磁矩:自旋角动量:)1(2+=I I h πρI :自旋量子数; h :普朗克常数; γ: 磁旋比自旋量子数(I )不为零的核都具有磁矩,原子的自旋情况可以用(I )表征: 质量数 原子序数 自旋量子数I 偶数 偶数 0 偶数 奇数 1,2,3…. 奇数 奇数或偶数 1/2;3/2;5/2…. (1) I =0 的原子核 O(16);C (12);S (22)等 ,无自旋,没有磁矩,不产生共振吸收;(2) I =1,2,3 ……. 的原子核:2H ,14N ,这类原子核的核电荷分布可看作一个椭圆体,电荷分布不均匀,共振吸收复杂,研究应用较少;(3)I=1/2,3/2,5/2….的原子核: 1H ,13C ,19F ,31P ,原子核的电荷均匀分布,γρμ=并象陀螺一样自旋,有磁矩产生,是核磁共振研究的主要对象,C ,H 也是有机化合物的主要组成元素。
Nuclear Magnetic Resonance Spectroscopy Introduction
SPIN PROPERTIES OF ATOMIC NUCLEI
What is spin? The fundamental explanation. The shell model for the nucleus tells us that nucleons (protons and neutrons), just like electrons, fill orbitals. When the number of protons or neutrons equals 2, 8, 20, 28, 50, 82, and 126, orbitals are filled. Because nucleons have spin, just like electrons do, their spin can pair up when the orbitals are being filled and cancel out. Odd numbers mean unfilled orbitals, that do not cancel out. COMMON NUCLEI WITH SPIN Unpaired Protons Unpaired Neutrons 1 0 1 1 1 0 1 2 1 1 0 1 1 0
WHAT IS ELECTROMAGNETIC RADIATION?
•Realizing that light may be considered to have both wave-like and particlelike characteristics, it is useful to consider that a given frequency or wavelength of light is associated with a "light quanta" of energy we now call a photon. As noted in the following equations, frequency and energy change proportionally, but wavelength has an inverse relationship to these quantities.
高分子材料研究方法核磁共振与电子顺磁共振波谱法
Introduction
1H NMR Spectroscopy
13C NMR Spectroscopy
EPR Spectroscopy
Applications on Polymers
Chap 3 NMR Spectroscopy and EPR Spectroscopy
CONTENTS
3.1 Introduction
3.2.2 Spin-Spin Coupling
The Spin-Spin Coupling Nuclei can interact with each other to cause mutual splitting of the otherwise sharp resonance lines into multiplets. The coupling constant: the spacing of the multiplets, which characterizes the strength of the coupling and is expressed in hertz.
If possible, comparing with the standard 1H NMR spectra
Further analysing 1H NMR spectra combined with the other spectra
3.2.4 Elucidation of 1H NMR Spectra Methods Further Elucidating 1H NMR Spectra
3.2.2 Spin-Spin Coupling
The Splitting Patterns The first-order spectra Δν/J ≥ 6 Chemically and magnetically equivalent protons do not couple to one another Coupling with two groups of equivalent protons: the number of the multiplet → n+1 rule / the relative intensities of which are given by Pascal’s triangle / the center of each group of the multiplet → δ / J → the distance between the splittings
仪器分析第8章核磁共振PPT
8.2 理论核磁共振的产生 8.2.3 经典力学-进动模型(precession)
•当带正电荷的、且具有自旋量子数的核会产 生磁场,该自旋磁场与外加磁场相互作用, 将会产生回旋,称为进动(Procession),如下 图.进动频率与自旋核角速度及外加磁场的 关系可用Larmor方程表示:
0 2 0 B0
18
➢对氢核来说,I=1/2,其m值只能有 21/2+1=2个取向: +1/2和-1/2.也即表示H 核在磁场中,自旋轴只有两种取向: 与外加磁场方向相同,m=+1/2,磁能级 较低; 与外加磁场方向相反,m=-1/2,磁能级 较高.
19
自旋量子数为1/2的核的能级分裂:
20
8.2.2 量子力学处理核磁共振的产生
➢总之,无论从何种模型看,核在 磁场中都将发生分裂,可以吸收一 定频率的辐射而发生能级跃迁.
27
8.2.4 不同核的NMR
核
天然同位素
存在比(%)
1H
99.98
13C
1.1*
19F
100
31P
100
14N
99.63
15N
0.37*
17O
0.037*
*天然丰度越低,测定越困难。
B0 = 2.35T E (J) (MHz)
第8章 核磁共振波谱法 (NMR)
Nuclear Magnetic Resonance Spectroscopy
8.1 概述 8.1.1 什么是核磁共振 8.1.2 NMR发展简介
1
第8章 核磁共振波谱法 (NMR) 8.1 概述
Nuclear Magnetic Resonance Spectroscopy 8.1.1 什么是核磁共振
磁共振波谱技术及其在诊断乳腺肿物中的临床应用价值
磁共振波谱技术及其在诊断乳腺肿物中的临床应用价值朱凤婷【摘要】Application of magnetic resonance spectroscopy( MRS )in the clinical diagnosis has become popular, since spectroscopic analysis can show changes in biochemical information, reflect tumor pathology at the molecular level, it can help clinicians to identify diseases. Because MRS is a non-invasive method and without radiation damage,it provides the necessary support for repeated examinations in order to monitor efficacy of radiotherapy and chemotherapy,and it can greatly reduce patients' psychological and physiological burden. Here is mainly to introduce MRS technological points and ' H-MRS application in identification of breast tumors.%磁共振波谱(MRS)在临床影像诊断中的应用越来越普及,通过波谱分析来显示病灶生化信息的改变,能在分子水平上反映肿物的病理情况,为临床医师鉴别病变提供影像依据,同时由于MRS的无创性和无射线损害,为反复检查以监测放化疗效果提供必要的影像支持,大大减轻了患者的心理和生理的负担.在此主要阐述MRS 技术重点介绍1H-MRS技术及其在鉴别乳腺病变中的应用.【期刊名称】《医学综述》【年(卷),期】2012(018)009【总页数】3页(P1402-1404)【关键词】磁共振波谱;胆碱化合物;"M"型波峰;增强扫描【作者】朱凤婷【作者单位】华南肿瘤国家重点实验室,中山大学肿瘤防治中心影像介入中心,广州,510060【正文语种】中文【中图分类】R737.9;R814.3磁共振成像(magnetic resonance imaging,MRI)已作为医学影像学的核心技术之一,经过20多年的临床应用,到现在还有很大的发展空间,各项新的技术层出不穷,磁共振波谱(magnetic resonance spectroscopy,MRS)技术也在这种形势下应运而生。
《核磁共振波谱法》
Nuclear Magnetic Resonance Spectroscopy, NMR
精选ppt
发展历史 1924年:Pauli 预言了NMR 的基本理论,即,有些 核同时具有自旋和磁量子数,这些核在磁场中会发 生分裂; 1946年:Harvard 大学的Purcel和Stanford大学的 Bloch各自首次发现并证实NMR现象,并于1952年 分享了Nobel奖; 1953年:Varian开始商用仪器开发,并于同年制作 了第一台高分辨NMR仪; 1956年:Knight发现元素所处的化学环境对NMR 信号有影响,而这一影响与物质分子结构有关。 1970年:Fourier(pulsed)-NMR 开始市场化(早期 多使用的是连续波NMR 仪器)。
小磁场。NMR信号在H0处出 精现选p。pt
由此可见,裂分峰的数目有如下规律: 峰的数目 = n + 1 n:为相邻H核的数目
精选ppt
2. 偶合常数
每组吸收峰内各峰之间的距离,称为偶合常数,
以Jab表示。下标ab表示相互偶合的磁不等性H核的种类。
Jab
Jab
偶合常数的单位用Hz表
示。偶合常数的大小与
either odd mass, odd atomic number, or
both has a quantized spin angular
momentum (P) and a magnetic moment
() .
P h I(I1)
2
精选ppt
P
3.2 Nuclear Magnetic Moments
精选ppt
• The most common nuclei that possess spin
FOCUS扩散加权成像在泌乳素型垂体微腺瘤诊断中的应用价值
FOCUS 扩散加权成像在泌乳素型垂体微腺瘤诊断中的应用价值王敏阳1,2,于灜2,颜林枫2,韩宇2,杨洋2,梁寿衡2,王玉瑶2,崔光彬1,2*作者单位:1.陕西中医药大学医学技术学院,咸阳712046;2.空军军医大学唐都医院放射科,西安710038*通信作者:崔光彬,E-mail:中图分类号:R445.2;R736.4文献标识码:A DOI :10.12015/issn.1674-8034.2022.11.011本文引用格式:王敏阳,于灜,颜林枫,等.FOCUS 扩散加权成像在泌乳素型垂体微腺瘤诊断中的应用价值[J].磁共振成像,2022,13(11):60-65.[摘要]目的探索FOCUS(field of view optimized and constrained undistorted single-shot)扩散加权成像(diffusion weighted imaging ,DWI)在泌乳素型垂体微腺瘤中的诊断价值。
材料与方法回顾性分析32例泌乳素型垂体微腺瘤与24例高泌乳素血症患者的MRI 平扫、动态增强及FOCUS DWI 序列图像并测量表观扩散系数(apparent diffusion coefficient ,ADC)值。
比较泌乳素型垂体微腺瘤组病变与未受累区ADC 值及高泌乳素血症组平均ADC 值间差异。
采用随机区组设计的方差分析比较高泌乳素血症组垂体前叶左、中、右三个区域间ADC 值。
利用受试者工作特征(receiver operating characteristic ,ROC)曲线分析ADC 比值(即rADC)的诊断效能。
结果泌乳素型垂体微腺瘤组病变区的ADC 值小于邻近未受累垂体区及高泌乳素血症组垂体前叶平均ADC 值(P <0.001),且后两者ADC 值差异无统计学意义(P =0.120)。
高泌乳素血症组垂体中间部ADC 值显著高于左右两侧部(P 右=0.001,P 左=0.012),而左右两侧ADC 值间差异无统计学意义(P =1.000)。
物理专业英语词汇(A)
物理专业英语词汇(A)物理专业英语词汇(A)物理专业英语词汇(A)1/8 fluctuation1/8 起伏1/f noise1/f 噪声1/n expansion1/n 展开3k cosmic blackbody radiation3k 宇宙黑体辐射4 counter4 计数器a batterya电池组a posteriori probability后验概率a priori probability先验概率a15 structurea15 结构abbe coefficient阿贝数abbe invariant阿贝不变量abbe number阿贝数abbe prism阿贝棱镜abbe refractometer阿贝折射计abbe sine condition阿贝正弦条件abel theorem阿贝尔定理abelian group可换群abelian integral阿贝尔积分aberage life平均寿命aberration象差aberration constant光行差常数aberration of light光行差aberrational ellipse光行差椭圆ablation烧蚀abm stateabm 态abnormal反常的abnormal cathode fall反常阴极势降abnormal crystallization异常晶化abnormal dispersion异常色散abnormal glow反常辉光放电abnormal grain growth反常晶粒生长abnormal liquid反常液体abnormal reflection异常反射abnormal series反常系abrasion磨损abrasion test磨损试验abrasives研磨材料abrikosov's structure of flux lines阿布里科蓑磁通线结构absence of gravity失重absolute绝对的absolute acceleration绝对加速度absolute angular momentum绝对角动量absolute atomic weight原子的绝对重量absolute black body绝对黑体absolute configuration绝对组态absolute counting绝对计数absolute electrometer绝对静电计absolute electrostatic system绝对静电制absolute error绝对误差absolute geopotential绝对位势absolute humidity绝对湿度absolute index of refraction绝对折射率absolute instability绝对不稳定性absolute magnitude绝对星等absolute measurement绝对测量absolute motion绝对运动absolute ohm绝对欧姆absolute orbit绝对轨道absolute permeability绝对磁导率absolute permittivity绝对电容率absolute pressure绝对压力absolute rest绝对静止absolute rest frame绝对静止系absolute rotation绝对转动absolute scale绝对度标absolute space绝对空间absolute stability绝对稳定absolute system of units绝对单位制absolute temperature绝对温度absolute temperature scale绝对温标absolute thermometer绝对温度表absolute time绝对时空间absolute topography绝对形势absolute unit绝对单位absolute vacuum gage绝对真空计absolute velocity绝对速度absolute viscosity绝对粘度absolute vorticity绝对涡度absolute weight绝对重量absolute zero绝对零度absolute zero point绝对零度absorb吸收absorbed dose吸收剂量absorbent吸收剂absorber吸收体absorbing medium吸收媒质absorptiometer吸收计absorption吸收absorption band吸收带absorption coefficient吸收系数absorption cross section吸收截面absorption curve吸收曲线absorption edge吸收端absorption equilibrium吸收平衡absorption factor吸收因子absorption filter吸收滤光器absorption hygrometer吸收湿度表absorption index吸收指数absorption jump吸收跃迁absorption limit吸收端absorption line吸收线absorption method吸收法absorption model吸收模型absorption of sound声的吸收absorption spectrometer吸收光谱仪absorption spectroscopy吸收光谱学absorption spectrum吸收光谱absorption test吸收试验absorptive吸收的absorptive power吸收本领absorptivity吸收本领abstract algebra抽象代数abstract group抽象群abstract space抽象空间abstraction抽象abundance of elements元素的丰度ac bias交莲压ac circuit交羚路ac galvanometer交羚疗ac voltage交羚压accelerated motion加速运动accelerating chamber加速室accelerating electrode加速电极accelerating field加速场accelerating gap加速隙缝accelerating period加速周期accelerating slit加速隙缝accelerating tube加速管accelerating voltage加速电压acceleration加速度acceleration cavity加速共振腔acceleration gap加速隙acceleration of gravity重力加速度accelerator加速器accelerometer加速计acceptance肯定acceptor受主acceptor center受中心acceptor impurity受钟质acceptor level受周级access选取access speed选取速度access time选取时间accessibility可达性accessible point可达点accessories附件accidental coincidence偶然符合accidental degeneracy偶然退化accidental error偶然误差accidental reflection偶然反射acclimation气候驯化acclimatization气候驯化acclimazation气候驯化accommodation第accommodation coefficient适应系数accommodation of the eye眼的第accord和音accreting black hole model吸积黑洞模型accretion吸积accretion disk吸积盘accumulated dose累积剂量accumulated error累积误差accumulated temperature积温accumulation蓄集accumulation layer累积层accumulation point聚点accumulation ring累积环accumulator二次电池accuracy准确度accuracy grade准确度accuracy of measurement测量精确度accuracy of readings读数准确度accuracy rating准确度acetone丙酮achondrite无球粒陨石achromat消色差透镜achromatic消色的achromatic color无彩色achromatic condition消色差achromatic lens消色差透镜achromatic prism消色差棱镜achromatic quarter wave prism四分之一波长消色棱镜achromatic sensation无色感觉achromatic stimulus无色剌激achromatism消色差acid酸acnod孤点acoumeter测听计acount计算acoustic声的acoustic absorption coefficient吸声系数acoustic absorptivity吸声系数acoustic admittance声导纳acoustic analysis声分析acoustic conductivity声导率acoustic diffraction声衍射acoustic dispersion声弥散acoustic disturbance声扰动acoustic electron spin resonance声电子自旋共振acoustic emission声发射acoustic far field远程声场acoustic field声场acoustic filter滤声器acoustic fraunhofer field夫琅和费声场acoustic frequency音频acoustic fresnel field非涅耳声场acoustic gravity wave声力波acoustic image声象acoustic impedance声阻抗acoustic instrument声学仪器acoustic interferometer声波干涉计acoustic lens声透镜acoustic line声传输线acoustic load声负载acoustic material吸音材料acoustic measurement声学量度acoustic microscope超声显微镜acoustic mode声学模acoustic near field近程声场acoustic nuclear magnetic resonance声核磁共振acoustic ohm声欧姆acoustic paramagnetic resonance声顺磁共振acoustic power声功率acoustic pressure声压acoustic radiator声辐射体acoustic reactance声抗acoustic resistance声阻acoustic resonance声共振acoustic resonator声共振器acoustic shadow声影acoustic signal声信号acoustic sounding声学探测acoustic streaming声风acoustic transducer声能转换器acoustic transformer声变换器acoustic velocity声速acoustic wave声波acoustic wind声风acoustical声的acoustical holography声全息学acoustical spectroscopy声谱学acoustically induced birefringence声诱发双折射acoustics声学acoustimeter声强计acoustodynamic声动力学的acoustoelectric amplification声电放大acoustoelectric effect声电效应acoustoelectron interaction声电子相互酌acoustoelectronics声电子学acoustomagnetoelectric effect声磁电效应acoustooptic effect光声效应acoustooptical声光的acoustooptical modulator声光灯器acoustooptical q switch声光q 开关acoustooptical radiospectrometer声光射电光谱仪acoustooptics声光学acre英亩acrobatic metal特技的金属acryl resin丙烯酸尸actinic有光化性的actinic photometer光化光度计actinic rays光化射线actinic value of light光化度actinides锕系actinism光化酌actinium锕actinium emanation锕射气actinium series锕系actinograph日射仪actinoid nuclei锕系元素核actinometer日射表actinometry辐射测量;光能强度测定actinomorphy辐射对称性actinon锕射气action酌action at a distance超距酌action centre of the atmosphere大气活动中心action integral酌积分action principle酌原理action spectrum酌谱action through medium媒递酌action variable酌变量activated激化了的activated adsorption活性吸附activated atom激活原子activated molecule激活分子activating agent活化剂activation活化activation analysis放射化分析activation cross section放射化截面activation energy激活能activation method激活法activator活化剂active活性的active carbon活性炭active current有效电流active front活跃锋active galactic nucleus活动星系核active galaxy活动星系active hydrogen活性氢active laser element激活激光元件active laser spectroscopy活性激光光谱学active laser substance激活物质active lattice放射性栅格active locking受迫模同步active material放射材料active network有源网络active oxygen活性氧active power有效功率active product放射性产物active prominence活动日珥active q switching激活q 开关active sun活动太阳active volcano活火山activity放射性activity coefficient活度系数activity unit放射性单位actual真实的actual load有效的acumulative temperature积温acute尖锐acute angle锐角acute angled锐角的acute angled triangle锐角三角形acute triangle锐角三角形acuteness锐度acyclic非循环的adaada 语言adamantine luster金刚光泽adaptability适应性adaptation适应adaptive antenna自适应天线adaptive optics自适应光学adaptometer适应测量计adatom吸附原子add加add circuit加法电路addend加数adder加法器adding element求和器addition加法additional加法的additional code补码additional heating附加加热additional mass附加质量additive加法的additive group加法群additive method加色法additive property加和性additive theory of numbers加性数论additivity加和性address。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Magnetoelectric Spectroscopy of Electronic Transitions in Antiferromagnetic Cr2O3B.B.Krichevtsov,V.V.Pavlov,R.V.Pisarev,and V.N.GridnevIoffe Physico-Technical Institute of the Russian Academy of Sciences,St.Petersburg194021,Russia(Received22January1996)Optical effects due to electric dipole–magnetic dipole interference were predicted for crystals whichare noninvariant under space-inversion and time-reversal symmetry.We report measurements of thenonreciprocal rotation and ellipticity of light reflected from antiferromagnetic-magnetoelectric Cr2O3ina spectral range from1.6to2.5eV,which comprises4A2!2E,2T1,and4T2transitions.An analysisprovides new information about symmetries of excited states and shows that previous assignments ofexcitonic lines cannot be entirely reconciled with our data.[S0031-9007(96)00330-4]PACS numbers:78.20.Ls,75.50.Ee,75.80.+qIt is well known that the space-inversion symmetry(¯1)breaking creates a large variety of optical phenomena,which are forbidden in centrosymmetric crystals.Thewell known example is the optical activity;see,e.g.,[1].From a microscopical point of view these effects arise dueto the fact that matrix elements of odd and even(underspace-inversion)operators between the same pairs of crys-tal states may be simultaneously nonzero.Thus,matrixelements of the electric dipole d nk and the magneticdipole m nk(or electric quadrupole)moments betweenstates j n͘and j k͘give rise to a contribution g͑nk͒ij to thesecond-rank axial tensor g ij,which describes a rotation of the polarization plane of light wave propagating through a crystalg͑nk͒ijϳIm d i kn m jnk,(1)where i and j are Cartesian indices.The tensor g ij is time even and,hence,may be nonzero in crystals both invariant and noninvariant under the time-reversal operation(10). The time-odd axial property tensor a ij may exist in crystals with the broken¯1and10symmetries[2]:a͑nk͒ijϳRe d i kn m jnk.(2) This tensor gives rise to the gyrotropic birefringence in transmission and to the nonreciprocal(NR)rotation of plane polarized light in reflection.First estimates of these effects gave values on the order of1028rad[2]and thus were not encouraging for an experimental search.New microscopical theories reported quite recently[3–5](see also[6])showed that NR optical effects related to a ij may be on the order of10241025and,hence,they could be detectable using modern polarimetric techniques.Mea-surements of the NR rotation and ellipticity of reflected light were done only at one wavelength(l0.6328m m) in antiferromagnetic Cr2O3[7]in which the magnetic symmetry allows the property tensor a ij.Values on the order of10241025rad were obtained for the rotation and ellipticity;however,they could be hardly regarded as proving or disproving theoretical estimates[3–5].In fact, the coincidence might have been accidental,since,as we show below,the rotation and ellipticity change their mag-nitudes and signs when sweeping the frequency of light through the d-d absorption bands of Cr2O3.We note in passing that an attempt to interpret the rota-tion in reflection in time-invariant crystal GaAs as a non-reciprocal effect[8]is completely inconsistent with thetime-reversal symmetry of electromagnetic interactions. This interpretation was recently criticized in[9].Taking into account(i)controversial estimates of themagnitude of the property tensor a ij,(ii)its possible strong frequency dispersion in optical range,and(iii)itsrelation to a new kind of interference between electric dipole-magnetic dipole mechanisms which should lead tospectra different from those observed in absorption,wereport in this Letter results on thefirst spectroscopic study of NR optical effects in reflection in Cr2O3,a materialwith well known crystallographic and magnetic structures.We show that observed effects are in agreement with re-cent estimates[3–5].Our studies provide new informa-tion about the nature of electronic transitions and their splittings under the combined action of exchange andspin-orbit interaction.The experimental setup is shown in Fig.1.The light from a150W halogen-tungsten lamp S passes througha waterfilter F,a Glan polarizer GP,and a polarizingbeam splitter BS.Then the light with polarization E1 passes through the modulator M and is focused by the lensL4on the surface of the sample in the optical cryostat. The reflected light goes back through the modulator Mand passes the polarizing beam splitter BS.The lightwith polarization E2ЌE1is directed to the input slit of a grating monochromator.The intensity of light ismeasured on thefirst and the second harmonic of theoperating frequency of polarization modulator.When measuring the rotation,the Faraday cell was usedas a polarization modulator(400Hz).The measurementswere carried out by a compensation method.For this purpose an electronic scheme generated in theFaradayFIG.1.Schematic of experimental setup.46280031-9007͞96͞76(24)͞4628(4)$10.00©1996The American Physical Societycell the dc rotation of polarization plane of the samemagnitude and of the opposite sign as compared to the rotation caused by reflection from a sample.The sensitivity wasӍ1025rad.When measuring the ellipticity,which is proportional in our geometry to the circular dichroism in reflection, the photoelastic modulator was used.The ellipticity ofreflected light was calculated as´͑d͞4͒I1͞I2,where I1and I2are the magnitudes of electrical signals onthefirst and second harmonics,respectively,of the operating frequency(32kHz)of photoelastic modulator; d0.080.12is the amplitude of ellipticity modulation. The sensitivity wasӍ1025rad.Below the Néel temperature,T N307K,Cr2O3has magnetic point group D3d͑D3͒,which allows the mag-netoelectric(ME)effect,i.e.,nonzero tensor a ij.C3-axis-oriented platelike samples(33330.5mm)were prepared from boules of Cr2O3grown by the Verneuil method.The crystals surface was polished by a diamond abrasive.For elimination of possible reciprocal effects measurements were performed for two single-domain an-tiferromagnetic states l1and l2,which were produced by a magnetoelectric annealing procedure in a dc electric field E6200V͞mm and magneticfield H62kOe directed along the z axis.The annealingfields were switched off after cooling the sample and the measure-ments were performed without any externalfields,i.e.,the spontaneous effects were measured.The difference be-tween measured values of the rotation and ellipticity in l1 and l2states is due to NR effects only[7,10].The rotation and ellipticity were measured in the spectralrange1.6–2.5eV with the resolution2meV in the tem-perature region50–300K.The measurements were car-ried out in geometry k k z at normal reflection of light from the z plane of the crystal.The deviation from the normal incidence due to the focusing of light wasӍ10±. Figure2shows the spectral variations of NR effects at temperatures274and90K.At90K both the rotation and ellipticity reveal strong sharp lines of different signs in the spectral range1.7–1.8eV.The ellipticity in the region 1.9–2.3eV shows two bands of different signs centered at2.05and2.17eV.The magnitudes of rotation and ellipticity at E1.98eV(l0.63m m)are in good agreement with the data obtained in[7]by means of the laser polarimetric technique.Figure3shows the spectra of NR ellipticity and rota-tion at T90K in the spectral range1.68–1.8eV.The strongest line observed at E1.704eV corresponds to the low-energy2E exciton[11–13].Two weak lines of different signs in the region of2E excitons are placed at E1.727and1.732eV.Three lines at1.751,1.758, and1.763eV originate in2T1states.The observed values of rotation u and ellipticity´are given by[2]u1i´2aЌ͑11nЌ͒͑͞12nЌ͒,(3)FIG.2.Nonreciprocal ellipticity and rotation below T N.No effects were observed above T N.Solid lines are bestfit calcu-lations using a Lorentz-type oscillator model.The absorption spectrum is shown schematically using data from[15].where aЌa xx͑v͒a yy͑v͒is the component of the ME tensor and n2Ќe xx͑v͒e yy͑v͒.Because of a weakness of d-d transitions,the dispersion of nЌ͑v͒is small and,as seen from Eq.(3),the spectral dependence of the rotation and ellipticity is determined mainly by a frequency dependence of Re aЌ͑v͒and Im aЌ͑v͒, respectively.When considering intraion d-d transitions we may use a noninteracting-ion model in whichaFIG.3.Nonreciprocal ellipticity and rotation at90K in the region of spin-forbidden transitions4A2-2E and4A2-2T1.4629contribution of a single Cr31ion a ionii͑v͒to the tensor a ii͑v͒is given by[1,2]a ion ii ͑v͒4p¯hXk,nr kΩRe d inkm i knv nk1v1i d nk1Re m i kn d i nkv nk2v2i d nkæ,(4)where the sums run over all single-ion states;¯h v nkE n2E k is the energy difference between states n and k,d nk includes the effects of damping,and r k is the occupation probability of the state k.As is seen from Eqs.(3)and(4),the frequency dependence of the rota-tion and ellipticity in the region of isolated transition has dispersion and absorptionlike forms,respectively.How-ever,the quantities u͑v͒and´͑v͒may behave differently when transitions to several states are overlaping[14]. Above T N the tensor a ij vanishes due to the time-reversal and parity symmetries.However,below T N, due to the magnetic symmetry of Cr2O3each Cr31ionbrings exactly the same contribution a ionii͑v͒to the ME tensor[2],i.e.,a ii͑v͒N a ion ii͑v͒,where NӍ43 1022cm23is the density of Cr31ions.Note that in the optical range the ME tensor a ij͑v͒arises as a result of a decomposition of the third-rank tensor g ijl͑v͒,which describes thefirst-order spatial dispersion,into the irreducible representations of the rotation group[2].Another part of this decomposition, related to the quadrupole moments,does not contribute to the NR reflection under the normal incidence of light[7]. The diagonal components of a ii͑v͒cannot be measured in transmission,but only in reflection experiments[2,7]. The optical absorption in Cr2O3[15]is characterized by two wide absorption bands due to transitions from the ground term4A2of the Cr31ion to the excited manifolds originated in the cubic crystal-field terms4T2and4T1. Besides there are series of sharp lines associated with the spin-forbidden transitions to the terms2E,2T1,and2T2. The lines observed in rotation and ellipticity correspond in general to lines observed in absorption spectrum[15] shown schematically in Figs.2and3,but in contrast to the absorption,NR effects may have different signs for different optical transitions.First we discuss the spin-allowed transition4A2!4T2. As seen from Fig.2it is split into2.051and2.169eV bands.In order to explain this splitting we should con-sider the structure of4A2and4T2manifolds of states appearing under the action of the trigonal and the ex-changefields as well as the spin-orbit interaction.The trigonalfield splits the4T2cubic term into two terms of the C3group:4A and4E with wave functions j a,M S͘and j u6,M S͘,where M S632,612.The exchangefield splits states with different M S and the spin-orbit inter-action mixes states j u6,M S͘and j a,M S61͘.As a re-sult we obtain two states to which the transitions from j4A2232͘are allowed:C1j u1232͘1b j a212͘,(5)C2j a212͘2bءj u1232͘.(6) Here bϳl so͞y,where l so is the spin-orbit coupling parameter and y is the parameter of the trigonal splitting. By using Eq.(4)it can be shown that transitions to the states(5)and(6)bring equal but opposite in sign contributions to aЌ͑v͒.The spin-orbit mixing of the j4A2232͘state with the components of the4T2multiplet modifies this simple relation between magnitudes of4E and4A bands.The energy separation of 2.051and 2.169eV bands somewhat exceeds the trigonal splitting obtained in absorption[15]that most probably is due to a combined action of the trigonal,exchange,and spin-orbit interactions on4A2and4T2manifolds.Thus,we qualitatively explain the behavior of aЌ͑v͒in the region of4A2!4T2transition.Note that in absorption the trigonal splitting of the4T2term cannot be observed in axial polarization[16].This consideration clearly demonstrates that the fre-quency dependence of the rotation and ellipticity is de-termined not only by a magnitude of d i kn m j nk,but also by its sign.This feature makes the NR rotation and ellip-ticity sensitive to the symmetry of electronic states.The value d i kn m j nk has different signs for the transitions to the states(5)and(6),thus providing different signs of the el-lipticities of2.051and2.169eV bands.Now we turn to the spin-forbidden transition4A2! 2E.It was established[11–13,17,18]that below the Néel temperature the Davydov splitting of the single-ion4A2!2E transition occurs and instead of R1and R2absorption lines of rubyfive sharp lines labeled1–5and located,respectively,at1.7036,1.7062,1.7234, 17263,and 1.7322eV,appear in Cr2O3.However, the assignment of these lines is still a controversial subject[13,18].Symmetry considerations show that there must exist two E excitons and two A2excitons labeled by the irreducible representations of the unitary subgroup D3.By symmetry arguments only E excitons can be observed in axial po-larization in absorption.The same is true about measure-ments of aЌ͑v͒,since vectors of the magnetic and electric dipole moments have similar transformation properties in D3.Note that relation(4)may be applied equally well for calculating an exciton contribution to the ME tensor a ii͑v͒,because the k0point of the Brillouin zone is the extremum point for exciton energy E͑k͒in Cr2O3[17] and,consequently,exciton dispersion does not contribute to the ME tensor[2].It is essential that no new waves ap-pear at exciton resonance if the light propagates along the C3axis and,hence,no additional boundary conditions are necessary[19].For this reason Eq.(3)is applicable in the region of exciton resonance too.As seen from Fig.3,in the region of2E transition we observe three lines at the positions corresponding to4630lines1,4,and5in[11–13].A nearly“discontinuous”dispersive character of the rotation in the region of line 1is due to its narrow linewidthϳ5meV,which is consistent with the absorption data[15].(We note that lines1,4,and5were also observed in the optical second harmonic spectrum,however,with a different relative intensity ratio[20].)Lines1and4were assigned to E excitons and line5to exciton-magnon excitation[13]. The conjecture of[18]that line5is due to A2exciton is now questionable.However,our data cannot be entirely reconciled with the assignments of[13].First,in[13]line 5was observed in s and p,but not in axial polarization. Second,the theory of Frenkel excitons in Cr2O3proposed in[13]gives ellipticities of equals signs for two E excitons,whereas we observe the ellipticities of opposite signs.The analysis of these disagreements is outside the scope of this Letter.Consider the group of three lines at1.751,1.758,and 1.763eV.It is natural to ascribe these lines to the4A2! 2T1transition.Once again we see that the ellipticityspectrum provides much better resolution of thefirst two lines in these group as compared to the absorption spectrum,in which these lines are broad and weak.The cubic term2T1is split by trigonal and exchangefields to components j a M612͘,where a M are trigonal components for T1.The analysis shows[16]that only transitions to j a0,21͘and j a1,21͘components from j4A2,23͘are allowed.If this simple picture were true,the2T1 band would give rise to two lines separated from each other by the trigonalfield splitting.However,small but clearly defined splitting of1.751and1.758eV lines(see Fig.3)makes this explanation invalid.We have tried to reach an agreement with the experiment by taking into account spin-orbit interaction which,combined with the trigonalfield,mixes j a0,212͘with j a2,12͘and j a1,212͘with j a0,1͘.The resulting picture depends on the relation between the trigonal and exchange splitting.However, in any case we were unable to obtain a picture similar to that observed experimentally.We may speculate that lines1.751and1.758eV are due to E excitons associated with transitions to the trigonal term2E͑2T1͒.Since the product of matrix elements d gn m gn should be proportional to the odd part of the trigonalfield y o, it follows from the above consideration that for spin-allowed d-d transitions the ME tensor aЌ͑v͒varies as l so y o(see also[3]),whereas for spin-forbidden d-d transitions aЌ͑v͒ϳl2so y o.The relation between these two values is proportional to l so unlike the relation between absorption intensities of spin-forbidden and spin-allowed transitions which is proportional to l2so[16].In conclusion,we have presented a new kind of spectroscopy which gives an alternative approach to a study and analysis of electronic states and can be applied to materials with broken space-inversion and time-reversal symmetries.The nonreciprocal rotation and ellipticity in reflection arise in such crystals due to the electric dipole–magnetic dipole interference for transitions between the same pairs of electronic states. The spontaneous nonreciprocal rotation and ellipticity in reflection are observed in Cr2O3.Unlike the well known polar Kerr effect in ferromagnets,which is due to the presence of a magnetic moment,these effects in antiferromagnetic Cr2O3are observed in the absence of any magnetic moment below T N.Their magnitudes are comparable to those in some ferromagnetic materials.We explain the spectral variations of these effects as arising under a combined action of the trigonal and exchange fields as well as the spin-orbit interaction.Some previous assignments of exciton lines cannot be entirely reconciled with our data and these contradictions require a further theoretical study.This work was supported in part by the Russian Foundation for Basic Research and by a Grant of the International Science Foundation.[1]L.D.Baron,Molecular Light Scattering and OpticalActivity(Cambridge University Press,Cambridge,1982).[2]R.M.Hornreich and S.Shtrikman,Phys.Rev.171,1065(1968).[3]V.N.Muthukumar,R.Valent´,and C.Gros,Phys.Rev.Lett.75,2766(1995).[4]I.Dzyaloshinskii and E.V.Papamichail,Phys.Rev.Lett.75,3004(1995).[5]E.B.Graham and R.E.Raab,Philos.Mag.66,269(1992).[6]V.M.Agranovich and V.L.Ginzburg,in Progress inOptics,edited by E.Wolf(North-Holland,Amsterdam, 1971),Vol.9,p.237.[7]B.B.Krichevtsov,V.V.Pavlov,R.V.Pisarev,and V.N.Gridnev,J.Phys.Condens.Matter5,8233(1993).[8]N.I.Zheludev et al.,Phys.Rev.B50,11508(1994);52,2203(1995).[9]L.C.Lew Yan Voon, A.Fainstein,P.Etchegoin,P.Santos,and M.Cardona,Phys.Rev.B52,2201(1995).[10]A.L.Shelankov and G.E.Pikus,Phys.Rev.B46,3326(1992).[11]K.A.Wickersheim,J.Appl.Phys.34,1224(1963).[12]J.P.van der Ziel,Phys.Rev.Lett.18,237(1967).[13]J.W.Allen,R.M.Macfarlane,and R.L.White,Phys.Rev.179,523(1969).[14]W.A.Crossley,R.W.Cooper,J.L.Page,and R.P.van Stapele,Phys.Rev.181,896(1969).[15]D.S.McClure,J.Chem.Phys.38,2289(1963).[16]S.Sugano and Y.Tanabe,J.Phys.Soc.Jpn.13,880(1958).[17]R.M.Macfarlane and J.W.Allen,Phys.Rev.B4,3054(1971).[18]J.W.Allen,Phys.Rev.B9,259(1974).[19]V.M.Agranovich and V.L.Ginzburg,Spatial Dispersionin Crystal Optics and the Theory of Excitons(Springer-Verlag,Berlin,1984),2nd ed.[20]M.Fiebig, D.Fröhlich, B.B.Krichevtsov,and R.V.Pisarev,Phys.Rev.Lett.73,2127(1994).4631。