用待定系数法求二次函数解析式11月24日[1]

合集下载

用待定系数法求二次函数解析式的几种方法

用待定系数法求二次函数解析式的几种方法

用待定系数法求二次函数解析式的几种方法二次函数解析式是高中数学中最基本的概念,其表示的是简单的直线、抛物线或是曲线的方程。

它的复杂性使得学生更易于弄清楚,并且在数学知识的建立上也有较大的作用。

本文将介绍用待定系数法求二次函数解析式的几种方法。

首先,用待定系数法求二次函数解析式也称为求因式分解法,是一种求解二次函数解析式的有效方法。

它所给出的解析式可以使用此解析式求解函数的最大值、最小值以及极值点,有助于研究函数的拓展和深入分析。

求解二次函数解析式的待定系数法通常包括以下几个步骤:首先,将二次函数解析式以下式形式表达:ax + bx + c = 0;其次,求解ax + bx + c的系数a、b、c的解,即a、b、c的值,这样就可以得到完整的二次函数解析式;最后,根据完整的二次函数解析式,可以进行函数曲线的画法,以便对函数特征进行更深入的分析。

这种求解二次函数解析式的待定系数法还可以用来求二次不等式的解。

这些不等式的解也可以用上述的方法求出,只需将其表示成ax + bx + c 不等式的形式,并根据所给的条件来解系数a、b、c,从而得到最终的不等式解。

此外,学生也可以使用特殊的因式分解法,通过将二次函数解析式表示成ax+bx+c=f(x)形式,通过求出形式系数a、b、c来求解因式分解法。

这种方法可以用来求解多项式方程,从而得到多项式函数的解析式。

在求解二次函数时,还有一种简便而又实用的方法,即通过图表的方法,根据函数图象的特点求出函数的解析式,从而更加简单、快捷地求解二次函数。

通过以上介绍,用待定系数法求二次函数解析式的几种方法已经清楚地展示出来。

由此可见,求解二次函数解析式使用待定系数法可以得到准确、完整的解析式,从而有助于学生更好地理解函数的拓展及应用,进而深入认识数学知识,受益匪浅。

待定系数法求二次函数解析式

待定系数法求二次函数解析式

待定系数法求二次函数解析式一、用待定系数法求二次函数的解析式用三种方法:1.已知抛物线过三点,设一般式为y=ax2+bx+c.2.已知抛物线顶点坐标及一点,设顶点式y=a(x-h)2+k.3.已知抛物线与x轴有两个交点(或已知抛物线与x轴交点的横坐标),设两根式:y=a(x-x1)(x-x2) .(其中x1、x2是抛物线与x轴交点的横坐标)例题分析例1 已知抛物线经过点A(-1,0),B(4,5),C(0,-3),求抛物线的解析式.例2 已知抛物线顶点为(1,-4),且又过点(2,-3).求抛物线的解析式.例3 已知抛物线与x轴的两交点为(-1,0)和(3,0),且过点(2,-3).求抛物线的解析式.二、应用迁移 巩固提高1.已知二次函数的图象过(-1,-9)、(1,-3)和(3,-5)三点,求此二次函数的解析式。

2.二次函数,=-2时=-6, =2时=10, =3时=24,求此函数的解析式。

3.已知抛物线的顶点(-1,-2)且图象经过(1,10),求此抛物线解析式。

4.已知抛物线的顶点坐标为(4,-1),与轴交于点(0,3),求这条抛物线的解析式5.二次函数的对称轴为=3,最小值为-2,且过(0,1),求此函数的解析式。

6.抛物线的对称轴是=2,且过(4,-4)、(-1,2),求此抛物线的解析式。

7.已知二次函数的图象与轴的交点为(-5,0),(2,0),且图象经过(3,-4),求解析式8.抛物线的顶点为(-1,-8),它与轴的两个交点间的距离为4,求此抛物线的解析式。

9. 二次函数,当x<6时随的增大而减小,>6时随的增大而增大,其最小值为-12,其图象与轴的交点的横坐标是8,求此函数的解析式。

10、已知直线y=x-3与x轴交于点A,与y轴交于点B,二次函数的图象经过A、B两点,且对称轴方程为x=1,求这个二次函数的解析式。

11、 已知二次函数y1= ax2+bx+c和一次函数y2=mx+n的图象交于两点A(-2,-5)和B(1,4),且二次函数图象与y轴的交点在直线y=2x+3上,求这两个函数的解析式。

用待定系数法求二次函数表达式的三种形式

用待定系数法求二次函数表达式的三种形式
出该函数表达式。
例题1 已知抛物线过点(1,0)(3,-2)(5,0), 求该抛物线所对应函数的表达式。
例题2 抛物线对称轴为直线x=-1,最高点的纵坐标为4, 且与x 轴两交点之间的距离是6,求次二次函x1 数的解 析式。
巩固练习
• 1.已知抛物线与x轴的两交点为(-1,0)和(3, 0),且过点(2,-3).求抛物线的解析式.
待定系数法求二次函数表达式常见 的三种形式 :
一般式 • 1.
:y=ax²+bx+c (a,b,c为常数,且a≠0)
• 2.顶点式:y=a(x+h)²+k
(a 0)顶点坐标( h, k)
• 3.交点式: y a(x x1)(x x2 )
一、一般式 y ax2 bx c(a )
已知二次函数 y ax2 bx c 图象过某三
14.已知二次函数y=x²+2(n+3)x+16的顶点在坐标 轴上,求该二次函数表达式。
15.已知抛物线y=ax²+bx+c的顶点坐标为P(2,-1), 图象与x轴交于A,B两点。若△PAB的x1 面积为6, 求该抛物线所对应函数的解析式。
•谢谢
14
பைடு நூலகம்
• 3.二次函数y=ax²+bx+c,x=6时,y=0;x=4时, y有最大值为8,求此函数的解析式。
• 4.若二次函数y=ax²+bx+c(a≠0)的最大值是 2,图象经过点(-2,4)且顶点在直线y=-2x上, 试求ab+c的值
三、交点式 y a(x x1)(x x2 )
已知二次函数图象与x轴两交点坐标分别为 (x1,0),(x2,0) 通常选用交点式,再根据其他即可解出a值,从而求

八年级数学下用待定系数法求二次函数的解析式

八年级数学下用待定系数法求二次函数的解析式

3、抛物线在x轴上截得的线段长为4,且 顶点坐标是(3,-2)
答案: y 1 ( x 1)( x 5) 1 x2 3x 5
2
2Leabharlann 24、已知抛物线的图象如图所示,求抛物线 的解析式.
答案: y=-2(x+1)2-3.
5.已知二次函数 y=ax2+bx+c 中的 x,y 满足下表:
x … -2 -1 0 1 2 …
用一般式比较简便;
②顶点式:_y=__a_(_x_-__h_)_2_+__k,当已知抛物线的顶点时, 用顶点式较方便;
③交点式(两根式):y_=__a_(_x_-__x_1_)(_x_-__x_2_) _,当已知抛物线与 x 轴的交点坐标(x1,0),(x2,0)时,用交点式较方便.
例1、求满足下列条件的二次函数的关系式: 图象经过点 A(0,3),B(1,3),C(-1,1);
y … 4 0 -2 -2 0 …
求这个二次函数关系式. 答案: y=x2-x-2.
6、抛物线y=ax2+bx+c与y= -x2形状相同,对 称轴是直线 x=3, 最高点在直线 y=x+1上,求 抛物线解析式;
答案: y=-(x-3)2+4
22.1.4用待定系数法求二次函数的解析式
复习:学过的二次函数解析式有哪些? ①一般式:_y_=__a_x_2+__b_x_+__c_ ②顶点式:_y_=__a_(_x_-__h_)2_+__k_
y ax2 bx c
回忆当y=0时
a
x2
b a
x
c a
一元二次方程 ax2+bx+c=0
b
思路:已知三点,选用一般式.
答案:y=-x2+x+3
例2、 求满足下列条件的二次函数的关系式: 图象顶点坐标为(1,-6),且经过点 (2,-8).

用待定系数法求二次函数的解析式(新人教版)课件

用待定系数法求二次函数的解析式(新人教版)课件
$ax_3^2+bx_3+c=y_3$
设立待定系数并建立方程组
• 同样,若已知抛物线的对称轴为直线$x=h$,则可设立如 下方程组
设立待定系数并建立方程组
$-frac{b}{2a}=h$
$y=ax^2+bx+c$
解方程组求得待定系数
解方程组求得$a, b, c$的值。
解方程组的方法有多种,如代入消元法、加减消元法等。
提高解决问题能力
在学习过程中,学生将学会如何根据问题条件设立未知数 、建立方程组,从而提高解决实际问题的能力。
为后续课程做准备
本节课所介绍的待定系数法将在后续课程中得到广泛应用 ,如求解二次方程、二次曲线等,因此本节课的学习将为 后续课程打下基础。
THANKS
感谢观看
用待定系数法求二 次函数的解析式(新 人教版)
目录
• 引言 • 二次函数的基本概念 • 待定系数法介绍 • 用待定系数法求二次函数的解析式 • 实例分析 • 课程总结与展望
01
CATALOGUE
引言
课程背景
01
二次函数是初中数学的重要内容 ,是中考的重点和难点之一。
02
通过学习待定系数法求二次函数 的解析式,学生可以更好地理解 二次函数的性质和图像,提高解 决实际问题的能力。
实际应用举例
通过具体的例题演示如何使用待定系数法求解二次函数解析式,包括如何设立未知数、建 立方程组以及求解过程。
课程对未来的影响和意义
深化对二次函数的理解
通过本节课的学习,学生对二次函数的理解将更加深入, 能够掌握其解析式的求解方法,为后续学习打下基础。
培养数学思维能力
待定系数法是一种重要的数学思维方法,通过本节课的学 习,学生将培养出灵活运用数学思维解决问题的能力。

用待定系数法求二次函数解析式

用待定系数法求二次函数解析式
代入y=a(x-h)2+k得 ______。
快乐闯关“非常6+1”
你的题目是: 一条抛物线的对称轴是y轴,顶点 是坐标原点,且此抛物线经过点( 1,2),请说出抛物线解析式
快乐闯关“非常6+1”
你的题目是:
已知一个二次函数的图象经过点(2,7),顶点坐标是(1, 4),求这个函数的解析式.
解:设所求的二次函数的解析式为y=a(x+1)2+4
解这个方程组,得
a = 2 , b = - 3, c = 5. 所求的二次函数是 y = 2x 2 - 3x + 5.
探究确定二次函数解析式的方法
2、一个二次函数图象的顶点为(1,-4),图象又过 点(2,-3),求这个二次函数的解析式.
解:设所求二次函数为 y=a(x-h)2+k ∵ 图象的顶点为(1,-4) ∴ h = 1,k = -4 ∵ 函数图象经过点(2,-3) ∴ 可列方程a(2-1)2-4=-3 解得 a = 1 ∴ 所求的二次函数是 y=(x-1)2-4
7
6
快乐闯关“非常6+1”
x 2 1 y
你的题目是:
1、已知抛物线y=ax2+bx+c (a≠0)
若当x=1时,y=0,则_____
若经过点(0,-3),则___________

你的题目是:
2、已知抛物线y=a(x-h-3,4), 则h=_____,k=______ ,
知识形成体系
用待定系数法求二次函数解析式的一般方法:
y
已知图象上三点或三对x、y的对应值, 通常选择一般式。 已知图象的顶点坐标和图像上任意一点,
o
x
通常选择顶点式。

用待定系数法求二次函数解析式(专题复习)

用待定系数法求二次函数解析式(专题复习)
y= -1(x+1)(x-3) = -x2+2x+3
知识回顾 Knowledge Review
放映结束 感谢各位的批评指导!
谢 谢!
让我们共同进步
3.交点式 y=a(x-x1)(x-x2) 知道抛物线与x轴的两个交点的坐
标,或一个交点的坐标及对称轴方程或顶 点的横坐标时选用两根式比较简便. (1)当△=b2- 4ac≥0 ,抛物线与x轴相交
y=ax2+bx+c=a(x-x1)(x-x2) △=b2- 4ac>0 ,交点有两个, 分别是: (x1, 0)和(x2, 0) △=b2- 4ac =0,交点只有一个 即顶点[-b/2a,(4ac-b2)/4a] △=b2- 4ac <0 ,无交点
解:设二次函数解析式为y=ax2+bx+c ∵ 图象过B(0,2) ∴ c=2 ∴ y=ax2+bx+2 ∵ 图象过A(2,-4),C(-1,2)两点 ∴ -4=4a+2b+2
2=a-b+2 解得 a=-1,b=-1 ∴ 函数的解析式为:
y=-x2-x+2
2. 顶点式 y=a(x-h)2+k (a≠0)已知对称轴
y=a(x-1)2+4 ∵抛物线过点(-1, 0) ∴ 0=a(-1-1)2+4 得 a= -1
∴ 函数的解析式为: y= -1(x-1)2+4= -x2+2x+3
解法3:(交点式) 由题意可知两根为x1=-1、x2=3 设二次函数解析式为y=a(x-x1)(x-x2) 则有: y=a(x+1)(x-3) ∵ 函数图象过点(1,4) ∴ 4 =a(1+1)(1-3) 得 a= -1 ∴ 函数的解析式为:

用待定系数法求二次函数解析式

用待定系数法求二次函数解析式
一般式: y=ax2+bx+c
顶点式: y=a(x-h)2+k
例2
例题
封面
课 堂 练 习
封面 小结
02
顶点式:
y=a(x-h)2+k
一般式: y=ax2+bx+c
已知一元二次函数f(x)在x= -1,0,1处的函数值分别为7,-1,-3,求这个二次函数的解析式? 已知一元二次函数g(x)的图象的顶点坐标为(1,2),并且经过点M(3,-4),求g(x)的解析式?
欢迎各位老师光临指导!
简约风年终工作总结
CLICK HERE TO ADD A TITLE
用待定系数法 求二次函数的解析式
x
o
课 前 复 习
例 题 选 讲
课 堂 小 结
课 堂 练 习
用待定系数法求二次函数的解析式
y
添加你的文本
添加你的文数法?待定系数法 求函数解析式的一般步骤是什么?
1. 假设函数的解析式。
3.将所求系数值代回原函数解析式。
例题
封面
2.列方程(或方程组)求待定系数。
二次函数解析式有哪几种表达式?

课 前 复 习
思考
例题
封面
一般式:y=ax2+bx+c
顶点式:y=a(x-h)2+k 两根式:y=a(x-x1)(x-x2)
例 题 选 讲
一般式: y=ax2+bx+c
顶点式: y=a(x-h)2+k
解:
设所求的二次函数为y=ax2+bx+c
由条件得:
c=1 a+b+c=2 4a+2b+c=-1

14待定系数法求二次函数解析式(讲+练)【7种题型】

14待定系数法求二次函数解析式(讲+练)【7种题型】

22.1.5待定系数法求二次函数解析式 二次函数解析式常见有以下几种形式 : (1)一般式:2y ax bx c =++(a ,b ,c 为常数,a ≠0);(2)顶点式:2()y a x h k =-+(a ,h ,k 为常数,a ≠0);(3)交点式:12()()y a x x x x =--(1x ,2x 为抛物线与x 轴交点的横坐标,a ≠0).题型1:一般式求二次函数解析式-一个或两个参数未知1.若抛物线y =x 2+bx +c 的对称轴为y 轴,且点P (2,6)在该抛物线上,则c 的值为( ) A .﹣2B .0C .2D .4题型2:一般式求二次函数解析式-a 、b 、c 未知2.二次函数y =ax 2+bx+c (a≠0)的图象过点A (﹣1,8)、B (2,﹣1),与y 轴交于点C (0,3),求二次函数的表达式.题型3:顶点式求二次函数解析式3.已知抛物线的顶点是A(2,﹣3),且交y 轴于点B(0,5),求此抛物线的解析式.【变式3-2】已知如图,抛物线的顶点D的坐标为(1,-4),且与y轴交于点C(0,-3).(1)求该函数的关系式;(2)求该抛物线与x轴的交点A,B的坐标.题型4:交点式求二次函数解析式4.已知二次函数y=ax2+bx+c的图像经过A(-1,0),B(3,0),C(0,-3)三点,求这个二次函数的解析式.题型5:综合-待定系数法与二次函数的性质5.已知:二次函数的图象经过点A(−1,0),B(0,−3)和C(3,12).(1)求二次函数的解析式并求出图象的顶点D的坐标;(2)设点M(x1,y1),N(1,y2)在该抛物线上,若y1≤y2,直接写出x1的取值范围.题型6:综合-待定系数法求最短距离6.如图,已知抛物线y=1a(x−2)(x+a)(a>0)与x轴交于点B、C,与y轴交于点E,且点B在点C的左侧.(1)若抛物线过点M(﹣2,﹣2),求实数a的值;(2)在(1)的条件下,解答下列问题;①求出△BCE的面积;②在抛物线的对称轴上找一点H,使CH+EH的值最小,直接写出点H的坐标.【变式6-1】如图,抛物线y=x2﹣bx+c交x轴于点A(1,0),交y轴于点B,对称轴是x=2.(1)求抛物线的解析式;(2)点P是抛物线对称轴上的一个动点,是否存在点P,使△PAB的周长最小?若存在,求出点P 的坐标;若不存在,请说明理由.题型7:综合-三角形面积7.如图,在平面直角坐标系xOy中,抛线y=ax2+bx+2过B(-2,6),C(2,2)两点。

九年级上-待定系数法求二次函数的解析式

九年级上-待定系数法求二次函数的解析式

待定系数法求二次函数的解析式知识集结知识元利用一般式求二次函数的解析式知识讲解已知三个点求二次函数的解析式,一般选择一般式,基本的作法是:(1)设出二次函数的一般式;(2)将三个点的值分别代入到解析式中,得到一个三元一次方程组;(3)解方程组得出三个字母的值,即可得到为此函数的解析式.例题精讲利用一般式求二次函数的解析式例1.'二次函数y=ax2+bx+c的变量x与变量y的部分对应值如下表:求此二次函数的解析式.'例2.'y=ax2+b与y=x+2交于A、B两点,A点横坐标为﹣1,B点横坐标为2,求二次函数解析式.'例3.'已知:抛物线y=ax2+bx+c经过A(﹣1,8)、B(3,0)、C(0,3)三点(1)求抛物线的表达式;(2)写出该抛物线的顶点坐标.'利用顶点式求二次函数的解析式知识讲解当已知条件中出现二次函数的顶点或者顶点的横、纵坐标之一等顶点相关的内容时,会考虑用顶点式来求解二次函数的解析式.例题精讲利用顶点式求二次函数的解析式例1.一抛物线和抛物线y=﹣2x2的形状、开口方向完全相同,顶点坐标是(﹣1,3),则该抛物线的解析式为()A.y=﹣2(x﹣1)2+3 B.y=﹣2(x+1)2+3C.y=﹣(2x+1)2+3 D.y=﹣(2x﹣1)2+3例2.二次函数y=x2﹣2x+4化为y=a(x﹣h)2+k的形式,下列正确的是()A.y=(x﹣1)2+2 B.y=(x﹣1)2+3C.y=(x﹣2)2+2 D.y=(x﹣2)2+4例3.将y=2x2﹣12x﹣12变为y=a(x﹣m)2+n的形式,则m•n=.例4.'已知抛物线y1=﹣x2+mx+n,直线y2=kx+b,y1的对称轴与y2交于点A(﹣1,5),点A与y1的顶点B的距离是4.(1)求y1的解析式;(2)若y2随着x的增大而增大,且y1与y2都经过x轴上的同一点,求y2的解析式.'利用两点式(也叫交点式、双根式)求二次函数的解析式知识讲解当已知的点中出现与x轴的交点时,常会考虑设成两点式求二次函数的解析式,此类问题已知点的坐标的形式比较多,除了可以直接已知与x轴的两个交点坐标外,还可以已知其中一个与x轴的交点的坐标及对称轴等其他形式.例题精讲利用两点式(也叫交点式、双根式)求二次函数的解析式例1.若抛物线经过(0,1)、(-1,0)、(1,0)三点,则此抛物线的解析式为()A.B.C.D.例2.抛物线与轴的两个交点为(-1,0),(3,0),其形状与抛物线相同,则的函数关系式为()B.C.D.A.例3.过(﹣1,0),(3,0),(1,2)三点的抛物线的顶点坐标是()A.(1,2)B.(1,)C.(﹣1,5)D.(2,)例4.'已知抛物线y=ax2+bx+c经过点(﹣5,0)、(﹣1,0)、(1,12),求这个抛物线的表达式及其顶点坐标.'顶点在原点的二次函数解析式的求法知识讲解2(a≠0)的形式,其中一次项系数和顶点在原点的二次函数的解析式的结构一定是形如y=ax常数项都为0,所以顶点在原点是一个非常强大的已知条件,接下来再找到一个等量关系即可.例题精讲顶点在原点的二次函数解析式的求法例1.若二次函数函数的图象是顶点在原点,则的值为()A.-2 B.2C.±2 D.4例2.'抛物线的顶点在原点,且经过点(﹣2,8),求该抛物线的解析式.'例3.'一个函数的图象是以原点为顶点,y轴为对称轴的抛物线,且经过点M(﹣2,4),(1)求出这个抛物线的函数表达式,并画出函数图象;(2)写出抛物线上点M关于y轴对称的点N的坐标,并求出△MON的面积.'顶点在 y 轴上的二次函数的解析式的求法知识讲解顶点在y轴上的抛物线的解析式的形式是b=0,即一次项系数为0.例题精讲顶点在 y 轴上的二次函数的解析式的求法与抛物线顶点相同,形状也相同,而开口方向相反的抛物线对应的函数是().A.B.C.D.例2.已知一抛物线的顶点在y轴上,且过二点(1,2)、(2,5),则此抛物线的解析式为.例3.对称轴是y轴且过点A(1,3)、点B(﹣2,﹣6)的抛物线的解析式为.顶点在 x 轴上的二次函数的解析式的求法知识讲解顶点在x轴上的二次函数可以有多种表述方法:(1)与x轴只有唯一的交点;(2)判别式等于0;(3)图象不在x轴上方(或下方);(4)对应的一元二次方程有两个相等的实根等.例题精讲顶点在 x 轴上的二次函数的解析式的求法已知抛物线的顶点在轴上,则等于()A.4B.8C.-4D.16例2.若函数的图象顶点在轴上,则的值为()A.B.-1C.D.或例3.'如图,已知二次函数y=ax2+bx+c的图象顶点在x轴上,且OA=1,与一次函数y=﹣x﹣1的图象交于y轴上一点B和另一交点C.(1)求抛物线的解析式;(2)点D为线段BC上一点,过点D作DE⊥x轴,垂足为E,交抛物线于点F,请求出线段DF的最大值.'过原点的二次函数的解析式的求法知识讲解2(a≠0)的形式,其中一次项系数和顶点在原点的二次函数的解析式的结构一定是形如y=ax常数项都为0,所以顶点在原点是一个非常强大的已知条件,接下来再找到一个等量关系即可.例题精讲过原点的二次函数的解析式的求法例1.如图所示的抛物线是二次函数的图象,那么的值是()D.±2A.2B.-2C.例2.'二次函数y=﹣x2+bx+c的图象经过坐标原点,与x轴交于点A(﹣2,0).求此二次函数的解析式.'例3.'已知抛物线经过原点,点(1,﹣4)和(﹣1,2),求抛物线解析式.'例4.'如图,抛物线y=﹣x2+bx+c经过坐标原点,并与x轴交于点A(2,0).(1)求抛物线的解析式;(2)设抛物线的顶点为B,求△OAB的面积S.'与长度相关的解析式的求法知识讲解在利用线段的长度或者线段之间的等量关系求二次函数解析式时,可以先通过已知条件求出所需的点的坐标,再将点的坐标代入到设出的二次函数的解析式中求出字母的值即可.例题精讲与长度相关的解析式的求法例1.'已知二次函数y=ax2+bx+c的图象经过点A(1,﹣6),对称轴是直线x=3,与x轴交于A、B 两点,且AB=8.求函数解析式.'例2.'如图,已知Rt△ABC的斜边AB在x轴上,斜边上的高CO在y轴的正半轴上,且OA=1,OC=2,求经过A、B、C三点的二次函数解析式.'例3.'在直角坐标平面中,O为坐标原点,二次函数y=x2+bx+c的图象与y轴的负半轴相交于点C (如图),点C的坐标为(0,﹣3),且BO=CO.(1)求出B点坐标和这个二次函数的解析式;(2)若顶点为D,求四边形ABDC的面积.'与面积相关的解析式的求法知识讲解在利用几何图形的面积求二次函数解析式时,可以先通过已知条件求出所需的点的坐标,再将点的坐标代入到设出的二次函数的解析式中求出字母的值即可.例题精讲与面积相关的解析式的求法例1.'已知二次函数y=ax2+2ax﹣4(a≠0)的图象与x轴交于点A,B(A点在B点的左侧),与y 轴交于点C,△ABC的面积为12,求此二次函数的解析式.'例2.'在平面直角坐标系中,O为坐标原点,抛物线y=﹣x2+kx+4与y轴交于A,与x轴的负半轴交于B,且△ABO的面积是8.(1)求点B的坐标和此二次函数的解析式;(2)当y≤4时,直接写出x的取值范围.'例3.'已知抛物线y=ax2﹣2x+c的对称轴为直线x=﹣1,顶点为A,与y轴正半轴交点为B,且△ABO的面积为1.(1)求抛物线的表达式;(2)若点P在x轴上,且PA=PB,求点P的坐标.'利用几何综合性质求函数解析式知识讲解利用几何性质求函数解析式是求解析式中的较难问题,其难点在于对几何性质的探究,并通过几何性质找到所需的点或列出所需的等式.例题精讲利用几何综合性质求函数解析式例1.'如图,抛物线的顶点M在x轴上,抛物线与y轴交于点N,且OM=ON=4,矩形ABCD的顶点A、B在抛物线上,C、D在x轴上.(1)求抛物线的解析式;(2)设点A的横坐标为t(t>4),矩形ABCD的周长为l,求l与t之间函数关系式.'例2.'如图,已知点A的坐标为(﹣2,2),点B的坐标为(﹣1,﹣),菱形ABCD的对角线交于坐标原点O.(1)求C、D两点的坐标;(2)求菱形ABCD的面积;(3)求经过A、B、D三点的抛物线解析式,并写出其对称轴方程与顶点坐标.'例3.'已知抛物线y=a(x﹣h)2﹣2(a,h,是常数,a≠0),x轴交于点A,B,与y轴交于点C,点M为抛物线顶点.(Ⅰ)若点A(﹣1,0),B(5,0),求抛物线的解析式;(Ⅱ)若点A(﹣1,0),且△ABM是直角三角形,求抛物线的解析式;(Ⅲ)若抛物线与直线y1=x﹣6相交于M、D两点①用含a的式子表示点D的坐标;②当CD∥x轴时,求抛物线的解析式.'当堂练习单选题练习1.顶点为(6,0),开口向下,开口的大小与函数y=x2的图象相同的抛物线所对应的函数是()A.y=(x+6)2B.y=(x﹣6)2C.y=﹣(x+6)2D.y=﹣(x﹣6)2练习2.若抛物线经过(0,1)、(-1,0)、(1,0)三点,则此抛物线的解析式为()A.B.C.D.练习3.与抛物线顶点相同,形状也相同,而开口方向相反的抛物线对应的函数是().A.B.C.D.练习4.如图所示的抛物线是二次函数的图象,那么的值是()D.±2A.2B.-2C.练习5.二次函数y=x2﹣2x+4化为y=a(x﹣h)2+k的形式,下列正确的是()A.y=(x﹣1)2+2 B.y=(x﹣1)2+3C.y=(x﹣2)2+2 D.y=(x﹣2)2+4练习1.已知一抛物线的顶点在原点,对称轴为y轴,且经过点(3,﹣3),则该抛物线的函数解析式为.练习2.对称轴是y轴且过点A(1,3)、点B(﹣2,﹣6)的抛物线的解析式为.练习3.若抛物线y=x2﹣bx+9的顶点在x轴上,则b的值为.练习4.将y=2x2﹣12x﹣12变为y=a(x﹣m)2+n的形式,则m•n=.解答题练习1.'如图,抛物线y=x2+bx+c经过坐标原点,并与x轴交于点A(2,0).(1)求此抛物线的解析式;(2)求此抛物线顶点坐标及对称轴;(3)若抛物线上有一点B,且S△OAB=1,求点B的坐标.'练习2.'一个函数的图象是以原点为顶点,y轴为对称轴的抛物线,且经过点M(﹣2,4),(1)求出这个抛物线的函数表达式,并画出函数图象;(2)写出抛物线上点M关于y轴对称的点N的坐标,并求出△MON的面积.'练习3.'如图,抛物线y=﹣x2+bx+c经过坐标原点,并与x轴交于点A(2,0).(1)求抛物线的解析式;(2)设抛物线的顶点为B,求△OAB的面积S.'练习4.'如图,二次函数y=﹣x2+mx+3的图象与y轴交于点A,与x轴的负半轴交于点B,且△AOB的面积为6.(1)求该二次函数的表达式;(2)如果点P在x轴上,且△ABP是等腰三角形,请直接写出点P的坐标.'练习5.'已知,抛物线的顶点为P(3,﹣2),且在x轴上截得的线段AB=4.求抛物线的解析式.'练习6.'如图,一个二次函数的图象经过点A、C、B三点,点A的坐标为(﹣1,0),点B的坐标为(3,0),点C在y轴的正半轴上,且AB=OC.求这个二次函数的解析式.'练习7.'直线l过点A(4,0)和B(0,4)两点,它与二次函数y=ax2的图象在第一象限内交于点P,若S△AOP=,求二次函数关系式.'练习8.'如图,二次函数y=﹣x2+mx+3的图象与y轴交于点A,与x轴的负半轴交于点B,且△AOB的面积为6.求该二次函数的表达式.'练习9.'如图,已知点A的坐标为(﹣2,2),点B的坐标为(﹣1,﹣),菱形ABCD的对角线交于坐标原点O.(1)求C、D两点的坐标;(2)求菱形ABCD的面积;(3)求经过A、B、D三点的抛物线解析式,并写出其对称轴方程与顶点坐标.'练习10.'y=ax2+b与y=x+2交于A、B两点,A点横坐标为﹣1,B点横坐标为2,求二次函数解析式.'练习11.'已知:抛物线y=ax2+bx+c经过A(﹣1,8)、B(3,0)、C(0,3)三点(1)求抛物线的表达式;(2)写出该抛物线的顶点坐标.'。

待定系数法求二次函数的解析式—知识讲解

待定系数法求二次函数的解析式—知识讲解

待定系数法求二次函数的解析式—知识讲解一般来说,二次函数的一般形式为:y = ax^2 + bx + c (其中a、b、c为常数,且a≠0)。

我们可以使用待定系数法来求解二次函数的解析式,具体步骤如下:1.设定待定系数:我们设定系数a、b、c的值为待定系数。

即假设a、b、c的值为未知数。

2.建立方程:根据二次函数的一般形式y = ax^2 + bx + c,我们可以将二次函数转化为一元二次方程。

在方程中,将x、y的值用待定系数a、b、c表示。

3.解方程:根据设定的待定系数,将二次方程化简为标准形式,并利用解一元二次方程的方法求解出待定系数的值。

4.得出结果:通过求解出的待定系数,我们可以得出二次函数的解析式。

下面我们通过一个具体的例子来说明待定系数法的应用。

例:已知二次函数图像经过点(1,3),(-2,2)和(3,4),求解此二次函数的解析式。

解:根据已知条件,我们可以列出三个方程:(1,3):a+b+c=3(-2,2):4a-2b+c=2(3,4):9a+3b+c=4根据设定的待定系数a、b、c,化简以上方程可以得到:a+b+c=3----(1)4a-2b+c=2----(2)9a+3b+c=4----(3)我们可以使用消元法或代入法来求解此方程组。

首先,将方程(2)的2倍加到方程(1)中,可以得到:6a-2b+2c=6然后,将方程(3)的3倍减去方程(1)中,可以得到:24a+6b-3c=6现在我们得到了两个新的方程:6a-2b+2c=6----(4)24a+6b-3c=6----(5)再将方程(5)的3倍加到方程(4)中,可以得到:6a+4c=24我们可以解得:a=3-2c将上式代入方程(1)中,可以得到:(3-2c)+b+c=3整理可得:b-c=0b=c所以,我们可以令b=c。

现在我们得到了a=3-2c和b=c。

将a、b、c的值代入方程(1)中,可以得到:(3-2c)+c+c=3化简可得:-2c+3=3-2c=0c=0将c=0代入a=3-2c和b=c中,可以得到:a=3b=0所以,二次函数的解析式为:y=3x^2通过以上步骤,我们成功使用待定系数法求解了二次函数的解析式。

用待定系数法求二次函数解析式

用待定系数法求二次函数解析式

用待定系数法求二次函数解析式待定系数法是求解多项式解析式的有效途径,用来直接求出二次函数解析式的标准型可以以形如$ax^2+bx+c=0$来表示,其中$a,b,c$均为常数。

一、概述1.1 什么是待定系数法待定系数法是指针对未知数多项式的解析方程,通过形如$a_1x^2+a_2x+a_3=0$的解析方程的参数$a_1,a_2,a_3$的确定,来求解形如$ax^2+bx+c=0$的解析式。

1.2 待定系数法的步骤(1)将解析方程形如$ax^2+bx+c=0$的形式确定,将$a,b,c$的系数根据题目替换成未知数,形如$a_1x^2+a_2x+a_3=0$(2)据此,将问题转化为求令$Δ=b_1a_2-2a_1a_3=0$时$a_1,a_2,a_3$的值,其中$b_1$为给定数∵(3)如果$Δ ≠ 0$,有$a_1=Δ/b_1, a_2=2a_1a_3/b_1, a_3=Δ/b_1$(4)将$a_1,a_2,a_3$的值代回原式,可求出$a,b,c$的值(5)最终,得出答案。

二、例题例题1:已知$2x^2+bx+2=0$,求b的值解:由待定系数法可求解出$a_1=2,a_2=b,a_3=2$∴$b_1=2,Δ=2×b−2×2=b-4$∴令$Δ=b-4=0$,解得$b=4$∴$b=4$例题2:已知$2x^2-3x+c=0$,求c的值解:由待定系数法可求解出$a_1=2,a_2=-3,a_3=c$∴$b_1=2,Δ=2×(-3)−2×c=6-2c$∴令$Δ=6-2c=0$,解得$c=3$∴$c=3$三、探究(1)待定系数法的数据限制待定系数法用来求解的多项式解析方程为二次以下的情况,不能用来求解多次多项式方程。

(2)待定系数法的应用范围待定系数法普遍用于求解数学、物理、化学、经济学等学科中,会出现二次式解析方程的问题,它可以用来快速求解解析式,可以极大的节省计算的时间。

待定系数法求二次函数的解析式—知识讲解(基础)

待定系数法求二次函数的解析式—知识讲解(基础)

待定系数法求二次函数的解析式—知识讲解(基础)责编:常春芳【学习目标】1. 能用待定系数法列方程组求二次函数的解析式;2. 经历探索由已知条件特点,灵活选择二次函数三种形式的过程,正确求出二次函数的解析式,二次函数三种形式是可以互相转化的.【要点梳理】要点一、用待定系数法求二次函数解析式1.二次函数解析式常见有以下几种形式 :(1)一般式:2y ax bx c =++(a ,b ,c 为常数,a ≠0);(2)顶点式:2()y a x h k =-+(a ,h ,k 为常数,a ≠0);(3)交点式:12()()y a x x x x =--(1x ,2x 为抛物线与x 轴交点的横坐标,a ≠0).2.确定二次函数解析式常用待定系数法,用待定系数法求二次函数解析式的步骤如下第一步,设:先设出二次函数的解析式,如2y ax bx c =++或2()y a x h k =-+,或12()()y a x x x x =--,其中a ≠0;第二步,代:根据题中所给条件,代入二次函数的解析式中,得到关于解析式中待定系数的方程(组); 第三步,解:解此方程或方程组,求待定系数;第四步,还原:将求出的待定系数还原到解析式中.要点诠释:在设函数的解析式时,一定要根据题中所给条件选择合适的形式:①当已知抛物线上的三点坐标时,可设函数的解析式为2y ax bx c =++;②当已知抛物线的顶点坐标或对称轴或最大值、最小值时.可设函数的解析式为2()y a x h k =-+;③当已知抛物线与x 轴的两个交点(x 1,0),(x 2,0)时,可设函数的解析式为12()()y a x x x x =--.【典型例题】 类型一、用待定系数法求二次函数解析式1.(2014秋•岳池县期末)已知二次函数图象过点O (0,0)、A (1,3)、B (﹣2,6),求函数的解析式和对称轴.【答案与解析】解:设二次函数的解析式为y=ax 2+bx+c ,把O (0,0)、A (1,3)、B (﹣2,6)各点代入上式得解得,∴抛物线解析式为y=2x 2+x ;∴抛物线的对称轴x=﹣=﹣=﹣.【总结升华】若给出抛物线上任意三点,通常可设一般式:y=ax 2+bx+c (a ≠0).举一反三:【高清课程名称:待定系数法求二次函数的解析式高清ID 号: 356565 关联的位置名称(播放点名称):例1】【变式】已知:抛物线2y ax bx c =++经过A (0,5-),B (1,3-),C (1-,11-)三点,求它的顶点坐标及对称轴.【答案】设52-+=bx ax y (a ≠0),据题意列⎩⎨⎧--=--+=-51153b a b a ,解得⎩⎨⎧=-=42b a , 所得函数为5422-+-=x x y对称轴方程:1=x ,顶点()31-,. 2.(2015•巴中模拟)已知抛物线的顶点坐标为M (1,﹣2),且经过点N (2,3),求此二次函数的解析式.【答案与解析】解:已知抛物线的顶点坐标为M (1,﹣2),设此二次函数的解析式为y=a (x ﹣1)2﹣2,把点(2,3)代入解析式,得:a ﹣2=3,即a=5,∴此函数的解析式为y=5(x ﹣1)2﹣2.【总结升华】本题已知顶点,可设顶点式.举一反三:【高清课程名称:待定系数法求二次函数的解析式高清ID 号: 356565 关联的位置名称(播放点名称):例2】【变式】在直角坐标平面内,二次函数图象的顶点为(14)A -,,且过点(30)B ,. (1)求该二次函数的解析式;(2)将该二次函数图象向右平移几个单位,可使平移后所得图象经过坐标原点?并直接写出平移后所得图象与x 轴的另一个交点的坐标.【答案】(1)223y x x =--.(2)令0y =,得2230x x --=,解方程,得13x =,21x =-. ∴二次函数图象与x 轴的两个交点坐标分别为(30),和(10)-,.∴二次函数图象向右平移1个单位后经过坐标原点.平移后所得图象与x 轴的另一个交点坐标为(40),.3.已知二次函数的图象如图所示,求此抛物线的解析式.【答案与解析】解法一:设二次函数解析式为2y ax bx c =++(a ≠0),由图象知函数图象经过点(3,0),(0,3). 则有930,3,1,2a b c c b a⎧⎪++=⎪=⎨⎪⎪-=⎩ 解得1,2,3.a b c =-⎧⎪=⎨⎪=⎩∴ 抛物线解析式为223y x x =-++.解法二:设抛物线解析式为12()()y a x x x x =--(a ≠0).由图象知,抛物线与x 轴两交点为(-1,0),(3,0).则有(1)(3)y a x x =+-,即223y ax ax a =--.又33a -=,∴ 1a =-.∴ 抛抛物物解析式为223y x x =-++.解法三:设二次函数解析式为2()y a x h k =-+(a ≠0).则有2(1)y a x k =-+,将点(3,0),(0,3)代入得 40,3,a k a k +=⎧⎨+=⎩ 解得1,4.a k =-⎧⎨=⎩ ∴ 二次函数解析式为2(1)4y x =--+,即223y x x =-++.【总结升华】二次函数的解析式有三种不同的形式,它们是相互联系、并可相互转化的,在实际解题时,。

用待定系数法求二次函数解析式的几种方法

用待定系数法求二次函数解析式的几种方法

用待定系数法求二次函数解析式的几种方法待定系数法是一种可以用来求二次函数解析式的有效方法。

基本原理是,通过把二次函数拆分为两个一次函数的乘积,然后根据给定的条件将未知的系数代入到两个一次函数之中,从而计算出二次函数的解析式。

首先,我们可以用待定系数法计算二次函数的标准形式的解析式。

一般来说,二次函数的标准形式是ax^2+bx+c=0,根据定理,二次函数的根为: x = [-b (b^2-4ac)] / 2a.二次函数分解为两个一次函数相乘:ax^2 + bx + c = a(x+p)(x+q),p + q = -b, pq = c.结合给定的条件,将未知的系数代入到两个一次函数之中,即可求得p、q的值。

最后,根据互相关联的关系,计算出q p的值,就可以得到二次函数的标准形式的解析式。

其次,我们可以用待定系数法求解二次函数的非标准形式的解析式。

一般来说,非标准形式的二次函数是一般形式ax^2 + bx + c = 0类似于标准形式,我们可以将二次函数分解为两个一次函数相乘:ax^2 + bx + c = a(x + p/a )(x + q/a)。

对于任意给定的一般形式的二次方程,我们可以先将它降幂变为标准形式,然后再计算p、q的值。

最后,根据互相关联的关系,计算出 q p的值,就可以得到二次函数的非标准形式的解析式。

再次,我们还可以用待定系数法解决一些特殊情况下的二次函数。

比如说,二次函数在x=0处有极值点时,ax^2+bx+c= 0.种情况下,我们可以将二次函数分解为两个一次函数:ax^2 + bx + c = a(x + p)(x + q) + ap, q = 0。

根据给定的条件,将未知的系数代入到两个一次函数之中,即可求得p、q的值。

最后,根据互相关联的关系,计算出q p的值,就可以得到二次函数的特殊情况下的解析式。

总之,待定系数法是一种可以用来求二次函数解析式的有效方法。

它可以用来求解二次函数的标准形式和非标准形式,以及一些特殊情况下的二次函数的解析式。

待定系数法求二次函数的解析式—知识讲解(提高)

待定系数法求二次函数的解析式—知识讲解(提高)

待定系数法求二次函数的解析式—知识讲解(提高)【学习目标】1.能用待定系数法列方程组求二次函数的解析式;2.经历探索由已知条件特点,灵活选择二次函数三种形式的过程,正确求出二次函数的解析式,二次函数三种形式是可以互相转化的.【要点梳理】要点一、用待定系数法求二次函数解析式1.二次函数解析式常见有以下几种形式:(1)一般式:2y ax bx c =++(a,b,c 为常数,a≠0);(2)顶点式:2()y a x h k =-+(a,h,k 为常数,a≠0);(3)交点式:12()()y a x x x x =--(1x ,2x 为抛物线与x 轴交点的横坐标,a≠0).2.确定二次函数解析式常用待定系数法,用待定系数法求二次函数解析式的步骤如下第一步,设:先设出二次函数的解析式,如2y ax bx c =++或2()y a x h k =-+,或12()()y a x x x x =--,其中a≠0;第二步,代:根据题中所给条件,代入二次函数的解析式中,得到关于解析式中待定系数的方程(组);第三步,解:解此方程或方程组,求待定系数;第四步,还原:将求出的待定系数还原到解析式中.要点诠释:在设函数的解析式时,一定要根据题中所给条件选择合适的形式:①当已知抛物线上的三点坐标时,可设函数的解析式为2y ax bx c =++;②当已知抛物线的顶点坐标或对称轴或最大值、最小值时.可设函数的解析式为2()y a x h k =-+;③当已知抛物线与x 轴的两个交点(x 1,0),(x 2,0)时,可设函数的解析式为12()()y a x x x x =--.【典型例题】类型一、用待定系数法求二次函数解析式1.已知抛物线y ax bx c =++2经过A,B,C 三点,当x ≥0时,其图象如图1所示.求抛物线的解析式,写出顶点坐标.图1【答案与解析】设所求抛物线的解析式为y ax bx c =++2(a ≠0).由图象可知A,B,C 的坐标分别为(0,2),(4,0),(5,-3).∴=++=++=-⎧⎨⎪⎩⎪c a b c a b c 216402553,,,解之,得a b c =-==⎧⎨⎪⎪⎪⎩⎪⎪⎪12322,,∴抛物线的解析式为y x x =-++123222y x x x =--+=--+1232123225822()(∴该抛物线的顶点坐标为()32258,.【总结升华】这道题的一个特点是题中没有直接给出所求抛物线经过的点的坐标,需要从图象中获取信息.已知图象上三个点时,通常应用二次函数的一般式列方程求解析式.要特别注意:如果这道题是求“图象所表示的函数解析式”,那就必须加上自变量的取值范围x ≥0.2.(2020•丹阳市校级模拟)形状与抛物线y=2x 2﹣3x +1的图象形状相同,但开口方向不同,顶点坐标是(0,﹣5)的抛物线的关系式为.【思路点拨】形状与抛物线y=2x 2﹣3x +1的图象形状相同,但开口方向不同,因此可设顶点式为y=﹣2(x ﹣h )2+k ,其中(h ,k )为顶点坐标.将顶点坐标(0,﹣5)代入求出抛物线的关系式.【答案】y=﹣2x 2﹣5.【解析】解:∵形状与抛物线y=2x 2﹣3x +1的图象形状相同,但开口方向不同,设抛物线的关系式为y=﹣2(x ﹣h )2+k ,将顶点坐标是(0,﹣5)代入,y=﹣2(x ﹣0)2﹣5,即y=﹣2x 2﹣5.∴抛物线的关系式为y=﹣2x 2﹣5.【总结升华】在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.3.已知抛物线y ax bx c =++2的顶点坐标为(-1,4),与x 轴两交点间的距离为6,求此抛物线的函数关系式.【答案与解析】因为顶点坐标为(-1,4),所以对称轴为x =-1,又因为抛物线与x 轴两交点的距离为6,所以两交点的横坐标分别为:x 113=--,x 213=-+,则两交点的坐标为(-4,0)、(2,0);求函数的函数关系式可有两种方法:解法(1):设抛物线的函数关系式为顶点式:y a x =++()142(a≠0),把(2,0)代入得a =-49,所以抛物线的函数关系式为y x =-++49142();解法(2):设抛物线的函数关系式为两点式:(4)y a x =+(x-2)(a≠0),把(-1,4)代入得a =-49,所以抛物线的函数关系式为:4(4)9y x =-+(x-2);【总结升华】在求函数的解析式时,要根据题中所给条件选择合适的形式.举一反三:【变式】(2019•永嘉县校级模拟)已知抛物线经过点(1,0),(﹣5,0),且顶点纵坐标为,这个二次函数的解析式.【答案】y=﹣x 2﹣2x+.提示:设抛物线的解析式为y=a (x+2)2+,将点(1,0)代入,得a (1+2)2+=0,解得a=﹣,即y=﹣(x+2)2+,∴所求二次函数解析式为y=﹣x 2﹣2x+.类型二、用待定系数法解题4.(2020春•石家庄校级期中)已知二次函数的图象如图所示,根据图中的数据,(1)求二次函数的解析式;(2)设此二次函数的顶点为P ,求△ABP 的面积.【答案与解析】解:(1)由二次函数图象知,函数与x 轴交于两点(﹣1,0),(3,0),设其解析式为:y=a (x+1)(x ﹣3),又∵函数与y 轴交于点(0,2),代入解析式得,a ×(﹣3)=2,∴a=﹣,∴二次函数的解析式为:,即;(2)由函数图象知,函数的对称轴为:x=1,当x=1时,y=﹣×2×(﹣2)=,∴△ABP 的面积S===.【总结升华】此题主要考查二次函数图象的性质,对称轴及顶点坐标,另外巧妙设函数的解析式,从而来减少计算量.【答案与解析】(1)把A(2,0),B(0,-6)代入212y x bx c =-++得220,6,b c c -++=⎧⎨=-⎩解得4,6.b c =⎧⎨=-⎩∴这个二次函数的解析式为21462y x x =-+-.(2)∵该抛物线的对称轴为直线44122x =-=⎛⎫⨯- ⎪⎝⎭,∴点C 的坐标为(4,0),∴AC=OC-OA=4-2=2.∴1126622ABC S AC OB ==⨯⨯= △.【总结升华】求△ABC 的面积时,一般要将坐标轴上的边作为底边,另一点的纵(横)坐标的绝对值为高进行求解.(1)将A、B 两点坐标分别代入解析式求出b,c 的值.(2)先求出点C 的坐标再求出△ABC 的面积.举一反三:【变式】已知二次函数图象的顶点是(12)-,,且过点302⎛⎫ ⎪⎝⎭,.(1)求二次函数的表达式;(2)求证:对任意实数m ,点2()M m m -,都不在这个二次函数的图象上.【答案】(1)23212+--=x x y ;(2)证明:若点2()M m m -,在此二次函数的图象上,则221(1)22m m -=-++.得2230m m -+=.△=41280-=-<,该方程无实根.所以原结论成立.。

用待定系数法求二次函数解析式

用待定系数法求二次函数解析式

3.已知二次函数的图像以点A(-1,4)为顶点, 且过点B(2,-5),
(1)求该函数的关系式? (2)求函数的图像于坐标轴的交点坐标?
4.某次体育测试中,一名男生推铅球的路线是抛物 线,最高点为(6,5),出手处的坐标为A(0,2), (1)求函数的解析式? (2)问铅球可推出多远?
作业布置
• 一课一练: • p83 A组 必做 • B组 选作
• 2.会用待定系数法求生活中的解析 式。
方法指导
• 待定系数法:
先设出函数解析式,再将满足条件的点代入, 求出未知字母。
自我检测
1.已知抛物线过点(-1,-4),且顶点坐标 为(1,0),求此抛物线的解析式?
2.二次函数的图像经过点A(0,-3), B(2,-3),C(-1,0)
(1)求此二次函数的关系式? (2)求此二次函数图像的顶点坐标? Nhomakorabea复习回顾
1.一般式:y=ax2+bx+c(a不等于0)
b b 4ac b 2 对称轴:x , 顶点坐标:(- , ) 2a 2a 4a
2.顶点式:y=a(x-h)2+k,(a不等于0) 对称轴:x=h, 顶点坐标:(h,k)
用待定系数法 求二次函数的
解析式
学习目标
• 1.会用待定系数法求二次函数的解 析式。

用待定系数法求二次函数的解析式课件课件

用待定系数法求二次函数的解析式课件课件

第7页/共11页
封面 小结
如图,对称轴为直线x= 的抛物7线经过点A(6,0)和B(0,4). (1)求抛物线解析式及顶点坐标;2
(2)设点E(x,y)是抛物线上一动点,且位于第四象限,四边形OEAF是以 OA为对角线的平行四边形,求四边形OEAF的面积S与x之间的函数关系式, 并写出自变量x的取值范围;
顶点式: y=a(x-h)2+k
由条件得:
点M( 0,1 )在抛物线上
所以:a(0+1)(0-1)=1 得: a=-1
- 故所求的抛物线解析式为 y= (x+1)(x-1)
即:y=-x2+1
第4页/共11页
y x
o
封面 例题
例题选讲
例 有一个抛物线形的立交桥拱,这个桥拱的最大高度
4
为16m,跨度为40m.现把它的图形放在坐标系里 (如图所示),求抛物线的解图形放在坐标系里 (如图所示),求抛物线的解析式.
解: 设抛物线为y=a(x-20)2+16
根据题意可知 ∵ 点(0,0)在抛物线上,
评价
∴ 所求抛物线解析式为
通过利用条件中的顶 点和过原点选用顶点 式求解, 方法比较灵活
第6页/共11页
封面 练习
课堂练习
1、 一个二次函数,当自变量x= -3时,函数值y=2 当自变量x= -1时,函数值y= -1,当自变量x=1时 ,函数值y= 3,求这个二次函数的解析式?
例题选讲

一般式: 1
y=ax2+bx+c
已知一个二次函数的图象过点(-1,10)、 (1,4)、(2,7)三点,求这个函数的解析式?
解: 设所求的二次函数为 y=ax2+bx+c

2 用待定系数法求二次函数的解析式

2 用待定系数法求二次函数的解析式

a=2,

解得 -3=a+c,
c=-5.
∴所求二次函数表达式为 y=2x2-5.
做一做
已知二次函数y=ax2 + bx的图象经过点(-2,8) 和(-1,5),求这个二次函数的表达式.
已知二次函数y=ax2 + bx的图象经过点(-2,8) 和(-1,5),求这个二次函数的表达式.
解:∵该图象经过点(-2,8)和(-1,5),
x -3 -2 -1 0 1 2 y 0 1 0 -3 -8 -15
①选取(-3,0),(-1,0),(0,-3),
待定系数法 试求出这个二次函数的表达式.
步骤: 1.设: (表达式)
解: 设这个二次函数的表达式是 y=ax2+bx+c,把(-3,0),(-1,0),
2.代:
(0,-3)代入y=ax2+bx+c得
4a+2b+1=4,
9a+3b+1=10,
解这个方程组,得
a 3, 2
b 3. 2
∴所求的二次函数的表达式是 y 3 x2 3 x 1.
22
二 顶点法求二次函数的表达式
选取顶点(-2,1)和点(1,-8),试求出这个二 次函数的表达式.
选取顶点(-2,1)和点(1,-8),试求出这个二 次函数的表达式. 解:设这个二次函数的表达式是y=a(x-h)2+k,把顶点 (-2,1)代入y=a(x-h)2+k得
例2 一个二次函数的图象经点 (0, 1),它的顶点坐标 为(8,9),求这个二次函数的表达式.
解: 因为这个二次函数的图象的顶点坐标为(8,9), 因此,可以设函数表达式为
y=a(x-8)2+9.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

∵二次函数的图象过点(0,-3)(4,5)(-1, 0) a= 1 c=-3 x=0时,y=-3; 解得 b=-2 ∴ 16a+4b+c=5 一、设 a-b+c=0 c= -3 x=4时,y=5; 二、代 三、解 x=-1时,y=0; ∴所求二次函数为 y=x2-2x-3 四、还原
已知一个二次函数的图象过点(0, -3) (-1,0) (3,0) 三点,求这个函数的解析式?
1、已知抛物线y=ax2+bx+c 0 当x=1时,y=0,则a+b+c=_____ a-b+c=0 经过点(-1,0),则___________ c=-3 经过点(0,-3),则___________ 16a+4b+c=5 经过点(4,5),则___________
- b 对称轴为直线x=1,则___________ 2 a =1
解: 设所求的二次函数为 y=ax2+bx+c a= 1 c=-3 依题意得 a-b+c=0 解得 b= -2 c= -3 9a+3b+c=0 ∴所求二次函数为 y=x2-2x-3
最低点为(1,-4) x=1,y最值=-4
已知抛物线的顶点为(1,-4), 且过点(0,-3),求抛物线的解析式?
解: 设所求的二次函数为 y=a(x-1)2-4 ∵点( 0,-3)在抛物线上 ∴ a-4=-3, ∴ a=1
2、已知抛物线y=a(x-h)2+k -3 4 顶点坐标是(-3,4), 则h=_____,k=______, a(x+3)2+4 代入得y=______________ h=1 对称轴为直线x=1,则___________
a(x-1)2+k 代入得y=______________
求出下表中抛物线与x轴的交点坐标,看看你有什么发现? 抛物线解析式 y=2(x-1)(x-3) y=3(x-2)(x+1)
M
N
3.2米
8米
y
y 1 5 ( x - 4 ) 3 .2
2
y
B
C
3.2 3.2
O
8米
A
x
B
O8米
y 1 5
A
2
x
x 3 .2
O
y
x
3.2
B
8米
y 1 5 x
2
A
y
A
已知一个二次函数的图象过点(0,-3) (4,5) 对称轴为直线x=1,求这个函数的解析式? 对称轴为直线x=1
已知三个点坐标三对对应值,选择一般式 已知顶点坐标或对称轴或最值,选择顶点式
三、解 用待定系数法确定二次函数的解析式时,应该根据条件 四、还原 的特点,恰当地选用一种函数表达式。
二、代 已知抛物线与x轴的两交点坐标,选择交点式
16a+4b=8 a-b=3
4a+b=2 a-b=3
已知一个二次函数的图象过点(0,-3) (4,5) (-1, 0)三点,求这个函数的解析式?
∴所求的抛物线解析式为 y=(x-1)2-4
已知一个二次函数的图象过点(0,-3) (4,5) 对称轴为直线x=1,求这个函数的解析式? 思考:怎样设二次函数关系式
解: 设所求的二次函数为 y=a(x-1)2+k
• 如图,直角△ABC的两条直角边OA、OB 的长分别是1和3,将△AOB绕O点按逆时 针方向旋转90°,至△DOC的位置,求过 y C、B、A三点的二次函数解析式。
抛物线与x轴交点坐标 (x1,0),( x2,0)
(1,0)(3,0) (2,0)(-1,0) (-4,0)(-6,0) (x1,0),( x2,0)
y=-5(x+4)(x+6)
-x1 - x2 y=a(x___)(x____) (a≠0)
交点式
求出下表中抛物线与x轴的交点坐标,看看你有什么发现? 抛物线解析式 y=a(x-1)(x-3)(a≠0) y=a(x-2)(x+1)(a≠0) y=a(x+4)(x+6)(a≠0) -x1 - x2 y=a(x___)(x____) (a≠0)
解:设所求的二次函数为 y=ax2+bx+c
∵二次函数的图象过点(0,-3)(4,5)(-1, 0) a= c=-3 解得 b= ∴ 16a+4b+c=5 a-b+c=0 c= -3
已知一个二次函数的图象过点(0,-3) (4,5) (-1, 0)三点,求这个函数的解析式?
解:设所求的二次函数为 y=ax2+bx+c
∴所求的抛物线解析式为 y=(x-1)2-4 即:y=x2-2x-3
二次函数图象如图所示, (1)直接写出点的坐标;(2)求这个二次函数 的解析式
8 6 4 2
-4
A
-2
B
2 4
-2 C-4
抛物线与x轴交点坐标 (x1,0),( x2,0)
(1,0)(3,0) (2,0)(-1,0) (-4,0)(-6,0) (x1,0),( x2,0)
交点式
二次函数常用的几种解析式
一般式 顶点式 交点式 y=ax2+bx+c (a≠0) y=a(x-h)2+k (a≠0) y=a(x-x1)(x-x2) (a≠0) 一、设
B (0,3)
当抛物线上的点 的坐标未知时, 应根据题目中的 隐含条件求出点 的坐标
D
(-3,0) C
O
A(1,0) x
根据条件求出下列二次函数解析式:
(1)过点(2,4),且当x=1时,y有最值为6;
(2)如图所示,
-1 -1
O
2
数学是来源于生活又服务于生活的.
小燕去参观一个蔬菜大棚,大棚的横截面为抛 物线,有关数据如图所示。小燕身高1.40 米,在她不弯腰的情况下,横向活动范围是多 少?
解:设所求的二次函数为 y=ax2+bx+c c=-3 依题意得 16a+4b+c=0 - b =1 2a
最低点为(1,-4) x=1,y最值=-4
已知抛物线的顶点为(1,-4), 且过点(0,-3),求抛物线的解析式?
解: 设所求的二次函数为 y=a(x-1)2-4 ∵点( 0,-3)在抛物线上 ∴ a-4=-3, ∴ a=1
相关文档
最新文档